

Determining predictive metabolomic biomarkers of meniscal injury in dogs with cranial cruciate ligament disease

Christine R. Pye^{1*}, Daniel C. Green¹, James R. Anderson¹, Marie M. Phelan², Eithne J. Comerford¹, Mandy J. Peffers¹.

¹ Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK.

² Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

* Corresponding author

Corresponding author address: Christine Pye, Institute of Life Course and Medical Sciences, 1st Floor William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX. Email: christine.pye@liverpool.ac.uk

Determining predictive metabolomic biomarkers of meniscal injury in dogs with cranial cruciate ligament disease

3

4 Abstract

5 Objectives

6 The objective of this study was to use for the first time proton nuclear magnetic resonance
7 spectroscopy (^1H NMR) to examine the metabolomic profile of stifle joint synovial fluid from dogs with
8 cranial cruciate ligament rupture with and without meniscal injuries. We hypothesised this would
9 identify biomarkers of meniscal injury.

10 Methods

11 Stifle joint synovial fluid was collected from dogs undergoing stifle joint surgery or arthrocentesis for
12 lameness investigations at three veterinary hospitals in the North-West of England. Samples
13 underwent ^1H NMR spectroscopy and metabolite identification. We used multivariate and univariate
14 statistical analysis to identify differences in the metabolomic profile between dogs with cranial
15 cruciate ligament rupture and meniscal injury, cranial cruciate ligament rupture without meniscal
16 injury, and neither cranial cruciate ligament rupture nor meniscal injury, taking into consideration
17 specific clinical variables.

18 **Results**

19 154 samples of canine synovial fluid were included in the study. 64 metabolites were annotated to the
20 ^1H NMR spectra. Six spectral regions were found to be significantly altered between groups with
21 cranial cruciate ligament rupture with and without meniscal injury, including three attributed to NMR
22 mobile lipids (mobile lipid -CH₃ [p=0.016], mobile lipid -n(CH₃)₃ [p=0.017], mobile unsaturated lipid
23 [p=0.031]).

24

25 **Clinical Significance**

26 We identified an increase in NMR mobile lipids in the synovial fluid of dogs with meniscal injury which
27 are of interest as potential biomarkers of meniscal injury, as well as understanding the metabolic
28 processes that occur with meniscal injury.

29

30

31 Introduction

32 Cranial cruciate ligament rupture (CCLR) is one of the most common causes of pelvic limb lameness in
33 dogs (Witsberger *et al.*, 2008). It presents a significant cause of morbidity amongst the canine
34 population, and dogs with CCLR account for 0.56% of all cases presented to primary care veterinary
35 practices in the UK (Taylor-Brown *et al.*, 2015). One sequelae of joint instability caused by a loss of CCL
36 function is tears to the menisci, found to occur in approximately 50% of cases at time of CCLR surgery
37 (Bennett and May, 1991). The menisci are a pair of C shaped fibrocartilaginous structures located
38 between the tibial plateau and femoral condyles (Kambic and McDevitt, 2005). They have several
39 important functions including load bearing, load distribution and shock absorption, as well as
40 contributing to joint stability, proprioception and joint lubrication (Arnoczky *et al.*, 1980, Pozzi *et al.*,
41 2010). Meniscal injuries as a result of CCLR most commonly affect the medial meniscus, due to its
42 firmer attachment to the tibia caudally making it more prone to becoming trapped between the tibia
43 and femur during cranial translocation of the tibia in stifle joints without a functioning CCL (Pozzi *et*
44 *al.*, 2008). Currently, treatment of meniscal injuries in dogs involves removal of part, or all, of the
45 affected meniscus via an arthrotomy or arthroscopy (Franklin *et al.*, 2017). The resultant loss of the
46 normal meniscal structure leads to alterations in pressure distribution across the articular cartilage
47 that can perpetuate the development of osteoarthritis (OA) (Pozzi *et al.*, 2008).

48 Meniscal injuries can occur post-operatively after CCLR surgery, due to either residual joint instability,
49 or failure to diagnose at the time of surgery (Metelman *et al.*, 1995). The prevalence of these late
50 meniscal injuries varies from 2.8% to 13.8% (Metelman *et al.*, 1995, Fitzpatrick and Solano, 2010). Late
51 meniscal injuries can be a cause of recurring stifle joint pain and lameness and are challenging for the
52 veterinary practitioner to diagnose (Dillon *et al.*, 2014). Affected dogs often present with a recurring
53 lameness on the operated limb weeks or months after CCLR surgery, with clinical examination
54 potentially revealing pain on stifle flexion, and/or a “click” on stifle flexion (Dillon *et al.*, 2014, Case *et*
55 *al.*, 2008). The presence of a meniscal click has been found to be an unreliable diagnostic sign
56 (McCready and Ness, 2016). Radiographs, useful in ruling out other causes of recurring lameness post-
57 operatively, cannot show meniscal injuries directly. Won *et al.* (2020) recently investigated using
58 radiographic joint space width as an indicator of meniscal injuries in lateral projections of the canine
59 stifle, but this was only 40.5% sensitive. Further diagnostic imaging techniques for late meniscal
60 injuries include low field or high field magnetic resonance imaging (MRI), computed tomography (CT)
61 with arthrography, or ultrasound examination (McCready and Ness, 2016). Depending on the study,
62 the sensitivity of these techniques in diagnosing meniscal injuries in dogs is 64-100% for low field
63 MRI (Böttcher *et al.*, 2010, Gonzalo-Orden *et al.*, 2001) and 75-100% (Olive *et al.*, 2014, Blond *et al.*,
64 2008) for high field MRI. CT with arthrography and ultrasonography have sensitivities of 71% (Samii
65 *et al.*, 2009) and 90% (Mahn *et al.*, 2005) respectively. All of these imaging techniques require either
66 expensive specialised equipment, and/or advanced technical expertise, limiting the availability of
67 these diagnostics in veterinary practice, and amount to a considerable cost. Surgical methods of
68 diagnosis include either stifle joint arthroscopy (Van Gestel, 1985) or arthrotomy (Fitzpatrick and
69 Solano, 2010). These surgical diagnostic hold inherent risk, although they also allow for treatment of
70 any meniscal injuries at time of diagnosis (Ritzo *et al.*, 2014). Furthermore, using surgery as a means
71 of diagnosis has the risk of the animal undergoing an unnecessary surgical procedure if no meniscal
72 injury is found (Blond *et al.*, 2008).

73 Currently, there are no biomarkers of meniscal injury that can be used as a diagnostic aid. Also, no
74 biomarkers of CCLR exist that could lead to earlier intervention or target preventative treatment in
75 “at risk” stifles, such as the contralateral stifles of high-risk breeds. One potential source of biomarkers
76 of stifle joint pathologies is synovial fluid (SF) (Boffa *et al.*, 2020). SF is a viscous fluid, that is a dialysate
77 of plasma (Ropes *et al.*, 1940), and functions as a joint lubricant (Ghosh, 1994). SF has been found to
78 contain a unique source of biomarkers of joint disease, due to its close proximity to structures within
79 joints, (de Bakker *et al.*, 2017, Anderson *et al.*, 2018b). Previous studies have investigated potential
80 cytokine and protein biomarkers of CCLR within canine stifle joint SF, including interleukin-8 (IL-8) (de
81 Bruin *et al.*, 2007b), anti-collagen type 1 antibodies (de Bruin *et al.*, 2007a), matrix metalloproteinases
82 (MMP) 2 and MMP9 (Boland *et al.*, 2014, Murakami *et al.*, 2016) and lubricin (Wang *et al.*, 2020).
83 There are relatively few studies examining biomarkers specific to meniscal injury within SF in any
84 species. In humans, a recent study by Clair *et al.* (2019) found IL-6, monocyte chemoattractant
85 protein-1 (MCP-1), macrophage inflammatory protein-1 β (MIP-1 β) and MMP-3 to be increased in the
86 SF of humans with meniscal injuries compared to healthy controls.

87
88 Metabolomics allows the identification and quantification of small molecule metabolites and analysis
89 of metabolic pathways within a variety of biofluids, cells and tissues (Bujak *et al.*, 2015). Proton nuclear
90 magnetic resonance (^1H NMR) is a tool for metabolomics studies, having the benefits of being rapid,
91 non-destructive and relatively inexpensive compared to other metabolomics tools such as mass
92 spectrometry (Clarke *et al.*, 2020). ^1H NMR has been used successfully to investigate changes in the SF
93 metabolomic profile in humans and horses with joint pathologies such as rheumatoid arthritis, OA,
94 and septic arthritis (Anderson *et al.*, 2018a, Anderson *et al.*, 2018b, Clarke *et al.*, 2020). Therefore,
95 there is promise for using NMR spectroscopy to investigate biomarkers of joint pathology within
96 canine SF. To date, only four published peer-reviewed studies have used NMR spectroscopy for
97 metabolomic studies of canine stifle joint SF (Damyanovich *et al.*, 1999a, Damyanovich *et al.*, 1999b,
98 Marshall *et al.*, 2000, Crovace *et al.*, 2006). However, these studies typically involved a small sample

99 size, and were mainly focused on biomarkers of OA. NMR metabolomics could be used as a tool to
100 study metabolites acting as biomarkers of meniscal injuries in CCLR affected stifle joints. This
101 information could then potentially allow for the development of a simple, minimally invasive
102 diagnostic test more reliable at detecting meniscal injuries, and late meniscal injuries, than pre-
103 existing non-surgical diagnostic techniques.

104 We therefore hypothesise that the metabolomic profile of canine stifle joint SF will alter depending
105 on the presence of CCLR, and depending on the presence of concurrent meniscal injuries.

106

107 Materials and methods

108

109 Ethical approval

110

111 Ethical approval for the collection of canine SF for use in this study was granted by the University of
112 Liverpool Veterinary Research Ethics Committee (VREC634) as surplus clinical waste under the generic
113 approval RETH00000553.

114

115 Synovial fluid collection

116

117 Canine SF was collected from dogs undergoing surgery for CCLR or patella luxation, or as excess clinical
118 waste from dogs undergoing arthrocentesis as part of lameness investigations from March 2018 to
119 June 2021. Cases were recruited from three veterinary practices in the north-west of England, namely
120 the University of Liverpool Small Animal Teaching Hospital, Leahurst, and the Animal Trust CIC
121 Veterinary Practices at Bolton and Blackburn. Owners of the dogs were approached at time of

122 admission for the procedure, and informed consent was obtained from the owners of the animals for
123 the collection of the SF and participation in the project. SF was collected by stifle joint arthrocentesis
124 as per the BSAVA guide to procedures in small animal practice (Bexfield and Lee, 2014). A 21 gauge to
125 23-gauge needle attached to a two to five millilitre sterile syringe (depending on the size of the dog)
126 was inserted into the stifle joint space either medially or laterally to the patella ligament after sterile
127 preparation of the skin, prior to first surgical incision. After aspiration of the SF, samples were placed
128 in sterile 1.5ml Eppendorf tubes (Eppendorf UK Ltd, Stevenage, UK), and immediately refrigerated at
129 4°C.

130

131 Synovial fluid processing

132

133 SF samples were transported on ice from the veterinary practices to the laboratory at the University
134 of Liverpool, Leahurst Campus within 48 hours of collection. Samples stored for longer than 48 hours
135 before processing were excluded from the study based on previous unpublished data examining
136 metabolomic changes in the synovial fluid with elongated refrigerated storage time (Pye, 2021).
137 Samples were centrifuged at 2540g at 4°C for 5 min. The supernatant was pipetted into 200 µl aliquots,
138 and snap frozen in liquid nitrogen before storing at -80°C (Anderson *et al.*, 2020).

139

140 Clinical information on the canine participants

141

142 Clinical information regarding the dogs was collected. This included breed, age, sex and neuter status,
143 body weight, body condition score (Laflamme, 1997), presence and degree of CCLR (whether partial
144 or complete CCLR), presence of meniscal injury, location and type of meniscal injury (Bennett and
145 May, 1991), presence of patella luxation, length of time of lameness, co-morbidities, medication being

146 received by the dog and radiographic level of OA using two separate scoring systems (Innes *et al.*,
147 2004, Wessely *et al.*, 2017).

148

149 NMR Metabolomics

150

151 *Sample preparation for NMR metabolomics*

152

153 SF samples were thawed on ice immediately prior to sample preparation for NMR spectroscopy. 100 μ L
154 of each thawed SF sample was diluted to a final volume containing 50% (v/v) SF, 40% (v/v) dd 1H₂O
155 (18.2 M Ω), 100 mM PO₄³⁻ pH 7.4 buffer (Na₂HPO₄, VWR International Ltd., Radnor, Pennsylvania,
156 USA and NaH₂PO₄, Sigma-Aldrich, Gillingham, UK) in deuterium oxide (2H₂O, Sigma-Aldrich) and
157 0.0025% (v/v) sodium azide (NaN₃, Sigma-Aldrich). Samples were vortexed for 1 min, centrifuged at
158 13 000g and 4 °C for 5 min and 180 μ L transferred (taking care not to disturb any pelleted material)
159 into 3 mm outer diameter NMR tubes using a glass pipette.

160

161 *NMR metabolomics spectral acquisition*

162

163 Spectra were acquired using a 700MHz Bruker Avance III spectrometer (Bruker Corporation, Billerica,
164 Massachusetts, USA) with associated triple resonance inverse (TCI) cryoprobe and chilled Sample Jet
165 auto-sampler. Software used for spectral acquisition and processing were Topspin 3.1 (Bruker
166 Corporation, Billerica, Massachusetts, USA) and IconNMR 4.6.7 (Bruker Corporation).

167 1D ¹H NMR spectra were acquired using a Carr-Purcell-Meiboom-Gill (CPMG) filter to suppress
168 background signal disturbances from proteins and other endogenous constituents, and allow
169 acquisition of small molecule metabolite signals (Carr and Purcell, 1954, Meiboom and Gill, 1958). A

170 CPMG-1r vendor pulse sequence was used to achieve this. Water suppression was carried out by pre-
171 saturation (Hoult, 1976). The CPMG spectra were acquired at 37 °C with a 15ppm spectral width, a
172 four second interscan delay and 32 transients (Anderson *et al.*, 2020).

173

174 *NMR metabolomics spectral quality control*

175

176 1D ^1H NMR spectra were individually assessed to ensure minimum reporting standards were met
177 (Sumner *et al.*, 2007). Any samples that were deemed to have failed quality control were re-ran on
178 the spectrometer up to a maximum of three spectral acquisitions. Any that failed after the third
179 spectral acquisition were excluded from the study.

180

181 *Metabolite annotation and identification*

182

183 The NMR spectra were divided into spectral regions (termed “bins”) using Topspin 3.1 (Bruker
184 Corporation, Massachusetts, USA), with each bin representing either single metabolite peaks or
185 multiple metabolite peaks where peaks overlapped on the spectra. These bins were also examined
186 using TameNMR (hosted by www.galaxy.liv.ac.uk). Bins were altered accordingly upon visualising the
187 fit to the overlaid spectra to ensure the area under the peak was represented by the bin.

188 Metabolites were annotated to the spectra using Chenomx NMR Suite Profiler version 7.1 (Chenomx,
189 Edmonton, Canada), a reference library of 302 mammalian metabolite NMR spectra. When metabolite
190 peaks overlapped, multiple metabolites were annotated to the bin. When peaks were unable to be
191 annotated to a metabolite, they were classed as being an “unknown” metabolite. Previous literature
192 specifying metabolite chemical shifts and spectral appearance were examined to aid annotation of

193 unknown areas. Downstream unique peak metabolite identification and in-house NMR metabolite
194 standards were examined to confirm metabolite identities where possible.

195 A pattern file was created of the spectral bins and metabolites annotated to that bin. This is a
196 spreadsheet outlining the bin boundaries in ppm, and the metabolites annotated to that bin (Pattern
197 file included in supplementary material Table S1). The pattern file and the Bruker spectra files were
198 input into TameNMR (galaxy.liv.ac.uk), in order to create a spreadsheet of binned spectra, with the
199 relative intensities of each bin for each sample, which could then be used for statistical analysis of the
200 spectra.

201

202 Statistical analysis

203

204 *Differences in clinical features of the canine participants*

205

206 Analysis of the differences in clinical features between the groups in terms of age, sex and neuter
207 status, body condition score, and radiographic OA score was undertaken using one-way analysis of
208 variance (ANOVA) with Benjamini-Hochberg false discovery rate (FDR) adjustment, and significance
209 set at $p < 0.05$. Where any variable did not fit to ANOVA assumptions of having a common variance,
210 Brown-Forsythe and Welch ANOVA tests with Benjamini-Hochberg FDR adjustment was carried out.
211 These analyses and creation of graphs to visualise this data was carried out using GraphPad Prism
212 9.1.0 (GraphPad Software, San Diego, CA, USA).

213

214 *Metabolomics data analysis*

215

216 Metabolomics data was normalised using probabilistic quotient normalisation (PQN) (Dieterle *et al.*,
217 2006), and Pareto scaled using R prior to statistical analysis (R Core Team, 2020). Unsupervised
218 multivariate analysis was carried out using principal component analysis (PCA) on the normalised and
219 scaled data using R. The variance between canine phenotypes was investigated through analysis of
220 principal components 1 through 10 using One-Way ANOVAs or linear models depending on the data
221 type. Briefly, CCLR, sex, neuter status, BCS, radiographic OA score and batch were numerically
222 encoded and assessed against each principal component using a One-Way ANOVA. Age, Length of
223 time of lameness, weight, length of time of storage pre-processing which were already numeric
224 variables were assessed against each principal component using a linear model. All p values were
225 corrected using FDR (Bejamini Hochberg) correction. Correlation matrices between phenotypes were
226 computed using the spearmans correlation using the *cor* function in R and visualised using a heatmap
227 generated with the *pheatmap* function in R (Kolde, 2012).

228 Univariate analysis was carried out using One-Way ANOVAs and One-Way analysis of co-variance
229 (ANCOVAs) using R. To account for multiple testing across all 236 metabolite bins FDR correction was
230 applied to the F-Test p value of each metabolite, significance was accepted at $p < 0.05$. For metabolites
231 with an $FDR < 0.05$ Tukey's honest significant difference post-hoc test was applied to assess between
232 group variances. Age adjusted One-Way ANCOVAs were applied to each metabolite to assess
233 differences between meniscal and no meniscal injury groups, FDR adjustment was applied as above.
234 Boxplots to visualise the changes in metabolite abundances were created in MetaboAnalyst 5.0
235 (<https://www.metaboanalyst.ca>), a software based on a metabolomics data analysis package written
236 in R (the MetaboAnalystR package) (Pang *et al.*, 2021).

237

238 Results

239 Clinical features of the canine participants

240

241 For the metabolomic study, 191 samples of canine stifle joint SF were collected and submitted for
242 NMR spectroscopy. Of these, 14 samples had been stored for longer than 48 hours prior to collection
243 for processing, and were subsequently excluded from the study. Four samples were from cases in
244 which the meniscal injury status was unknown, and were also excluded from the study. Nineteen
245 samples were excluded as they failed to meet minimum reporting standards (Sumner *et al.*, 2007)
246 after three spectral acquisitions.

247 In total, 154 canine stifle joint SF samples were included in the statistical analysis. These were divided
248 into three groups, namely CCLR without meniscal injury (n=72), CCLR with meniscal injury (n=65), and
249 control group with neither CCLR or meniscal injury present (n=17). The control group consisted of 13
250 cases of patella luxation, three cases from arthrocentesis of the stifle joints during lameness
251 investigations which subsequently were found to have no pathology, and one sample from a case with
252 fraying of the caudal cruciate ligament. Information regarding the signalment of the dogs in each
253 group is shown in Table 1.

254 There was a significant difference between the control group and the CCLR groups with or without
255 meniscal injury in terms of age, weight, and radiographic OA score, but not with BCS (Figure 1). There
256 was no significant difference between groups CCLR with meniscal injury and CCLR without meniscal
257 injury in terms of these clinical variables, although age was closest to reaching significance between
258 the two groups (p=0.07, Mean Difference=0.86 [0.01 to 1.73 95% CI]).

259

260 Metabolite annotation and identification.

261

262 Spectra were divided into 246 bins. Of these, 84 (34%) remained with an unknown metabolite
263 identification, and 162 (66% of bins) were annotated to one or more metabolites. In total, 64
264 metabolites were annotated to the spectra (Table 2). The pattern file of these bins and metabolite

265 annotations is included in the supplementary information (Table S1). Any bins containing ethanol
266 peaks were excluded from the statistical analysis, due to ethanol being considered a contaminant in
267 NMR, usually either during the collection of the SF from the sterilisation of skin with surgical spirit, or
268 during the processing steps (van der Sar *et al.*, 2015). Propylene glycol, a metabolite found in solvents
269 used in pharmaceuticals (Zar *et al.*, 2007) was found in one spectrum, and so those bins were excluded
270 so as to not bias the statistical analysis.

271

272 Metabolomic statistical analysis results

273

274 *Multivariate analysis of canine synovial fluid metabolome with respect to CCLR and meniscal injury*
275 *status*

276

277 Multivariate PCA was undertaken to compare the differences in the overall metabolome between the
278 groups (no CCLR and no meniscal injury [control group], CCLR with meniscal injury, CCLR without
279 meniscal injury) (Figure 2). Over PC one and two, there were clustering of the groups, indicating little
280 overall difference in the metabolome over these PCs (Figure 2a). Associations between different
281 phenotypes of the canine participants and PC one to ten found that PC three and four were primarily
282 associated with CCLR and meniscal injury (supplementary material Figure S1). PCA of the groups
283 plotted over PC three and four showed some separation of the control group with the groups CCLR
284 with and without meniscal injury, indicating that the control group appears to have a differing
285 metabolome from the other two groups (Figure 2b). The differences in the metabolome based on the
286 presence of either a partial or complete tear found no significant differences in the metabolome.

287

288 *Univariate analysis of canine synovial fluid metabolome with respect to clinical variables, CCLR and*
289 *meniscal injury status*

290

291 Analysis of metabolite changes with respect to clinical variables also found significantly altered
292 metabolites with differing weight (supplementary information Figure S2), age (supplementary
293 information Figure S3) and radiographic OA score of the dogs (supplementary information Figure S4).

294 It was therefore not possible to accurately assess the changes with regard to CCLR (irrespective of the
295 meniscal injury status) versus the control group, due to the significant differences between these
296 clinical variables in the control group versus the other groups, and the small sample size in the control
297 group compared to the other groups.

298 Univariate analysis of metabolomic differences between the three groups (no CCLR and no meniscal
299 injury [control group], CCLR with meniscal injury and CCLR without meniscal injury) was then
300 undertaken to examine metabolomic changes in the presence of meniscal injury within the SF. There
301 were six spectral bins that were below the threshold of significance ($p<0.05$), and two others that
302 neared the threshold ($p<0.06$) after one-way ANOVA testing with FDR adjusted p-values and Tukey's
303 HSD *post-hoc* test (Table 3).

304 As it was noted that mobile lipids were also significantly altered with increasing age of the canine
305 participants (supplementary information Figure S3), and that groups CCLR with meniscal injury and
306 CCLR without meniscal injury had a slight, although insignificant ($p=0.07$, Mean Difference=0.86 years
307 [0.01 to 1.73 95% CI]) difference in terms of age of the canine participants in each group, ANCOVAs
308 were undertaken to control for age within the samples. The results of these ANCOVAs controlling for
309 age are shown in Table 4. After controlling for age, three out of four spectral regions annotated to
310 mobile lipids had an increased significant difference between groups CCLR with meniscal injury and
311 CCLR without meniscal injury (Figure 3). Another mobile lipid signal lost significance, as did the spectral

312 bin annotated to methylsuccinate and/or 2-methylglutarate. A complete list of the ANCOVA outputs
313 are included in the supplementary information (Table S2).

314

315 Discussion

316

317 A consistent finding when analysing the metabolomic differences in groups based on meniscal injury
318 status was an increase in mobile lipids on the ^1H NMR spectra in stifle joints with meniscal injury.

319 Mobile lipids are NMR lipid resonances that arise from isotropically tumbling, relatively non-restricted
320 molecules such as methyl and methylene resonances belonging to lipid acyl chains (Hakumäki and
321 Kauppinen, 2000, Delikatny *et al.*, 2011). These arise primarily from triglycerides, fatty acids and
322 cholesteryl esters in lipid droplets, and also from phospholipidic acyl chains if not embedded in lipid
323 membrane bilayers (Mannechez *et al.*, 2005). Lipids serve various important functions in biological
324 systems, including as components of cell membranes and other cellular organelles, acting as an energy
325 source, and having a crucial role in signalling and regulation of cellular processes (Onal *et al.*, 2017).

326 Many biological processes have been associated with changes in NMR mobile lipids, including cell
327 necrosis and apoptosis, malignancy, inflammation, proliferation and growth arrest (Hakumäki and
328 Kauppinen, 2000). Lipid analysis of SF in humans have found differential abundance of lipids with
329 different disease states, including OA, rheumatoid arthritis and trauma (Wise *et al.*, 1987). A more
330 recent NMR lipidomic study in SF from canine and human OA affected joints found an increase in
331 numerous lipid species in OA compared to healthy controls in both species (Kosinska *et al.*, 2016).

332 There are a number of possible hypotheses for the increase in mobile lipid resonances found in the SF
333 of dogs with CCLR and concurrent meniscal injury compared to CCLR without meniscal injury in this
334 study. Injury to the meniscus could lead to 'damage to cellular phospholipid membranes, resulting in
335 the release of lipids into the SF. Human menisci have also been found to contain lipid debris that could

336 have an impact on SF lipid concentrations in meniscal injury (Ghadially and Lalonde, 1981). Also, lipid
337 droplets could be released from the intracellular environment due to cell necrosis or apoptosis in the
338 damaged meniscal tissue (Uysal *et al.*, 2008), leading to an increased concentration of lipid droplets
339 in the SF. Lipid droplets have been found to play a key role in inflammation, as such it may be that
340 meniscal tears lead to a release of lipid droplets to facilitate in the inflammatory response within the
341 joint (Melo *et al.*, 2011). As lipid droplets contain mediators of inflammation such as pro-inflammatory
342 cytokines, lipids could also potentiate inflammatory changes in meniscal injury affected joints
343 (Ichinose *et al.*, 1998). Alterations in SF lipid composition and lipid species can also have a role in
344 affecting the lubricating ability of the SF (Antonacci *et al.*, 2012). The concentration of phospholipid
345 species in human SF have been found to be increased in OA affected joints, therefore the observed
346 increase in lipids could also be an attempt to improve lubrication of the SF after meniscal injury in
347 order to have protective effects on the articular cartilage (Kosinska *et al.*, 2015).

348 Amongst the other differentially abundant metabolites between groups, CCLR with and without
349 meniscal injury, was methanol. Although methanol could be considered a contaminant in NMR
350 (Fulmer *et al.*, 2010), it has also been found to be a naturally occurring metabolite in humans, either
351 through dietary consumption in various fruit and vegetables, the artificial sweetener aspartame,
352 alcohol, or through actions of gut microbiota (Dorokhov *et al.*, 2015). Some of these sources cannot
353 be ruled out, and therefore the decision not to remove methanol from analysis was made. However,
354 its association with meniscal injury remains unclear. Unfortunately, the spectral bin that had the
355 highest significance in differential abundance between CCLR with and without meniscal injury SF
356 groups was unable to be identified using reference libraries and in-depth literature searches.

357 One of the spectral bins that also showed a significant increase in canine SF in dogs with CCLR and
358 meniscal injury compared to CCLR without meniscal injury was a region that had overlapping NMR
359 peaks annotated to glycylproline, isoleucine, and an unknown metabolite. This region also requires
360 further work to confirm the identity of the specific metabolites attributed to this area. It is possible

361 that in this region at 1.93 to 2.02 ppm there were also mobile lipid resonances, as fatty acyl chains
362 have been noted to be attributed to this region (Delikatny *et al.*, 2011). This would correlate with the
363 findings of increases in mobile lipids with meniscal injury. Further work to identify the metabolites in
364 this region could include undertaking a 2D NMR experiment, or a “spiking” experiment involving
365 adding known concentrations of specific metabolites to the sample (Dona *et al.*, 2016)

366 There were a number of metabolite peaks that are, as yet, unidentified on the canine SF spectra,
367 including one that was found to be significantly altered with meniscal injury. Further work is required
368 in identifying these regions, such as undertaking a 2D NMR experiment, or spiking experiment, as
369 mentioned above. Alternatively, using more sensitive methods of molecule identification, such as
370 mass spectrometry, could improve the number of metabolite identifications in the samples.

371 One of the limitations of our study was the lack of a balanced control group to compare with the CCLR
372 affected joints. There are several reasons for this. Firstly, collection of “normal” SF via arthrocentesis
373 from joints without pre-existing pathology involves a level of risk, including introducing infection into
374 the joint, and the need for sedation or anaesthetic for the protocol (Bexfield and Lee, 2014). Therefore,
375 this would have ethical implications, and was outside the ethical approval for this study. SF from dogs
376 with no stifle joint pathology collected post-mortem would have been subjected to metabolite
377 changes that would have compromised the comparison to the diseased groups (Donaldson and
378 Lamont, 2015). Control samples in this study were collected from dogs undergoing surgery for patella
379 luxation, or excess SF from dogs undergoing arthrocentesis from investigations of lameness. These
380 were cases without CCLR or meniscal injuries, but also may not have been completely without
381 pathological changes, as patella luxation can be cause of OA and synovitis (Roush, 1993). Patella
382 luxation also tends to be more common in smaller breeds of dogs, and as primarily a congenital
383 disease, cases often show clinical signs of lameness at a younger age than CCLR affected dogs
384 (LaFond *et al.*, 2002, Rudd Garces *et al.*, 2021). Both these factors lent towards the control group being
385 on average younger and smaller than the CCLR groups, with less osteoarthritic changes. This, along

386 with the fewer samples collected in the time constraints of this study affected the ability to infer
387 conclusions from the metabolite changes between the control and other groups in terms of CCLR
388 alone. The inclusion of a more donors in the control group of healthy, non-diseased canine stifle joint
389 SF would be of value in future work to allow analysis of changes due to CCLR and OA in the canine
390 stifle joint.

391 There were factors such as diet and level of exercise that have been found to affect the metabolome
392 of human serum that were not been accounted for in this study (Esko *et al.*, 2017, Sakaguchi *et al.*,
393 2019). However, unlike humans, dogs tend to have a less variable diet, and also exercise is likely to be
394 similar between the canine participants, as the standard advice for dogs affected by CCLR is to limit
395 exercise. Medications were found to be too heterogeneous between the dogs in this study from which
396 to make any statistical conclusions but are known to affect the metabolomic profile of biofluids (Um
397 *et al.*, 2009).

398 This study is the first of its kind in using ^1H NMR spectroscopy to identify biomarkers of meniscal injury
399 with SF. SF lipid species appear to be of interest in the study of biomarkers of meniscal injury, and
400 future work to identify the lipid species involved by undertaking a lipidomics experiment, such as NMR
401 using lipid extracts from the SF samples, or using light chromatography coupled with mass
402 spectrometry (LC-MS) lipidomics. This further work could prove useful in exploring the potential for a
403 diagnostic marker of meniscal injury in canine SF.

404 The work presented here is also of translational value into metabolomics studies in human and other
405 mammalian species. No SF biomarker has been found to date in human SF with meniscal injury,
406 therefore this research could also lead to the investigation of biomarkers of meniscal injury in human
407 SF.

408

409 Acknowledgements

410 We would like to acknowledge and give thanks to all the staff at the University of Liverpool Small
411 Animal Teaching Hospital and the Animal Trust for their help in collecting samples for this study, and
412 to all the owners who gave their consent for their dogs to be included in the study. Our thanks also go
413 to veterinary students Matt Fitzgerald and Callum Burke for their preliminary studies, and to Alex
414 Simon for his work on the radiographic OA scoring. Finally, we thank BSAVA PetSavers for providing
415 funding that allowed this study to happen.

416

417 References

418

419 ANDERSON, J. R., CHOKESUWATTANASKUL, S., PHELAN, M. M., WELTING, T. J. M., LIAN, L. Y.,
420 PEFFERS, M. J. & WRIGHT, H. L. 2018a. (1)H NMR Metabolomics Identifies Underlying
421 Inflammatory Pathology in Osteoarthritis and Rheumatoid Arthritis Synovial Joints. *Journal*
422 *of Proteome Research*, 17, 3780-3790.

423 ANDERSON, J. R., PHELAN, M. M., CLEGG, P. D., PEFFERS, M. J. & RUBIO-MARTINEZ, L. M. 2018b.
424 Synovial Fluid Metabolites Differentiate between Septic and Nonseptic Joint Pathologies.
425 *Journal of Proteome Research*, 17, 2735-2743.

426 ANDERSON, J. R., PHELAN, M. M., RUBIO-MARTINEZ, L. M., FITZGERALD, M. M., JONES, S. W., CLEGG,
427 P. D. & PEFFERS, M. J. 2020. Optimization of Synovial Fluid Collection and Processing for
428 NMR Metabolomics and LC-MS/MS Proteomics. *Journal of Proteome Research*, 19, 2585-
429 2597.

430 ANTONACCI, J. M., SCHMIDT, T. A., SERVENTI, L. A., CAI, M. Z., SHU, Y. L., SCHUMACHER, B. L.,
431 MCILWRAITH, C. W. & SAH, R. L. 2012. Effects of equine joint injury on boundary lubrication
432 of articular cartilage by synovial fluid: role of hyaluronan. *Arthritis Rheum*, 64, 2917-26.

433 ARNOCZKY, S., MARSHALL, J., JOSEPH, A., JAHRE, C. & YOSHIOKA, M. 1980. Meniscal diffusion—an
434 experimental study in the dog. *Trans Orthop Res Soc*, 5, 42.

435 BENNETT, D. & MAY, C. 1991. Meniscal damage associated with cruciate disease in the dog. *Journal*
436 *of Small Animal Practice*, 32, 111-117.

437 BEXFIELD, N. & LEE, K. 2014. *BSAVA Guide to Procedures in Small Animal Practice*, Gloucester,
438 UNITED KINGDOM, British Small Animal Veterinary Association (B S A V A).

439 BLOND, L., THRALL, D. E., ROE, S. C., CHAILLEUX, N. & ROBERTSON, I. D. 2008. Diagnostic accuracy of
440 magnetic resonance imaging for meniscal tears in dogs affected with naturally occurring
441 cranial cruciate ligament rupture. *Vet Radiol Ultrasound*, 49, 425-31.

442 BOFFA, A., MERLI, G., ANDRIOLI, L., LATTERMANN, C., SALZMANN, G. M. & FILARDO, G. 2020.
443 Synovial fluid biomarkers in knee osteoarthritis: a systematic review and quantitative
444 evaluation using BIPEDs criteria. *Cartilage*, 1947603520942941.

445 BOLAND, L., DANGER, R., CABON, Q., RABILLARD, M., BROUARD, S., BOUVY, B. & GAUTHIER, O. 2014.
446 MMP-2 as an early synovial biomarker for cranial cruciate ligament disease in dogs. *Vet*
447 *Comp Orthop Traumatol*, 27, 210-215.

448 BÖTTCHER, P., BRÜHSCHWEIN, A., WINKELS, P., WERNER, H., LUDEWIG, E., GREVEL, V. &
449 OECHTERING, G. 2010. Value of low-field magnetic resonance imaging in diagnosing
450 meniscal tears in the canine stifle: a prospective study evaluating sensitivity and specificity in

451 naturally occurring cranial cruciate ligament deficiency with arthroscopy as the gold
452 standard. *Vet Surg*, 39, 296-305.

453 BUJAK, R., STRUCK-LEWICKA, W., MARKUSZEWSKI, M. J. & KALISZAN, R. 2015. Metabolomics for
454 laboratory diagnostics. *Journal of Pharmaceutical and Biomedical Analysis*, 113, 108-120.

455 CARR, H. Y. & PURCELL, E. M. 1954. Effects of diffusion on free precession in nuclear magnetic
456 resonance experiments. *Physical Review*, 94, 630-638.

457 CASE, J. B., HULSE, D., KERWIN, S. C. & PEYCKE, L. E. 2008. Meniscal injury following initial cranial
458 cruciate ligament stabilization surgery in 26 dogs (29 stifles). *Vet Comp Orthop Traumatol*,
459 21, 365-7.

460 CLAIR, A. J., KINGERY, M. T., ANIL, U., KENNY, L., KIRSCH, T. & STRAUSS, E. J. 2019. Alterations in
461 Synovial Fluid Biomarker Levels in Knees With Meniscal Injury as Compared With
462 Asymptomatic Contralateral Knees. *The American Journal of Sports Medicine*, 47, 847-856.

463 CLARKE, E. J., ANDERSON, J. R. & PEFFERS, M. J. 2020. Nuclear magnetic resonance spectroscopy of
464 biofluids for osteoarthritis. *British Medical Bulletin*, 137, 28-41.

465 CROVACE, A., LACITIGNOLA, L., MIOLO, A. & FANIZZI, F. P. 2006. Surgery plus chondroprotection for
466 canine cranial cruciate ligament (CCL) rupture. *Vet Comp Orthop Traumatol*, 19, 239-245.

467 DAMYANOVICH, A. Z., STAPLES, J. R., CHAN, A. D. M. & MARSHALL, K. W. 1999a. Comparative study
468 of normal and osteoarthritic canine synovial fluid using 500 MHz 1H magnetic resonance
469 spectroscopy. *Journal of Orthopaedic Research*, 17, 223-231.

470 DAMYANOVICH, A. Z., STAPLES, J. R. & MARSHALL, K. W. 1999b. 1H NMR investigation of changes in
471 the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint
472 denervation. *Osteoarthritis and Cartilage*, 7, 165-172.

473 DE BAKKER, E., STROOBANTS, V., VANDAEL, F., VAN RYSEN, B. & MEYER, E. 2017. Canine synovial
474 fluid biomarkers for early detection and monitoring of osteoarthritis. *Veterinary Record*, 180,
475 328-329.

476 DE BRUIN, T., DE ROOSTER, H., VAN BREE, H. & COX, E. 2007a. Evaluation of anticollagen type I
477 antibody titers in synovial fluid of both stifle joints and the left shoulder joint of dogs with
478 unilateral cranial cruciate disease. *Am J Vet Res*, 68, 283-9.

479 DE BRUIN, T., DE ROOSTER, H., VAN BREE, H., DUCHATEAU, L. & COX, E. 2007b. Cytokine mRNA
480 expression in synovial fluid of affected and contralateral stifle joints and the left shoulder
481 joint in dogs with unilateral disease of the stifle joint. *American Journal of Veterinary
482 Research*, 68, 953-961.

483 DELIKATNY, E. J., CHAWLA, S., LEUNG, D.-J. & POPTANI, H. 2011. MR-visible lipids and the tumor
484 microenvironment. *NMR in Biomedicine*, 24, 592-611.

485 DIETERLE, F., ROSS, A., SCHLÖTTERBECK, G. & SENN, H. 2006. Probabilistic Quotient Normalization as
486 Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H
487 NMR Metabolomics. *Analytical Chemistry*, 78, 4281-4290.

488 DILLON, D. E., GORDON-EVANS, W. J., GRIFFON, D. J., KNAP, K. M., BUBB, C. L. & EVANS, R. B. 2014.
489 Risk factors and diagnostic accuracy of clinical findings for meniscal disease in dogs with
490 cranial cruciate ligament disease. *Vet Surg*, 43, 446-50.

491 DONA, A. C., KYRIAKIDES, M., SCOTT, F., SHEPHERD, E. A., VARSHAVI, D., VESELKOV, K. & EVERETT, J.
492 R. 2016. A guide to the identification of metabolites in NMR-based
493 metabolomics/metabolomics experiments. *Computational and Structural Biotechnology
494 Journal*, 14, 135-153.

495 DONALDSON, A. E. & LAMONT, I. L. 2015. Metabolomics of post-mortem blood: identifying potential
496 markers of post-mortem interval. *Metabolomics*, 11, 237-245.

497 DOROKHOV, Y. L., SHINDYAPINA, A. V., SHESHUKOVA, E. V. & KOMAROVA, T. V. 2015. Metabolic
498 Methanol: Molecular Pathways and Physiological Roles. *Physiological Reviews*, 95, 603-644.

499 ESKO, T., HIRSCHHORN, J. N., FELDMAN, H. A., HSU, Y. H., DEIK, A. A., CLISH, C. B., EBBELING, C. B. &
500 LUDWIG, D. S. 2017. Metabolomic profiles as reliable biomarkers of dietary composition. *Am
501 J Clin Nutr*, 105, 547-554.

502 FITZPATRICK, N. & SOLANO, M. A. 2010. Predictive variables for complications after TPLO with stifle
503 inspection by arthrotomy in 1000 consecutive dogs. *Vet Surg*, 39, 460-74.

504 FRANKLIN, S. P., COOK, J. L. & POZZI, A. 2017. Surgical Treatment of Concurrent Meniscal Injury.
505 *Advances in the Canine Cranial Cruciate Ligament*.

506 FULMER, G. R., MILLER, A. J. M., SHERDEN, N. H., GOTTLIEB, H. E., NUDELMAN, A., STOLTZ, B. M.,
507 BERCAW, J. E. & GOLDBERG, K. I. 2010. NMR Chemical Shifts of Trace Impurities: Common
508 Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the
509 Organometallic Chemist. *Organometallics*, 29, 2176-2179.

510 GHADIALY, F. N. & LALONDE, J. M. 1981. Intramatrical lipidic debris and calcified bodies in human
511 semilunar cartilages. *J Anat*, 132, 481-90.

512 GHOSH, P. 1994. The role of hyaluronic acid (hyaluronan) in health and disease: interactions with
513 cells, cartilage and components of synovial fluid. *Clin Exp Rheumatol*, 12, 75-82.

514 GONZALO-ORDEN, J., ALTONAGA, J., GONZALO-CORDERO, J., MILLAN, L. & ASUNCION ORDEN, M.
515 2001. Magnetic resonance imaging in 50 dogs with stifle lameness. *Euro J Comp Anim Pract*,
516 11, 115-118.

517 HAKUMÄKI, J. M. & KAUPPINEN, R. A. 2000. 1H NMR visible lipids in the life and death of cells.
518 *Trends in Biochemical Sciences*, 25, 357-362.

519 HOULT, D. I. 1976. Solvent peak saturation with single phase and quadrature fourier transformation.
520 *Journal of Magnetic Resonance (1969)*, 21, 337-347.

521 ICHINOSE, Y., EGUCHI, K., MIGITA, K., KAWABE, Y., TSUKADA, T., KOJI, T., ABE, K., AOYAGI, T.,
522 NAKAMURA, H. & NAGATAKI, S. 1998. Apoptosis induction in synovial fibroblasts by
523 ceramide: in vitro and in vivo effects. *J Lab Clin Med*, 131, 410-6.

524 INNES, J. F., COSTELLO, M., BARR, F. J., RUDORF, H. & BARR, A. R. S. 2004. Radiographic Progression
525 of Osteoarthritis of the Canine Stifle Joint: A Prospective Study. *Veterinary Radiology &*
526 *Ultrasound*, 45, 143-148.

527 KAMBIC, H. E. & MCDEVITT, C. A. 2005. Spatial organization of types I and II collagen in the canine
528 meniscus. *J Orthop Res*, 23, 142-9.

529 KOLDE, R. 2012. Pheatmap: pretty heatmaps. *R package version*, 1, 726.

530 KOSINSKA, M. K., LUDWIG, T. E., LIEBISCH, G., ZHANG, R., SIEBERT, H.-C., WILHELM, J., KAESER, U.,
531 DETTMAYER, R. B., KLEIN, H., ISHAQUE, B., RICKERT, M., SCHMITZ, G., SCHMIDT, T. A. &
532 STEINMEYER, J. 2015. Articular Joint Lubricants during Osteoarthritis and Rheumatoid
533 Arthritis Display Altered Levels and Molecular Species. *PLOS ONE*, 10, e0125192.

534 KOSINSKA, M. K., MASTBERGEN, S. C., LIEBISCH, G., WILHELM, J., DETTMAYER, R. B., ISHAQUE, B.,
535 RICKERT, M., SCHMITZ, G., LAFEBER, F. P. & STEINMEYER, J. 2016. Comparative lipidomic
536 analysis of synovial fluid in human and canine osteoarthritis. *Osteoarthritis Cartilage*, 24,
537 1470-8.

538 LAFLAMME, D. 1997. Development and validation of a body condition score system for dogs. *Canine*
539 *practice.*, 22, 10-15.

540 LAFOND, E., BREUR, G. J. & AUSTIN, C. C. 2002. Breed susceptibility for developmental orthopedic
541 diseases in dogs. *Journal of the American Animal Hospital Association*, 38, 467-477.

542 MAHN, M. M., COOK, J. L., COOK, C. R. & BALKE, M. T. 2005. Arthroscopic verification of
543 ultrasonographic diagnosis of meniscal pathology in dogs. *Vet Surg*, 34, 318-23.

544 MANNECHEZ, A., REUNGPATTHANAPHONG, P., DE CERTAINES, J. D., LERAY, G. & LE MOYEC, L. 2005.
545 Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are
546 modulated by rafts. *Cancer Cell International*, 5, 2.

547 MARSHALL, K. W., MANOLOPOULOS, V., MANCER, K., STAPLES, J. & DAMYANOVICH, A. 2000.
548 Amelioration of disease severity by intraarticular hyaluronic acid therapy in bilateral canine
549 osteoarthritis. *Journal of Orthopaedic Research*, 18, 416-425.

550 MCCREADY, D. J. & NESS, M. G. 2016. Systematic review of the prevalence, risk factors, diagnosis
551 and management of meniscal injury in dogs: Part 2. *Journal of Small Animal Practice*, 57,
552 194-204.

553 MEIBOOM, S. & GILL, D. 1958. Modified spin-echo method for measuring nuclear relaxation times.
554 *Review of Scientific Instruments*, 29, 688-691.

555 MELO, R. C., D'AVILA, H., WAN, H. C., BOZZA, P. T., DVORAK, A. M. & WELLER, P. F. 2011. Lipid bodies
556 in inflammatory cells: structure, function, and current imaging techniques. *J Histochem
557 Cytochem*, 59, 540-56.

558 METELMAN, A. L., SCHWARZ, P. D., SALMAN, M. & ALVIS, M. R. 1995. An Evaluation of Three
559 Different Cranial Cruciate Ligament Surgical Stabilization Procedures As They Relate to
560 Postoperative Meniscal Injuries. *Vet Comp Orthop Traumatol*, 08, 118-123.

561 MURAKAMI, K., MAEDA, S., YONEZAWA, T. & MATSUKI, N. 2016. Synovial fluid matrix
562 metalloproteinase-2 and -9 activities in dogs suffering from joint disorders. *Journal of
563 Veterinary Medical Science*, 78, 1051-1054.

564 OLIVE, J., D'ANJOU, M. A., CABASSU, J., CHAILLEUX, N. & BLOND, L. 2014. Fast presurgical magnetic
565 resonance imaging of meniscal tears and concurrent subchondral bone marrow lesions.
566 Study of dogs with naturally occurring cranial cruciate ligament rupture. *Vet Comp Orthop
567 Traumatol*, 27, 1-7.

568 ONAL, G., KUTLU, O., GOZUACIK, D. & DOKMECI EMRE, S. 2017. Lipid Droplets in Health and Disease.
569 *Lipids in Health and Disease*, 16, 128.

570 PANG, Z., CHONG, J., ZHOU, G., DE LIMA MORAIS, D. A., CHANG, L., BARRETTE, M., GAUTHIER, C.,
571 JACQUES, P.-É., LI, S. & XIA, J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw
572 spectra and functional insights. *Nucleic Acids Research*, 49, W388-W396.

573 POZZI, A., LITSKY, A. S., FIELD, J., APELT, D., MEADOWS, C. & JOHNSON, K. A. 2008. Pressure
574 distributions on the medial tibial plateau after medial meniscal surgery and tibial plateau
575 levelling osteotomy in dogs. *Vet Comp Orthop Traumatol*, 21, 8-14.

576 POZZI, A., TONKS, C. A. & LING, H. Y. 2010. Femorotibial contact mechanics and meniscal strain after
577 serial meniscectomy. *Vet Surg*, 39, 482-8.

578 PYE, C. 2021. *Determining predictive metabolomic biomarkers of meniscal injury in dogs with cranial
579 cruciate ligament disease using stifle joint synovial fluid*. University of Liverpool, UK. MPhil
580 Thesis.

581 R CORE TEAM 2020. R: A Language and Environment for Statistical Computing, R Foundation for
582 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

583 RITZO, M. E., RITZO, B. A., SIDDENS, A. D., SUMMERLOTT, S. & COOK, J. L. 2014. Incidence and Type
584 of Meniscal Injury and Associated Long-Term Clinical Outcomes in Dogs Treated Surgically
585 for Cranial Cruciate Ligament Disease. *Veterinary Surgery*, 43, 952-958.

586 ROPES, M. W., ROSSMEISL, E. C. & BAUER, W. 1940. THE ORIGIN AND NATURE OF NORMAL HUMAN
587 SYNOVIAL FLUID. *The Journal of clinical investigation*, 19, 795-799.

588 ROUSH, J. K. 1993. Canine Patellar Luxation. *Veterinary Clinics of North America: Small Animal
589 Practice*, 23, 855-868.

590 RUDD GARCES, G., ARIZMENDI, A., BARRIENTOS, L. S., CRESPI, J. A., MORALES, H., PERAL GARCÍA, P.,
591 PADULA, G. & GIOVAMBATTISTA, G. 2021. Epidemiology of Cranial Cruciate Ligament
592 Rupture and Patellar Luxation in Dogs from the Province of Buenos Aires, Argentina. *Vet
593 Comp Orthop Traumatol*, 34, 024-031.

594 SAKAGUCHI, C. A., NIEMAN, D. C., SIGNINI, E. F., ABREU, R. M. & CATAI, A. M. 2019. Metabolomics-
595 Based Studies Assessing Exercise-Induced Alterations of the Human Metabolome: A
596 Systematic Review. *Metabolites*, 9.

597 SAMII, V. F., DYCE, J., POZZI, A., DROST, W. T., MATTOON, J. S., GREEN, E. M., KOWALESKI, M. P. &
598 LEHMAN, A. M. 2009. Computed tomographic arthrography of the stifle for detection of
599 cranial and caudal cruciate ligament and meniscal tears in dogs. *Vet Radiol Ultrasound*, 50,
600 144-50.

601 SUMNER, L. W., AMBERG, A., BARRETT, D., BEALE, M. H., BEGER, R., DAYKIN, C. A., FAN, T. W. M.,
602 FIEHN, O., GOODACRE, R., GRIFFIN, J. L., HANKEMEIER, T., HARDY, N., HARNLY, J., HIGASHI,
603 R., KOPKA, J., LANE, A. N., LINDON, J. C., MARRIOTT, P., NICHOLLS, A. W., REILY, M. D.,

604 THADEN, J. J. & VIANT, M. R. 2007. Proposed minimum reporting standards for chemical
605 analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI).
606 *Metabolomics: Official journal of the Metabolomic Society*, 3, 211-221.

607 TAYLOR-BROWN, F. E., MEESON, R. L., BRODBELT, D. C., CHURCH, D. B., MCGREEVY, P. D.,
608 THOMSON, P. C. & O'NEILL, D. G. 2015. Epidemiology of Cranial Cruciate Ligament Disease
609 Diagnosis in Dogs Attending Primary-Care Veterinary Practices in England. *Vet Surg*, 44, 777-
610 83.

611 UM, S. Y., CHUNG, M. W., KIM, K. B., KIM, S. H., OH, J. S., OH, H. Y., LEE, H. J. & CHOI, K. H. 2009.
612 Pattern recognition analysis for the prediction of adverse effects by nonsteroidal anti-
613 inflammatory drugs using ¹H NMR-based metabolomics in rats. *Anal Chem*, 81, 4734-41.

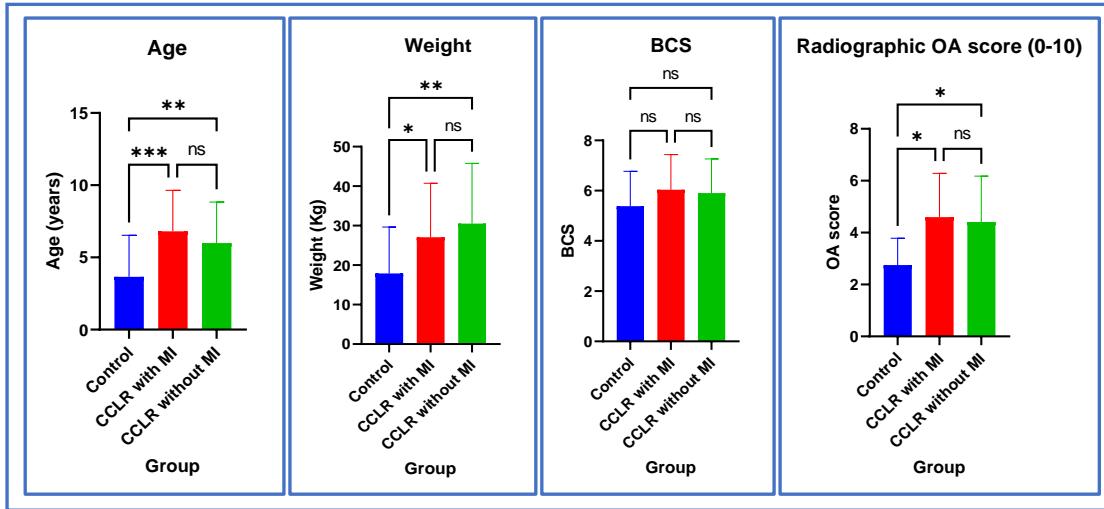
614 UYSAL, M., AKPINAR, S., BOLAT, F., CEKIN, N., CINAR, M. & CESUR, N. 2008. Apoptosis in the
615 traumatic and degenerative tears of human meniscus. *Knee Surgery, Sports Traumatology,*
616 *Arthroscopy*, 16, 666.

617 VAN DER SAR, S. A., ZIELMAN, R., TERWINDT, G. M., VAN DEN MAAGDENBERG, A. M. J. M., DEELDER,
618 A. M., MAYBORODA, O. A., MEISSNER, A. & FERRARI, M. D. 2015. Ethanol contamination of
619 cerebrospinal fluid during standardized sampling and its effect on (1)H-NMR metabolomics.
620 *Analytical and bioanalytical chemistry*, 407, 4835-4839.

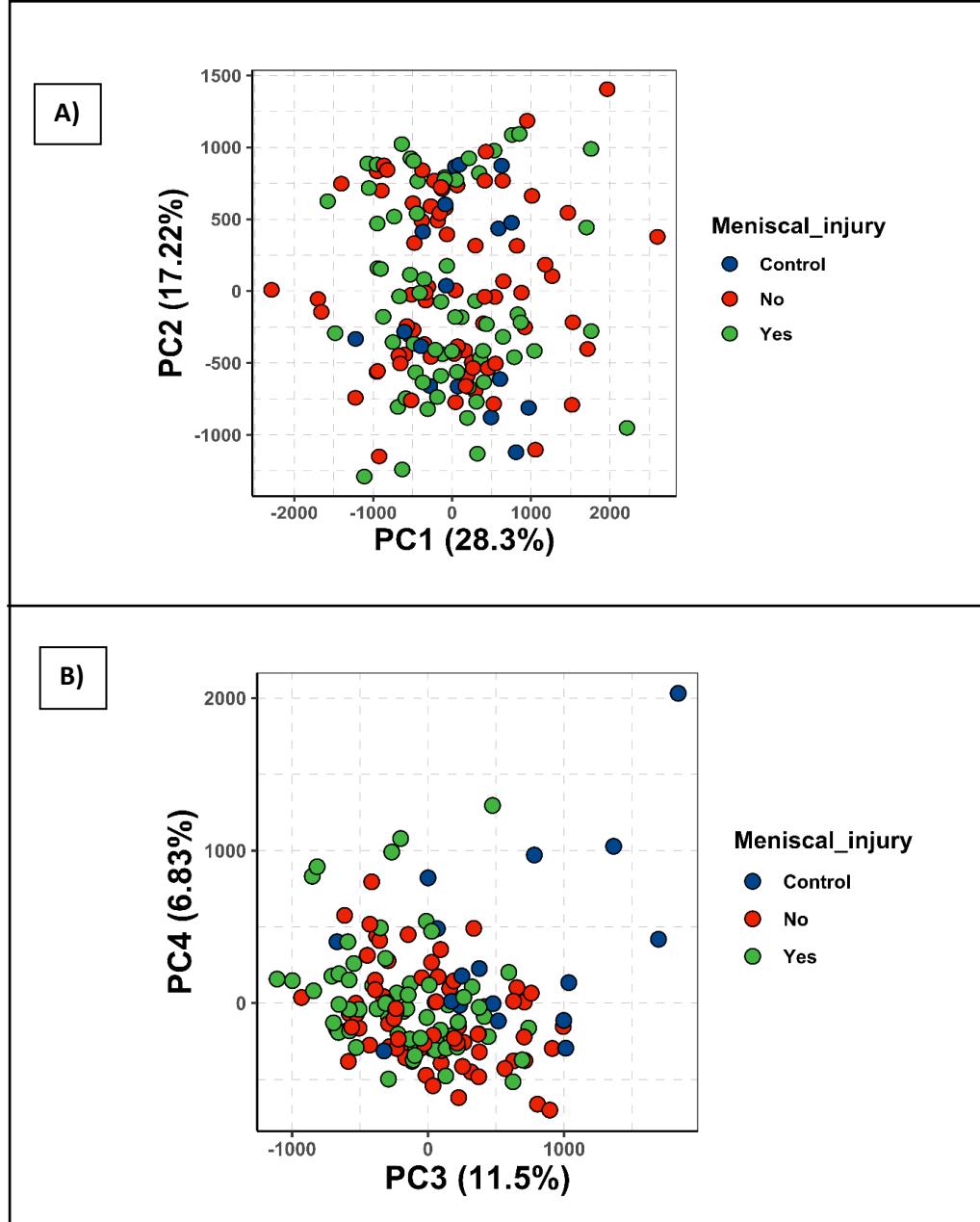
621 VAN GESTEL, M. 1985. Diagnostic accuracy of stifle arthroscopy in the dog. *Journal of the American*
622 *Animal Hospital Association*, 21, 757-763.

623 WANG, Y., GLUDISH, D. W., HAYASHI, K., TODHUNTER, R. J., KROTSCHECK, U., JOHNSON, P. J.,
624 CUMMINGS, B. P., SU, J. & REESINK, H. L. 2020. Synovial fluid lubricin increases in
625 spontaneous canine cruciate ligament rupture. *Scientific Reports*, 10, 16725.

626 WESSELY, M., BRÜHSCHWEIN, A. & SCHNABL-FEICHTER, E. 2017. Evaluation of Intra- and Inter-
627 observer Measurement Variability of a Radiographic Stifle Osteoarthritis Scoring System in
628 Dogs. *Vet Comp Orthop Traumatol*, 30, 377-384.


629 WISE, C. M., WHITE, R. E. & AGUDELO, C. A. 1987. Synovial fluid lipid abnormalities in various disease
630 states: Review and classification. *Seminars in Arthritis and Rheumatism*, 16, 222-230.

631 WITSBERGER, T. H., VILLAMIL, J. A., SCHULTZ, L. G., HAHN, A. W. & COOK, J. L. 2008. Prevalence of
632 and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. *J Am Vet*
633 *Med Assoc*, 232, 1818-24.


634 WON, W. W., LEE, A. M., BUTLER, J. R., WILLS, R. W. & BRINKMAN, E. L. 2020. Association of meniscal
635 injury to joint space width on standard tibial plateau leveling osteotomy lateral radiographic
636 projections of the canine stifle. *Veterinary Radiology & Ultrasound*, 61, 16-24.

637 ZAR, T., GRAEBER, C. & PERAZELLA, M. A. 2007. Recognition, treatment, and prevention of propylene
638 glycol toxicity. *Semin Dial*, 20, 217-9.

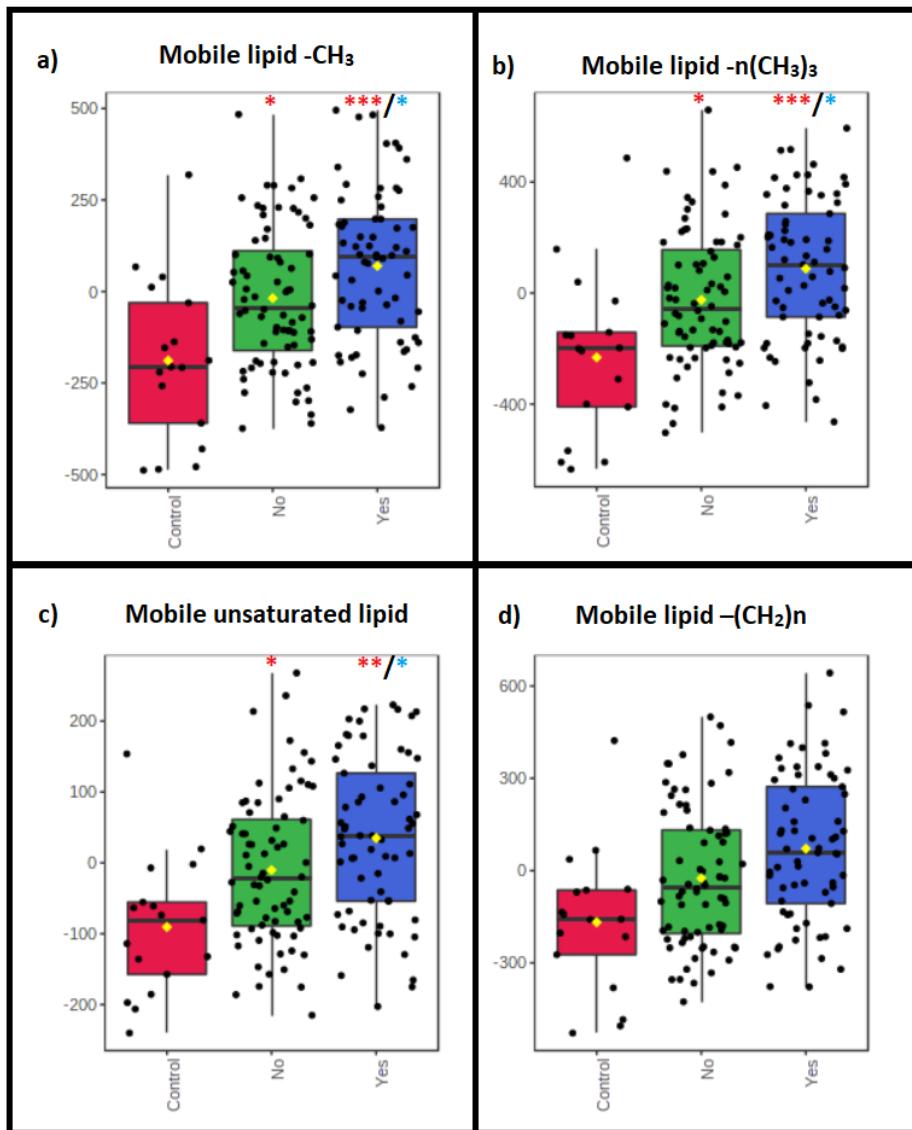

Figures

Figure 1. Clinical features of the canine participants between groups. Column Bar graphs represent mean and standard deviation. Groups= Control (n=17), CCLR with meniscal injury (n=65), CCLR without meniscal injury (n=72). Significance testing performed with either one-way ANOVA, or Brown-Forsythe and Welch ANOVA (depending on whether data had common variance) with Benjamini-Hochberg false discovery rate adjustment (CCLR=cranial cruciate ligament disease, MI=meniscal injury, OA=osteoarthritis, ns=not significant, *= $p<0.05$, **= $p<0.01$, ***= $p<0.001$).

Figure 2. Principal component analysis 2D scores plot of samples of canine stifle joint synovial fluid following NMR. Meniscal injury status plotted over A) PC1 and PC2 and B) PC3 and PC4. Blue (control)=no CCLR, no meniscal injury; red (no)=CCLR without meniscal injury; green (yes)=CCLR with meniscal injury.

Figure 3. Altered mobile lipids on ^1H NMR with respect to meniscal injury status in canine stifle joint synovial fluid from dogs. Bar plots on the left of each panel show the original abundances (mean \pm SD), and box and whisker plots on the right show the normalised abundances. Control (red)= no CCLR or meniscal injury. No (green)= CCLR without meniscal injury. Yes (blue)= CCLR with meniscal injuy. Red stars above boxplots denote significance against control group. Blue stars above boxplots denote significance against 'No' group. Significance testing was completed using one-way ANCOVAs controlling for age of the canine participants in each group (*= $p<0.05$, **= $p<0.01$, ***= $p<0.0001$).

Tables

Table 1. Clinical features of the canine participants included in the nuclear magnetic resonance metabolomic study of biomarkers of meniscal injury in canine stifle joint synovial fluid with cranial cruciate ligament rupture.

	Group		
	Control (no CCLR, no meniscal injury)	CCLR with meniscal injury	CCLR without meniscal injury
Sample size (n)	17	65	72
Age, years (mean [SD])	3.8 (2.9)	6.8(2.8)	5.9 (2.9)
Weight, kg (mean [SD])	17.5(12.0)	27.1(13.7)	30.4(15.1)
Sex, n (%)	FE=2 (12%) FN=3 (18%) ME=7 (41%) MN=5 (29%)	FE= 7 (11%) FN=26 (40%) ME=12 (19%) MN=18 (28%)	FE= 8 (11%) FN=28 (29%) ME=5 (7%) MN=30 (42%)
BCS, 1-9 (mean [SD])	5.5 (1.4)	6.0(1.4)	5.9(1.4)
Radiographic OA score (0-10) (Innes <i>et al.</i>, 2004) (mean [SD])	2.8 (1.0)	4.6(1.7)	4.4 (1.8)
Length of time of lameness, months (mean [SD])	4.0 (5.2)	2.8(3.0)	2.8(2.7)
Partial vs complete CCLR, n	N/A	Partial =9 Complete=55 Unknown=1	Partial =29 Complete=42 Unknown=1

Abbreviations= Cranial cruciate ligament rupture (CCLR), female entire (FE), female neutered (FN), male entire (ME), male neutered (MN), body condition score (BCS), kilograms (kg) standard deviation (SD), osteoarthritis (OA), not applicable (N/A)

Table 2. Metabolites annotated to canine stifle joint synovial fluid nuclear magnetic resonance spectra, including HMDB identification number where possible, and level of identification according to the Metabolomics Standard Initiative (Sumner *et al.*, 2007).

AMINO ACIDS			FATTY AND ORGANIC ACIDS		
Metabolite name	HMDB number	MSI ID Level	Metabolite name	HMDB number	MSI ID Level
2-AMINOADIPATE	HMDB0000510	Level 2	2-HYDROXYVALERATE	HMDB0001863	Level 2
BETAINE	HMDB0000043	Level 2	2-METHYLGUTARATE	HMDB0000422	Level 2
CREATINE	HMDB0000064	Level 1	2-PHENYLPROPIONATE	HMDB0011743	Level 2
CREATINE PHOSPHATE	HMDB0001511	Level 2	3- HYDROXYISOVALERATE	HMDB0000754	Level 2
CREATININE	HMDB0000562	Level 1	4-PYRIDOXATE	HMDB0000017	Level 2
CREATININE PHOSPHATE	HMDB0041624	Level 2	AZELATE	HMDB0000784	Level 2
L-ALANINE	HMDB0000161	Level 1	CITRATE	HMDB0000094	Level 1
L-ALLOISOLEUCINE	HMDB0000557	Level 2	FORMATE	HMDB0000142	Level 2
L-GLUTAMINE	HMDB0000641	Level 1	GLYCOCHOLATE	HMDB0000138	Level 2
L-HISTIDINE	HMDB0000177	Level 1	GLYCOLATE	HMDB0000115	Level 2
L-ISOLEUCINE	HMDB0000172	Level 1	GLYCYLPROLINE	HMDB0000721	Level 2
L-LEUCINE	HMDB0000687	Level 1	ISOBUTYRIC ACID	HMDB0001873	Level 2
L-LYSINE	HMDB0000182	Level 1	L-CARNITINE	HMDB0000062	Level 2
L-METHIONINE	HMDB0000696	Level 1	L-GLUTAMATE	HMDB0060475	Level 2
L-PHENYLALANINE	HMDB0000159	Level 1	LACTATE	HMDB0000190	Level 1
L-THREONINE	HMDB0000167	Level 1	METHYLSUCCINATE	HMDB0001844	Level 2
			MOBILE LIPIDS	N/A	Level 3
L-TYROSINE	HMDB0000158	Level 1	PYRUVATE	HMDB0000243	Level 1
L-VALINE	HMDB0000883	Level 1	SEBACATE	HMDB0000792	Level 2
			THYMOL	HMDB0001878	Level 2
SUGARS			OTHERS		
Metabolite name	HMDB number	MSI ID Level	Metabolite name	HMDB number	MSI ID Level
D-GALACTOSE	HMDB0000143	Level 2	3-HYDROXY-3-METHYLGUTARATE	HMDB0041199	Level 2
D-GLUCOSE	HMDB0000122	Level 1	3-METHYLHISTIDINE	HMDB0000479	Level 2
FRUCTOSE	HMDB0000660	Level 2	ACETAMINOPHEN	HMDB0001859	Level 2
GLUCITOL	HMDB0000247	Level 2	ACETONE	HMDB0001659	Level 2
MANNITOL	HMDB0000765	Level 2	ACETYLCHOLINE	HMDB0000895	Level 2
MANNOSE	HMDB0000169	Level 1	CHOLINE	HMDB0000097	Level 1
MYOINOSITOL	HMDB0000211	Level 1	DIMETHYL SULFONE	HMDB0004983	Level 2
			DTTP	HMDB0001342	Level 2
			ETHANOL	HMDB0000108	Level 1
			HISTAMINE	HMDB0000870	Level 2
			O-CRESOL	HMDB0002055	Level 2
			P-CRESOL	HMDB0001858	Level 2
			PROPYLENE GLYCOL	HMDB0001881	Level 2
			SN-GLYCERO-3-PHOSPHOCHOLINE	HMDB0000086	Level 2
			TAU-METHYLHISTIDINE	HMDB0000479	Level 2
			TRIGONELLINE	HMDB0000875	Level 2
			XANTHINE	HMDB0000292	Level 2

Abbreviations: HMDB=Human metabolome database; MSI= Metabolomics standards initiative

Table 3. Metabolites found to be significantly altered in canine stifle joint synovial fluid between those dogs with CCLR with meniscal injury and those with CCLR without meniscal injury using ANOVA testing.

Bin number	Chemical shift (ppm)	Metabolite(s) annotated to bin	Mean difference (RI)	95% CI	FDR adjusted p-value
145	3.268-3.272	UNKNOWN	-46.57	-80.45 to -12.69	0.004
230	1.071-1.080	METHYLSUCCINATE and/or 2-METHYLGLUTARATE	21.97	5.91 to 38.04	0.004
129	3.362-3.371	METHANOL	-40.04	-74.27 to -5.80	0.017
210	1.936-2.020	GLYCYLPROLINE, ISOLEUCINE and UNKNOWN	37.96	2.79 to 73.12	0.031
152	3.203-3.238	MOBILE LIPID - N(CH ₃) ₃	104.42	4.85 to 203.98	0.037
246	0.789-0.891	MOBILE LIPID -CH ₃	82.25	3.37 to 161.13	0.039
37	5.212-5.353	MOBILE UNSATURATED LIPID	42.04	-0.06 to 84.14	0.050
224	1.199-1.312	MOBILE LIPID -(CH ₂) _n	88.78	-2.63 to 180.19	0.059

Abbreviations: ppm= parts per million; RI=relative intensity, CI= confidence interval; FDR= false discovery rate

Table 4. Metabolites found to be significantly altered in canine stifle joint synovial fluid between those dogs with CCLR with meniscal injury and those with CCLR without meniscal injury using ANCOVA testing after controlling for age of the dogs.

Bin number	Chemical shift (ppm)	Metabolite(s) annotated to bin	Mean difference	95% CI	FDR adj p-value
145	3.268-3.272	UNKNOWN	46.94	18.6 to 75.3	0.004
129	3.362-3.371	METHANOL	40.01	11.3 to 68.7	0.009
246	0.789-0.891	MOBILE LIPID -CH3	-78.88	-142.84 to -14.91	0.016
152	3.203-3.238	MOBILE LIPID -N(CH3)3	-99.38	-179.03 to -19.73	0.017
210	1.936-2.020	GLYCYLPROLINE, ISOLEUCINE and UNKNOWN	-36.35	-64.7 to -7.97	0.019
37	5.212-5.353	MOBILE UNSATURATED LIPID	-40.06	-73.96 to -6.16	0.031

Abbreviations: ppm= parts per million; CI= confidence interval; FDR= false discovery rate