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Abstract 10 

Major Depressive Disorder (MDD) is a commonly observed psychiatric disorder that affects 11 

more than 2% of the world population with a rising trend. However, disease-associated 12 

pathways and biomarkers are yet to be fully comprehended. In this study, we analyzed 13 

previously generated RNA-seq data across seven different brain regions from three distinct 14 

studies to identify differentially and co-expressed genes for patients with MDD. Differential 15 

gene expression (DGE) analysis revealed that NPAS4 is the only gene downregulated in three 16 

different brain regions. Furthermore, co-expressing gene modules responsible for 17 

glutamatergic signaling are negatively enriched in these regions. We used the results of both 18 

DGE and co-expression analyses to construct a novel MDD-associated pathway. In our model, 19 

we propose that disruption in glutamatergic signaling-related pathways might be associated 20 

with the downregulation of NPAS4 and many other immediate-early genes (IEGs) that control 21 

synaptic plasticity. In addition to DGE analysis, we identified the relative importance of KEGG 22 

pathways in discriminating MDD phenotype using a machine learning-based approach. We 23 

anticipate that our study will open doors to developing better therapeutic approaches targeting 24 

glutamatergic receptors in the treatment of MDD.  25 

  26 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.505036doi: bioRxiv preprint 

mailto:oadebali@sabanciuniv.edu
https://doi.org/10.1101/2022.08.23.505036
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 27 

Major Depressive Disorder (MDD), also known as depression, is a common psychiatric 28 

disorder that affected more than 2% of the world population (163 million people) in 2017 29 

(James et al., 2018). It is characterized by low mood sustained for at least 2 weeks, often with 30 

low self-esteem, loss of interest in normally enjoyable activities, low energy, and pain without 31 

a clear cause. Among more severe symptoms, suicidal behaviors are observed in patients with 32 

major depression, making it one of the most common fatal disorders in the world (National 33 

Institute of Mental Health, 2021). Recently, the severe depression rate among youth escalated 34 

from 9.4% to 21.1% between 2013 and 2018 (Duffy et al., 2019). This suggests a rising trend 35 

in the number of depressive patients and emphasizes the importance and urgency of the 36 

problem. Therefore, immediate research is needed to define fine-established markers of major 37 

depression to address this ongoing global well-being problem. 38 

        Several attempts have been made to identify the transcriptional profiles of patients with 39 

major depression by using next-generation sequencing (NGS) data obtained from post-mortem 40 

patients. Pantazatos et al. (2017) have discovered thirty-five differentially expressed genes in 41 

the dorsolateral prefrontal cortex of depression sudden deaths (MDD) and depression suicidals 42 

(MDD-S) compared to the control group (padj < 0.1). However, only the dorsolateral prefrontal 43 

cortex, with a limited sample size of 59, was investigated in that study. Labonté et al. (2017) 44 

examined six brain regions and showed differences in transcriptional patterns of men and 45 

women, proposing sexual dimorphism for depression. Although researchers have discovered 46 

a 5-10% overlap for the differentially expressed genes for the females and males, the data did 47 

not yield any outstanding common genetic marker associated with MDD. Similarly, in 2017, 48 

Ramaker et al. (2017) investigated transcriptional profiles of patients with schizophrenia, 49 

bipolar disorder, and major depression. Although they have identified differentially expressed 50 

genes (padj < 0.05) for schizophrenia and bipolar disorder, they have not identified any for 51 

major depression. Sequencing data from these three valuable studies can be analyzed 52 

together to increase the sample size and improve the resolution of the results.  53 

         In this study, we combined and analyzed previously used RNA-seq data from multiple 54 

studies (Labonté et al., 2017; Pantazatos et al., 2017; Ramaker et al., 2017) to identify genes 55 

that are differentially expressed for MDD by considering the factors of gender, age, postmortem 56 

interval, brain region, and the study they belonged to. We investigated genes that are 57 

differentially expressed in 7 distinct brain regions, including the dorsolateral prefrontal cortex 58 

(DLPFC), nucleus accumbens (nACC), ventral subiculum (vSUB), anterior insula (aINS), 59 

anterior cingulate cortex (AnCg), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC). 60 

Three of these brain regions (DLPFC, nACC, and vSUB) were further studied for significant 61 
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gene expression changes and co-expressing gene modules. Lastly, used a non-linear, 62 

machine learning based approach to determine biological pathways that can be used for 63 

diagnostic purposes. We present significant genetic biomarkers and pathways associated with 64 

the major depression phenotype. 65 

Results 66 

We combined RNA-seq datasets from three different sources (Labonté et al., 2017; 67 

Pantazatos et al., 2017; Ramaker et al., 2017) containing sequenced brain tissue samples 68 

from post-mortem control and major depression patients to identify statistically significant 69 

transcriptional changes. We analyzed the raw RNA sequencing reads and measured the 70 

expression levels of genes for each sample. The quality of each sample was assessed, and a 71 

few samples were discarded from the analysis due to having low quality (see methods). Then, 72 

we followed the general pipeline of RNA-seq data analysis (see methods) by performing 73 

alignment to the human genome and counting the reads aligned with each gene. We grouped 74 

the counts according to the brain region they belonged to and identified genes that are 75 

differentially expressed relative to the control group (padj < 0.05) for each region by using the 76 

DESeq2 R package (Love et al., 2014). We did not apply any log-fold change cut-off to our 77 

analysis. 78 

 79 

 80 

Figure 1. Differential gene expression analysis for different brain regions A) Spearman’s correlation of 81 

log2FC values between investigated brain regions. B) Venn diagram showing the number of 82 

differentially expressed genes for DLPC, vSUB, and nACC. 83 

To investigate the potential transcriptional similarities between different brain regions, 84 

we first calculated pairwise Spearman’s correlations using log2FC values of commonly 85 
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expressed genes (Figure 1A). No strong correlation was observed between the two regions. 86 

The strongest correlation was observed between the orbitofrontal cortex and ventral subiculum 87 

with pairwise Spearman’s correlation score of 0.28. Therefore, we can conclude that different 88 

disease-related signatures were observed in different brain regions. 89 

Then, we focused on genes that are differentially expressed for each region 90 

independently. Out of the seven regions, we identified at least one differentially expressed 91 

gene in DLPFC, nACC, and vSUB but not in other brain regions. The highest number of 92 

differentially expressed genes was observed in DLPFC (sample size of n=150) with 87 93 

differentially expressed genes, and this was followed by nACC (n=94) with six genes and vSUB 94 

(n=43) with two genes (Figure 1B). When we intersected lists of differentially expressed genes 95 

for these three regions, we discovered that a brain-specific transcription factor NPAS4 (Greb-96 

Markiewicz et al., 2018) was the only common gene (Figure 1b) that was downregulated in all 97 

three regions. It was previously shown in mice (Coutellier et al., 2012; Coutellier et al., 2015; 98 

Jaehne et al., 2015; Wang et al., 2019) and in a study monitoring 152 ischemic stroke patients 99 

(Gu et al., 2019) that decrease in NPAS4 expression is correlated with the MDD phenotype.  100 

 101 

Figure 2. Volcano plot and top 3 genes. A) Volcano plot for the DGE analysis of three regions. Blue: 102 

padj<0.05 , Red: padj ≥ 0.05  B) Box plots for the top three differentially expressed genes NPAS4, 103 

FOSB, and FOS. 104 

Because NPAS4 was identified as the single common downregulated gene, we aimed 105 

to further investigate the shared transcriptional profile between different regions. Therefore, 106 

we combined samples from three regions (DLPFC, nACC, and vSUB) which we observed 107 

differential gene expression and reached a sample size of 287 (143 CTRL, 144 MDD) to 108 

perform a DGE analysis by adding a covariate of “brain region” to eliminate region-specific 109 

variations in gene expression. As presented in the volcano plot (Figure 2a), 149 genes were 110 

found to be differentially expressed (padj<0.05) with a general trend of downregulation. We 111 

suggest that this was mainly due to the top three (padj:2x10-27, 4.9x10-11, 2.3x10-8) 112 

downregulated transcription factors (NPAS4, FOS, and FOSB) (Figure 2b).  113 
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To gain more insight into the pathways involved in MDD phenotype, we performed a 114 

co-expression analysis using CEMiTool (Russo et al., 2018) for the brain regions we observed 115 

NPAS4 downregulation to reveal correlating gene modules. As an input, we used the same 116 

normalized count matrix for DGE analysis. The co-expression analysis yielded two co-117 

expressed gene modules (padj < 0.1) as modules 1 and 2. After introducing sample 118 

annotations as MDD and control, we identified that both of the modules show  positive 119 

enrichment in control patients and negative enrichment in MDD patients (Supplementary 120 

Figure 1). For the first module (128 genes) control group had normalized enrichment score 121 

(NES) of 1.49 (padj = 0.048) and MDD group had -1.48 (padj=0.036). Furthermore, for the 122 

second gene (60 genes) module control group had NES of 1.42 and MDD group had -1.44 123 

(padj=0.065). Overall, higher enrichment means a higher activity of the module for a given 124 

group and the opposite is true for the negatively enriched group as well. Because the activity 125 

of each module is correlated with the expression levels of the samples, we can conclude that 126 

they are downregulated for patients with depression. Although we have also performed this 127 

analysis by including all available samples, we did not obtain any meaningful functional 128 

enrichment for the identified modules. We explored the functional implications of the modules 129 

in the following paragraphs. 130 

 131 

Table 1. KEGG 2021 pathway enrichment for the differentially expressed genes.  Overlap: 

The overlap between the gene set and the pathway.  

KEGG Pathway Overlap padj Odds Ratio Combined Score 

IL-17 signaling pathway 9/94 5.20E-06 15.17 262.43 

TNF signaling pathway 8/112 1.49E-04 10.93 144.84 

Rheumatoid arthritis 7/93 3.18E-04 11.49 138.95 

Legionellosis 5/57 0.001585773 13.41 129.97 

Bladder cancer 4/41 0.0048795 14.98 125.53 

AGE-RAGE signaling pathway in diabetic 

complications 

7/100 3.86E-04 10.62 123.33 

NF-kappa B signaling pathway 7/104 4.00E-04 10.18 115.59 

Malaria 4/50 0.008858662 12.04 91.64 

MAPK signaling pathway 10/294 0.001585773 5.03 48.47 

Kaposi sarcoma-associated herpesvirus infection 7/193 0.008858662 5.29 39.48 

 132 

 133 
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Table 2. KEGG pathway enrichment for the glutamatergic signaling co-expression module  

(Module 1). 

KEGG Pathway Overlap padj Odds Ratio Combined Score 

Amphetamine addiction 8/69 1.04E-06 22.02 401.59 

Cocaine addiction 6/49 1.79E-05 23.06 329.55 

Circadian entrainment 9/97 1.04E-06 17.30 317.75 

Glutamatergic synapse 9/114 2.51E-06 14.48 245.48 

Gastric acid secretion 7/76 1.76E-05 16.88 244.71 

Long-term potentiation 6/67 9.99E-05 16.24 201.68 

Dopaminergic synapse 9/132 6.70E-06 12.35 193.68 

GABAergic synapse 6/89 3.31E-04 11.92 128.40 

Morphine addiction 6/91 3.44E-04 11.64 123.89 

Oxytocin signaling pathway 8/154 1.30E-04 9.16 110.15 

 134 

 135 

 136 

Table 3. KEGG 2021 pathway enrichment for the synaptic vesicle and secretion 

co-expression module. (Module 2) 

KEGG Pathway Overlap padj Odds Ratio Combined Score 

Synaptic vesicle cycle 10/78 2.72E-12 59.64 1870.16 

Insulin secretion 7/86 3.41E-07 33.84 640.54 

Endocrine and other factor-regulated calcium 

reabsorption 

5/53 1.09E-05 38.37 558.02 

Salivary secretion 6/93 1.09E-05 25.83 386.58 

Aldosterone synthesis and secretion 6/98 1.09E-05 24.42 357.87 

Gastric acid secretion 5/76 4.77E-05 25.91 329.90 

Glutamatergic synapse 6/114 1.99E-05 20.79 286.04 

Bile secretion 5/90 8.56E-05 21.63 257.31 

Pancreatic secretion 5/102 1.42E-04 18.94 213.74 

Vasopressin-regulated water reabsorption 3/44 0.003 26.00 211.24 

 137 
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We performed gene set enrichment analysis through a web-based tool Enrichr (Chen 138 

et al., 2013; Kuleshov et al., 2016; Xie et al., 2021), and presented the top 10 KEGG (Kyoto 139 

Encyclopedia of Genes and Genomes) (Kanehisa, 2019; Kanehisa et al., 2020) pathways 140 

based on their combined score (Table 1-3) for differentially genes and co-expressed gene 141 

modules. Enrichment of differentially expressed genes yielded 18 pathways (padj<0.05) 142 

related to inflammation, such as the IL17 signaling pathway, Rheumatoid arthritis, NF-kappa 143 

B signaling pathway. It has been previously suggested that IL-17A induces depressive 144 

behavior in mice (Kim et al., 2021; Nadeem et al., 2017), but studies for humans (Saraykar et 145 

al., 2017; Tsuboi et al., 2018; Zafiriou et al., 2021) have contradicting conclusions. Lui et al. 146 

(2011) showed that higher serum levels of IL-17 are positively correlated with the severity of 147 

anxiety in patients with rheumatoid arthritis. The involvement of interleukins and cytokines was 148 

previously discussed numerous times (Dowlati et al., 2010; Himmerich et al., 2019; Schiepers 149 

et al., 2005). It should be noted that 91 out of 147 differentially expressed genes (including 150 

NPAS4) are not present in any KEGG pathway. This suggests that these pathways should not 151 

be considered representatives of all differentially expressed genes.  152 

We further investigated pathways enriched for individual co-expressed gene modules. 153 

We called the first module as “glutamatergic signaling module” because we observed a strong 154 

enrichment for the addiction (Gass & Olive, 2008; Tzschentke & Schmidt, 2003), glutamatergic 155 

synapse, and circadian entrainment (Biello et al., 2018; Chi-Castañeda & Ortega, 2018) 156 

pathways that were mainly controlled by AMPA (α-amino-3-hydroxy-5-methyl-4-157 

isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) glutamate receptor activity. 158 

GRIN1, GRIN2B, and GRIA2 are the glutamate receptors that were identified in this module. 159 

Lastly, we called the second module “synaptic vesicle and secretion module” because it 160 

contained genes responsible for the transportation of ions such as Ca2+. Therefore, the 161 

synaptic vesicle cycle, different secretion-related pathways, and pathways related to calcium 162 

absorption are highly enriched. Negative enrichment scores of these two modules for the MDD 163 

suggest that glutamatergic signaling activity is downregulated for the brain regions where we 164 

observed NPAS4 as a common downregulated gene.  165 

 166 

DGE and co-expression analyses are designed to identify linear associations in gene 167 

expression in pre-determined conditions (e.g., disease and control). Thus, in addition to DGE 168 

analyses, we took a machine learning-based approach called multiple-kernel learning (MKL) 169 

to identify non-linear associations between biological pathways and disease conditions. 170 

Previously, the same computational framework was applied to identify features that can predict 171 

the stages of cancer (Rahimi & Gönen, 2018) and the survival of individuals (Dereli et al., 172 
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2019). In our analysis, KEGG pathways were used to identify the informative gene groups to 173 

discriminate MDD patients from the control group. In this method, each pathway was mapped 174 

to a gene expression matrix, and distinct kernel matrices were calculated for each pathway. 175 

Using the optimized weighted combination of these kernel matrices, the algorithm finds a 176 

sparse set of pathways by discarding uninformative ones from the collection. We can infer the 177 

relative importance of the pathways by considering their resulting kernel weights. We used the 178 

normalized gene expression values from all brain regions and samples (n=457) to identify the 179 

common underlying biological mechanisms associated with MDD.  180 

 181 

Figure 3: Multiple kernel learning results. A) Pathways selected as discriminative in 100 182 

replication more than 50 times. B) Area under curve comparison of multiple kernel learning for 100 183 

replications.  184 

We reported the area under the receiver operating characteristic curve (AUC) values 185 

over 100 replications to evaluate the algorithm’s performance. The predictive performance of 186 

the MKL algorithm is increased when we included samples from all regions compared to three 187 

regions containing differentially expressed genes (Figure 3A) indicating that including more 188 

brain regions and samples in the analysis increases the reliability of the prediction model. We 189 

achieved an average AUC score of 0.83 with a standard deviation of 0.04 for the model 190 

including all brain regions (Figure 3A). 21 pathways were selected as informative, at least in 191 

50 replications (Figure 3B). Pathways “Linoleic acid metabolism,” “Viral protein interaction with 192 

cytokine and cytokine receptor,” “Olfactory transduction,” “Staphylococcus aureus infection,” 193 

“Chemical carcinogenesis – DNA adducts,” and “Graft-versus-host disease” were selected as 194 

informative in all replicates. Because some of the chosen pathways do not directly relate to 195 
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brain tissue, we would like to elaborate on the results by categorizing them based on the gene 196 

groups they share. Hence, understanding commonalities between these pathways would guide 197 

us better. Thus, we divided pathways into two main categories based on their functional 198 

relevance and gene composition. The first cluster contained eight pathways (Linoleic acid 199 

metabolism, Chemical carcinogenesis – DNA adducts, Ovarian steroidogenesis, Primary bile 200 

acid biosynthesis, Fat digestion and absorption, Maturity onset diabetes of the young, 201 

Metabolism of xenobiotics by cytochrome P450, Retinol Metabolism, and Drug metabolism –202 

cytochrome P450) containing genes related to synthesis, absorption, and metabolism of lipids. 203 

In this group, genes related to the cytochrome p450 (CYP) family are abundant and shared 204 

between different pathways. Previous studies have focused on variants in CYP genes and 205 

their association with SSRI metabolism and the effectiveness of the treatment (Hodgson et al., 206 

2013; Shalimova et al., 2021; Thakur et al., 2007; Veldic et al., 2019). On the other hand, our 207 

approach puts forward the idea that they can be used for diagnosis. “Nitrogen metabolism” and 208 

“Maturity onset diabetes of the young” can also fit in this category because they are related to 209 

metabolism. Several studies (Gu et al., 2021; Mocking et al., 2021) demonstrate the role of 210 

metabolism in patients with MDD. The second major group contained five pathways (Viral 211 

protein interaction with cytokine and cytokine receptor, Staphylococcus aureus infection, Graft-212 

versus-host disease, Hematopoietic cell lineage, and Cytokine-cytokine receptor interaction) 213 

related to inflammation and immune system which is parallel to the enrichment of differentially 214 

expressed genes that we identified. The remaining four pathways were related to perceiving 215 

external stimuli through receptors (Olfactory transduction, Neuroactive ligand-receptor 216 

interaction, and Phototransduction) and glycosylation (Mucin type O-glycan biosynthesis). 217 

Overall, using KEGG pathways as features, we discriminated against MDD patients with high 218 

accuracy. The pathways we identified as discriminative can serve as a starting point for the 219 

research on MDD diagnosis. 220 

 221 

Discussion 222 

Our study combined multiple publicly available RNA-Seq datasets to identify novel 223 

pathways and genetic markers associated with MDD. A large sample size increased the 224 

sensitivity of the analysis, which led to the discovery of novel gene-disease associations. On 225 

the other hand, combining datasets from different sources introduces a certain amount of noise 226 

to the analysis. Moreover, Brodmann areas, individual segments of the cerebral cortex defining 227 

boundaries of each brain region, for a given region might slightly differ between studies. 228 

Therefore, we performed a preliminary quality filtration step to reduce noise and used the 229 

“study” covariate in our DGE analysis to eliminate some of that noise.  230 
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Our results show that the dorsolateral prefrontal cortex is the most affected region 231 

based on the number of differentially expressed genes, and downregulation of NPAS4 is 232 

observed for multiple brain regions. It should be highlighted that the larger change observed 233 

in DLPFC can also be attributed to its larger sample size. It has been previously demonstrated 234 

that NPAS4 plays a role in memory (Sun & Lin, 2016), modulating inhibitory-excitatory balance 235 

(Lin et al., 2008; Opsomer et al., 2020; Spiegel et al., 2014), epileptogenesis in mice, cocaine-236 

induced hyperlocomotion (Lissek et al., 2021), cognitive well-being and many other diseases 237 

(Coutellier et al., 2012; Fu et al., 2020; Funahashi et al., 2019; Maya-Vetencourt, 2013). While 238 

the association between NPAS4 and MDD has been shown in mice previously (Jaehne et al., 239 

2015), we validated the same relationship for humans and multiple brain regions. Supporting 240 

our findings, Gu et al. showed that patients with post-stroke depression had lower expression 241 

levels of NPAS4 in their peripheral blood mononuclear cells (Gu et al., 2019), which makes 242 

NPAS4 a potential diagnostic biomarker in the future. Our study suggests the central role of 243 

NPAS4 in major depression as an association factor. Although this study suggests a potential 244 

causation role of NPAS4 in the downregulation of synaptic plasticity in MDD, this hypothesis 245 

needs to be tested experimentally in model species. 246 

To highlight the role of NPAS4 and understand that the relationship between 247 

differentially genes and co-expressed gene modules, we gathered our findings into an MDD 248 

model (Figure 4). In this model, we combined our findings with the existing literature on 249 

connections between genes and pathways. As we previously mentioned, combined differential 250 

gene expression analysis of DLPFC, nACC, and vSUB regions revealed downregulation 251 

observed within many immediate early genes (IEGs) such as NPAS4, FOS, FOSB, EGRs, 252 

NR4As, and ARC. It has been shown previously that FOS, FOSB, and their splice variants 253 

(Gajewski et al., 2016; Stone et al., 2008; Vialou et al., 2010) are associated with motivation 254 

and depressive behavior (Yi et al., 2019). Also, some antidepressants have been shown to 255 

increase the expression of FOS (Stanisavljević et al., 2019) and NPAS4 (Guidotti et al., 2012). 256 

These immediate early genes play important roles in maintaining essential synaptic functions 257 

(Gallo et al., 2018; Lanahan & Worley, 1998; Minatohara et al., 2016). It is known that the 258 

expression of IEGs is induced after neuronal stimulation, and NMDA glutamate receptors can 259 

induce the expression of IEGs through controlling Ca2+ influx (Greenberg et al., 1992; Xia et 260 

al., 1996) within neurons. ChIP-seq enhancer data of NPAS4 within mouse cortical neurons 261 

show that NPAS4 regulates immediate early genes (Kim et al., 2010). Differentially expressed 262 

genes and this experiment include IEGs in common; FOS, FOSB, NR4A1, NR4A3, JUNB, and 263 

NPAS4 itself. ChIP-seq data of NPAS4 embryonic mouse 14 days medial ganglionic eminence 264 

(mostly containing excitatory neurons) and cortex (mostly inhibitory neurons) shows that 265 

NPAS4 regulates distinct sets of late-response genes in inhibitory and excitatory neurons 266 
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(Spiegel et al., 2014). In our DGE analysis, we observed a change in PTGS2, ATF3, ETV3, 267 

and CSRPN1 which were regulated in inhibitory neurons. By controlling the expression of other 268 

IEGs, which are also transcription factors, NPAS4 indirectly regulates the expression of many 269 

different genes as a master transcription factor. In our analysis, we observed a significant 270 

downregulation trend in these pathways that cumulatively lead downregulation of synaptic 271 

plasticity, circadian entrainment (Bunney et al., 2014; Lam, 2008; Walker et al., 2020), and 272 

learning abilities (long-term potentiation) in patients with MDD. 273 

 274 

 275 

Figure 4: Summary of differentially and co-expressed genes and the enriched pathways 276 

 277 

Current therapeutic strategies for MDD mainly target aminergic receptors such as 278 

serotonin and dopamine receptors (Harmer et al., 2017). These monoamine-oriented 279 

treatments have been ineffective, especially for patients with treatment-resistant depressions 280 

(Daly et al., 2018; Rush et al., 2006). Therefore, it is necessary to develop more effective 281 

therapeutics. This can only be achieved by understanding the molecular basis of the disorder. 282 

In this case, our study suggests that glutamatergic receptors can be used as drug targets in 283 

the treatment of MDD.In parallel to our findings NMDA antagonist ketamine and its enantiomer 284 

esketamine was shown to be  effective for patients with treatment-resistant MDD (Daly et al., 285 

2018; Dang et al., 2014; Ionescu et al., 2020; Canady et al., 2020). Although esketamine is an 286 

antagonist of the NMDA receptor, it leads to the activation of AMPA receptors (Sanacora & 287 

Schatzberg, 2014) that increase synaptic plasticity. Furthermore, the trial of NMDA co-agonist 288 

glycine induced the depressive state in mice (Salim et al., 2020). Thus, we conclude that the 289 
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results of these drug trials are in line with the model we proposed in this study. We anticipate 290 

that antidepressants targeting glutamatergic signaling pathways will gain more popularity.  291 

Materials and Methods 292 

Datasets 293 

In this study, three post-mortem RNA-seq datasets from Gene Expression Omnibus 294 

(GSE101521, GSE80655, and GSE102556) (Labonté et al., 2017; Pantazatos et al., 2017; 295 

Ramaker et al., 2017) were combined to increase the sample size and perform a statistically 296 

significant analysis of the MDD profile. A total of 216 control (28.70% female) and 241 major 297 

depressive disorder samples (42.74% female) were investigated based on their gene 298 

expression profiles. The average age of death of CTRL and MDD samples are 47.66 and 299 

46.78, respectively. Samples from 7 brain regions, including the dorsolateral prefrontal cortex 300 

(DLPFC), nucleus accumbens (nACC), ventral subiculum (vSUB), anterior insula (aINS), 301 

anterior cingulate cortex (AnCg), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC) 302 

were analyzed. 303 

 Table 4. Demographics of study groups. 304 

 Control MDD 

Sample size N = 216 N = 241 

Age (years, avg) 47.66 (sd = 15.18) 46.78 (sd) = 15.21) 

Gender (N, %female) 62 (28.70%) 103 (42.74%) 

PMI (hours, avg) 24.08 (sd = 16.22) 26.32 (sd) = 16.24) 

 305 

 306 

 Table 5.  Distribution of samples by brain regions and the study groups that they belong to. 307 

 Brain Region Control (N) MDD (N) Total 

Anterior cingulate cortex (AnCg) 24 23 47 

Anterior insula (aINS) 22 26 48 

Cingulate gyrus 25 (Cg25) 15 13 28 

Dorsolateral prefrontal cortex (DLPFC) 71 79 150 

Nucleus accumbens (nACC) 43 51 94 

Orbitofrontal cortex (OFC) 22 25 47 

Ventral subiculum (vSUB) 29 24 43 

    

 308 
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Data Analysis 309 

Quality Trimming 310 

FASTQC 0.11.7 (Andrews, 2010) was used to check the quality of each sample. We 311 

eliminated some of the samples directly from the analysis due to having very low quality in 312 

general. For the samples having low quality towards the 3’ end, we used Cutadapt (Martin, 313 

2011) with the “--quality-cutoff 10” option. After performing 3’ trimming we concatenated fasta 314 

files for each patient when there are multiple fasta files for a single patient. 315 

Alignment to the Human Genome 316 

TopHat 2.1.1(Trapnell et al., 2009) was used for aligning reads to the human genome 317 

(GRCh37) (Church et al., 2011). At this step, we converted fasta files into bam files. Then by 318 

using the samtools (Li et al., 2009) sort option we converted bam files to sam. 319 

 320 

Read Count 321 

HTSeq (Anders et al., 2014) was used to obtain read counts for each patient. The 322 

distribution of counts for each region is given in Figure 1. Ensembl GRCh37 annotation list was 323 

used as a reference. 324 

Differential gene expression analysis 325 

Differential gene expression analysis based on the negative binomial distribution was 326 

performed in R with DESeq2 package (Love et al., 2014). Genes that significantly differentially 327 

expressed (adjusted p-value < 0.05) between major depressive patients and the control group 328 

were identified regarding sex, age, study and brain region that the sample is obtained from, 329 

and post-mortem interval covariates (full model, design ~ sampleGender + sampleAge + PMI 330 

+ brainRegion + condition; brain region-specific model, design ~ sampleGender + sampleAge 331 

+ PMI + condition). 332 

Co-expression analysis 333 

 R package CEMiTool was used to perform co-expression analysis. Normalized count 334 

data from DLPFC, vSUB and nACC were included in the analysis. Variance stabilizing 335 

transformation was not applied before filtering the genes and default filtering p-value was used 336 

(0.1). Label of each sample was provided to obtain normalized enrichment scores for each of 337 

the modules in control group and MDD patients. 338 

 339 
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Identification of MDD-Associated Pathways Using MKL Algorithm 340 

A multiple kernel learning (MKL)-based machine learning approach (Rahimi & Gönen, 2018) 341 

was used to identify informative pathways in discriminating MDD patients. Instead of first 342 

identifying the expressed genes and then performing a gene set enrichment analysis using 343 

these selected genes, the proposed MKL-based algorithm considers whole expression matrix 344 

and each pathway from the given collection at the same time. In this method, each pathway is 345 

mapped to a different kernel function using the expression profiles of the genes in the given 346 

pathway. Kernel functions are defined as the similarity measures between pairs of samples, 347 

and it is known that weighted combination of several kernel functions (i.e., MKL) increases the 348 

predictive ability of the kernel-based methods (Gönen & Alpaydın, 2011). At the end, the 349 

proposed method converges to a solution where kernels with non-zero weights are included in 350 

the final model for the classification. We considered that a pathway is selected to be used in 351 

the final model if the corresponding kernel weight was greater than 0.01.  352 

The experimental setting that we used in machine learning model is as follows. We split our 353 

dataset by randomly picking 80% as training and 20% as test set. While splitting the data, we 354 

kept the ratio between the control group and MDD patients same in the training and test 355 

partitions. We repeated this procedure 100 times to obtain more robust performance measures 356 

and reported the experimental results over these 100 replications. We performed 4-fold inner 357 

cross-validation for selecting the model parameters (i.e., regularization parameter C). Since 358 

the gene expression is a count data, we first log2-transformed our dataset. Following that, we 359 

normalized the training set to have zero mean and unit standard deviation, while we normalized 360 

the test set using the mean and the standard deviation of the original training set. We followed 361 

the same computational setting as proposed in (Rahimi & Gönen, 2018) to obtain the relative 362 

importance of pathways. 363 

 364 

Data and Materials Availability 365 

The open-source code and supplementary data are available at our GitHub repository: 366 

https://github.com/CompGenomeLab/mdd-analysis 367 

 368 

 369 

 370 
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