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43  Abstract

44  Increased colonisation by antimicrobial resistant organisms is closely associated with
45 international travel. This study investigated the diversity of mobile genetic elements
46 involved with antimicrobial resistance (AMR) gene carriage in extended-spectrum
47  beta-lactamase (ESBL) -producing Escherichia coli that colonised travellers to Laos.
48 Long-read sequencing was used to reconstruct complete plasmid sequences from
49 49 isolates obtained from the daily stool samples of 23 travellers over a three-week
50 period. This method revealed a collection of 105 distinct plasmids, 38.1% of which
51 carried AMR genes. The plasmids in this population were diverse, mostly unreported
52 and included 38 replicon types, with F-type plasmids (n=22) the most prevalent
53 amongst those carrying AMR genes.

54  Fine-scale analysis of all plasmids identified numerous AMR gene contexts and
55 emphasised the importance of IS elements, specifically members of the 1S6/1S26
56 family, in the creation of complex multi-drug resistance regions. We found a
57 concerning convergence of ESBL and colistin resistance determinants, with three
58 plasmids from two different F-type lineages carrying blactx.w and mcr genes. The
59 extensive diversity seen here highlights the worrying probability that stable new
60 vehicles for AMR will evolve in E. coli populations that can disseminate
61 internationally through travel networks.

62

63 Impact Statement

64 The global spread of AMR is closely associated with international travel. AMR is a
65 severe global concern and has compromised treatment options for many bacterial
66 pathogens, among them pathogens carrying ESBL and colistin resistance genes.
67 Colonising MDR organisms have the potential to cause serious consequences.

68 Infections caused by MDR bacteria are associated with longer hospitalisation, poorer
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69 patient outcomes, greater mortality, and higher costs compared to infections with

70  susceptible bacteria.

71  This study elucidates the numerous different types of plasmids carrying AMR genes
72 in colonising ESBL-producing E. coli isolates found in faecal samples from in
73 travellers to Vientiane, Laos. Here we add to known databases of AMR plasmids by
74 adding these MDR plasmids found in Southeast Asia, an area of high AMR
75 prevalence. We characterised novel AMR plasmids including complex ESBL (blactx-
76 wm) and colistin (mcr) resistance co-carriage plasmids, emphasising the potential
77  exposure of travellers to Laos to a wide variety of mobile genetic elements that may
78 facilitate global AMR spread. This in-depth study has revealed further detail of the
79 numerous factors that may influence AMR transfer, therefore potential routes of AMR
80 spread internationally, and is a step towards finding methods to combat AMR
81 spread.

82

83 Data Summary

84 Long-read sequencing data is available through National Center for Biotechnology
85 Information under the BioProject PRINA853172. Complete plasmid sequences have
86 been uploaded to GenBank with accession numbers in supplementary S1. The
87 authors confirm all supporting data, code and protocols have been provided within

88 the article or through supplementary data files.
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89 Introduction

90 Infections caused by antimicrobial-resistant organisms are harder to treat, lengthen

91 hospital stays, increase mortality rates, and place a significant financial burden on

92 healthcare institutes (1). It is increasingly important to characterise the mechanisms

93 that allow antimicrobial resistance (AMR) to spread worldwide, compromising

94 treatment options for many bacterial pathogens. The rapid spread of AMR has been

95 closely associated with international travel (2-5). Clinically relevant AMR

96 determinants are commonly found in Gram-negative bacteria colonising travellers

97  returning from regions with highest AMR prevalence, including South-East Asia (3, 6,

98 7).

99 Escherichia coli, a Gram-negative human gut commensal and opportunistic
100 extraintestinal pathogen, is an important vector for AMR (8, 9). As exemplified by
101 pandemic multi-drug resistant (MDR) lineages such as ST131 (10, 11), E. coli is
102 capable of acquiring and maintaining multiple AMR determinants and exhibiting
103 resistance to multiple classes of antibiotics. The presence of combinations of AMR
104 genes can significantly impact therapeutic options. The limited treatment options for
105 ESBL-resistant organisms make these a cause of concern. Colistin is a last-resort
106 antibiotic included in the Reserve category of the WHO Essential Medicines List
107 (12). In E. coli and other Gram-negative bacteria, carriage of both colistin resistance
108 genes and production of extended spectrum beta-lactamases (ESBLS) is concerning
109 as it suggests a potentially stable environment for the accumulation of further
110 resistance, for example, carbapenems, severely limiting treatment options (9, 13,
111 14). ESBL resistance genes, including blacrx-w variants, and mcr genes that confer
112  colistin resistance are commonly found in E. coli carried by returning travellers (3, 6,
113 7, 15). AMR genes can move intra- or inter-cellularly and accumulate at single sites
114 in association with mobile genetic elements (MGEs) (16-19). Plasmids are

115 extrachromosomal genetic elements that can transfer horizontally between bacteria
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116  of the same or different species and are strongly associated with the spread of AMR
117 (20, 21) . In E. coli and other members of the Enterobacterales, AMR genes have
118 been found in many different plasmid types (20). Reports of epidemic and
119 internationally-distributed plasmids (22-24), highlight the threat successful plasmid
120 lineages pose and the importance of understanding the mechanisms by which they
121  acquire and accumulate AMR genes.

122 We recently characterised the dynamics of acquisition of multi-drug resistant Gram-
123  negative organisms in real time during travel to Vientiane, Laos. These MDR Gram-
124  negative organisms had a surprisingly high co-prevalence of ESBLs and colistin
125 resistance genes (7). Here we explore the pattern of AMR carriage and context in E.
126  coli from that cohort using long-read sequencing to understand the contexts of AMR
127  genes and the role of MGEs, particularly plasmids, in the acquisition of drug-resistant
128 E. coli by travellers to a region of high AMR prevalence. The 49 representative
129 isolates selected for long-read sequencing in this study were collected on a daily
130 basis in an area of high AMR prevalence, enabling continuous monitoring of the
131 drug-resistant E. coli that colonised study participants. Continuous sampling
132 facilitated the examination of common and circulating plasmids in the E. coli
133 population, across a variety of sequence types (STs) and at different study time
134  points. Our data shows the diversity and widespread distribution of numerous distinct
135 AMR plasmids acquired by these travellers in Vientiane, Laos and the multiple
136 different potential routes of AMR spread by plasmids and highlighted the complex
137 nature of plasmids carrying both ESBL resistance and mcr genes.

138

139 Methods

140 Study design and Sample source
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141 The E. coli isolates used here were collected as part of a study (7) looking at the
142 dynamics of gut colonisation of 21 volunteers attending a medical course in
143  Vientiane, Laos. Faecal samples were taken daily during the 22-day period. Samples
144  were processed, shipped, stored and handled as previously described in Kantele et
145 al (7). Here ESBL-positive isolates were cultured from faecal samples after initial
146  screening on CHROMagar ESBL agar plates (CHROMagar, Paris, France) at the
147  Microbiology Laboratory of Mahosot Hospital, Vientiane, Laos and after
148 transportation further screened with chromID ESBL chromogenic medium
149 (bioMérieux) by University of Helsinki, Helsinki, Finland (7). These ESBL isolates (7)
150 were used in this study. In order to explore the pattern of AMR in this traveller
151 dataset and the role of MGEs we prepared hybrid assemblies and annotated plasmid
152 sequences identified to locate resistance genes and potential routes for spread.

153

154  Selection of E. coli isolates for MinlON Sequencing

155 Whole genome sequences of 306 ESBL-positive Gram-negative isolates from the
156 Laos study were previously generated (7) and are available under NCBI BioProject
157 accession number PRINA558187. Illumina-generated whole genome sequences of
158 E. coli isolates (n=219) were sequence typed wusing mist (v2.15)

159 (https://github.com/tseemann/mist). Isolates were selected for MinlON sequencing

160 (n=49) by deduplication of longitudinal patient samples, and by using abricate

161  (v.0.8.10) (https://github.com/tseemann/abricate) to identify unique elements such as

162 plasmid replicons (plasmidfinder (v.0.8.10)) and antibiotic resistance genes
163 (resfinder (v.0.8.10)) (36) from the short read assemblies generated with SPAdes (v.
164 3.13.0).

165

166 DNA Extraction and Sequencing
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167 E. coli were cultured overnight on UTI Chromogenic agar (Sigma) at 37°C. After
168 purity checks single colonies were subcultured overnight in LB Broth (Miller)
169 (shaking, 37 °C). For the majority of isolates DNA was extracted using Monarch
170  Genomic DNA Extraction kit (NEB), but in some instances a lower quantity and
171 quality yield was obtained. In these instances, we noticed atypical precipitates and
172  opted for extraction using phenol chloroform with Cetyltrimethylammonium bromide
173 (CTAB). The extracted DNA was sequenced over 4 runs MinlON (Oxford Nanopore
174  Technology), using R9.4.1 flow cells. Three runs were prepared using Ligation
175 Protocol (LSK-SQK109), and one run with the Rapid Barcoding Sequencing Kit
176 (SQK-RBKO0O04), with both protocols modified to a one-pot implementation.

177

178 Long read sequencing analysis

179 Data was basecalled using Guppy (v0.5.1)

180  https://github.com/nanoporetech/pyguppyclient). The quality of the data was

181 examined using NanoPlot (v1.28.2) (25). In read files where coverage was high,

182 filtlong (>100X) (v0.2.0) (https://github.com/rrwick/Filtlong) was used to select the

183 best-read files available and the coverage was limited to 100X. Barcodes were

184 trimmed using qcat (v1.0.1) (https://github.com/nanoporetech/gcat). Hybrid

185 assemblies using the lllumina reads were created with Unicycler (v0.4.7) (26) and
186 visualised in Bandage (v.0.8.1) (27). In some instances, Unicycler was unable to fully
187 resolve the assembly; in these cases we took a long-read first approach, using Flye
188 (v2.6) (28) to assemble the long read set into a gfa file that was then provided to the
189  Unicycler pipeline. Assemblies were analysed using abricate (v.0.8.10) with the
190 resfinder (29, 30) and plasmidfinder databases (31). TigSPLIT

191  (https://github.com/stevenjdunn/TigSPLIT) was used to extract contigs, allowing

192 detailed analysis of the location of plasmid replicons in relation to resistance genes

193 present in each isolate.
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194

195 Analysis of plasmids sequences

196 Plasmid contigs were annotated using Prokka (v1.14.6) (32). abricate (v.0.8.10) was
197 used to identify plasmid replicons with the PlasmidFinder database and AMR genes
198 were identified with Resfinder (85% coverage and identity cut offs). In situations
199 where plasmidfinder did not provide a type, plasmid contigs were compared to
200 known plasmid replicons for type assignments. Where possible, plasmid replicons

201 were sub-typed using the PubMLST database (https://pubmist.org/) (33, 34).

202 Snapgene (v5.2.4) was used to visualise Prokka-annotated plasmid contigs.
203 ISFinder (35) was used to identified insertion sequence (IS) elements. NCBI BLAST
204  (v2.5.0+) was used to compare plasmids to reference plasmids (Supplementary S2).
205 The NCBI non-redundant nucleotide database was queried with BLASTn to
206  determine whether plasmids identified here had been seen elsewhere. BLASTn and
207 tBLASTn were used to compare similar plasmid regions and to identify homologs of
208  known plasmid genes. Mashtree (v1.2.0) (36) and Panaroo (v1.2.3) (37) were used
209 to compare plasmids. ISEScan (v.1.7.2.3) was used to quantify IS elements in
210 plasmid assemblies at an element-family level (38).

211

212 Identification of small plasmids from lllumina dataset

213 NCBI BLAST (v2.5.0+) was used to search draft genomes for plasmid-specific 100
214 bp signature sequences (Supplementary S3), as described previously (22). This
215 facilitated the detection of specific plasmid lineages whether they were represented
216 by single or multiple contigs in the Illumina dataset (7).

217

218 Results

219 Isolates from Laos contain a broad diversity of plasmids and resistance genes


https://doi.org/10.1101/2022.08.22.504756
http://creativecommons.org/licenses/by/4.0/

(Which el ot Gertied by peer revicw) s e autnoTsder. whe oS At IO & losriee i Qi T1e ot it Perpetuiy: I i made
available under aCC-BY 4.0 International license.

220 A total of 163 complete plasmids were obtained from the hybrid-assembled genomes
221 of 49 E. coli isolates that colonised 21 participants and their contacts
222  (Supplementary S4). Isolates harboured 1 to 8 plasmids each, except for a single
223  ST1722 isolate that did not contain any plasmids. The 163 plasmids were typed by
224  size, replicon type and AMR gene carriage, and identical or almost-identical
225 plasmids (Table S3) were deduplicated, resulting in a total of 105 distinct plasmids.
226  These 105 plasmids were named pLAO1-pLAO105 (Supplementary S1 and S4) and
227 ranged in size from 1,531 — 259,739 bp, with around half (53.3%, n=56) smaller than
228 25 kb. Forty of the 105 plasmids (38.1%) contained one or more AMR genes.
229 Plasmids that did not carry AMR genes were generally smaller (mean size: 23,554
230 bp), than those that did (mean size: 97,260 bp). However, pLAO10 (GenBank
231 accession OP242224), pLAO78 (OP242289) and pLAO84 (OP242239) are notable
232 ColEl-like plasmids that carry 1-5 AMR genes each and range in size from just
233 5,540 bp to 22,368 bp (Table S4).

234

235 Thirty-eight different replicon types were identified in the collection of 105 plasmids.
236 Types present amongst small plasmids included: theta-replicating plasmids that
237 initiate replication with RNA primers (8-RNA, n=26) or replication proteins (6-Rep,
238 n=9), rolling-circle plasmids (n=6), and Q-type plasmids that replicate by strand-
239 displacement (n=3). Amongst large plasmids (>25 kb), F-types (n=22) were
240 dominant, and their replicons were sub-typed using the PubMLST database
241  (Supplementary S4). Other large plasmids include phage-plasmids (n=9, including Y
242  or p0l111l types) and X-types (n=5). Nine large plasmids were co-integrates, which
243  included multiple replicons of disparate types and all contained one or more AMR
244  genes (Figure 1). Ten plasmids could not be assigned a type (Figure 1). In total,

245  76.3% (n=29) of plasmid types contained AMR genes, with the most prevalent being

246  FII-46:FIB-20 (n=4), X1 (n=3) , 8-RNA (n=3), FII-2 (n=2), FII-46:FIB-10 (n=2), p0111
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247 (n=2) and Y (n=2) (Figure 1, Supplementary S4). AMR plasmids were present across
248 all participants throughout the study (Supplementary S4 & S5), with carriage
249  occurring sporadically and transiently during the study period.
250
251 We found evidence suggesting the circulation of plasmids within Lao E. coli in the
252 traveller population. One example, the ColEl-like plasmid pLAO84 (GenBank
253 accession: OP242239), which carries the tetracycline resistance determinant tet(A),
254  was found in the complete genomes of E. coli of two different STs, ST195 and ST34,
255 that were acquired by two different participants (Pt33 and Pt40). Mapping lllumina
256 reads against the complete pLAO84 sequence confirmed plasmid circulation, with its
257 complete or fragmented sequence detected in seven additional E. coli isolates
258 (Supplementary S6). These isolates were obtained from six different participants
259 (including Pt33 and Pt40) over a 10-day period. Another example of a potential
260 circulating plasmid, the Q1 plasmid pLAO60 (GenBank accession OP242237) that
261 carries aminoglycoside and beta-lactam resistance genes (Table S4), was present in
262 the complete genome of the ST542 isolate (LA124) and in one genome (LA230) in
263  the wider lllumina dataset (Supplementary S4 & S7). The LA230 isolate Q1 plasmid
264 was missing a 101 bp segment that was likely lost in a homologous recombination
265 event.
266
267  Another notable finding was the presence of phage and virulence plasmids in this
268 collection. A Y-type phage-plasmid, pLAO59 (GenBank accession OP242238),
269 appears to have lost key genes for phage body synthesis, potentially in deletion
270 events mediated by ISKpn26 and 1S1294, and instead carries genes that confer
271 resistance to six antibiotic classes and genes that confer resistance to mercury,

272  copper, and silver (Supplementary S8). The FII-18:FIB-1 pLAO32 is related to the

273  colicin V (ColV) virulence-resistance plasmid pCERC3 (39) and contains virulence
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274  genes, including those for the aerobactin and Sit siderophore systems, in addition to
275 multiple drug resistance genes (Supplementary S8), but lacks the genes for ColV.
276
277 Variation within individual plasmid types, with diverse and complex resistance
278 regions
279 In addition to the variety of different plasmid types, long-read sequence data allowed
280 us to observe diversity amongst plasmids of the same type (Supplementary S4-S9).
281 There was considerable genetic diversity in plasmids carrying the FII-2 replicon
282  (Figure 2). FlI-2 plasmids pLAO44 (GenBank accession OP242233) and pLAO37
283 (OP242229) in ST69 and ST101 strains only contained FII-2 replicons, while FlI-2
284  plasmid pLAO82 (OP242230) in an ST34 isolate carried an additional 8 -RNA
285 replicon and plasmids pLAO100 (ST40, OP242240) and pLAO103 (ST457,
286 0OP242243) carried an additional FIB-10 replicon (Figure 2 & 3). Diversity also
287  occurred in the resistance regions of these plasmids (Figure 2 & Supplementary S9).
288  FIlI-2 plasmids carried multiple resistance genes, including various combinations of
289  blactx-m-27, blactx-m-s5 and mcr-3.4 (Figure 2 & 3). Plasmid types FlI-2 (pLAO37), FlI-
290 2:8-RNA (pLAO82) and FlI-46:FIB-like (pLAO69, OP242232) incorporated resistance
291 regions with an accumulation of multiple resistance genes and co-carriage of mcr
292 and blactx-w genes (Figure 3B). FlI-2:6-RNA, pLAO82, demonstrated even more
293 complexity with further accumulation of resistance genes as it also carried an
294  additional mcr-3.4 located between copies of 1S26 and ISKpn40 (Figure 3). There is
295 widespread global distribution of the resistance regions found in these FlI-2 plasmids
296 which have been identified in multiple countries, some of which are not close to Laos
297  (Supplementary S10). We found no link between the ST of the isolate and the type

298 of plasmid AMR genes carried by that ST (Figure 3A).

299
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300 Co-carriage of blactxy and mcr genes occurs in multiple resistance region
301 configurations

302 Three plasmids in this collection carried both blacrx-w and mcr genes (Figure 3B). All
303 three blactx-m/mcr co-carriage plasmids were F-types, but they differed in size and
304 plasmid replicon type. The 98,237 bp plasmid, pLAO37, carried only an FlI-2 replicon
305 and was found in five ST101 E. coli isolates. The 110,949 bp pLAO82, was a multi-
306 replicon co-integrate plasmid carrying both Fll-2 and 8-RNA replicons and was found
307 inone ST34 E. coli isolate. The 105,425 bp plasmid, pLAOG9 carried FlI-46 and FIB-
308 20 replicons, and was found in two ST10 E. coli isolates. All three of these plasmids
309 have typical F-type plasmid backbones that include genes for replication, stable
310 maintenance, conjugative transfer and establishment in new hosts (39, 40). Each
311 plasmid contained a complete and uninterrupted transfer region, suggesting all three
312 have the capacity for self-mediated conjugation (41).

313 Detailed comparison of the FII-2 plasmids pLAO37 and pLAO82 showed that the
314 backbones are almost identical apart from a recombination patch (approximately 7
315 kb). pLAO37 and pLAO82 have the same FlI-2 repAl gene. The AMR genes in both
316 pLAO37 and pLAO82, are located in a complex region bounded by 1S26 at the left
317 end and Tnl721 at the right end (Figure 3B). These regions are comprised of
318 sequences from multiple mobile genetic elements with distinct origins and include
319 genes that confer resistance to beta-lactams (blacrx.m); colistin  (mcr-3.4);
320 aminoglycosides (aacC2d); chloramphenicol (catAl) and quinolones (qnrS1). An
321 additional 6-RNA replicon in pLAO82 is part of a small plasmid that has been
322 captured and incorporated into the resistance region. pLAO37 and pLAO82 contain
323 an extra partial Tn21 and partial IS26 region inserted in between tmrB and mcr gene
324  (Figure 3B). The pLAO82 resistance region also includes an additional copy of mcr-
325 3.4. The mcr-3.4 in pLAO37 was truncated by ISKpn26, which removed the terminal

326 32 bp of the gene. This configuration of ISKpn26 and mcr-3.4 is not present in any
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327 other sequence deposited in the GenBank non-redundant nucleotide database. A
328 novel transposon, Tn7514, was present in both pLAO37 and pLAO82 but has
329 inserted in two different backbone locations (Figure 2B, Supplementary S11 &
330 S12)(42).

331 Although largely syntenic, the nucleotide identity of the pLAOG69 backbone differs
332  significantly from that of pLAO37 and pLAO82, consistent with its distinct replicon
333 type. The FlI-46 repAl gene of pLAOG9 is only 94% identical to Fll-2 repAl of
334 pLAO37 and pLAO82. The pLAOG69 transfer region also differed significantly
335 matching only 89% of pLAO37 and pLAO82 transfer region with an overall identity of
336 97.2% in a BLASTn comparison. pLAOG69 carried mcr-3.1, which differs from the
337 mcr-3.4 found in pLAO37 and pLAOS82 (Figure 3B). However, inspection of the
338 resistance region in pLAO69 that contains mcr-3.1 revealed that it is largely
339 comprised of the same confluence of mobile elements found in the resistance
340 regions of pLAO37 and pLAO82 (Figure 3B). In addition to their identities, the
341 configuration of these elements was the same in pLAO69 and pLAO37/pLAO82.

342

343 Insertion sequence type, abundance and diversity is associated with AMR
344 gene carriage

345 The vast majority (n=36) of the 40 AMR plasmids contained one or more IS. The four
346  exceptions were plasmids that contained AMR genes found in association with gene
347 cassettes (blayeg in pLAOG60 and mcr-1.1 in pLAO41 and aadA2, ant(3")-la, cmlALl,
348 dfrAl2 in pLAO78), or Miniature Inverted-repeat Tandem Elements (MITES) (tet(A)
349 in pLAO84). AMR plasmids carried almost three times more unique families of IS
350 than their non-AMR counterparts (Figure 4A), with an average of 6.75 unique IS
351 families in AMR plasmids (range 1-11), vs 2.4 in non-AMR plasmids (range 1-8).

352 AMR plasmids contained an abundance of 1S6/26 and 1S1-family elements. Of the

353 36 AMR plasmids that did carry IS elements, all but one carried at least one 1S6-
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354 family element (Figure 4A), and 1S1 family was present in 83% (n=30). 1S3 and IS5
355 were also common, present in 75% (n=27) and 78% (n=28) of AMR plasmids,
356 respectively. Differences in 1S6 family element carriage were seen between AMR
357 and non-AMR plasmids, with AMR plasmids containing a mean of five 1S6 family
358 elements per plasmid (range 0-9). In contrast, only 24% (n=4) of non-AMR plasmids
359 carried 1S6 family elements, with only 1-2 1S6 elements per plasmid (Figure 4A). IS6-
360 family elements were present in all plasmids that co-carry blacrx.v and mcr genes
361 (Figure 4B), where they were the most prevalent IS family. There was no clear
362 association between IS families and co-carriage of the mcr and blacrx-v genes
363 (Figure 4B). In plasmids where there was co-carriage of mcr and blacrx-w genes, 1S6
364 and 1S3 were the most abundant IS families, with all co-carriage plasmids
365 additionally carrying IS1380, IS1 and I1S4. In each co-carriage plasmid, more than six
366 different IS families were identified, and of the IS identified between 30%-46% were
367 1S6 family (Figure 4B) with 1S26 the most prominent element.

368

369 Discussion

370 In this study we conducted an in-depth investigation of the role of plasmids in the
371 alarmingly high levels of AMR found in E. coli that colonised the Gl tract of travellers
372 to Laos (7). We have revealed an enormous diversity in the plasmids of this E. coli
373  population, particularly in their resistance regions, many of which contained multiple
374 AMR genes. Concerningly, the majority of the 40 AMR plasmids (n=30, 75%)
375 contained ESBL genes, a colistin resistance gene or both. Our data showed the
376 abundance and importance of plasmid types F-type, X-type, Q-type and ColE1l-like
377 plasmids as vectors for AMR gene spread in E. coli in Laos. AMR plasmids
378 accounted for 38.1% (n=40) of the 105 distinct plasmids, 17 of these 40 AMR
379 plasmids identified were F-type (42.5%) highlighting the importance of F-type

380 plasmids as carriers of AMR genes (including ESBLs, mcr). F-type plasmids are
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381 known to carry AMR genes (43) and are an important factor in the high incidence of
382 AMR carriage in this study. Although four types dominated, the AMR plasmid
383 population identified in travellers to this region of Laos was extremely diverse with 29
384 different plasmid types, including phage and virulence plasmids, found to carry AMR
385 genes. Both AMR and non-AMR plasmids were identified throughout the study,
386 including several from baseline faecal samples (7) where plasmids may have been
387 acquired from travel to Laos or potentially from other travel.

388 A variety of less anticipated vehicles for AMR genes were identified in these Lao E.
389 coli. Small ColE1-like 8-RNA plasmids are common in E. coli (21, 44) and their high
390 prevalence would be expected. These 8-RNA (n=26) were the most prevalent
391 plasmid in the collection, followed by F-types (n=23) (Figure 1) but in contrast to F-
392 type plasmids, only a small number of 8-RNA plasmids (n=3) carried AMR genes.
393 This is consistent with previous findings that ColE1-like plasmids occasionally carry
394 resistance genes, including aminoglycoside and beta-lactam resistance determinants
395 (45). While relatively uncommon, the importance of small, high-copy number
396 plasmids to AMR should not be underestimated, as these can serve as platforms for
397 the evolution of new resistance phenotypes (45, 46). The tet(A)-carrying ColE1-like
398 plasmid pLAO84 clearly demonstrates the capacity these small plasmids have for
399 disseminating resistance genes. pLAO84 was found in multiple E. coli STs in this
400 collection, suggesting that it was circulating in the local E. coli population before
401 being acquired by multiple study participants (Supplementary S6). Additionally, the
402 presence of a plasmid almost identical to pLAO84 in GenBank (GenBank accession
403 CPO057097.1) indicates this ColEl-like plasmid lineage has already spread
404 internationally, as it was present in Escherichia fergusonii isolated from pig faeces in
405 the United Kingdom.

406 A Y-type phage-plasmid (pLAO59, OP242238, Supplementary S8) highlighted an

407 additional opportunity for AMR spread since there is a chance for co-selection of this
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408 MDR plasmid due to carriage of metal resistance genes e.g. for silver and copper.
409 pLAOS59 appeared not only to have lost key phage genes required for the Iytic
410 lifestyle (47), apparently as a result of deletions by insertion sequences, but carried
411 multiple AMR genes and heavy metal resistance genes. Co-resistance and cross-
412 resistance can cause co-selection of bacteria carrying metal resistance and AMR
413 genes, with the metal resistance gene causing maintenance of the AMR gene (48,
414  49). In Vientiane, Laos it has been reported that environmental samples sourced
415 near municipal solid waste landfill showed heavy contamination with heavy metals
416 including copper at levels higher than WHO permissible standards (50), indicating
417 the possibility that co-selection by metal resistance genes is a real environmental
418 pressure in the Vientiane area from which these isolates were collected. Silver and
419 copper can co-select for various AMR genes in E. coli including tetracycline and
420 sulphonamide resistance genes, which were also found in pLAO59 (51, 52).

421  Multiple combinations of AMR resistance genes were found in multiple genetic
422  contexts associated with various mobile genetic elements. mcr genes for example
423  were found next to multiple TEs (Figure 3, Supplementary S4) and mainly on F-type
424 plasmids, consistent with literature indicating that mcr-3.4 is associated with the FlI-
425 type (53, 54). ISEcpl is known to contribute to the spread of blacrx-m (55), but
426 interestingly only one complete ISEcpl was identified (pLAO32) as part of a blactx-m-
427  ss-containing transposition unit flanked by the 5 bp target site duplication TAACA.
428 Most blactx-m genes in this collection were associated with complete copies of 1S26
429 and partial ISEcpl (Figure 2, 3, Figure 4A and S8-S9). 1S26 from the 1S6/26 family is
430 known to play a key role in AMR gene dissemination (56-59). 1S26 carriage
431 predisposes plasmids to insertion of additional 1IS26 and any associated AMR genes,
432  which facilitates the accumulation of AMR genes at single sites leading to multi-drug

433 resistance phenotypes (56, 60). This appears to be the case with pLAO37, pLAO82

434 and pLAOG69 featuring 1S26 and based on what is known of I1S26 behaviour (56),
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435 1S26 is likely to have played an important role in the assembly of their complex co-
436 carriage resistance regions (Figure 3).
437  Analysis of plasmid contigs from 49 E. coli hybrid assemblies has confirmed the vast
438 and diverse genetic context of AMR in the Kantele et al dataset isolated in Laos, and
439 highlighted that as well as multiple unique colonising strains (7), there are multiple
440  distinct plasmids present in this dataset. Long-read sequencing has been critical in
441  highlighting the key role insertion sequence elements may play in the formation of
442  this complex set of MDR plasmids that create a risk of spread AMR. This previously
443  unreported cohort of MDR plasmids offers the alarming prospect that one of these
444 will create a stable configuration for the creation of a successful pandemic MDR
445  plasmid.
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647 Figure 2 - Diversity within FlI-2 plasmid replicon group showing variable
648 plasmid sizes and resistance genes. A) Annotated Fll-2 plasmid group maps
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649 indicate the location of blactx-w and mcr genes. Maroon arrows represent Prokka-
650 annotated genes. All other brightly coloured arrows represent antibiotic resistance
651 genes. Transposable elements are displayed as brightly coloured boxes. Notable
652 elements are 1S26 (bright green), ISEcpl (bright pink), Tn1721 (pale blue) and
653 ISKpn26 (lavender). The plasmid transfer (tra) region is highlighted with an orange
654 outline. B) 1Q-tree of FlI-2 plasmids core alignment showing AMR genes and
655 genel/presence absence matrix. The participant (Pt) and ST of the isolate from
656  which the plasmid was identified are displayed in different colours. Resistance genes
657 identified using Abricate (grey = present) are shown alongside the gene

658 presence/absence profile from Panaroo (royal blue = present).
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661 Figure 3 - Antimicrobial resistance gene carriage diversity by A) ST and B)
662 within mcr and blacrx.w co-carriage plasmids. All maroon genes are prokka
663 annotated genes. All other brightly coloured genes are antibiotic resistance genes.

664 Transposable elements (e.g. transposons, insertion sequences) are displayed as
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665 Dbrightly coloured boxes). The plasmid transfer (tra) region is highlighted with an

666 orange outline.
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670 Figure 4 — IS families present in A) all plasmid types displaying AMR gene

671 presence/absence and IS linked to B) mcr and blacrx-u co-carriage plasmids
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