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Abstract

The fitness landscape represents the complex relationship between genotype or phenotype
and fitness under a given environment, the structure of which allows the explanation and
prediction of evolutionary trajectories. Although previous studies have constructed fitness
landscapes based on comprehensively studying the mutations in specific genes, the high
dimensionality of genotypic changes prevents us from developing a fitness landscape capable
of predicting evolution for the whole cell. Herein, we address this problem by inferring the
fitness landscape for antibiotic resistance evolution by quantifying the phenotypic changes,
that is, multi-dimensional time-series measurements of the drug resistance profile. Using
the time-series data of drug resistance for multiple drugs, we inferred that the fitness
landscape underlies the evolution dynamics of resistance. We showed that different peaks
of the landscape correspond to different drug resistance mechanisms, thus supporting the
validity of the inferred fitness landscape. We further discuss how inferred phenotype-fitness
landscapes could contribute to the prediction and control of evolution. This approach bridges
the gap between phenotypic/genotypic changes and fitness while contributing to a better

understanding of drug resistance evolution.
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INTRODUCTION

Laboratory evolution experiments, high-throughput sequencing, and phenotyping combined
with data analysis have heralded a new age for evolutionary biology [IH3]. Massively parallel
laboratory evolution experiments have revealed an unprecedented amount of information
on evolution, including epistatic interactions in genotypic space [4H7], genotype—phenotype
mapping [8HI4], and the existence of repeatable features in evolutionary processes [8, [I5HI7].
Furthermore, quantitative and theoretical modelling have enabled us to build fitness models
based on genotypic and phenotypic data [2] [18-20], enabling us to explore the origins of the
constraints underlying evolution [21H25]. Despite numerous attempts to describe evolutionary

dynamics, predicting and controlling evolution remains difficult.

Fitness (or adaptive) landscapes are frequently invoked in experimental and theoretical
studies as they offer a basis for the predictability and convergence of evolution [26] 27].
Thus, constructing empirical fitness landscapes based on experimental data may be a
suitable approach for predicting evolution. Most previous studies on empirical fitness
landscapes were based on fitness assays of large mutant libraries for a gene of interest,
which revealed broad interactions between mutations and the nonlinearity of the underlying
landscapes [4], [0, [7, 28], 29]. Despite our accumulating knowledge on how specific mutations
affect fitness, we are still far from constructing a comprehensive fitness landscape capable
of predicting the evolutionary process of an entire cell. This difficulty is because of the
high dimensionality of genotypic space, which makes it difficult to acquire sufficient data for
prediction [2] B0]. Parallel laboratory evolution experiments have shown that most single
nucleotide and amino acid changes have varying patterns and low repeatability, implying
the existence of multiple paths in genotypic space to reach a fitted phenotype [14] B1H33].
However, phenotypes often exhibit repeatable features in laboratory evolution, implying the
low dimensionality of phenotypic space for evolution [2] [8 I5HI8]. Previous studies thus
suggest that the fitness landscape may be more traceable when using phenotypes rather than

high-dimensional genotypes as its basis.

In this study, we aimed to construct an empirical fitness landscape for the evolution of
antibiotic resistance in Escherichia coli using phenotypes as its basis. Our basic strategy was
to densely observe multiple phenotypes and their corresponding fitness (i.e., drug resistance)

along different trajectories of evolution (Fig [I]A). The observation of trajectories under
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different antibiotics, starting from different locations in phenotypic space, could allow us to
sample sufficient phenotypes to help build the fitness landscape. The critical feature of our
work is that we used eight different antibiotic resistance values (ICs0) as probes for fitness
and phenotype measurements (Fig ) As previous studies have suggested, the antibiotic
resistance space corresponds to a subspace of the gene expression space, making it a good
candidate for probing evolutionary dynamics [I4, [I§]. In addition, antibiotic resistance
values can be measured in a high-throughput manner [34], enabling the efficient sampling of

phenotypes during the course of laboratory evolution.

RESULTS

Laboratory evolution with multi-antibiotic resistance measurements

We used seven starting strains for laboratory evolution to observe a wide range of phenotypic
changes associated with the evolution of antibiotic resistance (Fig [IB). Six out of the
seven starting strains had drug-resistant phenotypes, obtained by laboratory evolution over
approximately 300 generations [I4]. For example, KME1 and KMES5 strains evolved from
independent culture series under the selection of the antibiotic kanamycin (KM). In our
previous study, we confirmed that these strains showed increased 1Cs5q values for KM and
exhibited cross-resistance and collateral sensitivity to various drugs [14]. In addition to KM-,
norfloxacin (NFLX)-, and tetracycline (TET)-resistant strains, we used the parent strain of
a previous study, E. coli MDS42, as one of the starting strains.

We performed laboratory evolution from these seven starting strains under the selection of
three antibiotics: NFLX, TET, and KM (Fig[IB). We quantified the IC;, for multiple drugs
during every passage to capture phenotypic changes during laboratory evolution. We adopted
the following eight drugs other than antibiotics: sodium salicylate (SS), phleomycin (PLM),
4-nitroquinoline 1-oxide (NQO), sodium dichromate dihydrate (SDC), and mitomycin C
(MMC), to characterize the phenotypic changes during adaptive evolution. We selected these
drugs to optimize the expressiveness of phenotypic changes during drug resistance evolution,
based on the transcriptome and 1Csg-values of drug-resistant strains obtained in a previous
study [14] (see Materials and Methods for details).

In Fig[l|C, we show the time series of ICjs for the eight drugs investigated, starting from the
KM-resistant strain (KME5) under TET selection; for example, the data of four independent
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culture lines are overlaid. We performed laboratory evolution for 11 combinations of starting
strains and selection drugs (Fig ), resulting in 44 trajectories in the eight-dimensional
drug resistance space (see S1 Fig for all time series data). As shown in Fig , selection by
TET significantly changed the resistance to other drugs by cross-resistance and collateral
sensitivity. For example, the strains presented decreased 1Csy for KM and PLM when the
TET resistance increased, indicating a collateral sensitivity relationship between these drugs.

It should be noted that the four independent culture series did not always show similar
trajectories for resistance acquisition and loss. For example, the time development of ICs
for SDC and MMC in Fig exhibited heterogeneous patterns, wherein one strain acquired
SDC and MMC resistance, whereas the other three acquired sensitivity to these antibiotics.
The genetic background underlying this heterogeneity in the development of resistance is
discussed later.

The trajectories in the resistance space revealed a relationship between resistance acquisi-
tion and loss for multiple drugs. For example, the two-dimensional TET-KM resistance space
showed a trade-off relationship between the KM and TET resistances (Fig[2A). A trade-off
relationship between TET and KM has been reported in previous studies [I1], 14, 1§]. In
contrast to the negatively correlated trajectories in the TET-KM space, resistance to some
antibiotic pairs appeared to be acquired independently. In Fig[2B, we show the evolutionary
trajectories in the NFLX-KM antibiotic resistance space. Here, the evolutionary trajectories
that started from NFLX evolution seemed to acquire resistance to KM with little loss of
resistance to NFLX and vice versa. The observation that resistance acquisition for NFLX
and KM could occur independently suggests that the resistance acquisition mechanisms for

the two antibiotics are modular [24].

Observing trajectories in the PCA space

We performed principal component analysis (PCA) of the resistance profiles for the 44
trajectories to investigate the evolutionary trajectories in the eight-dimensional resistance
space. Because the dynamic ranges of 1Csy varied among the eight antibiotics, we normalized
them and set the mean and standard deviation of the 1C5y variation among the 44 trajectories
over the 27 days of evolution to (mean, standard deviation) = (0, 1) before applying PCA.
In Fig and B, examples of evolutionary trajectories are highlighted in two-dimensional

PCA space (explained variance ratio PC1:41%, PC2:23%). To interpret the phenotypes in
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PCA space, we plotted the ICsq values for each antibiotic (Fig —J ). These plots allowed
us to visualize phenotypes with high fitness for the corresponding drugs. For example, the
phenotypes with high KM resistance were located on the lower-right side of the PCA space
(Fig D), which is consistent with the evolutionary trajectories under KM selection (Fig [3B).
The results indicate that the phenotypes that were highly resistant to each drug occupied
different regions of PCA space.

Inference of the fitness landscapes

Based on the analysis shown in Fig |3 we inferred the fitness landscape of drug resistance
on the two-dimensional PCA plane by smoothing the ICs5, data via a Gaussian kernel (see
Materials and Methods for details). Fig 4| shows the inferred fitness landscapes for the eight
antibiotics used in this study. We first evaluated whether the landscape could represent the
observed evolutionary trajectories by analyzing the relationship between the gradients in
the landscape and the direction of phenotypic changes. As the raw evolutionary trajectories
were subject to experimental noise, we applied a moving average of six time points to the
trajectories using a triangular window. The direction provided by the landscape Gandscape ()

at location z is calculated as follows:

(@) = tan ™t VTR, m
where F'(x) represents the altitude of the fitness landscape and 0/0xpcy 2 is the gradient along
the PC1,2 axis (Fig[d][). 6.(¢), the evolutionary direction in the experimental observations, was
calculated from the coordinates of the ith time point in the smoothed trajectories zpci 2(7)

using
1 wpe2(i 4+ 1) — zpea(i) (2)
l'PCl(i + 1) — TPpPC1 (Z)

In Fig {ll, we plotted the distribution of |6, — Glandscape] Where Olandscape Was calculated for

0,(i) = tan

each corresponding point along the observed trajectories. For comparison, we also plotted
|0, — Orandom|, Where 6, was sampled from a uniform distribution [0, 27). As shown in Fig I,
the directions of evolution provided by the inferred landscape Gandscape had a significant
correspondence with the observed trajectories 6, (p = 9.23 x 10726, one-sided Mann—Whitney
U test), suggesting that the inferred landscapes could reproduce the observed evolutionary
trajectories. Note that given the fact that each step along the trajectories was defined

by time (day) and not by a step in the genotypic space, there were moments where the
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trajectories stayed at a certain point and where 6, deviated from the inferred landscape
Dhandscape- In addition, the inferred fitness landscape was calculated based only on the first two
principal components, and the remaining 36% of the variance was not considered. Although
we compared the inferred landscape with the trajectories used for the inference process, the
two limitations raised above suggest that the correspondence between 60, and Gandscape Was

not trivial.

Genotypes underlying two peaks in TET fitness landscape

One interesting finding in the previous section is that there were two distinct peaks in the
TET fitness landscape (Fig[4A). This structure originated from differences in evolutionary
trajectories, starting from different initial strains. As shown in Fig[3JA, most of the trajectories
that started from KM evolved strains evolved towards the upper minor peak to increase TET
resistance. In contrast, the phenotypes of other TET-resistant strains (e.g., TETE4 and
TETEG starting strains; see Fig ) were close to the major peak. This result demonstrates
the historical dependence of the evolution of TET resistance.

To clarify the genetic mechanism of this historical dependence, we resequenced eight
TET-evolved strains starting from KM-evolved strains (four from KME1 and four from
KMESD5) to identify mutation fixation during evolution under TET selection. As shown
in Table 1, 7/8 of the resequenced strains had null mutations in the coding region of lon,
which encodes Lon protease. These seven strains coincided with the strains that evolved
toward the minor peak in the landscape, suggesting that the minor peak observed in Fig
corresponds to resistance acquisition caused by a lon mutation. It has been previously
shown that the lon™ mutant shows a low level of multidrug resistance, considering TET,
ampicillin, chloramphenicol, and erythromycin (see Table 1 in Ref. [35] and [36] 87]). We
also confirmed the effect of the lon mutation on the parent MDS42 strain, showing that the
lon~ mutant exhibited a two-fold increase in IC5y for TET [I4]. This study also showed that
the lon™ mutation caused sensitivity to MMC, which is consistent with the fact that the
minor peak was located in the MMC-sensitive region (Fig [3J).

Interestingly, while lon mutations were identified in most of the TET-evolved strains
starting from the KM-resistant phenotype, these mutations were not observed under TET
selection when it started from the MDS42 parent strain [I4]. In the latter case, mutations

in the acrR regulator, which can activate the expression of the acrAB efflux pump genes,

7


https://doi.org/10.1101/2022.08.23.504962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.23.504962; this version posted August 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

leading to TET resistance, were commonly identified. Here, the increase in MIC owing to
the acrR~ mutation was significantly larger than that due to the null mutation of lon [14].
This raises the following question: What makes the [on mutation special for TET resistance
when starting from a KM-evolved strain?

In E. coli, the uptake of aminoglycosides as KM is positively correlated with the proton
motive force (PMF) [38,[39]. Indeed, the KM-resistant phenotype in KME1 and KMES strains
was achieved by decreasing PMF to suppress the uptake of KM by null mutations of cyo
genes whose products are involved in the electron transfer system (the identified mutations
in KME1 and KMES5 are presented in Supplementary Data 3 in [14]). Simultaneously, these
cyo mutations result in hypersensitivity to several antibiotics, including TET [I4]. This
hypersensitivity was caused by the decreased activity of the AcrAB efflux pump, as this
pump is a proton antiporter, and its activity is positively correlated with PMF [40] 41]. The
tradeoff between KM and TET resistance is based on these PMF-dependent changes in the
efflux and uptake activities of drugs [11, 42].

In the present study, the KM evolved strains with cyo mutations did not acquire acrR
mutations under TET selection, probably because of the decreased fitness gain of acrR
mutations after the fixation of the cyo mutations. Specifically, increasing the activity of
the AcrAB efflux pump by the acrR mutation is difficult under the decreased activity of
the electron transfer system by cyo mutations. As an alternative strategy, in KME1- and
KME5-evolved strains, lon mutations increased TET resistance. Although the detailed
mechanism by which lon mutations contribute to TET resistance is unclear, one possible
mechanism can be related to the stabilization of the transcriptional activator MarA, which
is the substrate of the Lon protease [43, 44], and subsequent activation of the marRAB
operon. It was recently shown that the activation of the marRAB operon can cause antibiotic
resistance through the acidification of the cytoplasm [45]. This previous study also showed
that acidification-based drug resistance was independent of changes in PMF. These results
suggest that this acidification-related resistance phenotype is a possible strategy for KME1-
and KME5-evolved strains to achieve TET resistance under decreased PMF through cyo
mutations.

It should be noted that one out of eight TET-evolved strains starting from KM-evolved
strains had no mutation in lon. The evolutionary trajectory toward this strain exhibited a

different direction of phenotypic change (denoted by the arrowhead in FigB]A) compared
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with the other seven trajectories. We confirmed that this strain had acquired mutations
in acrA, rpoA, and atpB. The identified V451 mutation in acrA corresponded to the MP
domain of AcrA, which transmits conformational changes in AcrB to TolC [46]. Given these
results, we speculate that this strain acquired resistance to TET by improving the activity of

the AcrAB-TolC efflux pump through an acrA mutation and not through the lon mutation.

Utilizing landscapes for controlling evolution

We inferred the fitness landscapes of phenotypic changes (Fig to determine their consistency
with the observed evolutionary trajectories. The next step was thus to utilize the landscape
to control evolution. The basis of the inferred fitness landscape was given by the two principal
components calculated from the ICy, values of the eight drugs. This means that if we monitor
the resistance of the eight drugs during the course of evolution, we may be able to compute
their location in the fitness landscape and thus predict the direction of evolution for each
specific cell state of resistance. Thus, combining the inferred landscape with antibiotic

resistance monitoring may allow the control of drug resistance.

To demonstrate an example of controlling evolution, we performed a simulation on the
inferred landscapes using a gradient ascent-based algorithm. In the simulation, the time
evolution of the cell state in the PCA space @ = (xpc1, ®pe2) under fitness landscape F(x)

is given as follows:

o+ 1) = o) + 15| ZED s g, )
(€() €)= Ml — ), (@)

where 7 denotes the step size for each time step. £(t) is given by white Gaussian noise and
M is the amplitude of the noise. Parameters (n, M) were estimated from the experimental
trajectories. 7 = 0.4 and M = 0.3 were estimated from the median change in ICs5q per day
observed in the 44 evolution trajectories under drug selection and in parent strains without
drug selection, respectively. In S2A Fig, we show the simulated trajectories compared to
the corresponding experimental trajectories. With some exceptions (e.g., KME5 under TET

selection), the simulation results were in agreement with the experimental trajectories.

To validate the simulations quantitatively, we measured the mean distance L between the
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simulated and experimental trajectories using

11
L:ZNZZZW-, (5)
J 1
li,j = ’wexp,i,j - wsim,i,j,nnl ) (6)

where ®exp i j and Xgim,i jnn are the coordinates of the experimental trajectory of the jth copy
for day ¢ and the nearest neighbor to @ep;; within the simulated trajectory, respectively.
We compared L with Brownian motion with the same noise parameter M for 20 independent
runs in each environment (e.g., parent under TET selection). The estimates given in S2
Fig show that the simulations were significantly better than random trajectories (S2B Fig;
p = 4.66 x 10717, one-sided Mann-Whitney U test), validating the precision of our simulation

parameters.

With the validated parameters, we evaluated whether we could construct the desired
evolutionary trajectories using the simulation by dynamically changing the selection drugs.
Fig [5| shows an example of controlling the evolutionary trajectory in the phenotype PCA
space. Here, we started from the parent strain under KM selection (see the leftmost panel).
The grey boxes indicate the thresholds for the switching environments. Under the assumption
of monitoring ICsq values for the eight antibiotics used to construct the PCA space, we would
be able to keep track of evolution in the space, which would allow us to know when the strain
crosses over a threshold. As shown in Fig[5], by switching environments based on thresholds,
we could create a cycle of evolution in the PCA space. Of course, real trajectories might
deviate from the simulation given here because mutations accumulate during the course of
evolution, and these mutations can change the structure of the landscape [47, 48]. However,
a deviation is something we should be pleased with since it could provide novel insights
into evolutionary constraints and their relations with the strain’s genetic (or non-genetic)
background. We should emphasize here that inferred landscapes combined with evolutionary
algorithms such as gradient ascent can generate protocols for laboratory evolution and
produce various hypotheses for investigating evolutionary constraints. We believe that
our inferred fitness landscapes based on phenotypic PCA space can open new avenues for

predicting and controlling evolution.
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DISCUSSION

In this study, we inferred the fitness landscape based on high-throughput measurements of
the resistance profiles of eight different antibiotics. We demonstrated that the multiple peaks
in the landscape corresponded to different antibiotic resistance mechanisms (Fig . We also
showed that the directions of evolution predicted by the inferred fitness landscape correspond
to the directions observed in the experimental trajectories (S2 Fig). This result suggests
that the inferred landscapes can predict the direction of evolution of E. coli at least for
evolution under TET, KM, and NFLX. We also demonstrated how the inferred landscapes,
combined with resistance monitoring, could control the trajectories of antibiotic resistance
evolution (Fig . Our results are promising for predicting and controlling evolution using

phenotype-based empirical fitness landscapes.

An important aspect of this study is that we inferred the fitness landscape based on
antibiotic resistance profiles and not genotypes. Although previous studies have focused
on constructing fitness landscapes based on mutations for a few genes [4, [6], because the
number of possible genotype changes (e.g., nucleotide changes) associated with antibiotic
resistance evolution is immense [32], empirical fitness landscapes based on genotypes were not
capable of predicting/controlling evolution. Instead, building on recent experimental studies
reporting that evolution leads to better convergence of phenotypes than that of genotypes [2],
we proposed a phenotype-fitness landscape using the multi-dimensional antibiotic resistance
profiles acquired during the course of evolution. We showed that the inferred phenotype-based
fitness landscapes provided directions of evolution that were consistent with the observed
trajectories, suggesting that resistance profiles can capture the internal degree of freedom
of E. coli for predicting evolution. Note that the space spanned by the resistance profiles
corresponds to a subspace of high-dimensional space spanned by gene expression profiles [14].
In this study, we used eight different antibiotics to estimate the internal state of E. coli. Of
course, we may need more antibiotics to probe evolutionary dynamics when using different
antibiotics as selection pressures owing to, for example, cryptic genetic variation [20} [49]. A
sufficient number of antibiotics to probe the internal degree of freedom of FE. coli remains
an open question, and we should be able to answer this by, for example, elucidating the
resistance-gene expression map through extensive laboratory evolution experiments using

various antibiotics with strains that have different genetic backgrounds.
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The inferred fitness landscapes provided a rich space for hypothesizing the direction
of evolution. In Fig[5] for example, we show that switching antibiotic environments can
lead to a cycle of antibiotic resistance states in the PCA space. Whether this evolutionary
cycle is realizable in laboratory evolution systems thus needs to be determined. Although
evolutionary constraints lead to repeatable outcomes, their robustness and the conditions
under which constraints change remain unclear [48, [50]. Changes in the genetic background
during evolution may lead to different peaks in other landscapes, which could disturb the
proposed evolutionary cycle. Interestingly, the inferred landscape of TET showed a small
local peak that could not be observed when PCA was applied to the strains that directly
evolved from the parent MDS42 strain, suggesting that the local peak in the TET landscape
might have been accessible only after the acquisition of KM resistance through the decrease
in PMF. Resequencing analysis, which revealed the involvement of lon in the local TET peak,
supported this hypothesis. Taken together, our results show that changes in evolutionary
constraints during the course of evolution can be detected through inferred fitness landscapes.
Using inferred landscapes as hypothesis generators and laboratory evolution as a test ground
could open a novel avenue for evolutionary biology, enabling the efficient investigation of the

robustness and variation of evolutionary constraints.

MATERIALS AND METHODS

Bacterial strains and growth media

The insertion sequence (IS)-free E. coli strain MDS42 [51] was purchased from Scarab
Genomics ( Madison, Wisconsin, USA) and used as the parent strain for this study. The
utilization of IS element-free strains allows reliable resequencing analyses when using short-
read sequencers. In addition, to analyze evolutionary trajectories from different initial states,
we used six evolved strains obtained from our previous laboratory evolution starting from the
same MDS42 strain [14]. These evolved strains were isolated from the end-point culture after
27 days of serial dilutions of tetracycline (TETE4, TETE6), kanamycin (KME1, KME5),
and norfloxacin (NFLXE4, NFLXE6) [I4]. E. coli cells were cultured in a modified M9
minimal medium containing 17.1 g/L NasHPO4-12H,0, 3.0 g/L KH5POy, 5.0 g/L NaCl, 2.0
g/L NH4Cl, 5.0 g/L glucose, 14.7 mg/L CaCly-2H50, 123.0 mg/L MgSO,4-7H50, 2.8 mg/L
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FeSO4-TH,0, and 10.0 mg/L thiamine hydrochloride (pH 7.0) [52]. In addition, 15 pg/mL
erythromycin (approximately 1/10-fold of the ICsy of E. coli MDS42) was added to M9

medium throughout the experiments to avoid contamination by other bacterial species.

Laboratory evolution

Cell cultivation, optical density (OD) measurements, and serial dilutions were performed
for each antibiotic using an automated culture system [34] consisting of a Biomek@®NX
span-8 laboratory automation workstation (Beckman Coulter, Brea, California, USA) in
a clean booth connected to a microplate reader (FilterMax F5; Molecular Devices, San
Jose, California, USA), shaking incubator (STX44; Liconic, Mauren, Liechtenstein), and
microplate hotel (LPX220, Liconic).

Three different antibiotics, TET, KM, and NFLX, were used for laboratory evolution
(Fig ) The antibiotics were diluted in modified M9 medium with a 2°-*-fold gradient in
384-well microplates, with 45 uLL medium in each well. The ODgqy values of the precultures
were measured using an automated culture system and diluted so that ODgyy = 0.00015.
Then, 5 uL of diluted cultures were inoculated into 45 uL of medium in each well in the
384-well microplates and cultivated under agitation at 300 rotations/min at 34 °C. Every 24
h of cultivation, cell growth was monitored by measuring the ODgyg of each well, where we
set ODgop > 0.09 as the parameter for cell growth. The automated culture system selected
the well with the highest concentration of the antibiotic in which cells could grow for transfer.
The cells in the selected well were diluted to ODggg = 0.00015 and transferred to a fresh

plate containing fresh medium and antibiotic gradients.

Quantification of 1C;

In parallel with laboratory evolution, 1Cs;, was determined for eight drugs: TET, KM,
NFLX, sodium salicylate (SS), phleomycin (PLM), 4-nitroquinoline 1-oxide (NQO), sodium
dichromate dihydrate (SDC), and mitomycin C (MMC) (Fig[[JA). These eight drugs were
selected to maximize the expressiveness of the phenotype space spanned by the antibiotic
resistance profiles. To determine this combination of drugs, we performed a regression
assessment to predict the 4492 gene expression profiles of the 192 evolved strains in [14] from
the 1Cs5q values of TET, KM, NFLX, and five random drugs of the corresponding strains.

The combination of the five drugs was determined through a genetic algorithm [I8] using
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prediction accuracy as the fitness, which led to the selection of SS, PLM, NQO, SDC, and
MMC. This analysis suggests that the combination of ICs5q values for the above eight drugs
represents the phenotypic changes that occurred during laboratory evolution under various
stress conditions.

To determine ICy, values, serial dilutions of each drug were prepared in 384-well microplates
using modified M9 medium with 2%-%-fold (TET, KM, NFLX) or 2%5-fold (SS, PLM, NQO,
SDC, MMC) chemical gradients in 22 dilution steps. Culture conditions for IC5y determination
were the same as those for laboratory evolution: ODgo values of the cultures were measured
after 24 h of cultivation in 384-well microplates containing serially diluted antibiotics. To
obtain the ICsy values, the ODgyg values for the dose-response series were fitted to the

following sigmoidal model:

a

f(.%') = 1+ exp [b <10g2 xr — IOgQ IC50)]

+c, (7)

where z and f(z) represent the concentration of antibiotics and observed ODgyg values,
respectively. a, b, ¢, and 1Csy are fitting parameters fitted using the optimize.curve fit

using the SciPy package [53].

Genome sequencing analysis

We followed the protocols for genome sequence analyses using the Illumina HiSeq System,
as described in [54]. A 150 bp paired-end library was generated according to the Illumina
protocol and sequenced using Illumina HiSeq (Illumina, San Diego, California, USA). Potential

nucleotide differences were validated using BRESEQ (Bowtie v2.3.4.1, R v3.6.3) [55].

Construction of the continuous landscape from discontinuous data

As shown in Fig [3IC~J, the maps of individual antibiotic resistance values in the PCA space
obtained using eight-dimensional evolutionary trajectories are reminiscent of the fitness
landscape. However, this simple scatter map is still different from what can be identified as

a fitness landscape for several reasons.

1. The points in the scatter map are overlapped with each other, making fitness mapping a
multiple-valued function. Thus, it is difficult to use the map itself as a fitness landscape

since it cannot always return a unique fitness value.
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2. The points in the scatter map do not provide fitness values for unobserved points in
the PCA space. Thus, we need a method that can interpolate between the observed

points.

3. An important aspect of the fitness landscape is that it can provide a direction of
evolution for each point in the landscape. However, our current map is just an assembly
of points, and it is not easy to extract the directions of evolution from this simple

description.

To solve these problems, we averaged and discretized the data and performed smoothing via
a Gaussian kernel thereafter. Below, we show the details of this process and how multiple
experimental trajectories of evolution were converted to an empirical phenotype-fitness

landscape.

Averaging the data
First, the resistance values were averaged from the scatter map. The entire space was
discretized into square grids with a defined grid size, and the antibiotic resistance values of
all points within the same grid were averaged. Here, grids with no points inside were assigned
a NaN value. Because the grid size defines the level of coarse graining in this procedure and
affects the later smoothing process, we defined the grid size through the Freedman—Diaconis
rule to reduce arbitrariness. The Freedman—Diaconis rule is a statistical heuristic method to
select the bin width b,, for constructing a histogram by
ICR(x)
In

where ICR(z) and n are the interquartile range and the sample size of the given dataset,

by =2

(8)

respectively. We applied the Freedman—Diaconis rule to the PC1 values of the data points in
the PCA space, which led to a grid size of 0.519.

Smoothing via a Gauss kernel

Although the discretized and averaged fitness maps provide unique fitness values for the
observed points in PCA space, we still could not acquire fitness values for unobserved points
using this discretized map. Therefore, we applied a convolution operation to the discretized

map using a Gaussian kernel (Gaussian smoothing). Here, we aimed to acquire a smoothed
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function F(z) from the discretized and averaged map of resistance {f(X;)})., where X;

denotes the j-th grid. A smoothed function F'(x) can be acquired via Gaussian smoothing

using
F() = 5 S° FOOK (o= X, h) o)
K(2,h) = —— e (10)

hy/2m
where Z = Nh Zjvzl f(X;) and h are the normalization factor and bandwidth of the
Gaussian kernel, respectively. Here, we assumed that PC1 and PC2 are independent, and
thus acquired the smoothed function F'(x) spanning across the two-dimensional PCA space
by F(x) = F(xpc1) - F(xpca). This smoothed function F'(x) provides fitness values for both
observed and unobserved points. In addition, the derivative of F'(x) provided the gradient
at each point in the PCA space, which could be used to predict the direction of evolution.
Therefore, F'(x) can be interpreted as a fitness landscape inferred from the observed evolution
trajectories.

An important hyperparameter for Gaussian smoothing is the bandwidth h. If h is too
large, the fine structure of the underlying landscape may be destroyed. However, if h is too
small, experimental noise would dominate the inference process, worsening the predictions
from the inferred landscape. Therefore, we defined h after a four-fold cross-validation. For
each fold, 3/4 of the non-NaN grids in the discretized map were randomly chosen to infer the
fitness landscape using Gaussian smoothing, and their accuracy was measured by calculating
the mean squared error (MSE) between the normalized resistance values of the remaining
1/4 grids. Using four-fold cross-validation, a grid search was performed for A from 0.26 to
1.5 (using the PCA space) for all eight antibiotics. As a result, h = 0.42 yielded the minimal
MSE for the TET landscape and h = 0.47 yielded the minimal MSE for the other seven

antibiotics. Therefore, we use h = 0.47 for the analysis in this study.

Data availability

Data and code for the reconstruction of fitness landscape are available via
https://github.com/jiwasawa/resistance-landscape. The resequencing analysis data have
been deposited at the DDBJ Sequence Read Archive (https://ddbj.nig.ac.jp/DRASearch/)
under accession number DRA014660.
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Table I. Mutations identified in KM evolved strains under TET selection

Strain Position Mutation Annotation Gene
KME1 in TET 1| 368,605 (T)556 coding (1975/2355 nt) lon —
KME1 in TET 2| 367,435 A 4 bp coding (805 808/2355 nt) lon —
394,075 C—T A191V (GCC—GTCQ) acrR —
3,348,058 G—A S338F (TCT—TTT) atpA
KME1 in TET 3| 368,605 (T)556 coding (1975/2355 nt) lon —
368,605 A-G intergenic ( 186/ 26) |marC < / — marR
KME1 in TET 4| 368,810 | (GCGCA)1—2 | coding (2180/2355 nt) lon —
1,096,089 T—-G F140L (TTT—-TTG) rssB —
1,325,928 A—G intergenic ( 193/ 19) |marC < / — marR
3,600,861 A—C noncoding (12/120 nt) rrfB —
3,716,065 G-T R174S (CGC—AGCQ) acs
KMES5 in TET 1| 368,820 A 1lbp coding (2190/2355 nt) lon —
1,095,758 T—A L30* (TTG—TAG) rssB —
2,086,848 T—C E316G (GAG—GGG) envZ
3,707,114 G—A G145S (GGC—AGC) sozR —
KMES in TET 2| 368,633 | (CCACGT)2—3| coding (2003/2355 nt) lon —
1,390,792 T—A L23* (TTG—TAG) rszD —
KMES5 in TET 3| 393,230 C—T V451 (GTC—ATC) acrd «
2,908,063 TG E273D (GAA—GAC) rpod
3,350,544 A—T W241R (TGG—AGQG) atpB —
KMES5 in TET 4| 367,701 A 1lbp coding (1071/2355 nt) lon —
1,325,907 A 35 bp intergenic ( 172/ 6)  |marC <+ / — marR
3,124,036 A 1bp coding (451/1950 nt) yhiK
3,345,579 G—A P337L (CCG—CTG) atpD <
3,969,252 G-T A201E (GCG—GAG) rob «
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Fig 1. Laboratory evolution of Escherichia coli to probe evolutionary trajectories in
a multi-dimensional resistance space. (A) Schematic figure describing the protocol of the
laboratory evolution experiment in the present study. For every passage, ICsg was quantified for
eight drugs, and cells were transferred from the well with the highest selection-drug concentration
where the cell concentration exceeded a threshold. (B) The experimental conditions used in the
current study. We prepared seven starting strains, i.e., the parent F. coli strain, evolved under
TET (TETE4, TETEG), evolved under KM (KME1, KME5), and evolved under NFLX (NFLXEA4,
NFLXEG). Starting from these strains, we performed laboratory evolution under three drugs (TET,
KM, and NFLX). (C) The time series of ICso values during the evolution of the KME5 strain under
TET, for example. Data of four independent culture lines are overlaid. The resistance values for
tetracycline (TET), kanamycin (KM), norfloxacin (NFLX), sodium salicylate (SS), phleomycin
(PLM), 4-nitroquinoline 1-oxide (NQO), sodium dichromate dihydrate (SDC), and mitomycin C

(MMC) are shown. All time-series data in the present study are presented in S1 Fig.
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Fig 2. Evolutionary trajectories in two-dimensional drug resistance space. (A) Evo-
lutionary trajectories in TET-KM resistance space. The horizontal and vertical axes show the
log-transformed IC5q values for TET and KM, respectively. The black circles represent the states

of starting strains. (B) Evolutionary trajectories in NFLX-KM resistance space.
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Fig 3. Evolutionary trajectories in two-dimensional PCA space. 44 trajectories (11

conditions with 4 replicates each) in eight-dimensional resistance space were projected into two-
dimensional space using PCA. The variance explained by the first two components was 41% and
23%, respectively. (A) Evolutionary trajectories under TET selection. Trajectories starting from the
parent and KM-evolved strains are highlighted by colors, while the gray lines show the trajectories
in other conditions. The black circles represent the state of starting strains. (B) Evolutionary
trajectories under KM selection. Trajectories starting from the parent and TET-evolved strains
under KM selection are highlighted by colors. (C)~(J) ICsy values for each drug mapped on the

two-dimensional PCA space. The colors represent the log-transformed ICsg values (logs ng/mL).
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Fig 4. Estimated phenotype-fitness landscape. (A)~(H) The fitness landscape obtained
using Gaussian smoothing for eight drugs is presented. The resistance levels were normalized to a
maximum value of one (see Materials and Methods). (I) Differences in the evolutionary directions
between the simulated gradient from the fitness landscape (fandscape) and experimental observation
(0,). For comparison, the difference with a random direction (0,4ndom) sampled from a uniform

distribution [0, 27] is also plotted.
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Figure S1. Time series of 1C5q values in the laboratory evolution. Data of four independent

culture series are overlaid.
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Figure S1. (continued)
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Figure S2 Evolutionary simulations on the reconstructed fitness landscape. (A) The simulated
trajectories of evolution (gray) overlayed on the experimental trajectories (blue, orange, green,

and red) in the corresponding environments. The starting points were selected randomly from
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the four starting points of the experimental trajectories. The simulations were performed for
10 independent runs with 10 time steps, except for the simulations for KME1 in NFLX where
we ran the simulation for 150 time steps in order to let the trajectories escape from a local
optimum. (B) The mean distances L between the simulations and experimental trajectories
(blue) and between random Brownian motion and experimental trajectories (orange). 20
independent runs were performed for each environment, resulting into 20x11 = 220 estimates

of L for the simulations and Brownian motion.
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