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 2 

Abstract 16 

Convolutional neural networks show promise as models of biological vision. However, their 17 

decision behavior, including the facts that they are deterministic and use equal number of 18 

computations for easy and difficult stimuli, differs markedly from human decision-making, thus 19 

limiting their applicability as models of human perceptual behavior. Here we develop a new 20 

neural network, RTNet, that generates stochastic decisions and human-like response time (RT) 21 

distributions. We further performed comprehensive tests that showed RTNet reproduces all 22 

foundational features of human accuracy, RT, and confidence and does so better than all 23 

current alternatives. To test RTNet’s ability to predict human behavior on novel images, we 24 

collected accuracy, RT, and confidence data from 60 human subjects performing a digit 25 

discrimination task. We found that the accuracy, RT, and confidence produced by RTNet for 26 

individual novel images correlated with the same quantities produced by human subjects. 27 

Critically, human subjects who were more similar to the average human performance were also 28 

found to be closer to RTNet’s predictions, suggesting that RTNet successfully captured average 29 

human behavior. Overall, RTNet is a promising model of human response times that exhibits 30 

the critical signatures of perceptual decision making. 31 

 32 
33 
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 3 

Introduction 34 

Traditional cognitive models of perceptual decisions1–4 are able to account for the major 35 

features of human perceptual decision making, but do not operate on the level of images. 36 

Recently, convolutional neural networks (CNNs) have reached and sometimes exceeded 37 

human-level performance for novel images5,6. In addition, these networks naturally handle 38 

multi-choice categorization tasks and are promising models of the processing related to object 39 

recognition in the ventral visual stream of the human brain5,7,8. However, traditional CNNs’ 40 

decision behavior differs markedly from human decision behavior, thus limiting their 41 

applicability as models of human perceptual decision making. Specifically, unlike humans, 42 

traditional CNNs are both deterministic (i.e., they always give the same response for a given 43 

stimulus) and static (i.e., they are invariant in the amount of time spent on processing different 44 

images and thus always produce the same response time). 45 

 46 

Several lines of work have tried to build mechanisms into neural networks to make them 47 

stochastic and dynamic9–13. Early research on shallow multi-layer perceptron models was able 48 

to create models that were both stochastic and dynamic. These models were able to explain 49 

human behavior on simple cognitive tasks14–16. However, these models are not image-50 

computable (i.e., they cannot handle complex input such as images). More recent work has 51 

produced image-computable dynamic networks capable of generating response times (RTs) via 52 

mechanisms that allow computational resources utilized for the decision to increase with time9–53 

11, thus allowing responses to evolve through each processing step. However, although these 54 

networks can mimic the speed-accuracy trade off (SAT) found in humans, they are deterministic 55 
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 4 

and their internal mechanisms are not well supported by existing models of human perception 56 

and cognition. Finally, another class of models generates RTs using the biologically-inspired 57 

mechanism of recurrent processing17–21, which allows flexible modulation of a finite network’s 58 

computational power10,22. Nevertheless, these networks are also deterministic and have not 59 

been evaluated on the whole range of choice, RT, and confidence effects shown by humans. 60 

 61 

Here we combine modern CNNs with traditional cognitive models to create a model that is 62 

image-computable, stochastic, and dynamic, and can reproduce the critical features of 63 

perceptual decision making for novel images. The model, which we call RTNet for its ability to 64 

model human RTs, features a deep convolutional neural network with noisy weights and 65 

processes a given image several times using a different random sample of these weights in each 66 

processing step ( 67 

A). These weights are sampled from a Bayesian neural network (BNN) that estimates a posterior 68 

distribution over the best network parameters learnt during training. By sampling from these 69 

noisy weight distributions at each processing step, the network’s units produce variable 70 

responses to the same input that mimic the randomness of neural responses. After each 71 

processing step, RTNet accumulates the output corresponding to each choice until one of the 72 

choices reaches a predefined threshold. The model therefore has a strong conceptual 73 

relationship to race models from the cognitive literature on decision-making, which postulate a 74 

noisy accumulation process with separate accumulators for each choice23–25. By combining the 75 

image-computability of CNNs with traditional models of perception, we expect RTNet to be 76 
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 5 

applicable across a wide range of perceptual tasks as well as reproduce the basic features of 77 

human perceptual decision making. 78 

To assess a model’s ability to make decisions similar to humans, one needs to test whether it 79 

produces the foundational features of human decision-making26. Human perceptual decision 80 

making has been studied primarily in the context of 2-choice tasks using artificial stimuli such as 81 

Gabor patches or random dot motion27 (although notable exceptions exist where N-choice 82 

tasks are used28–31). Therefore, we first replicate the known decision-making signatures from 2-83 

choice tasks using an 8-choice task with meaningful images (hand-written digits taken from the 84 

MNIST dataset32). We manipulate 1) task difficulty by adding two different levels of noise to the 85 

images, and 2) speed-accuracy trade off (SAT) by asking subjects to emphasize either the 86 

accuracy or speed of their responses on different trials.  87 

 88 

Critically, we test RTNet under the same conditions and with the same images seen by the 89 

human subjects to explore the model’s capability to produce behavior similar to human agents. 90 

Beyond testing whether RTNet can reproduce the basic features of human perceptual decision 91 

making, we also explore whether the accuracy, RT, and confidence produced by RTNet for 92 

individual images predict the corresponding quantities for humans on the same images. Finally, 93 

throughout the paper, we compare the behavior of RTNet to that of three other popular 94 

dynamic CNNs. The first model is Parallel Cascaded Network9 (CNet; Figure 1B), which is 95 

currently thought to be the best image-computable model that can mimic the SAT 96 

characteristics of humans12. The second is BLNet10, which belongs to a class of models that uses 97 
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recurrent processing and has been validated on a range of perceptual tasks involving 98 

manipulations beyond SAT (Figure 1C). The third is Multi-Scale Dense Networks13 (MSDNet;  99 

D), which implements one of the most common ways for generating RTs in image-computable 100 

models. We find that RTNet’s behavior mimics human perceptual decision making better than 101 

all three of these CNNs.  102 

103 
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Results 104 

We collected data from 60 human subjects who performed a digit discrimination task (Error! 105 

Reference source not found.A). The experiment was a 2 x 2 design with factors of task difficulty 106 

(easy vs. difficult images) and speed pressure (speed vs. accuracy focus). Each condition 107 

consisted of 120 unique images, and each subject made a decision regarding each image exactly 108 

twice, which allowed us to determine the level of stochasticity in human behavior (Error! 109 

Reference source not found.B). Overall, each subject completed 960 trials in total. 110 

 111 

Having obtained these human data, we compared the human behavior to that of RTNet, CNet, 112 

BLNet, and MSDNet. Both RTNet and MSDNet were implemented using the eight-layer AlexNet 113 

architecture with five convolutional layers followed by three fully connected layers33. CNet was 114 

based on the architecture of ResNet18 since the implementation of this model relies on 115 

residual blocks and skip connections. Finally, for BLNet, we used the original architecture 116 

implemented by Spoerer et al.10, which consists of seven convolutional layers and a fully 117 

connected readout layer. Given that humans and deep learning models are impacted differently 118 

by stimulus noise34,35, we adjusted the noise levels of the images seen by each network to 119 

match their overall accuracy to the accuracy produced by the human subjects. In addition, to 120 

allow the networks to reproduce the speed-accuracy trade off observed in the human data, we 121 

adjusted the threshold value that triggers a decision for each CNN as to match the human 122 

accuracy separately in the speed- and accuracy-focused conditions. To improve the 123 

correspondence between the model predictions and the human data, we trained 60 instances 124 
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 8 

of each model (by only changing the random initialization before training began) and analyzed 125 

the data produced by these 60 instances in equivalent manner to the 60 human subjects. 126 

 127 

Signatures of human perceptual decision making 128 

We examined six foundational signatures of human perceptual decision making that have 129 

already been established in studies of 2-choice tasks: 1) Human decisions are stochastic, 130 

meaning that the same stimulus can elicit different responses on different trials36,37, 2) 131 

increasing speed stress shortens RT but decreases accuracy (speed-accuracy trade off)26,38,39, 3) 132 

more difficult decisions lead to reduced accuracy and longer RT26,40,41, 4) RT distributions are 133 

right-skewed, and this skew increases with task difficulty26, 5) RT is lower for correct than for 134 

error trials41–45, and 6) confidence is higher for correct than for error trials46. For each of these 135 

signatures, we confirmed that the signature also occurs for our 8-choice task with naturalistic 136 

images, and then tested whether RTNet, CNet, BLNet and MSDNet exhibit the same signature. 137 

 138 

Stochasticity of human decisions 139 

A central feature of human behavior is that human decisions are stochastic such that the same 140 

stimulus can elicit different responses on different trials36,37,47. We quantified the level of 141 

stochasticity in each condition by presenting each image twice. We first confirmed that our 142 

estimates of human stochasticity were robust and reliable by showing that similar estimates are 143 

obtained when analyzing the odd vs. even numbered subjects (Supplementary Figure 1). On 144 

average across all conditions, 36% of all images received different responses on the two 145 

presentations. A one-sided Wilcoxon signed-rank test showed that this observed frequency of 146 
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 9 

stochastic responses is indeed significantly greater than zero (Z(59) = 32896, p < 0.001, rank-147 

biserial correlation (effect size) = 1) (Error! Reference source not found.A). A repeated 148 

measures ANOVA with factors stimulus difficulty (easy vs. difficult) and SAT (speed vs. accuracy 149 

stress) revealed that stochasticity increased with both higher task difficulty (F(1,63) = 871.869, 150 

p < 0.001, 𝜂!" = 0.933) and higher speed pressure (F(1,63) = 9.135, p = 0.004, 𝜂!" = 0.127). 151 

 152 

Since RTNet uses a random sample of weights for each processing step, it naturally produces 153 

stochastic decisions too. On average across all conditions, RTNet produced different responses 154 

on the two image presentations on 20% of trials (One-sided Wilcoxon signed-rank test: Z(59) = 155 

2892, p < 0.001, rank-biserial correlation (effect size) = 1; Error! Reference source not found.B). 156 

This level of stochasticity was lower than for human subjects and stems from the fact that the 157 

variability in the weights was fixed a priori by training a Bayesian neural network. However, it is 158 

possible for RTNet to match the levels of stochasticity observed in humans by increasing the 159 

variability of the network’s weights. Indeed, we confirmed that the stochasticity of the 160 

decisions made by RTNet can be robustly manipulated by changing the variability of its weight 161 

distributions (Supplementary Figure 2). Further, the stochasticity in human decisions partially 162 

stems from factors such as fluctuations in attention, arousal, or serial dependence36,37,47,48, 163 

which we did not attempt to model. Because of these considerations, we did not try to match 164 

RTNet to the exact level of human decision stochasticity observed in the data. Critically, 165 

however, RTNet exhibited the same features such that stochasticity increased with higher task 166 

difficulty (F(1,59) = 120.124, p < 0.001, 𝜂!" = 0.671) and higher speed stress (F(1,59) = 87.730, p 167 

< 0.001, 𝜂!" = 0.598).  168 
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 169 

On the other hand, for a fixed level of speed-accuracy trade off, CNet, BLNet and MSDNet are 170 

fully deterministic and do not exhibit any decision stochasticity (Error! Reference source not 171 

found.C-E). We note that it should be possible to add noise in the weights of these models to 172 

induce stochastic decisions, but such noise would decrease their accuracy much more than it 173 

affects RTNet given that only RTNet is able to average out the noise over repeated processing 174 

steps. Because RTNet is the only model that incorporates a mechanism for generating 175 

stochastic responses, these stochasticity analyses a priori favor RTNet over the other models. 176 

However, the rest of our analyses compare the behavior and predictions of models across a 177 

range of stimulus manipulations in which no model is a priori expected to be favored over the 178 

others.  179 

 180 

Speed-accuracy trade off 181 

The ability to trade off speed and accuracy against each other is a hallmark of decision-making 182 

across humans and many other animal species38,39. The human data confirmed that increased 183 

speed pressure led to lower accuracy (F(1,59) = 4.274, p = 0.043, 𝜂!" = 0.068; Error! Reference 184 

source not found.A) and shorter RTs (F(1,59) = 119.29, p < 0.001, 𝜂!" = 0.964; Error! Reference 185 

source not found.B). We also found a significant interaction between SAT and task difficulty for 186 

accuracy such that the SAT effect was greater for easy images (F(1,59) = 5.71, p = 0.020, 𝜂!" = 187 

0.088). For RTs, however, we observed the opposite pattern where the SAT effect was 188 

heightened for difficult images (F(1,59) = 22.423, p < 0.001, 𝜂!" = 0.275). These results replicate 189 

findings from a previous study examining the effects of SAT manipulations on accuracy and RT 190 
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as a function of stimulus contrast49. Further, as shown before49, these findings are also in line 191 

with predictions of the drift diffusion model (DDM), which is currently the standard model for 192 

explaining human RTs1,2. 193 

 194 

All models were able to replicate the speed-accuracy trade off observed in humans. Increased 195 

speed pressure resulted in lower accuracy for RTNet (F(1,59) = 9.683, p = 0.003, 𝜂!" = 0.141), 196 

CNet (F(1,59) = 50.025, p < 0.001, 𝜂!" = 0.459), BLNet (F(1,59) = 11.611, p = 0.001, 𝜂!" = 0.164), 197 

and MSDNet (F(1,59) = 21.841, p < 0.001,  𝜂!" = 0.270). Increased speed pressure also led to 198 

shorter RTs for RTNet (F(1,59) = 3362.567, p < 0.001,	𝜂!" = 0.983), CNet (F(1,59) = 695.878, p < 199 

0.001, 𝜂!" = 0.922), BLNet (F(1,59) = 607.093, p < 0.001, 𝜂!" = 0.911), and MSDNet (F(1,59) = 200 

584.081, p < 0.001, 𝜂!" = 0.908). We note that the SAT manipulation had a relatively small effect 201 

on accuracy (1.04% for easy and 1.24% for difficult conditions for RTNet; the effects for the rest 202 

of the networks were of similar magnitude; Figure 4A). However, despite the small effect size, 203 

these effects were generally consistent across the 60 model instances (for RTNet, 54/60 204 

instances showed the effect for easy images and 42/60 showed the effect for difficult images).  205 

 206 

The SAT manipulation had a much stronger effect on RTs compared to accuracy, which may be 207 

attributed to the fact that RTs are a more sensitive measure of performance. Further, the SAT 208 

effect on RTs was much stronger for humans, RTNet and BLNet, compared to the other models. 209 

The individual RT distributions show a clear separation between the speed and accuracy focus 210 

conditions for humans, RTNet and BLNet but not for CNet and MSDNet (Figure 4C). 211 

Nevertheless, these results indicate that speed-accuracy trade off is robustly observed even for 212 
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relatively complex task with naturalistic images, and that all models examined here exhibit this 213 

foundational phenomenon.   214 

 215 

Difficult decisions lead to reduced accuracy and longer RT  216 

Another ubiquitous feature of decision-making is that more difficult stimuli lead to lower 217 

accuracy and longer RT26,50. Our human data robustly showed this effect with more difficult 218 

stimuli leading to lower accuracy (F(1,59) = 1558.500, p < 0.001, 𝜂!" = 0.964; Error! Reference 219 

source not found.A) and longer RT (F(1,59) = 411.154, p < 0.001, 𝜂!" = 0.875; Error! Reference 220 

source not found.B). The same pattern was robustly observed for RTNet and BLNet, where 221 

difficult stimuli led to lower accuracy (RTNet: F(1,59) = 218.510, p < 0.001, 𝜂!" = 0.787; BLNet: 222 

F(1,59) = 200.543, p < 0.001, 𝜂!" = 0.773) but longer RT (RTNet: F(1,59) = 233.452, p < 0.0001, 𝜂!" 223 

= 0.798; BLNet: F(1,59) = 186.604, p < 0.001, 𝜂!" = 0.760). However, while CNet and MSDNet 224 

also showed a very robust effect on accuracy (CNet: F(1,59) = 1116.800, p < 0.001, 𝜂!" = 0.950; 225 

MSDNet: F(1,59) = 247.520, p < 0.001,  𝜂!" = 0.808), they exhibited a smaller effect for RT (CNet: 226 

F(1,59) = 11.070, p = 0.016, 𝜂!" = 0.158; MSDNet: F(1,59) = 6.171, p = 0.002, 𝜂!" = 0.095). Indeed, 227 

out of the 60 model instances, only 23 CNet instances and 36 MSDNet instances exhibited an RT 228 

increase for more difficult stimuli, while this effect was present in 60/60 human subjects, 58/60 229 

RTNet instances, and 59/60 BLNet instances. These results indicate that the effect of task 230 

difficulty on accuracy is exhibited robustly in humans and all networks, but the effect of task 231 

difficulty on RT is larger for humans, RTNet and BLNet compared to CNet and MSDNet (see 232 

Discussion).  233 

 234 
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Skewness of RT distributions 235 

For simple 2-choice decisions, human RT distributions are generally positively skewed and the 236 

skewness changes as a function of task conditions2,26. Our 8-choice task produced RT 237 

distributions that closely resemble what is observed in standard 2-choice tasks (Error! 238 

Reference source not found.C). Similar-looking RT distributions were produced by RTNet but 239 

CNet and MSDNet produced RT distributions that, while still right-skewed, exhibited qualitative 240 

differences in their shapes (Error! Reference source not found.C). BLNet, on the other hand, 241 

produced RT distributions that were frequently bimodal and left-skewed.  242 

 243 

We further assessed how the skewness of the RT distributions changed under different 244 

conditions. In humans, we found higher skewness for accuracy compared to speed focus 245 

(F(1,59) = 32.837, p < 0.001, 𝜂!" = 0.358), as well as for easy compared to difficult stimuli 246 

(F(1,59) = 5.098, p = 0.028, 𝜂!" = 0.080; Error! Reference source not found.D). RTNet exhibited 247 

the same pattern with skewness increasing with a focus on accuracy (F(1,59) = 19.077, p < 248 

0.001, 𝜂!" = 0.244) and with easier stimuli (F(1,59) = 93.342, p < 0.001, 𝜂!" = 0.613). For CNet, we 249 

found no difference in skewness of RT distributions between the SAT conditions (F(1,59) = 250 

0.428, p = 0.515, 𝜂!" = 0.007), but skewness increased for easy compared to difficult stimuli 251 

(F(1,59) = 8.612, p = 0.005, 𝜂!" = 0.127). BLNet showed the opposite pattern to CNet with 252 

skewness increasing for the speed-focus condition (F(1,59) = 39.219, p < 0.001, 𝜂!" = 0.399) and 253 

failed to show difference in skewness between the easy and difficult stimuli (F(1,59) = 3.517, p 254 

= 0.066, 𝜂!" = 0.056). Finally, while MSDNet showed an increase in skewness with a focus on 255 

accuracy (F(1,59) = 64.866, p < 0.001, 𝜂!" = 0.524), it produced RT distributions that did not 256 
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significantly differ in skewness between the task difficulty conditions (F(1,59) = 1.259, p = 0.266, 257 

𝜂!" = 0.021). Overall, RTNet produced RT distributions which reflected the observed patterns in 258 

human data better than all other networks. It should be noted that CNet, BLNet, and MSDNet 259 

can only produce distinct RTs that are less than or equal to their layer numbers or residual 260 

blocks, which may affect their ability to reproduce human RT distributions unless a relatively 261 

high number of layers is used. On the other hand, RTNet can go through arbitrary number of 262 

samples regardless of the number of layers in its architecture.  263 

 264 

RT is faster for correct compared to error trials 265 

Another ubiquitous feature of human behavior in 2-choice tasks is that correct decisions are 266 

typically accompanied by faster RTs than incorrect decisions41–45. We replicated this effect in 267 

our 8-choice task (F(1,59) = 82.080, p < 0.001, 𝜂!" = 0.582; Error! Reference source not found.E). 268 

The same difference between correct and error RTs also emerged for RTNet (F(1,59) = 831.153, 269 

p < 0.001, 𝜂!" = 0.934), CNet (F(1,59) = 83.921, p < 0.001, 𝜂!" = 0.587), and BLNet (F(1,59) = 270 

286.157, p < 0.001, 𝜂!" = 0.582). However, MSDNet exhibited the opposite pattern such that RTs 271 

were faster for error compared to correct trials (F(1,59) = 65.696, p < 0.001, 𝜂!" = 0.527). This 272 

behavior is due to the fact that errors produced by MSDNet come mostly from decisions made 273 

in earlier layers. It may be possible to reverse this behavior by using a much more conservative 274 

decision threshold in the early compared to the late layers of MSDNet, though the effectiveness 275 

of this strategy and its effect on all other behavioral signatures examined here would need to 276 

be tested. What is clear is that MSDNet in its current form makes a qualitatively wrong 277 
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prediction regarding the difference between correct and error RT, whereas RTNet, CNet and 278 

BLNet naturally reproduce the empirical effect. 279 

 280 

Confidence is higher for correct than error trials 281 

Finally, a ubiquitous feature of confidence ratings is that they are higher for correct compared 282 

to incorrect decisions46,51. Our human data replicated this effect (F(1,59) = 472.172, p < 0.001, 283 

𝜂!" = 0.889; Error! Reference source not found.F). The effect was also robustly exhibited by all 284 

networks: RTNet (F(1,59) = 966.796, p < 0.001, 𝜂!" = 0.942), CNet (F(1,59) = 785.992, p < 0.001, 285 

𝜂!" = 0.930), BLNet (F(1,59) = 374.031, p < 0.001, 𝜂!" = 0.864), and MSDNet (F(1,59) = 131.923, p 286 

< 0.001, 𝜂!" = 0.691). Therefore, humans and all networks robustly showed higher confidence 287 

for correct trials compared to incorrect trials.  288 

 289 

Model predictions of responses for individual images 290 

The results above demonstrate that RTNet naturally reproduces all foundational features of 291 

human decision-making. On the other hand, CNet, BLNet, and MSDNet fail to exhibit stochastic 292 

decisions and skewness difference in RT distributions between the SAT/difficulty conditions, 293 

and MSDNet further fails to account for lower RT for correct decisions. However, RTNet’s ability 294 

in those respects can easily be matched by traditional cognitive models that do not work on 295 

image-level data24,42,52. Therefore, a critical advantage of RTNet over traditional cognitive 296 

models would be the ability to predict human behavior for individual, unseen images because 297 

traditional models cannot do that. Here we tested specifically whether the accuracy, RT, and 298 
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confidence for unseen images produced by the networks predict the same quantities in 299 

humans. 300 

 301 

Model predictions for individual subjects 302 

In a first set of analyses, we assessed the correlations between the accuracy, RT, and 303 

confidence for each human subject and the corresponding quantities predicted by RTNet, CNet, 304 

BLNet, and MSDNet across all four conditions (easy with speed stress, difficult with speed 305 

stress, easy with accuracy stress, difficult with accuracy stress). We compared how well data 306 

from individual human subjects could be predicted by each model as well as from the data from 307 

the 59 remaining human subjects. This last quantity, which we call subject-to-group 308 

relationship, provides an estimate of the noise ceiling (i.e., the performance that a true model 309 

could achieve given inter-subject variability)53.  310 

 311 

We found that all models predicted individual human data much better than chance for 312 

accuracy, RT, and confidence (two-sided one-sample t-tests, all p’s < 0.001, all Cohen’s d > 313 

1.20). The one exception was BLNet, which had a weak negative correlation with human image-314 

by-image accuracy (average r = -0.06, p = 0.002, Cohen’s d = 0.410, 95% CI = [-0.09, -0.02]). 315 

Critically, RTNet provided substantially better predictions than all other models (Error! 316 

Reference source not found.). Specifically, two-sided paired t-tests showed that RTNet 317 

produced better image-by-image predictions about accuracy (RTNet vs. CNet: t(59) = 30.672, p 318 

< 0.001, Cohen’s d = 4.747, 95% CI = [0.24, 0.27]; RTNet vs. BLNet: t(59) = 20.842, p < 0.001, 319 

Cohen’s d = 3.864, 95% CI = [0.37, 0.44]; RTNet vs. MSDNet: t(59) = 30.672, p < 0.001, Cohen’s d 320 
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= 4.747, 95% CI = [0.24, 0.27]), RT (RTNet vs. CNet: t(59) = 18.638, p < 0.001, Cohen’s d = 2.370, 321 

95% CI = [0.29, 0.35]; RTNet vs. BLNet: t(59) = 13.135, Cohen’s d = 0.472, 95% CI = [0.06, 0.08], p 322 

< 0.001; RTNet vs. MSDNet: t(59) = 13.318, p < 0.001, Cohen’s d = 1.152, 95% CI = [0.13, 0.18]), 323 

and confidence (RTNet vs.  CNet: t(59) = 8.394, p < 0.001, Cohen’s d = 0.936, 95% CI = [0.07, 324 

0.11]; RTNet vs. BLNet: t(59) = 6.587, p < 0.001, Cohen’s d = 0.391, 95% CI = [0.03, 0.05]; RTNet 325 

vs. MSDNet: t(59) = 7.68, p < 0.001, Cohen’s d = 0.471, 95% CI = [0.04, 0.06]). 326 

 327 
 328 
Critically, RTNet’s predictions were reasonably close to the noise ceiling in all cases (calculated 329 

as the average subject-to-group correlation in the human data). Specifically, RTNet’s predictions 330 

were within 62.5%, 79.6%, and 64.8% of the noise ceiling for accuracy, RT, and confidence, 331 

respectively. These numbers were substantially lower for CNet (16.1%, 20.3%, 40.5%, 332 

respectively), BLNet (0%, 64.4%, 54.1%, respectively), and MSDNet (16.1%, 50%, and 51.3%, 333 

respectively). Thus, by reaching to between 62.5% and 79.6% of the noise ceiling, RTNet can 334 

provide excellent predictions for the accuracy, RT, and confidence produced by human subjects 335 

for images that the model was not trained on. Additionally, we derived the model predictions 336 

for averages across the 60 subjects across all conditions (Supplementary Figure 3) and found 337 

that RTNet still predicts average human accuracy and RT better than the other networks. 338 

 339 

Model predictions within each condition separately 340 

The analyses above explored the correlations between model predictions and human behavior 341 

across all experimental conditions. Because different conditions vary in their average accuracy, 342 

RT, and confidence, analyses across conditions are likely to produce higher correlations than if 343 
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the same analyses are to be performed within each condition separately. Therefore, we 344 

repeated the analyses above but within each of the four conditions separately to investigate if 345 

the models can still account for accuracy, RT, and confidence on individual images. We found 346 

that RTNet, BLNet and MSDNet produced accuracy, RT, and confidence predictions that 347 

significantly correlate with individual subject data in all conditions (two-sided one-sample t-348 

tests, all p’s < 0.001; Figure 6). However, while CNet produced accuracy and confidence 349 

predictions that significantly correlated with individual subject data in all conditions, its RT 350 

predictions for all conditions except accuracy focus with difficult images, were either zero or 351 

negative (p’s > 0.62).  352 

 353 

Critically, however, RTNet predicted the individual data significantly better than the rest of the 354 

networks. Specifically, two-sided paired t-tests showed that RTNet provided better predictions 355 

than CNet in two out of four conditions for accuracy (all p’s < 0.001), in all four conditions for RT 356 

(all p’s < 0.0001), and in two out of four conditions for confidence (p < 0.005). Compared to 357 

BLNet, RTNet predicted individual data significantly better in three out of four conditions for 358 

accuracy (all p’s < 0.0001) and in all four conditions for RT (all p’s < 0.025). Compared to 359 

MSDNet, RTNet predicted the individual data significantly better in three out of four conditions 360 

for accuracy (all three p’s < 0.001) and in all four conditions for RT (all p’s < 0. 02). There was no 361 

significant difference in confidence predictions between RTNet and BLNet or between RTNet 362 

and MSDNet for any of the four conditions (all p’s > 0.05). RTNet was never significantly worse 363 

than CNet, BLNet or MSDNet in predicting any of the 12 comparisons. Overall, these results 364 

demonstrate that RTNet predicts human behavior well across all three measures and across 365 
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different types of analyses (across- or within-condition), and does so better than CNet, BLNet 366 

and MSDNet. 367 

 368 

Humans more similar to the group are more similar to RTNet 369 

Our subject-to-group analyses revealed substantial variability in how well individual subjects’ 370 

data corresponded to the group average (see Figure 5). Since the group average constitutes the 371 

best model of human behavior, one would expect that any good, generalizable model of 372 

behavior would also be able to capture this relationship between individual subjects and the 373 

group average. In other words, the strength of the relationship for an individual subject and the 374 

group should be linked to the strength of the relationship of that same subject and the model. 375 

Here we tested if such dependency holds true for RTNet, CNet, BLNet and MSDNet. We found 376 

that subjects who exhibited greater correlation in image-by-image accuracy across all 377 

conditions with rest of the group also exhibited greater correlation with the RTNet predictions 378 

(Pearson’s r = 0.685, p < 0.001, 95% CI = [0.52, 0.80]; Figure 7A). The same correspondence also 379 

emerged for RT (Pearson’s r = 0.825, p < 0.001, 95% CI = [0.72, 0.89]) and confidence (Pearson’s 380 

r = 0.894, p < 0.001, 95% CI = [0.83, 0.94]). Similar results were obtained for CNet (Accuracy: 381 

Pearson’s r = 0.389, p = 0.002, 95% CI = [0.15, 0.59]; RT: Pearson’s r = 0.432, p < 0.001, 95% CI = 382 

[0.20, 0.62]; Confidence: Pearson’s r = 0.639, p < 0.001, 95% CI = [0.46, 0.77]; Figure 7B) and 383 

MSDNet (Accuracy: Pearson’s r = 0.389, p = 0.002, 95% CI = [0.15, 0.59]; RT: Pearson’s r = 0.80, 384 

p < 0.0001, 95% CI = [0.69, 0.88]; Confidence: Pearson’s r = 0.853, p < 0.001, 95% CI = [0.77, 385 

0.91]; Figure 7D), demonstrating that all three models predict better the data from individuals 386 

who behave more similarly to the rest of the group. However, BLNet, showed no significant 387 
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correlation for accuracy predictions (Pearson’s r = -0.029, p = 0.828, 95% CI = [-0.28, 0.23]; 388 

Figure 7C) while exhibiting high correlations for RT (Pearson’s r = 0.831, p < 0.001, 95% CI = 389 

[0.73, 0.90]) and confidence (Pearson’s r = 0.809, p < 0.001, 95% CI = [0.70, 0.88]). All 390 

correlations were highest for RTNet compared to the other three networks. These analyses 391 

further support the notion that RTNet provides the best model of average human behavior 392 

among existing alternatives.  393 

 394 

To understand better these results, we further examined who were the subjects whose 395 

accuracy, RT, and confidence was most similar to the group. We found that different subjects 396 

had the highest similarity to the group for RT compared to accuracy or confidence 397 

(Supplementary Figure 4A-C). Therefore, RTNet and other models did not simply provide good 398 

fit to specific subjects but instead provided good fits to different groups of subjects for different 399 

measures. Finally, the individuals closest to the group in their mean accuracy also tended to be 400 

those who had the highest task accuracy, suggesting that RTNet and the other models were 401 

better at predicting the image-by-image accuracy of subjects with higher task performance 402 

(Supplementary Figure 4D).  403 

 404 
 405 
Given the variability in how similar individual subjects were to the group data, we also explored 406 

how well the models compared to the ability of individual subjects to predict the group data. 407 

Two-sided paired t-tests showed that RTNet outperformed individual human subjects in 408 

predicting the accuracy (t(59) = 4.076, p < 0.001, Cohen’s d = 0.526, 95% CI = [0.02, 0.06]), RT 409 

(t(59) = 16.174, p < 0.001, Cohen’s d = 2.088, 95% CI = [0.2, 0.25]), and confidence (t(59) = 410 
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10.927, p < 0.001, Cohen’s d = 1.411, 95% CI = [0.18, 0.26]) of the rest of group across all 411 

conditions (Figure 8). Impressively, RTNet outperformed every individual human subject in 412 

predicting the group RT and confidence results, as well as 73.3% of individual subjects in 413 

predicting accuracy. On the other hand, CNet was significantly worse than individual subjects in 414 

predicting group accuracy and RT but not confidence (Accuracy: t(59) = -42.425, p < 0.001, 415 

Cohen’s d = 5.477, 95% CI = [-0.4, -0.39]; RT: t(59) = -25.439, p < 0.001, Cohen’s d = 3.284, 95% 416 

CI = [-0.38, -0.32]; Confidence: t(59) = -0.361, p = 0.719, Cohen’s d = 0.047, 95% CI = [-0.05, -417 

0.03]). BLNet was significantly worse than individual subjects in predicting group accuracy but 418 

predicted group RT and confidence better than individuals (Accuracy: t(59) = -68.395, p < 0.001, 419 

Cohen’s d = 8.830, 95% CI = [-0.67, -0.63]; RT: t(59) = 7.018, p < 0.001, Cohen’s d = 0.906, 95% CI 420 

= [0.07, 0.13]; Confidence: t(59) = 6.170, p < 0.001, Cohen’s d = 0.797, 95% CI = [0.08, 0.16]). 421 

Finally, MSDNet’s predictions of group accuracy and RT were significantly worse than those of 422 

human subjects but its predictions of group confidence were better than those of individual 423 

subjects (Accuracy: t(59) = -42.425, p < 0.001, Cohen’s d = 5.477, 95% CI = [-0.42, -0.39]; RT: 424 

t(59) = -4.019, p < 0.001, Cohen’s d = 0.519, 95% CI [-0.08, -0.03]; Confidence: t(59) = 5.266, p < 425 

0.001, Cohen’s d = 0.68, 95% CI = [0.07, 0.15]). In sum, RTNet was the only network that 426 

outperformed most individual subjects in predicting all three measures of human performance 427 

(accuracy, RT, and confidence).  428 

 429 

 430 
 431 

432 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2024. ; https://doi.org/10.1101/2022.08.23.505015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Discussion 433 

There is considerable interest in using neural networks as models of human visual processing 434 

and behavior, but relatively little work has been done on testing the extent to which existing 435 

image-computable models reproduce the full range of behavioral signatures exhibited by 436 

humans. Here we show that the current state-of-the-art neural networks such as CNet, BLNet, 437 

and MSDNet diverge in several ways from human behavior. Further, we develop a new neural 438 

network, RTNet, that exhibits all critical features of human perceptual decision making, 439 

including effects on accuracy, RT, and confidence. Further, RTNet predicted well human group 440 

behavior for novel images and did so better than both CNet, BLNet, and MSDNet, as well as 441 

better than individual human subjects. Finally, individual humans who were more similar to the 442 

group were also more similar to RTNet. Overall, RTNet is a promising image-computable model 443 

of human accuracy, RT, and confidence. 444 

 445 

Relationship between RTNet and cognitive models of perceptual decision making 446 

RTNet is the first neural network to exhibit all critical signatures of human perceptual decision 447 

making. This success, however, is hardly surprising given the strong conceptual similarity 448 

between RTNet and traditional cognitive models of decision-making that also exhibit the 449 

signatures of human behavior24,26,40,52,54. These models are often referred to as sequential 450 

sampling models where (usually noisy) evidence is accumulated over time until a threshold is 451 

reached. The most common sequential sampling models are diffusion models, which are 452 

typically only applied to 2-choice tasks where evidence in favor of one response alternative is 453 

also evidence against the other alternative1,40. Instead, RTNet is conceptually more similar to 454 
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another subgroup of sequential sampling models called race models where each choice option 455 

has its own accumulation system and evidence for each choice is accumulated in parallel42,55.  456 

 457 

Despite their conceptual similarity, RTNet has two important advantages over traditional 458 

cognitive models. Most importantly, RTNet is image-computable and can be applied to actual 459 

images, whereas traditional models cannot. As such, traditional models cannot replicate 460 

RTNet’s ability to make accurate predictions regarding human accuracy, RT, and confidence for 461 

individual unseen images. The second advantage stems from the inability of traditional 462 

cognitive models to naturally capture the relationships between the different choice options. 463 

Specifically, to maintain a low number of free parameters, cognitive models are often fit with 464 

the assumption that evidence accumulates at the same rate for all incorrect choice options (but 465 

accumulates faster for the correct choice)56. However, this assumption ignores the fact that 466 

some incorrect options may be more similar to the correct option and thus are more likely than 467 

other options to be chosen. While dependencies between the choices can easily be 468 

incorporated in cognitive models, that would result in a large number of free parameters that 469 

would make fitting to data difficult. Conversely, RTNet inherently learns all relationships 470 

between the choice options during the training of the Bayesian neural network that forms its 471 

core. RTNet still requires the fitting of the overall signal strength (which we accomplish by 472 

adjusting the noise level of the images fed to RTNet), but this single free parameter allows it to 473 

capture all choice option dependencies, something that traditional models cannot achieve.  474 

 475 

 476 
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Performance differences between RTNet and other networks 477 

RTNet outperformed all other networks we tested (CNet, BLNet, and MSDNet) in capturing the 478 

signatures of perceptual decision making. Specifically, while MSDNet and CNet show relatively 479 

weaker effects of task difficulty on RTs compared to humans, RTNet closely captures the 480 

observed magnitude of this effect. Further, RTNet is the only model that mimics the observed 481 

shape and skewness of RT distributions in response to SAT/difficulty manipulations. Finally, 482 

RTNet yielded the closest image-by-image predictions of human choice, RT, and confidence.  483 

 484 

We speculate that RTNet’s ability to match observed patterns in human behavior, particularly 485 

RTs, is primarily due to its internal mechanisms being closer to the true mechanisms that give 486 

rise to RTs in humans. Specifically, RTNet’s core assumption that RTs are generated by a process 487 

of sequential sampling and evidence accumulation is inspired from a long tradition of cognitive 488 

modelling 1,2. In fact, these evidence accumulation models have been tested extensively against 489 

human data and are currently the best models of human RTs 1,2. On the other hand, models 490 

such as CNet, BLNet and MSDNet rely on mechanisms that, although can generate RTs, have 491 

not been as extensively validated by empirical tests and are therefore less likely to capture the 492 

true mechanisms that generate RTs in humans.  493 

 494 

Nevertheless, another reason why CNet and MSDNet may struggle with generating human-like 495 

RTs is that the RTs generated by the models are constrained by the number of layers or residual 496 

blocks present in the networks. On the other hand, RTNet’s evidence accumulation mechanism 497 
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allows flexible generation of RTs across a potentially very large number of steps, thus allowing 498 

the RTs to have higher resolution and sensitivity to experimental manipulations.  499 

 500 

Biological plausibility of neural network models of response time 501 

Physiological recordings have uncovered several features of the processing in the human visual 502 

system that are relevant to judging the plausibility of the networks examined here. First, the 503 

conduction from one area to another in the visual cortex (roughly corresponding to different 504 

layers in neural networks) takes approximately 10 ms57, with signal from the photoreceptors 505 

reaching the top of the visual hierarchy in inferior temporal cortex in 70-100 ms58. Therefore, a 506 

single sweep from input to output in a purely feedforward network should result in decisions 507 

with RT less than a few hundred milliseconds even though human decisions can range from a 508 

hundred of milliseconds to a few seconds. Second, neurons in each layer of the visual cortex 509 

continue to fire action potentials for hundreds of milliseconds after the stimulus onset and 510 

receive strong recurrent input from later layers of processing59. Finally, neuronal processing is 511 

known to be noisy such that the same image input generates very different neuronal 512 

activations on different trials37. 513 

 514 

MSDNet diverges from these known properties of the human visual cortex in several important 515 

ways. To generate meaningful RTs, MSDNet assumes that classification decisions are made 516 

after each layer of processing, though there is no evidence that decisions in the brain can be 517 

directly based on information in early visual cortex without further processing in subsequent 518 

layers. Moreover, because it assumes the existence of a single feedforward sweep through the 519 
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network, it cannot naturally capture large RT variability between stimuli given the short 520 

latencies of processing between different layers. Finally, MSDNet does not incorporate any 521 

recurrent processing, capture the noisiness of the responses in the visual cortex, or replicate 522 

the long periods of activity of the neurons in each processing area. These properties strongly 523 

limit the biological plausibility of MSDNet.  524 

 525 

In comparison, the dynamics of CNet are closer to those of biological neural networks. Indeed, 526 

several of CNet’s features – such as parallel and continuous processing of input, and 527 

transmission delays between layers – were directly inspired by biology. The transmission delays 528 

allow the network to mimic the processing latencies across cortical layers. These features were 529 

also found to account for differences in processing efficiency between images such that CNet 530 

produced more rapid responses for prototypical images with clear backgrounds compare to 531 

unusual or cluttered images. However, CNet includes several features that are not biologically 532 

plausible such as its lack of stochasticity of decisions and recurrent processing. Further, it 533 

remains unclear how its cascaded architecture could map onto brain areas12.  534 

 535 

BLNet appears more biologically plausible than both MSDNet and CNet as it features recurrent 536 

visual processing. Lateral connections in RCNNs enable a layer’s activations from previous time 537 

steps to feed back into itself, which allows state dependence to naturally emerge in these 538 

networks, thus mimicking biological networks67. Additionally, RCNNs have been found to 539 

generate RTs that align closely with human RTs on a range of complex perceptual tasks 540 

involving scene categorization, perceptual grouping, and mental simulation22. These findings 541 
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suggest further similarities in perceptual processing between humans and RCNNs. However, in 542 

spite of these advantages, RCNNs still lack certain features of biological networks such as 543 

stochasticity of responses.  544 

 545 

It is possible to introduce stochasticity in CNet and MSDNet by feeding the outputs of the final 546 

softmax layer into a race model. However, such an architecture would imply that response 547 

stochasticity arises purely from noise in the decision stage. Although decision noise may exist in 548 

humans contributing to noisy motor responses, stochasticity in human responses is thought to 549 

predominantly arise from noisy inference29 or noisy sensory representations60–62. Therefore, 550 

CNNs with additional noise at the decision stage are less biologically plausible than RTNet, 551 

which includes noise in the evidence processing stage.  552 

 553 

On the other hand, while also not capturing all properties of visual processing, RTNet appears 554 

more biologically plausible. First, it mimics the noisiness of neuronal responses for repeated 555 

presentations of the same stimulus. Second, through the process of evidence accumulation, 556 

RTNet naturally generates long-lasting neuronal activations . Third, the network’s output is 557 

inherently stochastic, unlike CNet, BLNet, MSDNet, or standard feedforward networks that are 558 

inherently deterministic. Finally, the accumulation process implemented in RTNet has been 559 

observed in multiple regions in the human parietal cortex, frontal cortex, and subcortical 560 

areas63–66. Nevertheless, one critical limitation of the biological plausibility of RTNet is its lack of 561 

recurrency. That being said, the question of how to train recurrent neural networks on static 562 

images remains open53,58,67–69. Further, while the core of RTNet does not include recurrency, 563 
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the evidence accumulation system can be thought of as a recurrent network. In fact, several 564 

recent studies have demonstrated the advantages of combining a standard feedforward 565 

network with a recurrent network in performing a range of tasks and extrapolating to solve 566 

problems of greater complexity than they were trained on70,71. Future studies should explore 567 

how to introduce recurrence into RTNet’s mechanisms and whether such modifications can 568 

improve its predictions of human behavior. 569 

 570 

Using noisy weights to generate stochasticity in RTNet’s responses 571 

One critical feature of RTNet is that its weights are noisy. Practically, there are many ways of 572 

generating noise in the weights. In early iterations of RTNet, we attempted to create variability 573 

by training a feedforward network and then adding the same amount of variability to each 574 

connection. This approach resulted in variability that was too small for some weights and too 575 

large for others72, often leading to no accuracy gains from the process of evidence 576 

accumulation. Indeed, a given amount of noise over a specific weight may not change the 577 

performance of a network at all, but the same disturbance over another weight may have 578 

destructive effects73–75. We therefore chose to obtain the weight variability by training a 579 

Bayesian neural network so that each weight has an appropriate amount of noise. In the future, 580 

it may be possible to use other methods for setting the noise level for each connection, but we 581 

are currently unaware of any method besides training a Bayesian neural network that can 582 

generate appropriate noise for each weight.  583 

 584 
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Another alternative to implementing noise in RTNet is to only add noise to the weights in the 585 

pre-readout layer (which can mimic noise in the decision process rather than in the sensory 586 

processing). As there are many different ways to implement stochasticity in the network, it is 587 

important for future studies to test how these differences in implementation affect the model’s 588 

performance. 589 

 590 

RTNet is built such that every time evidence is sampled from a stimulus, the network’s weights 591 

change randomly (according to the BNN’s posterior weight distributions). These random 592 

moment-by-moment fluctuations in the network’s weights lead to noisy activations. However, 593 

in the brain, noisy activations in response to a stimulus are thought to arise from random 594 

fluctuations in neuronal activity itself. Therefore, it can be argued that a more biologically 595 

plausible implementation of RTNet would involve noise in unit activations rather than 596 

weights76. The main reason we chose to add noise in weights rather than activations is due to 597 

the practical ease of implementing BNNs that can naturally generate variability in networks. 598 

Mechanistically, however, there may be no meaningful distinction between noisy weights and 599 

noisy activations. Indeed, noisy weights lead to noisy activations, which mimic the randomness 600 

of neural responses.  601 

 602 

Limitations 603 

One limitation of RTNet is that its mechanism for stopping the accumulation process is non-604 

optimal. Following a large literature of race models in cognitive psychology24,42,56, RTNet makes 605 

a decision when any one choice option receives sufficient evidence to exceed a threshold. 606 
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However, if another choice option has almost same amount of evidence, the observer has little 607 

ability to differentiate between the two choices and is essentially guessing between them. 608 

Previous research showed that guessing can be an appropriate behavior if the observer knows 609 

that the task is very difficult77 or if the observer has been deliberating for a long time78. 610 

However, in a race model, guessing can happen at any time point regardless of task difficulty. 611 

Nevertheless, human decisions are often suboptimal79,80, and therefore it is unclear as to 612 

whether this suboptimal decision-making mechanism should be seen as a drawback if the goal 613 

is to model human decision-making. 614 

 615 

Another limitation of RTNet is that each sweep of the feedforward path is independent of the 616 

previous states, whereas the current state in the human brain is influenced by its previous 617 

states67. To address this limitation, the sampling process in RTNet can be modified such that the 618 

current state of the network depends on the previous states. For example, during testing, the 619 

connection weight at a specific moment can be made a function of its previous values, which 620 

would make the sequential samples dependent on each other. Additional studies are needed to 621 

investigate the effect of such state dependence on model performance. 622 

 623 

Conclusion 624 

We developed a new neural network, RTNet, which exhibits the basic features of human 625 

perceptual decision making and predicts human accuracy, RT, and confidence on an image-by-626 

image basis. The network provides a better model of human perceptual decisions than the 627 
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current state-of-the-art networks for generating response times. RTNet thus represents an 628 

important step in the use of neural networks as models of human decisions. 629 

630 
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Methods 631 

All subjects signed informed consent and were compensated for their participation. The 632 

protocol was approved by the Georgia Institute of Technology Institutional Review Board, 633 

protocol H15308. All methods were carried out in accordance with relevant guidelines and 634 

regulations.  635 

 636 

Behavioral experiment 637 

Pre-registration 638 

This study’s sample size, experiment design, included variables, hypothesis, and planned 639 

analyses were pre-registered on Open Science Framework (https://osf.io/kmraq) prior to any 640 

data being collected.  641 

 642 

Subjects 643 

Sixty-four subjects (31 female, age=18-32) with normal or corrected to normal vision were 644 

recruited. We had pre-registered the collection of only 40 subjects, but due to less time 645 

restrictions than we had anticipated, and to further increase the statistical power, we collected 646 

data from more subjects.  647 

 648 

Stimulus, task, and procedure 649 

Subjects performed a digit discrimination task where they reported their perceived digit 650 

followed by rating their decision confidence. Each trial began with subjects fixating on a small 651 

white cross for 500-1000 ms, followed by a presentation of the stimulus for 300 ms (Error! 652 
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Reference source not found.). The stimulus was a digit between 1 and 8 (the digits 0 and 9 653 

were excluded) superimposed on a noisy background. Subjects’ task was to report the 654 

perceived digit using a computer keyboard by placing four fingers of their left hand on numbers 655 

1-4 and placing four fingers of their right hand on numbers 5-8. This setup allowed subjects to 656 

respond without looking at the keyboard, thus providing less noisy response times. Following 657 

their categorization response, subjects reported their decision confidence on a 4-point scale 658 

(where 1 corresponds to the lowest confidence and 4 corresponds to the highest confidence). 659 

There was no deadline on the response or confidence rating.  660 

 661 

The experiment included manipulations of speed-accuracy trade off and task difficulty. Speed-662 

accuracy trade off was manipulated by asking subjects to emphasize either the speed or 663 

accuracy of their responses. To facilitate proper responding, we organized the experiment into 664 

alternating blocks of speed and accuracy focus. Task difficulty was manipulated by adding 665 

different levels of uniform noise to the stimuli. Specifically, “easy” stimuli included average 666 

uniform noise of 0.25 (range = 0-0.5), whereas “difficult” stimuli included average uniform 667 

noise of 0.4 (range = 0-0.8). To add the noise, the pixel values were first transformed to be 668 

between 0 and 1 and random numbers drawn from the corresponding noise distributions were 669 

added separately to each pixel. We scaled the resulting image to be between 0 and 1 again, and 670 

finally converted the image to a uint8 format (scaled between 0 and 255). The noise levels were 671 

chosen based on the pilot testing to produce two different performance levels. Easy and 672 

difficult images were randomly interleaved. 673 

 674 
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The task stimuli were selected from a publicly available handwritten digits (MNIST) dataset32. 675 

This dataset contains 60,000 training images and 10,000 testing images. Since the training 676 

images were used to train the models in this study, we randomly selected images from MNIST 677 

test set to include in our experiment. This ensures that the selected images for the experiment 678 

are novel both for the human subjects and for the trained models. We randomly selected 480 679 

images for the experiment (120 for each condition). The MNIST dataset images are of size 28 x 680 

28 pixels which appeared overly small on the computer screens we were using. Therefore, 681 

before adding noise, the selected images were first resized to 84 x 84 pixels (using MATLAB’s 682 

imresize function), and they were padded with the background color of MNIST images to size 683 

256 x 256 pixels (visual angle = 6.06°).  684 

 685 

The experiment started with three blocks of training each containing 50 trials. The first block 686 

contained images from the MNIST dataset without any noise. This was done to familiarize the 687 

subjects with the experiment. The next two blocks were used to introduce the speed-accuracy 688 

trade off by asking subjects to focus on accuracy in the first block and on speed in the second. 689 

The noise level of the stimuli in these two training blocks was same as in the main experiment 690 

(i.e., 0.25 and 0.40 for the easy and difficult stimuli, respectively). During the whole training 691 

session, the experimenter was standing beside the subject quietly and was available to answer 692 

any questions. None of the images used in the training session was used in the main 693 

experiment.  694 

 695 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2024. ; https://doi.org/10.1101/2022.08.23.505015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Once the subject confirmed that he or she understands the task, the experimenter left the 696 

room and subjects completed the main experiment that consisted of 960 trials organized in 697 

four runs each containing four blocks of 60 trials. Each block consisted of a single speed-698 

accuracy trade off condition, and each run included exactly two “accuracy focus” and two 699 

“speed focus” conditions in a randomized order. At the beginning of each block, subjects were 700 

given the name of the condition for that block (“accuracy focus” or “speed focus”) and asked to 701 

adjust their responding policy accordingly. In each block, we pseudo-randomly interleaved trials 702 

from the two difficulty levels such that each was presented exactly 30 times. All 480 images 703 

were shown to subjects in first two runs and the procedure was repeated with a new random 704 

ordering of the stimuli in the last two runs. All images were same for all subjects, and each 705 

image was assigned only to one specific condition. 706 

 707 

Apparatus 708 

The experiment was designed in MATLAB 2020b environment using Psychtoolbox 381. The 709 

stimuli were presented on a 21.5-inch Dell P2217H monitor (1920 x 1080 pixel resolution, 60 Hz 710 

refresh rate). Subjects were seated 60 cm away from the screen and provided their responses 711 

using a keyboard.  712 

 713 

Behavioral analyses 714 

We followed the data analyses steps outlined in our preregistration. All analyses were 715 

performed in Python (version 3.10.11) using Google Colab (version 2.0). We first excluded 716 

subjects who did not follow sufficiently well the speed/accuracy instructions by not providing 717 
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faster average RT in the “speed focus” compared to the “accuracy focus” condition. This 718 

resulted in removing two subjects (out of 64). We preregistered the exclusion of subjects with 719 

floor or ceiling effects on accuracy but no subject met the criteria for exclusion. However, 720 

following our preregistration, we excluded two subjects because they showed ceiling effects for 721 

confidence. Note that our preregistration document called for excluding subjects who provided 722 

average confidence of more than 3.7 but because this would have resulted in excluding a much 723 

larger number of subjects than we had anticipated, we only excluded subjects whose average 724 

confidence was above 3.85. Therefore, 60 subjects were used in all subsequent analyses. 725 

 726 

We additionally excluded individual trials with extreme RT values using preregistered criteria 727 

based on Tukey’s interquartile criterion. Specifically, for each subject, we computed the 25th 728 

and 75th percentiles of the RT distributions in each condition. We then removed all RTs with 729 

values more than 1.5 times the interquartile range such that if 𝑄1 is the RT value at the 25th 730 

percentile and 𝑄3 is the RT value at the 75th percentile, we removed values smaller than 𝑄1 −731 

1.5 × (𝑄3 − 𝑄1) and larger than 𝑄3 + 1.5 × (𝑄3 − 𝑄1). This step resulted in removing an 732 

average of 5.46% of total trials (range of 1.35-8.22% for each subject). 733 

 734 

Once these preprocessing steps were completed, we computed average accuracy, RT, 735 

confidence, and skewness of the RT distributions separately for each condition. The skewness 736 

was computed separately for each individual subject’s RT distribution as 
∑ (%!&')"#
!$%
()&*)+"

 where 𝜇 and 737 

𝜎 are the mean and standard deviation of the sample distribution, respectively. We also 738 

computed average RT and average confidence scores for error and correct trials across subjects 739 
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to examine how RT and confidence change as a function of response accuracy. Finally, for 740 

visualization purposes, we plotted RT distributions for one subject in Figure 4C. The RT 741 

distributions were generated using kernel density estimation (KDE), which approximates the 742 

underlying probability density function that generated the data by smoothing the observations 743 

with a Gaussian kernel82. The KDE plots were created using Seaborn’s KDE plot with a 744 

smoothing bandwidth of 1.283. 745 

 746 

RTNet 747 

Network architecture 748 

The RTNet model consists of two main modules ( 749 

A). The first module is a Bayesian neural network (BNN) which makes predictions regarding an 750 

image. BNNs are a type of artificial neural network built by introducing stochastic components 751 

into the network to simulate multiple possible models with their associated probability 752 

distribution84. The main difference between a BNN and standard feedforward neural network is 753 

that in BNN the weights are distributions instead of point estimates. A random sample from 754 

these distributions results in a unique feedforward network. This random sampling enables 755 

variability in the output of the network, which in turn can be fed into an accumulation process 756 

that drives a decision. The second module of our model consists of exactly such accumulation of 757 

the evidence produced on each step by the first module. At each processing step, the output of 758 

the network (in the form of activations of the final layer) was accumulated towards a pre-759 

defined threshold. Evidence for each choice option was accumulated separately from the rest, 760 

similar to a race model24.  761 
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 762 

The accumulation process continues until the total amount of accumulated evidence for one of 763 

the alternatives reaches a predefined threshold. The alternative for which the threshold was 764 

reached then becomes the response of the model. The response time produced by RTNet is 765 

simply the number of samples used to reach the decision threshold. The confidence of the 766 

model was obtained by taking the difference in evidence scores between the chosen response 767 

and the second-best choice.  768 

 769 

Implementation 770 

We implemented RTNet using the AlexNet architecture, which has eight layers with learnable 771 

parameters33. The AlexNet architecture consists of five convolutional layers with a combination 772 

of max pooling followed by three fully connected layers. We chose to implement RTNet within a 773 

relatively large-scale CNN such as AlexNet (rather than a shallow network which may have also 774 

been able to learn to classify the MNIST dataset) because our goal was to eventually compare 775 

our model to others such as CNet and MSDNet, which are generally based on larger CNNs and 776 

work on multiple existing datasets. Additionally, difficulties associated with training Bayesian 777 

neural networks limited us to relatively small network structures (rather than VGG or ResNet 778 

models). We found the AlexNet architecture to be a reasonable compromise in this trade off 779 

between model complexity and ease of training BNNs. RTNet was implemented in PyTorch85  780 

while Bayesian networks were implemented using Pyro86, which is a probabilistic programming 781 

library built on PyTorch85. 782 

 783 
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Training the BNN module of RTNet 784 

BNNs are probabilistic models that incorporate uncertainty into their weights and biases, 785 

rather than treating them as point estimates. Consider a training dataset, 𝑥, for which we 786 

must predict the class labels, 𝑦. In traditional neural networks, the predicted class label, 787 

𝑦4, is a function of network’s weights, 𝑤, and these weights are tuned in order to optimize 788 

the correspondence between the predicted (𝑦4) and true class labels (𝑦).	In BNNs, 789 

however, weights are modelled as probability distributions instead of point estimates. 790 

Following the rules of Bayesian inference, one can infer the posterior distribution of 791 

these weights (𝑤) using the formula 𝑝(𝑤|𝑥) = !(,,%)
!(%)

. However, this computation is 792 

intractable for large networks since it involves computing the marginal likelihood of the 793 

data 𝑝(𝑥) across all possible configurations of weights. Therefore, computing this 794 

posterior distribution is typically done using a method of approximation called variational 795 

inference. A stand-in distribution, 𝑞(𝑤),	is specified to approximate the posterior and its 796 

parameters are tuned to maximize the similarity between the two distributions. The 797 

similarity between the distributions is quantified by the information theoretical measure 798 

called Kullback-Liebler (KL) divergence:  799 

 800 

𝐾𝐿(𝑞(𝑤)||𝑝(𝑤|𝑥) = 	𝐸.[log 𝑞(𝑤) − log 𝑝(𝑤, 𝑥)] + log 𝑝(𝑥)  (1) 801 

 802 

Although 𝐾𝐿(𝑞(𝑤)||𝑝(𝑤|𝑥),	cannot be directly computed since 𝑝(𝑥) is intractable, one 803 

can side-step this computation by defining a surrogate objective function called the 804 

evidence lower bound (ELBO) function as:  805 
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 806 

𝐸𝐿𝐵𝑂(𝑞) = 	𝐸.[log 𝑝(𝑤, 𝑥) − log 𝑞(𝑤)]          (2)         807 

 808 

where both 𝑝(𝑤, 𝑥) and 𝑞(𝑤) are tractable, and due to their negative relationship, 809 

maximizing 𝐸𝐿𝐵𝑂(𝑞) thus results in the minimization of 𝐾𝐿(𝑞(𝑤)||𝑝(𝑤|𝑥), allowing one 810 

to approximate the true posterior distribution of the network’s weights.  811 

 812 

We trained the network to achieve classification accuracy higher than 97% on the MNIST test 813 

set. We trained the BNN module of RTNet for a total of 15 epochs with a batch size of 500. We 814 

used the Evidence lower bound (ELBO) loss function87 and Adam88 for optimization with a 815 

learning rate of 0.001, and the default values for weight decay and epsilon	(weight decay = 0; 𝜖 816 

= 10&/). To ensure that each BNN performs greater than 97% on MNIST test set, we followed a 817 

specific rule for each model instance. When testing an image with the BNN module of RTNet, 818 

we sampled 10 times from the posterior distributions learned during the training and thus 819 

obtained 10 unique responses for each image. The response with highest frequency among 10 820 

responses was chosen as the final decision of the BNN module. Note that there were no RTs 821 

generated at this step since we only implemented the BNN module of RTNet and generated a 822 

set of responses that would allow us to evaluate how well the BNN’s posterior distributions had 823 

been trained. These trained BNN models were later used to generate variable activations for 824 

the evidence accumulation process that resulted in RTs.  825 

 826 
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We resized the MNIST images to the standard input size to AlexNet model architecture (227 x 827 

227 pixels). We also normalized the input images to have a mean of 0.1307 and standard 828 

deviation of 0.3081, which is a standard procedure when using AlexNet for classification of the 829 

ImageNet dataset89. We trained sixty instances of RTNet using the above procedure but with 830 

different weight initializations for each network instance. We used a different combination of 831 

mean and standard deviation (SD) values for each of the 60 instances to maximize differences 832 

in network initializations. Specifically, different network instances of RTNet were initialized such 833 

that all means of the weights and biases were set to a value between 0.1 and 1.2 with 0.1 834 

increments, and all SDs of weights and biases were set to a value ranging from 1 to 5 with 835 

increments of 1 (for a total of 12 × 5 = 60 instances). 836 

 837 

Generating RTNet’s responses from the evidence accumulation module 838 

Sequential sampling models belong to a class of cognitive models which assume that observers 839 

make decisions by repeated sampling and accumulation of noisy evidence until a threshold is 840 

reached 1,2. In these models, RT reflects the number of sampling steps required to reach the 841 

threshold. RTNet utilizes this evidence accumulation mechanism to generate RTs. In order to 842 

generate noisy evidence, we used the probability distribution of weights in the BNNs to 843 

randomly sample one unique feedforward network at each time step. At each time step, 𝑡, the 844 

presented image results in a feedforward sweep of the sampled network and generates a set of 845 

activations (𝑎0) where 𝑎0 = J𝑎*,0 , 𝑎",0 …𝑎/,0L are the values obtained in the last layer after the 846 

softmax function has been applied. Each unit in the output layer corresponds to the activation 847 

for one of the eight choice options and for each choice, the evidence obtained at the current 848 
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step is added to the sum of evidence collected from all previous steps. Thus, a running total of 849 

accumulated evidence is maintained such that 𝑎1 = ∑ 𝑎1,02
03*	 	where 𝑛 refers to the total 850 

number of steps over which evidence has been accumulate and 𝑖 ∈ [1,8]	refers to the response 851 

option. When the total evidence in favor of any of the options exceeds a pre-defined threshold 852 

𝑘, the corresponding response option is chosen such that the network’s response,	𝑟 = 853 

argmax(𝑎*, 𝑎"…𝑎/) at the time step when max	(𝑎*, 𝑎"…𝑎/) ≥ 𝑘.  854 

 855 

What are the properties of evidence accumulation? Everything else being equal, decisions that 856 

are based on fewer evidence samples are more likely to be influenced by chance fluctuations in 857 

evidence that favor incorrect decisions. On the other hand, when the model is allowed to 858 

accumulate evidence over a longer period, these such random variations are more likely to 859 

cancel out, thus increasing the likelihood of a correct response. In turn, because a longer period 860 

of accumulation leads, on average, to stronger evidence, this directly results in higher 861 

confidence. 862 

 863 

CNet 864 

Network architecture 865 

The parallel cascaded network (CNet) builds upon the architecture of residual networks 866 

(ResNet) by utilizing skip connections to introduce propagation delays during input processing 867 

(Figure 1B). At each processing step, all units in all layers are updated parallelly. However, due 868 

to the propagation delays introduced by each residual block, simpler perceptual features get 869 

transmitted faster across blocks. For instance, at the first time-step, only the first residual block 870 
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receives input and model predictions at this step are based only on the computations of the 871 

first residual block. At the second time step, all the other layers receive partial input from the 872 

first block. Even though the model prediction at this point will be based on computations from 873 

all blocks, only the first block will have received complete input and achieved stable output. The 874 

other blocks will only contain partial updates from the lower block and therefore their output 875 

will not be stable. In general, a residual block, 𝑡, takes (𝑡 − 1)	time steps to receive complete 876 

and stable input. At any point during processing, the network can generate a prediction since all 877 

the residual blocks contribute to the computations. However, if the time step (𝑡) is less than the 878 

number of residual blocks, the responses will be based on unstable representations in the 879 

higher blocks. Due to this architecture, the network’s responses are subject to a trade off 880 

between speed and complexity of processing. Decision time is indicated by the processing step 881 

at which the decision was made, and decision confidence is derived from the softmax value in 882 

the final layer, at the time of decision. The softmax values are obtained by transforming the 883 

activation scores (𝑧) of all nodes in the output layer according to the function: 5&!
∑ 5&'(
'

, where 884 

𝑖	refers to the node whose output is being transformed and 𝑛 refers to the number of nodes in 885 

the output layer (which is equal to the number of classes).  886 

 887 

Implementation 888 

CNet was implemented using the architecture of ResNet-189 since it requires networks with skip 889 

connections. ResNet-18 architecture consists of 17 convolutional layers, where 16 of these 890 

layers are embedded within eight residual blocks (skip connections), followed by a final fully 891 
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connected layer with softmax activation to generate the decision. The network was 892 

implemented in PyTorch85.  893 

 894 

Network training 895 

We trained CNet using the same procedure that was used by the original authors since their 896 

training protocol was found yielded the best network behavior and performance. The network 897 

achieved an accuracy > 97% with 12 training epochs and a batch size of 500. The models were 898 

trained on a temporal-difference (TD) learning procedure along with cross-entropy loss. In the 899 

original publication, TD learning was found to perform better than softmax-based cross-entropy 900 

loss in encouraging correct responses to emerge faster. The loss function was optimized using 901 

an initial learning rate of 0.01, weight decay of 0.005 and a momentum of 0.9. The images were 902 

normalized to a mean of 0.1307 and standard deviation of 0.3081. We trained sixty instances of 903 

CNet using the above procedure but using a different random seed for initializing the network’s 904 

weights to allow individual differences in network’s learning.   905 

 906 

BLNet 907 

Network architecture 908 

BLNet is a recurrent convolutional neural network (RCNN) consisting of a standard feedforward 909 

CNN with recurrent connections that connect each layer to itself10 (Figure 1C). A final readout 910 

layer computes the network’s output at each time step via a softmax function. Time steps are 911 

defined as the number of feedforward sweeps of the network that have occurred until the time 912 

at which the readout is evaluated. At each time step, a given layer receives input from two 913 
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sources – the feedforward input from the previous convolutional layer and recurrent input from 914 

itself in the form of activations from the previous time step. The readout is evaluated at each 915 

time step such that if it exceeds a pre-defined threshold, the network generates a response. 916 

The response corresponds to the choice that generates the highest softmax value and the time 917 

step at which the response was made indicates the decision time. The softmax value associated 918 

with the choice at the time of decision indicates decision confidence. The network’s ability to 919 

trade off speed and accuracy comes from the fact that higher softmax thresholds require more 920 

feedforward and recurrent computations, which effectively results in a deeper network being 921 

unrolled across time which, in turn, leads to both higher RT and higher accuracy.  922 

 923 

Implementation 924 

BLNet was implemented as a custom-built network consisting of seven convolutional layers of 925 

increasing size and a final readout layer, as defined by the original authors10. Each layer consists 926 

of two sets of weights – the bottom up weights that transform the input from the previous 927 

layer and the lateral weights that act on recurrent input that the layer receives from itself. The 928 

readout layer is a fully connected layer with softmax activation to generate the decision. The 929 

network was unrolled across time for eight time steps. The network was implemented using 930 

TensorFlow. 931 

 932 

Network training 933 

We were able to achieve test accuracy > 97% with only three epochs with a batch size of 32 and 934 

a sparse categorical cross-entropy loss function90. Adam88 was used for optimization with a 935 
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learning rate of 0.001. For testing, the response at the final time-step was taken as the 936 

network’s decision. We resized the MNIST images to the standard input size of 128x128 defined 937 

for the network. We trained sixty instances of BLNet using the above procedure but using a 938 

different random seed for initializing the network’s weights to allow individual differences in 939 

network’s learning.   940 

 941 

Testing 942 

Unlike the other networks, BLNet exhibited overall accuracy that was about 5% greater for the 943 

120 images used in the easy, speed-focus condition compared to the 120 images used in the 944 

easy, accuracy-focus condition. This resulted in a lack of the expected accuracy difference 945 

between these two conditions when BLNet was run on all images (Supplementary Figure 5). On 946 

further investigation, we found that for each condition, the image set contained a small subset 947 

of images for which the network showed chance-level performance (12.5%). The image set for 948 

the easy, accuracy-focus condition contained more such images than the image set for the easy, 949 

speed-focus condition, explaining the observed accuracy differences. Therefore, when testing 950 

BLNet on the effects reported in Figure 4, we excluded this subset of images for all conditions 951 

(10 out of 480 images). This exclusion led to BLNet showing the expected speed-accuracy trade 952 

off (Figure 4A,B). 953 

 954 

MSDNet 955 

Network architecture 956 
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MSDNet has an architecture similar to a standard feedforward neural network but with early-957 

exit classifiers after each of its layers ( 958 

D). At each output layer, the evidence for each choice is computed using a softmax function and 959 

if the evidence for any alternative exceeds a predefined value the network stops processing and 960 

immediately produces a response. The layer at which the response was made is indicative of 961 

the decision time, and the softmax value at that layer is indicative of decision confidence90,91.  962 

 963 

Implementation 964 

We implemented MSDNet using the AlexNet architecture, which has eight layers with learnable 965 

parameters33. The AlexNet architecture consists of five convolutional layers with a combination 966 

of max pooling followed by three fully connected layers. In addition to the standard AlexNet 967 

structure, we incorporated additional readout layers located right after each layer of 968 

processing. The feature map size of all these readout layers were set to the number of classes. 969 

The network was implemented in PyTorch85. 970 

 971 

Network training 972 

Due to MSDNet’s deterministic nature, only three epochs with a batch size of 500, were enough 973 

to achieve test accuracy of more than 97% with the same batch size and a weighted cumulative 974 

loss function90. Adam88 was used for optimization with a learning rate of 0.001. For testing, the 975 

response of the last output layer was taken as the network’s decision. If a network did not 976 

achieve accuracy greater than 97%, we started the training over with the same initial values. 977 

Since MSDNet is also built on the architecture of AlexNet, we resized the MNIST images to the 978 
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standard input size for AlexNet and normalized the images to have a mean of 0.1307 and 979 

standard deviation of 0.3081. To make the initializations of MSDNet as similar as possible to the 980 

initializations of RTNet, for each RTNet instance, we set the initial values for the weights and 981 

biases of the MSDNet instance by randomly sampling from the Gaussian distribution used in the 982 

corresponding RTNet initialization.  983 

 984 

Choosing parameters that allow the models to mimic human accuracy 985 

Because the goal of our study was to examine whether the models exhibit the signatures of 986 

human perceptual decision making, we matched the accuracy of the models across the four 987 

experimental conditions to the average accuracy in the human data. For all models, this was 988 

achieved by adjusting the noise level in the images (separately for the “easy” and “difficult” 989 

images) and the threshold parameter (separately for the speed and accuracy conditions). Lower 990 

noise levels lead to higher accuracy, whereas higher threshold parameters lead to longer 991 

processing and response times (and also contribute to higher accuracy levels).  992 

 993 

Parameter values were adjusted using a coarse search followed by a fine search. In the coarse 994 

search for RTNet, we varied the amplitude of uniform noise from 1 to 10 with increments of 1 995 

(where the noise amplitude refers to the length of the interval over which the noise values are 996 

generated), and the threshold value from 2 to 12 with increments of 2. The results were closest 997 

to the human accuracy levels when the noise was in the range 2-3 for easy images and 4-5 for 998 

difficult images, and the threshold was set to 2-4 for the speed focus condition and 6-8 for the 999 

accuracy focus condition. We then conducted a fine search near those values by changing the 1000 
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noise level from 2 to 5 with 0.1 increments and changing the threshold values from 2 to 8 with 1001 

0.5 increments. The closest match to human accuracy was achieved for noise levels of 2.1 and 1002 

4.1 for easy and difficult images, respectively, and a threshold value of 3 for the speed 1003 

condition and 6 for the accuracy condition. With these threshold and noise parameters, the 1004 

evidence accumulation process in RTNet executed 6.5 sampling steps on average, although the 1005 

distributions were wide such that the actual steps varied from 1 to 35. However, the number of 1006 

processing steps depended on the experimental manipulation with the number of steps 1007 

increasing for both difficult images and with stress on accuracy over speed (the average 1008 

number of steps observed for each condition correspond to the height of the bars for RTNet in 1009 

Figure 4B). 1010 

 1011 

We used a similar procedure to tune the parameters of CNet, BLNet and MSDNet. Note that the 1012 

threshold value for CNet is the softmax evidence at the output layer. The coarse search was 1013 

performed using threshold values between 0.5 and 0.9 with increments of 0.04. The results 1014 

were closest to the human accuracy levels when the threshold was in range 0.79-0.83 for the 1015 

speed focus condition, and 0.86-0.9 for the accuracy focus condition. We then performed a fine 1016 

search in these ranges by incrementing the threshold by steps of 0.01. The closest match to 1017 

human accuracy was achieved for a threshold value of 0.83 for the speed condition and 0.9 for 1018 

the accuracy condition. For noise levels, the best match to human accuracy was obtained when 1019 

the noise levels were set to 1.42 and 1.83 for easy and difficult images, respectively.  1020 

 1021 
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For BLNet, like CNet, the threshold value is the softmax evidence at the output layer.  The 1022 

coarse search was performed using threshold values between 0.1 and 0.95 with increments of 1023 

0.2. The results were closest to the human accuracy levels when the threshold was in range 0.4-1024 

0.5 for the speed focus condition, and 0.9-0.95 for the accuracy focus condition. We then 1025 

performed a fine search in these ranges by incrementing the threshold by steps of 0.05. The 1026 

closest match to human accuracy was achieved for a threshold value of 0.4 for the speed 1027 

condition and 0.95 for the accuracy condition. For noise levels, the best match to human 1028 

accuracy was obtained when the noise levels were set to 0.55 and 1.2 for easy and difficult 1029 

images, respectively.  1030 

 1031 

The threshold value for MSDNet is the softmax evidence at each early exit. The coarse search 1032 

was performed using the threshold values between 0.5 and 0.95 with increments of 0.05. The 1033 

results were closest to the human accuracy levels when the threshold was in range 0.55-0.65 1034 

for the speed focus condition, and 0.8-0.9 for the accuracy focus condition. We then performed 1035 

a fine search in these ranges by incrementing the threshold by steps of 0.01. The closest match 1036 

to human accuracy was achieved for a threshold value of 0.58 for the speed condition and 0.82 1037 

for the accuracy condition. For finding the optimal noise levels, the best match was obtained 1038 

when the noise levels were set to 1.9 and 3.0 for easy and difficult images, respectively.  1039 

 1040 

Although we tried to closely match each network’s accuracy with that of humans for each 1041 

condition, our ability to do this was limited by the fact that a given SAT threshold must predict 1042 

accuracies for both the easy and difficult conditions and a given noise level must predict 1043 
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accuracies for both the SAT conditions. Therefore, we obtained parameters estimates that 1044 

resulted in closely (but not exactly) matched accuracies. 1045 

 1046 
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 1066 
Figure Legends 1067 
 1068 
Figure 1. Model architectures. (A) RTNet architecture. Unlike standard CNNs, the connection 1069 
weights in RTNet are not fixed but chosen from a distribution. A stimulus is processed multiple 1070 
times by the network, each time using a different set of weights sampled randomly from a 1071 
Bayesian neural network. The evidence from each processing step is accumulated and a 1072 
decision is made when the evidence for one of the choices reaches a threshold. This 1073 
architecture results in both stochastic decisions and variable RT. (B) Parallel cascaded network 1074 
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(CNet) architecture9. CNet introduce propagation delays between residual blocks (each of 1075 
which consist of two convolutional layers). At each time step, all residual blocks parallelly  1076 
receive inputs from lower blocks but due to propagation delays, earlier blocks achieve stable 1077 
activations faster, whereas the later blocks require multiple processing steps to receive 1078 
complete input and achieve stable activations. The network can generate a decision via the 1079 
readout layer at any time step, although if the time step is less than the number of residual 1080 
blocks, the decision will be based on partial input in later blocks. (C) BLNet architecture10. BLNet 1081 
is a recurrent convolutional neural network (RCNN) with bottom-up and lateral recurrent 1082 
connections. Time steps are defined in terms of the number of feedforward sweeps of the 1083 
network. At each time-step, a layer receives feedforward input from the previous layer as well 1084 
as recurrent input from its own activations at the previous time-step. The readout can be 1085 
evaluated at each time-step to generate a response if it exceeds the threshold. The network’s 1086 
can trade off speed and accuracy as higher thresholds require more feedforward and recurrent 1087 
computations, effectively resulting in a deeper network being unrolled across time. (D) Multi-1088 
scale dense network (MSDNet) architecture13. In this network, each hidden layer features its 1089 
own classifier allowing MSDNet to make a separate decision after the processing in each layer is 1090 
completed. This allows the network to stop processing an image early if that image can already 1091 
be decoded from earlier layers of the network, thus resulting in different RTs for different 1092 
images. 1093 
 1094 
 1095 
Figure 2. Experiment task. (A) Trial structure. Each trial began with a fixation cross presented 1096 
for 500 to 1000 ms, followed by an image of a hand-written digit from the MNIST dataset 1097 
embedded in noise and presented for 300 ms. Only the digits 1-8 were used. Subjects reported 1098 
their choice and confidence (on a 4-point scale) using separate, untimed button presses. Note 1099 
that the noisy stimulus subtended a visual angle of 6.06° and did not cover the entire screen. 1100 
(B) Experimental design. The experiment included four conditions such that subjects judged 1101 
easy (low noise) or difficult (high noise) images while emphasizing either speed or accuracy. 1102 
Each condition featured 120 unique images that were the same across all subjects (total of 480 1103 
unique images in the experiment). In addition, each image was presented twice to allow the 1104 
estimation of the stochasticity of human perceptual choices. Each subject thus completed a 1105 
total of 960 trials. The images within the first and second sets of presentation were shown in a 1106 
different random order. 1107 

 1108 
Figure 3. Decision stochasticity in humans and all networks. Stochasticity of decisions made by 1109 
(A) humans, (B) RTNet, (C) CNet (D) BLNet, and (E) MSDNet. Warm colors indicate that the same 1110 
response was given both times an image was presented (whether the response was correct or 1111 
incorrect), whereas cool colors indicate that different responses were given for the two image 1112 
presentations (whether or not any of them was correct). Humans and RTNet exhibit stochastic 1113 
decision-making with stochasticity increasing with task difficulty and speed stress. However, 1114 
CNet, BLNet and MSDNet in their standard versions are fully deterministic. In the legend, 1115 
"consistent (two correct)” refers to instances when the correct responses was given for both 1116 
presentations of a given image, “consistent (zero correct)” refers to instances when the same 1117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2024. ; https://doi.org/10.1101/2022.08.23.505015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

incorrect choice was made both times, “inconsistent (one correct)” refers to instances when 1118 
only one of the choices was correct, “inconsistent (zero correct)” refers to instances where 1119 
different incorrect choices were made each time.  1120 
 1121 
 1122 
Figure 4. Behavioral effects shown by human subjects and the models. (A) Accuracy for 1123 
humans (n = 60) decreases when response speed is emphasized as well as for more difficult 1124 
decisions. Both effects are exhibited by all the networks (n = 60 model instances). (B) RT for 1125 
humans becomes shorter when response speed is emphasized, as well as for easier decisions. 1126 
Both effects are also exhibited robustly by RTNet and BLNet. However, while both CNet and 1127 
MSDNet produced a robust effect for the speed manipulation, they exhibited much smaller 1128 
effects for the difficulty manipulation. RT for humans is measured in seconds and RT for the 1129 
networks is measured in the number of steps over which evidence is accumulated (for RTNet), 1130 
propagation steps (for CNet), feedforwards sweeps (for BLNet) and number of layers (for 1131 
MSDNet). (C) RT distributions for a representative subject/model. (D) The skewness of RT 1132 
distributions change across conditions. For humans and RTNet, the skewness of the RT 1133 
distributions was higher for easier tasks and for accuracy focus. However, CNet, BLNet, and 1134 
MSDNet showed clear deviations from the human pattern of results. (E) For humans, RTNet, 1135 
CNet and BLNet, two-sided paired t-tests showed that error trials were associated with higher 1136 
RT than correct trials. However, MSDNet showed the opposite pattern such that correct trials 1137 
were associated with longer processing time. (F) Confidence for correct trials was higher than 1138 
confidence for error trials for humans and all networks. For all panels, dots represent individual 1139 
subjects; error bars show SEM. The p-values are derived from two-sided Wilcoxon’s signed rank 1140 
tests (for mean RT comparisons) and two-sided paired t-tests (for all other measures).  1141 
 1142 
 1143 
Figure 5. Image-by-image correlation between human data and each model across all 1144 
experimental conditions for individual subjects. Correlation between data from individual 1145 
human subjects (n = 60) and the group average, and correlations between data from individual 1146 
subjects and the average of all 60 instances for RTNet, CNet, BLNet, and MSDNet. The 1147 
correlations are computed separately for accuracy, RT, and confidence across all conditions. 1148 
Critically, the correlation is stronger for RTNet than CNet, BLNet or MSDNet for each measure. 1149 
The subject-to-group correlation provides an estimate of the noise ceiling for the network 1150 
correlations. Dots represent individual subjects; error bars show SEM. The p-values are derived 1151 
from two-sided paired t-tests. 1152 
 1153 
 1154 
 1155 
Figure 6. Image-by-image correlation between human data and each network within each 1156 
experimental condition. Correlation between data from individual human subjects (n = 60) and 1157 
the group average, as well as the average of all 60 instances for RTNet, CNet, BLNet, and 1158 
MSDNet. The correlations are computed separately for accuracy, RT, and confidence within 1159 
each experimental condition: A) speed focus; easy, B) speed focus; difficult, C) accuracy focus; 1160 
easy, D) accuracy focus; difficult. The correlation is significantly stronger for RTNet compared to 1161 
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CNet (8/12 comparisons), BLNet (7/12 comparisons), and MSDNet (7/12 comparisons). RTNet 1162 
never exhibits significantly weaker correlations than CNet, BLNet, or MSDNet. For all panels, 1163 
dots represent individual subjects; error bars show SEM. The p-values are derived from two-1164 
sided paired t-tests. 1165 
 1166 
 1167 
Figure 7. Humans who are more similar to the group average are also more similar to each 1168 
model. (A) We observed a strong positive correlation between the subject-to-group and 1169 
subject-to-RTNet similarity values for accuracy, RT, and confidence. This finding indicates that 1170 
individual subjects whose behavior was more similar to the group average on per image basis 1171 
were also more similar to the predictions made by RTNet. (B-D) Similar results were also 1172 
observed for CNet, BLNet (except for accuracy correlations), and MSDNet, although these 1173 
correlations tended to be lower than for RTNet. Dots represent individual subjects; lines depict 1174 
best-fit regressions; shaded areas depict 95% confidence intervals around the regression 1175 
estimate.  1176 
 1177 
 1178 
Figure 8. Comparison between individual subjects and the models in predicting the group 1179 
data. RTNet significantly outperformed individual human subjects (n = 60) in predicting group 1180 
accuracy, RT, and confidence. On the other hand, CNet, BLNet and MSDNet were worse than 1181 
individual humans in predicting accuracy, and CNet and MSDNet were worse in predicting RT. 1182 
We note that the effect sizes are very small for RTNet’s predictions of accuracy and MSDNet’s 1183 
predictions of RT. However, the effect was sufficiently consistent across subjects to make these 1184 
results statistically significant (RTNet outperformed 44/60 subjects in predicting accuracy and 1185 
MSDNet did worse than 43/60 subjects in predicting RT). For all panels, dots represent 1186 
individual subjects; error bars show SEM. The p-values are derived from two-sided one-sample 1187 
t-tests. 1188 
 1189 
 1190 
 1191 
 1192 

1193 
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A)
Accuracy RT Confidence

B)

D)

Subjects more similar to the group are more similar to RTNet

Accuracy RT Confidence

Subjects more similar to the group are more similar to CNet

Accuracy RT Confidence

Subjects more similar to the group are more similar to MSDNet

C)
Accuracy RT Confidence

Subjects more similar to the group are more similar to BLNet
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p < 0.001

p < 0.001
p < 0.001

p < 0.001p < 0.001

p < 0.001 p < 0.001

Accuracy RT Confidence

p < 0.001p < 0.001
p = 0.719

p < 0.001
p < 0.001
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