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1. Abstract 4 
Forensic genetic genealogy (FGG) has primarily relied upon dense single nucleotide polymorphism (SNP) 5 
profiles from forensic samples or unidentified human remains queried against online genealogy 6 
database(s) of known profiles generated with SNP microarrays or from whole genome sequencing 7 
(WGS). In these queries, SNPs are compared to database samples by locating contiguous stretches of 8 
shared SNP alleles that allow for detection of genomic segments that are identical by descent (IBD) 9 
among biological relatives (kinship). This segment-based approach, while robust for detecting distant 10 
relationships, generally requires DNA quantity and/or quality that are sometimes not available in 11 
forensic casework samples. By focusing on SNPs with maximal discriminatory power and using an 12 
algorithm designed for a sparser SNP set than those from microarray typing, performance similar to 13 
segment matching was reached even in difficult casework samples. This algorithm locates shared 14 
segments using kinship coefficients in “windows” across the genome. The windowed kinship algorithm is 15 
a modification of the PC-AiR and PC-Relate tools for genetic relatedness inference, referred to here as 16 
the “whole genome kinship” approach, that control for the presence of unknown or unspecified 17 
population substructure.  Simulated and empirical data in this study, using DNA profiles comprised of 18 
10,230 SNPs (10K multiplex) targeted by the ForenSeqTM Kintelligence Kit demonstrate that the 19 
windowed kinship approach performs comparably to segment matching for identifying first, second and 20 
third degree relationships, reasonably well for fourth degree relationships, and with fewer false kinship 21 
associations. Selection criteria for the 10K SNP PCR-based multiplex and functionality of the windowed 22 
kinship algorithm are described.  23 

Key Words: forensic genetic genealogy, investigative genetic genealogy, GEDmatch, ForenSeq 24 
Kintelligence, extended kinship, windowed kinship algorithm, PCR-based FGG profiles 25 

2. Introduction 26 
Forensic genetic genealogy (FGG), also known as investigative genetic genealogy (IGG), refers to 27 
investigative lead generation using dense single nucleotide polymorphism (SNP) profiles from 28 
unidentified human remains or crime scene samples that are queried against direct-to-consumer (DTC) 29 
genealogical database(s) comprised of known, reference SNP profiles to associate with various degree 30 
relatives. FGG has gained interest from the forensic and law enforcement community as a tool to 31 
consider when CODIS searching and other means have been exhausted [1]. A large SNP profile 32 
generated from microarray analysis is expected to have better discriminatory power than the current 33 
battery of forensically relevant short tandem repeat (STR) loci. However, microarray technology requires 34 
DNA of quality and input [2]  that may not be available from crime scenes or human remains such as 35 
skeletal remains.   36 
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 37 

Fig. 1: Examples of degrees of human genetic relationships (adapted from DNA Painter, https://dnapainter.com/).  38 

In addition, for investigative purposes, identifying more distant relationship matches can require a 39 
substantially higher effort than for closer relationships. Fig. 1 shows example relationships out to 40 
seventh degree. With each increase in degree the number of possible family trees increases significantly. 41 
Many genealogy investigations focus on third degree or closer relationships due to burden and 42 
inefficiencies that can occur when distance extends to fourth degree or beyond [3]. A polymerase chain 43 
reaction (PCR) based FGG typing system that targets sufficient kinship SNPs with high sensitivity of 44 
detection of first, second and third degrees relatives, and good detection of fourth and fifth degree 45 
relationships, can assist to address the technology gap between microarray and WGS SNP methods 46 
regarding sample quality and quantity, personal health information, time and cost.  47 

Generally, FGG has used a “segment matching” approach to estimate kinship by finding contiguous 48 
blocks (usually numbering in the hundreds) of identical shared alleles  and estimating the total 49 
centimorgan (cM) distance covered by those segments [4][5][6]. Segment matching across the genome 50 
requires many hundreds of thousands of SNPs thus the use of microarrays or WGS on forensic samples. 51 
SNPs that are physically linked on a chromosome are more likely to be inherited together (identical by 52 
descent (IBD)), therefore much of the information used in segment matching is redundant and 53 
intentionally so. However, as is the case with identity by state (IBS) methods , fewer SNPs can be 54 
successfully used for sensitive and specific kinship detection when they provide enough information [7]. 55 
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A SNP hybridization capture panel used a  similar approach using a limited SNP panel [8] and also 56 
explored alternative approaches to segment matching in order to evaluate kinship [9]. 57 

Forensic genetics has relied upon PCR for decades and can be used to target kinship informative SNPs 58 
for FGG. A targeted, forensic PCR assay and analytical software that recovers SNP allele calls from low 59 
level, damaged and/or partially degraded forensic DNA samples in a manner sufficient for FGG query 60 
was developed. With this strategy, DNA sample analyses may be conducted in operational laboratories 61 
using desktop sequencers followed by genealogical database query using a companion kinship inference 62 
method.  This study describes selection criteria for 10,230 high value SNPs targeted by the ForenSeq 63 
Kintelligence™ Kit (Verogen, Inc., San Diego CA), referred to here as the 10K multiplex, and a windowed 64 
kinship algorithm to accurately locate and classify kinship out to fourth degree relatives. Of these loci, 65 
9,867 are kinship informative SNPs selected from the Infinium CytoSNP-850K BeadChip and Global 66 
Screening Array (Illumina, Inc., San Diego, CA) and filtered using the Genome Aggregation Database 67 
(gnomAD) v3.0, the Single Nucleotide Polymorphism database (dbSNP) v151 and GEDmatch for robust 68 
representation across global populations. The SNPs are maximally spaced across the genome to 69 
minimize linkage effects and have no reported significance in ClinVar [10] (Fig. 2). The remaining 363 70 
SNPs can be used to inform biogeographical ancestry, identity, hair and eye color, or biological sex. 71 
Identity SNPs were included in order to allow cross checking of kinship using a previously validated assay 72 
(ForenSeq DNA Signature™). The companion windowed kinship algorithm was built upon PC-AiR 73 
[11][7][12] and PC-Relate [13] methods, referred to here as the whole genome kinship method, with an 74 
additional windowing component. This windowed kinship algorithm also relies on the concept of 75 
segment matching (i.e., that distant relatives share contiguous blocks of identical SNPs) and locates 76 
segments as blocks of highly scored kinship rather than stretches of identical SNP allele calls to provide 77 
even higher performance for FGG.  78 

Simulated pedigrees and real microarray profiles from GEDmatch were used to assess performance of 79 
the windowed algorithm. Additionally, two known pedigrees were analyzed using the ForenSeq 80 
Kintelligence Kit to assess further kinship estimation performed on real DNA samples using the 81 
windowed kinship algorithm. To use GEDmatch microarray profiles as knowns for true relationships, 82 
expected degrees of relationship were set using segment matching information since multiple, real 83 
extended pedigrees were not available. The 10K SNPs for the 10K FGG multiplex were selected from the 84 
GEDmatch test set and the windowed kinship approach was compared to the PC-AiR/PC-Relate whole 85 
genome kinship method out to fifth degree relationships.  86 

3. Materials and Methods 87 

3.1. SNP Reference Data for Algorithm Testing 88 
1000 anonymized query samples were selected at random from GEDmatch1, to generate a test set of 89 
SNP profiles with varying degrees of relationship (see Fig. S1 for country of origin for test set and Fig. S2 90 
for GEDmatch country of origin). For each query sample a single sample (if found) was selected for a set 91 
of varying total shared cM ranges calculated by the GEDmatch one-to-many tool (2787-3600, 1083-92 
2787, 326-1083 and 0-326 cM) and was added to the target set. A target set of 2,954 samples (including 93 
the original set of 1000 query samples) was compiled. Since most donors of GEDmatch samples are 94 

 
1 Research purposes, in accordance with Terms of Service 
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unrelated, the test set was developed to ensure that there was a sufficient set of related samples 95 
representing each degree of interest (Table S1). 96 

To evaluate sensitivity and specificity within a particular degree of relationship, the test set was filtered 97 
to all sample pairs with the expected shared cM range for that relationship (as shown in Table S1) and all 98 
pairs that had zero shared cM. Pairs of samples that had fewer than 9,000 mutually called loci in the 10K 99 
SNP multiplex (see Section 4.1 for details) were not considered (see Fig. S3 for overlapping loci counts in 100 
the test set). See Table S2 for sample pair totals for different relationship levels.  101 

For simulated pedigrees, genotype data from the 1000 Genomes Project (1KGP) (Phase 3 build 102 
20130502) [14][15] were used as pedigree founders. The original set of 2,504 samples was then filtered 103 
to remove relatives using the windowed kinship method and the 10K SNP loci. Sample pairs with > 100 104 
shared total cM and a longest shared segment >30 cM were removed, which reduced the set to 1,851 105 
founder samples. Ped-sim [16] was used to generate 200 pedigrees from these founders using the 106 
Poisson model and sex averaged map from Bhérer et al. [17].  Relationships were simulated as follows: 107 
sibling (first degree), half sibling (second degree), first cousin (third degree), half cousin (fourth degree) 108 
and second cousin (fifth degree) (see Fig. S7 for pedigrees). For each relationship degree, there were 109 
200 true relationships and 79,600 unrelated pairings from 400 total samples. To determine how many 110 
matching SNPs could be expected for each relationship degree, 1000 independent sample pairs per 111 
degree were generated, some with overlapping founder samples. Pairs that shared founders were 112 
not compared to each other.  113 

Two known, extended pedigrees were also used to test the 10K SNPs and the windowed kinship 114 
algorithm. All samples obtained for testing with Kintelligence were obtained after volunteers signed 115 
an informed consent form authorizing the use of de-identified samples for research use publication. 116 
One pedigree (n = 26 individuals) included relatives out to the sixth degree (see Fig. S8) uploaded on 117 
the public GEDmatch database. Relatives in GEDmatch were marked with their known relationships 118 
and anonymized. Since profiles on genealogy databases have been generated by different arrays 119 
over time, this evaluation provided a real-world example of performance on DTC data. A “self” 120 
reference buccal sample (V024) was typed using the ForenSeq Kintelligence kit, MiSeq FGx sequencer 121 
and Universal Analysis Software 2.6, and kinship analysis was performed against the entire GEDmatch 122 
database. The second pedigree (n = 15 individuals) was generated from gDNA from buccal swabs for 123 
relatives out to the fifth degree (see Fig. S10) typed with the ForenSeq Kintelligence kit.  124 

The V004, V016, V017, V018, V019, V020, V021, and V024 samples consisted of contemporary buccal 125 
swabs extracted with the QIAamp DNA Investigator kit (Qiagen, CA), according to the manufacturer’s 126 
instructions. DNA quantification was performed using the Quantifluor® ONE dsDNA System (Promega, 127 
WI). To degrade V016, 16.8 ng of DNA was placed in each of 4 PCR tubes. All 4 replicates were subjected 128 
to continuous cycles of 98 C for 1 hour, and 4 C for 10 min for 24 hours, followed by an indefinite 4 C 129 
hold. The DNA replicates were then centrifuged in a tabletop centrifuge for 1 min at maximum speed in 130 
order to concentrate any liquid particles to the bottom of the tube. To maximize recovery of DNA, 15 L 131 
of water was used for each replicate, by pipetting the sides of the tubes 10 times, followed by vortexing 132 
and centrifugation to allow the DNA samples to be collected in the bottom of the tubes. Samples were 133 
quantified using the Quantifluor® ONE dsDNA (Promega, WI). To simulate ante-mortem samples, 1 ng 134 
input of each sample was amplified using the ForenSeq™ Kintelligence kit. To simulate post-mortem 135 
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samples, degraded and/or low input (< 1 ng) samples were amplified using the ForenSeq™ Kintelligence 136 
kit, according to the manufacturer’s instructions, in following manner: the degraded V016 replicate was 137 
amplified with 1 ng input, and the V016 replicate amplified with 250 pg input. All libraries were 138 
sequenced using the MiSeq FGx™ reagent kit and the MiSeq FGx™ instrument.  139 

3.2. 10K SNP PCR-Based Multiplex Design 140 
To maximize the value of SNPs in the Kintelligence multiplex, locus selection criteria were considered 141 
(see Fig. 2). First, SNPs were selected that are well represented in genetic genealogy databases like 142 
GEDmatch. As a quality control measure the frequencies represented in GEDmatch were assessed for 143 
general agreement (within three fold of) the population frequencies reported by the Genome 144 
Aggregation Database (gnomAD) for European ancestry [18] since this group represents the 145 
geographical location of majority of samples in GEDmatch. SNPs were selected that have demonstrated 146 
variability within all major human subpopulations (see 147 
S2_gnomad.genomes.r3.0.kintelligence_filtered.vcf.zip for population frequencies). With a rare allele at 148 
a biallelic SNP, most individuals will be homozygous for the reference allele which is not generally 149 
informative for kinship inference in large databases. Common SNP alleles increase the chances for 150 
informative differences and similarities between samples. SNPs designated as benign/likely benign in 151 
ClinVar were selected [10]. No SNPs with any clinical significance in ClinVar were included. 9,867 kinship 152 
informative SNPs that met the selection criteria were included in the ForenSeq Kintelligence multiplex 153 
design and are maximally spaced (cM) along each autosome to minimize the effects of physical linkage 154 
thereby maximizing the informational value of each individual locus (see Fig. S5 for cM distances in final 155 
multiplex).  156 

  157 

 158 

Fig. 2: Method for kinship SNP selection. The overall selection strategy as well as the number of SNPs that remained after each 159 
stage of filtering are shown. SNPs that were well represented among DTC microarrays were prioritized then limited to SNPs with 160 
gnomAD European allele frequencies that were approximated (within three fold) those observed in the GEDmatch database. 161 
SNPs with minor allele frequencies (MAF) < 10% or > 90% were excluded. The resulting 72,000 SNPs were evaluated using the 162 
windowed kinship algorithm. 9,867 maximally spaced (cM) kinship informative SNPs were optimized in a PCR-based multiplex. 163 

The kinship informative SNP selection method (Fig. 2) was as follows: 164 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504804
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Find intersection of SNP content on Infinium Global Screening Array (GSA) and Infinium 165 
CytoSNP-850K (Cyto). 166 

2. Filter SNPs in GEDmatch to those in the GSA and Cyto list.  167 
3. Keep SNPs with > 500,000 profiles in GEDmatch (~40% of the GEDmatch database at the time 168 

the 10K multiplex was designed in July 2020) 169 
4. Filter to SNPs in gnomAD where GEDmatch frequency is within three-fold of gnomAD EUR allele 170 

frequency. This is intended to only capture gross discrepancies between gnomAD and 171 
GEDmatch, the frequencies can be quite divergent and still be considered (i.e., 16% gnomAD 172 
and 45% GEDmatch would still be included, while 14% to 45% would not.) 173 

 Enforce gnomAD minor allele frequency (MAF) frequency between 0-50% since some 174 
“minor alleles” in gnomAD are actually the major allele. Functionally, this means that if a 175 
SNPs reported frequency is > 50%, we use the frequency 100-reported frequency 176 

 Calculate ratio between GEDmatch and gnomAD if GEDmatch is larger or vice versa 177 
 If ratio >= 3, discard 178 

5. Remove loci with more than one gnomAD SNP within three-fold of the GEDmatch frequency. 179 
This is both because GEDmatch only retains one allele per locus, and because genotypes from 180 
arrays may be untrustworthy in triallelic situations. For example, a microarray which is probing 181 
for A and C may call an A/G as A/A.  182 

6. Remove SNPs where a population (GEDmatch or nine subpopulations in gnomAD in Table S3) 183 
have MAF < 10% or > 90%. 184 

7. Choose N SNPs from the remaining set as follows:  185 
 Divide N among autosomes relative to their length in cM 186 
 Compute average spacing for each chromosome in cM 187 
 Window across the chromosome as follows: 188 

1. Find next SNP on the chromosome 189 
2. Pull all SNPs within 70% of the average cM spacing 190 
3. Pick SNP with the most samples in GEDmatch and the MAF closest to 50% 191 
4. Discard SNPs within 30% of the average cM spacing downstream of the 192 

chosen SNP  193 
5. Repeat 194 

3.3. Statistical Methods 195 

3.3.1. PC-AiR with Modified Unrelated Set Selection 196 
Model based ancestry estimation methods are less accurate in the presence of genetic relatedness as 197 
they cannot distinguish between ancestral groups and clusters of more recent relatives [19]. The PC-AiR 198 
[11] method consists of two steps: 1) select a maximally ancestrally diverse set of unrelated samples 199 
from a source set; and 2) perform principal component analysis (PCA) on the ancestry representative 200 
subset and predict components of variation for all remaining individuals based on genetic similarities. 201 
PC-AiR defines a method for identifying a set of unrelated samples that works well for modest sample 202 
sets but does not scale well. In a database with 𝑛 samples, the algorithm must perform 𝑛ଶ comparisons 203 
to remove each related sample. For smaller datasets, this approach is acceptable to maximize ancestral 204 
divergence. For relatively large databases a pairwise comparison approach becomes infeasible. 205 
Consider, if a database of 1.5M has a thousand related samples then (1.5 million)2 * 1000 or 2.25 * 1015 206 
calculations are required.  207 
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Alternatively, relatives can be assessed, and samples discarded to generate an “unrelated” sample set, 208 
which can be searched in a much less computationally demanding fashion. Beginning with samples that 209 
have the fewest total related samples to minimize data loss, samples can be added iteratively to the 210 
unrelated set while relatives are immediately removed from consideration. A more stringent kinship 211 
statistic can also be used to find relatives under the assumption that since there is a larger initial 212 
dataset, removal of more potential relatives from consideration can be tolerated and helps to ensure 213 
that the final set does not contain relatives or if so minimally. Also, samples with a high number (>9000 214 
for the 10K multiplex) of called loci can be considered in the chosen multiplex. The following algorithm 215 
was developed as a modification of the PC-AiR method: 216 

1. Remove all samples with >= 5% missing data from the SNP set being used.  217 
2. Compute KING-Robust [11] kinship coefficient between all pairs of samples N. This kinship 218 

coefficient for individuals i and j are denoted as 𝜑௜௝  and is defined as the probability that a 219 
random allele selected from i and a random allele selected from j at a locus are identical by 220 
descent (IBD). Use a relatedness threshold 𝜏ఝଵ= 0.01 to determine whether the pair of samples 221 
are expected to be IBD. Use a relatedness threshold of 𝜏ఝଶ= 0.025 for ancestry divergent 222 
samples. 223 

a. Call 𝜑௜௝  with kinship coefficient > 𝜏ఝଵ as related 224 
b. Call 𝜑௜௝  with kinship coefficient < -𝜏ఝଶ as ancestrally divergent.  225 

3. Initialize two subsets U = ∅ and R = ∅ where ∅ is the empty set.  226 
4. For all 𝑖 ∈ 𝑁 227 

a. 𝑟௜ =  the set of all 𝑗 where 𝜑௜௝ >  𝜏ఝଵ for 𝑗 ∈ 𝑁 and 𝑗 ≠ 𝑖. 𝑟௜ is the set of all relatives for 228 
𝑖. 229 

b. 𝑑௜ = the set of all 𝑗 where 𝜑௜௝ <  −𝜏ఝଶ for 𝑗 ∈ 𝑁 and 𝑗 ≠ 𝑖. 𝑑௜  is the set of ancestrally 230 
divergent relatives for 𝑖 231 

5. Rank all samples 𝑖 ∈ 𝑁 by |𝑟௜| in ascending order.  232 
6. For samples in 𝑁 with the same |𝑟|, sort by |𝑑| in descending order. 233 
7. Iterate through ranked samples and for 𝑖 ∈ 𝑁 234 

a. If 𝑖 ∉ 𝑅, 𝑈 = 𝑈 ∪ 𝑖 and 𝑅 = 𝑅 ∪ 𝑟௜.  235 
b. If 𝑖 ∈ 𝑅 continue to next iteration. 236 

Calculating pairwise kinships is still O(𝑛ଶ), however the windowed kinship algorithm performs that step 237 
only once per model build instead of after every removal of a relative as in the unmodified PC-AiR. Once 238 
the unrelated set has been determined, the principal components are determined from the set 𝑈 using 239 
the original PC-AiR method.  240 

3.3.2. PC-Relate and Windowed PC-Relate 241 
Many current methods for kinship inference either assume that pairs of samples came from a 242 
homogenous population or require that samples be categorized by sub-population. PC-Relate [13] uses 243 
principal components from PC-AiR and partitions genetic correlations into two separate components: a 244 
component for the sharing of alleles that are IBD from recent common ancestors and another component 245 
for allele sharing due to more distant common ancestry.  246 

Assuming the top PC components from PC-AiR correctly capture the population structure of the samples, 247 
those components can be used to estimate the expected allele frequencies based on an individual’s 248 
ancestral background using a linear regression model rather than using a static population frequency. As 249 
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described by Conomos et al. regarding PC-Relate [13] for a particular SNP 𝑠 and an individual 𝑖, 𝜇̂௜௦ can be 250 
calculated which represents the specific expected population SNP frequency for this individual’s 251 
background as a substitute for 𝑝̂௦ which is simply the global expected frequency for that SNP determined 252 
from a population database.  253 

Once the SNP frequencies have been estimated for each individual it is straightforward to estimate the 254 
kinship coefficient 𝜙௜௝ for individuals 𝑖 and 𝑗 for a set of SNPs 𝑆. Let 𝑔௜௦ be the number of reference 255 
alleles an individual has at SNP 𝑠. 256 

𝜙పఫ̇
෢ =

𝛴௦ఢௌ  (𝑔௜௦ − 2𝑢ො௜௦)(𝑔௝௦ − 2𝑢ො௝௦)

4 ∑ [௦∈ௌ 𝑢ො௜௦(1 − 𝑢ො௜௦)𝑢ො௝௦(1 − 𝑢ො௜௦)]ଵ/ଶ 257 

The estimator 𝜙పఫ̇
෢  measures the scaled residual genetic covariance between 𝑖 and 𝑗 after conditioning on 258 

their respective ancestries. Overall, this measurement of kinship can work well. For the FGG use case it 259 
has limitations at distant relationships. With the 10K SNP multiplex, the expected number of IBD SNPs 260 
for a fifth degree relationship is approximately 300, assuming approximately 0.3 cM between SNPs and 261 
100 total shared cM. Thus, even random fluctuations in overall allele sharing can be above the threshold 262 
for detecting a distant relative, which was clear when comparing GEDmatch segment matching against 263 
the whole genome kinship coefficient at more distant degrees of relationship.  264 

It is well understood that physically linked genomic regions are more likely to be from inherited DNA 265 
which is clustered in contiguous blocks that are reduced in size with each generation. Conversely 266 
random allele sharing is in general spread throughout the genome. Segment matching used in 267 
GEDmatch and Ancestry.com [20], rely upon this basic concept. A similar approach was taken here by 268 
calculating “windows” of kinship across the genome to find shared kinship segments and boost 269 
specificity in estimating the more distant relationships. 270 

Given a set of SNPs 𝑆 = {𝑠଴. . 𝑠௡} and a window size 𝑙 a window of SNPs is defined at index 𝑘 as 𝑤௞ =271 
{𝑠௞ . . 𝑠௞ା௟}. The windowed kinship approach is as follows: 272 

1. Enumerate all possible windows 𝑊 = {𝑤଴. . 𝑤|ௌ|ି௟}. Windows must be contained within a single 273 
chromosome. 274 

2. Given an individual 𝑖 and an individual 𝑗  275 
3. Calculate kinship across all windows. For 𝑘 = {0. . |𝑊|}   276 

𝜙పఫ௞̇
෢ =

𝛴௦ఢ௪ೖ
  (𝑔௜௦ − 2𝑢ො௜௦)(𝑔௝௦ − 2𝑢ො௝௦)

4 ∑ [௦∈௪ೖ
𝑢ො௜௦(1 − 𝑢ො௜௦)𝑢ො௝௦(1 − 𝑢ො௜௦)]ଵ/ଶ

 277 

From here locate IBD segments as follows: 278 

1. Create an empty set 𝑃 to contain all windows with kinship above threshold 𝑡.  279 
2. Given an individual 𝑖 and an individual 𝑗 280 

a. Iterate through 𝑘 = {0. . |𝑊|}.  281 
b. If 𝜙పఫ௞̇

෢ ≥ 𝑡  add 𝑤௞ to 𝑃 282 
c. If 𝜙పఫ௞̇

෢ < 𝑡 continue 283 
3. Merge windows that have overlapping genomic positions 284 

a. Iterate through 𝑃.  285 
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b. If the current window overlaps with the next window, remove next window from 𝑃 and 286 
reset last index in current window with values from next. 287 

c. Repeat until there are no overlapping windows remaining. 288 
 289 

4. Remove all windows where the fraction of SNPs at which the individuals i and j share at least 290 
one allele is lower than a threshold value f (e.g. f=0.95).  In windows of true IBD the fraction 291 
should be 1 in the absence of genotyping error.  However false kinship signal can be generated 292 
when many SNPs share no alleles but many others share both alleles.  293 

To find total shared cM, a two-pass approach was taken, first identifying segments with stretches of 294 
SNPs with at least one shared allele (half match) and the second, within those segments, stretches of 295 
SNPs that have two shared alleles (full match). Half matching segments have 𝑡 = 0.22 while full 296 
matching segments have 𝑡 = 0.44. These are reduced from the theoretical values of 0.25 and 0.5 under 297 
a strict kinship definition; in the windowed kinship algorithm the thresholds are set slightly lower to 298 
allow for genotyping error. When calculating total shared cM, first degree relationships can be 299 
distinguished as they mostly consist of half matches and consanguineous or self matches and a higher 300 
degree of full matches than more distant relationships. 301 

4. Results and Discussion 302 

4.1. Evaluating Kinship Informative SNP Multiplex Size 303 
Most genetic genealogy databases use a segment matching approach. Segment matching identifies long 304 
stretches of matching SNPs, relying on the fact SNPs that are IBD are inherited in contiguous physical 305 
blocks. Since large numbers of SNPs are queried, missing or incorrect SNP calls can have minimal effect 306 
on segment matching. For FGG, a 10K PCR-based SNP multiplex was designed to provide maximum 307 
kinship information with minimal locus content and without clinically relevant loci or disease markers 308 
(Fig. 2).  These sparser data, as compared to microarray content, can be generated in one MiSeq FGx run 309 
but are less informative for kinship if standard segment matching were used. A companion, windowed 310 
kinship algorithm was developed that maximizes kinship resolution from the 10K SNP multiplex. This 311 
method starts with the same core concept as segment matching, namely identifying contiguous blocks 312 
of shared DNA. Then, rather than simply counting matching SNP allele calls, the kinship coefficient 313 
described in Conomos et al. with PC-Relate [13] is used as a criterion of genetic relatedness. By 314 
calculating kinship coefficients in windows across the genome, the discriminatory power of fewer SNPs 315 
was enhanced by controlling for background frequencies and population substructure (see Section 3.2).   316 

As shown in Fig. 2, 72,000 SNPs met the locus selection criteria for a PCR-based FGG multiplex. Testing 317 
of multiplexes with varied SNP numbers was performed in combination with the windowed kinship 318 
algorithm in order to balance the number of SNPs with the ability to detect third degree relatives with 319 
high sensitivity. For example, a 20K SNP multiplex and the 10K multiplex were tested and compared 320 
using genotype data simulated by ped-sim on 1KGP founder samples for detection of kinship of degrees 321 
one through five. Based on the observed fractions of shared alleles from these simulated data (Fig. S4), 322 
the 10K and 20K SNP sets enabled significant separation between sample pairs representing third 323 
degree. The 10K and 20K SNP sets were then tested using the same simulated data with the windowed 324 
kinship approach directly. Out to the third degree, receiver operating characteristic (ROC) curves were 325 
nearly identical for the 10K and the 20K SNP sets (and could reach 100% for both sensitivity and 326 
specificity). Sensitivity in this instance means the percentage of total related pairs above the scoring 327 
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thresholds and specificity means the percentage of unrelated samples above the scoring thresholds 328 
based on total shared cM and longest shared cM segment. A receiver operating characteristic (ROC) 329 
curve with an L shape that aligns closely to the upper left-hand corner indicates that adjusting the 330 
thresholds follows a predictable pattern and that there exists at least one threshold with 100% 331 
sensitivity and specificity (or close to it). As shown in Fig. 3, the ROC curve for the 10K SNP set achieves 332 
98% sensitivity and 100% specificity for the fourth degree simulated data and performs less well on fifth 333 
degree simulated data. Performance with the 20K SNP set was better for fifth degree as expected but 334 
even in that case perfect performance was not achieved even in the best-case scenario of a full profile 335 
(all loci called). Lowering the threshold of the kinship coefficient will increase the sensitivity of the 10K 336 
multiplex comparable to the 20K multiplex with the expected decrease in specificity. Since this multiplex 337 
is intended for use with low input, low quality and/or degraded samples, the number of loci is a tradeoff 338 
between overall coverage and number of possible SNP calls. Clean, high-input samples already can use 339 
existing microarray technologies to provide more SNPs. The 10K SNP multiplex can be considered to 340 
provide a practical tool for generating investigative genetic leads extending into the fourth degree (e.g., 341 
first cousin once removed (1C1R)). After targeting the 10K SNP set using multiplex PCR, MiSeq FGx v3 342 
sequencing reagents can produce 50M paired end reads, supporting a run configuration comprised of a 343 
negative control, a positive DNA control, and one forensic sample with up to 25M reads.  344 

 345 

 346 

Fig. 3: Comparison between 10K (blue dots) and 20K (red dots) SNP multiplexes of sensitivity of detection and specificity of 347 
relationship degree estimation using simulated data from ped-sim. 400 true pairs and 76,000 unrelated pairs generated per 348 
degree. For degrees one, two and three, functionally identical sensitivity and specificity were observed (100% for both sensitivity 349 
and specificity) for 10K and 20K SNPs. At fourth and fifth degree, an increase in sensitivity was observed with the 20K SNP set. 350 
Sensitivity was observed at 92.5% for 20K and 76% for 10K SNPs for fifth degree kinship, and with no false associations. 351 

 352 

Since FGG uses relatively large databases (i.e., >1 million samples), evaluating the potential for false 353 
associations in the context of a list of potential candidate kinship associations can be helpful to 354 
operational settings. The term "false associations" is used here to describe pairs of samples that are 355 
above the chosen thresholds that do not actually share a relationship. These have the potential to 356 
increase operational time.  As the size of a genealogy database increases, the potential also increases for 357 
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unrelated sample pairs to have larger total shared cM or kinship coefficients than true relatives in a 358 
query return. As of June 2, 2022, GEDmatch contained approximately 1.5M autosomal microarray 359 
profiles2 and the FamilyTreeDNA database approximately 1.2M3. Thus, even with a specificity of 99.99%, 360 
there is potential for hundreds of candidate hits to be returned that are not actual relatives. Microarray-361 
based DNA profiles that comprise a known pedigree extending to sixth degree relationships were used 362 
to assess limitations of the windowed kinship approach on a 1.5M sample database. One sample (V024) 363 
from the known pedigree was selected as the person of interest (“self”) and typed with the 10K 364 
multiplex (ForenSeq Kintelligence kit).  The full database of 1.5 million profiles was searched using the 365 
windowed kinship algorithm described in Section 3.3 and the default thresholds implemented in the 366 

GEDmatch Pro™ (see Table S4). (Note: The GEDmatch Pro portal is dedicated to support FGG 367 
comparisons for investigative lead generations in criminal casework.) This GEDmatch test query 368 
simulated a workflow for unidentified human remains cases. All relationships out to fifth degree (2C) 369 
were detected; both sixth degree relationship pairs (2C1R) fell below the default thresholds for total 370 
shared cM, longest segment (cM) used by GEDmatch Pro for overlapping SNPs >9,000 (Table 1). Whole 371 
genome kinship is included for comparison purposes. Fifth degree kinship was associated to a synthetic 372 
profile generated from Native American genomic segments that had been uploaded to GEDmatch 373 
(confirmed by the user who initially uploaded the profile). Thus a false positive rate of 1/1,500,000 was 374 
achieved.  375 

The false positive profile was later identified to have many contiguous missing sections of the genome 376 
which were incorrectly being identified as extensions to segments of kinship. Later revisions to the 377 
algorithm (deployed to GEDmatch Pro in June of 2022) address this issue and the false positive is 378 
removed.  379 

  380 

 
2 https://www.gedmatch.com/ 
3 https://www.familytreedna.com/why-ftdna 
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Degree Id Relationship Shared cM 
Overlapping 

SNPs 
Longest Segment 

cM 
Whole Genome 

Kinship 

1st degree 6363 sibling 2562.1 9737 185.9 0.2330 

1st degree 4250 sibling 2528.2 9716 200.1 0.2411 

2nd degree 6318 niece/nephew 1498.3 9570 122.4 0.1304 

3rd degree 8818 1st cousin 791.9 9796 79.8 0.0764 

3rd degree 8319 1st cousin 609.4 9732 103.2 0.0536 

3rd degree 9555 1st cousin 502.1 9715 63.9 0.0506 

3rd degree 0603 1st cousin 904.5 9765 103.1 0.0772 

4th degree 2661 
1st cousin 1X 

removed 272.9 9738 79.6 0.0304 

5th degree 6100 2nd cousin 210.1 9792 83.9 0.0188 

6th degree 2491 
2nd cousin 1X 

removed 119.9 9759 66.3 0.0169 

6th degree 9608 
2nd cousin 1X 

removed 111.2 9766 48.6 0.0128 

Unrelated 8504 Unrelated 151.9 8069 88.5 -0.0045 
Table 1: GEDmatch query results for a 10K SNP profile from sample V024 and a known pedigree using windowed and whole 381 
genome kinship algorithms. Shared cM and Longest Segment cM are calculated from windowed kinship and whole genome 382 
kinship from the standard PC-Relate algorithm. Bolded values are higher than GEDmatch Pro default thresholds. The fifth degree 383 
relationship that was detected was a false association to a synthetic profile. 384 

 385 

4.2. Windowed Kinship vs Whole Genome Kinship 386 
The windowed kinship algorithm is a modification of the PC-AiR and PC-Relate tools for inference of 387 
genetic relatedness that use a whole genome kinship approach. Performance of the 10K SNP multiplex 388 
with the whole genome kinship approach achieved detection of associations out to the third and was 389 
improved for more distant relationships by implementing the windowed kinship approach. For close 390 
relatives, the associations detected by whole genome kinship and windowed kinship are the same as 391 
there are many overlapping SNPs across the entire genome. For more distant relatives such as second 392 
cousins once removed, the number of matching genotypes at the 10K SNP loci for related sample pairs 393 
and for unrelated sample pairs is similar. In the samples shown in Fig. S9, for the second cousin match 394 
V024 and 9608 there are 3,956 fully matching genotypes. For the unrelated pair there are 3,956 fully 395 
matching genotypes.  Related and unrelated pairs can therefore produce similar whole genome kinship 396 
values. However, in the related pair of samples V024 and 9608 (see Fig. S8 for pedigree), there are 397 
distinct segments of kinship which are not the case in the V024 and unrelated sample. Given that true 398 
relatives have regions of the same SNP allele calls contiguously on a chromosome rather than randomly 399 
distributed throughout the genome, there is a much higher chance of being related if they share SNPs in 400 
contiguous blocks (even if two samples have the same number of overlapping SNPs). This concept is the 401 
same as that for segment matching, i.e., it is much more likely to find a segment of shared relationship 402 
than for SNPs to randomly match through the genome in true relatives. 403 

To compare general performance of windowed kinship versus the whole genome kinship method on 404 
SNPs of the 10K set, the GEDmatch test sample set was used that contains profiles of putative relatives 405 
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based on standard segment matching (see Section 3.1). Only pairs of profiles with >9,000 mutually 406 
called loci were used so that aggregate statistics were comparable. ROC curves were generated for 407 
whole genome kinship and windowed kinship methods (Fig. 4). Thresholds for windowed kinship were 408 
tested between zero and 3300 cM in steps of five for total shared cM, and between zero and 50 cM in 409 
steps of two for longest shared cM segment. Thresholds for whole genome kinship were tested between 410 
zero and 0.5 in steps of 0.01. A ROC curve that hugs the upper left-hand corner of the graph represents 411 
ability to resolve relationship classes and was observed for first through third degrees when either the 412 
windowed kinship approach or the whole genome kinship approach was used. These data indicate that 413 
100% sensitivity and specificity can be achieved from either method in this range of relatedness. At 414 
fourth and fifth degree relationships, differences in sensitivity and specificity were observed between 415 
the two algorithms. At fifth degree in particular, the discriminatory power of the windowed kinship 416 
approach was higher than with the whole genome kinship method. From a practical perspective, given a 417 
database of 1.5 million samples and cM thresholds that support approximately 50% sensitivity for fifth 418 
degree relatives, seven false associations would be expected using windowed kinship as compared to 419 
more than 2,000 false associations using the whole genome kinship method alone.  420 

 421 

Fig. 4: ROC curves for whole genome kinship (blue squares) vs windowed kinship (red squares) methods on a test sample set in 422 
GEDmatch comprised of the 10K SNP set. For fourth and fifth degree relationships, windowed kinship significantly improved 423 
sensitivity and specificity. When thresholds for shared total cM (for the windowed kinship method) and kinship coefficient (for 424 
the whole genome method) are set to give approximately the same sensitivity for fifth degree relationships, more false 425 
associations are detected with the whole genome kinship method (>2300); see table inset. 426 

4.3. Estimated Shared cM from Windowed Kinship vs from GEDmatch Segment 427 

Matching  428 
Segment matching algorithms used by DTC genetic genealogy companies output an aggregate metric of 429 
total shared cM. Since this metric is widely used, there are several tertiary tools that can be used to 430 
interrogate genetic kinship associations by looking at shared cM values. For example, the Shared cM 431 
Project provides an aggregate of shared cM values across many degrees of relationships, facilitating 432 
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determination of what types of relationships correspond to which ranges of shared cM values.4 Even 433 
though the mechanism of windowed kinship is not the same as segment matching, the windowed 434 
method can provide matching segments across the genome, and output total shared cM as a kinship 435 
metric.  436 

Estimates of shared cM from segment matching and windowed kinship were compared. One difficulty 437 
with such an evaluation is that different genetic genealogy companies use different cM maps which can 438 
lead to divergent measurements (see Fig. S11). The windowed kinship implementation in GEDmatch Pro 439 
uses newer maps from Bherer et al. [17] that have a total sex-averaged cM across the autosomes of 440 
3,342 cM while GEDmatch segment matching uses an older cM map that has a total of 3,586 cM. Thus, 441 
on average the estimates from windowed kinship are expected to be approximately 7% lower than 442 
those with the GEDmatch segment approach. However, since the differences are unevenly distributed, 443 
they can be higher or lower depending on the shared segments between two samples.  444 

One other issue with comparing the shared cM metric is that GEDmatch only considers half-matches in 445 
its one-to-many tool5. When there is at least one allele in common at a single biallelic locus, then half-446 
matching considers that as a match between samples. For example, if there is a locus with a 447 
heterozygous call in one sample and a homozygous call in another sample, then that locus is considered 448 
a half-match since either allele from the heterozygote can match to the homozygote. For a full match, 449 
each sample must be heterozygotic or must be homozygous for the same allele to be considered 450 
matching. As relationships get more distant, it is more likely that segments of shared kinship will be 451 
comprised of more half-matches than full matches, which is sufficient as a first pass when conducting 452 
database searching. However, a “self-match”, i.e., two samples from the same individual, has a 453 
maximum cM value of 3,586, same as a first degree relative. Since windowed kinship considers full 454 
matching, a self-match is represented by a number closer to 6,642 cM.  Therefore, samples with values 455 
from windowed kinship greater than 3,342 cM will not be the same as what is reported from segment 456 
matching in GEDmatch. To control for this effect in this study, all GEDmatch test pairs with an estimated 457 
shared cM of > 3,600 by the windowed kinship method were not considered. (thus, numbers of first 458 
degree sample pairs differ between Fig. 5 and Table S2) 459 

With these caveats in mind, concordance and differences between cM estimates from these two 460 
methods were compared. As shown in Fig. 5, the estimates of total shared cM between the windowed 461 
kinship approach and GEDmatch segment matching were similar, although variability between them was 462 
observed. Interestingly, there are many GEDmatch first degree hits with values close to the maximum 463 
possible shared cM values that have a wider spread for windowed kinship. The windowed kinship 464 
estimates fall within the first degree shared cM ranges. These data indicate that differences in the total 465 
shared cM values may be observed for close relatives compared to values generated with the GEDmatch 466 

 
4 https://thegeneticgenealogist.com/ 
5 https://classic.gedmatch.com/Documents/Qdocs.pdf 
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segment approach. This difference may be due to segment matching less aggressively filtering segments 467 
than the windowed kinship approach thus is not an impediment to conducting FGG. 468 

4.4. Windowed Kinship Performance with Forensic Case-Type Samples 469 

4.4.1. Windowed Kinship Performance with Partial Profiles (<10K Kinship Informative SNPs) 470 
Some loci in targeted assays of forensic samples or unidentified human remains may not be detected 471 
(e.g., data below an analytical threshold or no data detected) such that partial profiles are generated 472 
due to DNA degradation, damage and/or PCR inhibition.  To assess performance of the kinship 473 
algorithms for samples with different levels of missing loci, the GEDmatch truth set described in Section 474 
3.1 was used. The GEDmatch test set used standard segment matching on microarray data to locate 475 
relatives and then the test SNPs were filtered to the 10K SNP set and used for kinship inference. In this 476 
evaluation, from the set of 10K SNPs, random subsets of loci were selected and marked as missing from 477 
the input profiles of the GEDmatch test set. Between 2000 and 8000 loci were removed in this fashion 478 
and evaluated, equivalent to 80-20% SNP locus call rates.  479 

ROC curves were used to evaluate these data as different levels of missing loci can be recognized when 480 
kinship is estimated. For example, if the specificity in estimating relationship degree is reduced when a 481 
certain number of the 10K loci are untyped, then kinship thresholds can be adjusted dynamically to 482 
account for it. As shown in Fig. 6, at lower levels of missing loci and out to fourth degree relationships 483 

Fig. 5: Comparison of estimated shared cM from the GEDmatch segment approach (x-axis) and the windowed kinship approach (y-axis) for 
1,420 sample pairs. The inset table shows the root mean squared error (RMSE) of the windowed shared cM vs the GEDmatch shared cM 
estimates for the first through fifth degrees. These two approaches use different reference maps to estimate cM distances such that the 
overall estimated total cM in the GEDmatch segment approach differs from windowed kinship on average by ~7%. In general, observed 
estimations from the windowed kinship approach were slightly lower than from segment matching. 208 first degree relationships with 
estimated shared cM close to the maximum possible value from GEDmatch (3,600 cM) showed lower values from windowed kinship, though 
still within range of a first degree relationship. 
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the ROC curves were sharply upper and leftward, indicating high sensitivity and specificity.  Out to 484 
fourth degree, SNP locus call rates greater than 60-80% generated similar results to those from full 10K 485 
SNP profiles. For close relationships (first to third), performance was maintained down to a 40% SNP 486 
locus call rate. Although similar performance can be achieved with large numbers of missing loci, the 487 
kinship thresholds necessary to achieve that performance can differ. Thus, it is important to use 488 
different thresholds based on how many SNPs are shared between samples, e.g., if a pair of samples has 489 
6,000 SNPs typed in common, a higher windowed kinship threshold can be used than for a pair of 490 
samples with 9,000 overlapping SNPs (see Table S4 for thresholds set for windowed kinship in the 491 
GEDmatch Pro implementation).  492 

 493 

4.4.1.1. Windowed Kinship Performance using Partial SNP Allele Call Rates  494 
Total heterozygosity at SNP loci in a human DNA sample and quantitative balance between 495 
heterozygous alleles can be used as quality metrics for SNP genotyping and particularly for assessment 496 
of profiles from challenging samples, including those in forensic casework [21]. These metrics can 497 
indicate the likelihood that only one of the sister alleles in a true heterozygote were detected and may 498 
be called as homozygous. As sample quality degrades and input DNA template is reduced, certainty in 499 

2000 4000 6000 8000 10000 

Fig. 6: Performance of windowed kinship in GEDmatch test set with call rates between 20-100% for the 10K SNP set. Data are 
plotted for five locus call rates as follows: 20% (2K), 40% (4K), 60% (6K), 80% (8K) and 100% (10K).  Overall, performance for 
first, second and third degrees was observed to be steadily maintained when 80%, 60% or 40% of the 10K SNPs were typed. For 
fourth degree, 80% of the 10K SNPs were observed to give comparable performance to the full 10K set, and 60% was sufficient 
to make some kinship analyses (approximately 60% sensitivity vs 100% sensitivity for the full profile at the same specificity). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504804
http://creativecommons.org/licenses/by-nc-nd/4.0/


homozygous SNP calling can be affected. Forensic genetics casework employs methods and tools to 500 
assist in this regard, such as use of stochastic thresholds [22][23]. For the windowed kinship algorithm, 501 
whether similar threshold(s) are necessary to disqualify SNP data outright from proceeding with FGG or 502 
whether the algorithm was robust to some missing alleles was investigated.  503 

To evaluate how loss of sister alleles affects windowed kinship performance, the GEDmatch test set was 504 
used. As with the previous evaluations, the truth set was generated from segment matching on whole 505 
microarray profiles, and the samples were filtered to the 10K SNP set. Different percentages of 506 
heterozygous loci were changed to homozygous reference (ref) or alternative (alt) calls. Ref calls 507 
generally refer to the more prevalent allele in a reference population while alt calls refer to the less 508 
prevalent, or “minor” allele. For the SNP locus rs6690515 as an example, a G is considered “ref” while A 509 
is considered “alt”. Converting a G/A call to a G/G call, changes a heterozygote to a homozygous ref call. 510 
The ref allele is represented as 0 and the alt allele as 1 when the actual nucleotide is not germane.  511 

An example of the simulation strategy used in this study is as follows: Consider a simulation of 5% of 512 
sister alleles at heterozygotes among the 10K SNP set. The transition probabilities of the genotypes from 513 
the original profile are shown in Table 2. The transition table provides the percentage of a heterozygous 514 
locus modified to a homozygous call in the test case simulations of allele non-detection. For example, if 515 
an input sample has a locus with a starting genotype of 0/0, the test profile will also have a genotype of 516 
0/0 since the probability that 0/0 transitions to 0/0 is 100%. However, if the starting genotype is a 0/1 517 
genotype, the chance was 95% to remain 0/1 and 2.5% chance to become 1/1 or 0/0, indicating non 518 
detection of a sister allele. Essentially, this emulates cases where the second allele in a heterozygote is 519 
below the analytical threshold and therefore, calling a heterozygous call as a homozygote erroneously. 520 

Table 2: Transition probabilities for 5% lack of detection of sister alleles at heterozygous SNPs as used in simulation studies. ref 521 
allele (0), alt allele (1). 522 

Original 
Genotype 

Test 
Genotype Probability 

0/0 0/0 100.0% 
0/1 0/0 2.5% 
0/1 0/1 95.0% 
0/1 1/1 2.5% 
1/1 1/1 100.0% 
./. ./. 100.0% 

 523 

Ranges of missing sister allele calls between 5 and 100% were tested. Whereas with missing loci it is 524 
trivial to determine how many are missing, it is more difficult to quantify sister allele loss in an unknown 525 
sample since it can depend on factors inherent to the sample and to the subpopulation of origin. It is 526 
likely then more illustrative to analyze performance using the default windowed kinship thresholds than 527 
all possible thresholds (see Fig. S6 for full ROC). Using the default kinship thresholds for the windowed 528 
algorithm as implemented in GEDmatch Pro (Table S3), sensitivity was observed to be maintained for 529 
first to fourth degree relationships when loss of sister allele detection was less than 10%. When 20% of 530 
sister alleles were not called, kinship performance was maintained within the first to third degrees. At a 531 
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40% loss performance was maintained within the first and second degrees and at greater sister allele 532 
loss only first degree were captured (Fig. 7). Crucially, specificity was similar across all levels of 533 
heterozygous allele call rates, indicating that the loss of sister alleles did not introduce false associations. 534 

 535 

Fig. 7: Performance of the windowed kinship method on the GEDmatch test set after simulating loss of sister alleles (between 5 536 
and 100%) at heterozygous sites of the 10K SNP set. Kinship thresholds are based on default settings of the windowed kinship 537 
algorithm implementation in GEDmatch Pro for profiles with > 9,000 SNPs typed in common (overlapping) (i.e., 140 shared cM 538 
total, 30 cM longest segment). Simulated losses were evenly distributed between ref and alt alleles, i.e., a heterozygote in the 539 
fully typed profile had a 2.5% chance to become homozygous alt and a 2.5% chance to become homozygous ref. 1-specifitiy 540 
indicates the chance of incorrectly classifying an unrelated association as related, sensitivity indicates the percentage of total 541 
true associations found above threshold. 542 

In addition to simulated data, a known pedigree (see Fig. S11) containing relatives extending to the fifth 543 
degree was used. The person of interest (“self”) sample (V016) was heat treated to emulate partial DNA 544 
degradation and windowed kinship metrics generated from two PCR template inputs (1 ng and 250 pg 545 
for Kintelligence library preparation for sequencing) and compared. In order to test the limits of the 546 
system, one sample was run at higher plexity (12 samples in a run) than recommended by the 547 
manufacturer and also used 250 pg input. For these empirical samples, the expected associations out to 548 
third degree passed GEDmatch Pro thresholds for the 1 ng sample and second degree for the 250 pg 549 
sample (7% heterozygosity).  550 

As represented by total shared cM values (Fig. 8) as sister allele non-detection increases, the overall 551 
estimated shared cM value dropped. For example, in a comparison of sample V004 with sample V016 552 
with 1 ng input they fall within the expected shared cM range for a first degree hit with 3076.6 (see 553 
Table S1). The same sample compared to a V016 sample with 250 pg input only showed a shared cM 554 
value of 1561.097, which is significantly lower than would be expected for a first degree candidate hit.  555 

  556 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 557 

    V016 
   Input 1 ng 250 pg 
   % Hetero 45% 7% 

   

False 
Associations in 
1.5M database 0 0 

Degree Relationship HQ 
Sample % Hetero nsnp Shared cM Longest cM 

Segment 
Kinship 

Coefficient nsnp Shared cM Longest cM 
Segment 

Kinship 
Coefficient 

0 Self V016 44% 9366 6595.395 260.312 0.507 5736 3324.178 259.144 0.551 
1 MO V004 44% 9226 3088.442 216.827 0.247 5729 1526.438 215.512 0.271 
2 AU V017 45% 9253 1663.061 151.056 0.137 5729 747.132 162.051 0.151 
3 C V018 45% 9166 739.054 63.518 0.060 5726 185.690 61.256 0.067 
4 1C1R V019 44% 9248 124.744 35.951 0.013 5726 0.000 0.000 0.010 
5 2C V020 44% 9244 64.965 33.837 0.000 5735 0.000 0.000 -0.007 

N/A N/A NA24385 44% 9179 0.000 0.000 -0.006 5732 0.000 0.000 -0.017 
Fig. 8: Example showing shared cM for sample V016 as a mock casework sample within a known pedigree. All samples were 558 
typed for the 10K SNP set using the ForenSeq Kintelligence Kit. V016 (self) was heat treated to emulate DNA degradation. In 559 
order to test the limits of the system, one sample was run at higher plexity (12 samples in a run) than recommended by the 560 
manufacturer and also used 250 pg input. Bolded cells indicate which values are above the thresholds used in GEDmatch Pro. 561 
Samples were also searched against full 1.5M GEDmatch database and no false associations were found above thresholds. 562 
These are currently 140 total shared cM and 37 longest cM segment for samples with more than 9000 overlapping SNPs and 180 563 
total shared cM and 37 longest cM segment for samples with 6000 overlapping SNPs. “nsnp” indicates the total number of SNPs 564 
shared between the two samples in the pair.) 565 

5. Conclusions 566 
The windowed kinship algorithm applied to data generated from the 10K SNP multiplex supports near 567 
perfect detection of relationships extending to the third degree in a large database with a high degree of 568 
specificity even in samples with reduced locus call rates or lack of detection of sister alleles in 569 
heterozygotes. Using simulated and real GEDmatch SNP profiles, comparable performance was 570 
observed for the windowed kinship algorithm and the 10K SNP set as compared to the segment 571 
matching approach that uses hundreds of thousands of SNPs. In real degraded samples the ForenSeq 572 
Kintelligence system can identify relationships robustly out to the 3rd degree. For forensic samples, the 573 
approach described herein can be considered as a powerful tool for investigative lead generation in 574 
forensic casework and unidentified human remains investigations that can be readily transferred and 575 
implemented into operational settings under an insourced or outsourced FGG SNP typing model. 576 
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 650 

 651 

Table S1: Expected shared cM ranges per degree of relationship in GEDmatch. cM ranges shown are based on DNAPainter6. If a 652 
pair of samples falls into more than one range (i.e., 400 shared cM overlaps with the ranges for fourth and fifth degrees) 653 
evaluation of both relationship degree possibilities may be advantageous. First cousin (1C), first cousin once removed (1C1R), 654 
second cousin (2C), great great grandchild (GG-Grandchild), great great great grandchild (GGG-Grandchild). 655 

Degree of relationship GEDmatch Shared cM range Relationship examples 

1 2300-3600 Sibling, Parent, Child 

2 1300-2500 Half Sibling, Niece 

3 700-1400 1C, Great Grandchild 

4 300-800 1C1R, GG-Grandchild 

5 100-450 2C, GGG-Grandchild 
 656 

 
6 https://dnapainter.com/tools/sharedcmv4 
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 657 

Fig. S1: Country of origin for GEDmatch test samples based on ip-address (when available as of January 1st 2022). 658 

United States United Kingdom Canada Australia
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Other Unknown
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 659 

Fig. S2: Country of origin for GEDmatch database as of January 1t 2022 based on ip-address (when available)  660 
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 662 

Table S2: Observed shared cM ranges per degree of relationship in GEDmatch for the test set of 2,363,983 sample pairs. Pairs 663 
are limited to results where 9000 of the same loci are called for both kits. 664 

Degree Shared Cm Range Kit Pairs 

1 2300-3600 425 
2 1300-2500 151 

3 700-1400 136 
4 300-800 198 
5 100-450 629 

Not Related 0 2362589 

 665 

  666 

Fig. S3: GEDmatch test set. Overlapping passing SNPs for pairs of samples from 10K SNP multiplex. 667 
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SNP Multiplex Design 669 
Table S3: : gnomAD population frequencies used during selection. 670 

gnomAD Population Description 
afr African-American/African ancestry 
ami Amish ancestry 
amr Latino ancestry 
asj Ashkenazi Jewish ancestry 
eas East Asian ancestry 
fin Finnish ancestry 
nfe Non-Finnish European ancestry 
oth Other ancestry 
sas South Asian ancestry 

 671 

Fig. S4: Comparison of shared allele fractions between 10K (left) and 20K (right) SNP multiplexes from ped-sim simulations 672 
across kinship relationships from first to sixth degree and unrelated. 1,000 sample pairs were generated per degree of 673 
relationship. 674 
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 675 

Fig. S5: SNP characteristics for of the 10K SNP set (ForenSeq Kintelligence). The left chart displays a histogram of the cM 676 
distances between loci; the right chart displays a histogram of the gnomAD allele frequency for the SNPs in the multiplex. A 677 
minimum of 0.1 cM was required for the kinship SNPs in the 10K multiplex; loci shown here that are below that value are SNPs 678 
informative for biogeographical ancestry, phenotype estimations or identity informative SNPs from the ForenSeq™ DNA 679 
Signature Prep Kit . 680 

GEDmatch Pro Kinship Statistic Thresholds 681 
Table S4: Windowed Kinship algorithm default thresholds as implemented in GEDmatch Pro and their influence on sensitivity of 682 
detection in first through fifth order relationships. Threshold values are based on the estimated false association (FA) rate in a 683 
search of the entire database. 684 

Overlapping 
SNPs 

Shared cM 
Total  

Longest 
Segment 

cM 
Sensitivity 

1-Specificity 
FAs in 1.5M 

Database 1st 2nd 3rd 4th 5th 
9000 140 30 100% 100% 100% 99% 55% 0 0 
8000 150 30 100% 100% 100% 99% 41% 0 0 
6000 180 30 100% 100% 100% 66% 17% 0 0 

 685 
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Lack of Detection of Sister Alleles 686 

 687 

Fig. S6: ROC curves based on GEDmatch test set using simulated losses of heterozygote sister alleles between 5 and 100%. 688 

Ped-sim Simulation 689 
 690 

 691 

Fig. S7: Example pedigree for first through fifth relationship degrees using 1,842 founders from 1000 Genome Project samples. 692 
An example of each degree of a single pedigree simulated by ped-sim is shown. The biological sex of the founding samples was 693 

100% 80% 60% 40% Original 20% 10% 5% 
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ignored, and sex averaged linkage maps were used in the simulations. Only the darkened samples are output by ped-sim and 694 
used in evaluation scripts for this study. Pairs of samples from the same pedigree were considered true relatives, pairs of 695 
samples across pedigrees are considered unrelated. 696 

Known Kinship SNP Pedigrees 697 

 698 

Fig. S8: Known extended pedigree from GEDmatch. Sample V024 was assigned as the person of interest and typed for the 10K 699 
SNP set using the ForenSeq™ Kintelligence kit; all other sample profiles are from microarray typing. 700 
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 702 

Related One to One Comparison, 2n d  Cousin once removed 703 

 704 

 705 
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 706 

Unrelated One to One Comparison 707 
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 708 

Fig. S9: Visual display of matching SNPs across genome. The upper panel show sample of interest V024 as compared to sample 709 
9608 a 2nd cousin once removed from a known pedigree. The lower panel shows the sample of interest V024 as compared to an 710 
unrelated sample. The sample of interest was typed using the 10K SNP multiplex. Whole genome kinship cannot necessarily, and 711 
did not in this example, distinguish unrelated and related pairs since the overall number of “matching SNPs” is similar in both 712 
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scenarios shown. Since windowed kinship uses locus proximity and searches for segments of shared kinship, it better 713 
distinguishes more distant relationships from 10K SNP data. 714 

 715 

 716 

 717 

 718 

Fig. S10: Known family pedigree used for mock casework study. All samples in labeled nodes were typed at the 10K SNP set using 719 
the ForenSeq Kintelligence Kit. Sample V016 was partially degraded, 250 pg template was used and read counts were reduced 720 
by increasing sample numbers per MiSeq FGx run to simulate a challenging case-type sample for FGG database query using the 721 
windowed kinship algorithm.  722 

 723 
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 725 

Fig. S11: Comparison of total cM values per chromosome for FamilyTreeDNA, GEDmatch and 23andMe for one DNA sample. 726 
Sourced from ISOGG wiki.7 727 

 728 

 729 

 
7 https://isogg.org/wiki/CentiMorgan 
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