

1 **Chromosome 9p21.3 Coordinates Cell Intrinsic and Extrinsic Tumor Suppression**
2

3 Francisco M. Barriga^{1,11}, Kaloyan M. Tsanov^{1,11}, Yu-Jui Ho¹, Noor Sohail², Amy Zhang³, Timour
4 Baslan¹, Alexandra N. Wuest¹, Isabella Del Priore⁴, Brigita Meškauskaitė², Geulah Livshits¹,
5 Direna Alonso-Curbelo¹, Janelle Simon¹, Almudena Chaves-Perez¹, Dafna Bar-Sagi⁵, Christine
6 A. Iacobuzio-Donahue^{6,7}, Faiyaz Notta^{3,8,9}, Ronan Chaligne², Roshan Sharma², Dana Pe'er²,
7 Scott W. Lowe^{1,10,*}.

8

9 ¹Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
10 10065, USA

11 ²Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan
12 Kettering Cancer Center, New York, NY 10065, USA

13

14 ³PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON
15 M5G 0A3, Canada

16 ⁴Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA.

17

18 ⁵Department of Biochemistry, New York University School of Medicine, 430 East 29th Street,
19 New York, NY 10016, USA

20

21 ⁶David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering
22 Cancer Center, New York, NY 10065, USA

23 ⁷Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

24

25 ⁸Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto,
26 ON M5G 2M9, Canada

27 ⁹Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada

28 ¹⁰Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

29 ¹¹These authors contributed equally

30 *Correspondence: lowes@mskcc.org

31

32

33

34

35

36 **SUMMARY**

37 Somatic chromosomal deletions are prevalent in cancer, yet their functional contributions remain
38 ill-defined. Among the most prominent of these events are deletions of chromosome 9p21.3,
39 which disable a cell intrinsic barrier to tumorigenesis by eliminating the *CDKN2A/B* tumor
40 suppressor genes. However, half of 9p21.3 deletions encompass a cluster of 16 type I interferons
41 (IFNs) whose co-deletions have not been functionally characterized. To dissect how 9p21.3 and
42 other genomic deletions impact cancer, we developed MACHETE (Molecular Alteration of
43 Chromosomes with Engineered Tandem Elements), a genome engineering strategy that enables
44 flexible modeling of megabase-sized deletions. Generation of 9p21.3-syntenic deletions in a
45 mouse model of pancreatic cancer revealed that concomitant loss of *Cdkn2a/b* and the IFN cluster
46 led to immune evasion and metastasis compared to *Cdkn2a/b*-only deletions. Mechanistically,
47 IFN co-deletion disrupted type I IFN signaling, altered antigen-presenting cells, and facilitated
48 escape from CD8+ T cell surveillance in a cell extrinsic manner requiring loss of interferon epsilon
49 (*Ifne*). Our results establish co-deletions of the IFN cluster as a pervasive route to tumor immune
50 evasion and metastasis, revealing how deletions can disable physically linked cell intrinsic and
51 extrinsic tumor suppression. Our study establishes a framework to dissect the functions of
52 genomic deletions in cancer and beyond.

53

54 **MAIN**

55 Understanding the genetic underpinnings of cancer is a fundamental goal of cancer research.
56 Most efforts have focused on the characterization of single nucleotide variants (SNVs), which
57 typically act as ON/OFF switches that affect the output of a single gene. An even larger class of
58 cancer-associated lesions are copy number alterations (CNAs), which simultaneously impact the
59 dosage of multiple genes and include chromosomal gains and losses, focal amplifications, and
60 heterozygous or homozygous deletions^{1,2}. Current estimates suggest that a typical tumor carries
61 an average of 24 distinct CNAs that impact up to 30% of the genome^{3,4,6}. Moreover, CNAs show
62 recurrent patterns that can be associated with clinical outcomes^{3,4,7,8}, arguing for active selection
63 of specific traits rather than stochastic accumulation of genomic alterations. While much of the
64 research on CNAs has focused on known drivers within the affected regions, emerging evidence
65 indicates that co-gained or co-deleted genes – once considered “passenger” events – can also
66 contribute to tumorigenesis^{1,9,10}. While these observations imply CNAs produce complex
67 phenotypes that cannot be recapitulated by manipulating a single gene¹¹⁻¹⁷, the experimental
68 modeling of these lesions remains a major challenge that has impeded the functional assessment
69 of CNA biology^{12,13,18-21}.

70 Among recurrent CNAs, loss of chromosome 9p21.3 is most strongly linked to poor
71 prognosis and the most common homozygous deletion across human cancers^{3,7}. The 9p21.3
72 locus is particularly prominent since it encompasses multiple key tumor suppressor genes
73 (TSGs): the cell cycle inhibitors *CDKN2A* (encoding p16^{INK4a} and p14^{ARF}) and *CDKN2B* (encoding
74 p15^{INK4b}), which collectively engage the function of p53 and RB, the major tumor-suppressive
75 pathways that are impaired in cancer^{5,22-24}. Hence, the current paradigm of how 9p21.3 deletions
76 contribute to tumorigenesis is by eliminating a cell-intrinsic proliferative block. Nonetheless,
77 several observations have been difficult to explain by this paradigm. Tumors with 9p21.3 deletions
78 can display altered immune infiltrates^{25,26} and increased resistance to immune checkpoint
79 blockade^{27,28}, suggesting that the locus may also influence immune-related processes. Consistent

80 with this possibility, numerous genome-wide association studies have identified single nucleotide
81 polymorphisms in 9p21.3 even in non-cancer pathologies, notably age- and inflammation-related
82 conditions²⁹. However, the biological and molecular basis for these observations remains poorly
83 understood.

84

85 **MACHETE Enables Efficient Generation of Megabase-sized Genomic Deletions in Cellular
86 Models**

87 To facilitate the experimental study of genomic deletions, we developed a rapid and flexible
88 approach to engineer megabase-sized deletions termed Molecular Alteration of Chromosomes
89 with Engineered Tandem Elements (MACHETE). MACHETE involves an integrated process that
90 inserts a selection cassette within a region of interest, followed by its co-deletion with defined
91 regions of flanking DNA (**Figure 1A**). First, a bicistronic cassette encoding tandem negative and
92 positive selection markers is amplified using oligos with homology to a region within an intended
93 deletion. Second, the cassette is then inserted into the genome by CRISPR-facilitated homology-
94 directed repair, and cells with integrations are enriched by positive selection. Third, a pair of single
95 guide RNAs (sgRNAs) targeting the breakpoints of the intended deletion are introduced on either
96 side of the bicistronic cassette, followed by negative selection. Since the sequence specificity of
97 the flanking guides exclusively deletes on-target integrations of the suicide cassette, the latter
98 step not only eliminates cells that retain the selection cassette but also those harboring off-target
99 integrations (**Figure 1A**). Notably, the MACHETE protocol was designed to eliminate the need for
100 cloning components: donor DNA is generated by introducing 40-bp homology arms via PCR
101 amplification of the selection cassette, which is coupled to ribonucleoproteins (RNPs) of
102 recombinant Cas9 complexed with sgRNAs (**Extended Data Figure 1A-B**). We envisioned that
103 this approach would enable engineering of an allelic series of deletions, thereby enabling the
104 systematic functional dissection of distinct regions within a locus.

105 As an initial proof of concept, we engineered a 4.1-Mb deletion of the murine 11B3 locus
106 (syntenic to human 17p13.1), which encompasses the *Trp53* TSG (**Extended Data Figure 1C**)
107 and had been previously produced using a Cre/loxP approach¹³. NIH3T3 fibroblasts were targeted
108 with a PGK-DTR-T2A-Puro (PDTP) dual-selection cassette to an intronic region of *Ccdc42*, a
109 gene located in the 11B3 locus, and positively selected for insertion of the cassette (11B3 knock-
110 in (KI) cells). Cas9-sgRNA RNPs were then introduced to target regions flanking *Sco1* and
111 *Alox12*, the genes that demarcate the intended deletion, and negative selection was performed
112 using DT to produce a cell population termed Δ 11B3 (**Extended Data Figure 1C**). Parental, 11B3
113 KI, and Δ 11B3 populations showed the expected pattern of resistance or sensitivity to the
114 selection agents, presence/absence of the cassette, and expected deletion breakpoint (**Extended**
115 **Data Figure 1D, E**). Clonal analysis showed that use of negative selection effectively enabled the
116 generation of the desired deletion, by increasing the efficiency of Δ 11B3 engineering from
117 undetectable (0/22) to 40% of positive clones (11/27, all heterozygous) (**Extended Figure 1F**),
118 which was confirmed by sequencing (**Extended Data Figure 1G**).

119 We further developed a series of constructs that enable the use of MACHETE across
120 various experimental contexts (**Extended Data Figure 1H**). To illustrate the use of MACHETE in
121 human cells, we selected a cassette composed by a herpes simplex virus thymidine kinase with
122 blue fluorescent protein (HSV-TK-T2A-BFP), which enables positive selection via fluorescence
123 activated cell sorting (FACS) and negative selection using ganciclovir. This construct enabled the
124 production of cells harboring a 45 Mb deletion of chromosome 7q11-7q22 (**Extended Figure 1I-**
125 **K**). Thus, MACHETE is a customizable approach to efficiently engineer large chromosomal
126 deletion events.

127

128 **Loss of Type I IFN Genes Is a Common Event in 9p21.3 Deleted Tumors**

129 Armed with MACHETE, we set out to interrogate the biology of deletions at the 9p21.3 locus
130 (**Figure 1B**). Interestingly, although *CDKN2A* is a well-established tumor suppressor in this
131 region, we and others have noted that 9p21.3 deletions can encompass additional genes,
132 including a cluster of 16 type I IFN genes whose genetic loss has not been functionally implicated
133 in tumorigenesis despite the known role of IFN signaling in anti-tumor immunity³⁰. An analysis of
134 the TCGA dataset³¹ revealed that fourteen different tumor types harbor homozygous 9p21.3
135 deletions in over 10% of cases (**Extended Data Figure 2A**). We further classified 9p21.3
136 deletions into those targeting *CDKN2A/B* alone (9p small, or 9pS) or larger events that typically
137 encompassed the entire type I IFN cluster (9p large, or 9pL) (**Figure 1C**). The frequency of the
138 9pL events ranged between 20-60% depending on tumor type and was one of the highest in
139 pancreatic ductal adenocarcinoma (PDAC) (**Figure 1D**).

140

141 **Engineering 9p21.3 Deletions in Mouse Models of PDAC**

142 Genetic analyses of human PDAC indicate that *CDKN2A* deletions are an early event in tumor
143 evolution^{32,33}, which are thought to emerge as heterozygous deletions that subsequently undergo
144 loss of heterozygosity^{34,35}. These deletions tend to co-occur with activating *KRAS* mutations and
145 *TP53* loss, two other major drivers in this disease (**Extended Data Figure 2B**)³⁶. Given the
146 potential role of type I IFNs in modulating immune responses, we set out to study the biology of
147 different 9p deletions in a syngeneic model of murine PDAC derived from established pancreatic
148 ductal epithelial cells (PDECs) that harbor an endogenous activated *Kras*^{G12D} allele^{37,38}. While
149 *Cdkn2a* expression is blunted in this system, the lesions produced following PDEC transplantation
150 resemble premalignant stages of PDAC, display a limited capacity to progress to invasive
151 adenocarcinoma³⁸, and allow the study of immune-related processes^{37,39}. Thus, given the synteny
152 between human 9p21.3 and murine 4C4 (**Extended Data Figure 2C**), PDEC cells provide a good
153 platform for MACHETE-based engineering of 9p21.3 equivalent deletions *in vitro* and the
154 subsequent study of tumor phenotypes in an immune competent *in vivo* context.

155 To model the most relevant genetic configuration for 9p21.3 loss in human PDAC, we
156 generated *Trp53* knockout PDEC cells using transient CRISPR-Cas9 and introduced an EGFP-
157 Luciferase cassette to enable visualization of engrafted cells (PDEC-sgP53-EL cells) (**Extended**
158 **Data Figure 2D**). MACHETE was then used to engineer the two most frequent configurations of
159 9p21.3 deletions: ΔS (“Small”; 0.4 Mb loss spanning *Cdkn2a* and *Cdkn2b*), and ΔL (“Large”; 1.3
160 Mb loss spanning the entire 4C4 locus) (**Figure 1E-G**). Deep sequencing of the breakpoint
161 regions confirmed the presence of precise 0.4 and 1.3 Mb deletions, and clonal analysis of
162 targeted cell populations indicated that MACHETE achieved an >8-fold increase in producing cells
163 with the intended heterozygous deletion (**Figure 1H, Extended Data Figure 2E, F**). As expected,
164 these populations could be further edited through MACHETE’s capability for iterative engineering
165 (**Extended Data Figure 2G**). Given the comparable deletion efficiency of ΔS and ΔL cells, cell
166 populations were used for subsequent analyses to minimize the effects of clonal variation.

167

168 **Tumors with ΔL Deletions Are Differentially Surveilled by the Adaptive Immune System**

169 To determine whether each heterozygous deletion event contributes to tumorigenesis, we
170 transplanted the ΔS and ΔL lines into the pancreata of syngeneic C57BL/6 recipients and
171 assessed tumor formation at 4 weeks via bioluminescent imaging and at endpoint. Cells bearing
172 the ΔL deletion tended to form more tumors than ΔS cells, although the difference was not
173 statistically significant (**Figure 2A**). Tumors arising from both genotypes were poorly
174 differentiated, consistent with the histopathology of autochthonous *Trp53*- and *Cdkn2a*-deficient
175 PDAC models (**Extended Data Figure 2H**⁴⁰). Sparse whole genome sequencing (sWGS)
176 confirmed that most ΔS or ΔL tumors acquired homozygous deletions of their respective alleles
177 (7/9 lines for ΔS ; 6/8 lines for ΔL), as occurs in human PDAC (**Extended Data Figure 2I**).
178 However, there was one notable difference: ΔL tumors retained a strong EGFP fluorescence
179 signal and genomic copy number compared to ΔS tumors (**Figure 2B-C**).

180 The above findings are consistent with immunoediting of cells with high reporter
181 expression⁴¹ and raise the possibility that ΔL cells may be less immunogenic than their ΔS
182 counterparts. Accordingly, ΔS and ΔL cells showed a similar capability of forming EGFP-
183 expressing tumors in *Foxn1^{nu}* (“nude”: T and B cell deficient) and NOD/SCID *Il2rg^{-/-}* (NSG: T, B,
184 and NK cell deficient) mice (**Figure 2A-C**). Interestingly, cell populations engineered to harbor
185 4C4 deletions that eliminate upstream elements but that retained the *Cdkn2a/b* genes (ΔI allele)
186 had reduced tumor initiating capacity yet produced tumors that expressed similar levels of EGFP
187 as ΔL tumors (**Extended Data Figure 2J-L**). These data imply that genetic elements upstream of
188 *Cdkn2a/b* contribute to immunoediting of developing tumors.

189

190 **ΔL Deletions Promote Metastasis by Evasion of Adaptive Immunity**

191 We next compared the behavior of ΔS and ΔL tumor-derived cell lines in orthotopic transplantation
192 assays. Four independently derived ΔS and ΔL tumor lines were FACS-sorted to obtain cell
193 populations with comparable EGFP levels to eliminate differences in reporter expression as a
194 confounding factor (**Extended Data Figure 3A**). ΔS and ΔL tumor cells showed a similar ability
195 to proliferate in adherent or suspension cultures and produced tumors with undifferentiated
196 histopathology (**Extended Data Figure 3B, C**). However, consistent with their acquisition of
197 homozygous 4C4 deletions, the tumors progressed more rapidly (**Extended Data Figure 3D**).

198 Although ΔS and ΔL tumors showed no obvious difference in the fraction of proliferating
199 or apoptotic cells (**Extended Data Figure 3E**), ΔL tumors were much more prone to metastasis
200 (**Figure 2D-E**). Indeed, these mice displayed a 4-fold higher incidence of macrometastases in the
201 abdominal area (mesenteric lymph nodes, intestine, and peritoneal cavity) compared to their ΔS
202 counterparts, and uniquely harbored overt liver metastases (~25% of mice) (**Figure 2F**). These
203 observations were confirmed through histological analyses, which also indicated a trend for larger
204 number and area of liver lesions (**Extended Data Figure 3F-G**).

205 Further insights into the greater metastatic potential of ΔL cells were obtained through
206 analyzing additional tumor genotypes and routes of cell delivery, or by studying tumor behavior in
207 immunocompromised animals. First, tumor-derived cells that remained heterozygous for the ΔL
208 (2/8 lines that did not undergo LOH) or ΔI alleles were unable to efficiently produce metastases
209 following orthotopic injection (**Extended Data Figure 3H-I**). Second, homozygous ΔS or ΔL tumor
210 cells were equally able to produce experimental liver metastases following intrasplenic injection
211 (**Extended Data Figure 3J-K**). Third, as was observed for the immunoediting phenotype,
212 homozygous ΔS and ΔL cells showed a similarly high frequency of metastasis following orthotopic
213 injection into Nude mice (**Figure 2G-I, Extended Data Figure 3L-M**). Therefore, the enhanced
214 metastatic propensity of ΔL cells requires concomitant homozygous deletion of *Cdkn2a/b* and the
215 IFN cluster and involves an immune surveillance mechanism that acts prior to the colonization at
216 distant sites.

217

218 **Loss of Type I IFNs Correlates with Metastasis in Autochthonous Mouse Models of PDAC**

219 Next, we tested the association between large 4C4 deletions and metastasis in an independent
220 and autochthonous genetically engineered mouse model (GEMM) of PDAC. In agreement with a
221 previous report³⁶, metastatic GEMM tumors initiated by mutant *Kras*^{G12D} alone or in combination
222 with a TGF β pathway alteration (*Smad4* depletion in our model) spontaneously acquire 4C4
223 deletions during their natural course of tumor evolution (**Figure 2J-L**). Analysis of deletion size
224 revealed that primary tumor cells isolated from mice with metastases almost always harbored
225 large 4C4 events (8/9 mice) whereas those without overt metastases had focal *Cdkn2a/b*
226 deletions or no 4C4 alteration (4/6 mice) (**Figure 2K, L**). The presence and extent of 4C4 deletion
227 was similar between individual primary and metastatic pairs (n=7), confirming that 4C4 loss is an
228 early event in this model (**Extended Data Figure 3N**). Nonetheless, in contrast to the PDEC
229 system, primary tumors arising in this GEMM model displayed a moderately differentiated

230 histology with stromal involvement (**Figure 2J**), implying that the increased metastatic potential
231 associated with large 4C4 deletions does not require an undifferentiated histopathology. These
232 orthogonal data reinforce the notion that one or more genes unique to the ΔL deletion suppress
233 metastasis.

234

235 **4C4 Deletion Genotype Dictates Type I IFN Signaling and Immune Infiltration**

236 To help understand how distinct 4C4 deletion events influence tumor phenotypes, we performed
237 RNA-seq on bulk ΔL and ΔS tumors and inferred differences in signaling pathways and immune
238 cell composition using CIBERSORT⁴². When compared to ΔS tumors, ΔL tumors displayed a
239 decrease in pathways linked to IFN signaling (**Extended Data Figure 4A-B**), as well as a broad
240 depletion in immune signatures, including B and T cell populations (**Extended Figure 4C**). Further
241 analyses using RT-qPCR confirmed that ΔL tumors have reduced levels of type I IFNs (*Ifnb1* and
242 *Ifne*) and IFN-responsive genes (*Oas1* and *Isg20*) (**Extended Data Figure 4D**). Adding
243 granularity to these observations, single cell RNA sequencing (scRNA-seq) of tumor-infiltrating
244 CD45+ cells isolated from ΔS and ΔL tumors identified changes in the abundance of multiple
245 immune cell populations (**Extended Data Figure 4E-I**). ΔL tumors had fewer B cells and myeloid
246 populations, which was accompanied by an increase in CD8+ T cells – changes that were
247 confirmed by flow cytometry (**Figure 3A-B, Extended Data Figure 5A-I**).

248 Beyond alterations in the composition of infiltrating CD45+ cells, the distinct 4C4 deletions
249 led to changes in the transcriptional state of immune subsets. Analysis of an experimentally
250 derived type I IFN response signature (see Methods and **Extended Data Table 1**) showed that
251 professional antigen-presenting cells (APCs; macrophages, dendritic cells and B cells) and CD8+
252 T cells exhibited reduced type I IFN signaling in the ΔL setting (**Figure 3B-C, Extended Data**
253 **Figure 4J**). Moreover, the specific effects of 4C4 deletions on APCs were immune cell type-
254 dependent: a more pro-inflammatory state of cDC2 dendritic cells in ΔS tumors (**Extended Data**

255 **Figure 5J-L**); a shift in macrophage transcriptional states toward higher M1-like cells in ΔS
256 tumors (**Extended Data Figure 5M-O**); and an overall reduction across all B cell subtypes in ΔL
257 tumors (**Extended Data Figure 5P-Q**).

258 Analysis of CD8+ T cells showed a range of activation states, with a dominant presence
259 of activated/exhausted (*Pdcd1+*, *Ctla4+*, *Havcr2+*, *Lag3+*), naïve (*Pdcd1-*, *Tcf7+*, *Sell+*), and
260 cycling cells (*Pdcd1+*, *MKi67+*) (**Figure 3D-E**). Intriguingly, the non-proliferating *Pdcd1+*
261 population of CD8+ T cells occupied distinct phenotypic space in ΔS and ΔL tumors. Further
262 characterization using MILO⁴³ revealed that ΔS tumors accumulated exhausted CD8+ T cells
263 marked by *Tox* and *Bcl2* expression, whereas those present in ΔL tumors were transcriptionally
264 distinct and displayed higher expression of *Havcr2* and *Lag3* (**Figure 3F-I, Extended Data Figure**
265 **5R, Extended Data Table 1**). The high levels of IFN-engaged APCs and distinct CD8+ T cell
266 states present in ΔS tumors implied ongoing immune surveillance that, based on our phenotypic
267 data, may suppress metastatic spread. In agreement, depletion of B and CD8+ cells, but not
268 CD4+ cells, enhanced the metastatic potential of ΔS tumor cells to levels observed for ΔL tumors
269 (**Figure 3J-K**). Collectively, these data suggest that loss of tumor-intrinsic type I IFNs impairs the
270 function of professional APCs and produces a unique state of CD8+ T cell dysfunction, leading to
271 defects in anti-tumor immunity.

272

273 **9p21.3 Deletions Correlate with IFN signaling and Immune Infiltration in Human PDAC**

274 To test how 9p21.3 deletions that encompass the type I IFN cluster alter the tumor
275 microenvironment in human PDAC, we analyzed sequencing data obtained from the COMPASS
276 trial, which contains 218 primary and 180 metastatic PDAC samples isolated by laser capture
277 microdissection^{44,45}. The availability of whole genome and RNA sequencing from each of these
278 samples allows tumors to be categorized based on 9p deletion status and then analyzed for
279 immune signatures linked to infiltrating stromal cells. Consistent with our findings in murine

280 tumors, analysis of primary tumors showed that 9pL deletions correlated with reduced type I IFN
281 signaling compared to their 9pS counterparts (**Extended Data Figure 6A**).

282 The genotype-specific differences in gene ontology pathways and inferred immune cell
283 composition correlated well across species (**Extended Data Figure 6B-C, Extended Data Table**
284 **2**). Notably, IFN cluster-proficient ($\Delta S/9pS$) tumors were enriched in pathways associated with
285 immune infiltration of both innate and adaptive categories (**Extended Data Figure 6B**) and
286 showed a relative enrichment of most immune cell populations, particularly effector CD8+ T and
287 B cell subsets (**Extended Data Figure 6C**). Nevertheless, the relative enrichment in type I IFN
288 signatures present in primary 9pS tumors was reduced in 9pS metastases (**Extended Data**
289 **Figure 6D**)⁴⁶, and analysis of RNA-seq data from a second cohort of matched primary and
290 metastatic PDAC samples confirmed a reduction in type I IFN signaling in metastases irrespective
291 of tumor genotype (**Extended Data Figure 6E**). When considered in the context of our functional
292 studies, these data imply that downregulation of type I IFN signaling, by genetic or other means,
293 promotes PDAC metastasis.

294

295 **Disruption of IFNAR Signaling Phenocopies the Immune Evasive and Pro-metastatic**
296 **Properties of ΔL Cells**

297 Besides type I IFNs, ΔL deletions include other genes, including *Mtap*, whose disruption can also
298 influence tumor cell behavior⁴⁷. To specifically test whether type I IFN signaling is required for
299 the immune evasive and pro-metastatic features of ΔL tumors, we used IFNAR1 blocking
300 antibodies as an orthogonal approach to disrupting type I IFN signaling in the host. Immune
301 competent mice were pre-treated with an IFNAR1-blocking antibody or an isotype control,
302 followed by orthotopic transplantation of ΔS and ΔL cells analysis of the resulting tumors for
303 immunoediting of the EGFP-Luciferase reporter and overall incidence of metastasis (**Extended**
304 **Data Figure 7A**).

305 Consistent with our model, ΔS tumors arising in mice subjected to IFNAR1 blockade
306 expressed higher levels of EGFP than isotype-treated controls (**Figure 4A, Extended Data**
307 **Figure 7B-C**) and showed a greater incidence of metastasis in secondary transplantation assays
308 (**Figure 4B; Extended Data Figure 7D-F**). Remarkably, these patterns were comparable to those
309 arising in immune competent mice receiving ΔL cells and in immune deficient animals
310 transplanted with ΔS cells (**Figure 2C, F, I**). In contrast, type I IFN blockade had no impact on the
311 enhanced metastatic potential of ΔL cells (**Figure 4B**). Transcriptional profiling of bulk tumors
312 confirmed that IFNAR1 blockade phenocopied the reduction of type I IFN signaling observed in
313 IFN-deficient tumors but had minimal impact on the transcriptome of ΔL tumors (**Figure 4C**;
314 **Extended Data Figure 7G-H**). These data imply that that one or more type I IFNs are required
315 for the immune evasive and pro-metastatic phenotypes arising in tumors with homozygous ΔL
316 deletions.

317

318 ***Ifne* Is a Tumor-specific Mediator of Immune Surveillance and Metastasis**

319 The functional redundancy between different type I IFNs remains poorly understood⁴⁸. For
320 instance, *Ifnb1* is highly expressed in immune cells and acts as a key downstream effector of the
321 cGAS-STING pathway to engage innate and adaptive immunity, yet the individual contributions
322 of most other IFNs to infection and cancer immunity are unclear^{30,49}. To dissect the functional
323 contribution of tumor-derived IFNs to immunoediting and metastasis, we leveraged the power of
324 MACHETE to engineer a refined deletion series that encompass a gradually increasing number
325 of IFN genes (**Figure 4D**). The resulting cell populations were orthotopically injected as pools into
326 immunocompetent recipient mice (**Figure 4E**) and expression of EGFP-Luc reporter was used as
327 an indicator of immune evasion in the resulting tumors.

328 Consistent with different deletion events affording different degrees of immune evasion,
329 the tumors showed heterogenous expression of EGFP (**Figure 4F**). Isolation of cells with distinct

330 levels of EGFP showed prevalence in deletions affecting the IFN cluster in the EGFP-retaining
331 population (**Figure 4G**), with a significant enrichment of cells harboring deletions of *Ifne* across
332 multiple independent tumors (**Figure 4H**). A similar increase in the deletion of *Ifne* was observed
333 when comparing metastases to primary tumors, further highlighting the potential relevance of *Ifne*
334 to tumor dissemination (**Figure 4I**).

335 A detailed analysis of type I IFN gene expression in epithelial and CD45+ immune cells
336 present in ΔS tumors reinforced the above observations. As previously reported, *Ifnb1* could be
337 induced by a cGAS-STING agonist yet was more highly expressed in immune cells than tumor
338 cells; by contrast, other IFNs, particularly *Ifne*, were not induced by these stimuli and showed
339 preferential expression in tumor cells (**Figure 4J, Extended Data Figure 7I-J**). Collectively these
340 data imply that disruption of *Ifne* is necessary for the effects of type I IFN loss on immune evasion
341 and metastasis.

342 To determine whether *Ifne* was sufficient to suppress immune evasion and metastasis, we
343 introduced a doxycycline-inducible construct to drive either full-length *Ifne* or a truncated *Ifne*
344 control in ΔS and ΔL cells (**Extended Data Figure 8A-C**). Both sustained and acute induction of
345 full-length *Ifne* suppressed overt metastasis of ΔL tumors, which was dependent on adaptive
346 immunity (**Figure 4K, Extended data Figure 8D-H**). Despite the expected overexpression of *Ifne*
347 and downstream type I IFN target genes (**Extended Data Figure 8I**), ΔS and ΔL tumors showed
348 differential response to acute *Ifne*: ΔS tumors had no effect on primary tumor growth while ΔL
349 tumors had a reduction in tumor size and metastasis (**Figure 4K**). Consistent with loss of function
350 phenotypes, tumors with enforced *Ifne* expression displayed elevated levels of professional
351 antigen-presenting populations and an increase in activated CD8+ T cells (**Figure 4L-M**,
352 **Extended Data Figure 8J**). Taken together, these data demonstrate that somatic deletion of type
353 I IFNs impairs immunoediting and metastasis via the adaptive immune system and reveal a
354 previously unanticipated role of *Ifne* in suppressing these phenotypes.

355

356 **DISCUSSION**

357 Despite the pervasive nature of CNAs across cancers, their functional characterization has been
358 hampered by the difficulty of manipulating large genomic regions. MACHETE addresses this
359 challenge by providing an efficient method that is customizable to any genomic locus, enables
360 the engineering of deletions of at least 45 Mb in size, and is easy to adopt: it requires no cloning
361 of targeting vectors, seamlessly eliminates cells with off-target integrations, and – as shown
362 herein – allows for iterative engineering of refined deletions or increasingly complex genotypes.
363 Using MACHETE, we reveal previously unappreciated but clinically relevant insights into the
364 multifactorial nature of 9p21.3 deletions, an event that contributes to up to 15% of human
365 cancers⁵⁰. Given the emerging view that CNAs influence cancer phenotypes by altering the
366 dosage of multiple genes, tools like MACHETE will be essential for understanding their biology
367 and any therapeutic opportunities they create.

368 Our results revise the long-standing paradigm for how genes encoded at the 9p21.3 locus
369 suppress tumorigenesis. Most studies have focused on the roles of the *CDKN2A* (encoding
370 p16^{INK4a} and p14^{ARF}), and to a lesser extent, *CDKN2B* genes (encoding p15^{INK4b}), which act in
371 concert to potently suppress tumorigenesis by driving premalignant cells into a stable state of cell
372 cycle arrest⁵. Herein, we show that the type I IFN cluster is co-deleted with *CDKNA/B* in nearly
373 half of all tumors harboring 9p21.3 deletions and encodes factors that act as potent tumor-derived
374 enforcers of anti-tumor immunity. While other 9p21.3 genes such as *Mtap*^{47,51} may also influence
375 tumors, our data pinpoint type I IFNs as the phenotypically important tumor suppressors in our
376 model. Therefore, 9p21.3 deletions not only disable a potent block to cancer proliferation but also
377 facilitate immune evasion, simultaneously disrupting cell intrinsic and extrinsic tumor-suppressive
378 programs.

379 The emerging picture from our data argues that *Cdkn2a* loss is a requisite event that
380 enhances proliferate capacity while co-deletion of type I IFNs provides a collateral benefit that

381 promotes immune evasion by altering immune infiltrates in the developing tumor. This model also
382 explains why neighboring cells are unable to compensate for type I IFN deletions, as incipient
383 tumors may eventually reach a size where paracrine IFN signaling becomes limiting. Regardless,
384 the ability of tumor cells harboring type I IFN deletions to avoid immune surveillance at the primary
385 tumor site increases their metastatic potential. As such, the type I IFN cluster acts as a bona fide
386 metastasis suppressor locus, adding support to the emerging view that immune surveillance plays
387 an important role in limiting metastatic spread and contrasting with the prevailing model that
388 metastasis is strictly driven by epigenetic changes.

389 The role of different tumor-derived type I IFNs during cancer progression has remained
390 unclear, with most attention given to IFN secretion by immune cells or the regulation of *Ifna/b*
391 genes downstream of cGAS-STING signaling^{49,52-55}. Nonetheless, in our model a subset of type
392 I IFNs, particularly *Ifne*, are exclusively expressed in tumor cells, where they promote type I IFN
393 signaling and dictate the composition and state of immune cell infiltrates. Consequently, deletion
394 of the type I IFN cluster produces a tumor microenvironment that culminates with the
395 accumulation of exhausted CD8+ T cells that display markers of terminal differentiation,
396 analogous to those observed in IFNAR1 knockout mice during defective responses to pathogen
397 challenge⁵⁶. The lack of induction of *Ifne* in response to classic type I IFN inducers (such as TLR
398 and cGAS-STING agonists) highlights its unique role as a potentially constitutive enforcer of tumor
399 immune surveillance, perhaps mirroring its only known role in mediating mucosal immunity⁵⁷.

400 In sum, our results nominate type I IFN deletions as a pervasive genetic mechanism of
401 immune evasion in cancer, rivaling heterozygous deletions of the HLA cluster⁵⁸, and as such may
402 explain the correlation between 9p21.3 deletions and resistance to immune checkpoint
403 blockade^{50,59,60}. Whether the physical coupling between IFNs and *Cdkn2a/b* is biologically
404 meaningful or coincidental remains to be determined, but it is noteworthy that both type I IFNs
405 and *Cdkn2a*-encoded proteins have roles in limiting viral infection^{48,61} that may have been co-
406 opted for tumor suppression. Intriguingly, genome-wide association studies have identified the

407 9p21.3 locus as one of two highly significant regions that are broadly associated with a series of
408 age-related pathologies, the other key region remarkably coinciding with the HLA locus on
409 chromosome 6p21^{29,62}. While *CDKN2A* is thought to drive the 9p associations, the cooperative
410 effects between *CDKN2A* and type I IFNs reported herein raise the possibility that variation in
411 type I IFN regulation plays a role in the biology of these pathologies as well.

412

413 **METHODS**

414 **Pan-cancer TCGA Data Analysis**

415 Analysis of TCGA datasets was performed on cBioPortal^{63,64}. All TCGA datasets were selected
416 and the following onco-query language (OQL) entry was used (**Extended Data Table 3** for 9p21.3
417 OQL). Tumors with at least 10% of patients harboring 9p21.3 deletion were identified. Tumors
418 were classified as 9pS if they had a focal deep deletion of *CDKN2A/B*. Tumors were classified as
419 9pL if both *CDKN2A/B* and the type I IFN cluster was deleted. For the 9pL/9pS relative frequency,
420 only datasets with at least 40 cases with 9p21.3 loss were considered.

421

422 **Cell Culture**

423 NIH3T3 fibroblasts were obtained from the American Type Culture Collection (ATCC), and were
424 cultured in DMEM supplemented with 10% fetal calf serum (FCS) and 100 IU/mL of
425 penicillin/streptomycin. Parental and stably-expressing Gag/Pol HEK293 lines were cultured in
426 DMEM supplemented with 10% fetal bovine serum (FBS) and 100 IU/mL of
427 penicillin/streptomycin. Pancreatic ductal epithelial cells (PDECs), derived from female C57BL/6n
428 mice, were cultured as previously described^{37,38}. Advanced DMEM/F12 supplemented with 10%
429 FBS (Gibco), 100 IU/mL of penicillin/streptomycin (Gibco), 100 mM Glutamax (Gibco), ITS
430 Supplement (Sigma), 0.1 mg/mL soy trypsin-inhibitor (Gibco), Bovine Pituitary Extract (Gibco), 5
431 nM T3 (Sigma), 100 µg/mL Cholera toxin (Sigma), 4 µg/mL Dexamethasone (Sigma), 10 ng/mL
432 human EGF (Preprotech). PDECs were cultured on collagen-coated plates (100 µg/mL PureCol

433 5005, Advanced Biomatrix). Tumor-derived cell lines were generated by an initial mechanical
434 disaggregation/mincing, and tumor fragments were transferred to a solution of type V collagenase
435 (Sigma C9263, 1 mg/mL in HBSS 1X) and incubated at 37 C for 45 minutes. Cell suspensions
436 were supplemented with an equal volume of DMEM 10% FBS and filtered through a 100 μ m mesh
437 (BD). Filtered suspensions were centrifuged for 5 min at 1250 rpm, pellets were resuspended in
438 DMEM 10% FBS with penicillin/streptomycin 100 μ l/mL and cultured on collagen coated plates
439 (100 μ g/mL PureCol 5005, Advanced Biomatrix). Cells were passaged twice to remove non-tumor
440 cells and downstream applications were done with these tumor-derived cell lines.

441

442 **Engineering Large Genomic Deletions with MACHETE**

443 To engineer genomic deletions, we developed Molecular Alteration of Chromosomes with
444 Engineered Tandem Elements (MACHETE). The premise behind MACHETE is to give cells that
445 bear the deletion of interest a selective advantage over unedited cells, which is achieved by using
446 a bicistronic cassette consisting of an inducible suicide element and an antibiotic resistance
447 component. This cassette is integrated into the region of interest by CRISPR-Cas9 mediated
448 homology directed repair (HDR). Once cells with stable integration of the cassette are positively
449 selected, they are treated with CRISPR-Cas9 to generate the deletion of interest and edited cells
450 are enriched via negative selection.

451

452 *Identification and in vitro transcription of sgRNAs:*

453 We used GuideScan to select optimal sgRNA sequences⁶⁵. For each locus of interest, we
454 identified an sgRNA to introduce the MACHETE cassette by HDR, and sgRNAs to generate the
455 deletion of interest. For the 4C4 locus, we designed two independent sets of guides for each
456 deletion to control for potential off-target effects. We generated sgRNAs as previously described
457 ⁶⁶. Briefly, a primer with a T7 adapter and the sgRNA sequence was used to PCR amplify the

458 tracrRNA from a pX330 plasmid. The PCR product was then purified and transcribed using the
459 RNA MAXX In Vitro Transcription Kit (Agilent) to produce the sgRNA. sgRNAs were then column
460 purified (RNA Clean & Concentrator, Zymo Research), eluted in water and aliquoted for later use
461 with recombinant Cas9 (Sigma). Oligos used for sgRNA production are listed in **Extended Data**

462 **Table 4.**

463

464 *Generation of HDR donor:*

465 To maximize flexibility, MACHETE uses 40-bp homology arms that are introduced by PCR. The
466 locus-specific HDR donors were generated by PCR amplification of the MACHETE bicistronic
467 cassette using a high-fidelity DNA polymerase (Herculase II, Agilent or Q5, NEB). PCR fragments
468 were column purified (Qiagen) and quantified. Primers for targeting are presented in **Extended**

469 **Data Table 4.**

470

471 *CRISPR-Cas9-mediated targeting and generation of large genomic deletions:*

472 For all CRISPR editing, we used Cas9 ribonucleotide complexes (Cas9 RNPs) with the intended
473 guides, to reduce cloning and limit Cas9 expression. To incorporate Cas9 RNPs and donor PCR,
474 cells were electroporated with the Neon System (Invitrogen) following the manufacturer's
475 instructions.

476

477 *HDR knock-in of MACHETE cassette:*

478 Briefly, cells were trypsinized, washed in PBS once, and counted. Cells were then resuspended
479 in Neon Buffer R and aliquoted for the different electroporation reactions. Each condition used
480 100×10^3 cells in 10 μ L of Buffer R. In parallel, 1 μ g of Cas9 (ThermoFisher) and 1 μ g of sgRNA
481 were complexed for 15 min at room temperature. For the HDR step, 0.5 μ g of donor DNA was
482 added to the Cas9 RNP complex, which was then mixed with the cell aliquot. The cell/RNP/donor

483 mixture was electroporated (1400 V pulse voltage, 20 ms pulse width, 2 pulses). For the selection
484 of cassette knock-in lines, Puromycin (2 μ g/mL) was added to the media 48 hours after
485 electroporation. In the case of fluorescence reporters, cells were sorted 48 hours post
486 electroporation (Sony MA900), and further enriched for stable expression one week after this
487 initial sort. Selected cells were expanded to establish the parental KI lines. To validate this initial
488 step, cells were then treated with diphtheria toxin (50 ng/mL) or ganciclovir (10 μ g/mL) to assess
489 their sensitivity. On-target integrations were assessed by PCR of gDNA and Sanger sequencing
490 of the product for confirmation. Genotyping primers are provided in **Extended Data Table 4**.

491

492 *Generation of genomic deletions:*

493 KI cells were trypsinized, washed in PBS once, and counted. Cells were then resuspended in
494 Neon Buffer R and aliquoted for the different electroporation reactions. Each condition used 100
495 $\times 10^3$ cells in 10 μ L of Buffer R. In parallel, 2 μ g of Cas9, 1 μ g of 5' flanking sgRNA, and 1 μ g of
496 3' flanking sgRNA were complexed for 15 min at room temperature. The cell/RNP mixture was
497 electroporated (1400 V pulse voltage, 20 ms pulse width, 2 pulses) and cells were seeded in the
498 absence of selection. 48 hours after seeding, cells were treated with diphtheria toxin (50 ng/mL)
499 or ganciclovir (10 μ g/mL) and media was changed every 2 days with ongoing selection. Surviving
500 cells were then passaged and analyzed for the presence of the intended deletion breakpoint, loss
501 of selection cassette, and sensitivity to selection was re-evaluated. Genotyping primers are
502 provided in **Extended Data Table 4**.

503

504 *Breakpoint high-throughput sequencing:*

505 Breakpoint PCRs were purified and sent for amplicon sequencing (Amplicon-EZ, Genewiz)
506 following service guidelines. Raw fastq reads were aligned to the mouse genome (mm10) using
507 bowtie2 with parameters "--local -D 50 -R 3 -N 0 -L 19 -i S,1.0,0.7 --no-unal -k 5 --score-min C,20".

508 Aligned SAM reads were processed using custom Rscript to parse the breakpoint location,
509 junction position, direction of the reads, and alignment types. Alignments for a proper break read-
510 pairs have to both aligned to the same breakpoint chromosome; coming from 1 primary and 1
511 secondary alignment; and breakpoints must be located on opposite sides of the breakpoint
512 junction.

513

514 **Flow Cytometry**

515 To assess expression of EGFP, tumor cell suspensions were generated by initial mechanical
516 disaggregation/mincing. Tumor fragments were then transferred to a solution of type V
517 collagenase (Sigma C9263, 1 mg/mL in 1X HBSS) supplemented with soy trypsin inhibitor (Gibco,
518 0.1 mg/mL) and DNase I (Sigma, 0.1 mg/mL). Tumor pieces in this disaggregation buffer were
519 transferred to a GentleMACS tube and loaded into the OctoDissociator (Miltenyi). Samples were
520 treated with the mTDK1 program, after which 5 mL of FACS Buffer (PBS 1X, 2% FBS) was added
521 to the sample and the mix was filtered through a 100 μ m mesh (BD). The resulting cell suspension
522 was centrifuged and resuspended in FACS buffer. Cells were then treated with Fc block (BD,
523 1:200 dilution) incubated at 4C for 15 minutes and stained with anti-CD45 AF700 (BD, 1:400
524 dilution) for 30 min at 4C. Cells were washed and resuspended in FACS buffer supplemented
525 with DAPI (Sigma, 1 μ g/mL final). Stained cell suspensions were then analyzed in a MA900 sorter
526 (Sony). EGFP+ cells were analyzed within the CD45-, DAPI- population.

527

528 For multi-parametric flow cytometry analysis, tumor cell suspensions were generated as above,
529 and cells were stained with LIVE/DEAD fixable viability dye (Invitrogen) for 30 min at 4C. After
530 this, cells were washed, incubated with Fc block (BD, 1:200) for 15 min at 4 C, and then stained
531 with conjugated antibody cocktails (see **Extended Data Table 5** for antibody panels) for 30 min
532 at 4C. After staining cells were washed and fixed (BD Cytofix) for 20 min at 4C, washed again,

533 and stored for analysis. Samples were analyzed in a BD LSРFortessa with 5 lasers, where gates
534 were set by use of fluorescence-minus-one (FMO) controls.

535

536 **Animals and In Vivo Procedures**

537 **Animals**

538 All mouse experiments were approved by the Memorial Sloan-Kettering Cancer Center (MSKCC)
539 Institutional Animal Care and Use Committee (IACUC). Mice were maintained under pathogen-
540 free conditions, and food and water were provided ad libitum. C57Bl/6n and NOD/SCID II2rg^{-/-}
541 (NSG) mice were purchased from Envigo. Foxn1^{nu} (Swiss nude) mice were purchased from
542 Jackson Laboratory. All mice used were 6 to 8 week-old females.

543

544 **PDAC GEMM-ESC models of *Cdkn2a/b* loss**

545 Embryonic stem cells (ESCs) bearing alleles to study PDAC were used as previously described⁶⁷⁻
546 ⁶⁹. Briefly, Ptf1a^{Cre/+}; Rosa26^{Lox-Stop-Lox rtTA3-IRES-mKate2/+}; Col1a1^{Homing cassette/+} cells were targeted with
547 shRNAs against *Smad4* or *Renilla* luciferase (non-targeting control). Mice were then generated
548 by blastocyst injection of shSmad4 or shRen ESCs, and shRNAs were induced by treatment of
549 the resulting mice with doxycycline in drinking water starting at 5-6 weeks of age. Pancreatic
550 tumor initiation and progression were monitored by palpation and ultrasound imaging, mice were
551 euthanized upon reaching humane endpoints of tumor burden, and samples were collected from
552 primary tumors and metastases (when present). Tumor-derived cell lines were then analyzed by
553 sparse whole genome sequencing and classified according to the type of *Cdkn2a/b* alteration.

554

555 **Orthotopic transplants**

556 For orthotopic transplants of PDEC cells, mice were anesthetized and a survival surgery was
557 performed to expose the pancreas, where either 300,000 cells (for primary MACHETE-edited
558 lines) or 100,000 cells (tumor-derived lines) were injected in the pancreas of each mouse. Mice

559 were then monitored for tumor engraftment (bioluminescence imaging, IVIS) and progression,
560 and were euthanized when overt disease was present in accordance with IACUC guidelines.

561

562 *Experimental metastasis assays*

563 For liver colonization of PDEC cells, mice were anesthetized, and a survival surgery was
564 performed to expose the spleen, where 100,000 cells (tumor-derived lines) were injected in the
565 spleen of each mouse, where the site of injection was then removed and the remainder of the
566 spleen was cauterized (hemi-splenectomy). Mice were then monitored for tumor engraftment and
567 progression and were euthanized when overt disease was present in accordance with IACUC
568 guidelines.

569

570 *Antibody treatments*

571 For IFNAR1 blockade experiments, mice were treated twice per week with either 200 ug i.p. of
572 control IgG (MOPC21 clone, BioXCell) or 200 ug i.p. of anti-IFNAR1 antibody (MAR15A3,
573 BioXCell). For depletion experiments: mice were treated with anti-CD8a antibody (Clone 2.43,
574 BioXCell) or anti-CD4 (Clone GK1.5, BioXCell) with an initial dose of 400 ug i.p., followed by
575 maintenance injections of 200 ug/mouse. Control, IFNAR1 blocking and CD8/CD4 depletion
576 antibody treatments were done twice per week, starting one week prior to the orthotopic
577 transplantation of cells. Treatments were maintained for the entire duration of the experiment. B
578 cell depletion was done by a monthly intravenous injection of anti-CD20 (Clone SA271G2,
579 BioLegend), starting one week prior to orthotopic transplantation of cells.

580

581 *In vivo bioluminescence imaging*

582 Mice were anesthetized and hair over the imaging site was removed. Mice were injected with 200
583 uL of luciferin i.p. (200 mg/L, PerkinElmer #122799) and bioluminescence was acquired 10
584 minutes after the luciferin injection in an IVIS Spectrum. For organ imaging, mice were injected

585 with luciferin, euthanized 10 min after the injection, and organ bioluminescence was acquired in
586 an IVIS Spectrum instrument.

587

588 **Imaging and assessment of metastatic burden**

589 Mice meeting endpoint criteria were euthanized and inspected for overt macro-metastatic burden
590 in the abdominal cavity (peritoneum, diaphragm, mesenteric lymph nodes, ovary/fallopian tubes,
591 kidneys, and liver), as well as in the thoracic cavity (lungs and rib cage). Primary tumors and
592 organs were dissected and imaged under a dissection microscope (Nikon SMZ1500) for
593 brightfield and EGFP fluorescence.

594

595 **RNA Extraction and cDNA Preparation**

596 RNA was extracted by using the Trizol Reagent (ThermoFisher) following the manufacturer's
597 instructions. The only modification was the addition of glycogen (40 ng/mL, Roche) to the aqueous
598 phase to visualize the RNA pellet after precipitation. RNA was quantified using a Nanodrop. cDNA
599 was prepared with the AffinityScript QPCR cDNA Synthesis Kit (Agilent) following the
600 manufacturer's instructions.

601

602 **DNA Extraction**

603 Genomic DNA was extracted from cells or tissues using the DNeasy Blood and Tissue Kit
604 (Qiagen) following the manufacturer's instructions.

605

606 **qPCR**

607 For quantitative PCR the PerfeCTa SYBR Green FastMix (QuantaBio), the Taqman Fast
608 Advanced Master Mix (Applied Biosystems), and the Taqman Genotyping Master Mix (Applied
609 Biosystems) were used following manufacturer's instructions. For qPCR primers and Taqman
610 assays, see **Extended Data Table 6**.

611

612 **Histology**

613 Tissues were formalin fixed, dehydrated and paraffin embedded for sectioning. Hematoxylin /
614 Eosin staining was performed with standard protocols.

615

616 **RNA Sequencing, Differential Gene Expression, and Gene Set Enrichment Analysis**

617 Bulk tumor pieces were flash frozen on dry ice and stored at -80C. Tissues were then
618 mechanically disrupted in Trizol and RNA was extracted following manufacturer's instructions.
619 RNA integrity was analyzed with an Agilent 2100 Bioanalyzer. Samples that passed QC were
620 then used for library preparation and sequencing. Samples were barcoded and run on a HiSeq
621 (Illumina) in 76 bp SE run, with an average of 50 million reads per sample. RNA-Seq data was
622 then trimmed by removing adapter sequences and reads were aligned to the mouse genome
623 (GRCm38.91; mm10), and transcript counts were used to generate an expression matrix.
624 Differential gene expression was analyzed by DESeq2 ⁷⁰ for 3-5 independent tumors per
625 condition. Principal Components Analysis (PCA) and differentially expressed gene analysis was
626 performed in R, with significance determined by >2 fold change with an adjusted p value < 0.05.
627 GSEA ^{71,72} was performed using the GSEAPreranked tool for conducting GSEA of data derived
628 from RNA-seq experiments (v.2.07) against specific signatures: Hallmark Pathways, Reactome
629 Pathways, and Immune Subpopulations.

630

631 **Sparse Whole Genome Sequencing**

632 Low-pass whole genome sequencing was performed on gDNA freshly isolated from cultured cells
633 as previously described ⁷³. Briefly, 1 µg of gDNA was sonicated on an E220 sonicator (settings:
634 17Q, 75s Covaris), and library preparation was done by standard procedure (end repair, addition
635 of polyA, and adapter ligation). Libraries were then purified (AMPure XP magnetic beads,
636 Beckman Coulter), PCR enriched, and sequenced (Illumina HiSeq). Reads were mapped to the

637 mouse genome, duplicates removed, and an average of 2.5 million reads were used for CNA
638 determination with the Varbin algorithm⁷⁴.

639

640 **Human PDAC Transcriptional Analysis**

641 Samples from the COMPASS trial^{44,45} were classified as primary or metastatic disease and further
642 subdivided by status of the 9p21.3 locus: 9pS deletion affecting *CDKN2A/B*, or 9pL deletions
643 affecting *CDKN2A/B* and at least one IFN gene from the linked cluster. 9pS and 9pL samples
644 were then analyzed for differentially expressed genes using DESeq2 and assessed by GSEA for
645 Reactome Pathways⁷⁵, and Immune Subpopulations⁴². As an independent validation of the
646 differences between primary and metastatic PDAC, a previously published dataset⁷⁶ was used to
647 derive differentially expressed genes using DESeq2. Genes downregulated in PDAC metastasis
648 were then analyzed using the Enrichr algorithm⁷⁷.

649

650 **scRNA Sequencing**

651 The single-cell RNA-Seq of FACS-sorted cell suspensions was performed on
652 Chromium instrument (10X genomics) following the user guide manual for 3' v3.1. In brief, FACS-
653 sorted cells were washed once with PBS containing 1% bovine serum albumin (BSA) and
654 resuspended in PBS containing 1% BSA to a final concentration of 700–1,300 cells per μ l. The
655 viability of cells was above 80%, as confirmed with 0.2% (w/v) Trypan Blue staining (Countess II).
656 Cells were captured in droplets. Following reverse transcription and cell barcoding in
657 droplets, emulsions were broken and cDNA purified using Dynabeads MyOne
658 SILANE followed by PCR amplification per manual instruction. Between 15,000 to 25,000 cells
659 were targeted for each sample. Samples were multiplexed together on one lane of 10X Chromium
660 following cell hashing protocol⁷⁸. Final libraries were sequenced on Illumina NovaSeq S4 platform
661 (R1 – 28 cycles, i7 – 8 cycles, R2 – 90 cycles). The cell-gene count matrix was constructed using
662 the Sequence Quality Control (SEQC) package⁷⁹.

663 *Data Pre-processing*

664 FASTQ files were generated from 3 different samples (ΔL , ΔS , α -IFNAR1 ΔS) with three mice
665 pooled together per condition. These files were then processed using the SEQC pipeline⁷⁹ using
666 the default parameters for a 10X single-cell 3' library. This pipeline begins with aligning the reads
667 against the provided mouse mm10 reference genome and resolving multi-mapping incidents.
668 SEQC then corrects for UMIs and cell barcodes and filters cells with high mitochondrial fraction
669 ($>20\%$), low library complexity (few unique genes expressed), and empty droplets. The resulting
670 count matrix (cell x gene) was generated for each condition as the raw expression matrices.
671 As each mouse was barcoded with a unique hashtag oligo for each sample, in order to demultiplex
672 the cells, an in-house method known as SHARP (<https://github.com/hisplan/sharp>) was
673 employed. Labels are assigned to either identify a cell as belonging to a specific mouse or as a
674 doublet/low-quality droplet. The labeled cell barcodes and gene expression matrix were then
675 concatenated together into one count matrix. Most of the downstream analysis and processing
676 was done using the Scanpy software⁸⁰.

677

678 *Data cleanup*

679 We began by filtering for lowly expressed genes defined as those expressed in less than 32 cells
680 in the combined dataset. The resulting count matrix was then normalized by library size (defined
681 as the total RNA counts per cell), scaled by median library size, and log2-transformed with a
682 pseudocount of 0.1 for the combined dataset. For downstream analysis, we first performed
683 dimensionality reduction using Principal Component Analysis (PCA) to obtain top 30 principal
684 components (PCs), chosen based on the decay of associated eigenvalues, computed on the top
685 4,000 highly variable genes (HVGs). We then computed a k-nearest neighbor graph
686 representation of the cells on the obtained principal components ($n_neighbors = 30$). We
687 visualized the cells on a 2-dimensional projection using UMAP⁸¹ based on the implementation in

688 Scanpy (using *min_dist* = 0.1 parameter). All the cells from different samples were observed to
689 group together based on their cell type, which indicated that no batch effect was present in the
690 data (Figure 3A). The cells were then clustered using PhenoGraph⁸² on the PCA space with $k=30$.
691 We ensured that the clusters were robust to variations around the chosen parameter of k . We
692 measured consistency using adjusted rand index (as implemented in the Sklearn package in
693 Python) and observed high degree of consistency for values of k around 30. Upon close inspection
694 of the obtained clusters, we observed one cluster that had low CD45 (PTPRC-) and high KRT8+
695 expression and two other clusters that had low CD45 and high expression of Mitochondrial genes.
696 As such, we decided to remove these clusters from further analysis.

697

698 *IFN response signature*

699 We first sought to broadly understand, on a per cell type basis, the response to IFN activity. We
700 reasoned that to answer this, we ought to identify the genes that are most differential between
701 α -IFNAR1 and control ΔS . As such, we constructed an IFN signature by identifying top 100
702 differentially upregulated genes in ΔS compared to α -IFNAR1. The differential genes were
703 identified using MAST⁸³ and the top 100 genes were averaged on a per cell basis and plotted on
704 the UMAP (**Figure 3C**). Once the signature was constructed, we removed cells from the
705 α -IFNAR1 condition from further analysis in order to directly contrast ΔS and ΔL .

706

707 *Analysis on ΔS and ΔL samples*

708 The count matrix of CD45+ cells from the ΔS and ΔL samples included 15334 cells and 15329
709 genes, 7774 cells belonging to ΔS and 7560 to ΔL . To ensure that the observed heterogeneity
710 was not impacted by these cell clusters, we re-processed the data using the same parameters as
711 described above. Broad cell types were assigned to these clusters according to the average
712 expression of known markers.

713 CD8+ T cells

714 We isolated cells identified as CD8+ T cells in order to analyze them separately. For this, the
715 6,080 cells were sub-clustered using PhenoGraph on top of the first 30 PCs ($k=30$) using 1,500
716 highly variable genes. Using known markers, these PhenoGraph clusters were then annotated
717 into further subtypes of CD8+ T cells based on the average expression of the markers in each
718 sub-cluster.

719 Milo analysis on CD8+ T cells

720 We employed Milo⁴³ to statistically quantify the changes in abundance of ΔS and ΔL specific cells
721 among the CD8+ T cells subtypes. Milo utilizes nearest-neighbor graphs to construct local
722 neighborhoods (possibly overlapping) of cells and calculates and visualizes differential
723 abundance of cells from different conditions in the obtained neighborhoods. For this analysis, we
724 first constructed a k-nearest neighbor graph ($k=30$) on the first 30 PCs using the *buildGraph*
725 function in Milo. Neighborhoods were calculated using the *makeNhoods* function (*prop=0.1*,
726 *refined=TRUE*). We used default parameters for *countCells*, *testNhoods*, and *calcNhoodDistance*
727 in order to calculate statistical significance and spatial FDR correction, and *plotNhoodGraphDA*
728 (*alpha=0.5*) to visualize the results. The color scale of the logFC uses blue to represent higher
729 abundance of ΔL cells and red to represent higher abundance of ΔS specific cells, and the size
730 of the circle is proportional the number of cells belonging to the neighborhood. We further
731 assigned each neighborhood a cell-type identity if more than 80% of the cells in a neighborhood
732 belonged to a specific CD8+ T subtype, otherwise they are categorized as Mixed.

733

734 Dendritic cells

735 Cells annotated as dendritic cells were isolated for further analysis. The 1,134 cells were clustered
736 using PhenoGraph on top 30 principal components ($k=30$) using 1,500 HVGs. The dendritic cells

737 were further cell typed according to markers from previous studies⁸⁴. The proportion of cells that
738 belong to ΔL and ΔS in each cluster was calculated and plotted.

739

740 **Macrophages**

741 Cells labeled as macrophages (1,788 cells) were isolated. The cells were clustered using
742 PhenoGraph on top 30 principal components (k=30) using 1,500 HVGs. These clusters were
743 analyzed and annotated according to macrophage subtypes based on the differentially expressed
744 genes computed in each cluster compared to the rest of the data using MAST. The proportion of
745 cells that belong to ΔL and ΔS in each cluster was calculated and plotted.

746

747 **B cells**

748 1,204 cells annotated as B cells were selected for. The cells were clustered using PhenoGraph
749 on top 30 principal components (k=30) using 1,500 HVGs. We obtained differentially expressed
750 genes in each B cell sub-cluster using MAST and utilized the results to distinguish distinct
751 populations. The proportion of cells that belong to ΔL and ΔS in each cluster was calculated and
752 plotted.

753

754 **General Statistical Analysis**

755 Graphs and statistical analyses for Figures 2, 4, Extended Data Figures 2, 3, 4, 5, 7, and 8 were
756 done with GraphPad Prism. For all experiments n represents the number of independent
757 biological replicates. For Figures 2C, Extended Data Figure 2E, Extended Data 4D, and Extended
758 Data Figure 5A-I differences were evaluated with a two-tailed t-test. For Figure 4A-B, 4H-I, 4J-M,
759 Extended Data 3G, Extended Data 3K, Extended Data 7D, Extended Data 7F, Extended Data
760 Figure 8I-J, differences were assessed by a one-way ANOVA followed by Tukey or Sidak's
761 multiple comparison test. To assess differences in tumor initiation or metastasis incidence,

762 contingency tables followed by a chi-square test were done for figures: 2A, 2E, 2F, 2H, 2I, 2L, 3K,
763 Extended Data Figure 3F, Extended Data 3M. For survival curves, log rank-test was used to
764 assess significant differences. Differences were considered significant for p values < 0.05, where
765 asterisks represent the level of significance for the analysis used: *, p < 0.05; ** p < 0.01; ***, p <
766 0.001; n.s. not significant, p > 0.05.

767

768 **ACKNOWLEDGEMENTS**

769 We thank Anahi Tehuitzil, Kasia Rybczyk, Sha Tian, and Wei Luan for technical assistance;
770 Francisco J. Sánchez-Rivera, Riccardo Mezzadra, John P. Morris IV, and the rest of the Lowe
771 laboratory for advice and helpful discussions; Camilla Salvagno, Juan Cubillos-Ruiz, Edward R.
772 Kastenhuber, and Charles J. Sherr for advice and discussions; John Erby Wilkinson for pathology
773 analysis. We acknowledge the TCGA datasets generated by the TCGA Research Network; the
774 MSKCC Research Animal Resource Center, Mouse Genetics Core, Small Animal Imaging Core,
775 and Integrated Genomics Operation Core, funded by the NCI Cancer Center Support Grant
776 (CCSG, P30 CA08748), Cycle for Survival, and the Marie-Josée and Henry R. Kravis Center for
777 Molecular Oncology. F.M.B. was supported by a GMTEC Postdoctoral Fellowship, an MSKCC's
778 Translational Research Oncology Training Fellowship (5T32CA160001-08), and a Young
779 Investigator Award by the Edward P. Evans Foundation. K.M.T. was supported by the Jane Coffin
780 Childs Memorial Fund for Medical Research and the Shulamit Katzman Endowed GMTEC
781 Postdoctoral Fellowship. T.B. is supported by the William C. and Joyce C. O'Neil Charitable Trust,
782 Memorial Sloan Kettering Single Cell Sequencing Initiative. D.A.C. is recipient of the La Caixa
783 Postdoctoral Junior Leader Fellowship (LCF/BQ/PI20/11760006). This work was also supported
784 by MSKCC's David Rubenstein Center for Pancreatic Research Pilot Project (to S.W.L); the
785 Agilent Thought Leader Program (to S.W.L.); and NIH grant P01CA13106 (to S.W.L.). S.W.L. is
786 an investigator in the Howard Hughes Medical Institute and the Geoffrey Beene Chair for Cancer
787 Biology.

788 **AUTHOR CONTRIBUTIONS**

789 F.M.B. and K.M.T. conceived the study, designed and performed experiments, analyzed data and
790 wrote the manuscript. Y.-J.H. and A.Z. analyzed WES and RNA-seq data. N.S and R.S. analyzed
791 scRNA Seq data. T.B. analyzed sWGS data. A.N.W., I.D, B.M, G.L., A.P.C., D.A.C and J.S.
792 assisted in experiments. R.C. performed scRNA Seq. D.B-S., C.A.I-D, and F.N. provided critical
793 reagents and data. D.P. provided supervision and critical input on scRNA Seq analysis. S.W.L.
794 conceived and supervised the study and wrote the manuscript. All authors read the manuscript.

795

796 **CONFLICT OF INTEREST**

797 S.W.L. is a consultant and holds equity in Blueprint Medicines, ORIC Pharmaceuticals, Mirimus,
798 Inc., PMV Pharmaceuticals, Faeth Therapeutics, and Constellation Pharmaceuticals.

799

800 **FIGURE LEGENDS**

801 **Figure 1. MACHETE Enables Efficient Engineering of Genomic Deletions.**

802 (A) Schematic of the MACHETE approach.

803 (B) Frequency of homozygous deletions across the pan-cancer TCGA dataset.

804 (C) Relative frequency of deletions at the 9p21.3 locus classified as 9pS and 9pL across different
805 cancer types.

806 (D) Frequency of deep deletion of 9p21.3 genes in PDAC patients.

807 (E) Schematic of MACHETE-mediated engineering of 4C4 Δ S and Δ L deletions.

808 (F) PCR genotyping for the WT, KI, Δ S and Δ L alleles in the indicated PDEC cell lines.

809 (G) Pattern of resistance/sensitivity to positive and negative selection in PDEC sgP53 EL parental,
810 4C4 KI, Δ S, and Δ L cells. Cells were seeded and treated with Puromycin (2 μ g/mL) or DT-A (50
811 ng/mL) for 72 hours, and then stained with crystal violet to assess surviving cells.

812 (H) DNA sequencing of breakpoints from ΔS and ΔL cells confirming loss of the expected genomic
813 regions (0.4 Mb deletion in ΔS , and 1.3 Mb deletion in ΔL).

814

815 **Figure 2. ΔL Deletions Are Differentially Surveyed by the Adaptive Immune System and**
816 **Promote Metastasis.**

817 (A) Engraftment at one month after injection of ΔS and ΔL cells in C57BL/6, nude, and NSG hosts.
818 Two independently generated input cell lines were used per genotype ($n \geq 5$ per each cell line).
819 Bars represent fraction of metastasis-bearing mice (specific numbers of independently analyzed
820 mice are noted in parentheses). ns = non-significant (chi-square test).

821 (B) Representative macroscopic fluorescent images of primary tumors harvested from the
822 indicated genotypes and hosts. Insets show the brightfield image for each tumor.

823 (C) qPCR analysis for EGFP copy number in the gDNA of tumor-derived (Post *in vivo*) ΔS and ΔL
824 lines from C57BL/6 and Nude hosts, relative to their parental (Pre *in vivo*) counterparts. Each dot
825 represents an independent tumor-derived cell line. ** $p < 0.01$, ns = non-significant, two-tailed t-
826 test.

827 (D) Representative images of metastases in C57BL/6 mice with ΔL tumors. Left: Brightfield
828 macroscopic images of abdominal (intestinal and mesenteric lymph node) metastases. Insets
829 show matched EGFP fluorescence images. Middle: Macroscopic and Hematoxylin/Eosin images
830 of tumor-bearing livers. Right: Macroscopic and Hematoxylin/Eosin images of tumor-bearing
831 lungs. T = tumor; N = normal adjacent tissue.

832 (E-F) Overall (E) and organ-specific (F) metastasis incidence in C57BL/6 mice with either ΔS or
833 ΔL tumors. 4 independently generated input cell lines were used per genotype ($n \geq 5$ per each
834 cell line). Bars represent fraction of metastasis-bearing mice (specific numbers of independently
835 analyzed mice are noted in parentheses). * $p < 0.05$; *** $p < 0.001$, chi-square test.

836 (G) Representative images of metastases in Nude mice with ΔL or ΔS tumors. Hematoxylin/ Eosin
837 images of tumor-bearing livers (left) and lungs (right) are shown.

838 (H-I) Overall (H) and organ-specific (I) metastasis incidence in C57BL/6 mice with either ΔS or ΔL
839 tumors. 4 independently generated input cell lines were used per genotype ($n \geq 5$ per each cell
840 line). Bars represent fraction of metastasis-bearing mice (specific numbers of independently
841 analyzed mice are noted in parentheses). ns = non-significant, chi-square test.

842 (J) Representative gross morphology (top) and Hematoxylin/Eosin histological stain (bottom) of
843 matched primary tumor and overt liver metastasis in a $Kras^{G12D/+}$; shSmad4 PDAC GEMM.

844 (K) sWGS analysis of tumor-derived cell lines from the KC-Ren and KC-Smad4 GEMMs, grouped
845 by spontaneous 4C4 deletion type (WT, ΔS , ΔL). Schematic of the murine 4C4 locus is shown on
846 top. Blue tracks indicate deleted regions, with color intensity corresponding to the extent of the
847 deletion. Numbers correspond to independent mice.

848 (L) Incidence of overt metastasis in mice with tumors that harbor WT 4C4 locus, ΔS or ΔL
849 deletions. Bars represent fraction of metastasis-bearing mice (specific numbers of independently
850 analyzed mice are noted in parentheses). * $p < 0.05$, chi-square test.

851

852 **Figure 3. 4C4/9p21.3 Deletion Genotype Dictates Type I IFN Signaling and Immune**
853 **Infiltration.**

854 (A) UMAP of CD45+ cells showing cells derived from ΔS ($n = 7774$ cells) or ΔL ($n = 7560$ cells)
855 tumors.

856 (B) UMAP of CD45+ cells annotating the specific immune subsets.

857 (C) UMAP of averaged IFN response signature across CD45+ populations.

858 (D) (Upper) UMAP of CD8+ T cells from ΔS or ΔL tumors. Cells are colored by sample. (Bottom)
859 UMAP of CD8+ T cell clusters. Cells are colored and by their cluster identity.

860 (E) UMAP of imputed expression for the indicated genes.

861 (F) MILO analysis of CD8+ T cells. Neighborhoods identified through MILO analysis using default
862 parameters (red indicates enrichment in ΔS , while blue indicates enrichment in ΔL).
863 (G) Swarm plot of the distribution of CD8+ T cell neighborhoods in ΔS or ΔL tumors across
864 transcriptional states. The x-axis indicates the Log-fold change in differential abundance of ΔS
865 (<0) and ΔL (>0). Each neighborhood is associated with a cell type if more than 80% of the cell
866 state in the neighborhood belong to said state, else is annotated as “Mixed”.
867 (H) Differential gene expression of the indicated genes in *Pdcd1+ Mki67- CD8+ T cells*.
868 (I) UMAP of imputed expression of *Tox* and *Bcl2*. Dashed circles highlight ΔS -enriched CD8+ T
869 cells.
870 (J) Representative images of liver metastasis upon CD8+ cell depletion.
871 (K) Incidence of metastasis upon depletion of immune subsets in ΔS or ΔL tumors. 2
872 independently generated input cell lines were used per genotype ($n \geq 5$ per each cell line). Bars
873 represent fraction of metastasis-bearing mice (specific numbers of independently analyzed mice
874 are noted in parentheses). ns = non-significant; ** $p < 0.01$; *** $p < 0.001$, chi-square test.
875

876 **Figure 4. Ifne Is a Tumor-specific Mediator of Immune Surveillance and Metastasis.**

877 (A) Quantification of EGFP fluorescence in ΔS or ΔL tumors from C57BL/6 mice treated with IgG
878 or α IFNAR1 antibodies. Representative plots are shown in Extended Data Figure 7B. Each dot
879 represents an independent biological replicate. * $p < 0.05$, one-way ANOVA followed by Tukey's
880 multiple comparison test.
881 (B) Incidence of metastasis in C57BL/6 mice transplanted with homozygous ΔS or ΔL lines and
882 treated with IgG or α IFNAR1 antibodies. 2 independently generated input cell lines were used per
883 genotype ($n \geq 5$ per each cell line). Bars represent fraction of mice bearing metastasis (total
884 numbers of independently analyzed mice are shown). ns = non-significant; * $p < 0.05$, chi-square
885 test.

886 (C) Volcano plots of differentially expressed genes comparing IFNAR1 blockade vs. IgG controls
887 in Δ S or Δ L tumors.

888 (D) Schematic of extended series of 4C4 deletion alleles.

889 (E) (Left) Flow cytometry measurement of EGFP fluorescence in tumors derived from deletion
890 series mix (“Mix”). EGFP-negative cells were used as negative controls (“Neg”). (Right) Schematic
891 of *in vivo* competition experiment.

892 (F) Representative EGFP immunofluorescent stain of a deletion-mix tumor.

893 (G) (Left) Representative flow cytometry plot of EGFP levels in a deletion-mix tumor. GFP-Low
894 and GFP-High cell populations were sorted as marked. (Right) Copy-number qPCR analysis of
895 the indicated genes in the parental cell mix, and GFP-Low vs. GFP-High cells sorted from resulting
896 tumors.

897 (H) Relative copy-number quantification of indicated genes in GFP-High vs. GFP-Low cells.
898 *p<0.05; ns=non-significant, one-way ANOVA followed by Sidak’s multiple comparison test. Bars
899 represent SEM, n=7 biological replicates.

900 (I) Relative copy-number quantification of indicated genes in metastases- vs. primary tumor-
901 derived cells. *p<0.05; ***p<0.001; ns=non-significant, one-way ANOVA followed by Sidak’s
902 multiple comparison test. Bars represent SEM, n=7 primary tumors and 6 metastases.

903 (J) RT-qPCR measurements of mRNA levels for the indicated IFN genes in tumor cells and
904 infiltrating CD45+ cells from Δ S tumors. Each dot is a biological replicate (n=4).

905 (K) Relative quantification of primary tumor weights (left) and number of mesenteric LN
906 metastases (right) in Δ S and Δ L tumors with add-back of Ifne-expressing or control construct.
907 *p<0.05; ns=non-significant, one-way ANOVA followed by Sidak’s multiple comparison test to the
908 respective control population. Each dot is an independent tumor.

909 (L) Flow cytometry-based quantification of TAM fraction (left) and TAM MHCII levels (right) in
910 tumors of the indicated genotypes. **p<0.01; ***p<0.001; ns=non-significant, one-way ANOVA

911 followed by Sidak's multiple comparison test to the respective control population. Each dot is an
912 independent tumor.

913 (M) Flow cytometry-based quantification of CD69 (left) and PD1 (right) levels in CD8+CD44+ T
914 cells from tumors of the indicated genotypes. *p<0.05; ***p<0.001; ns=non-significant, one-way
915 ANOVA followed by Sidak's multiple comparison test to the respective control population. Each
916 dot is an independent tumor.

917

918 EXTENDED DATA FIGURE LEGENDS

919 Extended Data Figure 1

920 (A) Preparation of donor DNA and sgRNA used for MACHETE-mediated targeting of the 11B3
921 locus in NIH3T3 cells.

922 (B) Experimental outline and timing for MACHETE-based 11B3 deletion engineering in NIH3T3
923 cells.

924 (C) Schematic of MACHETE-mediated engineering of a 4.1 Mb deletion at the 11B3 locus.

925 (D) Crystal violet stain of WT, 11B3 KI and Δ 11B3 NIH3T3 cells after selection with puromycin
926 (Puro, 2 μ g/mL) and/or diphtheria toxin (DT-A, 50 ng/mL).

927 (E) PCR genotyping for the 11B3 KI and Δ 11B3 alleles in the indicated NIH3T3 cell lines.

928 (F) (Left) Experimental outline for testing the impact of DT-mediated negative selection on the
929 efficiency of Δ 11B3 deletion engineering in NIH3T3 cells. (Right) Clonal analysis of NIH3T3 cells
930 engineered without (-DT) and with (+DT) diphtheria toxin selection.

931 (G) Sanger sequencing of the 11B3 deletion breakpoint confirming the expected deletion.

932 (H) Suite of dual selection cassettes generated for the MACHETE approach.

933 (I) Schematic of MACHETE-mediated engineering of a 45 Mb deletion at the 7q11-22 locus in
934 HEK293 cells.

935 (J) Flow cytometry plots and quantification of BFP+ and BFP- HEK293 cells under the indicated
936 conditions.

937 (K) PCR genotyping for the 7q11 KI and Δ 7q11-22 alleles in HEK293 cells under the indicated
938 conditions.

939

940

941 **Extended Data Figure 2**

942 (A) Frequency of deep deletions at the 9p21.3 locus across different types of cancer in the TCGA
943 dataset.

944 (B) Mutation frequency of *KRAS* and *TP53* in 9pL and 9pS PDAC patients in the TCGA dataset.

945 (C) Schematic of the synteny between the human 9p21.3 and mouse 4C4 locus.

946 (D) Schematic of the generation of PDEC sgP53 EL cells. CRISPR-mediated knockout of *Trp53*
947 was done by electroporation of a pX330-sgP53 plasmid followed by treatment with Nutlin-3 (10
948 μ M) to select for *Trp53*-deficient cells. PDEC sgP53 cells were then infected with a retroviral
949 EGFP-Luciferase construct and cells were selected by sorting for EGFP+ expression.

950 (E) Clonal analysis of Δ S and Δ L cells engineered without (-DT) and with (+DT) diphtheria toxin
951 selection.

952 (F) Frequency of heterozygous and homozygous Δ S or Δ L deletions in PDEC cells following
953 MACHETE engineering.

954 (G) (Left) Schematic of iterative editing of cells bearing a heterozygous Δ L deletion, using a
955 distinct set of guides to discern between the different deletions. (Right) PCR genotyping of the
956 distinct Δ L deletion breakpoints.

957 (H) Histology of Δ S and Δ L tumors in C57BL/6 mice. Representative H/E images are shown.

958 (I) sWGS analysis of 4C4 deletion status in Δ S and Δ L tumor-derived cell lines (from C57BL/6
959 hosts). Deep blue color depicts deletion defined as log2 relative abundance < -2.

960 (J) (Top) Schematic representation of the MACHETE-engineered ΔI allele that removes a 0.9 Mb
961 region downstream of *Hacd4* and upstream of *Cdkn2a*. (Bottom) Engraftment of ΔI cells in
962 C57BL/6 mice one month after injection and measured by bioluminescence.
963 (K) (Left) Representative macroscopic image of a ΔI tumor showing retained EGFP expression at
964 endpoint. Inset shows matched brightfield image. (Right) qPCR analysis for EGFP copy number
965 in the gDNA of tumor-derived (Post *in vivo*) ΔI cell lines from C57BL/6 hosts relative to their
966 parental (Pre *in vivo*) counterparts. Each dot represents an independent cell line.
967 (L) Survival curve of C57BL/6 mice transplanted with ΔS , ΔI , or ΔL tumor cells. Depicted are the
968 number of mice transplanted and the median survival, which showed no statistically significant
969 differences (logrank test).

970

971 **Extended Data Figure 3**

972 (A) EGFP levels of representative re-sorted tumor-derived ΔS and ΔL cell lines.
973 (B) Growth curves in adherent (top) or suspension (bottom) conditions for ΔS and ΔL cell lines.
974 (C) Macroscopic images (left) and hematoxylin/eosin stain (right) of orthotopic tumors in C57BL/6
975 mice transplanted with tumor-derived ΔS and ΔL cells.
976 (D) Survival curve of C57BL/6 mice transplanted with tumor-derived ΔS and ΔL cells.
977 (E) Representative images (left) and quantification (middle) of the fraction of Ki67+ cells in ΔS
978 and ΔL tumors. (Right) Representative images of cleaved caspase-3 in ΔS and ΔL tumors,
979 which showed little to no detectable signal.
980 (F) Lung metastasis incidence in C57BL/6 mice with either ΔS or ΔL tumors. Bars represent
981 fraction of metastasis-bearing mice (specific numbers of independently analyzed mice are noted
982 in parentheses). ns = non-significant, chi-square test.
983 (G) Quantification of the number (left) and relative area (right) of liver and lung metastases in
984 C57BL/6 mice with either ΔS or ΔL tumors.

985 (H) Metastasis incidence in C57BL/6 mice with either heterozygous or homozygous ΔL tumors.

986 (I) (Left) Metastasis incidence in C57BL/6 mice with ΔS , ΔI , or ΔL tumors. (Right) Copy number

987 of *Ifnb1*, *Ifne*, *Cdkn2a*, and *Cdkn2b* in tumor-derived ΔI lines (Post) relative to pre-injection

988 parental ΔI cells (Pre). Each dot represents an independent tumor-derived line.

989 (J) Macroscopic images of liver metastases in C57BL/6 mice after intrasplenic injection of either

990 ΔS or ΔL cells.

991 (K) Relative area of liver metastases in C57BL/6 mice after intrasplenic injection of either ΔS or

992 ΔL cells.

993 (L) Survival curve of Nude mice transplanted with tumor-derived ΔS and ΔL cells.

994 (M) Lung metastasis incidence in Nude mice with either ΔS or ΔL tumors.

995 (N) Analysis of 4C4 deletion status in PDAC GEMM cell lines derived from matched primary

996 tumors ('P') and metastases ('M'). sWGS was used to assess the status of the 4C4 locus. Deep

997 blue color depicts deletion defined as log2 relative abundance < -2.

998

999 **Extended Data Figure 4**

1000 (A) Histogram of GSEA Normalized Enrichment Score (NES) highlighting the top 10 differentially

1001 expressed Hallmark gene datasets in ΔS and ΔL tumors.

1002 (B) Heatmap of type I IFN response gene expression in ΔS and ΔL tumors.

1003 (C) Heatmap of gene expression signatures for distinct immune subpopulations in ΔS and ΔL

1004 tumors.

1005 (D) Relative mRNA expression of representative type I IFN genes (*Ifnb1*, *Ifne*) or type I IFN targets

1006 (*Oas1l*, *Isg20*), measured by RT-qPCR. Each dot represents an independent biological replicate.

1007 *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed t-test.

1008 (E) Experimental design for scRNA Seq analysis of CD45+ cells. CD45+ cells were sorted from
1009 three independent ΔS and ΔL tumors, uniquely labeled by antibody-coupled barcoding, pooled
1010 and processed for scRNA Seq analysis.
1011 (F) Number of high-quality CD45+ cells recovered from ΔS and ΔL tumors.
1012 (G) UMAP of library size per cell.
1013 (H) Heatmap of genes used to identify specific subpopulations within CD45+ cells.
1014 (I) Distribution of CD45+ cells across different subpopulations in ΔS and ΔL tumors.
1015 (J) Average expression of the type I IFN response signature across antigen-presenting
1016 populations (B cells, dendritic cells, and macrophages) and CD8+ T cells. ***, p < 0.001.
1017

1018 **Extended Data Figure 5**

1019 (A-I) Immunophenotyping of infiltrating populations in ΔS and ΔL tumors. Frequency of CD45+
1020 cells (A), CD11b+ cells (B), CD3e+ cells (C), CD19+ B cells (D), CD4+ T cells (E), CD8+ T cells and
1021 corresponding PD1 mean fluorescence intensity of CD44+CD8+ T cells (F), tumor-associated
1022 macrophages (TAMs) including CD86+ and CD206+ subtypes (G), CD11b+ and CD103+ dendritic
1023 cell subsets (H), and myeloid-derived suppressor cells (MDSCs) including polymorphonuclear
1024 (PMN-MDSCs) and mononuclear (M-MDSCs) subtypes (I). *p < 0.05, **p < 0.01, ***p < 0.001, ns
1025 = non-significant; two-tailed t-test. Each dot represents an independent biological replicate.
1026 (J) UMAP of dendritic cell phenographs from ΔS or ΔL tumors. Known populations/states are
1027 circled.
1028 (K) Frequency of dendritic cells across phenographs in ΔS or ΔL tumors.
1029 (L) DAVID analysis of Gene Ontology Biological Processes enriched in ΔS -specific dendritic cells.
1030 (M) UMAP of macrophage phenographs from ΔS or ΔL tumors. Known populations/states are
1031 circled.
1032 (N) Frequency of macrophages across phenographs in ΔS or ΔL tumors.

1033 (O) DAVID analysis of Gene Ontology Biological Processes enriched in ΔS -specific macrophages.
1034 (P) UMAP of B cell phenographs from ΔS or ΔL tumors. Known populations/states are circled.
1035 (Q) Frequency of B cells across phenographs in ΔS or ΔL tumors.
1036 (R) Enrichr analysis of the top Hallmark Pathways enriched in exhausted CD8+ T cells from ΔS
1037 and ΔL tumors.

1038
1039 **Extended Data Figure 6**
1040 (A) GSEA enrichment scores (NES) of type I IFN signaling in mouse ΔS and human 9pS tumors
1041 compared to ΔL and 9pL tumors, respectively.
1042 (B) Comparison of GSEA NES scores for Reactome Pathways enriched in mouse ΔS (y axis) and
1043 human 9pS tumors (x axis). Highlighted are key pathways and immune populations enriched in
1044 IFN-proficient tumors. Circle size represents the adjusted p value.

1045 (C) Comparison of GSEA NES scores and Immune populations enriched in mouse ΔS (y axis)
1046 and human 9pS tumors (x axis). Highlighted are key immune populations enriched in IFN-
1047 proficient tumors. Circle size represents the adjusted p value.
1048 (D) GSEA enrichment scores (NES) of type I IFN signaling in human primary or metastatic 9pS
1049 tumors compared to 9pL tumors from the COMPASS and TCGA datasets.
1050 (E) Hallmark pathways downregulated in human PDAC liver metastases vs. primary tumors. Data
1051 from Moffitt et al., 2015⁷⁵.

1052
1053 **Extended Data Figure 7**
1054 (A) Experimental outline to test the role of type I IFNAR signaling in transplantation experiments.
1055 (B) Representative flow cytometry plots of EGFP fluorescence in ΔS or ΔL tumors from C57BL/6
1056 mice treated with IgG or α IFNAR1 antibodies.

1057 (C) Representative FACS plots of EGFP+ populations from IgG ΔL, IgG ΔS, or α IFNAR1 ΔS
1058 tumors.
1059 (D) (Left) Representative bioluminescent images of primary tumors and intestines from mice with
1060 indicated genotypes of transplanted cells and antibody treatments. (Right) Quantification of all
1061 replicates. Boxes indicate the signal threshold for metastasis detection. *p < 0.05, chi-square test.
1062 (E-F) Representative H/E images (E) and quantification (F) of mesenteric lymph node metastases
1063 in mice with indicated genotypes of transplanted cells and antibody treatments. *p < 0.05, two-
1064 tailed t-test comparing IgG vs IFNAR1 blockade in the corresponding cell lines.
1065 (G) DAVID gene ontology analysis of α -IFNAR1 downregulated genes in ΔS tumors. Top 10
1066 significant pathways are shown.
1067 (H) IFNAR1 blockade specifically affects IFN signaling. NES scores of top 5 UP and DOWN
1068 Hallmark categories in tumors comparing ΔL vs ΔS (grey bars, data from Figure 4C) or ΔL vs
1069 α -IFNAR1 ΔS (black bars).
1070 (I) RT-qPCR measurements of mRNA levels for *Ifnb1* and *Ifne* in tumor cells and infiltrating CD45+
1071 cells from ΔS and ΔL tumors. Dots represent independent tumors.
1072 (J) qRT-PCR measurements of mRNA levels for *Ifnb1* and *Ifne* in ΔS and ΔL tumor-derived cells
1073 after the indicated treatments. Dots represent independent cell lines.

1074

1075 **Extended Data Figure 8**

1076 (A) Design of the vector for doxycycline-inducible expression of full-length mouse *Ifne* or a
1077 truncated version lacking the signal peptide as control.
1078 (B) RT-qPCR of *Ifne* expression in cells cultured -/+ doxycycline (2 μ g/mL) for 72 hours. The
1079 assay specifically amplifies full-length *Ifne*.
1080 (C) RT-qPCR of IFN target genes (*Irf7*, *Oas1*, *Isg20*) in cells cultured -/+ doxycycline (2 μ g/mL)
1081 for 72 hours.

1082 (D) Experimental design to test the role of sustained *Ifne* expression in immune competent and
1083 immune deficient mice.

1084 (E) Survival curve of immune competent mice orthotopically transplanted with Ctrl or *Ifne*
1085 overexpressing Δ S and Δ L cells. n = 5 per condition. *p < 0.05; **p < 0.01, log rank test.

1086 (F) Survival curve of immune deficient (nude) mice orthotopically transplanted with Ctrl or *Ifne*
1087 overexpressing Δ S and Δ L cells. n = 5 per condition. n.s.= non-significant, log rank test.

1088 (G) Representative image of an intestine from a mouse with sustained expression of Ctrl or full-
1089 length *Ifne* Δ L cells at endpoint. Arrowheads point to macrometastases in the mesentery and
1090 intestine.

1091 (H) Incidence of overt liver metastasis in immune proficient and deficient hosts transplanted with
1092 Δ S or Δ L cells expressing Ctrl or full length *Ifne* (n=5).

1093 (I) RT-qPCR of *Ifne*, *Irf7*, and *Oas1l* in tumors from immune competent mice treated with
1094 doxycycline for 1 week before tumor analysis. Each dot represents an independent tumor (n=5).
1095 *p < 0.05; ***p < 0.001, one-way ANOVA followed by Sidak's multiple comparison test.

1096 (J) Tumor immune infiltration of immune competent mice treated with doxycycline for 1 week
1097 before tumor analysis. Frequency of dendritic cells (far left), CD8 T cells (left), CD4 T cells (right),
1098 ad B cells (far right) are shown. Each dot represents an independent tumor (n=5). *p < 0.05; **p
1099 < 0.01, n.s. = non-significant, one-way ANOVA followed by Sidak's multiple comparison test.

1100

1101 REFERENCES

- 1102 1 Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. *Nature* **458**, 719-
1103 724, doi:10.1038/nature07943 (2009).
- 1104 2 Vasudevan, A. et al. Aneuploidy as a promoter and suppressor of malignant growth. *Nat Rev Cancer*, doi:10.1038/s41568-020-00321-1 (2021).
- 1105 3 Beroukhim, R. et al. The landscape of somatic copy-number alteration across human
1106 cancers. *Nature* **463**, 899-905, doi:10.1038/nature08822 (2010).
- 1107 4 Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. *Nat Genet* **45**,
1108 1134-1140, doi:10.1038/ng.2760 (2013).
- 1109 5 Sherr, C. J. The INK4a/ARF network in tumour suppression. *Nat Rev Mol Cell Biol* **2**, 731-
1110 737, doi:10.1038/35096061 (2001).

1112 6 Mitelman, F. Recurrent chromosome aberrations in cancer. *Mutation research* **462**, 247-
1113 253, doi:10.1016/s1383-5742(00)00006-5 (2000).

1114 7 Smith, J. C. & Sheltzer, J. M. Systematic identification of mutations and copy number
1115 alterations associated with cancer patient prognosis. *eLife* **7**, doi:10.7554/eLife.39217
(2018).

1117 8 Li, Y. *et al.* Patterns of somatic structural variation in human cancer genomes. *Nature* **578**,
1118 112-121, doi:10.1038/s41586-019-1913-9 (2020).

1119 9 Kumar, S. *et al.* Passenger Mutations in More Than 2,500 Cancer Genomes: Overall
1120 Molecular Functional Impact and Consequences. *Cell* **180**, 915-927.e916,
1121 doi:10.1016/j.cell.2020.01.032 (2020).

1122 10 Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral Lethality: A new therapeutic
1123 strategy in oncology. *Trends Cancer* **1**, 161-173, doi:10.1016/j.trecan.2015.10.002 (2015).

1124 11 Xue, W. *et al.* A cluster of cooperating tumor-suppressor gene candidates in chromosomal
1125 deletions. *Proc Natl Acad Sci U S A* **109**, 8212-8217, doi:10.1073/pnas.1206062109
(2012).

1127 12 Cai, Y. *et al.* Loss of Chromosome 8p Governs Tumor Progression and Drug Response
1128 by Altering Lipid Metabolism. *Cancer Cell* **29**, 751-766, doi:10.1016/j.ccr.2016.04.003
(2016).

1130 13 Liu, Y. *et al.* Deletions linked to TP53 loss drive cancer through p53-independent
1131 mechanisms. *Nature* **531**, 471-475, doi:10.1038/nature17157 (2016).

1132 14 Scuoppo, C. *et al.* A tumour suppressor network relying on the polyamine-hypusine axis.
1133 *Nature* **487**, 244-248, doi:10.1038/nature11126 (2012).

1134 15 Bonney, M. E., Moriya, H. & Amon, A. Aneuploid proliferation defects in yeast are not
1135 driven by copy number changes of a few dosage-sensitive genes. *Genes Dev* **29**, 898-
1136 903, doi:10.1101/gad.261743.115 (2015).

1137 16 Solimini, N. L. *et al.* Recurrent hemizygous deletions in cancers may optimize proliferative
1138 potential. *Science* **337**, 104-109, doi:10.1126/science.1219580 (2012).

1139 17 Davoli, T. *et al.* Cumulative haploinsufficiency and triplosensitivity drive aneuploidy
1140 patterns and shape the cancer genome. *Cell* **155**, 948-962, doi:10.1016/j.cell.2013.10.011
(2013).

1142 18 Taylor, A. M. *et al.* Genomic and Functional Approaches to Understanding Cancer
1143 Aneuploidy. *Cancer Cell* **33**, 676-689 e673, doi:10.1016/j.ccr.2018.03.007 (2018).

1144 19 Mishra, A. *et al.* Generation of focal mutations and large genomic deletions in the pancreas
1145 using inducible *in vivo* genome editing. *Carcinogenesis* **41**, 334-344,
1146 doi:10.1093/carcin/bgz108 (2020).

1147 20 He, Z. *et al.* Highly efficient targeted chromosome deletions using CRISPR/Cas9.
1148 *Biotechnology and bioengineering* **112**, 1060-1064, doi:10.1002/bit.25490 (2015).

1149 21 Boroviak, K., Doe, B., Banerjee, R., Yang, F. & Bradley, A. Chromosome engineering in
1150 zygotes with CRISPR/Cas9. *Genesis* **54**, 78-85, doi:10.1002/dvg.22915 (2016).

1151 22 Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras
1152 provokes premature cell senescence associated with accumulation of p53 and p16INK4a.
1153 *Cell* **88**, 593-602, doi:10.1016/s0092-8674(00)81902-9 (1997).

1154 23 Kamijo, T. *et al.* Tumor suppression at the mouse INK4a locus mediated by the alternative
1155 reading frame product p19ARF. *Cell* **91**, 649-659, doi:10.1016/s0092-8674(00)80452-3
(1997).

1157 24 Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-beta-induced cell cycle
1158 arrest. *Nature* **371**, 257-261, doi:10.1038/371257a0 (1994).

1159 25 Balli, D., Rech, A. J., Stanger, B. Z. & Vonderheide, R. H. Immune Cytolytic Activity
1160 Stratifies Molecular Subsets of Human Pancreatic Cancer. *Clin Cancer Res* **23**, 3129-
1161 3138, doi:10.1158/1078-0432.CCR-16-2128 (2017).

1162 26 Siemers, N. O. *et al.* Genome-wide association analysis identifies genetic correlates of
1163 immune infiltrates in solid tumors. *PLoS One* **12**, e0179726,
1164 doi:10.1371/journal.pone.0179726 (2017).

1165 27 Gao, J. *et al.* Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of
1166 Resistance to Anti-CTLA-4 Therapy. *Cell* **167**, 397-404 e399,
1167 doi:10.1016/j.cell.2016.08.069 (2016).

1168 28 Braun, D. A. *et al.* Interplay of somatic alterations and immune infiltration modulates
1169 response to PD-1 blockade in advanced clear cell renal cell carcinoma. *Nat Med* **26**, 909-
1170 918, doi:10.1038/s41591-020-0839-y (2020).

1171 29 Jeck, W. R., Siebold, A. P. & Sharpless, N. E. Review: a meta-analysis of GWAS and age-
1172 associated diseases. *Aging cell* **11**, 727-731, doi:10.1111/j.1474-9726.2012.00871.x
1173 (2012).

1174 30 Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications
1175 for cancer therapy. *Nat Rev Cancer* **16**, 131-144, doi:10.1038/nrc.2016.14 (2016).

1176 31 Hoadley, K. A. *et al.* Cell-of-Origin Patterns Dominate the Molecular Classification of
1177 10,000 Tumors from 33 Types of Cancer. *Cell* **173**, 291-304.e296,
1178 doi:10.1016/j.cell.2018.03.022 (2018).

1179 32 Hruban, R. H., Goggins, M., Parsons, J. & Kern, S. E. Progression model for pancreatic
1180 cancer. *Clin Cancer Res* **6**, 2969-2972 (2000).

1181 33 Makohon-Moore, A. P. *et al.* Precancerous neoplastic cells can move through the
1182 pancreatic ductal system. *Nature* **561**, 201-205, doi:10.1038/s41586-018-0481-8 (2018).

1183 34 Sasaki, S. *et al.* Molecular processes of chromosome 9p21 deletions in human cancers.
1184 *Oncogene* **22**, 3792-3798, doi:10.1038/sj.onc.1206589 (2003).

1185 35 Harada, T. *et al.* Genome-wide DNA copy number analysis in pancreatic cancer using
1186 high-density single nucleotide polymorphism arrays. *Oncogene* **27**, 1951-1960,
1187 doi:10.1038/sj.onc.1210832 (2008).

1188 36 Mueller, S. *et al.* Evolutionary routes and KRAS dosage define pancreatic cancer
1189 phenotypes. *Nature* **554**, 62-68, doi:10.1038/nature25459 (2018).

1190 37 Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-
1191 induced GM-CSF production promotes the development of pancreatic neoplasia. *Cancer Cell* **21**,
1192 836-847, doi:10.1016/j.ccr.2012.04.024 (2012).

1193 38 Lee, K. E. & Bar-Sagi, D. Oncogenic KRas suppresses inflammation-associated
1194 senescence of pancreatic ductal cells. *Cancer Cell* **18**, 448-458,
1195 doi:10.1016/j.ccr.2010.10.020 (2010).

1196 39 Pylayeva-Gupta, Y. *et al.* IL35-Producing B Cells Promote the Development of Pancreatic
1197 Neoplasia. *Cancer Discov* **6**, 247-255, doi:10.1158/2159-8290.Cd-15-0843 (2016).

1198 40 Bardeesy, N. *et al.* Both p16(INK4a) and the p19(Arf)-p53 pathway constrain progression
1199 of pancreatic adenocarcinoma in the mouse. *Proc Natl Acad Sci U S A* **103**, 5947-5952,
1200 doi:10.1073/pnas.0601273103 (2006).

1201 41 DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of
1202 tumour-specific antigens underlies cancer immunoediting. *Nature* **482**, 405-409,
1203 doi:10.1038/nature10803 (2012).

1204 42 Newman, A. M. *et al.* Robust enumeration of cell subsets from tissue expression profiles.
1205 *Nat Methods* **12**, 453-457, doi:10.1038/nmeth.3337 (2015).

1206 43 Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential
1207 abundance testing on single-cell data using k-nearest neighbor graphs. *Nat Biotechnol* **40**,
1208 245-253, doi:10.1038/s41587-021-01033-z (2022).

1209 44 Aung, K. L. *et al.* Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer:
1210 Early Results from the COMPASS Trial. *Clin Cancer Res* **24**, 1344-1354,
1211 doi:10.1158/1078-0432.Ccr-17-2994 (2018).

1212 45 Chan-Seng-Yue, M. *et al.* Transcription phenotypes of pancreatic cancer are driven by
1213 genomic events during tumor evolution. *Nat Genet* **52**, 231-240, doi:10.1038/s41588-019-
1214 0566-9 (2020).

1215 46 Bidwell, B. N. *et al.* Silencing of Irf7 pathways in breast cancer cells promotes bone
1216 metastasis through immune escape. *Nat Med* **18**, 1224-1231, doi:10.1038/nm.2830
1217 (2012).

1218 47 Kadariya, Y. *et al.* Mice heterozygous for germ-line mutations in methylthioadenosine
1219 phosphorylase (MTAP) die prematurely of T-cell lymphoma. *Cancer Res* **69**, 5961-5969,
1220 doi:10.1158/0008-5472.CAN-09-0145 (2009).

1221 48 Hertzog, P. J. Overview. Type I interferons as primers, activators and inhibitors of innate
1222 and adaptive immune responses. *Immunol Cell Biol* **90**, 471-473, doi:10.1038/icb.2012.15
1223 (2012).

1224 49 Vanpouille-Box, C., Demaria, S., Formenti, S. C. & Galluzzi, L. Cytosolic DNA Sensing in
1225 Organismal Tumor Control. *Cancer Cell* **34**, 361-378, doi:10.1016/j.ccr.2018.05.013
1226 (2018).

1227 50 Han, G. *et al.* 9p21 loss confers a cold tumor immune microenvironment and primary
1228 resistance to immune checkpoint therapy. *Nat Commun* **12**, 5606, doi:10.1038/s41467-
1229 021-25894-9 (2021).

1230 51 Kryukov, G. V. *et al.* MTAP deletion confers enhanced dependency on the PRMT5
1231 arginine methyltransferase in cancer cells. *Science* **351**, 1214-1218,
1232 doi:10.1126/science.aad5214 (2016).

1233 52 Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in
1234 anticancer immunity. *Nat Rev Immunol* **15**, 405-414, doi:10.1038/nri3845 (2015).

1235 53 Fuertes, M. B., Woo, S. R., Burnett, B., Fu, Y. X. & Gajewski, T. F. Type I interferon
1236 response and innate immune sensing of cancer. *Trends Immunol* **34**, 67-73,
1237 doi:10.1016/j.it.2012.10.004 (2013).

1238 54 Ortiz, A. & Fuchs, S. Y. Anti-metastatic functions of type 1 interferons: Foundation for the
1239 adjuvant therapy of cancer. *Cytokine* **89**, 4-11, doi:10.1016/j.cyto.2016.01.010 (2017).

1240 55 Litvin, O. *et al.* Interferon alpha/beta Enhances the Cytotoxic Response of MEK Inhibition
1241 in Melanoma. *Mol Cell* **57**, 784-796, doi:10.1016/j.molcel.2014.12.030 (2015).

1242 56 Müller, U. *et al.* Functional role of type I and type II interferons in antiviral defense. *Science*
1243 **264**, 1918-1921, doi:10.1126/science.8009221 (1994).

1244 57 Fung, K. Y. *et al.* Interferon- ϵ protects the female reproductive tract from viral and bacterial
1245 infection. *Science* **339**, 1088-1092, doi:10.1126/science.1233321 (2013).

1246 58 Montesion, M. *et al.* Somatic HLA Class I Loss Is a Widespread Mechanism of Immune
1247 Evasion Which Refines the Use of Tumor Mutational Burden as a Biomarker of Checkpoint
1248 Inhibitor Response. *Cancer Discov* **11**, 282-292, doi:10.1158/2159-8290.CD-20-0672
1249 (2021).

1250 59 Bakhoum, S. F. & Cantley, L. C. The Multifaceted Role of Chromosomal Instability in
1251 Cancer and Its Microenvironment. *Cell* **174**, 1347-1360, doi:10.1016/j.cell.2018.08.027
1252 (2018).

1253 60 Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with
1254 markers of immune evasion and with reduced response to immunotherapy. *Science* **355**,
1255 doi:10.1126/science.aaf8399 (2017).

1256 61 Ahuja, D., Sáenz-Robles, M. T. & Pipas, J. M. SV40 large T antigen targets multiple
1257 cellular pathways to elicit cellular transformation. *Oncogene* **24**, 7729-7745,
1258 doi:10.1038/sj.onc.1209046 (2005).

1259 62 McGranahan, N. *et al.* Allele-Specific HLA Loss and Immune Escape in Lung Cancer
1260 Evolution. *Cell* **171**, 1259-1271.e1211, doi:10.1016/j.cell.2017.10.001 (2017).

1261 63 Cerami, E. *et al.* The cBio cancer genomics portal: an open platform for exploring
1262 multidimensional cancer genomics data. *Cancer Discov* **2**, 401-404, doi:10.1158/2159-
1263 8290.Cd-12-0095 (2012).

1264 64 Gao, J. *et al.* Integrative analysis of complex cancer genomics and clinical profiles using
1265 the cBioPortal. *Science signaling* **6**, pl1, doi:10.1126/scisignal.2004088 (2013).

1266 65 Perez, A. R. *et al.* GuideScan software for improved single and paired CRISPR guide RNA
1267 design. *Nat Biotechnol* **35**, 347-349, doi:10.1038/nbt.3804 (2017).

1268 66 Gundry, M. C. *et al.* Highly Efficient Genome Editing of Murine and Human Hematopoietic
1269 Progenitor Cells by CRISPR/Cas9. *Cell Rep* **17**, 1453-1461,
1270 doi:10.1016/j.celrep.2016.09.092 (2016).

1271 67 Saborowski, M. *et al.* A modular and flexible ESC-based mouse model of pancreatic
1272 cancer. *Genes Dev* **28**, 85-97, doi:10.1101/gad.232082.113 (2014).

1273 68 Dow, L. E. *et al.* Conditional reverse tet-transactivator mouse strains for the efficient
1274 induction of TRE-regulated transgenes in mice. *PLoS One* **9**, e95236,
1275 doi:10.1371/journal.pone.0095236 (2014).

1276 69 Dow, L. E. *et al.* A pipeline for the generation of shRNA transgenic mice. *Nat Protoc* **7**,
1277 374-393, doi:10.1038/nprot.2011.446 (2012).

1278 70 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1279 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-0550-8
1280 (2014).

1281 71 Mootha, V. K. *et al.* PGC-1alpha-responsive genes involved in oxidative phosphorylation
1282 are coordinately downregulated in human diabetes. *Nat Genet* **34**, 267-273,
1283 doi:10.1038/ng1180 (2003).

1284 72 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1285 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
1286 15550, doi:10.1073/pnas.0506580102 (2005).

1287 73 Baslan, T. *et al.* Optimizing sparse sequencing of single cells for highly multiplex copy
1288 number profiling. *Genome Res* **25**, 714-724, doi:10.1101/gr.188060.114 (2015).

1289 74 Navin, N. *et al.* Tumour evolution inferred by single-cell sequencing. *Nature* **472**, 90-94,
1290 doi:10.1038/nature09807 (2011).

1291 75 Jassal, B. *et al.* The reactome pathway knowledgebase. *Nucleic Acids Res* **48**, D498-
1292 d503, doi:10.1093/nar/gkz1031 (2020).

1293 76 Moffitt, R. A. *et al.* Virtual microdissection identifies distinct tumor- and stroma-specific
1294 subtypes of pancreatic ductal adenocarcinoma. *Nat Genet* **47**, 1168-1178,
1295 doi:10.1038/ng.3398 (2015).

1296 77 Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment
1297 analysis tool. *BMC bioinformatics* **14**, 128, doi:10.1186/1471-2105-14-128 (2013).

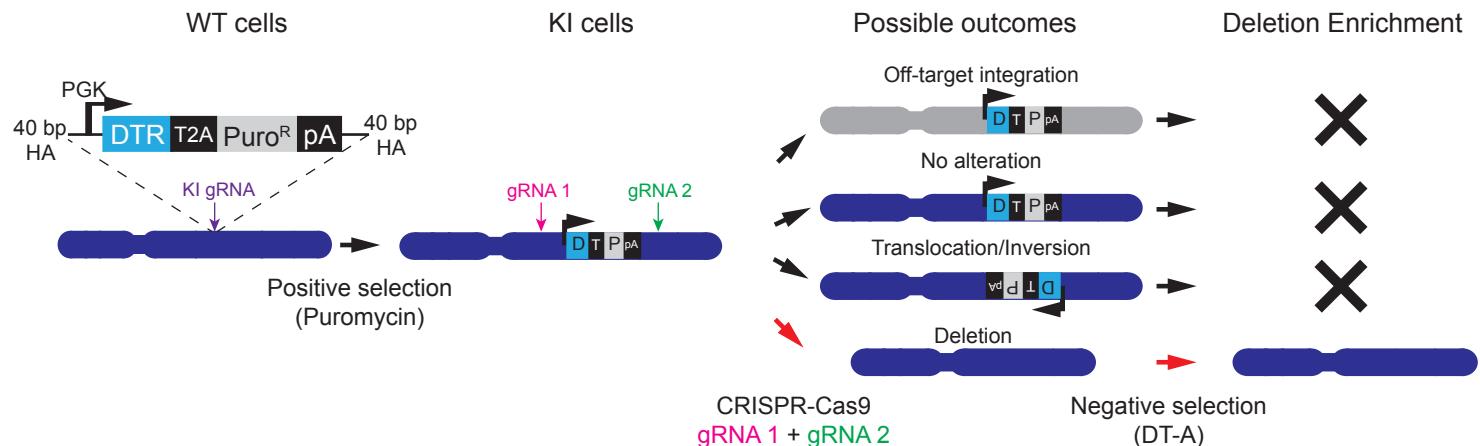
1298 78 Stoeckius, M. *et al.* Cell Hashing with barcoded antibodies enables multiplexing and
1299 doublet detection for single cell genomics. *Genome Biol* **19**, 224, doi:10.1186/s13059-018-
1300 1603-1 (2018).

1301 79 Azizi, E. *et al.* Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor
1302 Microenvironment. *Cell* **174**, 1293-1308.e1236, doi:10.1016/j.cell.2018.05.060 (2018).

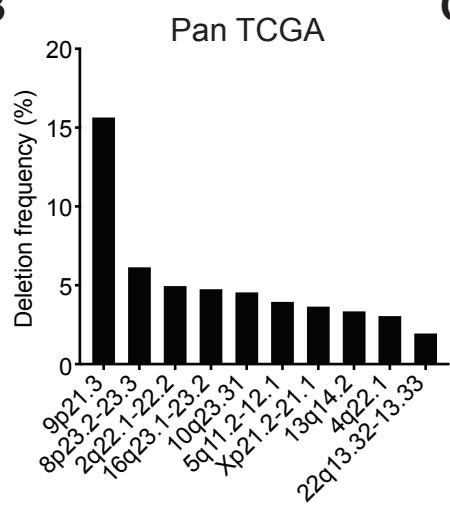
1303 80 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
1304 data analysis. *Genome Biol* **19**, 15, doi:10.1186/s13059-017-1382-0 (2018).

1305 81 McInnes L, H. J., Melville J. UMAP: Uniform Manifold Approximation and Projection for
1306 Dimension Reduction. *Arxiv* (2018).

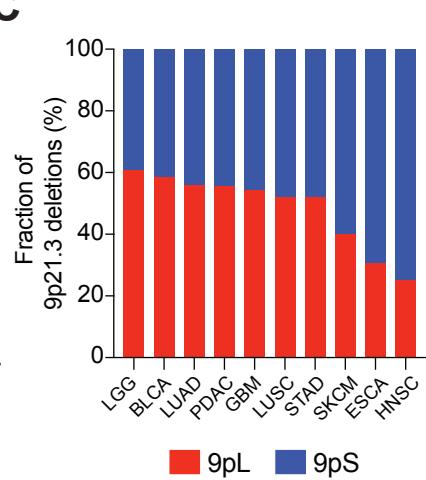
1307 82 Levine, J. H. *et al.* Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like
1308 Cells that Correlate with Prognosis. *Cell* **162**, 184-197, doi:10.1016/j.cell.2015.05.047
1309 (2015).

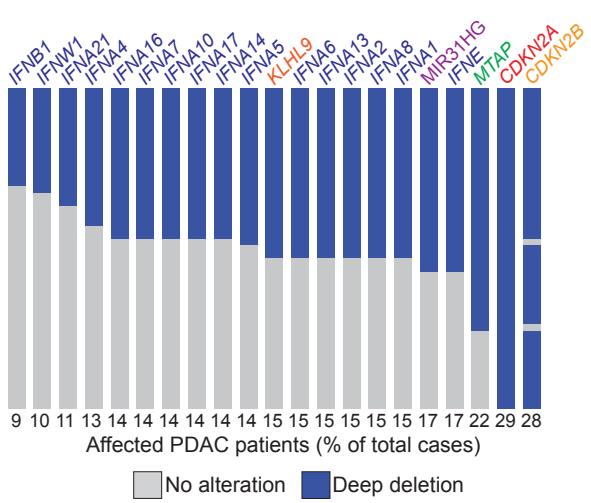

1310 83 Finak, G. *et al.* MAST: a flexible statistical framework for assessing transcriptional
1311 changes and characterizing heterogeneity in single-cell RNA sequencing data. *Genome
1312 Biol* **16**, 278, doi:10.1186/s13059-015-0844-5 (2015).

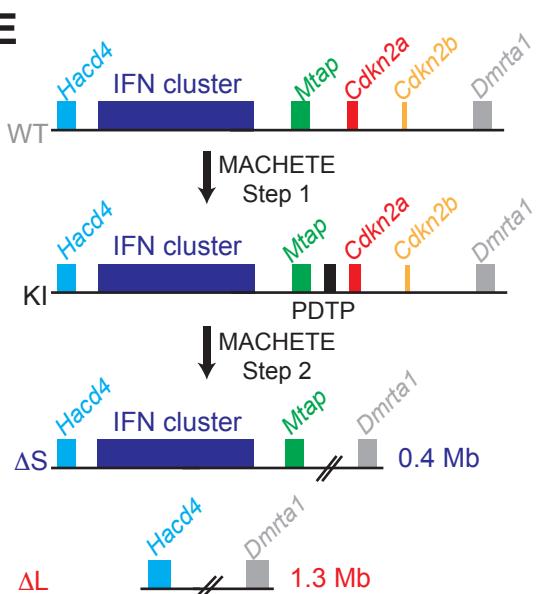
1313 84 Duong, E. *et al.* Type I interferon activates MHC class I-dressed CD11b(+) conventional
1314 dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. *Immunity* **55**, 308-
1315 323.e309, doi:10.1016/j.jimmuni.2021.10.020 (2022).

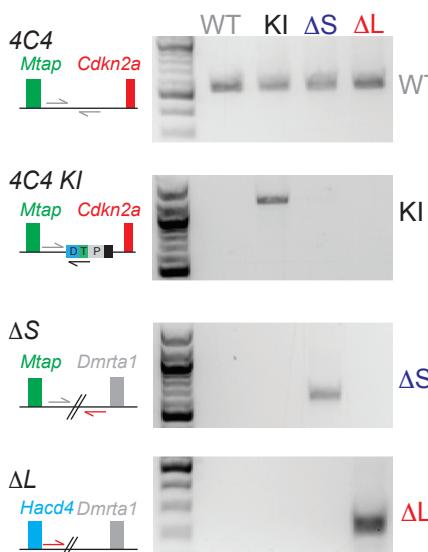

1316

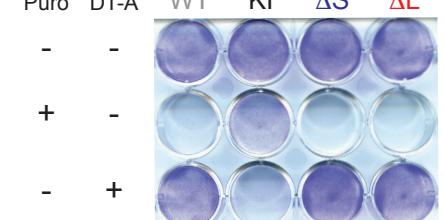
A

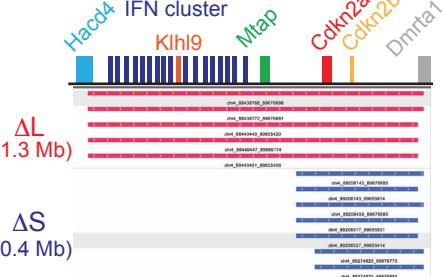

Molecular Alteration of Chromosomes with Engineered Tandem Elements (MACHETE)


B

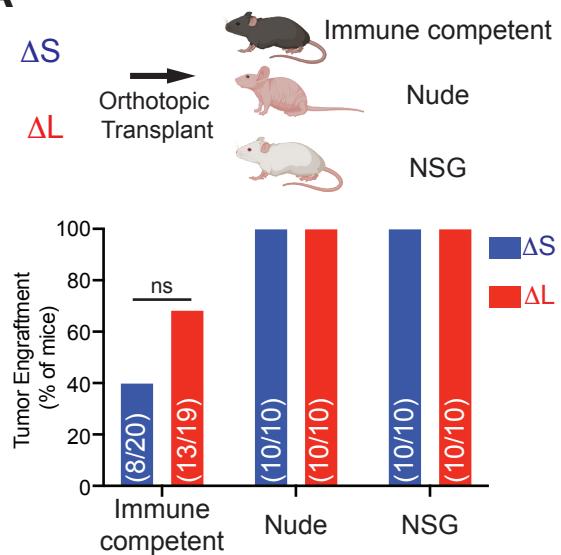

C


D


8


F

G



H

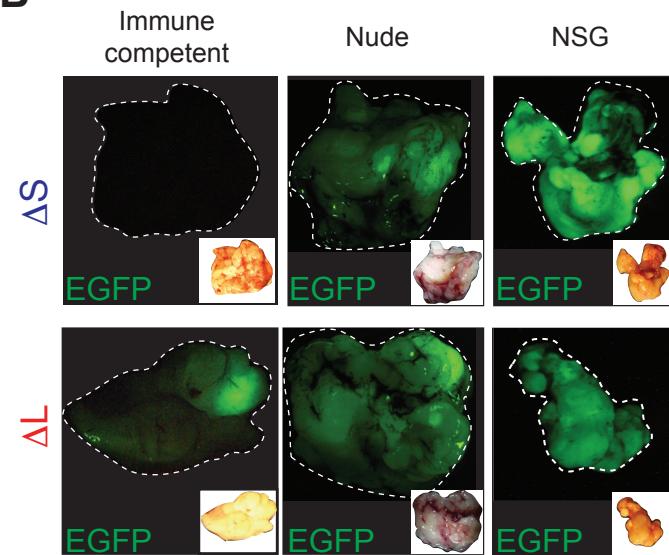
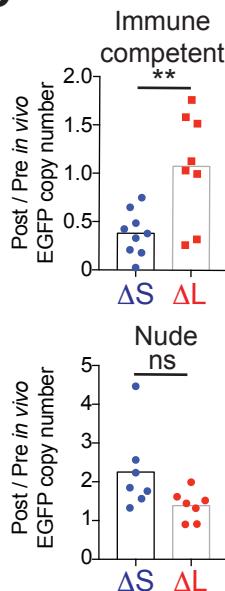
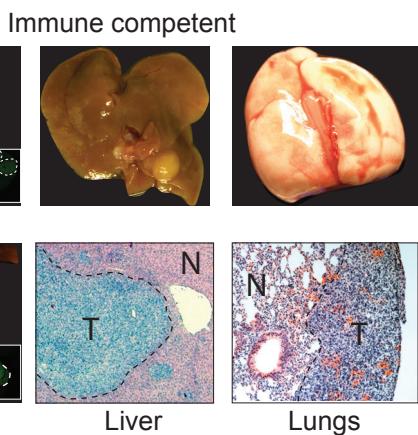
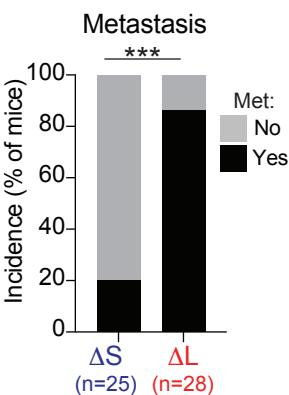
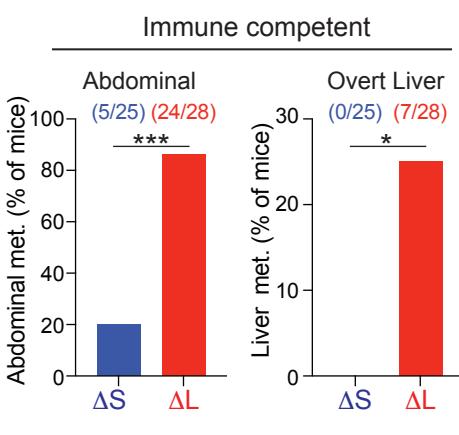


Figure 2

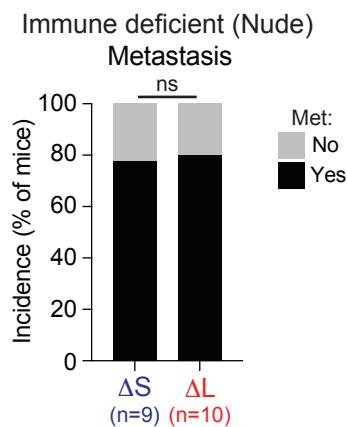

A

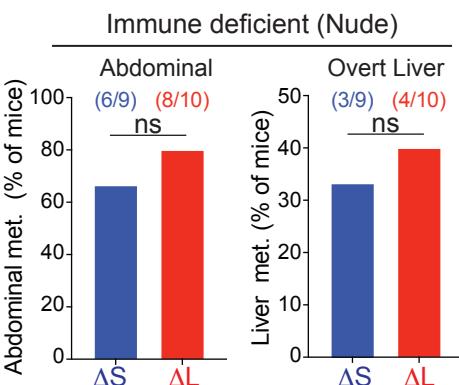

B

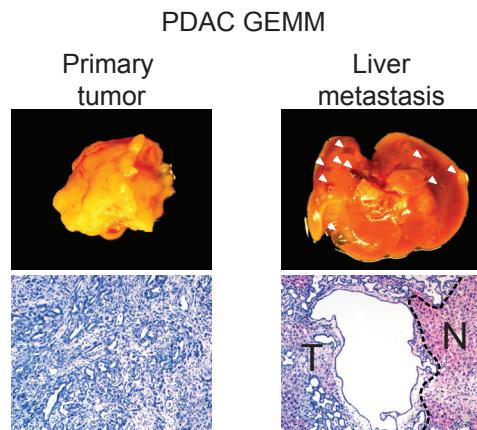

C

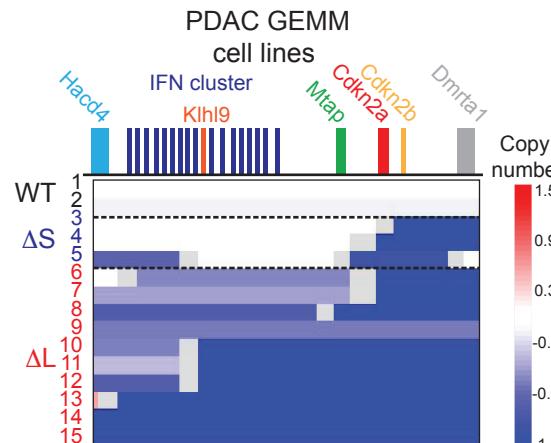

D

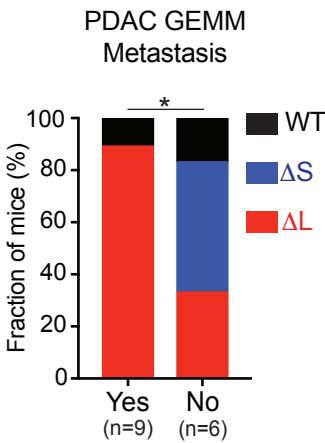
E

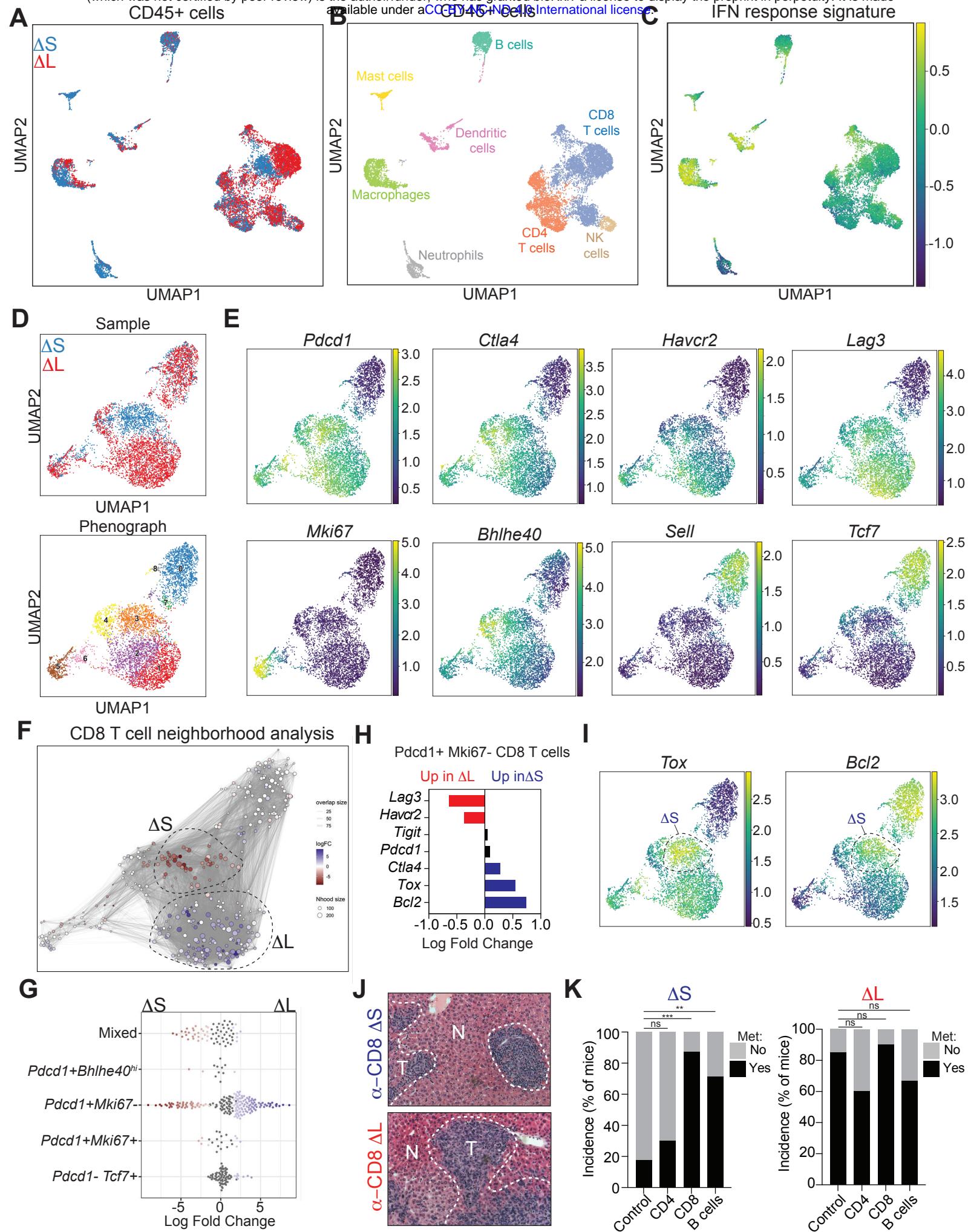

F


G


H


I


J


K



L

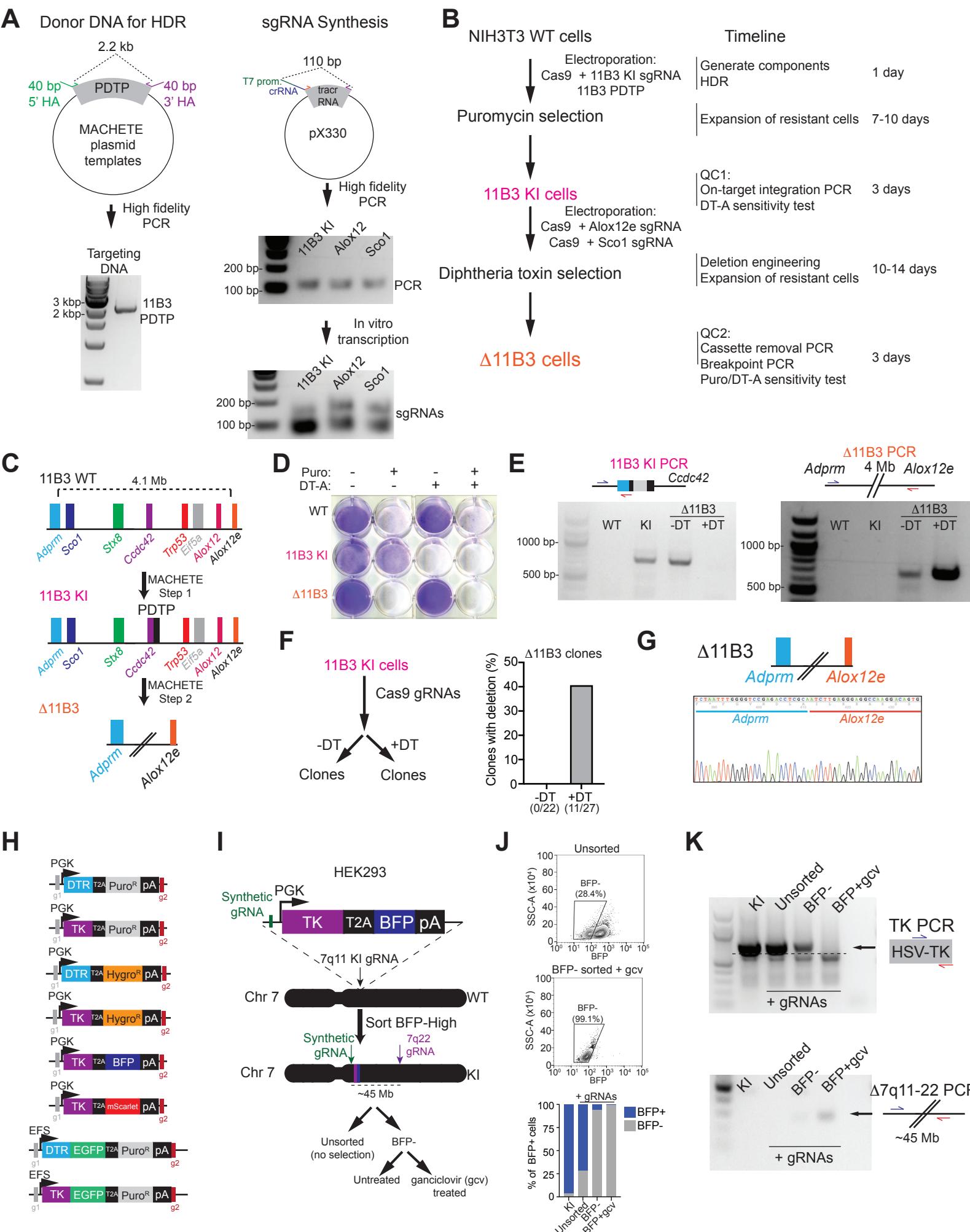
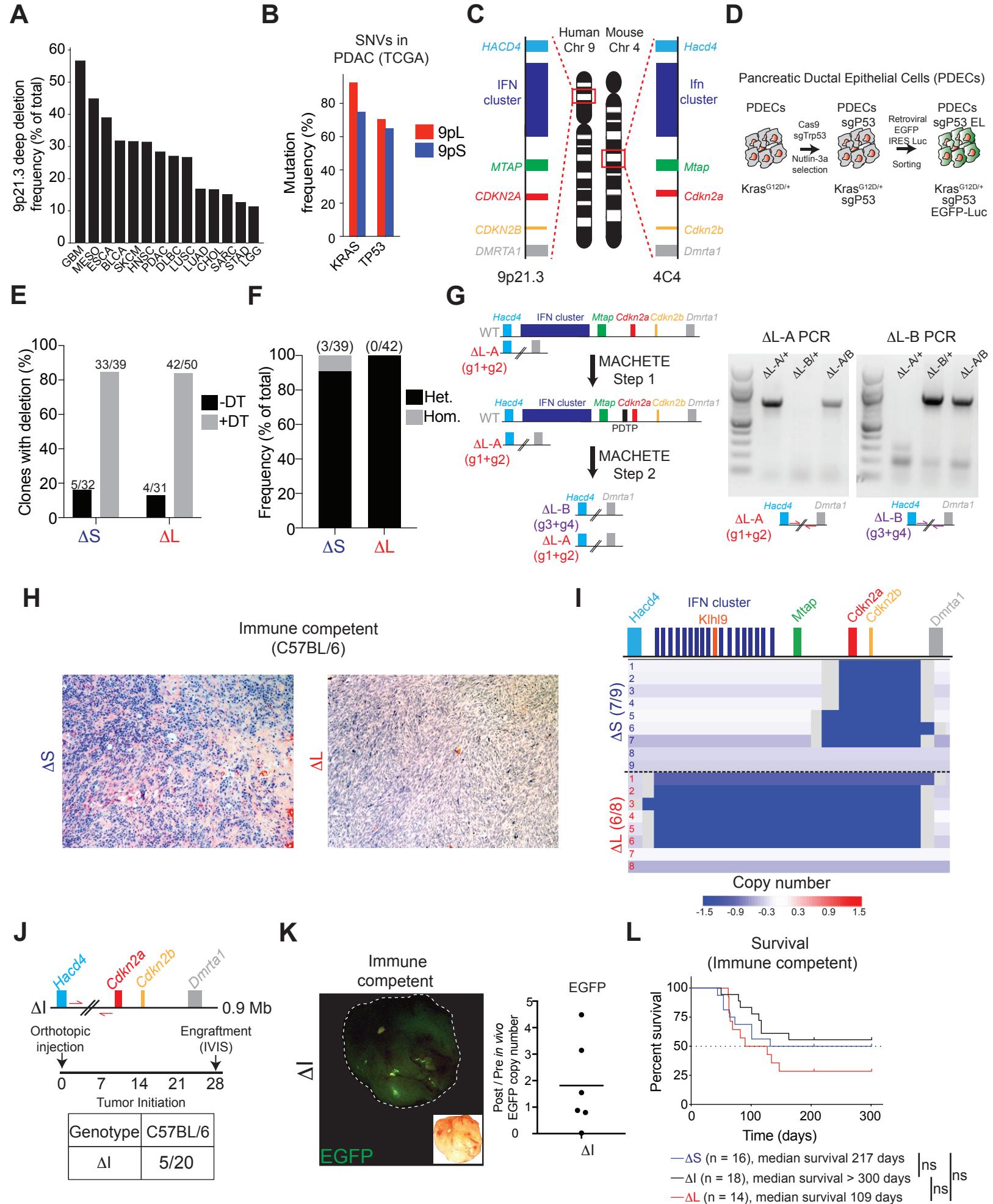
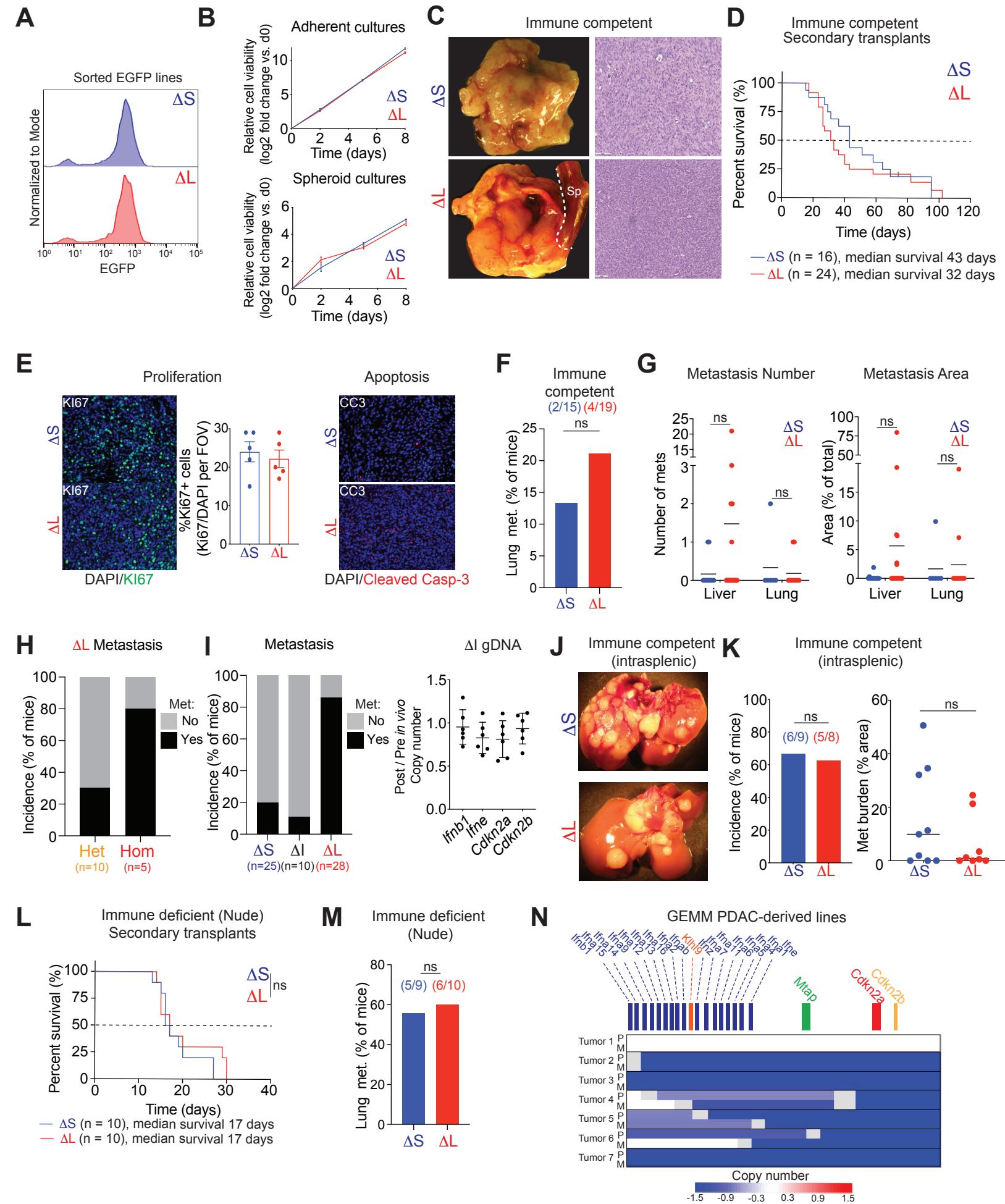


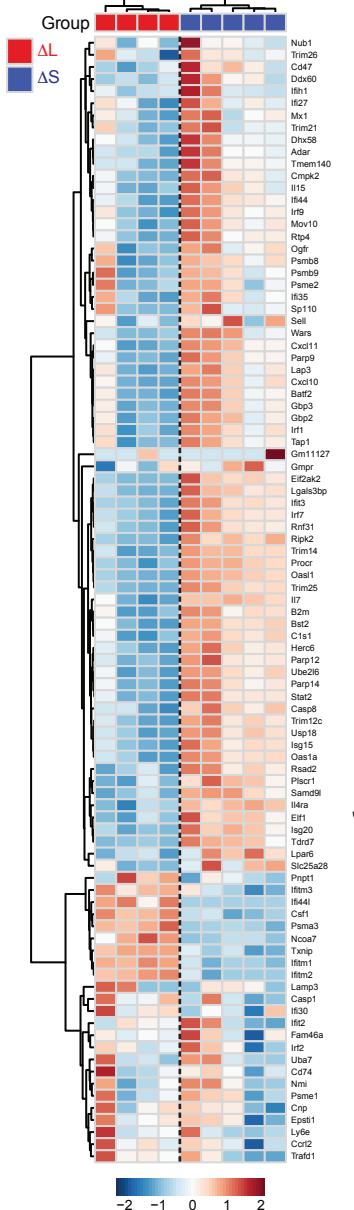
Figure 3 bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.22.504793>; this version posted August 23, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

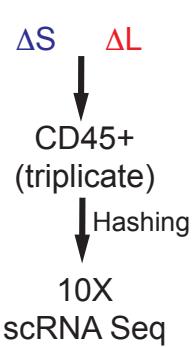




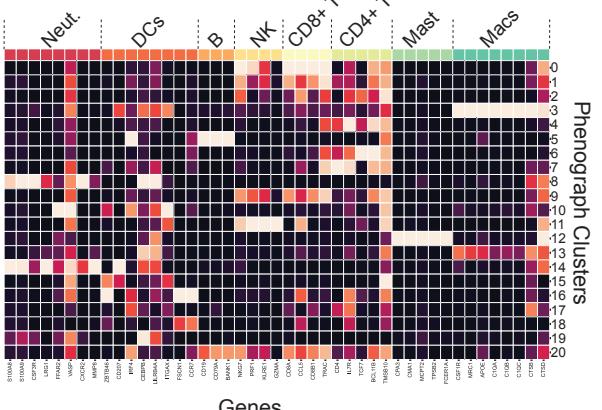
Extended Data Figure 1

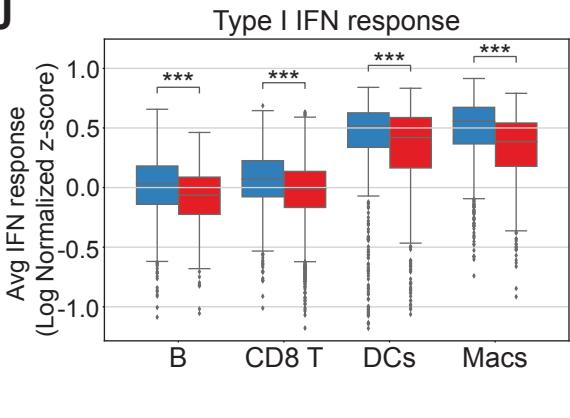
Extended Data Figure 2



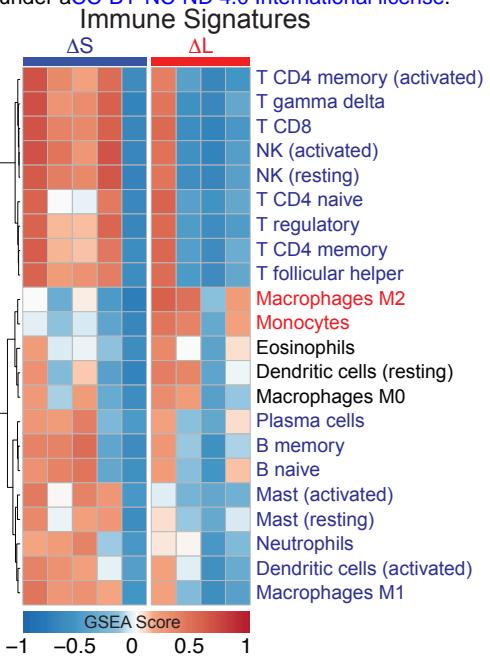

Extended Data Figure 4

B

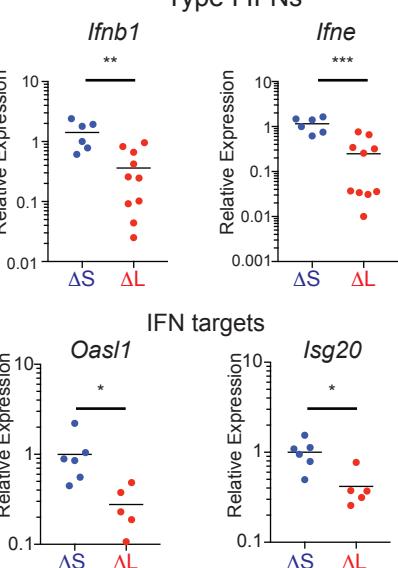

Type I IFN response


E

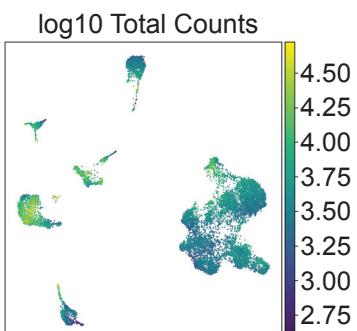
H



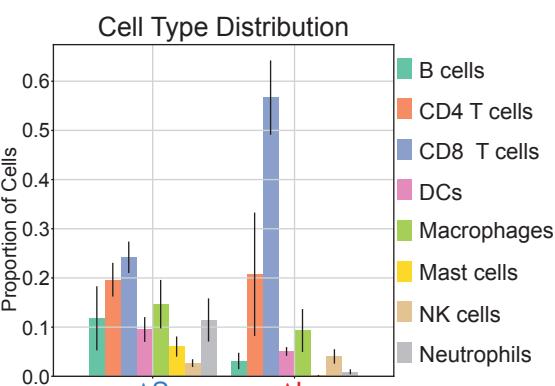
J

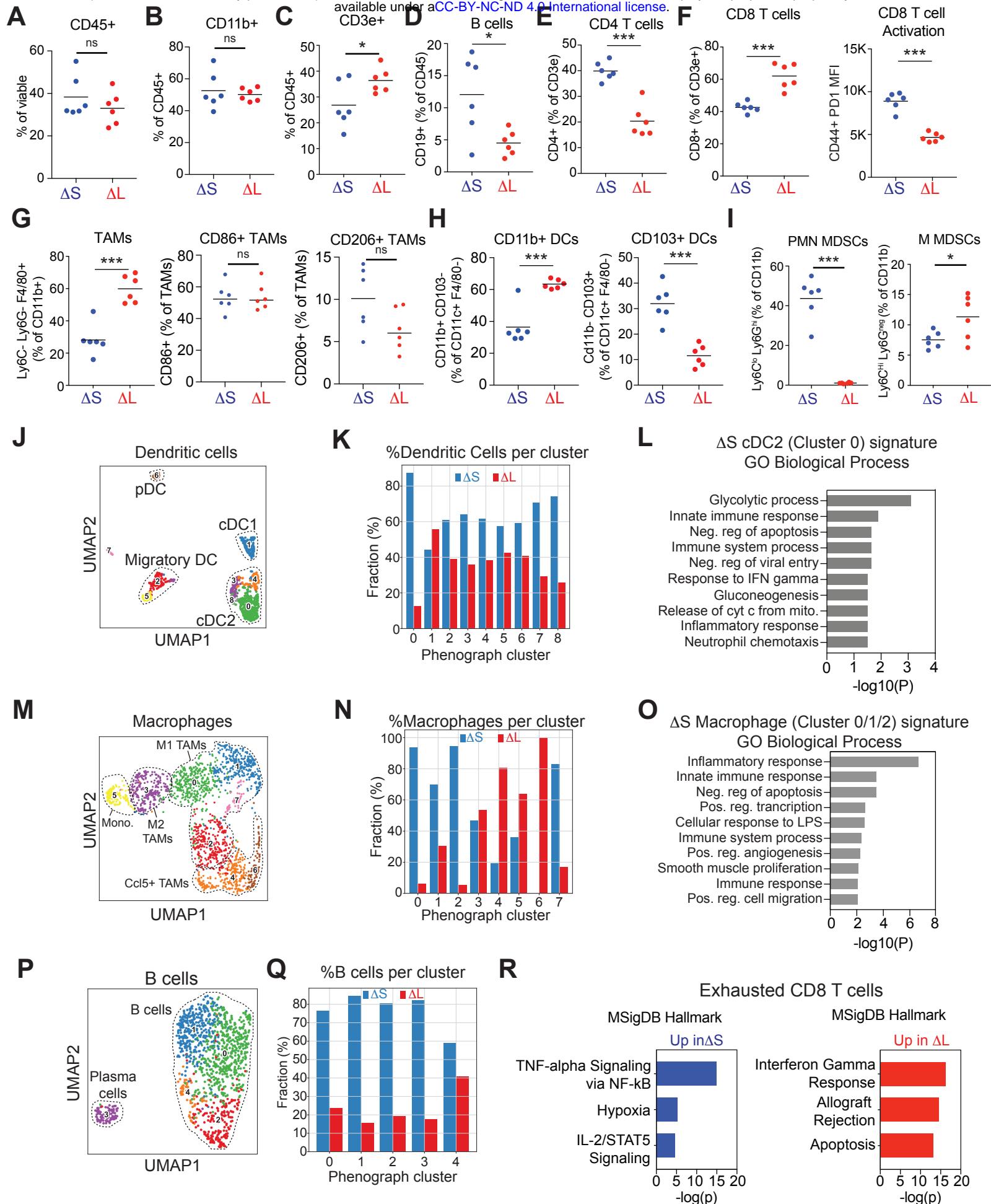

C

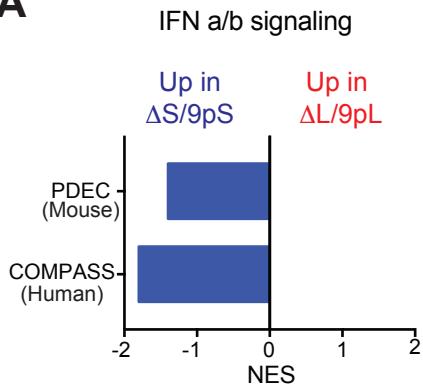
Immune Signatures

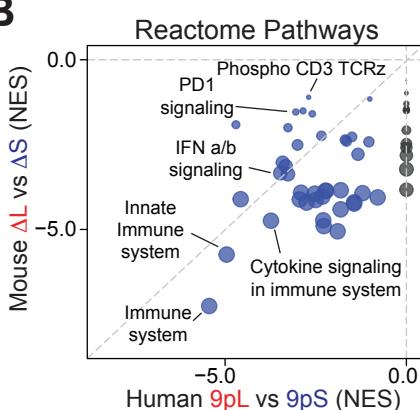


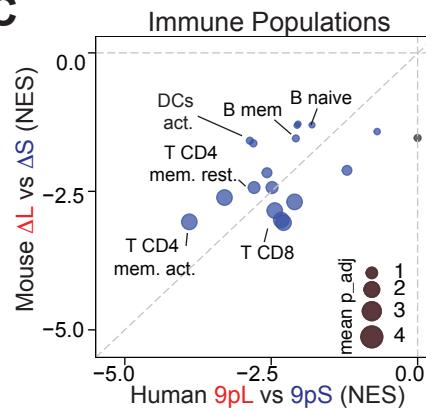
D

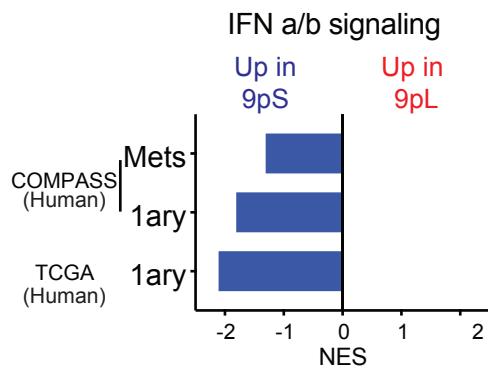

Type I IFNs

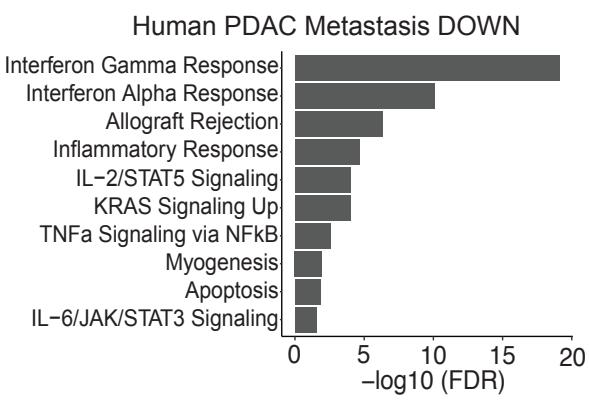

G

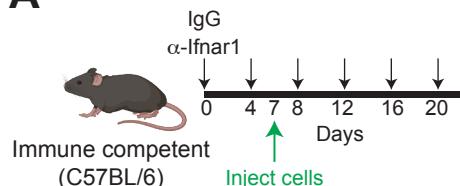

I

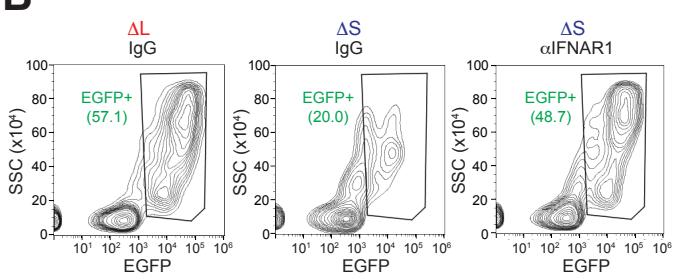

Extended Data Figure 5

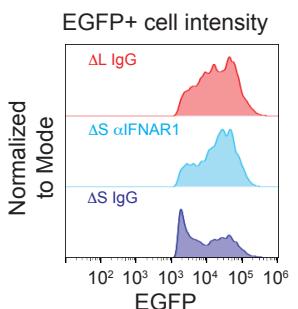

A

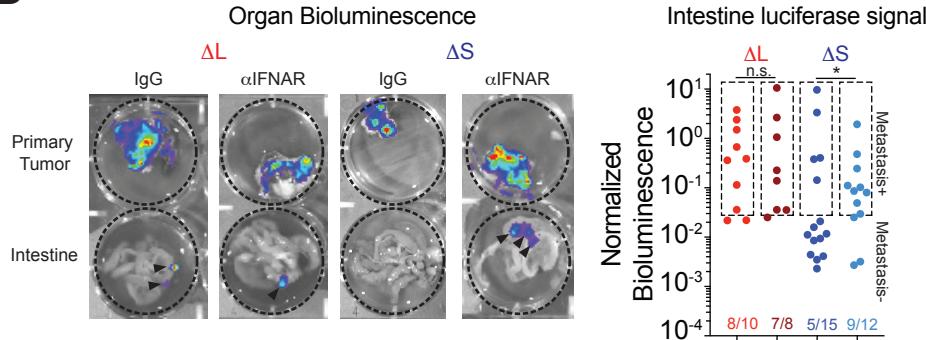

B

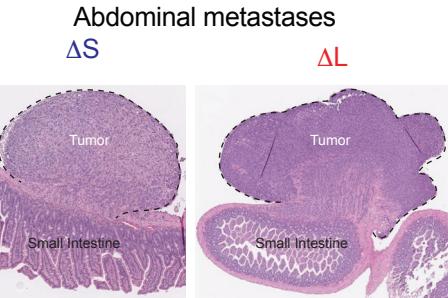

C

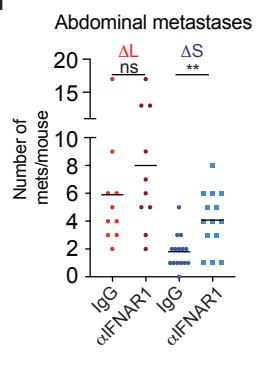

D

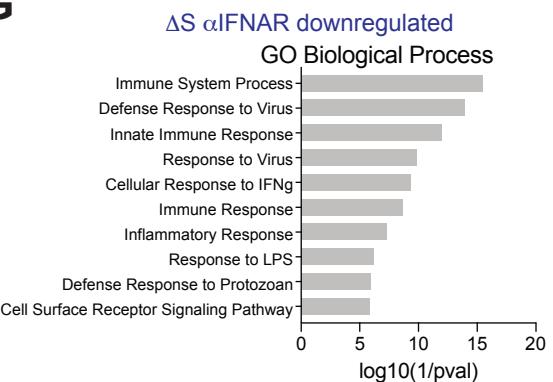

E

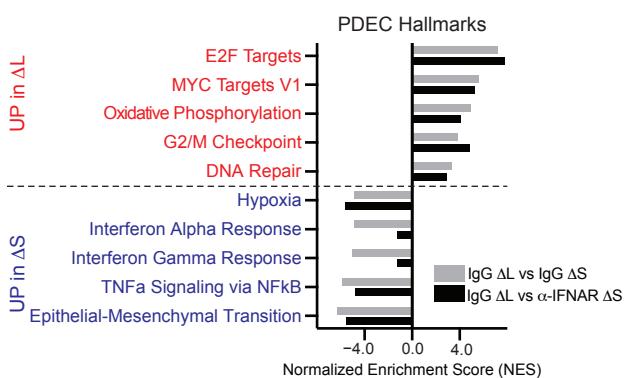

A

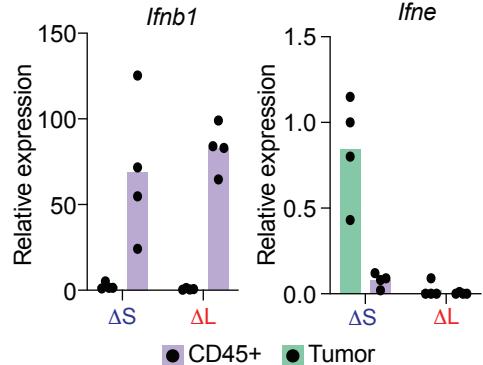

B

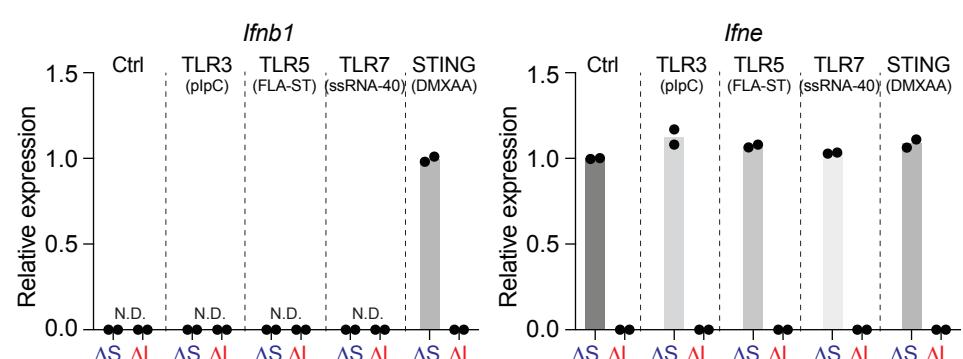

C

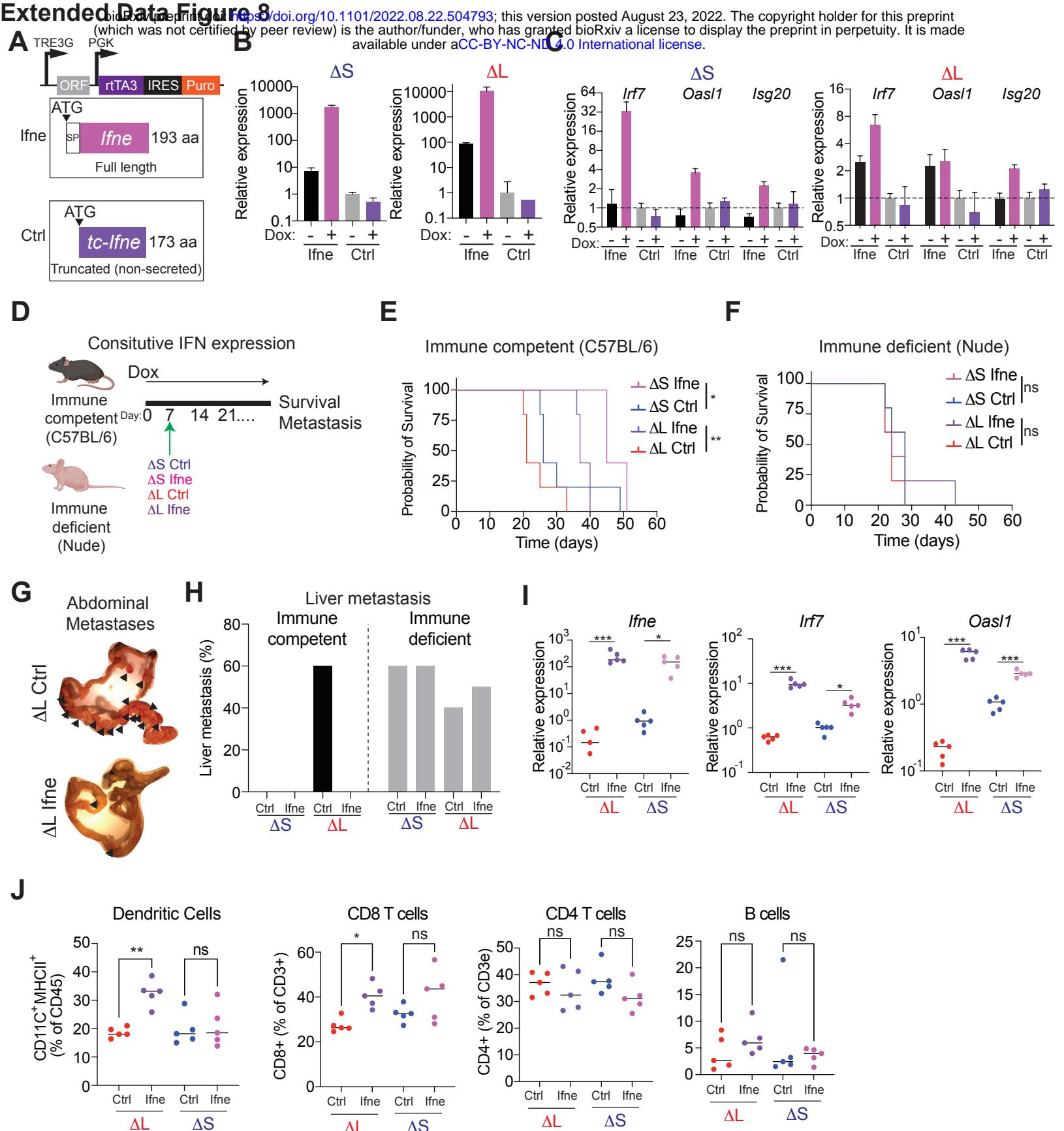

D


E


F


G


H



I

J

