

1 **Title: Structure and Neutralization Mechanism of a Human Antibody Targeting a**
2 **Complex Epitope on Zika Virus**

3

4 **Authors:** Cameron Adams¹, Derek L. Carbaugh^{1#}, Bo Shu^{4,5#}, Thiam-Seng Ng^{4,5}, Izabella
5 N. Castillo¹, Ryan Bowmik¹, Bruno Segovia-Chumbez¹, Ana C. Puhl², Stephen Graham¹,
6 Sean A. Diehl³, Helen M. Lazear¹, Shee-meい Lok^{4,5,6}, Aravinda M. de Silva^{1,*},
7 Lakshmanane Premkumar^{1,*}

8

9 **Affiliations:** ¹ Department of Microbiology and Immunology, University of North Carolina
10 School of Medicine, Chapel Hill, North Carolina, 27514, United States of America.

11 ² Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and
12 Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, 27514,
13 Chapel Hill, NC, USA.

14 ³ Department of Microbiology and Molecular Genetics, University of Vermont Larner
15 College of Medicine, Burlington VT 05401, USA

16 ⁴ Program in Emerging Infectious Diseases, Duke-National University of Singapore
Medical School, Singapore 169857, Singapore.

17 ⁵ Centre for Bio-Imaging Sciences, Department of Biological Sciences, National
University of Singapore, Singapore 117557, Singapore.

18 ⁶ Center for Bioimaging Sciences, National University of Singapore, Singapore, 117557,
Singapore.

19 # Equally contributing authors

20 * Corresponding authors: aravinda_desilva@med.unc.edu, prem@med.unc.edu

19 **Abstract:**

20 We currently have an incomplete understanding of why only a fraction of human
21 antibodies that bind to flaviviruses block infection of cells. Here we define the footprint of
22 a strongly neutralizing human monoclonal antibody (mAb G9E) with Zika virus (ZIKV) by
23 both X-ray crystallography and cryo-electron microscopy. Flavivirus envelope (E)
24 glycoproteins are present as homodimers on the virion surface, and G9E bound to a
25 quaternary structure epitope spanning both E protomers forming a homodimer. As G9E
26 mainly neutralized ZIKV by blocking a step after viral attachment to cells, we tested if the
27 neutralization mechanism of G9E was dependent on the mAb cross-linking E molecules
28 and blocking low-pH triggered conformational changes required for viral membrane
29 fusion. We introduced targeted mutations to the G9E paratope to create recombinant
30 antibodies that bound to the ZIKV envelope without cross-linking E protomers. The G9E
31 paratope mutants that bound to a restricted epitope on one protomer poorly neutralized
32 ZIKV compared to the wild-type mAb, demonstrating that the neutralization mechanism
33 depended on the ability of G9E to cross-link E proteins. In cell-free low pH triggered viral
34 fusion assay, both wild-type G9E, and epitope restricted paratope mutant G9E bound to
35 ZIKV but only the wild-type G9E blocked fusion. We propose that, beyond antibody
36 binding strength, the ability of human antibodies to cross-link E-proteins is a critical
37 determinant of flavivirus neutralization potency.

38

39

40

41

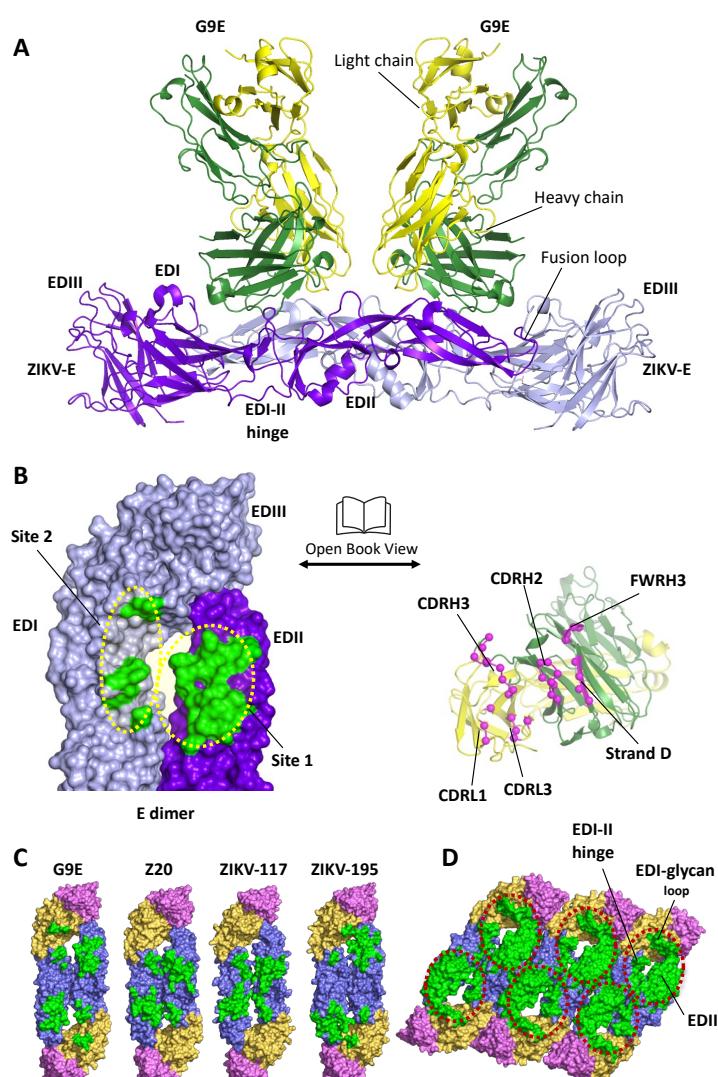
42 **Introduction**

43 Zika virus (ZIKV) is one of several medically important flaviviruses transmitted by
44 mosquitos to humans (1-4). Flaviviruses are positive-sense RNA viruses of approximately
45 50 nm in diameter with a lipid bilayer containing the envelope (E) and
46 premembrane/membrane (prM/M) glycoproteins (5). The ectodomain of E protein is
47 composed of two non-continuous domains (EDI and EDII) and a continuous
48 immunoglobulin-like domain (EDIII). Processing of prM into M and pH-induced E protein
49 conformational rearrangement occurs during virus egress. In the mature infectious virion,
50 E monomers form stable head-to-tail homodimers and 90 E homodimers are packed to
51 create an icosahedral particle with a smooth protein surface (6).

52

53 The flavivirus E glycoprotein, essential for viral attachment and entry into host cells, is a
54 major target of human antibodies (6). Some anti-E protein antibodies are strongly
55 neutralizing and protective, while others are weakly neutralizing and implicated in
56 enhanced viral replication and severe disease (7, 8). Most strongly neutralizing human
57 antibodies bind to quaternary structure epitopes that span two or more E proteins on the
58 viral particle, whereas poorly neutralizing antibodies mainly bind to simple epitopes
59 preserved within a domain of the E protein. While antibodies targeting quaternary
60 structure epitope on E proteins are protective and block pH-induced fusion (9), the
61 relationship between antibody cross-linking of E molecules and neutralization potency
62 has not been experimentally tested. To better define the structural basis and mechanism
63 of ZIKV neutralization by human antibodies, here we focused on human monoclonal
64 antibody (mAb) G9E, which strongly neutralizes multiple ZIKV strains, but not dengue

65 virus (DENV) and protects mice from a lethal ZIKV challenge (10). Previous studies point
66 to G9E binding to a unique (Zika type-specific) epitope on domain II of E protein that may
67 partially overlap with a highly conserved epitope targeted by EDE1 human mAbs that
68 neutralize DENVs and ZIKV(10-12). Using X-ray crystallography and cryo-electron
69 microscopy (cryo-EM), we mapped the binding site of G9E to a quaternary epitope that
70 spans two E molecules forming a homo-dimer. Using the fine footprint of the G9E and
71 structure-guided G9E paratope mutants, we evaluated the contributions of antibody
72 binding affinity versus antibody-mediated E protein cross-linking to virus neutralization.
73 Our results demonstrate that the ability of the antibody to cross-link E monomers is the
74 main determinant of neutralization potency.


75

76 **Results**

77 ***G9E targets an immunodominant quaternary epitope on the ZIKV E-protein***

78 To define the footprint of G9E bound to ZIKV E protein, we expressed and purified the
79 ectodomain of ZIKV E and the antigen binding (Fab) fragment of G9E. The G9E Fab
80 retained neutralizing activity against ZIKV (strain H/PF/2013) in a cell culture focus
81 reduction neutralization test (FRNT) (Supplementary Fig. 1). The ZIKV-E/G9E-Fab
82 complex was purified by size exclusion chromatography, and the crystal structure of the
83 complex was determined by molecular replacement. The resulting electron density map
84 resolved the polypeptide chain and revealed the fine details of E protein interaction with
85 G9E at 3.4 Å resolution (Fig. 1 and Supplementary Fig. 2).

86

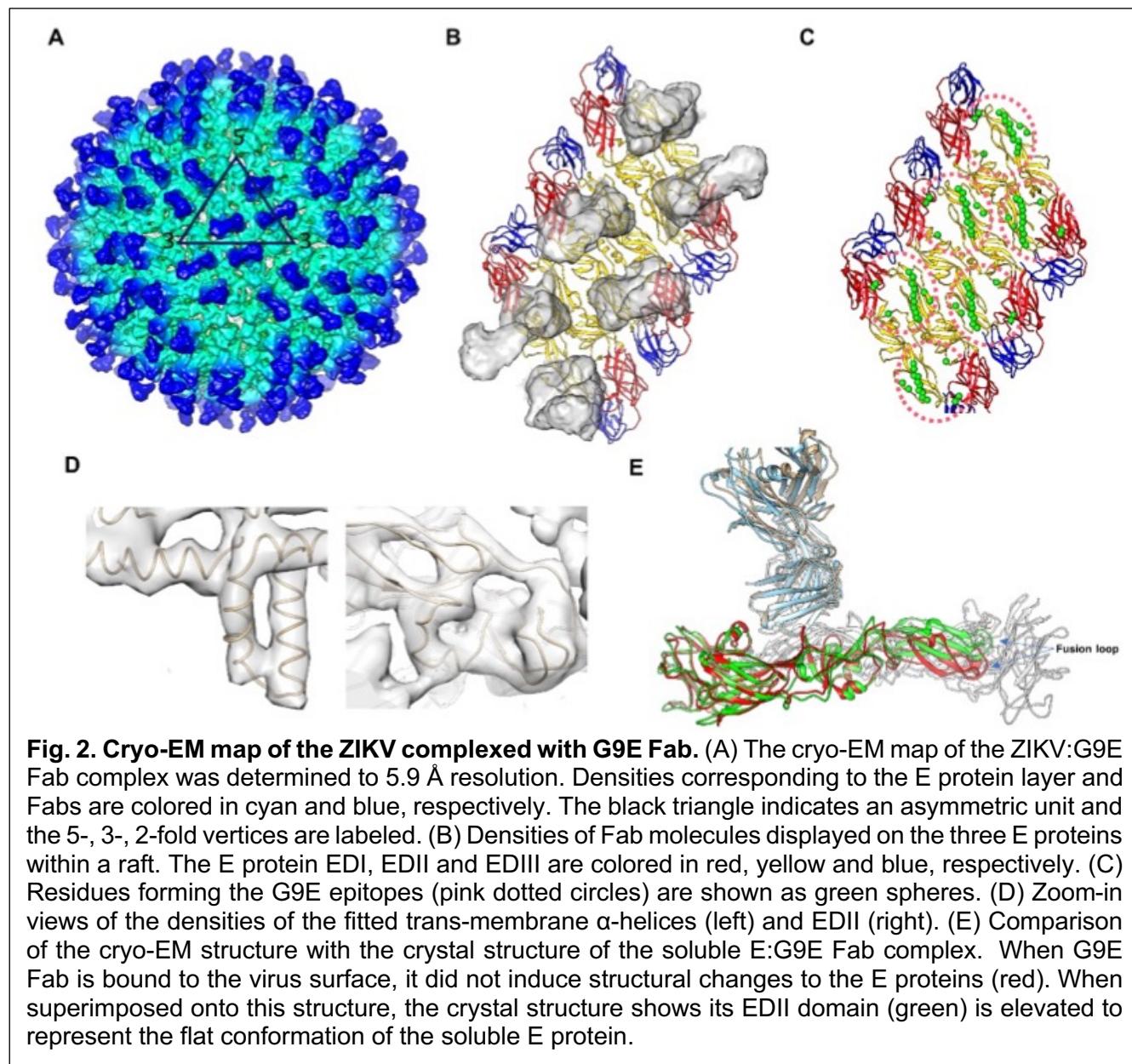


Fig 1. G9E targets an immunodominant quaternary epitope on ZIKV E-protein. (A) Structure of ZIKV E in complex with G9E. The structure reveals that two G9E Fab fragments bind the E-dimer in a similar mode. G9E Fab fragments and E-dimer are shown in cartoon representation (green - Fab heavy chain; gold - Fab light chain; ZIKV E dimer (protomer 1 - purple; protomer 2 - lavender). (B) G9E binds a quaternary epitope formed on E-dimer. Open book representation of the interface formed between E-dimer (green) and G9E (pink) are shown. The quaternary epitope comprises a major (site 1) and a minor (site 2) site on E-dimer. The paratope comprises heavy and light chain CDRs. (C) G9E targets an immunodominant epitope centered on EDII. G9E footprint on ZIKV E-dimer overlaps with previously described neutralizing human mAbs ZIKV-117, Z20, and ZIKV-195 isolated from patients infected with ZIKV. The quaternary epitopes targeted by the respective neutralizing mAbs are shown in green. E domains are shown in orange (EDI), blue (EDII) and pink (EDIII). ZIKV-195 epitope was obtained from ZIKV/ZIKV-195 structure (PDB ID: 6MID). ZIKV-117 footprint was derived from the mAb (ZV-67) fitted in the Cryo-EM map of ZIKV/ZIKV-117 structure (PDB ID: 5UHY). ZV20 epitope was obtained from ZIKV/ZV20 structure (PDB ID: 5GZO). (D) Combined EDII targeting antibody epitope defines an immunodominant region on ZIKV E-raft. Combined epitope comprised of G9E, Z20, ZIKV-117, and ZIKV-195 is shown within the red circle, including EDII, EDI-II hinge, and the EDI-glycan loop.

87 The crystallographic asymmetric unit contains a hetero-hexameric subunit formed by two
88 G9E Fab fragments and one ZIKV E homodimer (Fig. 1A). Both Fabs exhibited a similar
89 mode of binding to one E homodimer. Structural alignment between the two copies of the
90 E proteins or the two copies of the heavy or light chains revealed that they are highly
91 similar, judged by the low root mean square deviations (0.34–0.53 Å for equivalent Ca
92 atoms). While overall E protein structure was largely retained upon binding to G9E Fab,
93 superimposition of E monomers in the G9E Fab complex and the previously determined
94 soluble ZIKV E protein structure (PDB ID 5JHM) showed global domain shifts in EDII and
95 EDIII. This included inward movements of the fusion loop region by 2 Å, and the
96 movement of EDIII by 3 Å toward the highly ordered EDI N154 glycan loop, causing an
97 increase in the E homodimer interface by 120 Å² (Supplementary Fig. 3). The highly
98 flexible EDI-EDII hinge region is largely unchanged between these two structures. Thus,
99 the ZIKV E protein in complex with G9E closely resembles the flat conformation observed
100 in other soluble E protein structures but differs from the curved conformation of the E
101 proteins observed on the mature virion.

102
103 Next, we used cryo-EM to understand further the structural basis for G9E recognition of
104 the intact virion. We incubated purified mature ZIKV strain H/PF/2013 with the G9E Fab
105 fragment at Fab:E protein molar ratios of 1.2:1 and determined the cryo-EM map of G9E
106 Fab:ZIKV to an overall resolution of 5.9 Å, as measured by the gold standard FSC curve
107 cutoff at 0.143. This map showed clear borders and shapes corresponding to the G9E
108 Fab and E protein structures, including the helical ridges of the E protein transmembrane
109 region (Fig. 2A and 2D). The map revealed 180 Fabs binding to one virus particle (Fig.

110 2A and B). The G9E Fab bound to E proteins located on 3-, 5- and 2-fold axes in the
111 icosahedral asymmetric unit, and the epitope is located mainly on EDII and the binding
112 mode is consistent with the crystal structure (Fig. 2B and 2C). Superimposition of E dimer
113 in the G9E Fab complex determined by the cryo-EM and the crystal structure showed
114 global domain shifts in EDII in line with the curved conformation observed on the mature
115 virion. This included inward movements of the fusion loop region by 6 Å (Fig. 2E).

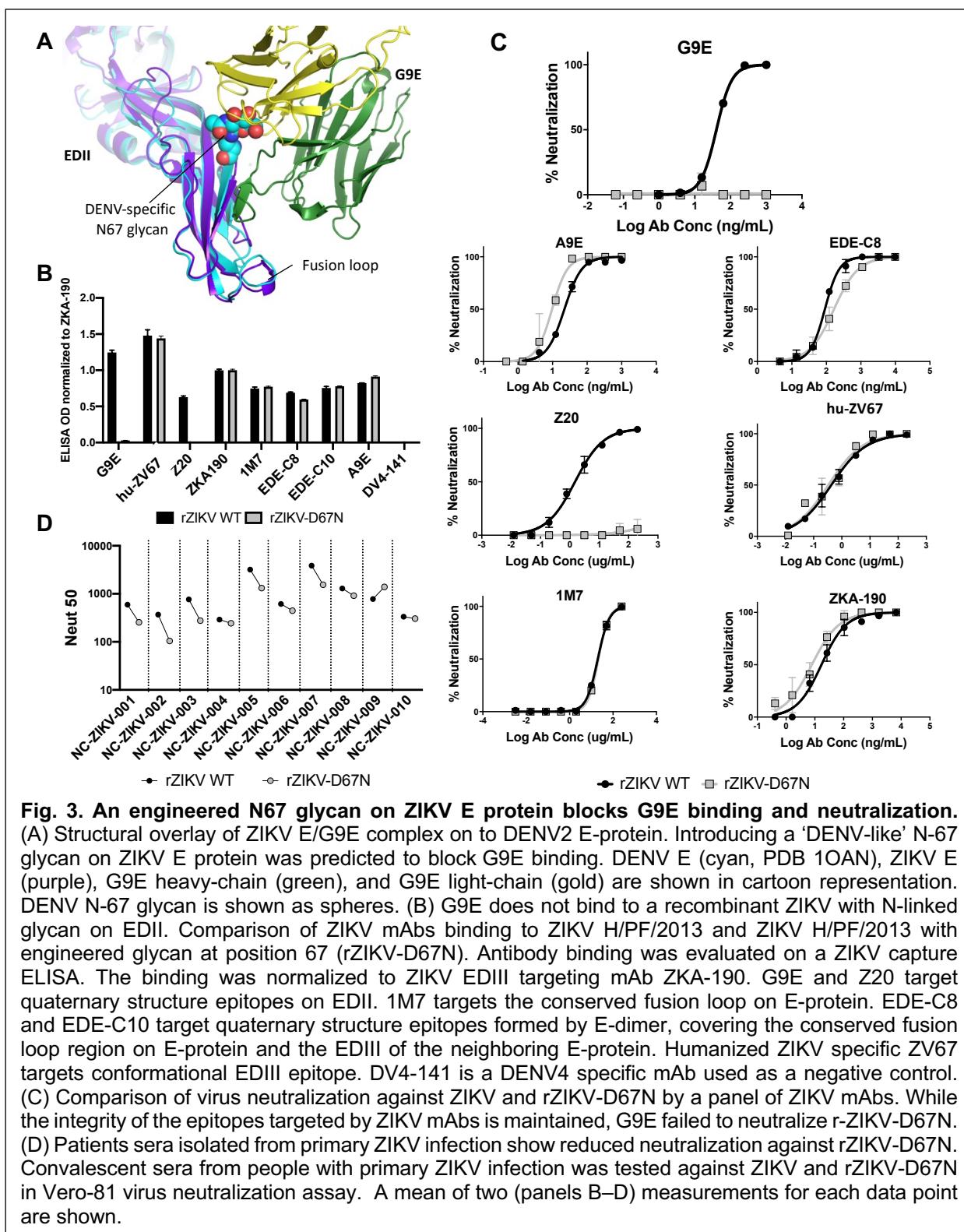
116 The ZIKV E/G9E Fab complex structure by X-ray crystallography and cryo-EM revealed
117 that each Fab fragment cross-linked an E homodimer by binding to a quaternary structure
118 epitope spanning the homodimer (Fig. 1B and 2B). The G9E Fab footprint covers a buried
119 surface area (BSA) of 988 Å², of which 73% (709 Å²) comprises the majority of EDII of
120 one E protein (Fig. 1B, Site 1). The remaining BSA is formed on the adjacent homodimer
121 E protein involving the EDI N154 glycan loop and the EDI-EDII hinge region (Fig. 1B, Site
122 2). In each Fab, the heavy chain variable domain binds to both site1 and 2 and contributes
123 ~74% (731 Å²) to the BSA. In comparison, the light chain variable domain binds only to
124 site 1, contributing ~ 26% (257 Å²) to the BSA.

125

126 The G9E footprint on ZIKV E-protein overlaps with the binding sites of a previously
127 characterized ZIKV neutralizing human mAbs, ZIKV-117 (13), ZIKV-195 (14), and Z20
128 (15) (Fig. 1C and D). The high G9E neutralization potency (11ng/ml) is similar to ZIKV-
129 117 (6 ng/mL), 15-fold greater than ZIKV-195 (77-600 ng/mL), and >60-fold better than
130 the Z20 (370 ng/mL) (10, 13). Both ZIKV-117 and Z20 were shown to recognize
131 quaternary epitopes on EDII covering BSA of 1132 and 797 Å², respectively. While G9E
132 and Z20 binding sites are entirely comprised within the E-homodimer, the ZIKV-117
133 binding site includes both E homodimer and E dimer-dimer interface, covering three E
134 proteins in the raft (13, 14). Our cryo-EM map showed that all 180 binding sites on the
135 surface of the virus were occupied by G9E Fab molecules, whereas ZIKV-117 occupied
136 60 sites (Supplementary Table 1).

137

138 **N67 glycan blocks binding of G9E and other ZIKV neutralizing antibodies**


139 G9E binds to ZIKV but not to the four dengue virus (DENV) serotypes, which are closely
140 related to ZIKV (10). ZIKV E protein has a single N-linked glycan on EDI, whereas DENVs
141 have two N-linked glycans, one on EDI and a second glycan at N67 on EDII. When
142 comparing the sequence and structure of DENV and ZIKV E proteins (Supplementary
143 Fig. 4), we observed that the glycan at position N67 on DENVs partially masks the region
144 on EDII that forms the G9E epitope. We predicted that introducing an N-linked glycan at
145 position 67 on EDII of ZIKV would block the G9E epitope and prevent antibody binding
146 (Fig. 3A). To test this prediction, we generated ZIKV mutant rZIKV-D67N, which
147 introduces an N-linked glycosylation site in ZIKV E analogous to the N67 site in DENV.
148 The mutant virus was viable and confirmed by western blot to have an E protein of
149 increased molecular weight consistent with an additional glycan (Supplementary Fig. 5).
150 Next, we compared the ability of different ZIKV-specific mAbs to bind and neutralize WT
151 ZIKV and rZIKV-D67N. As predicted, G9E and Z20 were unable to bind or neutralize
152 rZIKV-D67N (Fig. 3B and C). Human mAbs that bind to EDIII (ZKA190 and Hu-ZV67),
153 EDI (A9E), and the E dimer dependent epitope conserved between DENV and ZIKV (EDE
154 C8) bound and neutralized both WT and rZIKV-D67N (Fig. 3B and C). These results
155 establish that a site on ZIKV EDII targeted by neutralizing human mAbs is blocked by
156 adding a glycan at position N67, a site generally glycosylated in the four DENV serotypes
157 but not other flaviviruses (16).

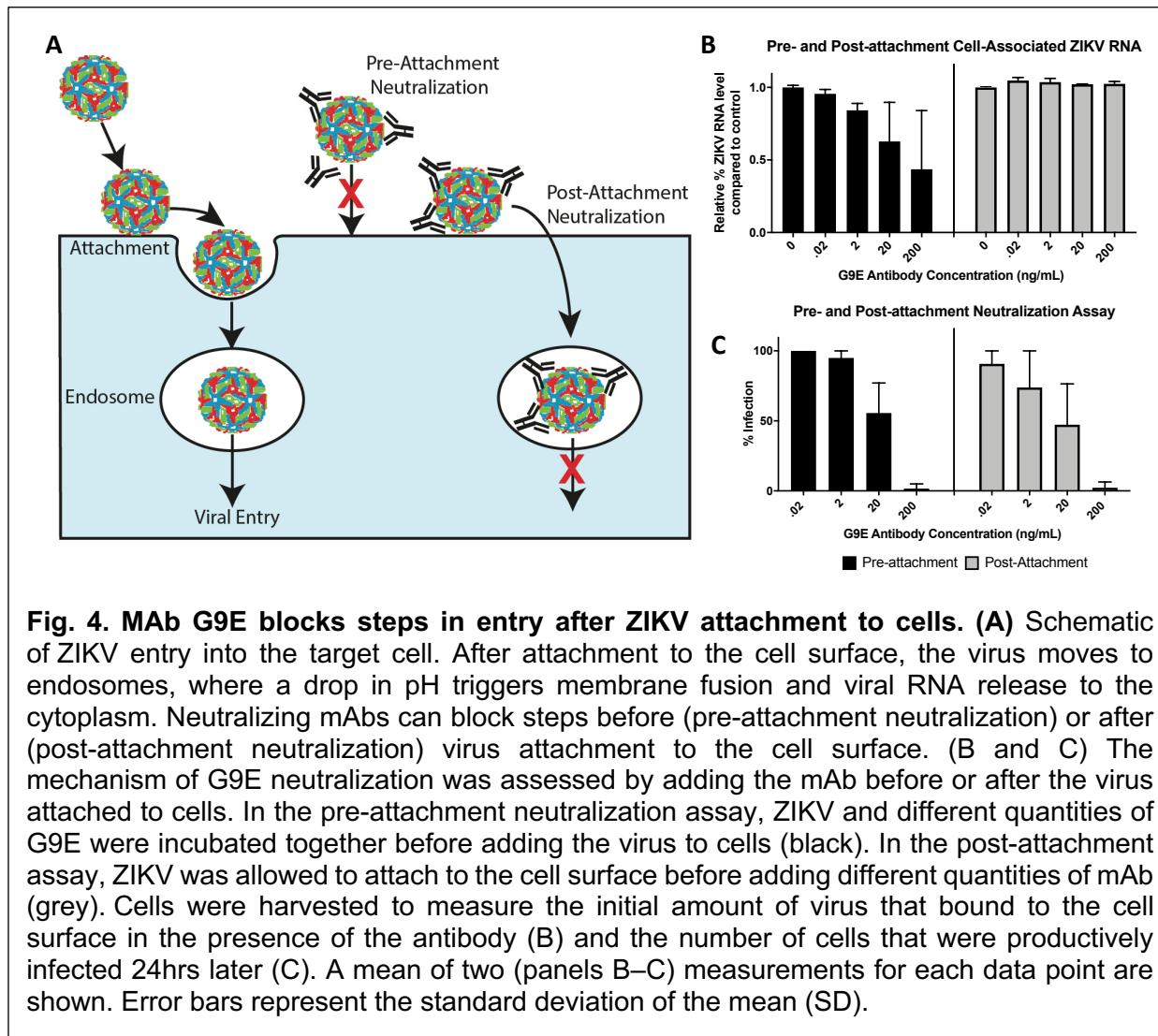
158

159 To evaluate if the ZIKV EDII neutralization site defined by mAb G9E was a target of serum
160 neutralizing antibodies, we compared the ability of convalescent sera from ZIKV patients
161 to neutralize WT ZIKV and rZIKV-D67N. The addition of the glycan at position 67 on EDII

162 reduced the neutralization potency of 7 of 10 primary ZIKV immune sera tested (Fig. 3D).

163 Our results demonstrate that mAb G9E defines an antigenic region centered on EDII that

164 is a major target of serum neutralizing antibodies in ZIKV patients.


165 ***G9E neutralizes ZIKV before and after attachment to the cell surface***

166 We next performed studies to define the mechanism of G9E mediated neutralization of
167 ZIKV. In the mature virus, the E protein remains flat on the surface of the virion, burying
168 the fusion loop within the head-to-tail E homodimer. Following viral attachment and entry
169 into cells, the low pH environment within endosomes triggers the rearrangement of E
170 proteins from homodimers to trimers leading to viral envelope fusion with endosomal
171 membranes and the release of the viral nucleocapsid-RNA complex into the cytoplasm
172 (17-20). As G9E cross-links E molecules forming a single homodimer, we hypothesized
173 that G9E neutralizes ZIKV by blocking conformational changes required for viral
174 membrane fusion within endosomes.

175

176 If G9E mainly neutralizes ZIKV by blocking viral membrane fusion and not viral
177 attachment to cells, the mAb should be able to neutralize ZIKV after the virus attaches to
178 the cell surface (Fig. 4A). Initially, we assessed the ability of ZIKV to bind to the cell
179 surface in presence of G9E. We incubated ZIKV with increasing concentrations of G9E
180 and then incubated the virus/mAb mixture with Vero-81 cells at 4 °C to allow viral
181 attachment to the surface but not entry. After washing the cells to remove any unbound
182 virus, we measured levels of cell-associated ZIKV RNA by qRT-PCR. In this pre-
183 attachment assay, G9E reduced the relative amount of ZIKV RNA associated with Vero-
184 81 cells by approximately 50% at a concentration of 200 ng/mL (Fig. 4B). We
185 subsequently performed the same protocol but now placed virus/mAb/cell mixture at 37°C
186 to measure infection by FRNT. At 200ng/mL, G9E completely blocked the ability of the

187 virus to infect the cells (Fig. 4C). These results indicate that G9E is able to block

Fig. 4. MAb G9E blocks steps in entry after ZIKV attachment to cells. (A) Schematic of ZIKV entry into the target cell. After attachment to the cell surface, the virus moves to endosomes, where a drop in pH triggers membrane fusion and viral RNA release to the cytoplasm. Neutralizing mAbs can block steps before (pre-attachment neutralization) or after (post-attachment neutralization) virus attachment to the cell surface. **(B and C)** The mechanism of G9E neutralization was assessed by adding the mAb before or after the virus attached to cells. In the pre-attachment neutralization assay, ZIKV and different quantities of G9E were incubated together before adding the virus to cells (black). In the post-attachment assay, ZIKV was allowed to attach to the cell surface before adding different quantities of mAb (grey). Cells were harvested to measure the initial amount of virus that bound to the cell surface in the presence of the antibody (B) and the number of cells that were productively infected 24hrs later (C). A mean of two (panels B–C) measurements for each data point are shown. Error bars represent the standard deviation of the mean (SD).

188 attachment and steps after attachment required for infection because the virions that
189 bound to the virus in the presence of the mAb were unable to infect cells. To more directly
190 assess if G9E was able to block infection after attachment, we preincubated ZIKV with
191 Vero-81 cells at 4 °C. After washing the cells to remove any unbound virus, we added
192 increasing quantities of mAb for 1 hr at 4 °C and then measured levels of cell-associated
193 ZIKV RNA or ZIKV infection. Under these conditions, G9E was unable to displace virions
194 already bound to cells but was able to block productive infection of cells at concentrations

195 >20ng/mL (Fig. 4B and C). These results demonstrate that G9E neutralizes ZIKV by
196 blocking steps in viral entry before and after viral attachment to cells.

197

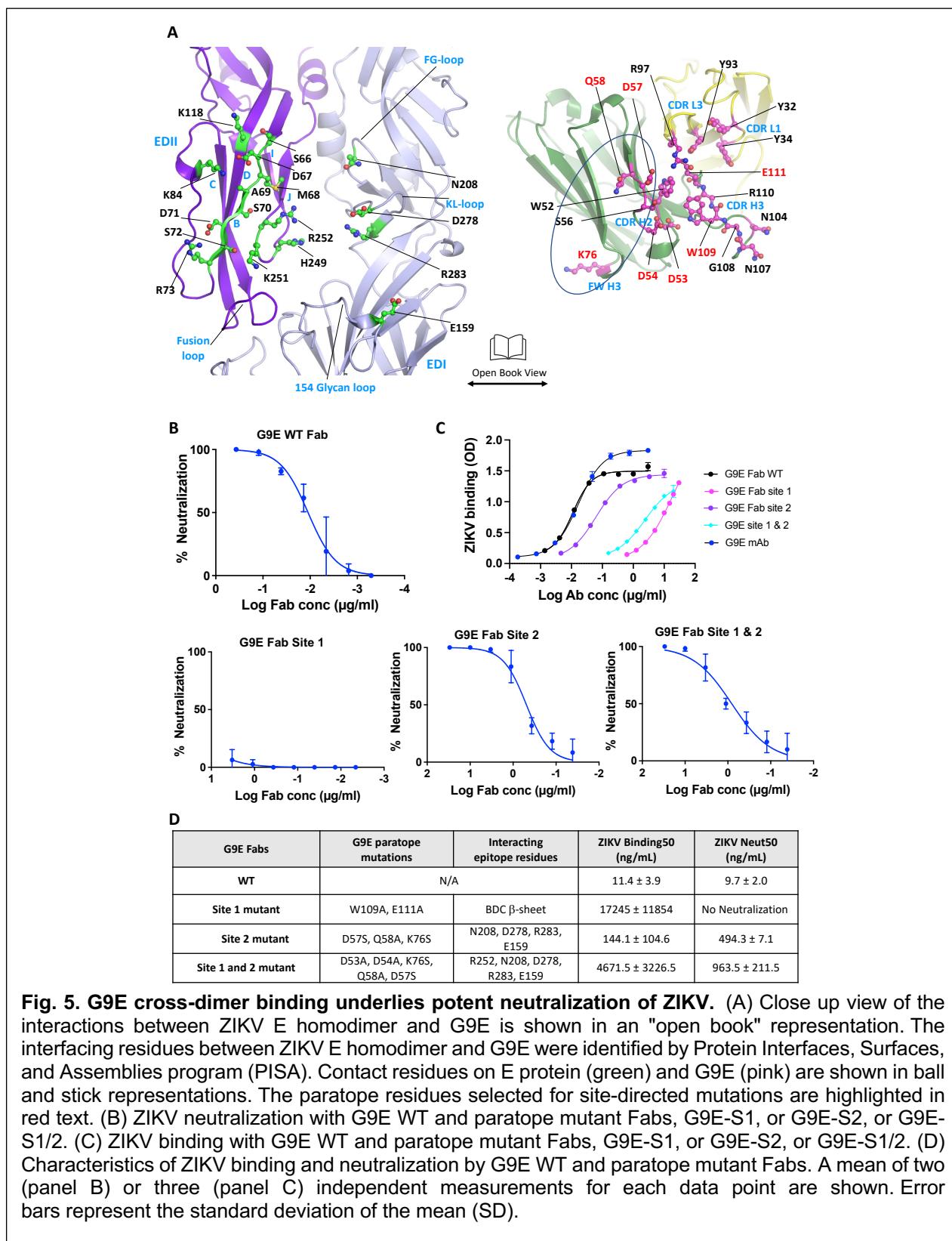
198 ***Neutralization potency of G9E is dependent on binding across the E-dimer***

199 Our hypothesis that G9E neutralizes ZIKV by cross-linking dimers and preventing fusion
200 implies that a single Fab binding to both sites 1 and 2 is required for the potent neutralizing
201 activity of the mAb. To gain deeper insights into specific G9E-ZIKV E interactions and
202 their contribution to virus neutralization, we analyzed the paratope-epitope interface
203 regions by PISA (Protein Interfaces, Surfaces, and Assemblies).

204

205 This analysis revealed that G9E binding to ZIKV E is predominately driven by hydrophilic
206 and electrostatic interactions involving the heavy chain complementarity-determining
207 regions (CDR) H3, CDR H2, and framework region of the heavy chain (FWR) H3 and the
208 light chain CDR L1 and CDR L3 of light chain with the lateral ridge region of EDII (site 1),
209 the EDI 154-glycan loop and KL-hairpin and FG loop at the EDI-EDII hinge region (site 2)
210 (Fig. 5A and Supplementary Fig. 4). Four regions on the heavy chain contact site 1 and
211 site 2 residues on the E dimer. First, the CDR H3 (N107, W109, E111) connects to the
212 exposed edge of the β -strand (D67, M68, S70, S72, and R73) of EDII by four backbone
213 and two side-chain hydrogen bonds, thereby distinctively extending to the BDC β -sheet
214 on the EDII lateral ridge. Second, the side chains of D53, D54, and S56 of CDR H2 form
215 a salt bridge and hydrogen bonding interactions with R252 from the J strand of EDII.
216 Notably, we previously reported that R252 is critical for G9E interaction by alanine scan
217 screening analysis (10). Third, CDR H2 mediates additional contacts involving the side-

218 chains of D57, and Q58 with D278, and K209 from KL-hairpin and FG-loop, respectively
219 at the EDI-EDII hinge region (site 2). Lastly, K76 from the FWR H3 forms an electrostatic
220 interaction with E159 on the 154-glycan loop (Fig. 5A and B). In comparison, the light
221 chain contacts involve only site 1 mediated by four hydrogen-bonding interactions
222 between G31, Y32, Y34, and Y93 (from CDR loops L1 and L2) and S66, D67, and K84
223 (from stands B and E of EDII) (Fig. 5A).


224

225 To understand the significance of G9E cross-dimer interactions with site 2 for ZIKV
226 neutralization, we generated three G9E Fabs introducing paratope mutants
227 (Supplementary Fig. 6). These mutants were designed to perturb the ZIKV E–G9E
228 interactions in site 1 (G9E-S1), site 2 (G9E-S2) or site 1 and 2 (G9E-S1/2) (Fig. 5 and
229 Supplementary Fig 4). The G9E-S1 contained two alanine substitutions in the CDR H3 at
230 position 109 and 111 (W109A and E111A). The W109A and E111A mutations were
231 expected to disrupt the β -strand addition to the BDC β -sheet on the EDII lateral ridge.
232 G9E-S2 contains three mutations (D57S, Q58A, K76S) that would eliminate the weak
233 interactions between G9E and site 2. G9E-S1/2 (D53A, D54A, D57S, Q58A, K76S) has
234 the same mutations as in G9E-S2 and additional mutations at position 53 and 54 to were
235 designed to reduce salt-bridge interaction with R252 in site 1.

236

237 Next, we tested the binding and neutralization activities of WT and mutant G9E Fabs with
238 ZIKV. G9E-S1 (W109A, E111A) with disrupted EDII lateral ridge interaction showed
239 >1500-fold reduced binding compared to WT G9E and entirely lost neutralization activity,
240 demonstrating that site 1 vastly contributes to G9E binding to ZIKV. Without the significant

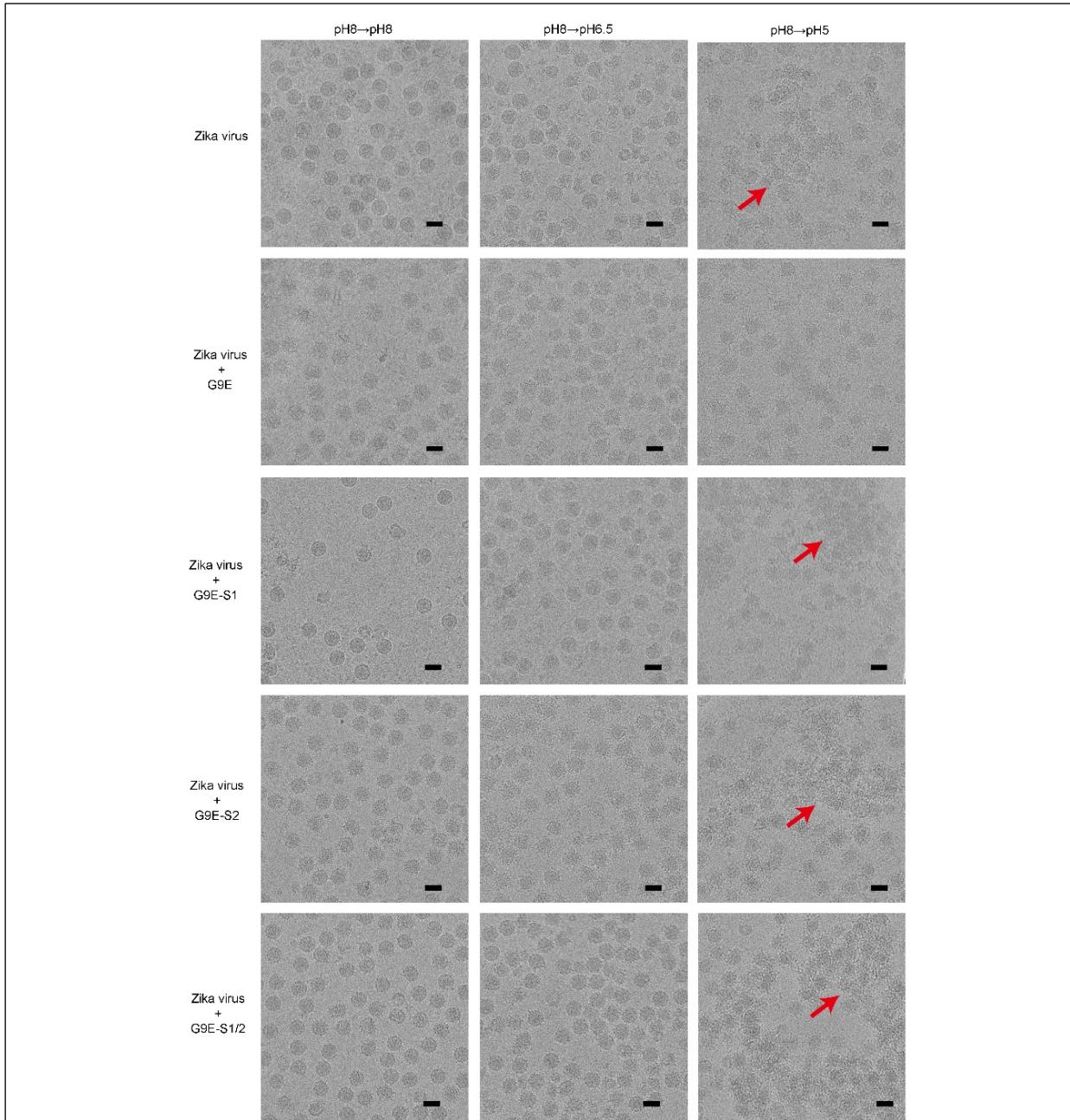
241 site 1 interaction, site 2 completely lacks functional activity (Fig. 5B and C). G9E-S2 with

242 site 2 mutations showed ~10-fold reduction in binding, whereas its neutralization activity
243 sharply decreased by >50-fold compared to WT G9E (Fig. 5C and D). Adding mutations
244 that reduce site 1 “R252” interaction onto site 2 mutant (G9E-S1/2) further weakened
245 ZIKV binding by ~30-fold more than G9E-S2, though its neutralization activity was still
246 comparable to G9E-S2 (Fig. 5B and C). These data suggest that G9E interaction with E
247 homodimer via site 2 plays a critical role in enhancing the potency of neutralizing activity,
248 even though its isolated contribution is minimal to the overall binding of G9E to ZIKV E
249 protein.

250

251 ***G9E binding across E-dimer is necessary for blocking low pH-triggered viral fusion***

252 We previously observed by cryo-EM that ZIKV virions aggregate when exposed to low
253 pH (pH 5.0). This is due to the individual virus particles fusing with each other, probably
254 the result of E proteins flipping up at low pH and attaching to membranes of adjacent viral
255 particles. This process mimics the structural changes necessary during virus entry for low
256 pH triggered fusion of ZIKV particles with endosomal membranes to release the viral
257 genome into the cytoplasm of the target cell. We used cryo-EM to test if Fab G9E or its
258 mutants could block pH-triggered fusion. Fab G9E or the mutants were initially allowed to
259 bind to ZIKV at pH 8.0, mimicking the extracellular environment. We subsequently
260 lowered the pH from 8.0 to either 6.5 (early endosome pH) or 5.0 (late endosome pH).
261 The controls consisted of virus particles at the respective pH conditions without antibody
262 (uncomplexed). Cryo-EM micrographs of uncomplexed ZIKV particles at pH 8.0 mainly
263 showed particles with a smooth surface (Fig. 6). At pH 6.5, most uncomplexed ZIKV
264 particles were similar to those observed at pH 8.0, but some were distorted (Fig. 6). At


265 pH 5.0, the uncomplexed virus particles appeared spiky and formed aggregates,
266 indicative of E protein fusion peptide exposure and insertion into adjacent viral particles.
267 Fab G9E bound to the virus particles and prevented aggregation at pH5, demonstrating
268 that Fab G9E inhibits fusion (Fig. 6). G9E-S1 with disrupted EDII lateral ridge interaction
269 in site 1 failed to bind to the virus at any pH and did not block low pH triggered fusion (Fig.
270 6). Fab G9E-S1/2 with the mutations targeting “R252” interaction in site 1 and the entire
271 site 2 interaction bound to ZIKV but failed to block virus aggregation at pH 5. G9E-S2
272 with the mutations abolishing binding to just the minor binding site (Site 2) on the adjacent
273 E protomer, while preserving binding to the main site (Site 1) on EDII bound to ZIKV at
274 pH 8 and 6.5 but failed to block the virus aggregation at pH 5. These observations suggest
275 that the ability of G9E to cross-link E homodimer via site 2 is required for blocking low pH-
276 triggered fusion of ZIKV particles, and site 1 binding alone lacked fusion inhibitory
277 function.

278

279

280

281

Fig. 6. Cryo-EM micrographs of the G9E Fab and its mutants complexed with Zika virus under various pH conditions: pH 8.0→pH 8.0 and pH 8.0→pH 6.5, and pH 8.0→pH 5.0. In the uncomplexed ZIKV control, virus particles are largely smooth surfaced at pH 8.0. At pH 8.0→pH 5.0, the virus particles have a disordered surface and have aggregated (red arrow). When ZIKV is complexed with G9E Fab, the virus particles under all pH conditions appear spiky, indicating Fab binding. At pH 8.0→pH 5.0, no aggregation is detected, which suggests G9E Fab can inhibit virus-virus fusion. When ZIKV is mixed with Fab G9E-S1, at pH 8.0→pH 8.0, virus particles remain smooth surfaced, similar to that in the uncomplexed ZIKV control, indicating Fab G9E-S1 could not bind to ZIKV. When ZIKV is complexed with either G9E-S2 or G9E-S1/2, at pH 8.0→pH 8.0 and pH 8.0→pH 6.5, the particles appear spiky, indicating that Fabs bind them. At pH 8.0→pH 5.0, aggregation is observed (red arrow), suggesting that these Fabs cannot inhibit virus-virus fusion. Scale bars, 500 Å.

282 **Discussion**

283 While people infected with flaviviruses develop robust and long-lived memory B-cells
284 (MBC) and circulating antigen-specific antibody responses, only a small fraction of these
285 antibodies are responsible for functional virus neutralization and protection (21). Recent
286 studies have established that many potentially neutralizing and protective antibodies bind
287 to quaternary structure epitopes that span two or more viral E proteins (13, 21-24). While
288 the structure of human antibodies bound to flaviviruses or E protein complexes is
289 consistent with antibody cross-linking of E proteins as a neutralization mechanism, direct
290 experimental support for this has been lacking (22, 24, 25). The nature of the ZIKV G9E
291 footprint, consisting of a single dominant binding site on one E monomer and weaker
292 peripheral contacts extending to the second E monomer, provided us a unique
293 opportunity to test the significance of the minor intra-dimer contacts to virus neutralization.
294 Our results strongly support that antibody mediated crosslinking of E proteins plays a
295 critical role in the mechanism of virus neutralization. While we did not directly measure
296 the impact of G9E binding on membrane fusion, our results establish that G9E inhibits
297 low pH-induced changes to the virion, supporting a model in which E protein crosslinking
298 is the major mechanism of neutralization. Our experimental data linking the G9E mediated
299 E protein cross-linking to functional neutralization is likely to be broadly applicable to how
300 other potent human antibodies block flavivirus infections.

301

302 Among the well-studied pathogenic flaviviruses, ZIKV is most closely related to the DENV
303 complex. The antigenic region on EDII defined by G9E is likely the target of ZIKV-specific
304 neutralizing and protective antibodies because the corresponding site on DENVs is

305 masked by a N-linked glycan at position N67. While E glycosylation at position N154 is
306 broadly conserved among flaviviruses, DENV is unique in having an additional N-linked
307 glycan at N67. We predict that the region defined by G9E is likely to be a major target of
308 neutralizing antibodies against other flaviviruses such as Japanese encephalitis, West
309 Nile, and Spondweni viruses that do not belong to the DENV complex. While individuals
310 exposed to sequential DENV serotypes often develop durable cross-neutralizing
311 antibodies to all 4 serotypes, this response does not reliably extend to ZIKV (8, 26, 27).
312 Individuals sequentially infected with DENV followed by ZIKV also do not reliably develop
313 durable DENV-ZIKV cross-neutralizing and cross-protective Ab responses (8, 26).
314 Instead, these individuals develop distinct type-specific neutralizing Ab responses to the
315 original DENV serotype and to ZIKV (26). While not directly addressed here, the
316 presence of an N-linked glycan at position N67 in the 4 DENV serotypes but not on ZIKV
317 may be key to understanding antibody neutralization patterns between DENVs and ZIKV.
318 Recently, individuals immunized against Yellow Fever virus have been observed to
319 develop neutralizing antibodies that are less effective against South American strains with
320 a N-linked Glycan at position 269 compared to African strains that are not glycosylated
321 (28).

322

323 In conclusion, a hallmark of flavivirus infections is the induction of rare but potent,
324 quaternary epitope directed neutralizing antibodies that are correlated with long-term
325 protection. We have identified an antigenic region on ZIKV that is a major target of type-
326 specific neutralizing antibodies in individuals exposed to ZIKV infections. Our findings

327 highlight the importance of antibody-mediated cross-linking of E proteins in the pre-fusion
328 conformation as a mechanism for neutralizing flaviviruses.

329

330

331 **Materials and Methods**

332 **Expression and purification of recombinant ZIKV E proteins and antibodies.** The
333 G9E sequence was obtained during initial characterization of this mAb(10). Z-20 and
334 ZKA190 mAb sequences were obtained from PDB entries 5GZO, and 5Y0A respectively.
335 A humanized version of ZIKV specific mouse EDIII mAb (HuZV-67) in IgG1 format was
336 generated using the sequence obtained from PDB entry 5KVG. A codon optimized
337 synthetic gene encoding for WT or mutant heavy or light chain mAb or Fab was cloned
338 into a mammalian expression plasmid pAH. A human serum albumin secretion signal
339 sequence was included at the 5'-end of each construct to enable secretion into the culture
340 medium. The Fab heavy chain constructs also contained a 6xHistidine tag at the 3'-end.
341 Recombinant Fab or mAb was expressed in Expi293 mammalian expression by co-
342 transfection of heavy and light chain plasmids at 1:1 ratio. Recombinant Fab proteins
343 were purified from the culture supernatant by nickel-nitrilotriacetic acid agarose (Qiagen).
344 Recombinant mAbs were affinity purified by MabSelect resin (Cytiva, #17543802).
345 Recombinant ZIKV E-protein and a cysteine cross-linked stable ZIKV E-protein dimer
346 (A264C) with C-terminal 6x His-tag were expressed in the Expi293 cells and purified as
347 described before (29). Anti-flavivirus MAbs 2H2 (ATCC HB-114) and 4G2 (ATCC HB-
348 112) were produced in hybridoma cell line by the UNC Protein Expression and Purification
349 Core Facility. Purified protein products were verified by SDS-PAGE reducing gel.
350

351 **ZIKV/G9E Fab complex crystallization and structure determination.** ZIKV E/G9E Fab
352 complex was formed by mixing purified recombinant ZIKV E-protein and G9E Fab in

353 solution at 1:1.2 ratio at room temperature for 30 min. The ZIKV E/G9E Fab complex was
354 purified by Superdex 200-increase size exclusion chromatography column. Crystallization
355 screening and optimization of ZIKV E/G9E Fab complex were performed in mosquito
356 robots at the UNC's Center for Integrative Chemical Biology and Drug Discovery using
357 the sitting-drop vapor-diffusion method. Crystals of ZIKV E/G9E Fab complex were grown
358 by mixing 150 ul protein solution at 2.5 mg mL⁻¹ and 150 ul crystallant solution consisting
359 of 100 mM HEPES pH 7.5, 10%(w/v) PEG 8000. X-ray diffraction data were recorded on
360 a MAR-225 CCD detector at the APS SER-CAT 22-BM beamline. Reflections were
361 processed and scaled in HKL2000. Phases were obtained by molecular replacement
362 using the structures of ZIKV E protein (PDB ID: 5JHM) and Fab (PDB ID: 4NKL) as
363 templates. An initial search using the complete PDB coordinates of ZIKV E protein or Fab
364 as a model was unsuccessful. Instead, four fragments of template structures
365 encompassing ZIKV EDI-EDII (1-301 aa), ZIKV EDIII (302-406 aa), heavy and light chains
366 of Fab molecules were used to phase the structure of ZIKV E/G9E Fab complex using
367 Phaser. The translation function Z-scores (TFZ) were >8 for 7 of 8 solutions. The log-
368 likelihood gain increased from 116 (1st solution) to 1444 (8th solution) as each component
369 of the solution was added. Iterative refinement and model building were performed using
370 PHENIX and Coot, respectively. The initial R-factor for the MR solution was 44%. After 3
371 cycles with a combination of rigid body, XYZ, and group-B refinement strategy, the
372 starting R-factor and R-free were 29.9% and 32.3%, respectively. The final R-factor and
373 R-free reported in the Supplementary Table 2 are 23.2 and 25.9%, respectively. Our early
374 refinement strategy included torsion angle simulated annealing to eliminate model bias.
375 Electron density maps for the regions, for example, the E 154 glycan loop and the CDR

376 loops, which were absent in the template model, became interpretable. We used Group-
377 B factors and torsional angle noncrystallographic symmetry (NCS) restraints throughout
378 the refinement cycles, and the final refinement cycles had TLS refinement utilizing a total
379 of 6 TLS groups (1 TLS group per chain). The temperature factors for both heavy and
380 light chain CDR loops are low, and the electron density corresponding to these regions
381 are interpretable to confidently assign main and side-chain atoms. A representative
382 electron density map, B-factor distribution and Molprobity multicriterion-plot for CDRs are
383 shown in Supplementary Fig. 2. The data collection and refinement statistics are given in
384 Supplementary Table 2. The refined model of ZIKV E/G9E Fab complex had six
385 protomers in the asymmetric unit. Molecular figures were generated in PyMOL and
386 interaction analysis were performed in PISA.

387

388 **Virus sample preparation for cryo-EM studies.** *Aedes albopictus* C6/36 cells were
389 grown in RPMI 1640 media supplemented with 10% fetal bovine serum at 29°C. At about
390 80% confluence, the cells were inoculated with ZIKV strain H/PF/2013 at a multiplicity of
391 infection of 0.5 and incubated at 29 °C for 3 days. Tissue culture supernatant was clarified
392 by centrifugation at 9000 g for 1 h. Virus was precipitated overnight from the supernatant
393 using 8% (w/v) polyethylene glycol 8000 in NTE buffer (12 mM Tris-HCl pH8.0, 120 mM
394 NaCl and 1 mM EDTA) and the suspension was centrifuged at 14,400g for 1 h. The pellet
395 was resuspended in NTE buffer and then purified through a 24% (w/v) sucrose cushion
396 followed by a linear 10-30% w/v potassium tartrate gradient. The virus band was
397 extracted, buffer exchanged into NTE buffer and concentrated using a concentrator with

398 100-kDa molecular weight cut-off filter. All steps of the purification procedure were done
399 at 4 °C.

400

401 **Cryo-EM sample preparation and Cryoelectron microscopy.**

402 For the cryo-EM reconstruction, the Fab G9E was mixed with ZIKV at a molar ratio of 1.2
403 Fab to every E protein. The mixture was incubated for 30 min at 4°C followed by ~1 h on
404 ice, and then the sample was collected on a Titan Krios (FEI) microscope equipped with
405 300 kV field emission gun. Leginon (30) was used for automated data collection. The
406 calibrated magnification was 47,000, giving a pixel size of 1.71 Å. The images were
407 recorded in single image mode on Falcon II direct electron detector (FEI) with a total dose
408 of $20 \text{ e}^{-\text{\AA}^{-2}}$. The images were taken at underfocus range between 1.0 and 3.5 μm. A total
409 of 2140 micrographs were collected for the complex. The astigmatic defocus parameters
410 were estimated using Gctf. (31). Particles were picked using Gautomatch, and
411 subsequently subjected to Relion (32) to produce 2D class averages. Classes containing
412 junk and broken particles were excluded from further processing. 4,465 particles in the
413 Fab G9E:ZIKV complex samples were selected for further processing. The 3D refinement
414 produced structures with resolution of 5.9 Å as measured by the gold standard Fourier
415 shell correlation (FSC) cut-off of 0.143. Cryo-EM data collection, refinement and
416 validation statistics are given in Supplementary Table 3.

417

418 For observation of the ability of Fabs to inhibit virus-to-virus fusion using cryo-EM, the
419 Fab G9E and mutants were mixed with ZIKV at a molar ratio of 1.2 Fab to every E
420 protein, respectively. The mixture was incubated for 30 min at 4°C followed by ~1 h on

421 ice, and then applied to a Lacey Carbon grid (TED PELLA, INC) for 10 s prior to
422 adjusting the pH. The final pH of the virus was reached by addition of a volume ratio of
423 1.8 uL of 50 mM MES buffer at respective pH (pH5.0 or pH6.5) to every 1.2 uL of the
424 virus-Fab mixture. The pH-adjusted samples were left on the grid for another 15 s. The
425 grid was then blotted with filter paper and flash frozen in liquid ethane by using the
426 Vitrobot Mark IV plunger (FEI). ZIKV without Fab for each pH were prepared similarly as
427 the controls. The images of the frozen ZIKV complexes were taken with the Titan Krios
428 transmission electron microscope, equipped with 300 kV field emission gun, at nominal
429 magnification of 47,000 for all the complex samples. A 4096 * 4096 FEI Falcon II direct
430 electron detector was used to record the images.

431

432 **ZIKV infectious clone mutagenesis.** We used a previously described infectious clone
433 of ZIKV strain H/PF/2013(33, 34). Site-directed mutagenesis was used to introduce a
434 glycosylation motif (N-X-S/T) at position 67 of the envelope protein (GAC ATG GCT >
435 AAC ACG ACA). The resulting purified plasmids were digested (New England BioLabs),
436 ligated, *in vitro* transcribed (mMachine T7 Ultra transcription kit from Ambion), and
437 electroporated into Vero-81 cells as previously described(35). Supernatants from
438 electroporated Vero-81 cells were harvested after 6 to 7 days and passaged once on
439 Vero-81 cells to generate virus stocks. Virus stocks were titered by FFA on Vero-81 cells.
440 Envelope protein glycosylation status was confirmed by size shifts on western blots as
441 previously described(34).

442

443 **Pre and Post-attachment assay.** Pre and post-attachment assays were done as
444 previously described(36). Briefly, pre-attachment conditions added varying
445 concentrations of G9E mAb to 60-80 foci of H/PF/2013 ZIKV and incubated 1 hour at 4°C.
446 The virus mixed with antibody solution was added to the confluent layer of Vero-81 cells
447 and incubated for 1 hour at 4°C. Post-attachment conditions added 60-80 foci of
448 H/PF/2013 ZIKV to the confluent layer of Vero-81 cells for 1 hour at 4°C. Cells were
449 washed of excess ZIKV with ice-cold DMEM/F12 media supplemented with 20 mM
450 HEPES buffer. Varying concentrations of mAb were added to Vero-81 surface-bound
451 ZIKV at 4°C. For both conditions, cell-associated viral RNA was harvested by adding trizol
452 directly to the confluent cell layer and purifying RNA through QiaAMP viral mini kit. RNA
453 was converted to cDNA by iScript Reverse Transcriptase Supermix (Biorad, #1708841)
454 and detected using Sybr Green (Thermo, 4309155) system with primers specific for ZIKV
455 E-protein (F: CCGCTGCCAACACAAG, R: CCACTAACGTTCTTGCAGACAT)
456 adapted from a previous publication(37). In separate plates, the focus-forming assay was
457 proceeded by heating the attached complex to 37°C and harvesting after 40 hours. Foci
458 were detected by immunostaining with pan-Flavi antibody 4G2.

459
460 **ZIKV capture ELISA.** 96 well-high-binding titer plate (Greiner, 655061) was coated at
461 100ng/well with pan-flavivirus fusion loop mAb 4G2 in 0.1M carb buffer. The wells were
462 blocked with PBS containing 3% skim milk and 0.05% Tween-20 for 1 hour at 37C. After
463 washing, ZIKV in culture supernatant was added to each well and incubated for 1 hour at
464 37°C for capture by 4G2. Serially diluted serum/mAb/Fab in blocking solution was added
465 to the well and incubated for 1 hour at 37°C. Plates were washed with TBS containing
466 0.2% Tween and incubated for 1 hour at 37°C with Goat anti-human Fc (Sigma, A9544)

467 or Fab (Jackson immunoResearch AB_2337617) specific IgG conjugated to alkaline
468 phosphatase. Plates were washed, developed with p-Nitrophenyl phosphate substrate
469 (Sigma, N1891), and absorbance was measured at 405 nm.

470 **Focus Reduction Neutralization Test (FRNT).** ZIKV FRNT assay was performed as
471 described(38). Briefly, mAbs were serially diluted in DMEM (Life Technologies,
472 11330032) media supplemented with 2% Fetal Bovine Serum (Sigma, TMS-013-B), 1%
473 L-glutamine (Life Technologies 25030081), 1% penstrep (Mediatech, 30002CI), and 1%
474 sodium bicarbonate (Life Technologies, 25080094) and incubated with H/PF/2013 ZIKV
475 for 1 hour at 37°C. Antibody and virus mixture was added to the confluent layer of Vero-
476 81 cells in 96-well flat-bottom plate and incubated for 1 hour at 37°C. Excess mAb/virus
477 mixture was flicked off the plate, and 180 uL of Optimum (Life technologies, 31985070)
478 supplemented with 2% methylcellulose was added to individual wells. The plate was fixed
479 with 4% PFA and stained for ZIKV foci with flavivirus specific mAb after 40-hour
480 incubation.

481

482 **References**

- 483 1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453-65.
- 484 2. Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016;29(3):487-524.
- 485 3. Ghosh D, Basu A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl
486 Trop Dis. 2009;3(9):e437.
- 487 4. Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. JAMA.
488 2013;310(3):308-15.
- 489 5. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and
490 replication. Annu Rev Microbiol. 1990;44:649-88.
- 491 6. Sevvana M, Long F, Miller AS, Klose T, Buda G, Sun L, et al. Refinement and Analysis of the
492 Mature Zika Virus Cryo-EM Structure at 3.1 Å Resolution. Structure. 2018;26(9):1169-77 e3.
- 493 7. Katzelnick LC, Montoya M, Gresh L, Balmaseda A, Harris E. Neutralizing antibody titers
494 against dengue virus correlate with protection from symptomatic infection in a longitudinal
495 cohort. Proc Natl Acad Sci U S A. 2016;113(3):728-33.

496 8. Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, et al. Zika virus
497 infection enhances future risk of severe dengue disease. *Science*. 2020;369(6507):1123-8.

498 9. Zhang S, Kostyuchenko VA, Ng TS, Lim XN, Ooi JSG, Lambert S, et al. Neutralization
499 mechanism of a highly potent antibody against Zika virus. *Nat Commun*. 2016;7:13679.

500 10. Collins MH, Tu HA, Gimblet-Ochieng C, Liou GA, Jadi RS, Metz SW, et al. Human antibody
501 response to Zika targets type-specific quaternary structure epitopes. *JCI Insight*. 2019;4(8).

502 11. Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, et al.
503 Structural basis of potent Zika-dengue virus antibody cross-neutralization. *Nature*.
504 2016;536(7614):48-53.

505 12. Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinski A, et al. A new class of
506 highly potent, broadly neutralizing antibodies isolated from viremic patients infected with
507 dengue virus. *Nat Immunol*. 2015;16(2):170-7.

508 13. Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, Long F, et al. A human antibody
509 against Zika virus crosslinks the E protein to prevent infection. *Nat Commun*. 2017;8:14722.

510 14. Long F, Doyle M, Fernandez E, Miller AS, Klose T, Sevvana M, et al. Structural basis of a
511 potent human monoclonal antibody against Zika virus targeting a quaternary epitope. *Proc
512 Natl Acad Sci U S A*. 2019;116(5):1591-6.

513 15. Wang Q, Yang H, Liu X, Dai L, Ma T, Qi J, et al. Molecular determinants of human
514 neutralizing antibodies isolated from a patient infected with Zika virus. *Sci Transl Med*.
515 2016;8(369):369ra179.

516 16. Carbaugh DL, Lazear HM. Flavivirus Envelope Protein Glycosylation: Impacts on Viral
517 Infection and Pathogenesis. *J Virol*. 2020;94(11).

518 17. Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein
519 after membrane fusion. *Nature*. 2004;427(6972):313-9.

520 18. Allison SL, Schalich J, Stiasny K, Mandl CW, Kunz C, Heinz FX. Oligomeric rearrangement of
521 tick-borne encephalitis virus envelope proteins induced by an acidic pH. *J Virol*.
522 1995;69(2):695-700.

523 19. Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion
524 in late endosomes using compartment-specific lipids. *PLoS Pathog*. 2010;6(10):e1001131.

525 20. Stiasny K, Allison SL, Schalich J, Heinz FX. Membrane interactions of the tick-borne
526 encephalitis virus fusion protein E at low pH. *J Virol*. 2002;76(8):3784-90.

527 21. Galichotte EN, Baric RS, de Silva AM. The Molecular Specificity of the Human Antibody
528 Response to Dengue Virus Infections. *Adv Exp Med Biol*. 2018;1062:63-76.

529 22. de Alwis R, Smith SA, Olivarez NP, Messer WB, Huynh JP, Wahala WM, et al. Identification of
530 human neutralizing antibodies that bind to complex epitopes on dengue virions. *Proc Natl
531 Acad Sci U S A*. 2012;109(19):7439-44.

532 23. Galichotte EN, Widman DG, Yount BL, Wahala WM, Durbin A, Whitehead S, et al. A new
533 quaternary structure epitope on dengue virus serotype 2 is the target of durable type-
534 specific neutralizing antibodies. *mBio*. 2015;6(5):e01461-15.

535 24. Kaufmann B, Vogt MR, Goudsmit J, Holdaway HA, Aksyuk AA, Chipman PR, et al.
536 Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments
537 of the human monoclonal antibody CR4354. *Proc Natl Acad Sci U S A*. 2010;107(44):18950-
538 5.

539 25. Fibriansah G, Ibarra KD, Ng TS, Smith SA, Tan JL, Lim XN, et al. DENGUE VIRUS. Cryo-EM
540 structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers.
541 Science. 2015;349(6243):88-91.

542 26. Andrade P, Gimblet-Ochieng C, Modirian F, Collins M, Cardenas M, Katzelnick LC, et al.
543 Impact of pre-existing dengue immunity on human antibody and memory B cell responses
544 to Zika. Nat Commun. 2019;10(1):938.

545 27. Collins MH, McGowan E, Jadi R, Young E, Lopez CA, Baric RS, et al. Lack of Durable Cross-
546 Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection. Emerg Infect Dis.
547 2017;23(5):773-81.

548 28. Haslwanter D, Lasso G, Wec AZ, Furtado ND, Raphael LMS, Tse AL, et al. Genotype-specific
549 features reduce the susceptibility of South American yellow fever virus strains to vaccine-
550 induced antibodies. Cell Host Microbe. 2022;30(2):248-59 e6.

551 29. Metz SW, Galichotte EN, Brackbill A, Premkumar L, Miley MJ, Baric R, et al. In Vitro
552 Assembly and Stabilization of Dengue and Zika Virus Envelope Protein Homo-Dimers. Sci
553 Rep. 2017;7(1):4524.

554 30. Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, et al. Leginon: an
555 automated system for acquisition of images from vitreous ice specimens. J Struct Biol.
556 2000;132(1):33-45.

557 31. Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016;193(1):1-12.

558 32. Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure
559 determination. J Struct Biol. 2012;180(3):519-30.

560 33. Widman DG, Young E, Yount BL, Plante KS, Galichotte EN, Carbaugh DL, et al. A Reverse
561 Genetics Platform That Spans the Zika Virus Family Tree. mBio. 2017;8(2).

562 34. Carbaugh DL, Baric RS, Lazear HM. Envelope Protein Glycosylation Mediates Zika Virus
563 Pathogenesis. J Virol. 2019;93(12).

564 35. Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, et al. Development
565 and characterization of a reverse genetic system for studying dengue virus serotype 3 strain
566 variation and neutralization. PLoS Negl Trop Dis. 2012;6(2):e1486.

567 36. Fibriansah G, Tan JL, Smith SA, de Alwis AR, Ng TS, Kostyuchenko VA, et al. A potent anti-
568 dengue human antibody preferentially recognizes the conformation of E protein monomers
569 assembled on the virus surface. EMBO Mol Med. 2014;6(3):358-71.

570 37. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and
571 serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007.
572 Emerg Infect Dis. 2008;14(8):1232-9.

573 38. Montoya M, Collins M, Dejnirattisai W, Katzelnick LC, Puerta-Guardo H, Jadi R, et al.
574 Longitudinal Analysis of Antibody Cross-neutralization Following Zika Virus and Dengue
575 Virus Infection in Asia and the Americas. J Infect Dis. 2018;218(4):536-45.

576

577 **Acknowledgements:** We acknowledge the use of the UNC's macromolecular
578 crystallography core facility and 22-BM beamline (SER-CAT) at the Advanced Photon

579 Source. We thank the support teams at both facilities for expert assistance, and we are
580 grateful to Dr. Kenneth Pearce for his support with the use of Mosquito Robot for protein
581 crystallization in screening and optimization stages. We thank Xinni Lim and Valerie S-Y
582 Chew for virus purification, Shuijun Zhang, Victor Kostyuchenko and Guntur Fibriansah
583 for technical support.

584 **Funding:** US Centers for Disease Control and Prevention 00HVCLJB-2017-04191(PI:
585 deSilva); US National Institutes of Allergy and Infectious Diseases R01AI107731 (PI:
586 deSliva), R21AI144631 (PI: Lazear), T32 AI007419 (PI: Carbaugh), U01AI141997 (PI:
587 Diehl); US National Institute of General Medicine P20GM12549 (PI: Diehl); Duke-NUS
588 Signature Research Programme funded by the Ministry of Health, Singapore and
589 Singapore National Research Foundation Competitive Research Project (NRF-CRP17-
590 2017-04) (PI: Lok)

591 **Author contributions:** CA, AMDS, LP conceived and planned experiments. SAD
592 assisted in initial characterization of antibody. ACP, LP and CA created crystal of antibody
593 and protein. LP created structure model of antibody and protein. BSC, INC and SG
594 assisted in expression and purification of proteins. INC and RB assisted in binding and
595 functional assays. DLC and HML created key reagents. CA carried out remainder of
596 experiments with guidance from LP and AMDS. AMDS, LP, and CA analyzed data,
597 created, and revised the manuscript with critical feedback from remaining authors. AMDS,
598 SML and LP supervised the project. SML and BS designed cryo-EM studies; BS
599 conducted virus purification; TSN acquired cryo-EM data; BS analyzed cryo-EM data.

600

601 **Competing Interests:** The authors have no competing interests to declare at this time.

602

603 **Supplemental information**

604 **Structure and Neutralization Mechanism of a Human Antibody**

605 **Targeting a Complex Epitope on Zika Virus**

606 Cameron Adams¹, Derek L. Carbaugh¹, Bo Shu^{4,5}, Thiam-Seng Ng^{4,5}, Izabella N.
607 Castillo¹, Ryann Bowmik¹, Bruno Segovia-Chumbez¹, Ana C. Puhl², Stephen Graham¹,
608 Sean A. Diehl³, Helen M. Lazear¹, Shee-mei Lok^{4,5,6}, Aravinda M. de Silva^{1,*},
609 Lakshmanane Premkumar^{1,*}

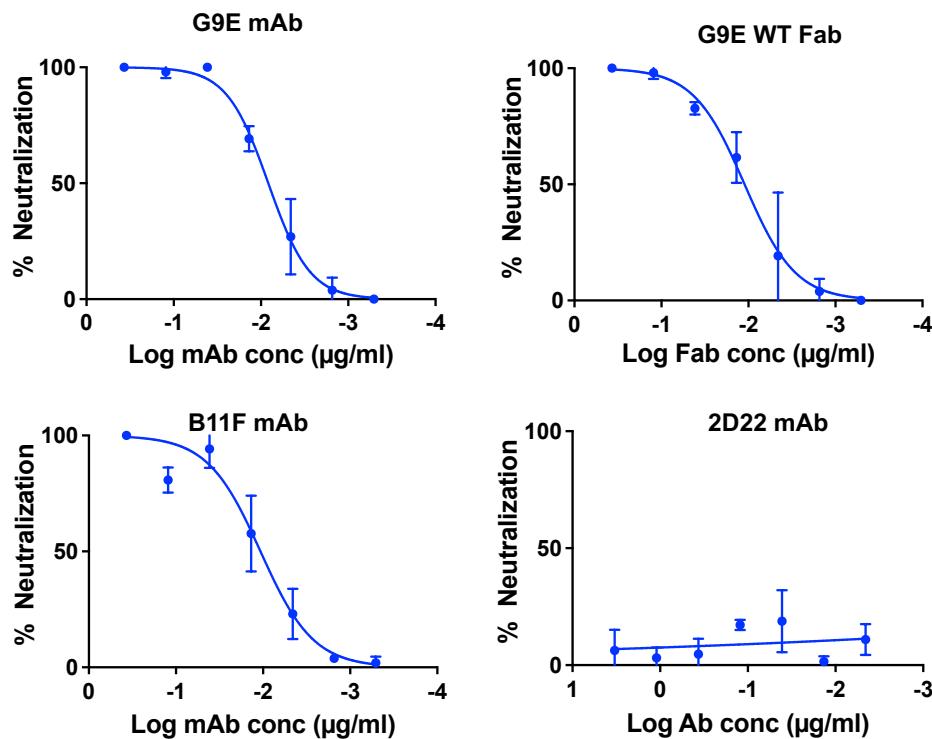
610

611 ¹ Department of Microbiology and Immunology, University of North Carolina School of
612 Medicine, Chapel Hill, North Carolina, 27514, United States of America.

613 ² Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and
614 Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, 27514,
615 Chapel Hill, NC, USA.

616 ³ Department of Microbiology and Molecular Genetics, University of Vermont Larner
617 College of Medicine, Burlington VT 05401, USA

⁴ Program in Emerging Infectious Diseases, Duke-National University of Singapore
Medical School, Singapore 169857, Singapore.


⁵ Centre for Bio-Imaging Sciences, Department of Biological Sciences, National
University of Singapore, Singapore 117557, Singapore.

⁶ Center for Bioimaging Sciences, National University of Singapore, Singapore, 117557,
Singapore.

618

619 * Corresponding authors

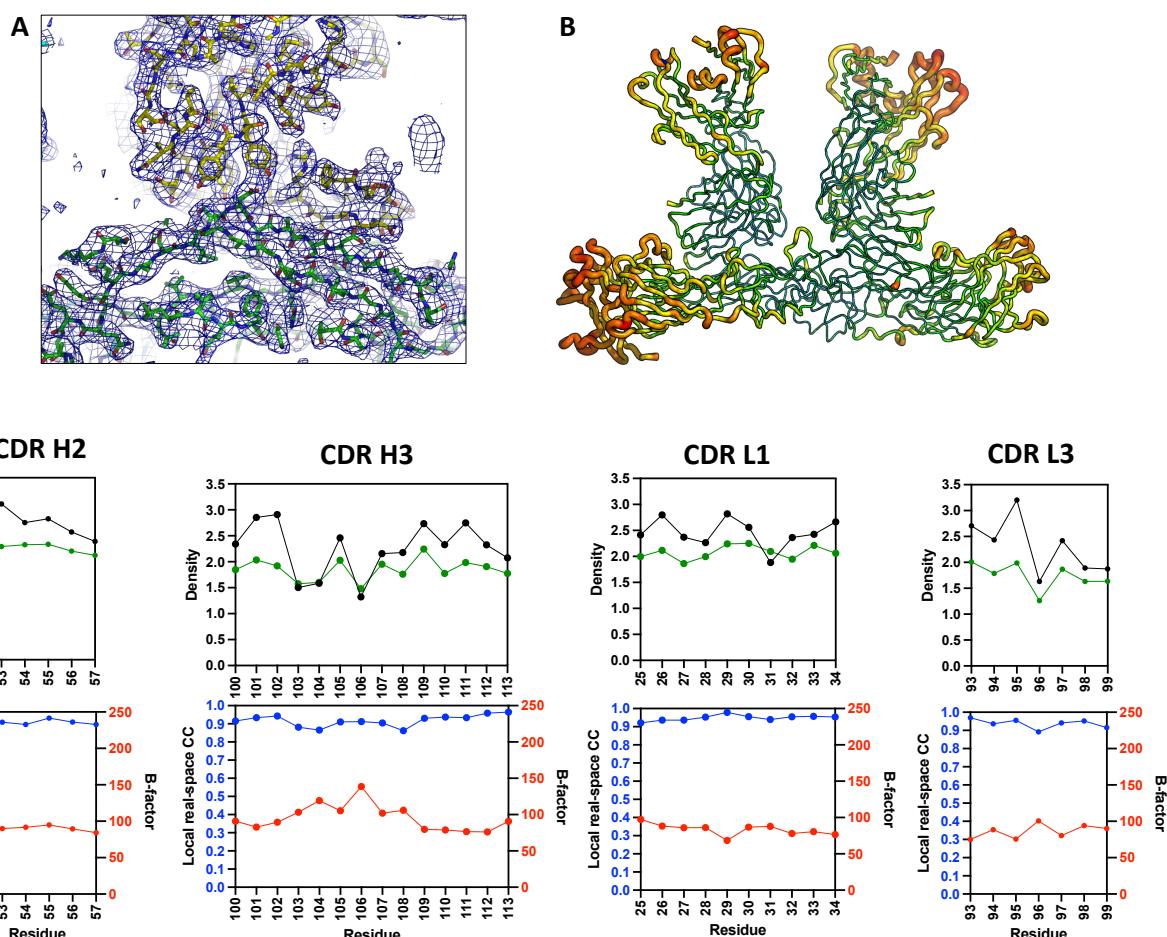
620

621

622

623 **Supplementary Fig. 1. Neutralization of ZIKV H/PF/2013 by G9E mAb and G9E Fab.**

624 G9E mAb and G9E Fab were expressed in Expi293 mammalian cells and purified from
625 the cell culture medium. G9E Fab retains neutralization activity against ZIKV similar to
626 the parent G9E mAb. Previously characterized ZIKV-specific mAb (B11F) and DENV2-
627 specific mAb (2D22) were used as controls. A mean of two measurements for each data
628 point are shown. Error bars represent the standard deviation of the mean (SD).


629

630

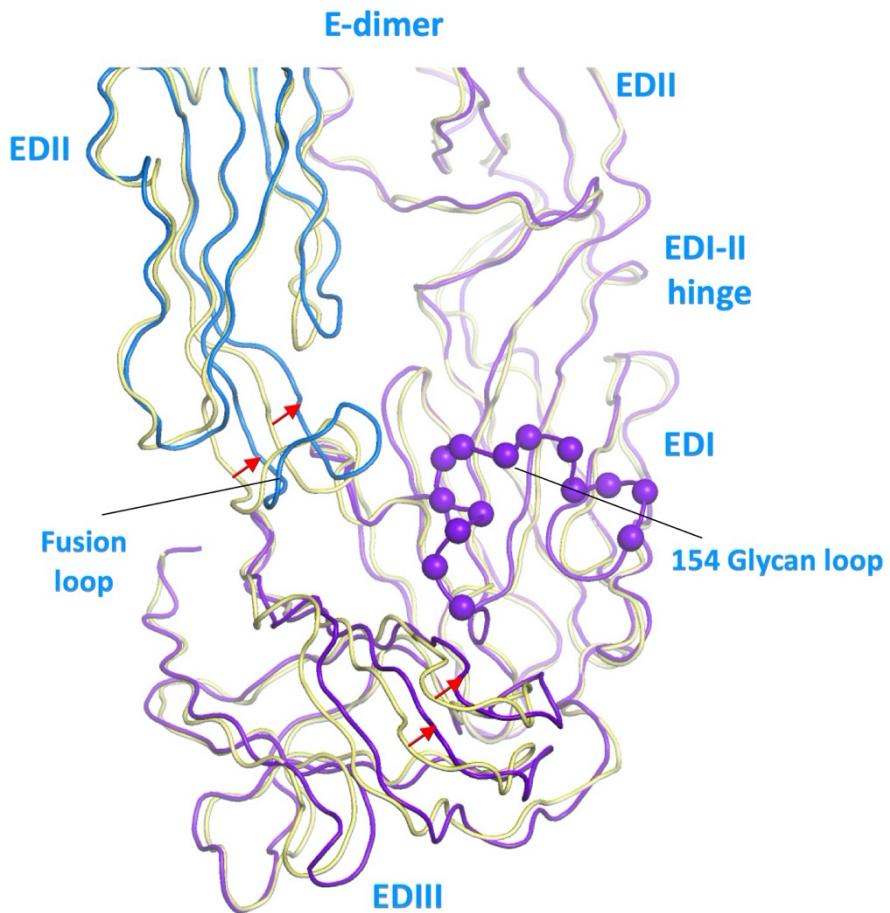
631

632

633

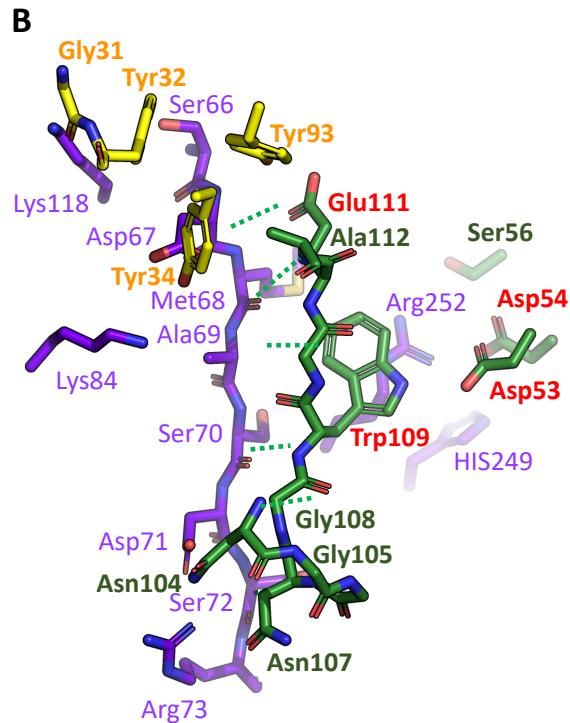
635

Supplementary Fig. 2. Correlation of map quality and B-factor in ZIKV-E/G9E Fab complex structure. (A) Representative electron density map of G9E Fab/ZIKV E complex. An initial 2Fo-Fc electron density map (contour 1.0 sigma) of the ZIKV E/G9E complex illustrates that the starting phases obtained by molecular replacement were of excellent quality to reveal the nature of the interaction between G9E and ZIKV-E-protein. ZIKV E-protein (green) G9E Fab (yellow) are shown as sticks. (B) Thermal parameter distribution in ZIKV E/G9E Fab shown as B-factor “putty”. The isotropic B-factors are depicted on the structure as spectrum range from 28.9 Å² (blue, lowest B-factor) to 238.7 Å² (red, highest B-factor), with the ribbon radius increasing from low to high B-factor. The


644 mean B-factor was 120.67 Å². The lowest B-value was observed in the interfacing region
645 between DII of E protein and the CDR regions of G9E Fab, where the electron density is
646 well resolved. (C) Molprobity multicriterion-plot for CDRs. The likelihood-weighted 2mFo-
647 DFc map and the Fc map calculated from the model were compared and real-space
648 correlation coefficient for each residue were obtained. Comparison of the 2mFo-DFc map,
649 the Fc map, the real-space CC and the B-factor for each of residue in CDR loops are
650 shown.

651

652


653

654

655
656
657
658
659
660
661
662
663
664
665
666
667 **Supplementary Fig. 3. G9E binding induces a small domain motion in ZIKV E-
668 dimer.** Structural superposition of the E-protein conformation of the template structure
669 used for molecular replacement (PDB ID: 5JHM, yellow) and the E-protein conformation
670 observed in complex with G9E (protomer 1-blue; protomer 2 - purple). G9E induces a 2
671 Å inward movement of the fusion loop (blue strand, notated by red arrows) towards the
672 EDI glycan loop (purple spheres) of the neighboring E-protein. G9E also causes a 3 Å
673 inward movement of EDIII (purple strand, notated by the red arrow) towards its EDI glycan
674 loop (purple spheres). These movements cause an increase in the E-dimer interface.

E protein	G9E Fab	Distance in (Å)		
		Fab 1	Fab 2	
A				
Heavy chain				
ASP71 [OD2]	ASN104 [ND2]	3.0	3.4	
MET68 [O]	GLU111 [N]	3.2	3.0	
ARG252 [NH1]	SER56 [OG]	3.7	3.7	
SER72 [N]	ASN107 [O]	3.1	3.0	
SER72 [OG]	ASN107 [O]	2.9	3.0	
ARG73 [NH1]	ASN107 [OD1]	2.9	3.1	
MET68 [N]	GLU111 [OE1]	3.0	3.1	
ARG252 [NH1]	ASP54 [OD1]	3.8	3.9	
ARG252 [NH1]	ASP54 [OD2]	2.6	2.8	
HIS249 [NE2]	ASP54 [OD2]	4.4	3.8	
MET68 [N]	GLU111 [OE2]	3.0	3.1	
ASN208 [OD1]	GLN58 [OE1]	3.7	4.1	
ASN208 [OD1]	ASP57 [OD1]	3.8	5.2	
ASN208 [ND2]	GLN58 [OE1]	4.0	4.8	
ASP278 [OD2]	GLY55 [O]	3.2	3.0	
ASP278 [OD1]	GLN58 [NE2]	3.5	3.7	
ASP278 [OD2]	GLN58 [NE2]	3.6	4.0	
ARG252 [NH1]	ASP53 [OD1]	5.1	4.9	
ARG252 [NH1]	ASP53 [OD2]	6.1	5.9	
GLU159 [OE2]	LYS76 [NZ]	9.8	5.5	
GLU159 [OE1]	LYS76 [NZ]	9.9	5.9	
Light chain				
SER66 [OG]	TYR32 [OH]	2.5	2.5	
ASP67 [OD1]	TYR34 [OH]	2.7	2.6	
LYS118 [NZ]	GLY31 [O]	2.6	2.9	
ASP67 [N]	TYR93 [OH]	3.0	2.9	
LYS84 [NZ]	TYR34 [OH]	3.9	3.6	

C

Virus	Site 1										Site 2			
	66	67	68	71	72	73	84	118	249	251	208	159	278	
ZIKV PF2013	S	D	M	D	S	R	K	K	H	R	N	E	D	
DENV1 West Pac 1974	S	N	T	D	T	R	E	K	H	K	E	E	S	
DENV2 S16803	T	N	T	E	T	R	E	M	H	K	E	D	S	
DENV3 CH53489	T	N	I	D	T	R	E	K	H	K	K	E	S	
DENV4 TVP-376	S	N	I	A	T	R	E	K	H	R	K	D	G	

Favorable Unfavorable

Main chain hydrogen bonding Identical residues

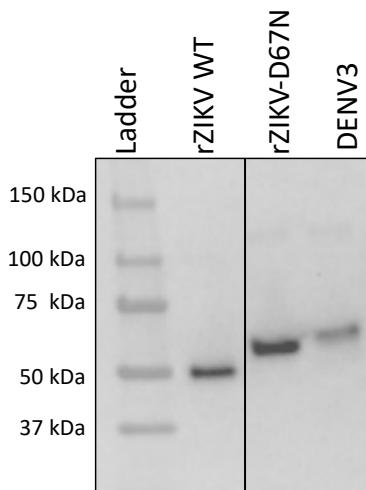
679 **Supplementary Fig. 4. Details of the interaction interface. A.** Summary of interaction

680 distance between E and G9E residues in the crystal structure of ZIKV E/G9E complex. A

681 donor-acceptor atom distance of 4 Å between E and one of the Fab was considered as a

682 H-bond. A distance of 6 Å was considered for a salt bridge. **B.** Close-up view of the

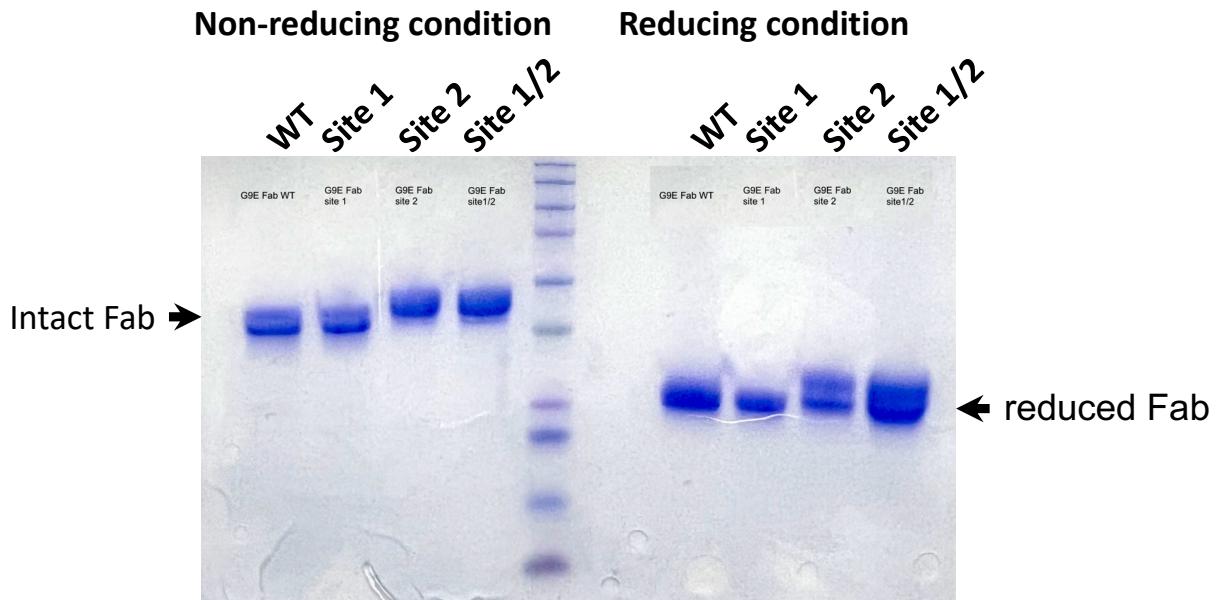
683 interacting residues in E protein (purple) and G9E heavy (green) and light chains (yellow).


684 The color of the residue name and number is matched to the carbon skeleton of amino

685 acid. The main chain hydrogen bonding interaction between E and G9E are shown as

686 dotted green lines. The heavy chain paratope residues selected for site-directed
687 mutations are highlighted in red text. **C.** Amino acid conservation analysis within the G9E
688 binding site. G9E interacting residues in ZIKV E protein was compared to the four
689 serotypes of the DENV E proteins. ZIKV E protein residue number and name in single
690 letter code are provided on the top rows. Based on the amino acid properties, DENV
691 residues are categorized from favorable (green) to unfavorable (red). Identical residues
692 are colored in grey. ZIKV E residue involved in main chain hydrogen bonding interaction
693 is shown in cyan. DENV sequences were retrieved from NCBI using the accession codes
694 provided within the parentheses: DENV1 (P17763), DENV 2 (GU289914), DENV3
695 (AAB69126), and DENV4 (AGS14893). The N-linked glycosylation at position 67 was
696 predicted to sterically block G9E binding.

697


698

699

700 **Supplementary Fig. 5. Western blot of rZIKV and rZIKV-D67N.** WT rZIKV retains a
 701 glycosylation site amino acid position 154 on the envelope protein while DENV3 has two
 702 glycosylation sites at amino acid positions 67 and 154. rZIKV-D67N was created by
 703 introducing a glycosylation motif (DMA to NTT) at position 67-69. To indirectly assess
 704 glycosylation status, E-proteins were immunoprecipitated from Vero cells infected with
 705 WT rZIKV, rZIKV-D67N, or DENV3 and detected by western blot using flavivirus mAb
 706 4G2 as primary antibody followed by HRP-conjugated goat anti-mouse IgG as secondary
 707 antibody. rZIKV-D67N exhibited a higher molecular weight E protein compared to WT
 708 rZIKV, consistent with the presence of an additional N-linked glycan.

709

710

711 **Supplementary Fig. 6. SDS-PAGE analysis of the purified G9E Fabs.** G9E WT and
 712 paratope mutant Fabs were expressed in Expi293 mammalian cells and purified by Ni-
 713 NTA resin. Coomassie-stained SDS-PAGE run under reduced and non-reduced condition
 714 show the band corresponding to intact Fab and reduced Fab fragments.

715

716
 717

718

mAb	G9E	Z20	ZIKV-117	ZIKV-195
Neutralization 50% (ng/mL) vs H/PF/2013	6.3	370	5.4	600
Estimated sites per virion	180	180	60	180
In-vivo protection	Yes	Not tested	Yes	Yes

719

720 **Supplementary Table 1. Characteristics of human ZIKV mAb targeting EDII.** Z20
721 (15), ZIKV-117 (13), and ZIKV-195 (14) are previously reported human mAbs isolated
722 from patients who experienced ZIKV infection. G9E, ZIKV-117, and ZIKV-195 protected
723 against ZIKV infection in a murine model. The estimated binding sites on the ZIKV virion
724 and the virus neutralization titer are tabulated.

725

Data collection statistics	
Wavelength (Å)	1.00000
Resolution	50 - 3.38 (3.46 - 3.38)
Space group	P 1 21 1
Unit cell (Å)	95.0 133.6 105.1 90 106.5 90
Total reflections	262931
Unique reflections	35195
Multiplicity	7.5
Completeness (%)	99.4 (94.7)
Mean I/sigma(I)	12.9 (1.4)
Wilson B-factor	95.67
R-merge	0.177 (1.4)
R-pim	0.07 (0.59)
CC1/2 in shell	.62
Refinement statistics	
Resolution range	45.57 - 3.38 (3.50 - 3.38)
Reflections used in refinement	35167 (3352)
Reflections used for R-free	1689 (171)
R-work	23.2 (34.5)
R-free (%)	25.9 (35.5)
Number of non-hydrogen atoms	12838
Protein residues	1695
RMS(bonds)	0.002
RMS(angles)	0.62
Ramachandran favored (%)	91.21
Ramachandran allowed (%)	8.67
Ramachandran outliers (%)	0.12
Rotamer outliers (%)	0.07
Clashscore	5.02
Average B-factor	120.7

726 **Supplementary Table 2. Data collection and refinement statistics of ZIKV E/G9E**
 727 **complex structure.** Statistics for the highest-resolution shell are shown in parentheses.
 728

729

ZIKA_G9E
(EMDB-33718) (PDB 7YAR)

Data collection and processing

Microscope	Titan Krios
Camera	Falcon II
Magnification	47,000 X
Voltage (kV)	300
Electron exposure (e-/Å ²)	20
Defocus range (μm)	-0.1 to -3.5
Pixel size (Å)	1.71
Energy filter slit width	20
Automation software	Leginon
Symmetry imposed	I
Total number of extracted particles	37,045
Total number of refined particles	
Number of particles in final map	4465
Map resolution (Å)	5.9
FSC threshold	0.143
Map resolution range (Å)	5.5-11.2

Refinement

Initial model used (PDB code)	5IZ7
Model resolution (Å)	7.6
FSC threshold	0.143
Model resolution range (Å)	
Map sharpening <i>B</i> factor (Å ²)	-257.3
Model composition	
Non-hydrogen atoms	23218
Protein residues	3065
Ligands	3
Refinement package	
Global CC (CCvol)	0.68
Local CC (CCmask)	0.71
<i>B</i> factors (Å ²)	
Protein	123.08
Ligand	157.21
R.m.s. deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.791
Validation	
MolProbity score	2.25
Clashscore	15.6
Poor rotamers (%)	0.12
C-beta deviations	0.00
Ramachandran plot	
Favored (%)	89.84
Allowed (%)	10.00
Disallowed (%)	0.16
CaBLAM outliers (%)	6.26
EMRinger score	0.15

730 **Supplementary Table 3. Cryo-EM data collection, refinement and validation statistics**