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Abstract

The fitness landscape represents the complex relationship between genotype or phenotype

and fitness under a given environment, the structure of which allows the explanation and

prediction of evolutionary trajectories. Although previous studies have constructed fitness

landscapes based on comprehensively studying the mutations in specific genes, the high

dimensionality of genotypic changes prevents us from developing a fitness landscape capable

of predicting evolution for the whole cell. Herein, we address this problem by inferring the

fitness landscape for antibiotic resistance evolution by quantifying the phenotypic changes,

that is, multi-dimensional time-series measurements of the drug resistance profile. Using

the time-series data of drug resistance for multiple drugs, we inferred that the fitness

landscape underlies the evolution dynamics of resistance. We showed that different peaks

of the landscape correspond to different drug resistance mechanisms, thus supporting the

validity of the inferred fitness landscape. We further discuss how inferred phenotype-fitness

landscapes could contribute to the prediction and control of evolution. This approach bridges

the gap between phenotypic/genotypic changes and fitness while contributing to a better

understanding of drug resistance evolution.
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INTRODUCTION

Laboratory evolution experiments, high-throughput sequencing, and phenotyping combined

with data analysis have heralded a new age for evolutionary biology [1–3]. Massively parallel

laboratory evolution experiments have revealed an unprecedented amount of information

on evolution, including epistatic interactions in genotypic space [4–7], genotype–phenotype

mapping [8–14], and the existence of repeatable features in evolutionary processes [8, 15–17].

Furthermore, quantitative and theoretical modelling have enabled us to build fitness models

based on genotypic and phenotypic data [2, 18–20], enabling us to explore the origins of the

constraints underlying evolution [21–25]. Despite numerous attempts to describe evolutionary

dynamics, predicting and controlling evolution remains difficult.

Fitness (or adaptive) landscapes are frequently invoked in experimental and theoretical

studies as they offer a basis for the predictability and convergence of evolution [26, 27].

Thus, constructing empirical fitness landscapes based on experimental data may be a

suitable approach for predicting evolution. Most previous studies on empirical fitness

landscapes were based on fitness assays of large mutant libraries for a gene of interest,

which revealed broad interactions between mutations and the nonlinearity of the underlying

landscapes [4, 6, 7, 28, 29]. Despite our accumulating knowledge on how specific mutations

affect fitness, we are still far from constructing a comprehensive fitness landscape capable

of predicting the evolutionary process of an entire cell. This difficulty is because of the

high dimensionality of genotypic space, which makes it difficult to acquire sufficient data for

prediction [2, 30]. Parallel laboratory evolution experiments have shown that most single

nucleotide and amino acid changes have varying patterns and low repeatability, implying

the existence of multiple paths in genotypic space to reach a fitted phenotype [14, 31–33].

However, phenotypes often exhibit repeatable features in laboratory evolution, implying the

low dimensionality of phenotypic space for evolution [2, 8, 15–18]. Previous studies thus

suggest that the fitness landscape may be more traceable when using phenotypes rather than

high-dimensional genotypes as its basis.

In this study, we aimed to construct an empirical fitness landscape for the evolution of

antibiotic resistance in Escherichia coli using phenotypes as its basis. Our basic strategy was

to densely observe multiple phenotypes and their corresponding fitness (i.e., drug resistance)

along different trajectories of evolution (Fig 1A). The observation of trajectories under
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different antibiotics, starting from different locations in phenotypic space, could allow us to

sample sufficient phenotypes to help build the fitness landscape. The critical feature of our

work is that we used eight different antibiotic resistance values (IC50) as probes for fitness

and phenotype measurements (Fig 1A). As previous studies have suggested, the antibiotic

resistance space corresponds to a subspace of the gene expression space, making it a good

candidate for probing evolutionary dynamics [14, 18]. In addition, antibiotic resistance

values can be measured in a high-throughput manner [34], enabling the efficient sampling of

phenotypes during the course of laboratory evolution.

RESULTS

Laboratory evolution with multi-antibiotic resistance measurements

We used seven starting strains for laboratory evolution to observe a wide range of phenotypic

changes associated with the evolution of antibiotic resistance (Fig 1B). Six out of the

seven starting strains had drug-resistant phenotypes, obtained by laboratory evolution over

approximately 300 generations [14]. For example, KME1 and KME5 strains evolved from

independent culture series under the selection of the antibiotic kanamycin (KM). In our

previous study, we confirmed that these strains showed increased IC50 values for KM and

exhibited cross-resistance and collateral sensitivity to various drugs [14]. In addition to KM-,

norfloxacin (NFLX)-, and tetracycline (TET)-resistant strains, we used the parent strain of

a previous study, E. coli MDS42, as one of the starting strains.

We performed laboratory evolution from these seven starting strains under the selection of

three antibiotics: NFLX, TET, and KM (Fig 1B). We quantified the IC50 for multiple drugs

during every passage to capture phenotypic changes during laboratory evolution. We adopted

the following eight drugs other than antibiotics: sodium salicylate (SS), phleomycin (PLM),

4-nitroquinoline 1-oxide (NQO), sodium dichromate dihydrate (SDC), and mitomycin C

(MMC), to characterize the phenotypic changes during adaptive evolution. We selected these

drugs to optimize the expressiveness of phenotypic changes during drug resistance evolution,

based on the transcriptome and IC50-values of drug-resistant strains obtained in a previous

study [14] (see Materials and Methods for details).

In Fig 1C, we show the time series of IC50 for the eight drugs investigated, starting from the

KM-resistant strain (KME5) under TET selection; for example, the data of four independent
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culture lines are overlaid. We performed laboratory evolution for 11 combinations of starting

strains and selection drugs (Fig 1B), resulting in 44 trajectories in the eight-dimensional

drug resistance space (see S1 Fig for all time series data). As shown in Fig 1C, selection by

TET significantly changed the resistance to other drugs by cross-resistance and collateral

sensitivity. For example, the strains presented decreased IC50 for KM and PLM when the

TET resistance increased, indicating a collateral sensitivity relationship between these drugs.

It should be noted that the four independent culture series did not always show similar

trajectories for resistance acquisition and loss. For example, the time development of IC50

for SDC and MMC in Fig 1C exhibited heterogeneous patterns, wherein one strain acquired

SDC and MMC resistance, whereas the other three acquired sensitivity to these antibiotics.

The genetic background underlying this heterogeneity in the development of resistance is

discussed later.

The trajectories in the resistance space revealed a relationship between resistance acquisi-

tion and loss for multiple drugs. For example, the two-dimensional TET-KM resistance space

showed a trade-off relationship between the KM and TET resistances (Fig 2A). A trade-off

relationship between TET and KM has been reported in previous studies [11, 14, 18]. In

contrast to the negatively correlated trajectories in the TET-KM space, resistance to some

antibiotic pairs appeared to be acquired independently. In Fig 2B, we show the evolutionary

trajectories in the NFLX-KM antibiotic resistance space. Here, the evolutionary trajectories

that started from NFLX evolution seemed to acquire resistance to KM with little loss of

resistance to NFLX and vice versa. The observation that resistance acquisition for NFLX

and KM could occur independently suggests that the resistance acquisition mechanisms for

the two antibiotics are modular [24].

Observing trajectories in the PCA space

We performed principal component analysis (PCA) of the resistance profiles for the 44

trajectories to investigate the evolutionary trajectories in the eight-dimensional resistance

space. Because the dynamic ranges of IC50 varied among the eight antibiotics, we normalized

them and set the mean and standard deviation of the IC50 variation among the 44 trajectories

over the 27 days of evolution to (mean, standard deviation) = (0, 1) before applying PCA.

In Fig 3A and B, examples of evolutionary trajectories are highlighted in two-dimensional

PCA space (explained variance ratio PC1:41%, PC2:23%). To interpret the phenotypes in
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PCA space, we plotted the IC50 values for each antibiotic (Fig 3C-J). These plots allowed

us to visualize phenotypes with high fitness for the corresponding drugs. For example, the

phenotypes with high KM resistance were located on the lower-right side of the PCA space

(Fig 3D), which is consistent with the evolutionary trajectories under KM selection (Fig 3B).

The results indicate that the phenotypes that were highly resistant to each drug occupied

different regions of PCA space.

Inference of the fitness landscapes

Based on the analysis shown in Fig 3, we inferred the fitness landscape of drug resistance

on the two-dimensional PCA plane by smoothing the IC50 data via a Gaussian kernel (see

Materials and Methods for details). Fig 4 shows the inferred fitness landscapes for the eight

antibiotics used in this study. We first evaluated whether the landscape could represent the

observed evolutionary trajectories by analyzing the relationship between the gradients in

the landscape and the direction of phenotypic changes. As the raw evolutionary trajectories

were subject to experimental noise, we applied a moving average of six time points to the

trajectories using a triangular window. The direction provided by the landscape θlandscape(x)

at location x is calculated as follows:

θlandscape(x) = tan−1 ∂F (x)/∂xPC2

∂F (x)/∂xPC1

, (1)

where F (x) represents the altitude of the fitness landscape and ∂/∂xPC1,2 is the gradient along

the PC1,2 axis (Fig 4I). θv(i), the evolutionary direction in the experimental observations, was

calculated from the coordinates of the ith time point in the smoothed trajectories xPC1,2(i)

using

θv(i) = tan−1 xPC2(i+ 1)− xPC2(i)

xPC1(i+ 1)− xPC1(i)
. (2)

In Fig 4I, we plotted the distribution of |θv − θlandscape| where θlandscape was calculated for

each corresponding point along the observed trajectories. For comparison, we also plotted

|θv − θrandom|, where θv was sampled from a uniform distribution [0, 2π). As shown in Fig 4I,

the directions of evolution provided by the inferred landscape θlandscape had a significant

correspondence with the observed trajectories θv (p = 9.23× 10−26, one-sided Mann–Whitney

U test), suggesting that the inferred landscapes could reproduce the observed evolutionary

trajectories. Note that given the fact that each step along the trajectories was defined

by time (day) and not by a step in the genotypic space, there were moments where the
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trajectories stayed at a certain point and where θv deviated from the inferred landscape

θlandscape. In addition, the inferred fitness landscape was calculated based only on the first two

principal components, and the remaining 36% of the variance was not considered. Although

we compared the inferred landscape with the trajectories used for the inference process, the

two limitations raised above suggest that the correspondence between θv and θlandscape was

not trivial.

Genotypes underlying two peaks in TET fitness landscape

One interesting finding in the previous section is that there were two distinct peaks in the

TET fitness landscape (Fig 4A). This structure originated from differences in evolutionary

trajectories, starting from different initial strains. As shown in Fig 3A, most of the trajectories

that started from KM evolved strains evolved towards the upper minor peak to increase TET

resistance. In contrast, the phenotypes of other TET-resistant strains (e.g., TETE4 and

TETE6 starting strains; see Fig 3B) were close to the major peak. This result demonstrates

the historical dependence of the evolution of TET resistance.

To clarify the genetic mechanism of this historical dependence, we resequenced eight

TET-evolved strains starting from KM-evolved strains (four from KME1 and four from

KME5) to identify mutation fixation during evolution under TET selection. As shown

in Table 1, 7/8 of the resequenced strains had null mutations in the coding region of lon,

which encodes Lon protease. These seven strains coincided with the strains that evolved

toward the minor peak in the landscape, suggesting that the minor peak observed in Fig 4A

corresponds to resistance acquisition caused by a lon mutation. It has been previously

shown that the lon− mutant shows a low level of multidrug resistance, considering TET,

ampicillin, chloramphenicol, and erythromycin (see Table 1 in Ref. [35] and [36, 37]). We

also confirmed the effect of the lon mutation on the parent MDS42 strain, showing that the

lon− mutant exhibited a two-fold increase in IC50 for TET [14]. This study also showed that

the lon− mutation caused sensitivity to MMC, which is consistent with the fact that the

minor peak was located in the MMC-sensitive region (Fig 3J).

Interestingly, while lon mutations were identified in most of the TET-evolved strains

starting from the KM-resistant phenotype, these mutations were not observed under TET

selection when it started from the MDS42 parent strain [14]. In the latter case, mutations

in the acrR regulator, which can activate the expression of the acrAB efflux pump genes,
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leading to TET resistance, were commonly identified. Here, the increase in MIC owing to

the acrR− mutation was significantly larger than that due to the null mutation of lon [14].

This raises the following question: What makes the lon mutation special for TET resistance

when starting from a KM-evolved strain?

In E. coli, the uptake of aminoglycosides as KM is positively correlated with the proton

motive force (PMF) [38, 39]. Indeed, the KM-resistant phenotype in KME1 and KME5 strains

was achieved by decreasing PMF to suppress the uptake of KM by null mutations of cyo

genes whose products are involved in the electron transfer system (the identified mutations

in KME1 and KME5 are presented in Supplementary Data 3 in [14]). Simultaneously, these

cyo mutations result in hypersensitivity to several antibiotics, including TET [14]. This

hypersensitivity was caused by the decreased activity of the AcrAB efflux pump, as this

pump is a proton antiporter, and its activity is positively correlated with PMF [40, 41]. The

tradeoff between KM and TET resistance is based on these PMF-dependent changes in the

efflux and uptake activities of drugs [11, 42].

In the present study, the KM evolved strains with cyo mutations did not acquire acrR

mutations under TET selection, probably because of the decreased fitness gain of acrR

mutations after the fixation of the cyo mutations. Specifically, increasing the activity of

the AcrAB efflux pump by the acrR mutation is difficult under the decreased activity of

the electron transfer system by cyo mutations. As an alternative strategy, in KME1- and

KME5-evolved strains, lon mutations increased TET resistance. Although the detailed

mechanism by which lon mutations contribute to TET resistance is unclear, one possible

mechanism can be related to the stabilization of the transcriptional activator MarA, which

is the substrate of the Lon protease [43, 44], and subsequent activation of the marRAB

operon. It was recently shown that the activation of the marRAB operon can cause antibiotic

resistance through the acidification of the cytoplasm [45]. This previous study also showed

that acidification-based drug resistance was independent of changes in PMF. These results

suggest that this acidification-related resistance phenotype is a possible strategy for KME1-

and KME5-evolved strains to achieve TET resistance under decreased PMF through cyo

mutations.

It should be noted that one out of eight TET-evolved strains starting from KM-evolved

strains had no mutation in lon. The evolutionary trajectory toward this strain exhibited a

different direction of phenotypic change (denoted by the arrowhead in Fig 3A) compared
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with the other seven trajectories. We confirmed that this strain had acquired mutations

in acrA, rpoA, and atpB. The identified V45I mutation in acrA corresponded to the MP

domain of AcrA, which transmits conformational changes in AcrB to TolC [46]. Given these

results, we speculate that this strain acquired resistance to TET by improving the activity of

the AcrAB-TolC efflux pump through an acrA mutation and not through the lon mutation.

Utilizing landscapes for controlling evolution

We inferred the fitness landscapes of phenotypic changes (Fig 4) to determine their consistency

with the observed evolutionary trajectories. The next step was thus to utilize the landscape

to control evolution. The basis of the inferred fitness landscape was given by the two principal

components calculated from the IC50 values of the eight drugs. This means that if we monitor

the resistance of the eight drugs during the course of evolution, we may be able to compute

their location in the fitness landscape and thus predict the direction of evolution for each

specific cell state of resistance. Thus, combining the inferred landscape with antibiotic

resistance monitoring may allow the control of drug resistance.

To demonstrate an example of controlling evolution, we performed a simulation on the

inferred landscapes using a gradient ascent-based algorithm. In the simulation, the time

evolution of the cell state in the PCA space x = (xPC1,xPC2) under fitness landscape F (x)

is given as follows:

x(t+ 1) = x(t) + η
∂F (x(t))

∂x(t)
/

∣∣∣∣∂F (x(t))

∂x(t)

∣∣∣∣+ ξ(t), (3)

⟨ξ(t) · ξ(τ)⟩ = Mδ(t− τ), (4)

where η denotes the step size for each time step. ξ(t) is given by white Gaussian noise and

M is the amplitude of the noise. Parameters (η,M) were estimated from the experimental

trajectories. η = 0.4 and M = 0.3 were estimated from the median change in IC50 per day

observed in the 44 evolution trajectories under drug selection and in parent strains without

drug selection, respectively. In S2A Fig, we show the simulated trajectories compared to

the corresponding experimental trajectories. With some exceptions (e.g., KME5 under TET

selection), the simulation results were in agreement with the experimental trajectories.

To validate the simulations quantitatively, we measured the mean distance L between the
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simulated and experimental trajectories using

L =
1

4

1

N

4∑
j

N∑
i

li,j, (5)

li,j = |xexp,i,j − xsim,i,j,nn| , (6)

where xexp,i,j and xsim,i,j,nn are the coordinates of the experimental trajectory of the jth copy

for day i and the nearest neighbor to xexp,i,j within the simulated trajectory, respectively.

We compared L with Brownian motion with the same noise parameter M for 20 independent

runs in each environment (e.g., parent under TET selection). The estimates given in S2

Fig show that the simulations were significantly better than random trajectories (S2B Fig;

p = 4.66× 10−17, one-sided Mann–Whitney U test), validating the precision of our simulation

parameters.

With the validated parameters, we evaluated whether we could construct the desired

evolutionary trajectories using the simulation by dynamically changing the selection drugs.

Fig 5 shows an example of controlling the evolutionary trajectory in the phenotype PCA

space. Here, we started from the parent strain under KM selection (see the leftmost panel).

The grey boxes indicate the thresholds for the switching environments. Under the assumption

of monitoring IC50 values for the eight antibiotics used to construct the PCA space, we would

be able to keep track of evolution in the space, which would allow us to know when the strain

crosses over a threshold. As shown in Fig 5, by switching environments based on thresholds,

we could create a cycle of evolution in the PCA space. Of course, real trajectories might

deviate from the simulation given here because mutations accumulate during the course of

evolution, and these mutations can change the structure of the landscape [47, 48]. However,

a deviation is something we should be pleased with since it could provide novel insights

into evolutionary constraints and their relations with the strain’s genetic (or non-genetic)

background. We should emphasize here that inferred landscapes combined with evolutionary

algorithms such as gradient ascent can generate protocols for laboratory evolution and

produce various hypotheses for investigating evolutionary constraints. We believe that

our inferred fitness landscapes based on phenotypic PCA space can open new avenues for

predicting and controlling evolution.
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DISCUSSION

In this study, we inferred the fitness landscape based on high-throughput measurements of

the resistance profiles of eight different antibiotics. We demonstrated that the multiple peaks

in the landscape corresponded to different antibiotic resistance mechanisms (Fig 4). We also

showed that the directions of evolution predicted by the inferred fitness landscape correspond

to the directions observed in the experimental trajectories (S2 Fig). This result suggests

that the inferred landscapes can predict the direction of evolution of E. coli at least for

evolution under TET, KM, and NFLX. We also demonstrated how the inferred landscapes,

combined with resistance monitoring, could control the trajectories of antibiotic resistance

evolution (Fig 5). Our results are promising for predicting and controlling evolution using

phenotype-based empirical fitness landscapes.

An important aspect of this study is that we inferred the fitness landscape based on

antibiotic resistance profiles and not genotypes. Although previous studies have focused

on constructing fitness landscapes based on mutations for a few genes [4, 6], because the

number of possible genotype changes (e.g., nucleotide changes) associated with antibiotic

resistance evolution is immense [32], empirical fitness landscapes based on genotypes were not

capable of predicting/controlling evolution. Instead, building on recent experimental studies

reporting that evolution leads to better convergence of phenotypes than that of genotypes [2],

we proposed a phenotype-fitness landscape using the multi-dimensional antibiotic resistance

profiles acquired during the course of evolution. We showed that the inferred phenotype-based

fitness landscapes provided directions of evolution that were consistent with the observed

trajectories, suggesting that resistance profiles can capture the internal degree of freedom

of E. coli for predicting evolution. Note that the space spanned by the resistance profiles

corresponds to a subspace of high-dimensional space spanned by gene expression profiles [14].

In this study, we used eight different antibiotics to estimate the internal state of E. coli. Of

course, we may need more antibiotics to probe evolutionary dynamics when using different

antibiotics as selection pressures owing to, for example, cryptic genetic variation [20, 49]. A

sufficient number of antibiotics to probe the internal degree of freedom of E. coli remains

an open question, and we should be able to answer this by, for example, elucidating the

resistance-gene expression map through extensive laboratory evolution experiments using

various antibiotics with strains that have different genetic backgrounds.
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The inferred fitness landscapes provided a rich space for hypothesizing the direction

of evolution. In Fig 5, for example, we show that switching antibiotic environments can

lead to a cycle of antibiotic resistance states in the PCA space. Whether this evolutionary

cycle is realizable in laboratory evolution systems thus needs to be determined. Although

evolutionary constraints lead to repeatable outcomes, their robustness and the conditions

under which constraints change remain unclear [48, 50]. Changes in the genetic background

during evolution may lead to different peaks in other landscapes, which could disturb the

proposed evolutionary cycle. Interestingly, the inferred landscape of TET showed a small

local peak that could not be observed when PCA was applied to the strains that directly

evolved from the parent MDS42 strain, suggesting that the local peak in the TET landscape

might have been accessible only after the acquisition of KM resistance through the decrease

in PMF. Resequencing analysis, which revealed the involvement of lon in the local TET peak,

supported this hypothesis. Taken together, our results show that changes in evolutionary

constraints during the course of evolution can be detected through inferred fitness landscapes.

Using inferred landscapes as hypothesis generators and laboratory evolution as a test ground

could open a novel avenue for evolutionary biology, enabling the efficient investigation of the

robustness and variation of evolutionary constraints.

MATERIALS AND METHODS

Bacterial strains and growth media

The insertion sequence (IS)-free E. coli strain MDS42 [51] was purchased from Scarab

Genomics ( Madison, Wisconsin, USA) and used as the parent strain for this study. The

utilization of IS element-free strains allows reliable resequencing analyses when using short-

read sequencers. In addition, to analyze evolutionary trajectories from different initial states,

we used six evolved strains obtained from our previous laboratory evolution starting from the

same MDS42 strain [14]. These evolved strains were isolated from the end-point culture after

27 days of serial dilutions of tetracycline (TETE4, TETE6), kanamycin (KME1, KME5),

and norfloxacin (NFLXE4, NFLXE6) [14]. E. coli cells were cultured in a modified M9

minimal medium containing 17.1 g/L Na2HPO4·12H2O, 3.0 g/L KH2PO4, 5.0 g/L NaCl, 2.0

g/L NH4Cl, 5.0 g/L glucose, 14.7 mg/L CaCl2·2H2O, 123.0 mg/L MgSO4·7H2O, 2.8 mg/L
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FeSO4·7H2O, and 10.0 mg/L thiamine hydrochloride (pH 7.0) [52]. In addition, 15 µg/mL

erythromycin (approximately 1/10-fold of the IC50 of E. coli MDS42) was added to M9

medium throughout the experiments to avoid contamination by other bacterial species.

Laboratory evolution

Cell cultivation, optical density (OD) measurements, and serial dilutions were performed

for each antibiotic using an automated culture system [34] consisting of a Biomek®NX

span-8 laboratory automation workstation (Beckman Coulter, Brea, California, USA) in

a clean booth connected to a microplate reader (FilterMax F5; Molecular Devices, San

Jose, California, USA), shaking incubator (STX44; Liconic, Mauren, Liechtenstein), and

microplate hotel (LPX220, Liconic).

Three different antibiotics, TET, KM, and NFLX, were used for laboratory evolution

(Fig 1B). The antibiotics were diluted in modified M9 medium with a 20.25-fold gradient in

384-well microplates, with 45 µL medium in each well. The OD620 values of the precultures

were measured using an automated culture system and diluted so that OD620 = 0.00015.

Then, 5 µL of diluted cultures were inoculated into 45 µL of medium in each well in the

384-well microplates and cultivated under agitation at 300 rotations/min at 34 °C. Every 24

h of cultivation, cell growth was monitored by measuring the OD620 of each well, where we

set OD620 > 0.09 as the parameter for cell growth. The automated culture system selected

the well with the highest concentration of the antibiotic in which cells could grow for transfer.

The cells in the selected well were diluted to OD620 = 0.00015 and transferred to a fresh

plate containing fresh medium and antibiotic gradients.

Quantification of IC50

In parallel with laboratory evolution, IC50 was determined for eight drugs: TET, KM,

NFLX, sodium salicylate (SS), phleomycin (PLM), 4-nitroquinoline 1-oxide (NQO), sodium

dichromate dihydrate (SDC), and mitomycin C (MMC) (Fig 1A). These eight drugs were

selected to maximize the expressiveness of the phenotype space spanned by the antibiotic

resistance profiles. To determine this combination of drugs, we performed a regression

assessment to predict the 4492 gene expression profiles of the 192 evolved strains in [14] from

the IC50 values of TET, KM, NFLX, and five random drugs of the corresponding strains.

The combination of the five drugs was determined through a genetic algorithm [18] using
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prediction accuracy as the fitness, which led to the selection of SS, PLM, NQO, SDC, and

MMC. This analysis suggests that the combination of IC50 values for the above eight drugs

represents the phenotypic changes that occurred during laboratory evolution under various

stress conditions.

To determine IC50 values, serial dilutions of each drug were prepared in 384-well microplates

using modified M9 medium with 20.25-fold (TET, KM, NFLX) or 20.5-fold (SS, PLM, NQO,

SDC, MMC) chemical gradients in 22 dilution steps. Culture conditions for IC50 determination

were the same as those for laboratory evolution: OD620 values of the cultures were measured

after 24 h of cultivation in 384-well microplates containing serially diluted antibiotics. To

obtain the IC50 values, the OD620 values for the dose-response series were fitted to the

following sigmoidal model:

f(x) =
a

1 + exp [b (log2 x− log2 IC50)]
+ c, (7)

where x and f(x) represent the concentration of antibiotics and observed OD620 values,

respectively. a, b, c, and IC50 are fitting parameters fitted using the optimize.curve fit

using the SciPy package [53].

Genome sequencing analysis

We followed the protocols for genome sequence analyses using the Illumina HiSeq System,

as described in [54]. A 150 bp paired-end library was generated according to the Illumina

protocol and sequenced using Illumina HiSeq (Illumina, San Diego, California, USA). Potential

nucleotide differences were validated using BRESEQ (Bowtie v2.3.4.1, R v3.6.3) [55].

Construction of the continuous landscape from discontinuous data

As shown in Fig 3C∼J, the maps of individual antibiotic resistance values in the PCA space

obtained using eight-dimensional evolutionary trajectories are reminiscent of the fitness

landscape. However, this simple scatter map is still different from what can be identified as

a fitness landscape for several reasons.

1. The points in the scatter map are overlapped with each other, making fitness mapping a

multiple-valued function. Thus, it is difficult to use the map itself as a fitness landscape

since it cannot always return a unique fitness value.
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2. The points in the scatter map do not provide fitness values for unobserved points in

the PCA space. Thus, we need a method that can interpolate between the observed

points.

3. An important aspect of the fitness landscape is that it can provide a direction of

evolution for each point in the landscape. However, our current map is just an assembly

of points, and it is not easy to extract the directions of evolution from this simple

description.

To solve these problems, we averaged and discretized the data and performed smoothing via

a Gaussian kernel thereafter. Below, we show the details of this process and how multiple

experimental trajectories of evolution were converted to an empirical phenotype-fitness

landscape.

Averaging the data

First, the resistance values were averaged from the scatter map. The entire space was

discretized into square grids with a defined grid size, and the antibiotic resistance values of

all points within the same grid were averaged. Here, grids with no points inside were assigned

a NaN value. Because the grid size defines the level of coarse graining in this procedure and

affects the later smoothing process, we defined the grid size through the Freedman–Diaconis

rule to reduce arbitrariness. The Freedman–Diaconis rule is a statistical heuristic method to

select the bin width bw for constructing a histogram by

bw = 2
ICR(x)

3
√
n

, (8)

where ICR(x) and n are the interquartile range and the sample size of the given dataset,

respectively. We applied the Freedman–Diaconis rule to the PC1 values of the data points in

the PCA space, which led to a grid size of 0.519.

Smoothing via a Gauss kernel

Although the discretized and averaged fitness maps provide unique fitness values for the

observed points in PCA space, we still could not acquire fitness values for unobserved points

using this discretized map. Therefore, we applied a convolution operation to the discretized

map using a Gaussian kernel (Gaussian smoothing). Here, we aimed to acquire a smoothed
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function F (x) from the discretized and averaged map of resistance {f(Xj)}Nj=1 where Xj

denotes the j-th grid. A smoothed function F (x) can be acquired via Gaussian smoothing

using

F (x) =
1

Z

N∑
j=1

f(Xj)K (x−Xj, h) (9)

K(z, h) =
1

h
√
2π

e−
z2

2h2 (10)

where Z = Nh
∑N

j=1 f(Xj) and h are the normalization factor and bandwidth of the

Gaussian kernel, respectively. Here, we assumed that PC1 and PC2 are independent, and

thus acquired the smoothed function F (x) spanning across the two-dimensional PCA space

by F (x) = F (xPC1) · F (xPC2). This smoothed function F (x) provides fitness values for both

observed and unobserved points. In addition, the derivative of F (x) provided the gradient

at each point in the PCA space, which could be used to predict the direction of evolution.

Therefore, F (x) can be interpreted as a fitness landscape inferred from the observed evolution

trajectories.

An important hyperparameter for Gaussian smoothing is the bandwidth h. If h is too

large, the fine structure of the underlying landscape may be destroyed. However, if h is too

small, experimental noise would dominate the inference process, worsening the predictions

from the inferred landscape. Therefore, we defined h after a four-fold cross-validation. For

each fold, 3/4 of the non-NaN grids in the discretized map were randomly chosen to infer the

fitness landscape using Gaussian smoothing, and their accuracy was measured by calculating

the mean squared error (MSE) between the normalized resistance values of the remaining

1/4 grids. Using four-fold cross-validation, a grid search was performed for h from 0.26 to

1.5 (using the PCA space) for all eight antibiotics. As a result, h = 0.42 yielded the minimal

MSE for the TET landscape and h = 0.47 yielded the minimal MSE for the other seven

antibiotics. Therefore, we use h = 0.47 for the analysis in this study.

Data availability

Data and code for the reconstruction of fitness landscape are available via

https://github.com/jiwasawa/resistance-landscape. The resequencing analysis data have

been deposited at the DDBJ Sequence Read Archive (https://ddbj.nig.ac.jp/DRASearch/)

under accession number DRA014660.
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Table I. Mutations identified in KM evolved strains under TET selection

Strain Position Mutation Annotation Gene

KME1 in TET 1 368,605 (T)5→6 coding (1975/2355 nt) lon →

KME1 in TET 2 367,435 ∆ 4 bp coding (805 808/2355 nt) lon →

394,075 C→T A191V (GCC→GTC) acrR →

3,348,058 G→A S338F (TCT→TTT) atpA ←

KME1 in TET 3 368,605 (T)5→6 coding (1975/2355 nt) lon →

368,605 A→G intergenic ( 186/ 26) marC ← /→ marR

KME1 in TET 4 368,810 (GCGCA)1→2 coding (2180/2355 nt) lon →

1,096,089 T→G F140L (TTT→TTG) rssB →

1,325,928 A→G intergenic ( 193/ 19) marC ← /→ marR

3,600,861 A→C noncoding (12/120 nt) rrfB →

3,716,065 G→T R174S (CGC→AGC) acs ←

KME5 in TET 1 368,820 ∆ 1 bp coding (2190/2355 nt) lon →

1,095,758 T→A L30* (TTG→TAG) rssB →

2,986,848 T→C E316G (GAG→GGG) envZ ←

3,707,114 G→A G145S (GGC→AGC) soxR →

KME5 in TET 2 368,633 (CCACGT)2→3 coding (2003/2355 nt) lon →

1,390,792 T→A L23* (TTG→TAG) rsxD →

KME5 in TET 3 393,230 C→T V45I (GTC→ATC) acrA ←

2,908,063 T→G E273D (GAA→GAC) rpoA ←

3,350,544 A→T W241R (TGG→AGG) atpB ←

KME5 in TET 4 367,701 ∆ 1 bp coding (1071/2355 nt) lon →

1,325,907 ∆ 35 bp intergenic ( 172/ 6) marC ← /→ marR

3,124,036 ∆ 1 bp coding (451/1950 nt) yhjK ←

3,345,579 G→A P337L (CCG→CTG) atpD ←

3,969,252 G→T A201E (GCG→GAG) rob ←
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Fig 1. Laboratory evolution of Escherichia coli to probe evolutionary trajectories in

a multi-dimensional resistance space. (A) Schematic figure describing the protocol of the

laboratory evolution experiment in the present study. For every passage, IC50 was quantified for

eight drugs, and cells were transferred from the well with the highest selection-drug concentration

where the cell concentration exceeded a threshold. (B) The experimental conditions used in the

current study. We prepared seven starting strains, i.e., the parent E. coli strain, evolved under

TET (TETE4, TETE6), evolved under KM (KME1, KME5), and evolved under NFLX (NFLXE4,

NFLXE6). Starting from these strains, we performed laboratory evolution under three drugs (TET,

KM, and NFLX). (C) The time series of IC50 values during the evolution of the KME5 strain under

TET, for example. Data of four independent culture lines are overlaid. The resistance values for

tetracycline (TET), kanamycin (KM), norfloxacin (NFLX), sodium salicylate (SS), phleomycin

(PLM), 4-nitroquinoline 1-oxide (NQO), sodium dichromate dihydrate (SDC), and mitomycin C

(MMC) are shown. All time-series data in the present study are presented in S1 Fig.
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A B

Fig 2. Evolutionary trajectories in two-dimensional drug resistance space. (A) Evo-

lutionary trajectories in TET–KM resistance space. The horizontal and vertical axes show the

log-transformed IC50 values for TET and KM, respectively. The black circles represent the states

of starting strains. (B) Evolutionary trajectories in NFLX–KM resistance space.
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Fig 3. Evolutionary trajectories in two-dimensional PCA space. 44 trajectories (11

conditions with 4 replicates each) in eight-dimensional resistance space were projected into two-

dimensional space using PCA. The variance explained by the first two components was 41% and

23%, respectively. (A) Evolutionary trajectories under TET selection. Trajectories starting from the

parent and KM-evolved strains are highlighted by colors, while the gray lines show the trajectories

in other conditions. The black circles represent the state of starting strains. (B) Evolutionary

trajectories under KM selection. Trajectories starting from the parent and TET-evolved strains

under KM selection are highlighted by colors. (C)∼(J) IC50 values for each drug mapped on the

two-dimensional PCA space. The colors represent the log-transformed IC50 values (log2 µg/mL).
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Fig 4. Estimated phenotype-fitness landscape. (A)∼(H) The fitness landscape obtained

using Gaussian smoothing for eight drugs is presented. The resistance levels were normalized to a

maximum value of one (see Materials and Methods). (I) Differences in the evolutionary directions

between the simulated gradient from the fitness landscape (θlandscape) and experimental observation

(θv). For comparison, the difference with a random direction (θrandom) sampled from a uniform

distribution [0, 2π] is also plotted.
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C D

A B

Fig 5. Simulating an evolutionary trajectory based on the reconstructed fitness

landscape. The gray boxes represent the thresholds set to switch environments. The title for each

panel shows the name of drug used for selection. Starting from the parent strain, the sequential

selection by (A) KM → (B) TET → (C) NFLX → (D) KM resulted in a circular trajectory in the

PCA-projected resistance space.
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A: Parent in TET selection

B: KME1 in TET selection

C: KME5 in TET selection

Figure S1. Time series of IC50 values in the laboratory evolution. Data of four independent

culture series are overlaid.
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D: Parent in KM selection

E: TETE4 in KM selection

F: TETE6 in KM selection

Figure S1. (continued)

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.504962doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504962
http://creativecommons.org/licenses/by/4.0/


G: NFLX4 in KM selection

H: NFLX6 in KM selection

I: Parent in NFLX selection

Figure S1. (continued)
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J: KME1 in NFLX selection

K: KME5 in NFLX selection

L: Parent in M9 (No selection)

Figure S1. (continued)
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A

B

Figure S2 Evolutionary simulations on the reconstructed fitness landscape. (A) The simulated

trajectories of evolution (gray) overlayed on the experimental trajectories (blue, orange, green,

and red) in the corresponding environments. The starting points were selected randomly from
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the four starting points of the experimental trajectories. The simulations were performed for

10 independent runs with 10 time steps, except for the simulations for KME1 in NFLX where

we ran the simulation for 150 time steps in order to let the trajectories escape from a local

optimum. (B) The mean distances L between the simulations and experimental trajectories

(blue) and between random Brownian motion and experimental trajectories (orange). 20

independent runs were performed for each environment, resulting into 20×11 = 220 estimates

of L for the simulations and Brownian motion.
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