

1 **RTNet neural network exhibits the signatures of human perceptual decision making**

2 Farshad Rafiei*, Medha Shekhar* & Dobromir Rahnev

3 School of Psychology, Georgia Institute of Technology, Atlanta, GA

4

5 **Keywords:** Deep neural networks, reaction time, perceptual decision making, sequential
6 sampling, confidence

7

8

9 **Correspondence**

10 Farshad Rafiei

11 Georgia Institute of Technology

12 654 Cherry Str. NW

13 Atlanta, GA 30332

14 E-mail: farshadrafiei3@gmail.com

15

16 **Abstract**

17 Convolutional neural networks show promise as models of biological vision. However, their
18 decision behavior, including the facts that they are deterministic and use equal number of
19 computations for easy and difficult stimuli, differs markedly from human decision-making, thus
20 limiting their applicability as models of human perceptual behavior. Here we develop a new
21 neural network, RTNet, that generates stochastic decisions and human-like response time (RT)
22 distributions. We further performed comprehensive tests that showed RTNet reproduces all
23 foundational features of human accuracy, RT, and confidence and does so better than all
24 current alternatives. To test RTNet's ability to predict human behavior on novel images, we
25 collected accuracy, RT, and confidence data from 60 human subjects performing a digit
26 discrimination task. We found that the accuracy, RT, and confidence produced by RTNet for
27 individual novel images correlated with the same quantities produced by human subjects.
28 Critically, human subjects who were more similar to the average human performance were also
29 found to be closer to RTNet's predictions, suggesting that RTNet successfully captured average
30 human behavior. Overall, RTNet is a promising model of human response times that exhibits
31 the critical signatures of perceptual decision making.

32
33

34 **Introduction**

35 Traditional cognitive models of perceptual decisions^{1–4} are able to account for the major
36 features of human perceptual decision making, but do not operate on the level of images.
37 Recently, convolutional neural networks (CNNs) have reached and sometimes exceeded
38 human-level performance for novel images^{5,6}. In addition, these networks naturally handle
39 multi-choice categorization tasks and are promising models of the processing related to object
40 recognition in the ventral visual stream of the human brain^{5,7,8}. However, traditional CNNs'
41 decision behavior differs markedly from human decision behavior, thus limiting their
42 applicability as models of human perceptual decision making. Specifically, unlike humans,
43 traditional CNNs are both deterministic (i.e., they always give the same response for a given
44 stimulus) and static (i.e., they are invariant in the amount of time spent on processing different
45 images and thus always produce the same response time).

46

47 Several lines of work have tried to build mechanisms into neural networks to make them
48 stochastic and dynamic^{9–13}. Early research on shallow multi-layer perceptron models was able
49 to create models that were both stochastic and dynamic. These models were able to explain
50 human behavior on simple cognitive tasks^{14–16}. However, these models are not image-
51 computable (i.e., they cannot handle complex input such as images). More recent work has
52 produced image-computable dynamic networks capable of generating response times (RTs) via
53 mechanisms that allow computational resources utilized for the decision to increase with time^{9–}
54 ¹¹, thus allowing responses to evolve through each processing step. However, although these
55 networks can mimic the speed-accuracy trade off (SAT) found in humans, they are deterministic

56 and their internal mechanisms are not well supported by existing models of human perception
57 and cognition. Finally, another class of models generates RTs using the biologically-inspired
58 mechanism of recurrent processing^{17–21}, which allows flexible modulation of a finite network's
59 computational power^{10,22}. Nevertheless, these networks are also deterministic and have not
60 been evaluated on the whole range of choice, RT, and confidence effects shown by humans.

61
62 Here we combine modern CNNs with traditional cognitive models to create a model that is
63 image-computable, stochastic, and dynamic, and can reproduce the critical features of
64 perceptual decision making for novel images. The model, which we call RTNet for its ability to
65 model human RTs, features a deep convolutional neural network with noisy weights and
66 processes a given image several times using a different random sample of these weights in each
67 processing step (

68 A). These weights are sampled from a Bayesian neural network (BNN) that estimates a posterior
69 distribution over the best network parameters learnt during training. By sampling from these
70 noisy weight distributions at each processing step, the network's units produce variable
71 responses to the same input that mimic the randomness of neural responses. After each
72 processing step, RTNet accumulates the output corresponding to each choice until one of the
73 choices reaches a predefined threshold. The model therefore has a strong conceptual
74 relationship to race models from the cognitive literature on decision-making, which postulate a
75 noisy accumulation process with separate accumulators for each choice^{23–25}. By combining the
76 image-computability of CNNs with traditional models of perception, we expect RTNet to be

77 applicable across a wide range of perceptual tasks as well as reproduce the basic features of
78 human perceptual decision making.
79 To assess a model's ability to make decisions similar to humans, one needs to test whether it
80 produces the foundational features of human decision-making²⁶. Human perceptual decision
81 making has been studied primarily in the context of 2-choice tasks using artificial stimuli such as
82 Gabor patches or random dot motion²⁷ (although notable exceptions exist where N-choice
83 tasks are used²⁸⁻³¹). Therefore, we first replicate the known decision-making signatures from 2-
84 choice tasks using an 8-choice task with meaningful images (hand-written digits taken from the
85 MNIST dataset³²). We manipulate 1) task difficulty by adding two different levels of noise to the
86 images, and 2) speed-accuracy trade off (SAT) by asking subjects to emphasize either the
87 accuracy or speed of their responses on different trials.

88

89 Critically, we test RTNet under the same conditions and with the same images seen by the
90 human subjects to explore the model's capability to produce behavior similar to human agents.
91 Beyond testing whether RTNet can reproduce the basic features of human perceptual decision
92 making, we also explore whether the accuracy, RT, and confidence produced by RTNet for
93 individual images predict the corresponding quantities for humans on the same images. Finally,
94 throughout the paper, we compare the behavior of RTNet to that of three other popular
95 dynamic CNNs. The first model is Parallel Cascaded Network⁹ (CNet; Figure 1B), which is
96 currently thought to be the best image-computable model that can mimic the SAT
97 characteristics of humans¹². The second is BLNet¹⁰, which belongs to a class of models that uses

98 recurrent processing and has been validated on a range of perceptual tasks involving
99 manipulations beyond SAT (Figure 1C). The third is Multi-Scale Dense Networks¹³ (MSDNet;
100 D), which implements one of the most common ways for generating RTs in image-computable
101 models. We find that RTNet's behavior mimics human perceptual decision making better than
102 all three of these CNNs.

103

104 **Results**

105 We collected data from 60 human subjects who performed a digit discrimination task (**Error!**
106 **Reference source not found.**A). The experiment was a 2 x 2 design with factors of task difficulty
107 (easy vs. difficult images) and speed pressure (speed vs. accuracy focus). Each condition
108 consisted of 120 unique images, and each subject made a decision regarding each image exactly
109 twice, which allowed us to determine the level of stochasticity in human behavior (**Error!**
110 **Reference source not found.**B). Overall, each subject completed 960 trials in total.

111
112 Having obtained these human data, we compared the human behavior to that of RTNet, CNet,
113 BLNet, and MSDNet. Both RTNet and MSDNet were implemented using the eight-layer AlexNet
114 architecture with five convolutional layers followed by three fully connected layers³³. CNet was
115 based on the architecture of ResNet18 since the implementation of this model relies on
116 residual blocks and skip connections. Finally, for BLNet, we used the original architecture
117 implemented by Spoerer et al.¹⁰, which consists of seven convolutional layers and a fully
118 connected readout layer. Given that humans and deep learning models are impacted differently
119 by stimulus noise^{34,35}, we adjusted the noise levels of the images seen by each network to
120 match their overall accuracy to the accuracy produced by the human subjects. In addition, to
121 allow the networks to reproduce the speed-accuracy trade off observed in the human data, we
122 adjusted the threshold value that triggers a decision for each CNN as to match the human
123 accuracy separately in the speed- and accuracy-focused conditions. To improve the
124 correspondence between the model predictions and the human data, we trained 60 instances

125 of each model (by only changing the random initialization before training began) and analyzed
126 the data produced by these 60 instances in equivalent manner to the 60 human subjects.

127

128 Signatures of human perceptual decision making

129 We examined six foundational signatures of human perceptual decision making that have
130 already been established in studies of 2-choice tasks: 1) Human decisions are stochastic,
131 meaning that the same stimulus can elicit different responses on different trials^{36,37}, 2)
132 increasing speed stress shortens RT but decreases accuracy (speed-accuracy trade off)^{26,38,39}, 3)
133 more difficult decisions lead to reduced accuracy and longer RT^{26,40,41}, 4) RT distributions are
134 right-skewed, and this skew increases with task difficulty²⁶, 5) RT is lower for correct than for
135 error trials⁴¹⁻⁴⁵, and 6) confidence is higher for correct than for error trials⁴⁶. For each of these
136 signatures, we confirmed that the signature also occurs for our 8-choice task with naturalistic
137 images, and then tested whether RTNet, CNet, BLNet and MSDNet exhibit the same signature.

138

139 *Stochasticity of human decisions*

140 A central feature of human behavior is that human decisions are stochastic such that the same
141 stimulus can elicit different responses on different trials^{36,37,47}. We quantified the level of
142 stochasticity in each condition by presenting each image twice. We first confirmed that our
143 estimates of human stochasticity were robust and reliable by showing that similar estimates are
144 obtained when analyzing the odd vs. even numbered subjects (Supplementary Figure 1). On
145 average across all conditions, 36% of all images received different responses on the two
146 presentations. A one-sided Wilcoxon signed-rank test showed that this observed frequency of

147 stochastic responses is indeed significantly greater than zero ($Z(59) = 32896$, $p < 0.001$, rank-
148 biserial correlation (effect size) = 1) (**Error! Reference source not found.A**). A repeated
149 measures ANOVA with factors stimulus difficulty (easy vs. difficult) and SAT (speed vs. accuracy
150 stress) revealed that stochasticity increased with both higher task difficulty ($F(1,63) = 871.869$,
151 $p < 0.001$, $\eta_p^2 = 0.933$) and higher speed pressure ($F(1,63) = 9.135$, $p = 0.004$, $\eta_p^2 = 0.127$).
152
153 Since RTNet uses a random sample of weights for each processing step, it naturally produces
154 stochastic decisions too. On average across all conditions, RTNet produced different responses
155 on the two image presentations on 20% of trials (One-sided Wilcoxon signed-rank test: $Z(59) =$
156 2892, $p < 0.001$, rank-biserial correlation (effect size) = 1; **Error! Reference source not found.B**).
157 This level of stochasticity was lower than for human subjects and stems from the fact that the
158 variability in the weights was fixed a priori by training a Bayesian neural network. However, it is
159 possible for RTNet to match the levels of stochasticity observed in humans by increasing the
160 variability of the network's weights. Indeed, we confirmed that the stochasticity of the
161 decisions made by RTNet can be robustly manipulated by changing the variability of its weight
162 distributions (Supplementary Figure 2). Further, the stochasticity in human decisions partially
163 stems from factors such as fluctuations in attention, arousal, or serial dependence^{36,37,47,48},
164 which we did not attempt to model. Because of these considerations, we did not try to match
165 RTNet to the exact level of human decision stochasticity observed in the data. Critically,
166 however, RTNet exhibited the same features such that stochasticity increased with higher task
167 difficulty ($F(1,59) = 120.124$, $p < 0.001$, $\eta_p^2 = 0.671$) and higher speed stress ($F(1,59) = 87.730$, p
168 < 0.001 , $\eta_p^2 = 0.598$).

169

170 On the other hand, for a fixed level of speed-accuracy trade off, CNet, BLNet and MSDNet are
171 fully deterministic and do not exhibit any decision stochasticity (**Error! Reference source not**
172 **found.C-E**). We note that it should be possible to add noise in the weights of these models to
173 induce stochastic decisions, but such noise would decrease their accuracy much more than it
174 affects RTNet given that only RTNet is able to average out the noise over repeated processing
175 steps. Because RTNet is the only model that incorporates a mechanism for generating
176 stochastic responses, these stochasticity analyses a priori favor RTNet over the other models.
177 However, the rest of our analyses compare the behavior and predictions of models across a
178 range of stimulus manipulations in which no model is a priori expected to be favored over the
179 others.

180

181 *Speed-accuracy trade off*

182 The ability to trade off speed and accuracy against each other is a hallmark of decision-making
183 across humans and many other animal species^{38,39}. The human data confirmed that increased
184 speed pressure led to lower accuracy ($F(1,59) = 4.274, p = 0.043, \eta_p^2 = 0.068$; **Error! Reference**
185 **source not found.A**) and shorter RTs ($F(1,59) = 119.29, p < 0.001, \eta_p^2 = 0.964$; **Error! Reference**
186 **source not found.B**). We also found a significant interaction between SAT and task difficulty for
187 accuracy such that the SAT effect was greater for easy images ($F(1,59) = 5.71, p = 0.020, \eta_p^2 =$
188 0.088). For RTs, however, we observed the opposite pattern where the SAT effect was
189 heightened for difficult images ($F(1,59) = 22.423, p < 0.001, \eta_p^2 = 0.275$). These results replicate
190 findings from a previous study examining the effects of SAT manipulations on accuracy and RT

191 as a function of stimulus contrast⁴⁹. Further, as shown before⁴⁹, these findings are also in line
192 with predictions of the drift diffusion model (DDM), which is currently the standard model for
193 explaining human RTs^{1,2}.

194

195 All models were able to replicate the speed-accuracy trade off observed in humans. Increased
196 speed pressure resulted in lower accuracy for RTNet ($F(1,59) = 9.683, p = 0.003, \eta_p^2 = 0.141$),
197 CNet ($F(1,59) = 50.025, p < 0.001, \eta_p^2 = 0.459$), BLNet ($F(1,59) = 11.611, p = 0.001, \eta_p^2 = 0.164$),
198 and MSDNet ($F(1,59) = 21.841, p < 0.001, \eta_p^2 = 0.270$). Increased speed pressure also led to
199 shorter RTs for RTNet ($F(1,59) = 3362.567, p < 0.001, \eta_p^2 = 0.983$), CNet ($F(1,59) = 695.878, p <$
200 $\eta_p^2 = 0.922$), BLNet ($F(1,59) = 607.093, p < 0.001, \eta_p^2 = 0.911$), and MSDNet ($F(1,59) =$
201 $584.081, p < 0.001, \eta_p^2 = 0.908$). We note that the SAT manipulation had a relatively small effect
202 on accuracy (1.04% for easy and 1.24% for difficult conditions for RTNet; the effects for the rest
203 of the networks were of similar magnitude; Figure 4A). However, despite the small effect size,
204 these effects were generally consistent across the 60 model instances (for RTNet, 54/60
205 instances showed the effect for easy images and 42/60 showed the effect for difficult images).

206

207 The SAT manipulation had a much stronger effect on RTs compared to accuracy, which may be
208 attributed to the fact that RTs are a more sensitive measure of performance. Further, the SAT
209 effect on RTs was much stronger for humans, RTNet and BLNet, compared to the other models.
210 The individual RT distributions show a clear separation between the speed and accuracy focus
211 conditions for humans, RTNet and BLNet but not for CNet and MSDNet (Figure 4C).
212 Nevertheless, these results indicate that speed-accuracy trade off is robustly observed even for

213 relatively complex task with naturalistic images, and that all models examined here exhibit this
214 foundational phenomenon.

215

216 *Difficult decisions lead to reduced accuracy and longer RT*

217 Another ubiquitous feature of decision-making is that more difficult stimuli lead to lower
218 accuracy and longer RT^{26,50}. Our human data robustly showed this effect with more difficult
219 stimuli leading to lower accuracy ($F(1,59) = 1558.500, p < 0.001, \eta_p^2 = 0.964$; **Error! Reference**
220 **source not found.A**) and longer RT ($F(1,59) = 411.154, p < 0.001, \eta_p^2 = 0.875$; **Error! Reference**
221 **source not found.B**). The same pattern was robustly observed for RTNet and BLNet, where
222 difficult stimuli led to lower accuracy (RTNet: $F(1,59) = 218.510, p < 0.001, \eta_p^2 = 0.787$; BLNet:
223 $F(1,59) = 200.543, p < 0.001, \eta_p^2 = 0.773$) but longer RT (RTNet: $F(1,59) = 233.452, p < 0.0001, \eta_p^2$
224 $= 0.798$; BLNet: $F(1,59) = 186.604, p < 0.001, \eta_p^2 = 0.760$). However, while CNet and MSDNet
225 also showed a very robust effect on accuracy (CNet: $F(1,59) = 1116.800, p < 0.001, \eta_p^2 = 0.950$;
226 MSDNet: $F(1,59) = 247.520, p < 0.001, \eta_p^2 = 0.808$), they exhibited a smaller effect for RT (CNet:
227 $F(1,59) = 11.070, p = 0.016, \eta_p^2 = 0.158$; MSDNet: $F(1,59) = 6.171, p = 0.002, \eta_p^2 = 0.095$). Indeed,
228 out of the 60 model instances, only 23 CNet instances and 36 MSDNet instances exhibited an RT
229 increase for more difficult stimuli, while this effect was present in 60/60 human subjects, 58/60
230 RTNet instances, and 59/60 BLNet instances. These results indicate that the effect of task
231 difficulty on accuracy is exhibited robustly in humans and all networks, but the effect of task
232 difficulty on RT is larger for humans, RTNet and BLNet compared to CNet and MSDNet (see
233 Discussion).

234

235 *Skewness of RT distributions*

236 For simple 2-choice decisions, human RT distributions are generally positively skewed and the
237 skewness changes as a function of task conditions^{2,26}. Our 8-choice task produced RT
238 distributions that closely resemble what is observed in standard 2-choice tasks (**Error!**
239 **Reference source not found.C**). Similar-looking RT distributions were produced by RTNet but
240 CNet and MSDNet produced RT distributions that, while still right-skewed, exhibited qualitative
241 differences in their shapes (**Error! Reference source not found.C**). BLNet, on the other hand,
242 produced RT distributions that were frequently bimodal and left-skewed.

243

244 We further assessed how the skewness of the RT distributions changed under different
245 conditions. In humans, we found higher skewness for accuracy compared to speed focus
246 ($F(1,59) = 32.837, p < 0.001, \eta_p^2 = 0.358$), as well as for easy compared to difficult stimuli
247 ($F(1,59) = 5.098, p = 0.028, \eta_p^2 = 0.080$; **Error! Reference source not found.D**). RTNet exhibited
248 the same pattern with skewness increasing with a focus on accuracy ($F(1,59) = 19.077, p <$
249 $0.001, \eta_p^2 = 0.244$) and with easier stimuli ($F(1,59) = 93.342, p < 0.001, \eta_p^2 = 0.613$). For CNet, we
250 found no difference in skewness of RT distributions between the SAT conditions ($F(1,59) =$
251 $0.428, p = 0.515, \eta_p^2 = 0.007$), but skewness increased for easy compared to difficult stimuli
252 ($F(1,59) = 8.612, p = 0.005, \eta_p^2 = 0.127$). BLNet showed the opposite pattern to CNet with
253 skewness increasing for the speed-focus condition ($F(1,59) = 39.219, p < 0.001, \eta_p^2 = 0.399$) and
254 failed to show difference in skewness between the easy and difficult stimuli ($F(1,59) = 3.517, p$
255 $= 0.066, \eta_p^2 = 0.056$). Finally, while MSDNet showed an increase in skewness with a focus on
256 accuracy ($F(1,59) = 64.866, p < 0.001, \eta_p^2 = 0.524$), it produced RT distributions that did not

257 significantly differ in skewness between the task difficulty conditions ($F(1,59) = 1.259, p = 0.266,$
258 $\eta_p^2 = 0.021$). Overall, RTNet produced RT distributions which reflected the observed patterns in
259 human data better than all other networks. It should be noted that CNet, BLNet, and MSDNet
260 can only produce distinct RTs that are less than or equal to their layer numbers or residual
261 blocks, which may affect their ability to reproduce human RT distributions unless a relatively
262 high number of layers is used. On the other hand, RTNet can go through arbitrary number of
263 samples regardless of the number of layers in its architecture.

264

265 *RT is faster for correct compared to error trials*

266 Another ubiquitous feature of human behavior in 2-choice tasks is that correct decisions are
267 typically accompanied by faster RTs than incorrect decisions^{41–45}. We replicated this effect in
268 our 8-choice task ($F(1,59) = 82.080, p < 0.001, \eta_p^2 = 0.582$; **Error! Reference source not found.**E).
269 The same difference between correct and error RTs also emerged for RTNet ($F(1,59) = 831.153,$
270 $p < 0.001, \eta_p^2 = 0.934$), CNet ($F(1,59) = 83.921, p < 0.001, \eta_p^2 = 0.587$), and BLNet ($F(1,59) =$
271 $286.157, p < 0.001, \eta_p^2 = 0.582$). However, MSDNet exhibited the opposite pattern such that RTs
272 were faster for error compared to correct trials ($F(1,59) = 65.696, p < 0.001, \eta_p^2 = 0.527$). This
273 behavior is due to the fact that errors produced by MSDNet come mostly from decisions made
274 in earlier layers. It may be possible to reverse this behavior by using a much more conservative
275 decision threshold in the early compared to the late layers of MSDNet, though the effectiveness
276 of this strategy and its effect on all other behavioral signatures examined here would need to
277 be tested. What is clear is that MSDNet in its current form makes a qualitatively wrong

278 prediction regarding the difference between correct and error RT, whereas RTNet, CNet and
279 BLNet naturally reproduce the empirical effect.

280

281 *Confidence is higher for correct than error trials*

282 Finally, a ubiquitous feature of confidence ratings is that they are higher for correct compared
283 to incorrect decisions^{46,51}. Our human data replicated this effect ($F(1,59) = 472.172, p < 0.001$,
284 $\eta_p^2 = 0.889$; **Error! Reference source not found.** F). The effect was also robustly exhibited by all
285 networks: RTNet ($F(1,59) = 966.796, p < 0.001, \eta_p^2 = 0.942$), CNet ($F(1,59) = 785.992, p < 0.001$,
286 $\eta_p^2 = 0.930$), BLNet ($F(1,59) = 374.031, p < 0.001, \eta_p^2 = 0.864$), and MSDNet ($F(1,59) = 131.923, p$
287 $< 0.001, \eta_p^2 = 0.691$). Therefore, humans and all networks robustly showed higher confidence
288 for correct trials compared to incorrect trials.

289

290 Model predictions of responses for individual images

291 The results above demonstrate that RTNet naturally reproduces all foundational features of
292 human decision-making. On the other hand, CNet, BLNet, and MSDNet fail to exhibit stochastic
293 decisions and skewness difference in RT distributions between the SAT/difficulty conditions,
294 and MSDNet further fails to account for lower RT for correct decisions. However, RTNet's ability
295 in those respects can easily be matched by traditional cognitive models that do not work on
296 image-level data^{24,42,52}. Therefore, a critical advantage of RTNet over traditional cognitive
297 models would be the ability to predict human behavior for individual, unseen images because
298 traditional models cannot do that. Here we tested specifically whether the accuracy, RT, and

299 confidence for unseen images produced by the networks predict the same quantities in
300 humans.

301

302 *Model predictions for individual subjects*

303 In a first set of analyses, we assessed the correlations between the accuracy, RT, and
304 confidence for each human subject and the corresponding quantities predicted by RTNet, CNet,
305 BLNet, and MSDNet across all four conditions (easy with speed stress, difficult with speed
306 stress, easy with accuracy stress, difficult with accuracy stress). We compared how well data
307 from individual human subjects could be predicted by each model as well as from the data from
308 the 59 remaining human subjects. This last quantity, which we call subject-to-group
309 relationship, provides an estimate of the noise ceiling (i.e., the performance that a true model
310 could achieve given inter-subject variability)⁵³.

311

312 We found that all models predicted individual human data much better than chance for
313 accuracy, RT, and confidence (two-sided one-sample t-tests, all p 's < 0.001, all Cohen's d >
314 1.20). The one exception was BLNet, which had a weak negative correlation with human image-
315 by-image accuracy (average r = -0.06, p = 0.002, Cohen's d = 0.410, 95% CI = [-0.09, -0.02]).
316 Critically, RTNet provided substantially better predictions than all other models (**Error!**
317 **Reference source not found.**). Specifically, two-sided paired t-tests showed that RTNet
318 produced better image-by-image predictions about accuracy (RTNet vs. CNet: $t(59) = 30.672$, p
319 < 0.001, Cohen's d = 4.747, 95% CI = [0.24, 0.27]; RTNet vs. BLNet: $t(59) = 20.842$, p < 0.001,
320 Cohen's d = 3.864, 95% CI = [0.37, 0.44]; RTNet vs. MSDNet: $t(59) = 30.672$, p < 0.001, Cohen's d

321 = 4.747, 95% CI = [0.24, 0.27]), RT (RTNet vs. CNet: $t(59) = 18.638, p < 0.001$, Cohen's $d = 2.370$,
322 95% CI = [0.29, 0.35]; RTNet vs. BLNet: $t(59) = 13.135$, Cohen's $d = 0.472$, 95% CI = [0.06, 0.08], p
323 < 0.001; RTNet vs. MSDNet: $t(59) = 13.318, p < 0.001$, Cohen's $d = 1.152$, 95% CI = [0.13, 0.18]),
324 and confidence (RTNet vs. CNet: $t(59) = 8.394, p < 0.001$, Cohen's $d = 0.936$, 95% CI = [0.07,
325 0.11]; RTNet vs. BLNet: $t(59) = 6.587, p < 0.001$, Cohen's $d = 0.391$, 95% CI = [0.03, 0.05]; RTNet
326 vs. MSDNet: $t(59) = 7.68, p < 0.001$, Cohen's $d = 0.471$, 95% CI = [0.04, 0.06]).

327
328
329 Critically, RTNet's predictions were reasonably close to the noise ceiling in all cases (calculated
330 as the average subject-to-group correlation in the human data). Specifically, RTNet's predictions
331 were within 62.5%, 79.6%, and 64.8% of the noise ceiling for accuracy, RT, and confidence,
332 respectively. These numbers were substantially lower for CNet (16.1%, 20.3%, 40.5%,
333 respectively), BLNet (0%, 64.4%, 54.1%, respectively), and MSDNet (16.1%, 50%, and 51.3%,
334 respectively). Thus, by reaching to between 62.5% and 79.6% of the noise ceiling, RTNet can
335 provide excellent predictions for the accuracy, RT, and confidence produced by human subjects
336 for images that the model was not trained on. Additionally, we derived the model predictions
337 for averages across the 60 subjects across all conditions (Supplementary Figure 3) and found
338 that RTNet still predicts average human accuracy and RT better than the other networks.

339
340 *Model predictions within each condition separately*
341 The analyses above explored the correlations between model predictions and human behavior
342 across all experimental conditions. Because different conditions vary in their average accuracy,
343 RT, and confidence, analyses across conditions are likely to produce higher correlations than if

344 the same analyses are to be performed within each condition separately. Therefore, we
345 repeated the analyses above but within each of the four conditions separately to investigate if
346 the models can still account for accuracy, RT, and confidence on individual images. We found
347 that RTNet, BLNet and MSDNet produced accuracy, RT, and confidence predictions that
348 significantly correlate with individual subject data in all conditions (two-sided one-sample t-
349 tests, all p 's < 0.001; Figure 6). However, while CNet produced accuracy and confidence
350 predictions that significantly correlated with individual subject data in all conditions, its RT
351 predictions for all conditions except accuracy focus with difficult images, were either zero or
352 negative (p 's > 0.62).

353
354 Critically, however, RTNet predicted the individual data significantly better than the rest of the
355 networks. Specifically, two-sided paired t-tests showed that RTNet provided better predictions
356 than CNet in two out of four conditions for accuracy (all p 's < 0.001), in all four conditions for RT
357 (all p 's < 0.0001), and in two out of four conditions for confidence (p < 0.005). Compared to
358 BLNet, RTNet predicted individual data significantly better in three out of four conditions for
359 accuracy (all p 's < 0.0001) and in all four conditions for RT (all p 's < 0.025). Compared to
360 MSDNet, RTNet predicted the individual data significantly better in three out of four conditions
361 for accuracy (all three p 's < 0.001) and in all four conditions for RT (all p 's < 0.02). There was no
362 significant difference in confidence predictions between RTNet and BLNet or between RTNet
363 and MSDNet for any of the four conditions (all p 's > 0.05). RTNet was never significantly worse
364 than CNet, BLNet or MSDNet in predicting any of the 12 comparisons. Overall, these results
365 demonstrate that RTNet predicts human behavior well across all three measures and across

366 different types of analyses (across- or within-condition), and does so better than CNet, BLNet
367 and MSDNet.

368

369 Humans more similar to the group are more similar to RTNet
370 Our subject-to-group analyses revealed substantial variability in how well individual subjects'
371 data corresponded to the group average (see Figure 5). Since the group average constitutes the
372 best model of human behavior, one would expect that any good, generalizable model of
373 behavior would also be able to capture this relationship between individual subjects and the
374 group average. In other words, the strength of the relationship for an individual subject and the
375 group should be linked to the strength of the relationship of that same subject and the model.
376 Here we tested if such dependency holds true for RTNet, CNet, BLNet and MSDNet. We found
377 that subjects who exhibited greater correlation in image-by-image accuracy across all
378 conditions with rest of the group also exhibited greater correlation with the RTNet predictions
379 (Pearson's $r = 0.685, p < 0.001, 95\% \text{ CI} = [0.52, 0.80]$; Figure 7A). The same correspondence also
380 emerged for RT (Pearson's $r = 0.825, p < 0.001, 95\% \text{ CI} = [0.72, 0.89]$) and confidence (Pearson's
381 $r = 0.894, p < 0.001, 95\% \text{ CI} = [0.83, 0.94]$). Similar results were obtained for CNet (Accuracy:
382 Pearson's $r = 0.389, p = 0.002, 95\% \text{ CI} = [0.15, 0.59]$; RT: Pearson's $r = 0.432, p < 0.001, 95\% \text{ CI} =$
383 $[0.20, 0.62]$; Confidence: Pearson's $r = 0.639, p < 0.001, 95\% \text{ CI} = [0.46, 0.77]$; Figure 7B) and
384 MSDNet (Accuracy: Pearson's $r = 0.389, p = 0.002, 95\% \text{ CI} = [0.15, 0.59]$; RT: Pearson's $r = 0.80,$
385 $p < 0.0001, 95\% \text{ CI} = [0.69, 0.88]$; Confidence: Pearson's $r = 0.853, p < 0.001, 95\% \text{ CI} = [0.77,$
386 $0.91]$; Figure 7D), demonstrating that all three models predict better the data from individuals
387 who behave more similarly to the rest of the group. However, BLNet, showed no significant

388 correlation for accuracy predictions (Pearson's $r = -0.029$, $p = 0.828$, 95% CI = [-0.28, 0.23];
389 Figure 7C) while exhibiting high correlations for RT (Pearson's $r = 0.831$, $p < 0.001$, 95% CI =
390 [0.73, 0.90]) and confidence (Pearson's $r = 0.809$, $p < 0.001$, 95% CI = [0.70, 0.88]). All
391 correlations were highest for RTNet compared to the other three networks. These analyses
392 further support the notion that RTNet provides the best model of average human behavior
393 among existing alternatives.

394

395 To understand better these results, we further examined who were the subjects whose
396 accuracy, RT, and confidence was most similar to the group. We found that different subjects
397 had the highest similarity to the group for RT compared to accuracy or confidence
398 (Supplementary Figure 4A-C). Therefore, RTNet and other models did not simply provide good
399 fit to specific subjects but instead provided good fits to different groups of subjects for different
400 measures. Finally, the individuals closest to the group in their mean accuracy also tended to be
401 those who had the highest task accuracy, suggesting that RTNet and the other models were
402 better at predicting the image-by-image accuracy of subjects with higher task performance
403 (Supplementary Figure 4D).

404

405

406 Given the variability in how similar individual subjects were to the group data, we also explored
407 how well the models compared to the ability of individual subjects to predict the group data.
408 Two-sided paired t-tests showed that RTNet outperformed individual human subjects in
409 predicting the accuracy ($t(59) = 4.076$, $p < 0.001$, Cohen's $d = 0.526$, 95% CI = [0.02, 0.06]), RT
410 ($t(59) = 16.174$, $p < 0.001$, Cohen's $d = 2.088$, 95% CI = [0.2, 0.25]), and confidence ($t(59) =$

411 10.927, $p < 0.001$, Cohen's $d = 1.411$, 95% CI = [0.18, 0.26]) of the rest of group across all
412 conditions (Figure 8). Impressively, RTNet outperformed every individual human subject in
413 predicting the group RT and confidence results, as well as 73.3% of individual subjects in
414 predicting accuracy. On the other hand, CNet was significantly worse than individual subjects in
415 predicting group accuracy and RT but not confidence (Accuracy: $t(59) = -42.425$, $p < 0.001$,
416 Cohen's $d = 5.477$, 95% CI = [-0.4, -0.39]; RT: $t(59) = -25.439$, $p < 0.001$, Cohen's $d = 3.284$, 95%
417 CI = [-0.38, -0.32]; Confidence: $t(59) = -0.361$, $p = 0.719$, Cohen's $d = 0.047$, 95% CI = [-0.05, -
418 0.03]). BLNet was significantly worse than individual subjects in predicting group accuracy but
419 predicted group RT and confidence better than individuals (Accuracy: $t(59) = -68.395$, $p < 0.001$,
420 Cohen's $d = 8.830$, 95% CI = [-0.67, -0.63]; RT: $t(59) = 7.018$, $p < 0.001$, Cohen's $d = 0.906$, 95% CI
421 = [0.07, 0.13]; Confidence: $t(59) = 6.170$, $p < 0.001$, Cohen's $d = 0.797$, 95% CI = [0.08, 0.16]).
422 Finally, MSDNet's predictions of group accuracy and RT were significantly worse than those of
423 human subjects but its predictions of group confidence were better than those of individual
424 subjects (Accuracy: $t(59) = -42.425$, $p < 0.001$, Cohen's $d = 5.477$, 95% CI = [-0.42, -0.39]; RT:
425 $t(59) = -4.019$, $p < 0.001$, Cohen's $d = 0.519$, 95% CI [-0.08, -0.03]; Confidence: $t(59) = 5.266$, $p <$
426 0.001 , Cohen's $d = 0.68$, 95% CI = [0.07, 0.15]). In sum, RTNet was the only network that
427 outperformed most individual subjects in predicting all three measures of human performance
428 (accuracy, RT, and confidence).
429
430
431
432

433 **Discussion**

434 There is considerable interest in using neural networks as models of human visual processing
435 and behavior, but relatively little work has been done on testing the extent to which existing
436 image-computable models reproduce the full range of behavioral signatures exhibited by
437 humans. Here we show that the current state-of-the-art neural networks such as CNet, BLNet,
438 and MSDNet diverge in several ways from human behavior. Further, we develop a new neural
439 network, RTNet, that exhibits all critical features of human perceptual decision making,
440 including effects on accuracy, RT, and confidence. Further, RTNet predicted well human group
441 behavior for novel images and did so better than both CNet, BLNet, and MSDNet, as well as
442 better than individual human subjects. Finally, individual humans who were more similar to the
443 group were also more similar to RTNet. Overall, RTNet is a promising image-computable model
444 of human accuracy, RT, and confidence.

445

446 Relationship between RTNet and cognitive models of perceptual decision making

447 RTNet is the first neural network to exhibit all critical signatures of human perceptual decision
448 making. This success, however, is hardly surprising given the strong conceptual similarity
449 between RTNet and traditional cognitive models of decision-making that also exhibit the
450 signatures of human behavior^{24,26,40,52,54}. These models are often referred to as sequential
451 sampling models where (usually noisy) evidence is accumulated over time until a threshold is
452 reached. The most common sequential sampling models are diffusion models, which are
453 typically only applied to 2-choice tasks where evidence in favor of one response alternative is
454 also evidence against the other alternative^{1,40}. Instead, RTNet is conceptually more similar to

455 another subgroup of sequential sampling models called race models where each choice option
456 has its own accumulation system and evidence for each choice is accumulated in parallel^{42,55}.

457

458 Despite their conceptual similarity, RTNet has two important advantages over traditional
459 cognitive models. Most importantly, RTNet is image-computable and can be applied to actual
460 images, whereas traditional models cannot. As such, traditional models cannot replicate
461 RTNet's ability to make accurate predictions regarding human accuracy, RT, and confidence for
462 individual unseen images. The second advantage stems from the inability of traditional
463 cognitive models to naturally capture the relationships between the different choice options.

464 Specifically, to maintain a low number of free parameters, cognitive models are often fit with
465 the assumption that evidence accumulates at the same rate for all incorrect choice options (but
466 accumulates faster for the correct choice)⁵⁶. However, this assumption ignores the fact that
467 some incorrect options may be more similar to the correct option and thus are more likely than
468 other options to be chosen. While dependencies between the choices can easily be
469 incorporated in cognitive models, that would result in a large number of free parameters that
470 would make fitting to data difficult. Conversely, RTNet inherently learns all relationships
471 between the choice options during the training of the Bayesian neural network that forms its
472 core. RTNet still requires the fitting of the overall signal strength (which we accomplish by
473 adjusting the noise level of the images fed to RTNet), but this single free parameter allows it to
474 capture all choice option dependencies, something that traditional models cannot achieve.

475

476

477 Performance differences between RTNet and other networks

478 RTNet outperformed all other networks we tested (CNet, BLNet, and MSDNet) in capturing the
479 signatures of perceptual decision making. Specifically, while MSDNet and CNet show relatively
480 weaker effects of task difficulty on RTs compared to humans, RTNet closely captures the
481 observed magnitude of this effect. Further, RTNet is the only model that mimics the observed
482 shape and skewness of RT distributions in response to SAT/difficulty manipulations. Finally,
483 RTNet yielded the closest image-by-image predictions of human choice, RT, and confidence.

484

485 We speculate that RTNet's ability to match observed patterns in human behavior, particularly
486 RTs, is primarily due to its internal mechanisms being closer to the true mechanisms that give
487 rise to RTs in humans. Specifically, RTNet's core assumption that RTs are generated by a process
488 of sequential sampling and evidence accumulation is inspired from a long tradition of cognitive
489 modelling^{1,2}. In fact, these evidence accumulation models have been tested extensively against
490 human data and are currently the best models of human RTs^{1,2}. On the other hand, models
491 such as CNet, BLNet and MSDNet rely on mechanisms that, although can generate RTs, have
492 not been as extensively validated by empirical tests and are therefore less likely to capture the
493 true mechanisms that generate RTs in humans.

494

495 Nevertheless, another reason why CNet and MSDNet may struggle with generating human-like
496 RTs is that the RTs generated by the models are constrained by the number of layers or residual
497 blocks present in the networks. On the other hand, RTNet's evidence accumulation mechanism

498 allows flexible generation of RTs across a potentially very large number of steps, thus allowing
499 the RTs to have higher resolution and sensitivity to experimental manipulations.

500

501 Biological plausibility of neural network models of response time

502 Physiological recordings have uncovered several features of the processing in the human visual
503 system that are relevant to judging the plausibility of the networks examined here. First, the
504 conduction from one area to another in the visual cortex (roughly corresponding to different
505 layers in neural networks) takes approximately 10 ms⁵⁷, with signal from the photoreceptors
506 reaching the top of the visual hierarchy in inferior temporal cortex in 70-100 ms⁵⁸. Therefore, a
507 single sweep from input to output in a purely feedforward network should result in decisions
508 with RT less than a few hundred milliseconds even though human decisions can range from a
509 hundred of milliseconds to a few seconds. Second, neurons in each layer of the visual cortex
510 continue to fire action potentials for hundreds of milliseconds after the stimulus onset and
511 receive strong recurrent input from later layers of processing⁵⁹. Finally, neuronal processing is
512 known to be noisy such that the same image input generates very different neuronal
513 activations on different trials³⁷.

514

515 MSDNet diverges from these known properties of the human visual cortex in several important
516 ways. To generate meaningful RTs, MSDNet assumes that classification decisions are made
517 after each layer of processing, though there is no evidence that decisions in the brain can be
518 directly based on information in early visual cortex without further processing in subsequent
519 layers. Moreover, because it assumes the existence of a single feedforward sweep through the

520 network, it cannot naturally capture large RT variability between stimuli given the short
521 latencies of processing between different layers. Finally, MSDNet does not incorporate any
522 recurrent processing, capture the noisiness of the responses in the visual cortex, or replicate
523 the long periods of activity of the neurons in each processing area. These properties strongly
524 limit the biological plausibility of MSDNet.

525
526 In comparison, the dynamics of CNet are closer to those of biological neural networks. Indeed,
527 several of CNet's features – such as parallel and continuous processing of input, and
528 transmission delays between layers – were directly inspired by biology. The transmission delays
529 allow the network to mimic the processing latencies across cortical layers. These features were
530 also found to account for differences in processing efficiency between images such that CNet
531 produced more rapid responses for prototypical images with clear backgrounds compare to
532 unusual or cluttered images. However, CNet includes several features that are not biologically
533 plausible such as its lack of stochasticity of decisions and recurrent processing. Further, it
534 remains unclear how its cascaded architecture could map onto brain areas¹².

535
536 BLNet appears more biologically plausible than both MSDNet and CNet as it features recurrent
537 visual processing. Lateral connections in RCNNs enable a layer's activations from previous time
538 steps to feed back into itself, which allows state dependence to naturally emerge in these
539 networks, thus mimicking biological networks⁶⁷. Additionally, RCNNs have been found to
540 generate RTs that align closely with human RTs on a range of complex perceptual tasks
541 involving scene categorization, perceptual grouping, and mental simulation²². These findings

542 suggest further similarities in perceptual processing between humans and RCNNs. However, in
543 spite of these advantages, RCNNs still lack certain features of biological networks such as
544 stochasticity of responses.

545
546 It is possible to introduce stochasticity in CNet and MSDNet by feeding the outputs of the final
547 softmax layer into a race model. However, such an architecture would imply that response
548 stochasticity arises purely from noise in the decision stage. Although decision noise may exist in
549 humans contributing to noisy motor responses, stochasticity in human responses is thought to
550 predominantly arise from noisy inference²⁹ or noisy sensory representations^{60–62}. Therefore,
551 CNNs with additional noise at the decision stage are less biologically plausible than RTNet,
552 which includes noise in the evidence processing stage.

553
554 On the other hand, while also not capturing all properties of visual processing, RTNet appears
555 more biologically plausible. First, it mimics the noisiness of neuronal responses for repeated
556 presentations of the same stimulus. Second, through the process of evidence accumulation,
557 RTNet naturally generates long-lasting neuronal activations. Third, the network's output is
558 inherently stochastic, unlike CNet, BLNet, MSDNet, or standard feedforward networks that are
559 inherently deterministic. Finally, the accumulation process implemented in RTNet has been
560 observed in multiple regions in the human parietal cortex, frontal cortex, and subcortical
561 areas^{63–66}. Nevertheless, one critical limitation of the biological plausibility of RTNet is its lack of
562 recurrency. That being said, the question of how to train recurrent neural networks on static
563 images remains open^{53,58,67–69}. Further, while the core of RTNet does not include recurrency,

564 the evidence accumulation system can be thought of as a recurrent network. In fact, several
565 recent studies have demonstrated the advantages of combining a standard feedforward
566 network with a recurrent network in performing a range of tasks and extrapolating to solve
567 problems of greater complexity than they were trained on^{70,71}. Future studies should explore
568 how to introduce recurrence into RTNet's mechanisms and whether such modifications can
569 improve its predictions of human behavior.

570

571 Using noisy weights to generate stochasticity in RTNet's responses

572 One critical feature of RTNet is that its weights are noisy. Practically, there are many ways of
573 generating noise in the weights. In early iterations of RTNet, we attempted to create variability
574 by training a feedforward network and then adding the same amount of variability to each
575 connection. This approach resulted in variability that was too small for some weights and too
576 large for others⁷², often leading to no accuracy gains from the process of evidence
577 accumulation. Indeed, a given amount of noise over a specific weight may not change the
578 performance of a network at all, but the same disturbance over another weight may have
579 destructive effects⁷³⁻⁷⁵. We therefore chose to obtain the weight variability by training a
580 Bayesian neural network so that each weight has an appropriate amount of noise. In the future,
581 it may be possible to use other methods for setting the noise level for each connection, but we
582 are currently unaware of any method besides training a Bayesian neural network that can
583 generate appropriate noise for each weight.

584

585 Another alternative to implementing noise in RTNet is to only add noise to the weights in the
586 pre-readout layer (which can mimic noise in the decision process rather than in the sensory
587 processing). As there are many different ways to implement stochasticity in the network, it is
588 important for future studies to test how these differences in implementation affect the model's
589 performance.

590

591 RTNet is built such that every time evidence is sampled from a stimulus, the network's weights
592 change randomly (according to the BNN's posterior weight distributions). These random
593 moment-by-moment fluctuations in the network's weights lead to noisy activations. However,
594 in the brain, noisy activations in response to a stimulus are thought to arise from random
595 fluctuations in neuronal activity itself. Therefore, it can be argued that a more biologically
596 plausible implementation of RTNet would involve noise in unit activations rather than
597 weights⁷⁶. The main reason we chose to add noise in weights rather than activations is due to
598 the practical ease of implementing BNNs that can naturally generate variability in networks.

599 Mechanistically, however, there may be no meaningful distinction between noisy weights and
600 noisy activations. Indeed, noisy weights lead to noisy activations, which mimic the randomness
601 of neural responses.

602

603 Limitations

604 One limitation of RTNet is that its mechanism for stopping the accumulation process is non-
605 optimal. Following a large literature of race models in cognitive psychology^{24,42,56}, RTNet makes
606 a decision when any one choice option receives sufficient evidence to exceed a threshold.

607 However, if another choice option has almost same amount of evidence, the observer has little
608 ability to differentiate between the two choices and is essentially guessing between them.
609 Previous research showed that guessing can be an appropriate behavior if the observer knows
610 that the task is very difficult⁷⁷ or if the observer has been deliberating for a long time⁷⁸.
611 However, in a race model, guessing can happen at any time point regardless of task difficulty.
612 Nevertheless, human decisions are often suboptimal^{79,80}, and therefore it is unclear as to
613 whether this suboptimal decision-making mechanism should be seen as a drawback if the goal
614 is to model human decision-making.

615
616 Another limitation of RTNet is that each sweep of the feedforward path is independent of the
617 previous states, whereas the current state in the human brain is influenced by its previous
618 states⁶⁷. To address this limitation, the sampling process in RTNet can be modified such that the
619 current state of the network depends on the previous states. For example, during testing, the
620 connection weight at a specific moment can be made a function of its previous values, which
621 would make the sequential samples dependent on each other. Additional studies are needed to
622 investigate the effect of such state dependence on model performance.

623
624 Conclusion
625 We developed a new neural network, RTNet, which exhibits the basic features of human
626 perceptual decision making and predicts human accuracy, RT, and confidence on an image-by-
627 image basis. The network provides a better model of human perceptual decisions than the

628 current state-of-the-art networks for generating response times. RTNet thus represents an

629 important step in the use of neural networks as models of human decisions.

630

631 **Methods**

632 All subjects signed informed consent and were compensated for their participation. The
633 protocol was approved by the Georgia Institute of Technology Institutional Review Board,
634 protocol H15308. All methods were carried out in accordance with relevant guidelines and
635 regulations.

636

637 Behavioral experiment

638 *Pre-registration*

639 This study's sample size, experiment design, included variables, hypothesis, and planned
640 analyses were pre-registered on Open Science Framework (<https://osf.io/kmraq>) prior to any
641 data being collected.

642

643 *Subjects*

644 Sixty-four subjects (31 female, age=18-32) with normal or corrected to normal vision were
645 recruited. We had pre-registered the collection of only 40 subjects, but due to less time
646 restrictions than we had anticipated, and to further increase the statistical power, we collected
647 data from more subjects.

648

649 *Stimulus, task, and procedure*

650 Subjects performed a digit discrimination task where they reported their perceived digit
651 followed by rating their decision confidence. Each trial began with subjects fixating on a small
652 white cross for 500-1000 ms, followed by a presentation of the stimulus for 300 ms (**Error!**

653 **Reference source not found.**). The stimulus was a digit between 1 and 8 (the digits 0 and 9
654 were excluded) superimposed on a noisy background. Subjects' task was to report the
655 perceived digit using a computer keyboard by placing four fingers of their left hand on numbers
656 1-4 and placing four fingers of their right hand on numbers 5-8. This setup allowed subjects to
657 respond without looking at the keyboard, thus providing less noisy response times. Following
658 their categorization response, subjects reported their decision confidence on a 4-point scale
659 (where 1 corresponds to the lowest confidence and 4 corresponds to the highest confidence).
660 There was no deadline on the response or confidence rating.

661
662 The experiment included manipulations of speed-accuracy trade off and task difficulty. Speed-
663 accuracy trade off was manipulated by asking subjects to emphasize either the speed or
664 accuracy of their responses. To facilitate proper responding, we organized the experiment into
665 alternating blocks of speed and accuracy focus. Task difficulty was manipulated by adding
666 different levels of uniform noise to the stimuli. Specifically, "easy" stimuli included average
667 uniform noise of 0.25 (range = 0-0.5), whereas "difficult" stimuli included average uniform
668 noise of 0.4 (range = 0-0.8). To add the noise, the pixel values were first transformed to be
669 between 0 and 1 and random numbers drawn from the corresponding noise distributions were
670 added separately to each pixel. We scaled the resulting image to be between 0 and 1 again, and
671 finally converted the image to a uint8 format (scaled between 0 and 255). The noise levels were
672 chosen based on the pilot testing to produce two different performance levels. Easy and
673 difficult images were randomly interleaved.

674

675 The task stimuli were selected from a publicly available handwritten digits (MNIST) dataset³².
676 This dataset contains 60,000 training images and 10,000 testing images. Since the training
677 images were used to train the models in this study, we randomly selected images from MNIST
678 test set to include in our experiment. This ensures that the selected images for the experiment
679 are novel both for the human subjects and for the trained models. We randomly selected 480
680 images for the experiment (120 for each condition). The MNIST dataset images are of size 28 x
681 28 pixels which appeared overly small on the computer screens we were using. Therefore,
682 before adding noise, the selected images were first resized to 84 x 84 pixels (using MATLAB's
683 *imresize* function), and they were padded with the background color of MNIST images to size
684 256 x 256 pixels (visual angle = 6.06°).

685
686 The experiment started with three blocks of training each containing 50 trials. The first block
687 contained images from the MNIST dataset without any noise. This was done to familiarize the
688 subjects with the experiment. The next two blocks were used to introduce the speed-accuracy
689 trade off by asking subjects to focus on accuracy in the first block and on speed in the second.
690 The noise level of the stimuli in these two training blocks was same as in the main experiment
691 (i.e., 0.25 and 0.40 for the easy and difficult stimuli, respectively). During the whole training
692 session, the experimenter was standing beside the subject quietly and was available to answer
693 any questions. None of the images used in the training session was used in the main
694 experiment.

695

696 Once the subject confirmed that he or she understands the task, the experimenter left the
697 room and subjects completed the main experiment that consisted of 960 trials organized in
698 four runs each containing four blocks of 60 trials. Each block consisted of a single speed-
699 accuracy trade off condition, and each run included exactly two “accuracy focus” and two
700 “speed focus” conditions in a randomized order. At the beginning of each block, subjects were
701 given the name of the condition for that block (“accuracy focus” or “speed focus”) and asked to
702 adjust their responding policy accordingly. In each block, we pseudo-randomly interleaved trials
703 from the two difficulty levels such that each was presented exactly 30 times. All 480 images
704 were shown to subjects in first two runs and the procedure was repeated with a new random
705 ordering of the stimuli in the last two runs. All images were same for all subjects, and each
706 image was assigned only to one specific condition.

707

708 *Apparatus*

709 The experiment was designed in MATLAB 2020b environment using Psychtoolbox 3⁸¹. The
710 stimuli were presented on a 21.5-inch Dell P2217H monitor (1920 x 1080 pixel resolution, 60 Hz
711 refresh rate). Subjects were seated 60 cm away from the screen and provided their responses
712 using a keyboard.

713

714 Behavioral analyses

715 We followed the data analyses steps outlined in our preregistration. All analyses were
716 performed in Python (version 3.10.11) using Google Colab (version 2.0). We first excluded
717 subjects who did not follow sufficiently well the speed/accuracy instructions by not providing

718 faster average RT in the “speed focus” compared to the “accuracy focus” condition. This
719 resulted in removing two subjects (out of 64). We preregistered the exclusion of subjects with
720 floor or ceiling effects on accuracy but no subject met the criteria for exclusion. However,
721 following our preregistration, we excluded two subjects because they showed ceiling effects for
722 confidence. Note that our preregistration document called for excluding subjects who provided
723 average confidence of more than 3.7 but because this would have resulted in excluding a much
724 larger number of subjects than we had anticipated, we only excluded subjects whose average
725 confidence was above 3.85. Therefore, 60 subjects were used in all subsequent analyses.

726

727 We additionally excluded individual trials with extreme RT values using preregistered criteria
728 based on Tukey’s interquartile criterion. Specifically, for each subject, we computed the 25th
729 and 75th percentiles of the RT distributions in each condition. We then removed all RTs with
730 values more than 1.5 times the interquartile range such that if $Q1$ is the RT value at the 25th
731 percentile and $Q3$ is the RT value at the 75th percentile, we removed values smaller than $Q1 -$
732 $1.5 \times (Q3 - Q1)$ and larger than $Q3 + 1.5 \times (Q3 - Q1)$. This step resulted in removing an
733 average of 5.46% of total trials (range of 1.35-8.22% for each subject).

734

735 Once these preprocessing steps were completed, we computed average accuracy, RT,
736 confidence, and skewness of the RT distributions separately for each condition. The skewness
737 was computed separately for each individual subject’s RT distribution as $\frac{\sum_{i=1}^N (x_i - \mu)^3}{(N-1)\sigma^3}$ where μ and
738 σ are the mean and standard deviation of the sample distribution, respectively. We also
739 computed average RT and average confidence scores for error and correct trials across subjects

740 to examine how RT and confidence change as a function of response accuracy. Finally, for
741 visualization purposes, we plotted RT distributions for one subject in Figure 4C. The RT
742 distributions were generated using kernel density estimation (KDE), which approximates the
743 underlying probability density function that generated the data by smoothing the observations
744 with a Gaussian kernel⁸². The KDE plots were created using Seaborn's KDE plot with a
745 smoothing bandwidth of 1.2⁸³.

746

747 RTNet

748 *Network architecture*

749 The RTNet model consists of two main modules (

750 A). The first module is a Bayesian neural network (BNN) which makes predictions regarding an
751 image. BNNs are a type of artificial neural network built by introducing stochastic components
752 into the network to simulate multiple possible models with their associated probability
753 distribution⁸⁴. The main difference between a BNN and standard feedforward neural network is
754 that in BNN the weights are distributions instead of point estimates. A random sample from
755 these distributions results in a unique feedforward network. This random sampling enables
756 variability in the output of the network, which in turn can be fed into an accumulation process
757 that drives a decision. The second module of our model consists of exactly such accumulation of
758 the evidence produced on each step by the first module. At each processing step, the output of
759 the network (in the form of activations of the final layer) was accumulated towards a pre-
760 defined threshold. Evidence for each choice option was accumulated separately from the rest,
761 similar to a race model²⁴.

762

763 The accumulation process continues until the total amount of accumulated evidence for one of
764 the alternatives reaches a predefined threshold. The alternative for which the threshold was
765 reached then becomes the response of the model. The response time produced by RTNet is
766 simply the number of samples used to reach the decision threshold. The confidence of the
767 model was obtained by taking the difference in evidence scores between the chosen response
768 and the second-best choice.

769

770 *Implementation*

771 We implemented RTNet using the AlexNet architecture, which has eight layers with learnable
772 parameters³³. The AlexNet architecture consists of five convolutional layers with a combination
773 of max pooling followed by three fully connected layers. We chose to implement RTNet within a
774 relatively large-scale CNN such as AlexNet (rather than a shallow network which may have also
775 been able to learn to classify the MNIST dataset) because our goal was to eventually compare
776 our model to others such as CNet and MSDNet, which are generally based on larger CNNs and
777 work on multiple existing datasets. Additionally, difficulties associated with training Bayesian
778 neural networks limited us to relatively small network structures (rather than VGG or ResNet
779 models). We found the AlexNet architecture to be a reasonable compromise in this trade off
780 between model complexity and ease of training BNNs. RTNet was implemented in PyTorch⁸⁵
781 while Bayesian networks were implemented using Pyro⁸⁶, which is a probabilistic programming
782 library built on PyTorch⁸⁵.

783

784 *Training the BNN module of RTNet*

785 BNNs are probabilistic models that incorporate uncertainty into their weights and biases,

786 rather than treating them as point estimates. Consider a training dataset, x , for which we

787 must predict the class labels, y . In traditional neural networks, the predicted class label,

788 \hat{y} , is a function of network's weights, w , and these weights are tuned in order to optimize

789 the correspondence between the predicted (\hat{y}) and true class labels (y). In BNNs,

790 however, weights are modelled as probability distributions instead of point estimates.

791 Following the rules of Bayesian inference, one can infer the posterior distribution of

792 these weights (w) using the formula $p(w|x) = \frac{p(w,x)}{p(x)}$. However, this computation is

793 intractable for large networks since it involves computing the marginal likelihood of the

794 data $p(x)$ across all possible configurations of weights. Therefore, computing this

795 posterior distribution is typically done using a method of approximation called variational

796 inference. A stand-in distribution, $q(w)$, is specified to approximate the posterior and its

797 parameters are tuned to maximize the similarity between the two distributions. The

798 similarity between the distributions is quantified by the information theoretical measure

799 called Kullback-Liebler (KL) divergence:

800

801 $KL(q(w)||p(w|x)) = E_q[\log q(w) - \log p(w,x)] + \log p(x)$ (1)

802

803 Although $KL(q(w)||p(w|x))$, cannot be directly computed since $p(x)$ is intractable, one

804 can side-step this computation by defining a surrogate objective function called the

805 evidence lower bound (ELBO) function as:

806

807 $ELBO(q) = E_q[\log p(w, x) - \log q(w)]$ (2)

808

809 where both $p(w, x)$ and $q(w)$ are tractable, and due to their negative relationship,
810 maximizing $ELBO(q)$ thus results in the minimization of $KL(q(w)||p(w|x))$, allowing one
811 to approximate the true posterior distribution of the network's weights.

812

813 We trained the network to achieve classification accuracy higher than 97% on the MNIST test
814 set. We trained the BNN module of RTNet for a total of 15 epochs with a batch size of 500. We
815 used the Evidence lower bound (ELBO) loss function⁸⁷ and Adam⁸⁸ for optimization with a
816 learning rate of 0.001, and the default values for weight decay and epsilon (weight decay = 0; ϵ
817 = 10^{-8}). To ensure that each BNN performs greater than 97% on MNIST test set, we followed a
818 specific rule for each model instance. When testing an image with the BNN module of RTNet,
819 we sampled 10 times from the posterior distributions learned during the training and thus
820 obtained 10 unique responses for each image. The response with highest frequency among 10
821 responses was chosen as the final decision of the BNN module. Note that there were no RTs
822 generated at this step since we only implemented the BNN module of RTNet and generated a
823 set of responses that would allow us to evaluate how well the BNN's posterior distributions had
824 been trained. These trained BNN models were later used to generate variable activations for
825 the evidence accumulation process that resulted in RTs.

826

827 We resized the MNIST images to the standard input size to AlexNet model architecture (227 x
828 227 pixels). We also normalized the input images to have a mean of 0.1307 and standard
829 deviation of 0.3081, which is a standard procedure when using AlexNet for classification of the
830 ImageNet dataset⁸⁹. We trained sixty instances of RTNet using the above procedure but with
831 different weight initializations for each network instance. We used a different combination of
832 mean and standard deviation (SD) values for each of the 60 instances to maximize differences
833 in network initializations. Specifically, different network instances of RTNet were initialized such
834 that all means of the weights and biases were set to a value between 0.1 and 1.2 with 0.1
835 increments, and all SDs of weights and biases were set to a value ranging from 1 to 5 with
836 increments of 1 (for a total of $12 \times 5 = 60$ instances).

837

838 *Generating RTNet's responses from the evidence accumulation module*
839 Sequential sampling models belong to a class of cognitive models which assume that observers
840 make decisions by repeated sampling and accumulation of noisy evidence until a threshold is
841 reached^{1,2}. In these models, RT reflects the number of sampling steps required to reach the
842 threshold. RTNet utilizes this evidence accumulation mechanism to generate RTs. In order to
843 generate noisy evidence, we used the probability distribution of weights in the BNNs to
844 randomly sample one unique feedforward network at each time step. At each time step, t , the
845 presented image results in a feedforward sweep of the sampled network and generates a set of
846 activations (a_t) where $a_t = [a_{1,t}, a_{2,t} \dots a_{8,t}]$ are the values obtained in the last layer after the
847 softmax function has been applied. Each unit in the output layer corresponds to the activation
848 for one of the eight choice options and for each choice, the evidence obtained at the current

849 step is added to the sum of evidence collected from all previous steps. Thus, a running total of
850 accumulated evidence is maintained such that $a_i = \sum_{t=1}^n a_{i,t}$ where n refers to the total
851 number of steps over which evidence has been accumulate and $i \in [1,8]$ refers to the response
852 option. When the total evidence in favor of any of the options exceeds a pre-defined threshold
853 k , the corresponding response option is chosen such that the network's response, $r =$
854 $\text{argmax}(a_1, a_2 \dots a_8)$ at the time step when $\max(a_1, a_2 \dots a_8) \geq k$.

855

856 What are the properties of evidence accumulation? Everything else being equal, decisions that
857 are based on fewer evidence samples are more likely to be influenced by chance fluctuations in
858 evidence that favor incorrect decisions. On the other hand, when the model is allowed to
859 accumulate evidence over a longer period, these such random variations are more likely to
860 cancel out, thus increasing the likelihood of a correct response. In turn, because a longer period
861 of accumulation leads, on average, to stronger evidence, this directly results in higher
862 confidence.

863

864 CNet

865 *Network architecture*

866 The parallel cascaded network (CNet) builds upon the architecture of residual networks
867 (ResNet) by utilizing skip connections to introduce propagation delays during input processing
868 (Figure 1B). At each processing step, all units in all layers are updated parallelly. However, due
869 to the propagation delays introduced by each residual block, simpler perceptual features get
870 transmitted faster across blocks. For instance, at the first time-step, only the first residual block

871 receives input and model predictions at this step are based only on the computations of the
872 first residual block. At the second time step, all the other layers receive partial input from the
873 first block. Even though the model prediction at this point will be based on computations from
874 all blocks, only the first block will have received complete input and achieved stable output. The
875 other blocks will only contain partial updates from the lower block and therefore their output
876 will not be stable. In general, a residual block, t , takes $(t - 1)$ time steps to receive complete
877 and stable input. At any point during processing, the network can generate a prediction since all
878 the residual blocks contribute to the computations. However, if the time step (t) is less than the
879 number of residual blocks, the responses will be based on unstable representations in the
880 higher blocks. Due to this architecture, the network's responses are subject to a trade off
881 between speed and complexity of processing. Decision time is indicated by the processing step
882 at which the decision was made, and decision confidence is derived from the softmax value in
883 the final layer, at the time of decision. The softmax values are obtained by transforming the
884 activation scores (z) of all nodes in the output layer according to the function: $\frac{e^{z_i}}{\sum_j^n e^{z_j}}$, where
885 i refers to the node whose output is being transformed and n refers to the number of nodes in
886 the output layer (which is equal to the number of classes).

887

888 *Implementation*

889 CNet was implemented using the architecture of ResNet-18⁹ since it requires networks with skip
890 connections. ResNet-18 architecture consists of 17 convolutional layers, where 16 of these
891 layers are embedded within eight residual blocks (skip connections), followed by a final fully

892 connected layer with softmax activation to generate the decision. The network was
893 implemented in PyTorch⁸⁵.

894

895 *Network training*

896 We trained CNet using the same procedure that was used by the original authors since their
897 training protocol was found yielded the best network behavior and performance. The network
898 achieved an accuracy > 97% with 12 training epochs and a batch size of 500. The models were
899 trained on a temporal-difference (TD) learning procedure along with cross-entropy loss. In the
900 original publication, TD learning was found to perform better than softmax-based cross-entropy
901 loss in encouraging correct responses to emerge faster. The loss function was optimized using
902 an initial learning rate of 0.01, weight decay of 0.005 and a momentum of 0.9. The images were
903 normalized to a mean of 0.1307 and standard deviation of 0.3081. We trained sixty instances of
904 CNet using the above procedure but using a different random seed for initializing the network's
905 weights to allow individual differences in network's learning.

906

907 BLNet

908 *Network architecture*

909 BLNet is a recurrent convolutional neural network (RCNN) consisting of a standard feedforward
910 CNN with recurrent connections that connect each layer to itself¹⁰ (Figure 1C). A final readout
911 layer computes the network's output at each time step via a softmax function. Time steps are
912 defined as the number of feedforward sweeps of the network that have occurred until the time
913 at which the readout is evaluated. At each time step, a given layer receives input from two

914 sources – the feedforward input from the previous convolutional layer and recurrent input from
915 itself in the form of activations from the previous time step. The readout is evaluated at each
916 time step such that if it exceeds a pre-defined threshold, the network generates a response.
917 The response corresponds to the choice that generates the highest softmax value and the time
918 step at which the response was made indicates the decision time. The softmax value associated
919 with the choice at the time of decision indicates decision confidence. The network's ability to
920 trade off speed and accuracy comes from the fact that higher softmax thresholds require more
921 feedforward and recurrent computations, which effectively results in a deeper network being
922 unrolled across time which, in turn, leads to both higher RT and higher accuracy.

923

924 *Implementation*

925 BLNet was implemented as a custom-built network consisting of seven convolutional layers of
926 increasing size and a final readout layer, as defined by the original authors¹⁰. Each layer consists
927 of two sets of weights – the bottom up weights that transform the input from the previous
928 layer and the lateral weights that act on recurrent input that the layer receives from itself. The
929 readout layer is a fully connected layer with softmax activation to generate the decision. The
930 network was unrolled across time for eight time steps. The network was implemented using
931 TensorFlow.

932

933 *Network training*

934 We were able to achieve test accuracy > 97% with only three epochs with a batch size of 32 and
935 a sparse categorical cross-entropy loss function⁹⁰. Adam⁸⁸ was used for optimization with a

936 learning rate of 0.001. For testing, the response at the final time-step was taken as the
937 network's decision. We resized the MNIST images to the standard input size of 128x128 defined
938 for the network. We trained sixty instances of BLNet using the above procedure but using a
939 different random seed for initializing the network's weights to allow individual differences in
940 network's learning.

941

942 *Testing*

943 Unlike the other networks, BLNet exhibited overall accuracy that was about 5% greater for the
944 120 images used in the easy, speed-focus condition compared to the 120 images used in the
945 easy, accuracy-focus condition. This resulted in a lack of the expected accuracy difference
946 between these two conditions when BLNet was run on all images (Supplementary Figure 5). On
947 further investigation, we found that for each condition, the image set contained a small subset
948 of images for which the network showed chance-level performance (12.5%). The image set for
949 the easy, accuracy-focus condition contained more such images than the image set for the easy,
950 speed-focus condition, explaining the observed accuracy differences. Therefore, when testing
951 BLNet on the effects reported in Figure 4, we excluded this subset of images for all conditions
952 (10 out of 480 images). This exclusion led to BLNet showing the expected speed-accuracy trade
953 off (Figure 4A,B).

954

955 MSDNet

956 *Network architecture*

957 MSDNet has an architecture similar to a standard feedforward neural network but with early-
958 exit classifiers after each of its layers (

959 D). At each output layer, the evidence for each choice is computed using a softmax function and
960 if the evidence for any alternative exceeds a predefined value the network stops processing and
961 immediately produces a response. The layer at which the response was made is indicative of
962 the decision time, and the softmax value at that layer is indicative of decision confidence^{90,91}.

963

964 *Implementation*

965 We implemented MSDNet using the AlexNet architecture, which has eight layers with learnable
966 parameters³³. The AlexNet architecture consists of five convolutional layers with a combination
967 of max pooling followed by three fully connected layers. In addition to the standard AlexNet
968 structure, we incorporated additional readout layers located right after each layer of
969 processing. The feature map size of all these readout layers were set to the number of classes.
970 The network was implemented in PyTorch⁸⁵.

971

972 *Network training*

973 Due to MSDNet's deterministic nature, only three epochs with a batch size of 500, were enough
974 to achieve test accuracy of more than 97% with the same batch size and a weighted cumulative
975 loss function⁹⁰. Adam⁸⁸ was used for optimization with a learning rate of 0.001. For testing, the
976 response of the last output layer was taken as the network's decision. If a network did not
977 achieve accuracy greater than 97%, we started the training over with the same initial values.
978 Since MSDNet is also built on the architecture of AlexNet, we resized the MNIST images to the

979 standard input size for AlexNet and normalized the images to have a mean of 0.1307 and
980 standard deviation of 0.3081. To make the initializations of MSDNet as similar as possible to the
981 initializations of RTNet, for each RTNet instance, we set the initial values for the weights and
982 biases of the MSDNet instance by randomly sampling from the Gaussian distribution used in the
983 corresponding RTNet initialization.

984

985 Choosing parameters that allow the models to mimic human accuracy

986 Because the goal of our study was to examine whether the models exhibit the signatures of
987 human perceptual decision making, we matched the accuracy of the models across the four
988 experimental conditions to the average accuracy in the human data. For all models, this was
989 achieved by adjusting the noise level in the images (separately for the “easy” and “difficult”
990 images) and the threshold parameter (separately for the speed and accuracy conditions). Lower
991 noise levels lead to higher accuracy, whereas higher threshold parameters lead to longer
992 processing and response times (and also contribute to higher accuracy levels).

993

994 Parameter values were adjusted using a coarse search followed by a fine search. In the coarse
995 search for RTNet, we varied the amplitude of uniform noise from 1 to 10 with increments of 1
996 (where the noise amplitude refers to the length of the interval over which the noise values are
997 generated), and the threshold value from 2 to 12 with increments of 2. The results were closest
998 to the human accuracy levels when the noise was in the range 2-3 for easy images and 4-5 for
999 difficult images, and the threshold was set to 2-4 for the speed focus condition and 6-8 for the
1000 accuracy focus condition. We then conducted a fine search near those values by changing the

1001 noise level from 2 to 5 with 0.1 increments and changing the threshold values from 2 to 8 with
1002 0.5 increments. The closest match to human accuracy was achieved for noise levels of 2.1 and
1003 4.1 for easy and difficult images, respectively, and a threshold value of 3 for the speed
1004 condition and 6 for the accuracy condition. With these threshold and noise parameters, the
1005 evidence accumulation process in RTNet executed 6.5 sampling steps on average, although the
1006 distributions were wide such that the actual steps varied from 1 to 35. However, the number of
1007 processing steps depended on the experimental manipulation with the number of steps
1008 increasing for both difficult images and with stress on accuracy over speed (the average
1009 number of steps observed for each condition correspond to the height of the bars for RTNet in
1010 Figure 4B).

1011
1012 We used a similar procedure to tune the parameters of CNet, BLNet and MSDNet. Note that the
1013 threshold value for CNet is the softmax evidence at the output layer. The coarse search was
1014 performed using threshold values between 0.5 and 0.9 with increments of 0.04. The results
1015 were closest to the human accuracy levels when the threshold was in range 0.79-0.83 for the
1016 speed focus condition, and 0.86-0.9 for the accuracy focus condition. We then performed a fine
1017 search in these ranges by incrementing the threshold by steps of 0.01. The closest match to
1018 human accuracy was achieved for a threshold value of 0.83 for the speed condition and 0.9 for
1019 the accuracy condition. For noise levels, the best match to human accuracy was obtained when
1020 the noise levels were set to 1.42 and 1.83 for easy and difficult images, respectively.

1021

1022 For BLNet, like CNet, the threshold value is the softmax evidence at the output layer. The
1023 coarse search was performed using threshold values between 0.1 and 0.95 with increments of
1024 0.2. The results were closest to the human accuracy levels when the threshold was in range 0.4-
1025 0.5 for the speed focus condition, and 0.9-0.95 for the accuracy focus condition. We then
1026 performed a fine search in these ranges by incrementing the threshold by steps of 0.05. The
1027 closest match to human accuracy was achieved for a threshold value of 0.4 for the speed
1028 condition and 0.95 for the accuracy condition. For noise levels, the best match to human
1029 accuracy was obtained when the noise levels were set to 0.55 and 1.2 for easy and difficult
1030 images, respectively.

1031
1032 The threshold value for MSDNet is the softmax evidence at each early exit. The coarse search
1033 was performed using the threshold values between 0.5 and 0.95 with increments of 0.05. The
1034 results were closest to the human accuracy levels when the threshold was in range 0.55-0.65
1035 for the speed focus condition, and 0.8-0.9 for the accuracy focus condition. We then performed
1036 a fine search in these ranges by incrementing the threshold by steps of 0.01. The closest match
1037 to human accuracy was achieved for a threshold value of 0.58 for the speed condition and 0.82
1038 for the accuracy condition. For finding the optimal noise levels, the best match was obtained
1039 when the noise levels were set to 1.9 and 3.0 for easy and difficult images, respectively.

1040
1041 Although we tried to closely match each network's accuracy with that of humans for each
1042 condition, our ability to do this was limited by the fact that a given SAT threshold must predict
1043 accuracies for both the easy and difficult conditions and a given noise level must predict

1044 accuracies for both the SAT conditions. Therefore, we obtained parameters estimates that
1045 resulted in closely (but not exactly) matched accuracies.

1046

1047 **Data availability**

1048 Behavioral data have been made publicly available at: <https://osf.io/akwty>.

1049

1050 **Code availability**

1051 All codes and trained models are publicly available at: <https://osf.io/akwty>.

1052

1053 **Acknowledgments**

1054 This work was supported by the National Institute of Health (award: R01MH119189) and Office
1055 of Naval Research (award: N00014-20-1-2622), both awarded to D.R. The funders had no role in
1056 study design, data collection and analysis, decision to publish or preparation of the manuscript
1057 We thank Sashank Varma and Paul Verhaeghen for helpful suggestions about the analyses, as
1058 well as Ana Shin and Himanaga Sahithi Pandi for assistance with data collection.

1059

1060 **Author Contributions**

1061 F.R. and M.S. performed research and analyzed the data; F.R. collected the data and wrote the
1062 first draft of the paper; M.S. and D.R. edited the paper; All authors designed research.

1063

1064 **Competing interests**

1065 The authors declare no competing interests.

1066

1067 **Figure Legends**

1068

1069 **Figure 1. Model architectures.** (A) RTNet architecture. Unlike standard CNNs, the connection
1070 weights in RTNet are not fixed but chosen from a distribution. A stimulus is processed multiple
1071 times by the network, each time using a different set of weights sampled randomly from a
1072 Bayesian neural network. The evidence from each processing step is accumulated and a
1073 decision is made when the evidence for one of the choices reaches a threshold. This
1074 architecture results in both stochastic decisions and variable RT. (B) Parallel cascaded network

1075 (CNet) architecture⁹. CNet introduce propagation delays between residual blocks (each of
1076 which consist of two convolutional layers). At each time step, all residual blocks parallelly
1077 receive inputs from lower blocks but due to propagation delays, earlier blocks achieve stable
1078 activations faster, whereas the later blocks require multiple processing steps to receive
1079 complete input and achieve stable activations. The network can generate a decision via the
1080 readout layer at any time step, although if the time step is less than the number of residual
1081 blocks, the decision will be based on partial input in later blocks. (C) BLNet architecture¹⁰. BLNet
1082 is a recurrent convolutional neural network (RCNN) with bottom-up and lateral recurrent
1083 connections. Time steps are defined in terms of the number of feedforward sweeps of the
1084 network. At each time-step, a layer receives feedforward input from the previous layer as well
1085 as recurrent input from its own activations at the previous time-step. The readout can be
1086 evaluated at each time-step to generate a response if it exceeds the threshold. The network's
1087 can trade off speed and accuracy as higher thresholds require more feedforward and recurrent
1088 computations, effectively resulting in a deeper network being unrolled across time. (D) Multi-
1089 scale dense network (MSDNet) architecture¹³. In this network, each hidden layer features its
1090 own classifier allowing MSDNet to make a separate decision after the processing in each layer is
1091 completed. This allows the network to stop processing an image early if that image can already
1092 be decoded from earlier layers of the network, thus resulting in different RTs for different
1093 images.

1094

1095

1096 **Figure 2. Experiment task.** (A) Trial structure. Each trial began with a fixation cross presented
1097 for 500 to 1000 ms, followed by an image of a hand-written digit from the MNIST dataset
1098 embedded in noise and presented for 300 ms. Only the digits 1-8 were used. Subjects reported
1099 their choice and confidence (on a 4-point scale) using separate, untimed button presses. Note
1100 that the noisy stimulus subtended a visual angle of 6.06° and did not cover the entire screen.
1101 (B) Experimental design. The experiment included four conditions such that subjects judged
1102 easy (low noise) or difficult (high noise) images while emphasizing either speed or accuracy.
1103 Each condition featured 120 unique images that were the same across all subjects (total of 480
1104 unique images in the experiment). In addition, each image was presented twice to allow the
1105 estimation of the stochasticity of human perceptual choices. Each subject thus completed a
1106 total of 960 trials. The images within the first and second sets of presentation were shown in a
1107 different random order.

1108

1109 **Figure 3. Decision stochasticity in humans and all networks.** Stochasticity of decisions made by
1110 (A) humans, (B) RTNet, (C) CNet (D) BLNet, and (E) MSDNet. Warm colors indicate that the same
1111 response was given both times an image was presented (whether the response was correct or
1112 incorrect), whereas cool colors indicate that different responses were given for the two image
1113 presentations (whether or not any of them was correct). Humans and RTNet exhibit stochastic
1114 decision-making with stochasticity increasing with task difficulty and speed stress. However,
1115 CNet, BLNet and MSDNet in their standard versions are fully deterministic. In the legend,
1116 "consistent (two correct)" refers to instances when the correct responses was given for both
1117 presentations of a given image, "consistent (zero correct)" refers to instances when the same

1118 incorrect choice was made both times, “inconsistent (one correct)” refers to instances when
1119 only one of the choices was correct, “inconsistent (zero correct)” refers to instances where
1120 different incorrect choices were made each time.

1121

1122

1123 **Figure 4. Behavioral effects shown by human subjects and the models.** (A) Accuracy for
1124 humans ($n = 60$) decreases when response speed is emphasized as well as for more difficult
1125 decisions. Both effects are exhibited by all the networks ($n = 60$ model instances). (B) RT for
1126 humans becomes shorter when response speed is emphasized, as well as for easier decisions.
1127 Both effects are also exhibited robustly by RTNet and BLNet. However, while both CNet and
1128 MSDNet produced a robust effect for the speed manipulation, they exhibited much smaller
1129 effects for the difficulty manipulation. RT for humans is measured in seconds and RT for the
1130 networks is measured in the number of steps over which evidence is accumulated (for RTNet),
1131 propagation steps (for CNet), feedforwards sweeps (for BLNet) and number of layers (for
1132 MSDNet). (C) RT distributions for a representative subject/model. (D) The skewness of RT
1133 distributions change across conditions. For humans and RTNet, the skewness of the RT
1134 distributions was higher for easier tasks and for accuracy focus. However, CNet, BLNet, and
1135 MSDNet showed clear deviations from the human pattern of results. (E) For humans, RTNet,
1136 CNet and BLNet, two-sided paired t-tests showed that error trials were associated with higher
1137 RT than correct trials. However, MSDNet showed the opposite pattern such that correct trials
1138 were associated with longer processing time. (F) Confidence for correct trials was higher than
1139 confidence for error trials for humans and all networks. For all panels, dots represent individual
1140 subjects; error bars show SEM. The p-values are derived from two-sided Wilcoxon’s signed rank
1141 tests (for mean RT comparisons) and two-sided paired t-tests (for all other measures).

1142

1143

1144 **Figure 5. Image-by-image correlation between human data and each model across all**
1145 **experimental conditions for individual subjects.** Correlation between data from individual
1146 human subjects ($n = 60$) and the group average, and correlations between data from individual
1147 subjects and the average of all 60 instances for RTNet, CNet, BLNet, and MSDNet. The
1148 correlations are computed separately for accuracy, RT, and confidence across all conditions.
1149 Critically, the correlation is stronger for RTNet than CNet, BLNet or MSDNet for each measure.
1150 The subject-to-group correlation provides an estimate of the noise ceiling for the network
1151 correlations. Dots represent individual subjects; error bars show SEM. The p-values are derived
1152 from two-sided paired t-tests.

1153

1154

1155

1156 **Figure 6. Image-by-image correlation between human data and each network within each**
1157 **experimental condition.** Correlation between data from individual human subjects ($n = 60$) and
1158 the group average, as well as the average of all 60 instances for RTNet, CNet, BLNet, and
1159 MSDNet. The correlations are computed separately for accuracy, RT, and confidence within
1160 each experimental condition: A) speed focus; easy, B) speed focus; difficult, C) accuracy focus;
1161 D) accuracy focus; difficult. The correlation is significantly stronger for RTNet compared to

1162 CNet (8/12 comparisons), BLNet (7/12 comparisons), and MSDNet (7/12 comparisons). RTNet
1163 never exhibits significantly weaker correlations than CNet, BLNet, or MSDNet. For all panels,
1164 dots represent individual subjects; error bars show SEM. The p-values are derived from two-
1165 sided paired t-tests.

1166

1167

1168 **Figure 7. Humans who are more similar to the group average are also more similar to each**
1169 **model.** (A) We observed a strong positive correlation between the subject-to-group and
1170 subject-to-RTNet similarity values for accuracy, RT, and confidence. This finding indicates that
1171 individual subjects whose behavior was more similar to the group average on per image basis
1172 were also more similar to the predictions made by RTNet. (B-D) Similar results were also
1173 observed for CNet, BLNet (except for accuracy correlations), and MSDNet, although these
1174 correlations tended to be lower than for RTNet. Dots represent individual subjects; lines depict
1175 best-fit regressions; shaded areas depict 95% confidence intervals around the regression
1176 estimate.

1177

1178

1179 **Figure 8. Comparison between individual subjects and the models in predicting the group**
1180 **data.** RTNet significantly outperformed individual human subjects ($n = 60$) in predicting group
1181 accuracy, RT, and confidence. On the other hand, CNet, BLNet and MSDNet were worse than
1182 individual humans in predicting accuracy, and CNet and MSDNet were worse in predicting RT.
1183 We note that the effect sizes are very small for RTNet's predictions of accuracy and MSDNet's
1184 predictions of RT. However, the effect was sufficiently consistent across subjects to make these
1185 results statistically significant (RTNet outperformed 44/60 subjects in predicting accuracy and
1186 MSDNet did worse than 43/60 subjects in predicting RT). For all panels, dots represent
1187 individual subjects; error bars show SEM. The p-values are derived from two-sided one-sample
1188 t-tests.

1189

1190

1191

1192

1193

1194 **References**

- 1195 1. Ratcliff, R. A theory of memory retrieval. *Psychol Rev* **85**, 59–108 (1978).
- 1196 2. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice
- 1197 decision tasks. *Neural Comput* **20**, 873–922 (2008).
- 1198 3. Ashby, F. G. & Townsend, J. T. Varieties of Perceptual Independence. *Psychol Rev* **93**,
- 1199 154–179 (1986).
- 1200 4. Green, D.M. and Swets, J. A. (1966). *Signal Detection Theory and Psychophysics*. (John
- 1201 Wiley, 1966).
- 1202 5. Kriegeskorte, N. Deep Neural Networks: A New Framework for Modeling Biological Vision
- 1203 and Brain Information Processing. <http://dx.doi.org/10.1146/annurev-vision-082114-035447> **1**, 417–446 (2015).
- 1204 6. Kriegeskorte, N. & Golan, T. Neural network models and deep learning. *Current Biology*
- 1205 **29**, R231–R236 (2019).
- 1206 7. Kietzmann, T. C., McClure, P. & Kriegeskorte, N. Deep Neural Networks in Computational
- 1207 Neuroscience. *Oxford Research Encyclopedia of Neuroscience* (2019)
- 1208 doi:10.1093/ACREFORE/9780190264086.013.46.
- 1209 8. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand
- 1210 sensory cortex. *Nature Neuroscience* **2016** *19*:3 **19**, 356–365 (2016).
- 1211 9. Iuzzolino, M. L., Mozer, M. C. & Bengio, S. Improving Anytime Prediction with Parallel
- 1212 Cascaded Networks and a Temporal-Difference Loss. *Adv Neural Inf Process Syst* **33**,
- 1213 27631–27644 (2021).
- 1214 10. Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural
- 1215 networks can explain flexible trading of speed and accuracy in biological vision. *PLoS*
- 1216 *Comput Biol* **16**, (2020).
- 1217 11. Zhang, L. *et al.* SCAN: A Scalable Neural Networks Framework Towards Compact and
- 1218 Efficient Models. *Adv Neural Inf Process Syst* **32**, (2019).
- 1219 12. Subramanian, A., Sizikova, E., Kumbhar, O., Majaj, N. & Pelli, D. G. Benchmarking dynamic
- 1220 neural-network models of the human speed-accuracy trade off. *J Vis* **22**, 4359–4359
- 1221 (2022).
- 1222 13. Huang, G. *et al.* Multi-Scale Dense Networks for Resource Efficient Image Classification.
- 1223 *6th International Conference on Learning Representations, ICLR 2018 - Conference Track*
- 1224 *Proceedings* (2017).
- 1225 14. Kalanthroff, E., Davelaar, E. J., Henik, A., Goldfarb, L. & Usher, M. Task conflict and
- 1226 proactive control: A computational theory of the Stroop task. *Psychol Rev* **125**, 59–82
- 1227 (2018).
- 1228 15. Mewhort, D. J. K., Braun, J. G. & Heathcote, A. Response Time Distributions and the
- 1229 Stroop Task: A Test of the Cohen, Dunbar, and McClelland (1990) Model. *J Exp Psychol*
- 1230 *Hum Percept Perform* **18**, 872–882 (1992).
- 1231 16. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a
- 1232 parallel distributed processing account of the Stroop effect. *Psychol Rev* **97**, 332–361
- 1233 (1990).
- 1234

1235 17. Koivisto, M., Railo, H., Revonsuo, A., Vanni, S. & Salminen-Vaparanta, N. Recurrent
1236 Processing in V1/V2 Contributes to Categorization of Natural Scenes. *The Journal of*
1237 *Neuroscience* **31**, 2488 (2011).

1238 18. Tang, H. *et al.* Recurrent computations for visual pattern completion. *Proc Natl Acad Sci*
1239 *U S A* **115**, 8835–8840 (2017).

1240 19. Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward
1241 and recurrent processing. *Trends Neurosci* **23**, 571–579 (2000).

1242 20. Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is
1243 Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition.
1244 *Neuron* **109**, 164-176.e5 (2021).

1245 21. Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits
1246 are critical to the ventral stream's execution of core object recognition behavior. *Nature*
1247 *Neuroscience* **2019 22:6** **22**, 974–983 (2019).

1248 22. Goetschalckx, L. *et al.* Computing a human-like reaction time metric from stable
1249 recurrent vision models. (2023).

1250 23. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal
1251 decision making: A formal analysis of models of performance in two-alternative forced-
1252 choice tasks. *Psychol Rev* **113**, 700–765 (2006).

1253 24. Heathcote, A. & Matzke, D. Winner takes all! What are race models, and why and how
1254 should psychologists use them? *Curr Dir Psychol Sci* (2022).

1255 25. Vickers, D. Evidence for an Accumulator Model of Psychophysical Discrimination.
1256 <http://dx.doi.org/10.1080/00140137008931117> **13**, 37–58 (2007).

1257 26. Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential Sampling Models in
1258 Cognitive Neuroscience: Advantages, Applications, and Extensions. *Annu Rev Psychol* **67**,
1259 641–66 (2016).

1260 27. Rahnev, D. Confidence in the Real World. *Trends Cogn Sci* **24**, 590–591 (2020).

1261 28. Yeon, J. & Rahnev, D. The suboptimality of perceptual decision making with multiple
1262 alternatives. *Nature Communications* **2020 11:1** **11**, 1–12 (2020).

1263 29. Drugowitsch, J., Wyart, V., Devauchelle, A. D. & Koechlin, E. Computational Precision of
1264 Mental Inference as Critical Source of Human Choice Suboptimality. *Neuron* **92**, 1398–
1265 1411 (2016).

1266 30. Li, H. H. & Ma, W. J. Confidence reports in decision-making with multiple alternatives
1267 violate the Bayesian confidence hypothesis. *Nat Commun* **11**, 1–11 (2020).

1268 31. Churchland, A. K., Kiani, R. & Shadlen, M. N. Decision-making with multiple alternatives.
1269 *Nat Neurosci* **11**, 693 (2008).

1270 32. Deng, L. The MNIST database of handwritten digit images for machine learning research.
1271 *IEEE Signal Process Mag* **29**, 141–142 (2012).

1272 33. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep
1273 Convolutional Neural Networks. *Advances in Neural Information Processing Systems* **25**
1274 (*NIPS 2012*)
1275 <https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html> (2012).

1276 34. Geirhos, R. *et al.* Generalisation in humans and deep neural networks. *Advances in*
1277 *Neural Information Processing Systems* **31**

1279 https://proceedings.neurips.cc/paper/2018/hash/0937fb5864ed06ffb59ae5f9b5ed67a9-
1280 Abstract.html (2018).

1281 35. Geirhos, R. *et al.* Comparing deep neural networks against humans: object recognition
1282 when the signal gets weaker. (2017) doi:10.48550/arxiv.1706.06969.

1283 36. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not Noisy, Just Wrong: The
1284 Role of Suboptimal Inference in Behavioral Variability. *Neuron* **74**, 30–39 (2012).

1285 37. Renart, A. & Machens, C. K. Variability in neural activity and behavior. *Curr Opin*
1286 *Neurobiol* **25**, 211–220 (2014).

1287 38. Heitz, R. P. The speed-accuracy trade off: history, physiology, methodology, and
1288 behavior. *Front Neurosci* **8**, 150 (2014).

1289 39. Heitz, R. P. & Schall, J. D. Neural mechanisms of speed-accuracy trade off. *Neuron* **76**,
1290 616–28 (2012).

1291 40. Ratcliff, R. & Rouder, J. N. Modeling Response Times for Two-Choice Decisions. *Psychol*
1292 *Sci* **9**, 347–356 (1998).

1293 41. Wagenmakers, E.-J. & Brown, S. On the Linear Relation Between the Mean and the
1294 Standard Deviation of a Response Time Distribution. *Psychol Rev* **114**, 830–841 (2007).

1295 42. Brown, S. & Heathcote, A. The simplest complete model of choice response time: Linear
1296 ballistic accumulation. *Cogn Psychol* **57**, 153–178 (2008).

1297 43. Forstmann, B. U. *et al.* Striatum and pre-SMA facilitate decision-making under time
1298 pressure. *Proceedings of the National Academy of Sciences* **105**, 17538–17542 (2008).

1299 44. Luce, R. D. *Response Times*. (Oxford University Press, New York, 1986).
1300 doi:10.1093/acprof:oso/9780195070019.001.0001.

1301 45. Ratcliff, R. A diffusion model account of response time and accuracy in a brightness
1302 discrimination task: fitting real data and failing to fit fake but plausible data. *Psychon Bull*
1303 *Rev* **9**, 278–291 (2002).

1304 46. Rahnev, D. Visual metacognition: Measures, models, and neural correlates. *Am Psychol*
1305 **76**, 1445–1453 (2021).

1306 47. Wyart, V. & Koechlin, E. Choice variability and suboptimality in uncertain environments.
1307 *Curr Opin Behav Sci* **11**, 109–115 (2016).

1308 48. Findling, C. & Wyart, V. Computation noise in human learning and decision-making:
1309 origin, impact, function. *Curr Opin Behav Sci* **38**, 124–132 (2021).

1310 49. Rafiei, F. & Rahnev, D. Qualitative speed-accuracy tradeoff effects that cannot be
1311 explained by the diffusion model under the selective influence assumption. *Scientific*
1312 *Reports* **2021** *11:1* **11**, 1–19 (2021).

1313 50. Gold, J. I. & Shadlen, M. N. The Neural Basis of Decision Making. (2007)
1314 doi:10.1146/annurev.neuro.29.051605.113038.

1315 51. Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and
1316 error monitoring. *Philosophical Transactions of the Royal Society B: Biological Sciences*
1317 **367**, 1310–1321 (2012).

1318 52. Heathcote, A. & Love, J. Linear deterministic accumulator models of simple choice. *Front*
1319 *Psychol* **3**, 292 (2012).

1320 53. Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural
1321 networks can explain flexible trading of speed and accuracy in biological vision. *PLoS*
1322 *Comput Biol* **16**, e1008215 (2020).

1323 54. Ratcliff, R. & Smith, P. L. A Comparison of Sequential Sampling Models for Two-Choice
1324 Reaction Time. *Psychol Rev* **111**, 333–367 (2004).

1325 55. Brown, S. & Heathcote, A. A ballistic model of choice response time. *Psychol Rev* **112**,
1326 117–128 (2005).

1327 56. Tillman, G., Van Zandt, T. & Logan, G. D. Sequential sampling models without random
1328 between-trial variability: the racing diffusion model of speeded decision making. *Psychon
1329 Bull Rev* **27**, 911–936 (2020).

1330 57. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. Theta Oscillations Provide Temporal
1331 Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop. *Neuron* **64**,
1332 267–280 (2009).

1333 58. Nayebi, A. *et al.* Task-Driven Convolutional Recurrent Models of the Visual System. *Adv
1334 Neural Inf Process Syst* **2018-December**, 5290–5301 (2018).

1335 59. Issa, E. B., Cadieu, C. F. & DiCarlo, J. J. Neural dynamics at successive stages of the ventral
1336 visual stream are consistent with hierarchical error signals. *Elife* **7**, (2018).

1337 60. Kaufman, M. T. & Churchland, A. K. Sensory noise drives bad decisions. *Nature* **2013**
1338 496:7444 **496**, 172–173 (2013).

1339 61. Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally
1340 accumulate evidence for decision-making. *Science* **340**, 95–98 (2013).

1341 62. Osborne, L. C., Lisberger, S. G. & Bialek, W. A sensory source for motor variation. *Nature
1342 2005* **437:7057** **437**, 412–416 (2005).

1343 63. Huk, A. C. & Shadlen, M. N. Neural Activity in Macaque Parietal Cortex Reflects Temporal
1344 Integration of Visual Motion Signals during Perceptual Decision Making. *Journal of
1345 Neuroscience* **25**, 10420–10436 (2005).

1346 64. Huk, A. C., Katz, L. N. & Yates, J. L. The Role of the Lateral Intraparietal Area in (the Study
1347 of) Decision Making. *Annu Rev Neurosci* **40**, 349 (2017).

1348 65. Bahl, A. & Engert, F. Neural circuits for evidence accumulation and decision making in
1349 larval zebrafish. *Nature Neuroscience* **2019** **23:1** **23**, 94–102 (2019).

1350 66. Hanks, T. D., Kiani, R. & Shadlen, M. N. A neural mechanism of speed-accuracy tradeoff in
1351 macaque area LIP. *Elife* **2014**, (2014).

1352 67. van Bergen, R. S. & Kriegeskorte, N. Going in circles is the way forward: the role of
1353 recurrence in visual inference. *Current Opinion in Neurobiology* vol. 65 176–193 Preprint
1354 at <https://doi.org/10.1016/j.conb.2020.11.009> (2020).

1355 68. Spoerer, C. J., McClure, P. & Kriegeskorte, N. Recurrent Convolutional Neural Networks: A
1356 Better Model of Biological Object Recognition. *Front Psychol* **0**, 1551 (2017).

1357 69. Kietzmann, T. C. *et al.* Recurrence is required to capture the representational dynamics
1358 of the human visual system. *Proceedings of the National Academy of Sciences* **116**,
1359 21854–21863 (2019).

1360 70. Schwarzschild, A. *et al.* Can You Learn an Algorithm? Generalizing from Easy to Hard
1361 Problems with Recurrent Networks. *Advances in Neural Information Processing Systems
1362 34*
1363 <https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html> (2021).

1364 71. Zhou, D. *et al.* Least-to-Most Prompting Enables Complex Reasoning in Large Language
1365 Models. (2022) doi:10.48550/arxiv.2205.10625.

1366

1367 72. Saltelli, A. *et al.* Sensitivity Analysis for Neural Networks. *Natural Computing. Risk*
1368 *Analysis* **159**, 179–201 (2009).

1369 73. Ko, J. H., Kim, D., Na, T., Kung, J. & Mukhopadhyay, S. Adaptive weight compression for
1370 memory-efficient neural networks. *Proceedings of the 2017 Design, Automation and Test*
1371 *in Europe, DATE 2017* 199–204 (2017) doi:10.23919/DATE.2017.7926982.

1372 74. Koutník, J., Gomez, F. & Schmidhuber, J. Evolving neural networks in compressed weight
1373 space. *Proceedings of the 12th Annual Genetic and Evolutionary Computation*
1374 *Conference, GECCO '10* 619–625 (2010) doi:10.1145/1830483.1830596.

1375 75. Kung, J., Kim, D. & Mukhopadhyay, S. A power-aware digital feedforward neural network
1376 platform with backpropagation driven approximate synapses. *Proceedings of the*
1377 *International Symposium on Low Power Electronics and Design 2015-September*, 85–90
1378 (2015).

1379 76. Tsvetkov, C., Malhotra, G., Evans, B. D. & Bowers, J. S. The role of capacity constraints in
1380 Convolutional Neural Networks for learning random versus natural data. *Neural Netw*
1381 **161**, 515–524 (2023).

1382 77. Malhotra, G., Leslie, D. S., Ludwig, C. J. H. & Bogacz, R. Overcoming indecision by
1383 changing the decision boundary. *J Exp Psychol Gen* **146**, 776 (2017).

1384 78. Drugowitsch, J., Moreno-Bote, R. N., Churchland, A. K., Shadlen, M. N. & Pouget, A. The
1385 Cost of Accumulating Evidence in Perceptual Decision Making. *Journal of Neuroscience*
1386 **32**, 3612–3628 (2012).

1387 79. Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision making. *Behavioral and*
1388 *Brain Sciences* **41**, (2018).

1389 80. Evans, N. J., Bennett, A. J. & Brown, S. D. Optimal or not; depends on the task. *Psychon*
1390 *Bull Rev* **26**, 1027–1034 (2019).

1391 81. Brainard, D. H. The Psychophysics Toolbox. *Spat Vis* **10**, 433–436 (1997).

1392 82. Chen, Y. C. A tutorial on kernel density estimation and recent advances.
<https://doi.org/10.1080/24709360.2017.1396742> **1**, 161–187 (2017).

1393 83. Waskom, M. L. seaborn: statistical data visualization. *J Open Source Softw* **6**, 3021 (2021).

1394 84. Jospin, L. V., Buntine, W., Boussaid, F., Laga, H. & Bennamoun, M. Hands-on Bayesian
1395 Neural Networks -- a Tutorial for Deep Learning Users. (2020).

1396 85. Paszke, A. *et al.* PyTorch: An Imperative Style, High-Performance Deep Learning Library.
1397 *Advances in Neural Information Processing Systems 32 (NeurIPS)*
1398 <https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html> (2019).

1399 86. Bingham, E. *et al.* Pyro: Deep Universal Probabilistic Programming. *Journal of Machine*
1400 *Learning Research* **20**, 1–6 (2019).

1401 87. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. *2nd International*
1402 *Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings*
1403 (2013) doi:10.48550/arxiv.1312.6114.

1404 88. Kingma, D. P. & Ba, J. L. Adam: A Method for Stochastic Optimization. *3rd International*
1405 *Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings*
1406 (2014) doi:10.48550/arxiv.1412.6980.

1407 89. Deng, J. *et al.* ImageNet: A large-scale hierarchical image database. 248–255 (2010)
1408 doi:10.1109/CVPR.2009.5206848.

1409

1410

1411 90. Kumbhar, O., Sizikova, E., Majaj, N. & Pelli, D. G. Anytime Prediction as a Model of
1412 Human Reaction Time. (2020).

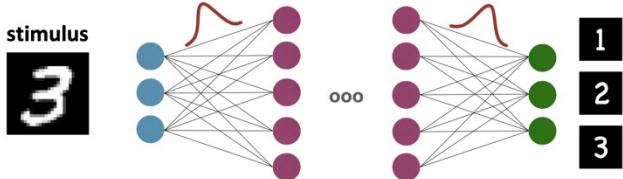
1413 91. Huang, G. *et al.* Multi-Scale Dense Networks for Resource Efficient Image Classification.
1414 *6th International Conference on Learning Representations, ICLR 2018 - Conference Track*
1415 *Proceedings* (2017).

1416

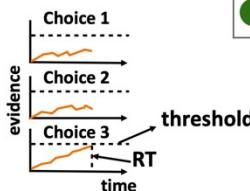
A)

RTNet

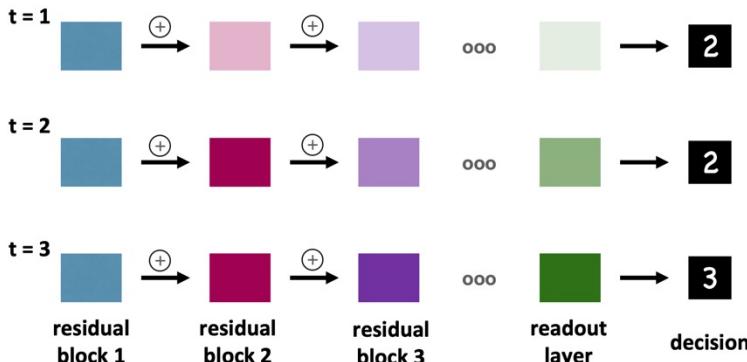
Stage 1: Sample unique feedforward network from BNN



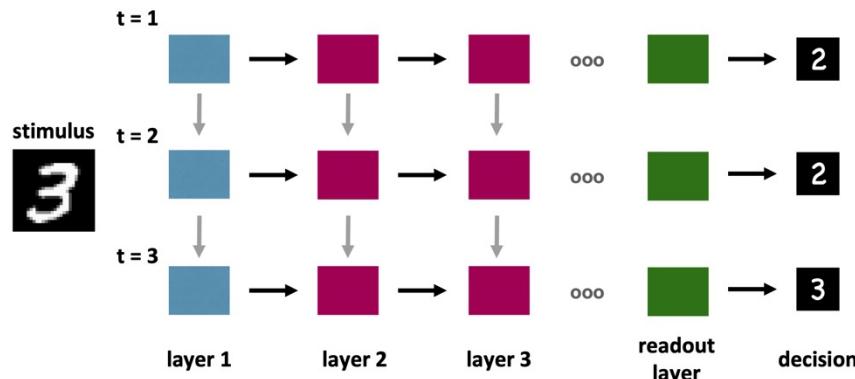
Stage 2: Evidence accumulation



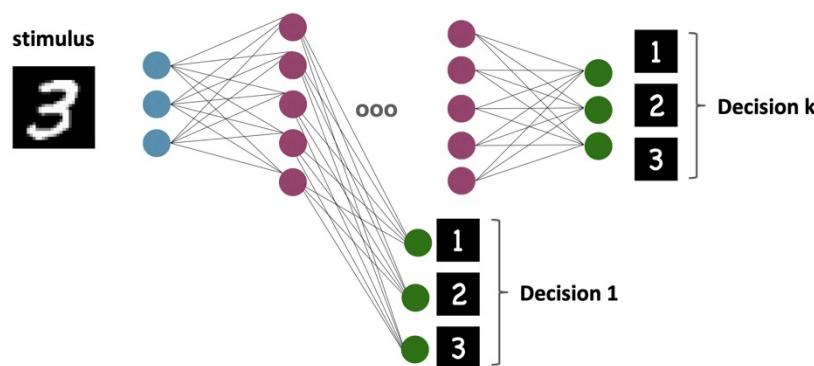
B)

CNet

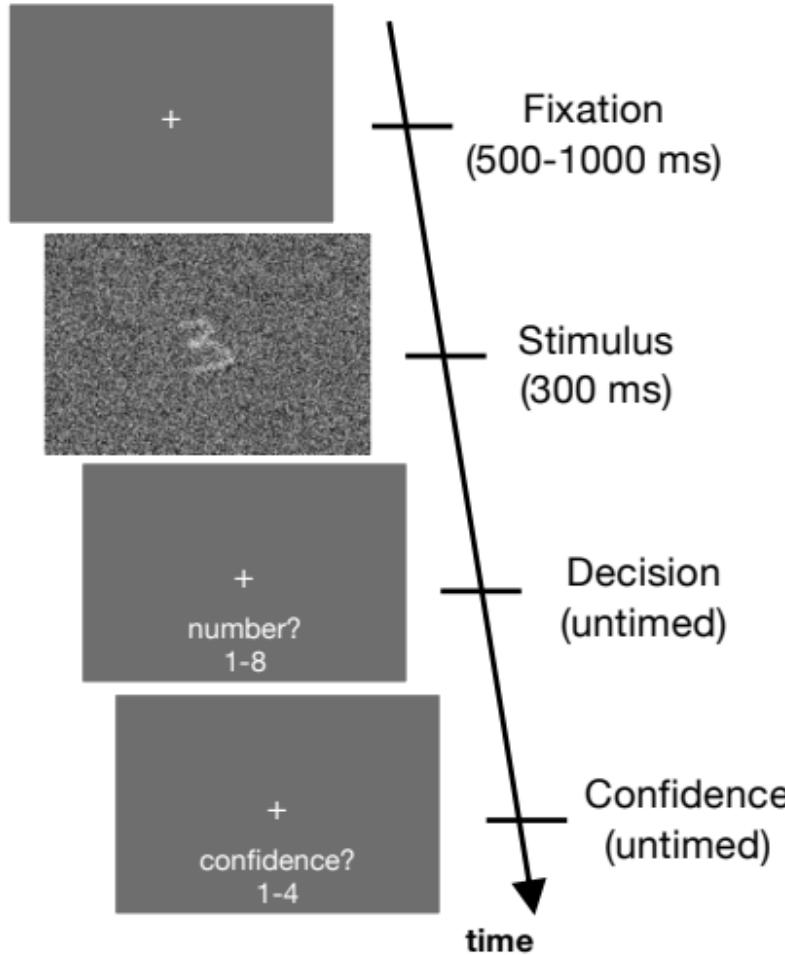
C)

BLNet

D)

MSDNet

A)



B)

Conditions

Cond 1

- **Easy** (low noise)
- **Speed stress**

Cond 2

- **Easy** (low noise)
- **Accuracy stress**

Cond 3

- **Difficult** (high noise)
- **Speed stress**

Cond 4

- **Difficult** (high noise)
- **Accuracy stress**

First presentation

Second presentation

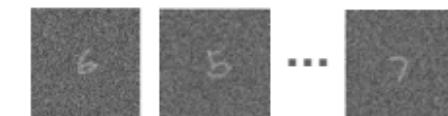
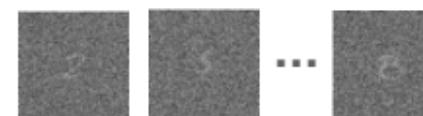
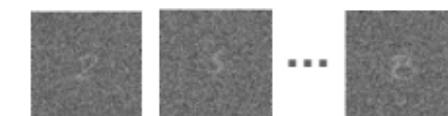
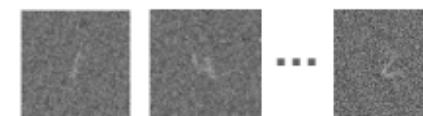
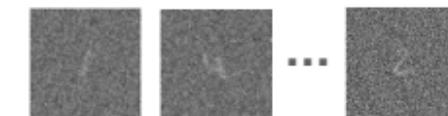


Image 1

Image 2

Image 120

Image 1

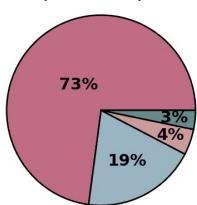
Image 2

Image 120

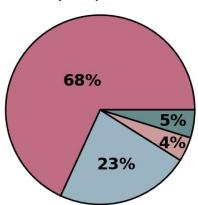
A)**Stochasticity in human decisions**

consistent (two correct)
 inconsistent (one-correct)
 consistent (zero correct)
 inconsistent (zero-correct)

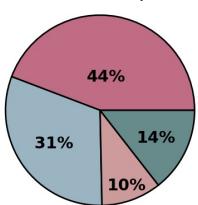
Easy + Accuracy focus



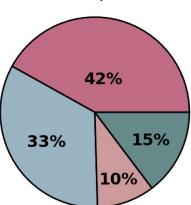
Easy + Speed focus



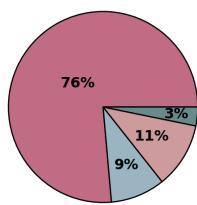
Difficult + Accuracy focus



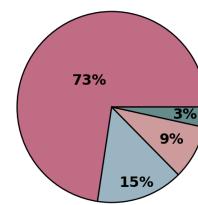
Difficult + Speed focus

**B)****Stochasticity in RTNet decisions**

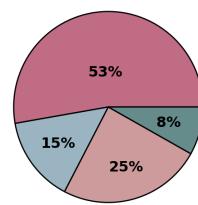
Easy + Accuracy focus



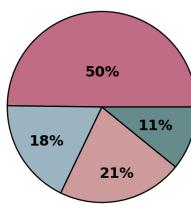
Easy + Speed focus



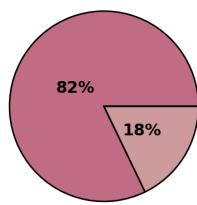
Difficult + Accuracy focus



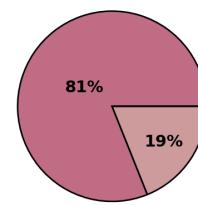
Difficult + Speed focus

**C)****Stochasticity in CNet decisions**

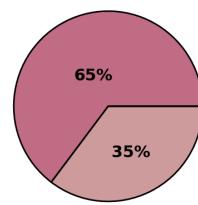
Easy + Accuracy focus



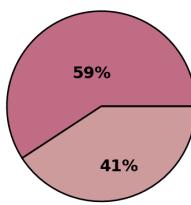
Easy + Speed focus



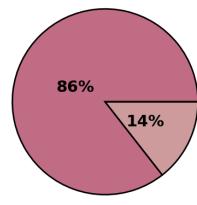
Difficult + Accuracy focus



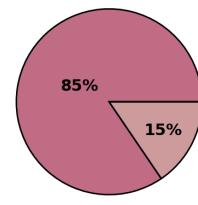
Difficult + Speed focus

**D)****Stochasticity in BLNet decisions**

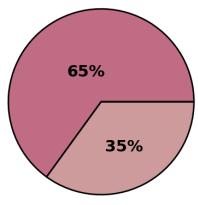
Easy + Accuracy focus



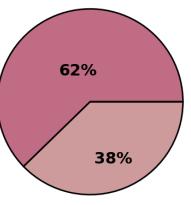
Easy + Speed focus



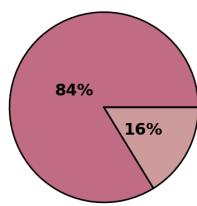
Difficult + Accuracy focus



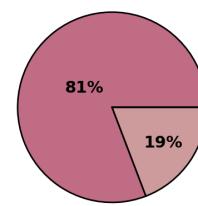
Difficult + Speed focus

**E)****Stochasticity in MSDNet decisions**

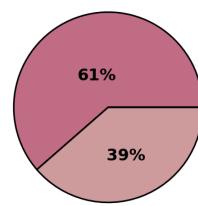
Easy + Accuracy focus



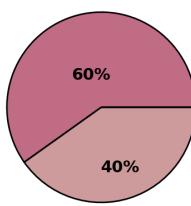
Easy + Speed focus

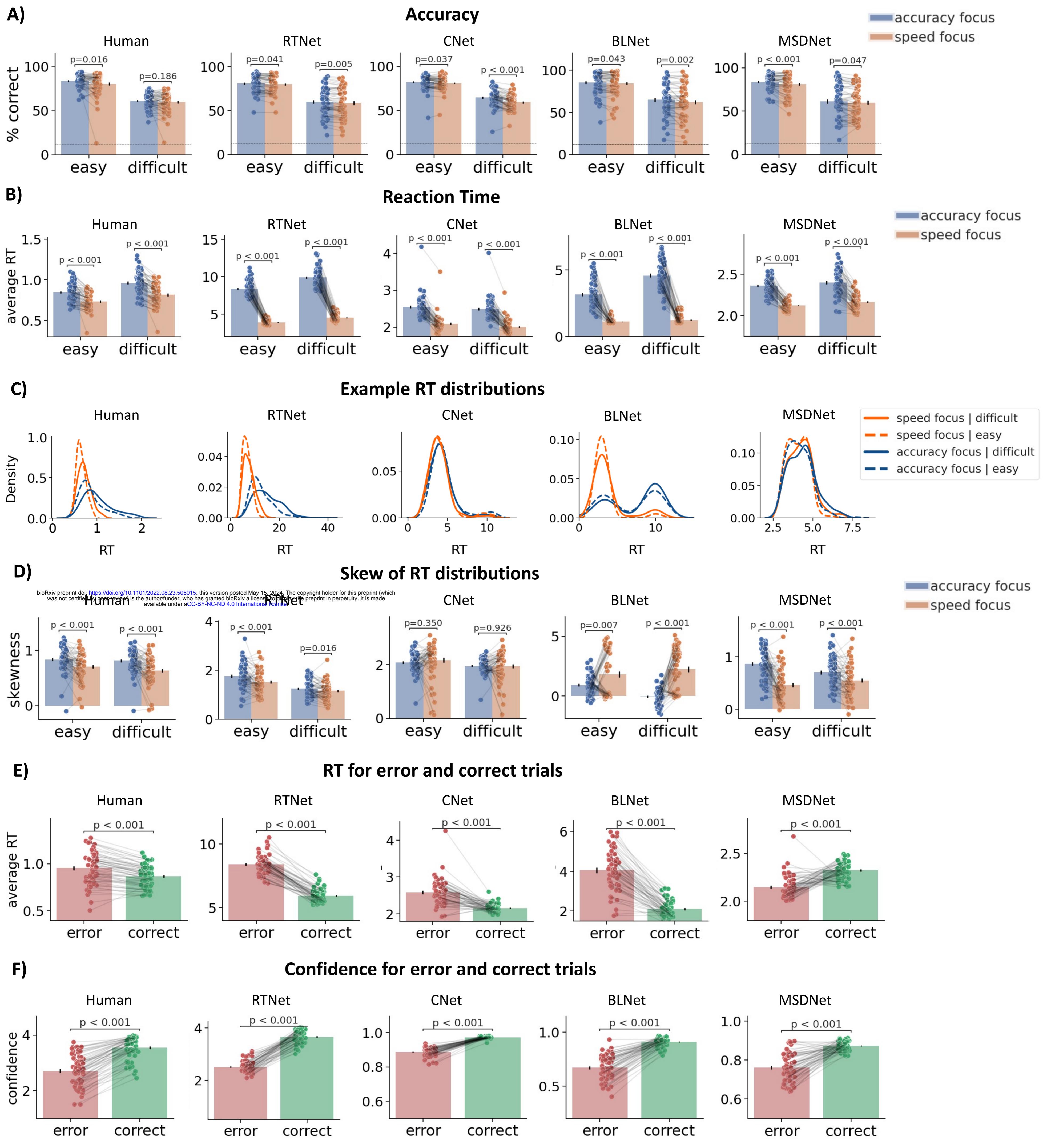


Difficult + Accuracy focus

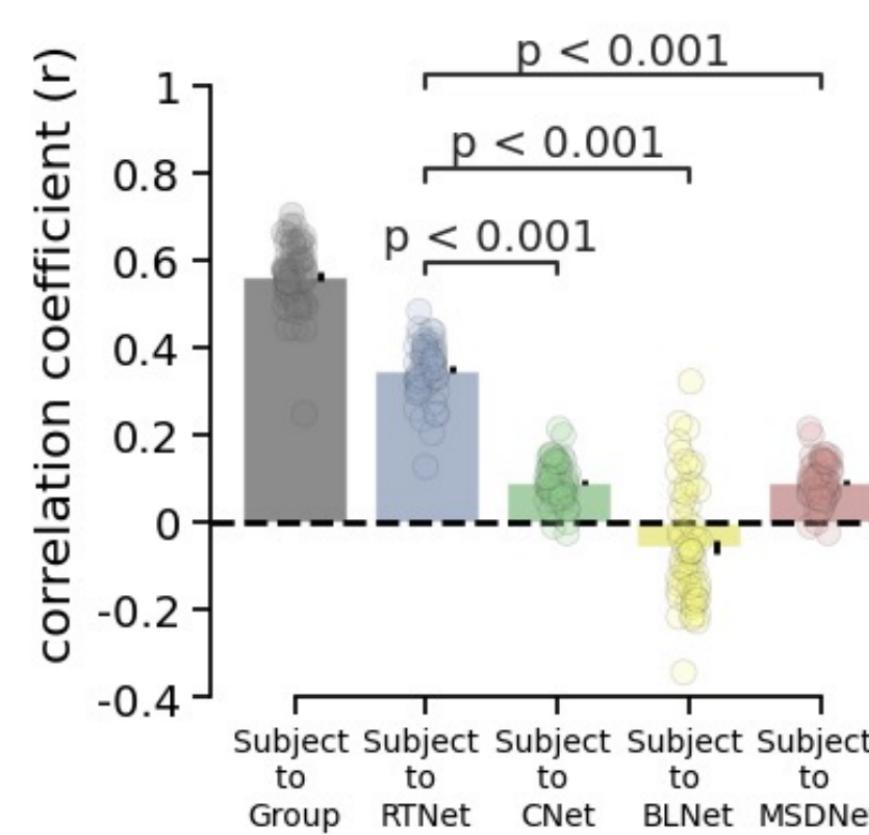


Difficult + Speed focus

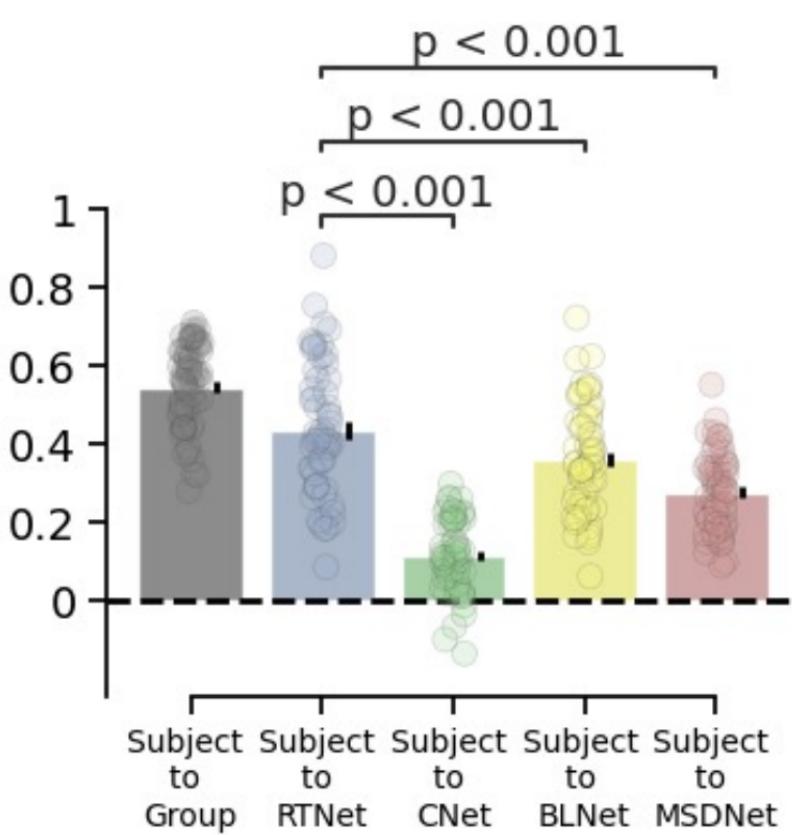




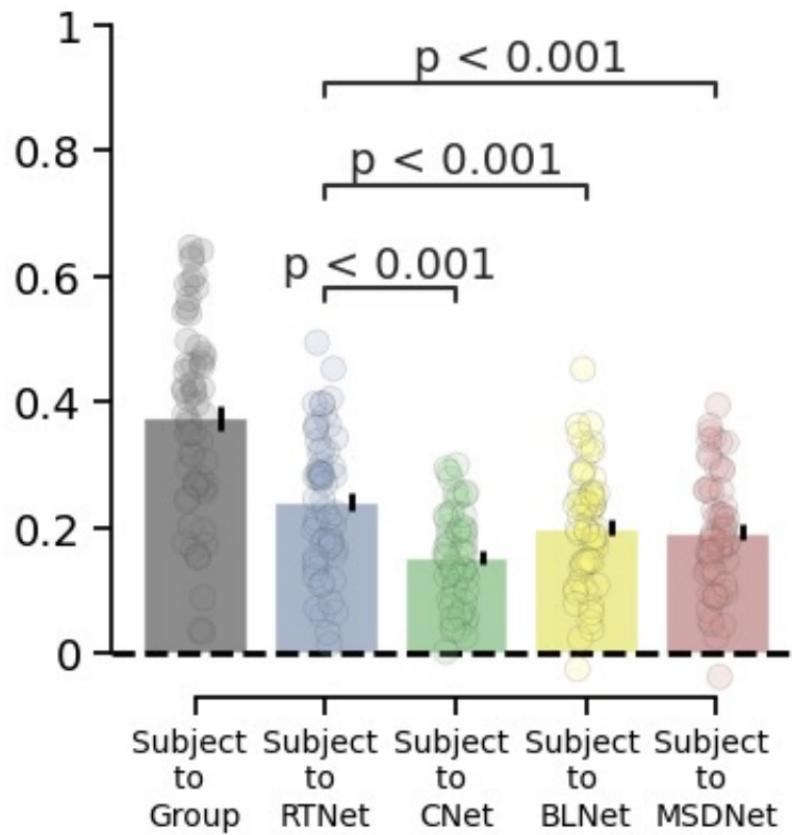
Accuracy

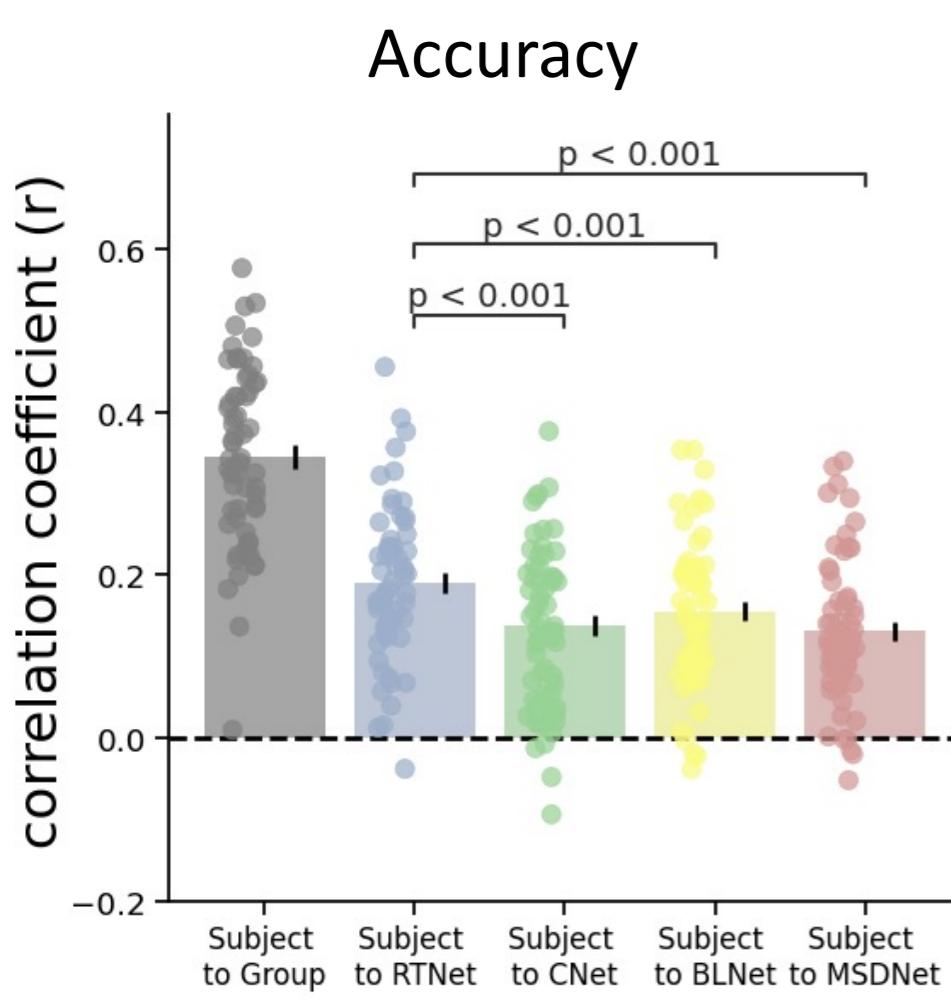
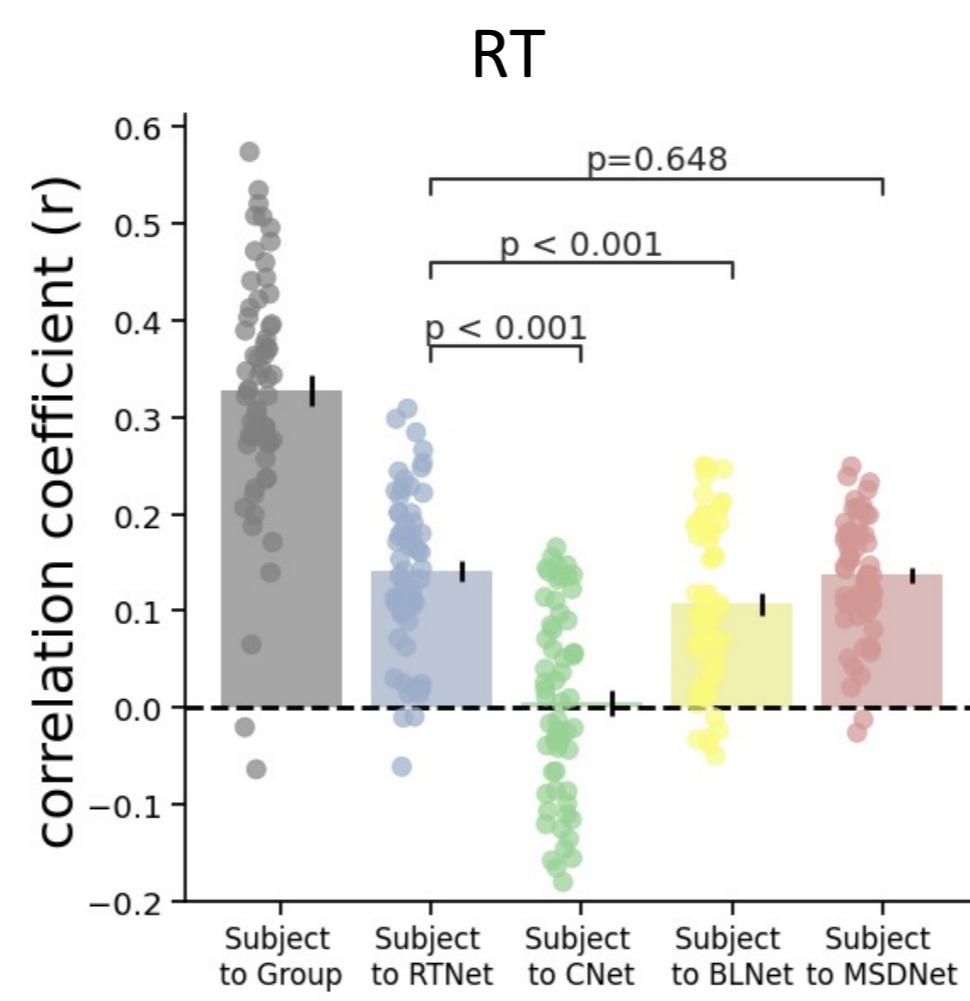
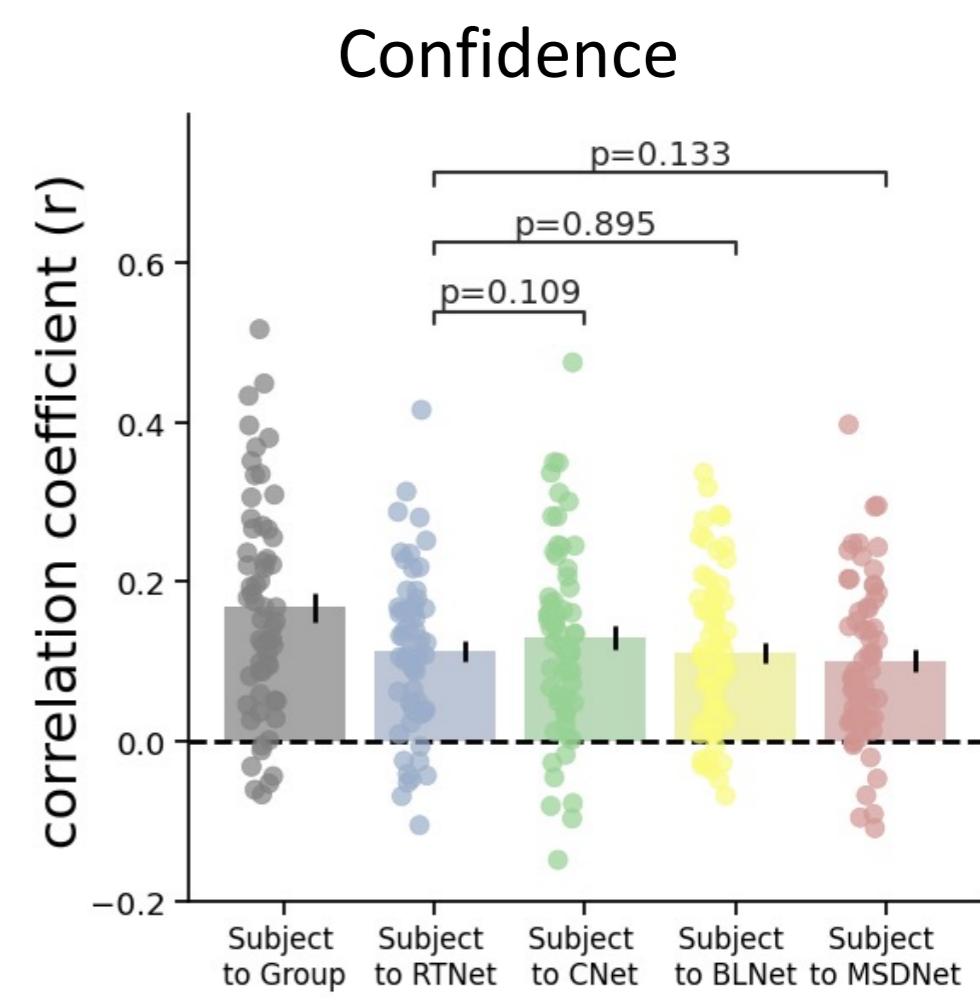
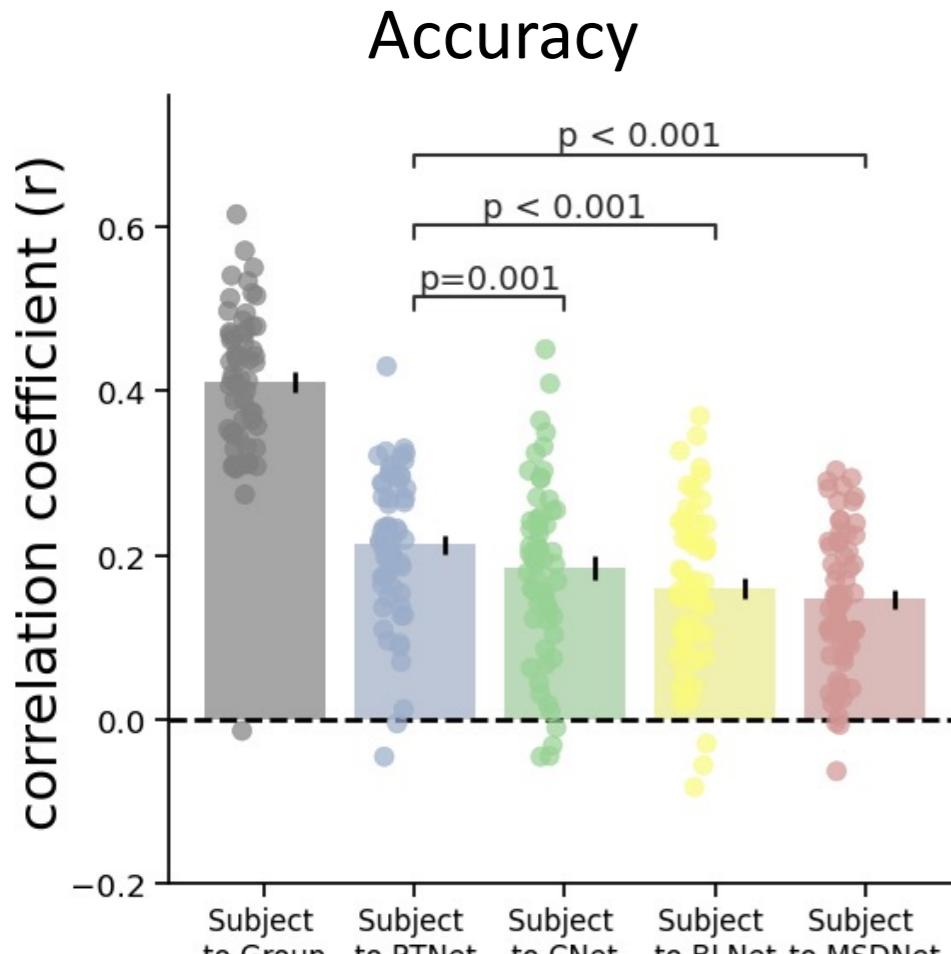
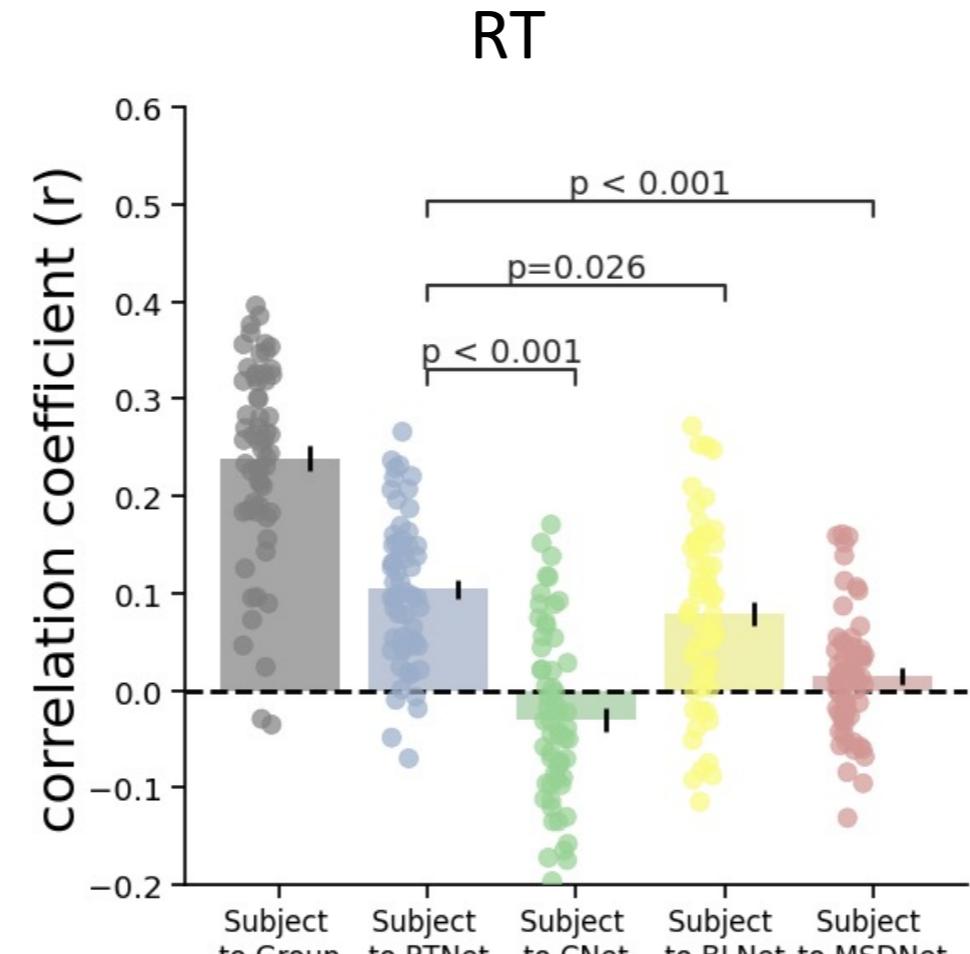
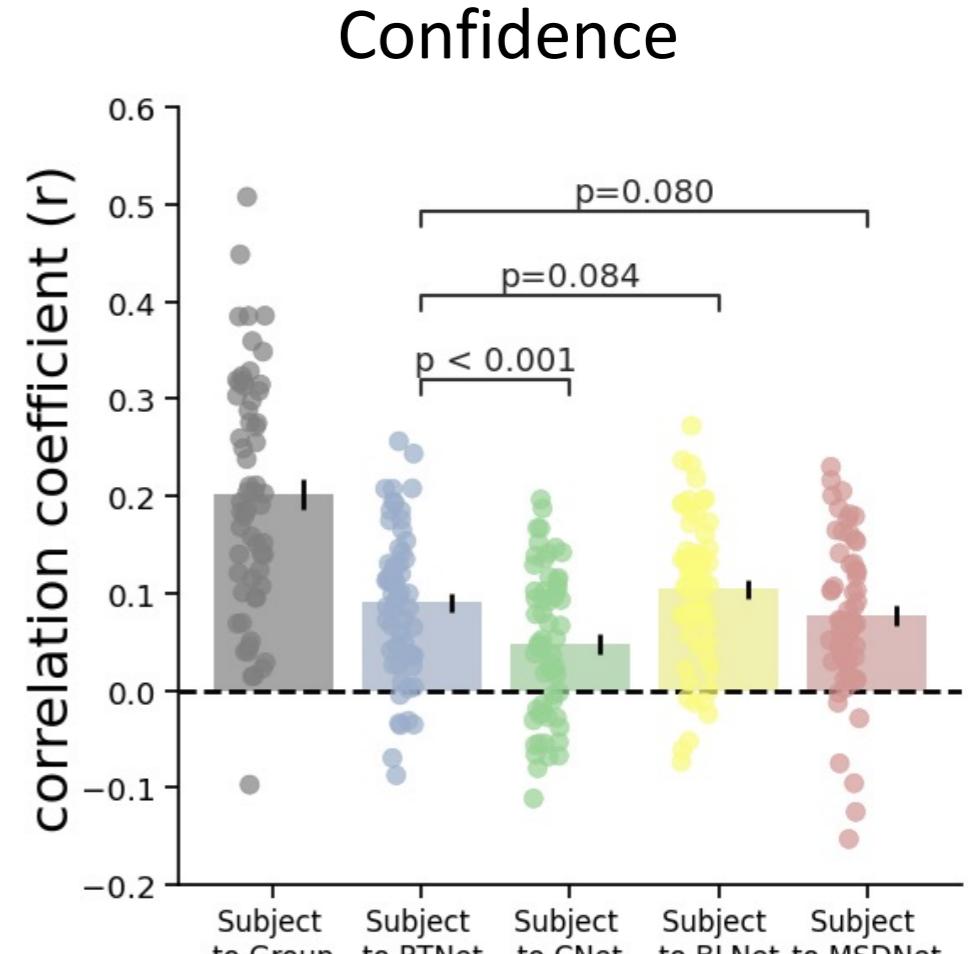
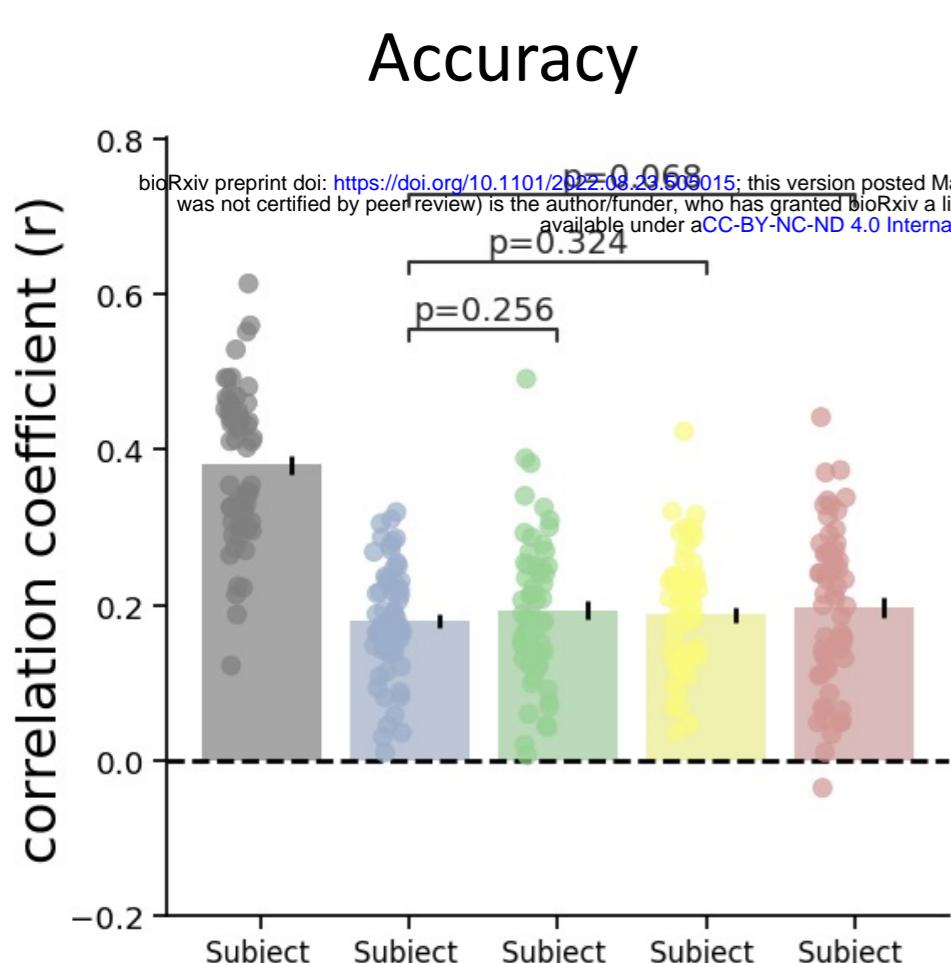
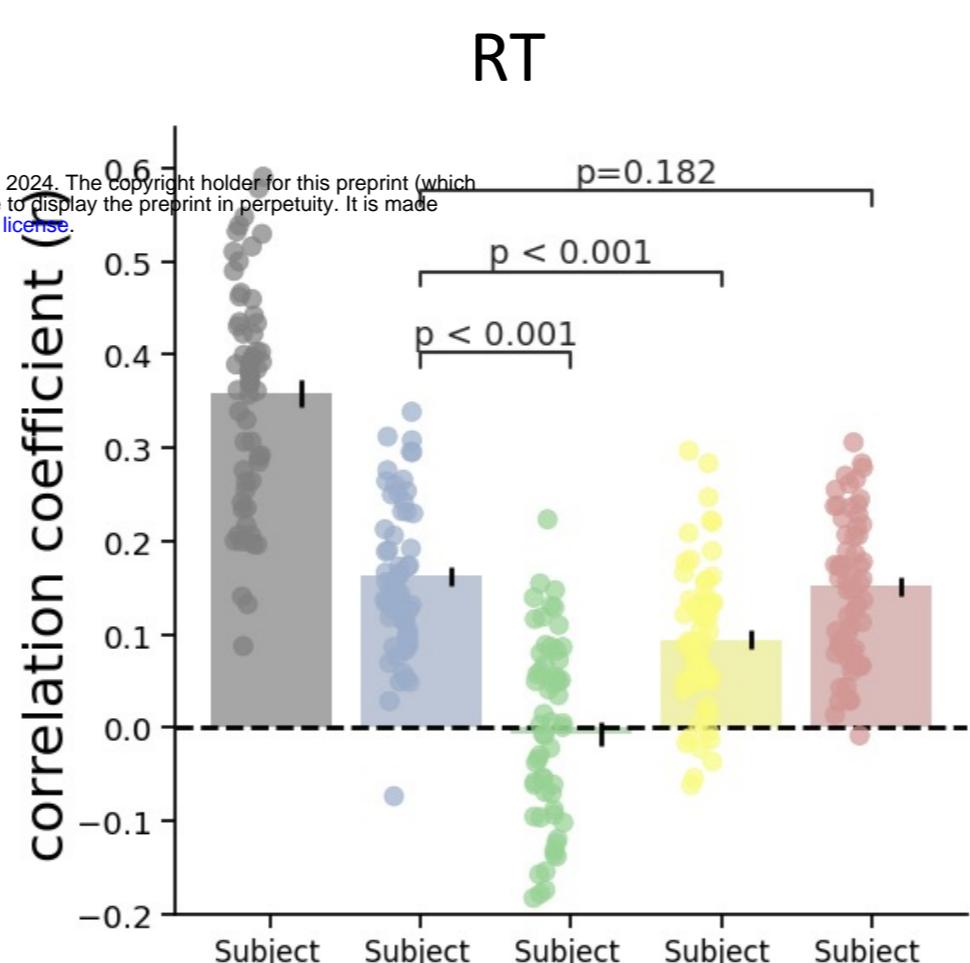
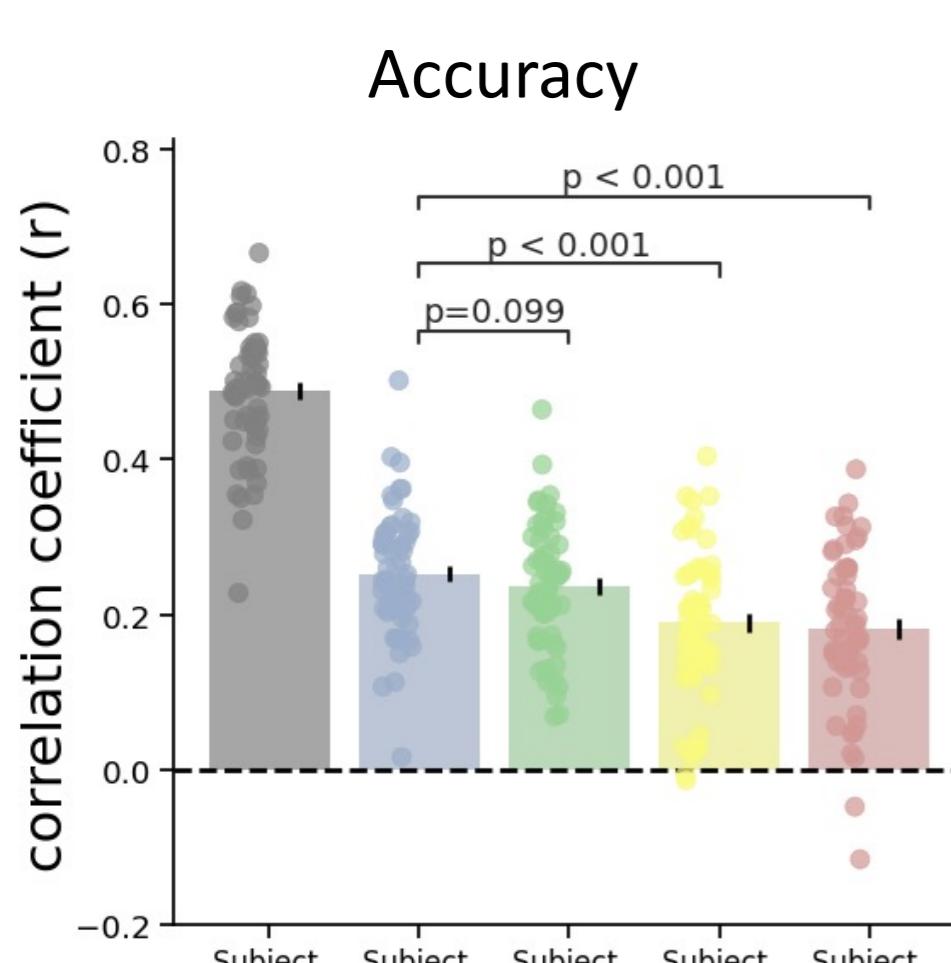
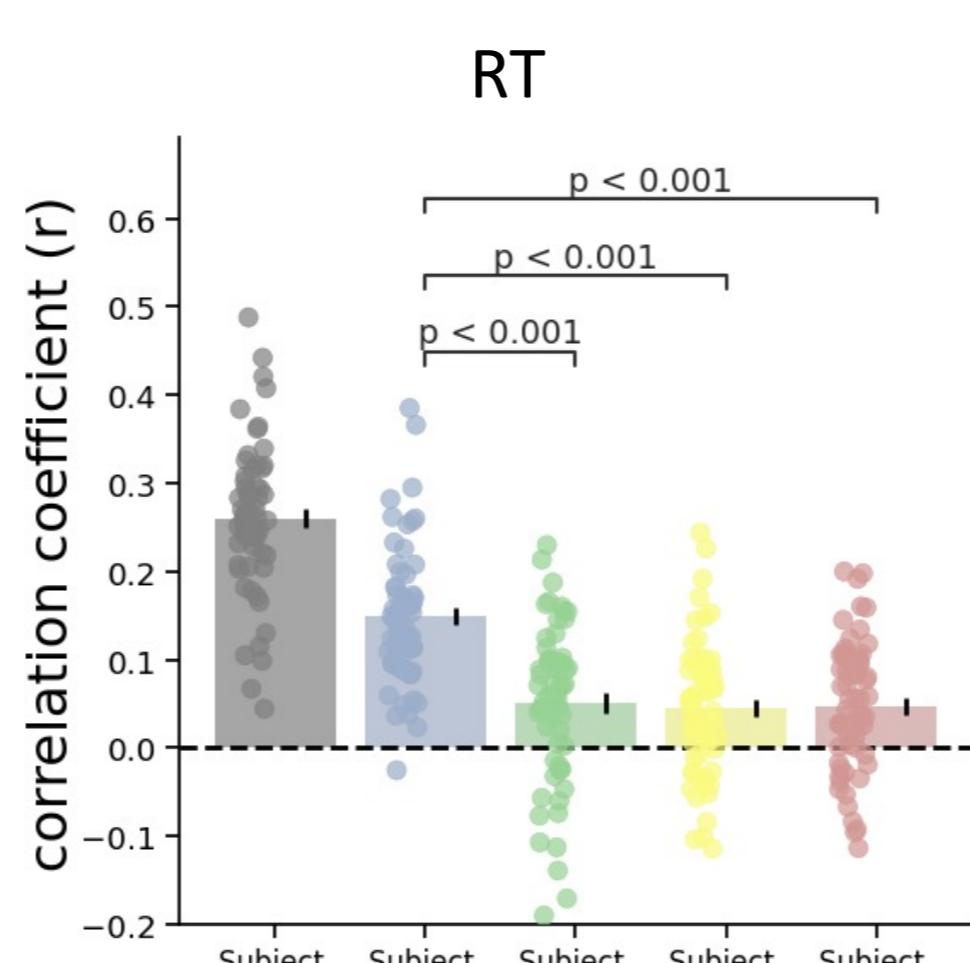
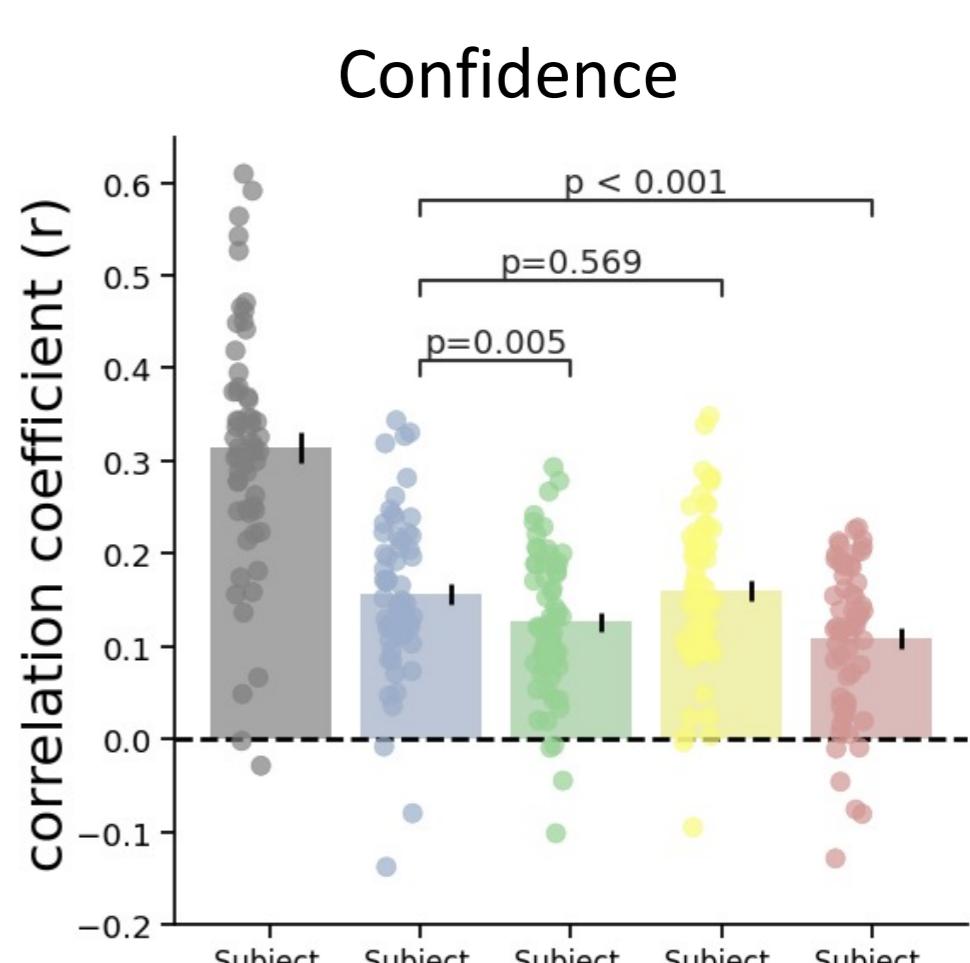


RT

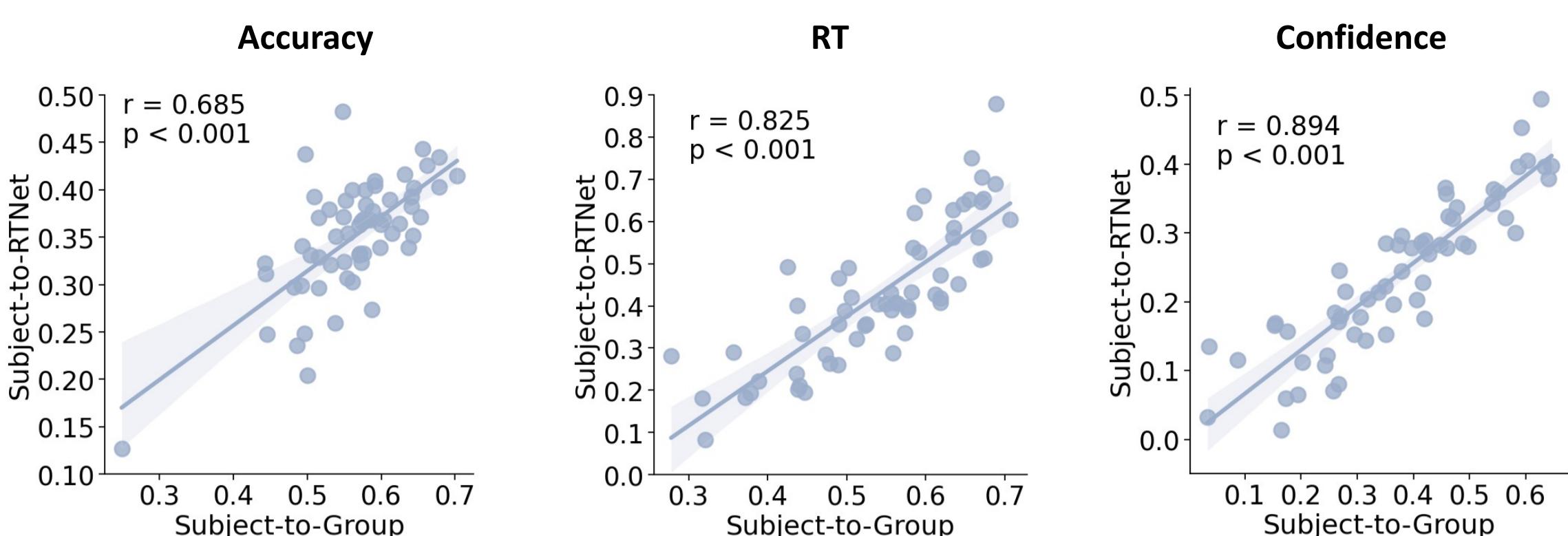


Confidence

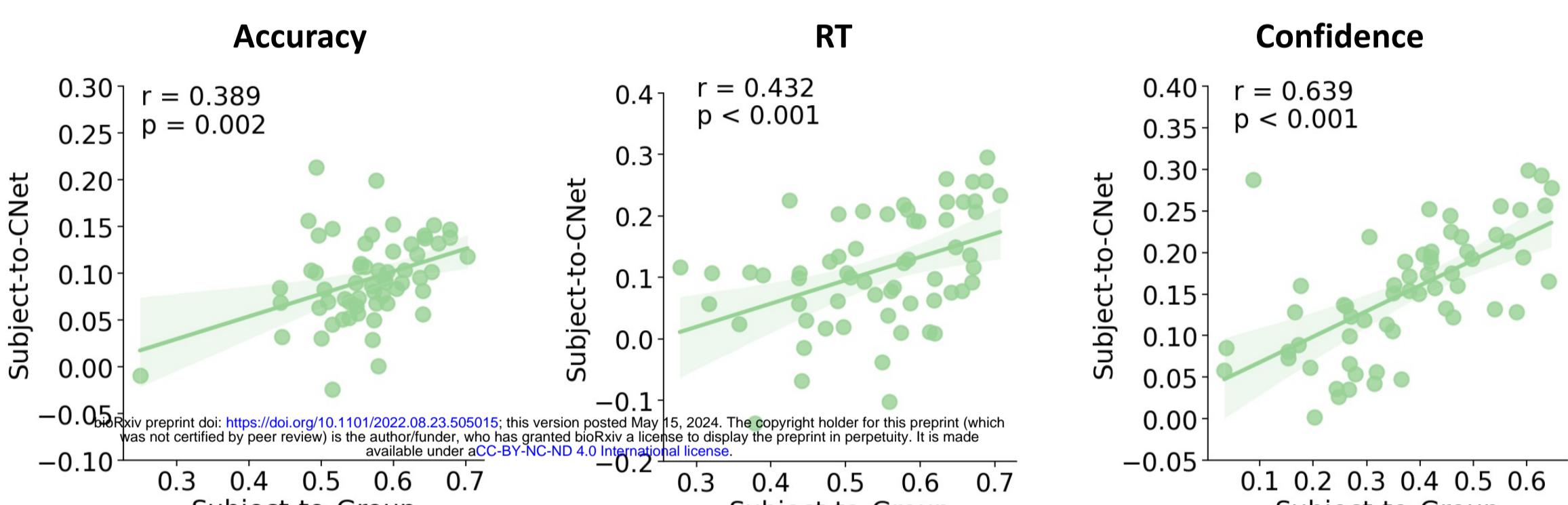


A)**Speed focus, Easy****B)****Speed focus, Difficult****C)****Accuracy focus, Easy****D)****Accuracy focus, Difficult**

A) Subjects more similar to the group are more similar to RTNet



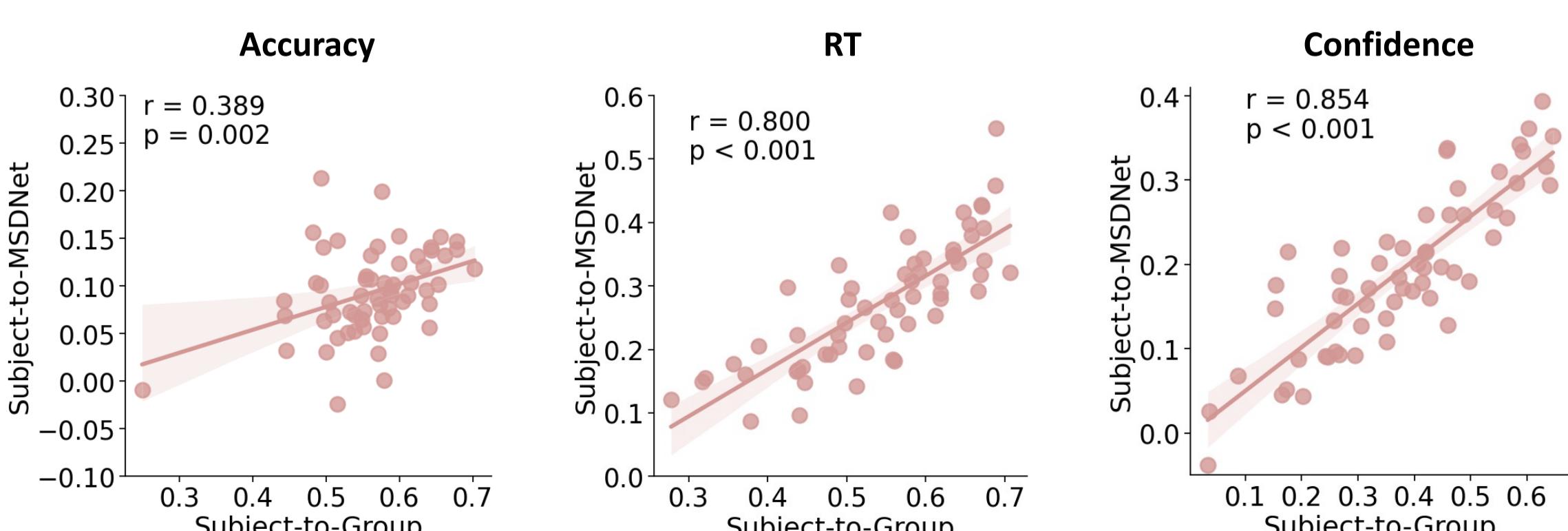
B) Subjects more similar to the group are more similar to CNet



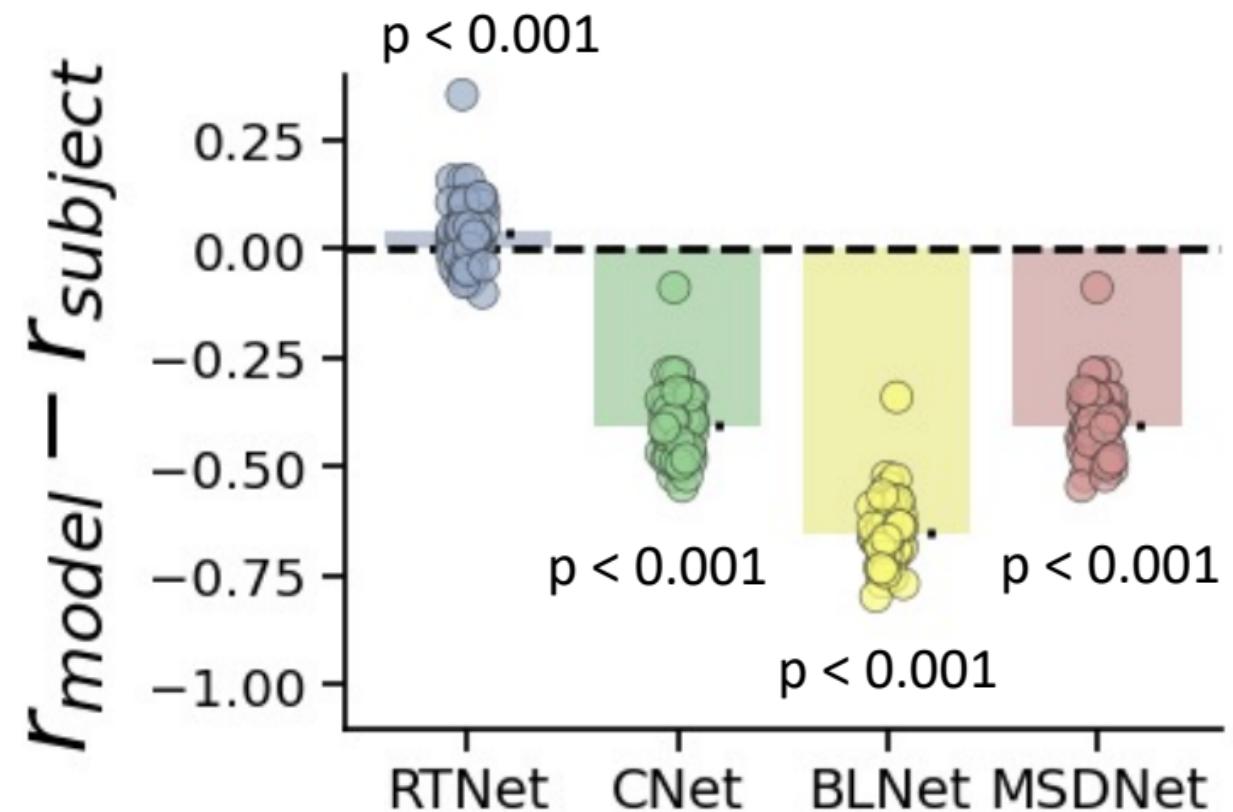
C) Subjects more similar to the group are more similar to BLNet



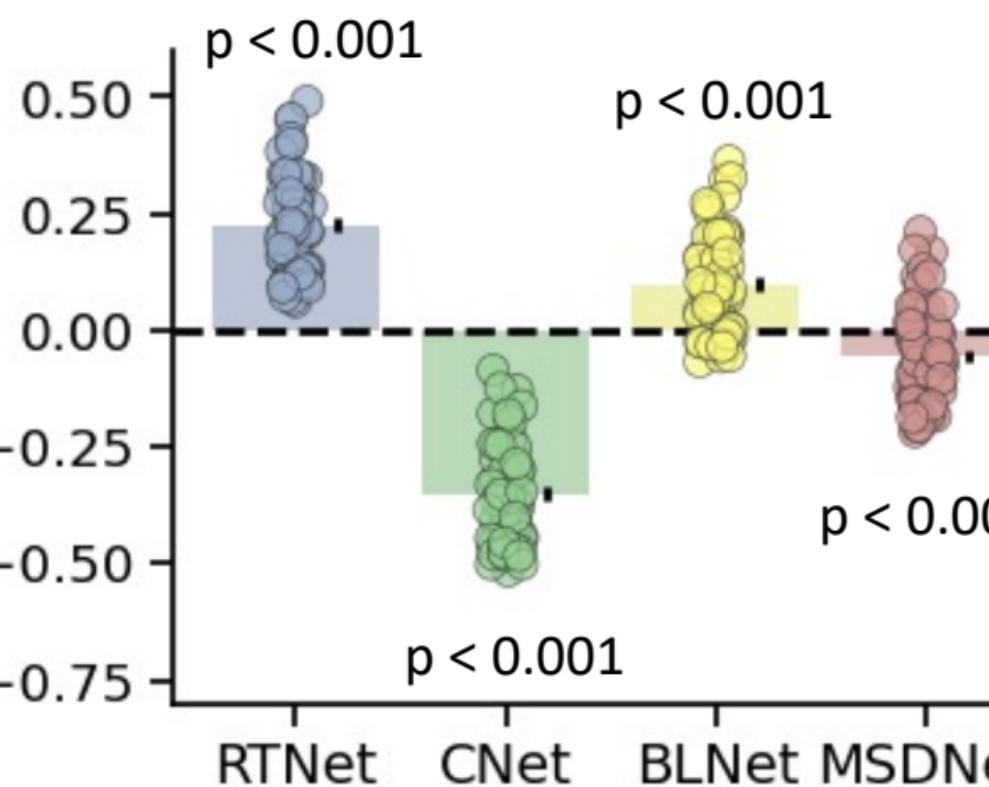
D) Subjects more similar to the group are more similar to MSDNet



Accuracy



RT



Confidence

