bioRxiv preprint doi: https://doi.org/10.1101/2022.08.23.505036; this version posted August 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

made available under aCC-BY-NC 4.0 International license.

Downregulated NPAS4 in multiple brain regions is

associated with Major Depressive Disorder

Berkay Selcuk?, Tuana Aksu?, Onur Derelil, Ogun Adebali'?*

1 Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and

Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
2 TUBITAK Research Institute for Fundamental Sciences, 41470 Gebze, Turkey

* To whom correspondence should be addressed: oadebali@sabanciuniv.edu

Competing interests: The authors declare that they have no conflict of interest.

Abstract

Major Depressive Disorder (MDD) is a commonly observed psychiatric disorder that affects
more than 2% of the world population with a rising trend. However, disease-associated
pathways and biomarkers are yet to be fully comprehended. In this study, we analyzed
previously generated RNA-seq data across seven different brain regions from three distinct
studies to identify differentially and co-expressed genes for patients with MDD. Differential
gene expression (DGE) analysis revealed that NPAS4 is the only gene downregulated in three
different brain regions. Furthermore, co-expressing gene modules responsible for
glutamatergic signaling are negatively enriched in these regions. We used the results of both
DGE and co-expression analyses to construct a novel MDD-associated pathway. In our model,
we propose that disruption in glutamatergic signaling-related pathways might be associated
with the downregulation of NPAS4 and many other immediate-early genes (IEGs) that control
synaptic plasticity. In addition to DGE analysis, we identified the relative importance of KEGG
pathways in discriminating MDD phenotype using a machine learning-based approach. We
anticipate that our study will open doors to developing better therapeutic approaches targeting

glutamatergic receptors in the treatment of MDD.
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Introduction

Major Depressive Disorder (MDD), also known as depression, is a common psychiatric
disorder that affected more than 2% of the world population (163 million people) in 2017
(James et al., 2018). It is characterized by low mood sustained for at least 2 weeks, often with
low self-esteem, loss of interest in normally enjoyable activities, low energy, and pain without
a clear cause. Among more severe symptoms, suicidal behaviors are observed in patients with
major depression, making it one of the most common fatal disorders in the world (National
Institute of Mental Health, 2021). Recently, the severe depression rate among youth escalated
from 9.4% to 21.1% between 2013 and 2018 (Duffy et al., 2019). This suggests a rising trend
in the number of depressive patients and emphasizes the importance and urgency of the
problem. Therefore, immediate research is needed to define fine-established markers of major

depression to address this ongoing global well-being problem.

Several attempts have been made to identify the transcriptional profiles of patients with
major depression by using next-generation sequencing (NGS) data obtained from post-mortem
patients. Pantazatos et al. (2017) have discovered thirty-five differentially expressed genes in
the dorsolateral prefrontal cortex of depression sudden deaths (MDD) and depression suicidals
(MDD-S) compared to the control group (padj < 0.1). However, only the dorsolateral prefrontal
cortex, with a limited sample size of 59, was investigated in that study. Labonté et al. (2017)
examined six brain regions and showed differences in transcriptional patterns of men and
women, proposing sexual dimorphism for depression. Although researchers have discovered
a 5-10% overlap for the differentially expressed genes for the females and males, the data did
not yield any outstanding common genetic marker associated with MDD. Similarly, in 2017,
Ramaker et al. (2017) investigated transcriptional profiles of patients with schizophrenia,
bipolar disorder, and major depression. Although they have identified differentially expressed
genes (padj < 0.05) for schizophrenia and bipolar disorder, they have not identified any for
major depression. Sequencing data from these three valuable studies can be analyzed

together to increase the sample size and improve the resolution of the results.

In this study, we combined and analyzed previously used RNA-seq data from multiple
studies (Labonté et al., 2017; Pantazatos et al., 2017; Ramaker et al., 2017) to identify genes
that are differentially expressed for MDD by considering the factors of gender, age, postmortem
interval, brain region, and the study they belonged to. We investigated genes that are
differentially expressed in 7 distinct brain regions, including the dorsolateral prefrontal cortex
(DLPFC), nucleus accumbens (nACC), ventral subiculum (vSUB), anterior insula (alNS),
anterior cingulate cortex (AnCg), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC).
Three of these brain regions (DLPFC, nACC, and vSUB) were further studied for significant
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gene expression changes and co-expressing gene modules. Lastly, used a non-linear,
machine learning based approach to determine biological pathways that can be used for
diagnostic purposes. We present significant genetic biomarkers and pathways associated with

the major depression phenotype.
Results

We combined RNA-seq datasets from three different sources (Labonté et al., 2017;
Pantazatos et al., 2017; Ramaker et al., 2017) containing sequenced brain tissue samples
from post-mortem control and major depression patients to identify statistically significant
transcriptional changes. We analyzed the raw RNA sequencing reads and measured the
expression levels of genes for each sample. The quality of each sample was assessed, and a
few samples were discarded from the analysis due to having low quality (see methods). Then,
we followed the general pipeline of RNA-seq data analysis (see methods) by performing
alignment to the human genome and counting the reads aligned with each gene. We grouped
the counts according to the brain region they belonged to and identified genes that are
differentially expressed relative to the control group (padj < 0.05) for each region by using the

DESeq2 R package (Love et al., 2014). We did not apply any log-fold change cut-off to our

analysis.
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Figure 1. Differential gene expression analysis for different brain regions A) Spearman’s correlation of
log2FC values between investigated brain regions. B) Venn diagram showing the number of

differentially expressed genes for DLPC, vSUB, and nACC.

To investigate the potential transcriptional similarities between different brain regions,

we first calculated pairwise Spearman’s correlations using log2FC values of commonly
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86  expressed genes (Figure 1A). No strong correlation was observed between the two regions.
87  The strongest correlation was observed between the orbitofrontal cortex and ventral subiculum
88  with pairwise Spearman’s correlation score of 0.28. Therefore, we can conclude that different

89 disease-related signatures were observed in different brain regions.

90 Then, we focused on genes that are differentially expressed for each region
91 independently. Out of the seven regions, we identified at least one differentially expressed
92 gene in DLPFC, nACC, and vSUB but not in other brain regions. The highest number of
93  differentially expressed genes was observed in DLPFC (sample size of n=150) with 87
94  differentially expressed genes, and this was followed by nACC (n=94) with six genes and vSUB
95 (n=43) with two genes (Figure 1B). When we intersected lists of differentially expressed genes
96 for these three regions, we discovered that a brain-specific transcription factor NPAS4 (Greb-
97  Markiewicz et al., 2018) was the only common gene (Figure 1b) that was downregulated in all
98 three regions. It was previously shown in mice (Coutellier et al., 2012; Coutellier et al., 2015;
99 Jaehne et al., 2015; Wang et al., 2019) and in a study monitoring 152 ischemic stroke patients
100 (Gu et al., 2019) that decrease in NPAS4 expression is correlated with the MDD phenotype.
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102 Figure 2. Volcano plot and top 3 genes. A) Volcano plot for the DGE analysis of three regions. Blue:
103 padj<0.05 , Red: padj = 0.05 B) Box plots for the top three differentially expressed genes NPAS4,
104 FOSB, and FOS.

105 Because NPAS4 was identified as the single common downregulated gene, we aimed
106  to further investigate the shared transcriptional profile between different regions. Therefore,
107 we combined samples from three regions (DLPFC, nACC, and vSUB) which we observed
108 differential gene expression and reached a sample size of 287 (143 CTRL, 144 MDD) to
109 perform a DGE analysis by adding a covariate of “brain region” to eliminate region-specific
110  variations in gene expression. As presented in the volcano plot (Figure 2a), 149 genes were
111  found to be differentially expressed (padj<0.05) with a general trend of downregulation. We
112  suggest that this was mainly due to the top three (padj:2x10?/, 4.9x101!, 2.3x109)
113  downregulated transcription factors (NPAS4, FOS, and FOSB) (Figure 2b).
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114 To gain more insight into the pathways involved in MDD phenotype, we performed a
115  co-expression analysis using CEMiTool (Russo et al., 2018) for the brain regions we observed
116 NPAS4 downregulation to reveal correlating gene modules. As an input, we used the same
117 normalized count matrix for DGE analysis. The co-expression analysis yielded two co-
118  expressed gene modules (padj < 0.1) as modules 1 and 2. After introducing sample
119  annotations as MDD and control, we identified that both of the modules show positive
120  enrichment in control patients and negative enrichment in MDD patients (Supplementary
121  Figure 1). For the first module (128 genes) control group had normalized enrichment score
122 (NES) of 1.49 (padj = 0.048) and MDD group had -1.48 (padj=0.036). Furthermore, for the
123  second gene (60 genes) module control group had NES of 1.42 and MDD group had -1.44
124  (padj=0.065). Overall, higher enrichment means a higher activity of the module for a given
125 group and the opposite is true for the negatively enriched group as well. Because the activity
126  of each module is correlated with the expression levels of the samples, we can conclude that
127  they are downregulated for patients with depression. Although we have also performed this
128 analysis by including all available samples, we did not obtain any meaningful functional
129  enrichment for the identified modules. We explored the functional implications of the modules
130  in the following paragraphs.

131
Table 1. KEGG 2021 pathway enrichment for the differentially expressed genes. Overlap:
The overlap between the gene set and the pathway.
KEGG Pathway Overlap padj Odds Ratio  Combined Score
IL-17 signaling pathway 9/94 5.20E-06 15.17 262.43
TNF signaling pathway 8/112 1.49E-04 10.93 144.84
Rheumatoid arthritis 7/93 3.18E-04 11.49 138.95
Legionellosis 5/57 0.001585773 13.41 129.97
Bladder cancer 4/41 0.0048795 14.98 125.53
AGE-RAGE signaling pathway in diabetic 7/100 3.86E-04 10.62 123.33
NF-kappa B signaling pathway 7/104 4.00E-04 10.18 115.59
Malaria 4/50 0.008858662 12.04 91.64
MAPK signaling pathway 10/294  0.001585773 5.03 48.47
Kaposi sarcoma-associated herpesvirus infection 7/193 0.008858662 5.29 39.48

132

133
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Table 2. KEGG pathway enrichment for the glutamatergic signaling co-expression module

(Module 1).
KEGG Pathway Overlap padj Odds Ratio Combined Score
Amphetamine addiction 8/69 1.04E-06 22.02 401.59
Cocaine addiction 6/49 1.79E-05 23.06 329.55
Circadian entrainment 9/97 1.04E-06 17.30 317.75
Glutamatergic synapse 9/114 2.51E-06 14.48 245.48
Gastric acid secretion 7176 1.76E-05 16.88 24471
Long-term potentiation 6/67 9.99E-05 16.24 201.68
Dopaminergic synapse 9/132 6.70E-06 12.35 193.68
GABAergic synapse 6/89 3.31E-04 11.92 128.40
Morphine addiction 6/91 3.44E-04 11.64 123.89
Oxytocin signaling pathway 8/154 1.30E-04 9.16 110.15

134

135

136

Table 3. KEGG 2021 pathway enrichment for the synaptic vesicle and secretion

co-expression module. (Module 2)

KEGG Pathway Overlap padj Odds Ratio Combined Score
Synaptic vesicle cycle 10/78 2.72E-12 59.64 1870.16
Insulin secretion 7/86 3.41E-07 33.84 640.54
Endocrine and other factor-requlated calcium 5/53 1.09E-05 38.37 558.02
Salivary secretion 6/93 1.09E-05 25.83 386.58
Aldosterone synthesis and secretion 6/98 1.09E-05 24.42 357.87
Gastric acid secretion 5/76 4.77E-05 2591 329.90
Glutamatergic synapse 6/114 1.99E-05 20.79 286.04
Bile secretion 5/90 8.56E-05 21.63 257.31
Pancreatic secretion 5/102 1.42E-04 18.94 213.74
Vasopressin-requlated water reabsorption 3/44 0.003 26.00 211.24

137
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138 We performed gene set enrichment analysis through a web-based tool Enrichr (Chen
139 et al., 2013; Kuleshov et al., 2016; Xie et al., 2021), and presented the top 10 KEGG (Kyoto
140  Encyclopedia of Genes and Genomes) (Kanehisa, 2019; Kanehisa et al., 2020) pathways
141  based on their combined score (Table 1-3) for differentially genes and co-expressed gene
142  modules. Enrichment of differentially expressed genes yielded 18 pathways (padj<0.05)
143  related to inflammation, such as the IL17 signaling pathway, Rheumatoid arthritis, NF-kappa
144 B signaling pathway. It has been previously suggested that IL-17A induces depressive
145  behavior in mice (Kim et al., 2021; Nadeem et al., 2017), but studies for humans (Saraykar et
146 al., 2017; Tsuboi et al., 2018; Zafiriou et al., 2021) have contradicting conclusions. Lui et al.
147  (2011) showed that higher serum levels of IL-17 are positively correlated with the severity of
148  anxiety in patients with rheumatoid arthritis. The involvement of interleukins and cytokines was
149 previously discussed numerous times (Dowlati et al., 2010; Himmerich et al., 2019; Schiepers
150 et al., 2005). It should be noted that 91 out of 147 differentially expressed genes (including
151  NPASA4) are not present in any KEGG pathway. This suggests that these pathways should not
152  be considered representatives of all differentially expressed genes.

153 We further investigated pathways enriched for individual co-expressed gene modules.
154  We called the first module as “glutamatergic signaling module” because we observed a strong
155  enrichment for the addiction (Gass & Olive, 2008; Tzschentke & Schmidt, 2003), glutamatergic
156  synapse, and circadian entrainment (Biello et al., 2018; Chi-Castafieda & Ortega, 2018)
157 pathways that were mainly controlled by AMPA (a-amino-3-hydroxy-5-methyl-4-
158  isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) glutamate receptor activity.
159 GRIN1, GRIN2B, and GRIA2 are the glutamate receptors that were identified in this module.
160 Lastly, we called the second module “synaptic vesicle and secretion module” because it
161 contained genes responsible for the transportation of ions such as Ca?*. Therefore, the
162  synaptic vesicle cycle, different secretion-related pathways, and pathways related to calcium
163  absorption are highly enriched. Negative enrichment scores of these two modules for the MDD
164  suggest that glutamatergic signaling activity is downregulated for the brain regions where we

165 observed NPAS4 as a common downregulated gene.
166

167 DGE and co-expression analyses are designed to identify linear associations in gene
168  expression in pre-determined conditions (e.g., disease and control). Thus, in addition to DGE
169 analyses, we took a machine learning-based approach called multiple-kernel learning (MKL)
170 to identify non-linear associations between biological pathways and disease conditions.
171  Previously, the same computational framework was applied to identify features that can predict

172  the stages of cancer (Rahimi & Gonen, 2018) and the survival of individuals (Dereli et al.,
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173 2019). In our analysis, KEGG pathways were used to identify the informative gene groups to
174  discriminate MDD patients from the control group. In this method, each pathway was mapped
175 to a gene expression matrix, and distinct kernel matrices were calculated for each pathway.
176  Using the optimized weighted combination of these kernel matrices, the algorithm finds a
177  sparse set of pathways by discarding uninformative ones from the collection. We can infer the
178  relative importance of the pathways by considering their resulting kernel weights. We used the
179  normalized gene expression values from all brain regions and samples (n=457) to identify the

180  common underlying biological mechanisms associated with MDD.
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182 Figure 3: Multiple kernel learning results. A) Pathways selected as discriminative in 100
183 replication more than 50 times. B) Area under curve comparison of multiple kernel learning for 100

184 replications.

185 We reported the area under the receiver operating characteristic curve (AUC) values
186  over 100 replications to evaluate the algorithm’s performance. The predictive performance of
187 the MKL algorithm is increased when we included samples from all regions compared to three
188  regions containing differentially expressed genes (Figure 3A) indicating that including more
189  brain regions and samples in the analysis increases the reliability of the prediction model. We
190 achieved an average AUC score of 0.83 with a standard deviation of 0.04 for the model
191 including all brain regions (Figure 3A). 21 pathways were selected as informative, at least in

192 50 replications (Figure 3B). Pathways “Linoleic acid metabolism,” “Viral protein interaction with
193  cytokine and cytokine receptor,” “Olfactory transduction,” “Staphylococcus aureus infection,”
194  “Chemical carcinogenesis — DNA adducts,” and “Graft-versus-host disease” were selected as

195 informative in all replicates. Because some of the chosen pathways do not directly relate to
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196  brain tissue, we would like to elaborate on the results by categorizing them based on the gene
197  groups they share. Hence, understanding commonalities between these pathways would guide
198 us better. Thus, we divided pathways into two main categories based on their functional
199 relevance and gene composition. The first cluster contained eight pathways (Linoleic acid
200 metabolism, Chemical carcinogenesis — DNA adducts, Ovarian steroidogenesis, Primary bile
201 acid biosynthesis, Fat digestion and absorption, Maturity onset diabetes of the young,
202  Metabolism of xenobiotics by cytochrome P450, Retinol Metabolism, and Drug metabolism —
203  cytochrome P450) containing genes related to synthesis, absorption, and metabolism of lipids.
204 In this group, genes related to the cytochrome p450 (CYP) family are abundant and shared
205 between different pathways. Previous studies have focused on variants in CYP genes and
206 their association with SSRI metabolism and the effectiveness of the treatment (Hodgson et al.,
207 2013; Shalimova et al., 2021; Thakur et al., 2007; Veldic et al., 2019). On the other hand, our
208  approach puts forward the idea that they can be used for diagnosis. “Nitrogen metabolism” and
209  “Maturity onset diabetes of the young” can also fit in this category because they are related to
210  metabolism. Several studies (Gu et al., 2021; Mocking et al., 2021) demonstrate the role of
211  metabolism in patients with MDD. The second major group contained five pathways (Viral
212 protein interaction with cytokine and cytokine receptor, Staphylococcus aureus infection, Graft-
213 versus-host disease, Hematopoietic cell lineage, and Cytokine-cytokine receptor interaction)
214  related to inflammation and immune system which is parallel to the enrichment of differentially
215  expressed genes that we identified. The remaining four pathways were related to perceiving
216  external stimuli through receptors (Olfactory transduction, Neuroactive ligand-receptor
217  interaction, and Phototransduction) and glycosylation (Mucin type O-glycan biosynthesis).
218  Overall, using KEGG pathways as features, we discriminated against MDD patients with high
219  accuracy. The pathways we identified as discriminative can serve as a starting point for the

220 research on MDD diagnosis.

221
222 Discussion

223 Our study combined multiple publicly available RNA-Seq datasets to identify novel
224  pathways and genetic markers associated with MDD. A large sample size increased the
225  sensitivity of the analysis, which led to the discovery of novel gene-disease associations. On
226  the other hand, combining datasets from different sources introduces a certain amount of noise
227  tothe analysis. Moreover, Brodmann areas, individual segments of the cerebral cortex defining
228 boundaries of each brain region, for a given region might slightly differ between studies.
229  Therefore, we performed a preliminary quality filtration step to reduce noise and used the

230  “study” covariate in our DGE analysis to eliminate some of that noise.
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231 Our results show that the dorsolateral prefrontal cortex is the most affected region
232 based on the number of differentially expressed genes, and downregulation of NPAS4 is
233 observed for multiple brain regions. It should be highlighted that the larger change observed
234  in DLPFC can also be attributed to its larger sample size. It has been previously demonstrated
235  that NPAS4 plays a role in memory (Sun & Lin, 2016), modulating inhibitory-excitatory balance
236  (Linetal., 2008; Opsomer et al., 2020; Spiegel et al., 2014), epileptogenesis in mice, cocaine-
237  induced hyperlocomotion (Lissek et al., 2021), cognitive well-being and many other diseases
238  (Coutellier et al., 2012; Fu et al., 2020; Funahashi et al., 2019; Maya-Vetencourt, 2013). While
239 the association between NPAS4 and MDD has been shown in mice previously (Jaehne et al.,
240 2015), we validated the same relationship for humans and multiple brain regions. Supporting
241  our findings, Gu et al. showed that patients with post-stroke depression had lower expression
242  levels of NPAS4 in their peripheral blood mononuclear cells (Gu et al., 2019), which makes
243  NPAS4 a potential diagnostic biomarker in the future. Our study suggests the central role of
244  NPAS4 in major depression as an association factor. Although this study suggests a potential
245  causation role of NPAS4 in the downregulation of synaptic plasticity in MDD, this hypothesis
246  needs to be tested experimentally in model species.

247 To highlight the role of NPAS4 and understand that the relationship between
248  differentially genes and co-expressed gene modules, we gathered our findings into an MDD
249  model (Figure 4). In this model, we combined our findings with the existing literature on
250 connections between genes and pathways. As we previously mentioned, combined differential
251 gene expression analysis of DLPFC, nACC, and vSUB regions revealed downregulation
252  observed within many immediate early genes (IEGs) such as NPAS4, FOS, FOSB, EGRs,
253 NR4As, and ARC. It has been shown previously that FOS, FOSB, and their splice variants
254 (Gajewski et al., 2016; Stone et al., 2008; Vialou et al., 2010) are associated with motivation
255  and depressive behavior (Yi et al., 2019). Also, some antidepressants have been shown to
256  increase the expression of FOS (Stanisavljevic et al., 2019) and NPAS4 (Guidotti et al., 2012).
257  These immediate early genes play important roles in maintaining essential synaptic functions
258 (Gallo et al., 2018; Lanahan & Worley, 1998; Minatohara et al., 2016). It is known that the
259  expression of IEGs is induced after neuronal stimulation, and NMDA glutamate receptors can
260 induce the expression of IEGs through controlling Ca?* influx (Greenberg et al., 1992; Xia et
261  al., 1996) within neurons. ChIP-seq enhancer data of NPAS4 within mouse cortical neurons
262  show that NPAS4 regulates immediate early genes (Kim et al., 2010). Differentially expressed
263 genes and this experiment include IEGs in common; FOS, FOSB, NR4A1l, NR4A3, JUNB, and
264  NPAS4 itself. ChiP-seq data of NPAS4 embryonic mouse 14 days medial ganglionic eminence
265 (mostly containing excitatory neurons) and cortex (mostly inhibitory neurons) shows that

266 NPAS4 regulates distinct sets of late-response genes in inhibitory and excitatory neurons
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267  (Spiegel et al., 2014). In our DGE analysis, we observed a change in PTGS2, ATF3, ETV3,
268 and CSRPN1 which were regulated in inhibitory neurons. By controlling the expression of other
269  IEGs, which are also transcription factors, NPAS4 indirectly regulates the expression of many
270  different genes as a master transcription factor. In our analysis, we observed a significant
271  downregulation trend in these pathways that cumulatively lead downregulation of synaptic
272  plasticity, circadian entrainment (Bunney et al., 2014; Lam, 2008; Walker et al., 2020), and

273 learning abilities (long-term potentiation) in patients with MDD.

274
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276 Figure 4: Summary of differentially and co-expressed genes and the enriched pathways
277

278 Current therapeutic strategies for MDD mainly target aminergic receptors such as
279  serotonin and dopamine receptors (Harmer et al., 2017). These monoamine-oriented
280 treatments have been ineffective, especially for patients with treatment-resistant depressions
281  (Daly et al., 2018; Rush et al., 2006). Therefore, it is necessary to develop more effective
282  therapeutics. This can only be achieved by understanding the molecular basis of the disorder.
283  In this case, our study suggests that glutamatergic receptors can be used as drug targets in
284  the treatment of MDD.In parallel to our findings NMDA antagonist ketamine and its enantiomer
285  esketamine was shown to be effective for patients with treatment-resistant MDD (Daly et al.,
286 2018; Dang et al., 2014; lonescu et al., 2020; Canady et al., 2020). Although esketamine is an
287  antagonist of the NMDA receptor, it leads to the activation of AMPA receptors (Sanacora &
288  Schatzberg, 2014) that increase synaptic plasticity. Furthermore, the trial of NMDA co-agonist

289  glycine induced the depressive state in mice (Salim et al., 2020). Thus, we conclude that the
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290 results of these drug trials are in line with the model we proposed in this study. We anticipate

291  that antidepressants targeting glutamatergic signaling pathways will gain more popularity.
292 Materials and Methods

293 Datasets

294 In this study, three post-mortem RNA-seq datasets from Gene Expression Omnibus
295 (GSE101521, GSE80655, and GSE102556) (Labonté et al., 2017; Pantazatos et al., 2017;
296  Ramaker et al., 2017) were combined to increase the sample size and perform a statistically
297  significant analysis of the MDD profile. A total of 216 control (28.70% female) and 241 major
298 depressive disorder samples (42.74% female) were investigated based on their gene
299  expression profiles. The average age of death of CTRL and MDD samples are 47.66 and
300 46.78, respectively. Samples from 7 brain regions, including the dorsolateral prefrontal cortex
301 (DLPFC), nucleus accumbens (nACC), ventral subiculum (vSUB), anterior insula (aINS),
302 anterior cingulate cortex (AnCg), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC)

303  were analyzed.

304 Table 4. Demographics of study groups.

Control MDD
Sampole size N =216 N =241
Age (years, avg) 47.66 (sd = 15.18) 46.78 (sd) = 15.21)
Gender (N, %female) 62 (28.70%) 103 (42.74%)
PMI (hours, avg) 24.08 (sd = 16.22) 26.32 (sd) = 16.24)

305
306

307 Table 5. Distribution of samples by brain regions and the study groups that they belong to.

Brain Region Control (N) MDD (N) Total
Anterior cingulate cortex (AnCg) 24 23 47
Anterior insula (aINS) 22 26 48
Cingulate gyrus 25 (Cg25) 15 13 28
Dorsolateral prefrontal cortex (DLPFC) 71 79 150
Nucleus accumbens (nACC) 43 51 94
Orbitofrontal cortex (OFC) 22 25 47
Ventral subiculum (vSUB) 29 24 43

308
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309 Data Analysis
310 Quality Trimming

311 FASTQC 0.11.7 (Andrews, 2010) was used to check the quality of each sample. We
312  eliminated some of the samples directly from the analysis due to having very low quality in
313  general. For the samples having low quality towards the 3’ end, we used Cutadapt (Martin,
314  2011) with the “--quality-cutoff 10” option. After performing 3’ trimming we concatenated fasta

315 files for each patient when there are multiple fasta files for a single patient.
316  Alignment to the Human Genome

317 TopHat 2.1.1(Trapnell et al., 2009) was used for aligning reads to the human genome
318 (GRCh37) (Church et al., 2011). At this step, we converted fasta files into bam files. Then by

319 using the samtools (Li et al., 2009) sort option we converted bam files to sam.
320
321 Read Count

322 HTSeq (Anders et al., 2014) was used to obtain read counts for each patient. The
323  distribution of counts for each region is given in Figure 1. Ensembl GRCh37 annotation list was

324  used as a reference.
325  Differential gene expression analysis

326 Differential gene expression analysis based on the negative binomial distribution was
327 performed in R with DESeq2 package (Love et al., 2014). Genes that significantly differentially
328  expressed (adjusted p-value < 0.05) between major depressive patients and the control group
329  were identified regarding sex, age, study and brain region that the sample is obtained from,
330 and post-mortem interval covariates (full model, design ~ sampleGender + sampleAge + PMI
331  + brainRegion + condition; brain region-specific model, design ~ sampleGender + sampleAge
332  + PMI + condition).

333  Co-expression analysis

334 R package CEMiTool was used to perform co-expression analysis. Normalized count
335 data from DLPFC, vSUB and nACC were included in the analysis. Variance stabilizing
336 transformation was not applied before filtering the genes and default filtering p-value was used
337 (0.1). Label of each sample was provided to obtain normalized enrichment scores for each of

338  the modules in control group and MDD patients.

339
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340 Identification of MDD-Associated Pathways Using MKL Algorithm

341 A multiple kernel learning (MKL)-based machine learning approach (Rahimi & Génen, 2018)
342 was used to identify informative pathways in discriminating MDD patients. Instead of first
343 identifying the expressed genes and then performing a gene set enrichment analysis using
344  these selected genes, the proposed MKL-based algorithm considers whole expression matrix
345 and each pathway from the given collection at the same time. In this method, each pathway is
346  mapped to a different kernel function using the expression profiles of the genes in the given
347  pathway. Kernel functions are defined as the similarity measures between pairs of samples,
348  anditis known that weighted combination of several kernel functions (i.e., MKL) increases the
349  predictive ability of the kernel-based methods (Gonen & Alpaydin, 2011). At the end, the
350 proposed method converges to a solution where kernels with non-zero weights are included in
351 the final model for the classification. We considered that a pathway is selected to be used in

352 the final model if the corresponding kernel weight was greater than 0.01.

353  The experimental setting that we used in machine learning model is as follows. We split our
354  dataset by randomly picking 80% as training and 20% as test set. While splitting the data, we
355 kept the ratio between the control group and MDD patients same in the training and test
356  partitions. We repeated this procedure 100 times to obtain more robust performance measures
357 and reported the experimental results over these 100 replications. We performed 4-fold inner
358  cross-validation for selecting the model parameters (i.e., regularization parameter C). Since
359 the gene expression is a count data, we first log2-transformed our dataset. Following that, we
360 normalized the training set to have zero mean and unit standard deviation, while we normalized
361 the test set using the mean and the standard deviation of the original training set. We followed
362  the same computational setting as proposed in (Rahimi & Gdnen, 2018) to obtain the relative

363  importance of pathways.

364

365 Data and Materials Availability

366  The open-source code and supplementary data are available at our GitHub repository:

367 https://github.com/CompGenomelLab/mdd-analysis

368

369

370
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