bioRxiv preprint doi: https://doi.org/10.1101/2022.08.22.504722; this version posted August 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Single-cell functional genomics of natural killer cell evasion in blood
cancers

Olli Dufva'?** Sara Gandolfi'?*®®™* Jani Huuhtanen'?, Olga Dashevsky*®®™ Khalid Saeed'? Jay
Klievink'?, Petra Nygren'?, Jonas Bouhlal?, Jenni Lahtela®, Anna N&atanen®, Bishwa R Ghimire®, Tiina
Hannunen®, Pekka Ellonen®, Hanna Duan'?, Jason Theodoropoulos'?, Essi Laajala’?, Jouni Harkdnen®, Petri
Poldnen'®, Merja Heinéniemi®, Shizuka Yamano*®®’ Ryosuke Shirasaki**®’, David Barbie**®’, Jennifer
Roth®, Rizwan Romee*®’, Michal Sheffer*®®’ Harri Ldhdesmaki'', Dean A. Lee'?, Ricardo De Matos
Simoes*®®7, Matti Kankainen'?, Constantine S Mitsiades*55"* Satu Mustjoki'23*

*equal contribution
#equal contribution

"Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
2Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
3iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland

“Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Broad Institute of MIT and Harvard, Cambridge, MA, USA

5Department of Medicine, Harvard Medical School, Boston, MA, USA

"Ludwig Center, Harvard Medical School, Boston,MA, USA

8Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland

SFaculty of Health Sciences, A.l. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
“Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA

""Department of Computer Science, Aalto University, Espoo, Finland

2Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH

Address correspondence to: satu.mustjoki@helsinki.fi (S.M.), and constantine_mitsiades@dfci.harvard.edu (C.S.M.)

SUMMARY

Natural killer (NK) cells are emerging as a promising therapeutic option in cancer. To better understand how cancer
cells evade NK cells, we studied interacting NK and blood cancer cells using single-cell and genome-scale functional
genomics screens. At single-cell resolution, interaction of NK and cancer cells induced distinct activation states in both
cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to more
resistant B-lymphoid cancers. CRISPR screens uncovered cancer cell-intrinsic genes driving sensitivity and resistance,
including antigen presentation and death receptor signaling mediators, adhesion molecules, protein fucosylation genes,
and transcriptional regulators. CRISPR screens with a single-cell transcriptomic readout revealed how these cancer cell
genes influenced the gene expression landscape of both cell types, including regulation of activation states in both
cancer and NK cells by IFNy signaling. Our findings provide a resource for rational design of NK cell-based therapies in
blood cancers.

HIGHLIGHTS

Transcriptomic states of interacting NK cells and cancer cells depend on cancer cell lineage
Molecular correlates of increased sensitivity of myeloid compared to B-lymphoid cancers include activating
receptor ligands NCR3LG1, PVR, and ULBP1

o New regulators of NK cell resistance from 12 genome-scale CRISPR screens include blood cancer-specific
regulators SELPLG, SPN, and MYB

e Single-cell transcriptomics CRISPR screens targeting 65 genome-wide screen hits identify MHC-I, IFNy, and
NF-kB regulation as underlying mechanisms

INTRODUCTION

NK cells are cytotoxic innate lymphoid cells which can
directly eliminate cancer cells through secretion of
cytolytic granules and trigger an immune response via
secretion of immunomodulatory cytokines (Chiossone et
al., 2018). NK cell activation relies on a balance between
activating and inhibitory signals derived from surface
receptors engaged with cognate ligands on target cells
(Lanier, 2003). Data on NK cells driving the graft-versus-
leukemia effect in allogeneic hematopoietic stem cell

transplantation (Ruggeri et al., 2002) and more recently on
the efficacy of chimeric antigen receptor (CAR) NK cells
(Liu et al., 2020) have provided encouraging evidence on
the therapeutic potential of NK cells in blood cancers. As
a result, NK cell-based immunotherapies (adoptive
transfer of allogeneic NK cells, bispecific NK engager
antibodies, and CAR NK cells) are actively pursued in
patients with hematological malignancies (Myers and
Miller, 2021; Shimasaki et al., 2020).
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Single-cell analyses have provided unbiased
transcriptional profiles of immune cell subsets derived
from healthy and malignant tissues, as well as of
transcriptional programs in tumor cells (Cheng et al., 2021;
Crinier et al., 2018; Jerby-Arnon et al., 2018; Pfefferle et
al., 2019; Smith et al., 2020; Yang et al., 2019; Zheng et
al., 2021). However, these approaches are not optimally
positioned to capture the dynamic changes in tumor and
immune cells when these cells interact. How cytotoxic
lymphocytes such as NK cells react to tumor cell challenge
and how tumor cells in turn respond by altering their
transcriptional states has not been investigated in a
systematic, transcriptome-wide manner.

Genome-scale CRISPR screens have revealed cancer
cell-intrinsic mechanisms of evasion from T cell killing in
solid tumors (Kearney et al., 2018; Lawson et al., 2020;
Patel et al., 2017) and hematological malignancies (Dufva
et al., 2020a; Singh et al., 2020), confirming that unbiased
functional genomics can reveal underappreciated aspects
of immune-cancer cell interactions. CRISPR screens and
measurement of NK cell sensitivity across a large panel of
genotypically diverse cell lines using PRISM (Yu et al.,
2016) identified molecular factors regulating sensitivity of
solid tumor cells to NK cell mediated killing (Sheffer et al.,
2021). In contrast, a systematic evaluation of resistance
and sensitivity to NK cell therapies across hematological
malignancies has not been performed, limiting our
biological understanding of endogenous NK cell-mediated
anti-cancer immunity as well as the therapeutic use of NK
cells for blood cancers, the main context for which clinical
proof-of-concept is available and rapid further
development is anticipated for NK cell-based therapies.

As a result, several key questions in translating the
potential of NK cells as effective therapies in blood
cancers remain unanswered. How do NK cells and cancer
cells respond to their interaction by changing their
transcriptional profiles and do these changes differ
depending on the phenotype or genetic makeup of the
cancer cells? Are there previously undiscovered
mechanisms mediating NK cell cytotoxicity, including
mechanisms unique to blood cancers? Do genetic or
epigenetic alterations in blood cancer cells from individual
patients influence NK cell sensitivity/resistance
mechanisms, ultimately leading to differences in sensitivity
to NK cells between molecular subtypes of blood cancers?
Linking genomic subtypes of blood cancers to NK cell
sensitivity would enable identification of patient groups
more likely to benefit from NK cell-based immunotherapy,
and pinpoint molecular mechanisms that could be
therapeutically  targeted to  sensitize  resistant
malignancies to NK-cell based therapies.

Here, we sought to answer these questions by combining
multiplexed single-cell RNA-seq (scRNA-seq) profiling of
interacting NK cells and cancer cells, PRISM-based
profiling of NK cell sensitivity across a panel of blood
cancer cell lines, and genome-scale and single-cell
transcriptomic CRISPR screens of cancer-cell intrinsic NK
cell resistance mechanisms (Figure 1A). By integrating
these data and patient genomic profiles, we provide a
comprehensive landscape of functionally validated genetic
mechanisms which influence how NK cells recognize and
kill malignant hematopoietic cells. The results offer a

roadmap to facilitate development of NK-cell based
immunotherapy for blood cancers and beyond. The data
are available for interactive  exploration at
https://immunogenomics.shinyapps.io/nkheme/.

RESULTS

Multiplexed scRNA-seq defines phenotypic changes
in NK cells interacting with blood cancer cells
Defining how NK cells and cancer cells change their
phenotype upon their interaction is essential for
understanding potential mechanisms of resistance. To
comprehensively profile the cell states of interacting NK
cells and blood cancer cells, we cultured 26 different cell
lines representing diverse hematologic neoplasms either
alone or with NK cells derived from a single donor (Figure
1B, Table S1). The cancer types included acute and
chronic myeloid leukemia (AML and CML), B and T cell
acute lymphoblastic leukemia (B-ALL and T-ALL), B cell
lymphoma (BCL), and multiple myeloma (MM). We
studied both NK cells extracted directly from the peripheral
blood and NK cells expanded ex vivo using feeder cells
and IL-2, corresponding to those used in adoptive NK cell
immunotherapy trials (Ciurea et al., 2017; Liu et al., 2020).
After 24 h co-culture, we labeled the cells from each
monoculture or co-culture condition with oligonucleotide-
conjugated antibodies against ubiquitously expressed
surface proteins (with different oligonucleotide for each
mono- or co-culture), enabling multiplexing in the scRNA
seq using the cell hashing method (Stoeckius et al., 2018).
Across the 82 scRNA-seq samples, we obtained a total of
61,715 cells (753 cells per sample on average) classified
as singlets based on hashtag barcodes, including 8,851
NK cells (182 cells per sample on average) and 52,864
target cells (645 cells per sample on average) (Figure
S1A-B; Table S1).

We first focused on NK cells. After correcting for cell cycle
and batch effects, unsupervised clustering of the ex vivo
expanded NK cells from all conditions revealed five distinct
clusters (see Methods; Figures 1C and S1C). Most
monocultured NK cells belonged to two clusters: resting
NK cells (cluster 0) expressing markers of CD56bright NK
cells (NCAM1/CD56, KLRC1/NKG2A, GZMK) (Crinier et
al., 2018; Pfefferle et al., 2019; Smith et al., 2020; Yang et
al., 2019), consistent with the CD56bright phenotype of
expanded NK cells (Denman et al., 2012; Lieberman et al.,
2018), and adaptive NK cells (cluster 1) based on
expression of KLRC2/INKG2C and LAG3 (Holmes et al.,
2021; Merino et al., 2019) (Figure 1C). In contrast, the
remaining three NK cell clusters (clusters 2, 3, and 4) were
present in very small quantities when NK cells were
cultured alone, but were enriched in the co-culture
conditions with tumor cells. NK cells with an activated
phenotype (cluster 2) expressed genes encoding several
co-stimulatory receptors TNFRSF18/GITR, TNFRSF9/4-
1BB, TNFRSF4/0X-40, and CRTAM, inhibitory receptors
such as HAVRC2/TIM-3 and TIGIT, immediate-early
genes DUSP2, DUSP4, and EGR2, the death receptor
ligand TNFSF10/TRAIL, and ENTPD1/CD39 associated
with tumor-reactive T cells and exhaustion (Gupta et al.,
2015; Sade-Feldman et al., 2018; Simoni et al., 2018). On
a pseudotemporal trajectory from the resting to the
activated cluster, BATF, HAVCR2, and ENTPD1 were
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Figure 1. Single-cell transcriptomics of NK cells interacting with blood cancer cells

(A) Overview of the study.
(B) Multiplexed co-culture scRNA-seq workflow.

(C) UMARP visualization of expanded NK cells from all conditions, including co-culture with 26 cell lines and NK cells cultured alone. Cells are
colored based on the clusters and marker genes are shown for each cluster selected from the genes significantly overexpressed in each cluster

compared to other clusters.

(D) UMARP visualizations as in C showing pseudotime starting from cluster 0 (resting) and ending in cluster 2 (activated) (top), and expression of
genes enriched in the activated cluster (middle and bottom). Arrow indicates the pseudotime trajectory.

(E) Heatmap of selected genes upregulated in the activated cluster. Cells included in the trajectory in D are shown ordered by pseudotime.

(F) UMAP visualizations of expanded NK cells across all conditions, including co-culture with 26 cell lines and NK cells cultured alone.

(G) Bar plot of percentages of NK cells belonging to different clusters in each condition, including co-culture with 26 cell lines and NK cells cultured
alone. Conditions are ordered by the combined percentage of cells in resting and adaptive (clusters 0 and 1) in decreasing order.

(H) Box plot of percentages of NK cells belonging to different clusters in each condition stratified by cancer type. P value between all groups is
obtained using a Kruskal-Wallis test. Boxes indicate IQR with a line at the median. Whiskers represent the min and max values at most 1.5

IQR from the quartiles.
See also Figure S1 and Table S1.

expressed early in the transition to the activated state,
whereas TNFRSF18, TNFRSF9, TNFRSF4, and CRTAM
marked the terminal point of the NK cell activation state
spectrum (Figures 1D-1E). Other clusters enriched upon
target cell enrichment included NK cells with high type |
interferon (IFN) signature (cluster 3) expressing antiviral
genes such as MX1, MX2, OAS1, OAS2, and OAS3 and
cytokine-producing NK cells expressing several cytokine
genes including CCL3, CCL4, TNF, and IFNG (cluster 4).

Different cell lines induced distinct changes in the
phenotype of NK cells. Some cell lines such as K562
(CML), JURKAT (T-ALL), and SUDHL4 (BCL) induced
over 50% of NK cells to transition into the activated state
(cluster 2), compared to less than 20% with several B-ALL
and MM cell lines (Figures 1F-1H). In contrast to the
gradual differences in transition to the activated cluster 2
across cell lines, the type | IFN NK cell state (cluster 3)
was only induced by certain cell lines, including the AML
lines GDM1, OCIM1, and THP1, and the BCL line RI1. As
almost all cell lines were matched with the NK cells with
regard to HLA-C1/HLA-C2 groups (Table S1), cancer cell
features other than human leukocyte antigen (HLA) types
are likely responsible for the distinct NK cell activation
states in the co-culture conditions.

NK cells extracted directly from peripheral blood
mononuclear cells (PBMC) from the same donor without
expansion showed largely similar responses to co-culture
with cancer cells, indicating that the observed activation
states are also relevant to NK cells normally found in
circulation (Figures S1D-S1G). In PBMC NK cells,
however, the transition to the activated cluster was tightly
coupled with the cytokine cluster (Figure S1G), in contrast
to expanded NK cells where the cytokine cluster varied
independently of the activated cluster. Together, these
findings indicate that NK cells shift into activated states
with an altered repertoire of co-stimulatory and co-
inhibitory receptors in response to engagement with
cancer cells, and that the magnitude and direction of the
transition varies depending on the target cells.

Transcriptomic responses of blood cancer cells to NK
cell attack

Having defined the changes in NK cell phenotypes
resulting from co-culture, we examined the transcriptomic
responses induced in cancer cells by the NK cell attack.
Comparison of all expanded NK cell-treated target cells
with the untreated controls indicated a strong interferon y
(IFNy) response induced by NK cell treatment (Figure 2A;
Table S1). A core set of 17 genes significantly induced in

over 75% of the cell lines comprised the class | major
histocompatibility complex (MHC-I) genes (B2M, HLA-A,
HLA-B, HLA-C, and HLA-E), JAK-STAT signaling genes
(STAT1, IRF1, |IRF9), immunoproteasome dgenes
(PSMBS8, PSMB9, PSBM10, PSME1, PSME?2), the
ubiquitin-conjugating enzyme gene UBEZ2L6, granulysin
(GNLY), and the chemokine-ligand 5 gene (CCL5) (Figure
2B). To test which cell lines showed the strongest
transcriptomic responses, we ranked the cell lines by the
log2 fold change (log2FC) of a score comprising the 17
core NK cell-induced genes (Figures 2B and S1H-S1I).
This revealed particularly strong responses in T-ALL and
myeloid AML and CML cell lines compared to other blood
cancer types (Figure 2C). Transcriptomic changes
induced by non-expanded PBMC-derived NK cells in
blood cancer target cells were similar but less pronounced
than those observed with expanded NK cells (Figure S1l).

To uncover distinct transcriptional programs induced in
subsets of the cell lines, we examined 200 genes most
variably induced across cell lines by unsupervised
clustering (Figure S1H). This highlighted IFNy-associated
programs, including the core set of NK-induced genes as
well as cytokines such as CXCL9, CXCL10, and TNFSF10
(TRAIL). MHC class Il (MHC-II) genes were induced more
prominently in monocytic cells and several B cell lines. A
program related to differentiation of myeloid cells towards
monocytes, macrophages, and neutrophils was induced in
AML cells, including genes such as FCGR1A, CD63,
cathepsins, and the TIM-3 ligand LGALS9, suggesting that
NK cell attack may induce maturation of monocytic
leukemias, as has been reported in response to IFNy
(Matsuo et al., 1997). Strikingly, a type I IFN signature was
induced in many of the same cells which induced a similar
signature in the NK cells (GDM1, R1, and THP1),
indicating a coordinated response in both cell types
evoked by their interaction (Figures 2B and S1H). When
comparing the core NK signature induced in the target
cells with the percentage of NK cells shifting towards the
activated/type | IFN phenotypes, we indeed observed a
positive correlation between NK cell and target cell
activation (Figure 2D).

To determine whether similar NK cell-induced signatures
in cancer cells could be found in patient data, we
compared the differentially expressed genes with vs.
without NK cell co-culture in vitro to genes correlating with
infiltration by cytotoxic lymphocytes (NK or T cells) in
patients with diffuse large B cell lymphoma (DLBCL)
(Reddy et al., 2017) or AML (2013) (Figures 2E and S1J).
The majority of the NK-induced genes, particularly the 17-
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Figure 2. Transcriptomic responses of blood cancer cells to NK cell attack
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Volcano plot of differentially expressed genes between all NK-cell treated cancer cell lines and the same cell lines cultured alone. Red dots
indicate genes significantly (FDR < 0.05) enriched in NK-treated cells and blue dots indicate genes enriched in untreated cells.

Dot plot of selected genes upregulated in cancer cells upon exposure to expanded NK cells. The genes shown include the core NK cell-induced
genes (17 genes induced in at least 75% of the cell lines) and other genes induced in subsets of the cell lines grouped based on functional
categories. The cell lines are ordered based on the log2 fold change of a score comprising the core NK cell-induced genes shown as a bar plot
at the top. Color indicates log2 fold change between conditions and dot size indicates the negative log10 FDR. Only dots where P < 0.05 are
shown, and circled dots indicate FDR < 0.05. At the bottom, examples of UMAP visualizations of the cell lines GDM1, K562, and 697 are shown
colored according to the co-culture condition.

Box plot of the log2 fold change of the core NK cell-induced gene score between NK-treated and untreated cells stratified by cancer type. P
value between all groups is obtained using a Kruskal-Wallis test and p values between each pair using Wilcoxon rank sum tests followed by
Benjamini-Hochberg (BH) adjustment. Only p values for significant pairs are shown (* < 0.05). Boxes indicate IQR with a line at the median.
Whiskers represent the min and max values at most 1.5 IQR from the quartiles.

Scatter plot comparing NK cell activation (percentage of NK cells in activated and type | IFN clusters after co-culture with the cell lines) and core
NK cell response gene set induction in NK-treated target cells (log2 fold change in core NK cell response score compared to untreated).
Correlation coefficient and p value are obtained using Spearman’s rank correlation. Dots are colored according to cancer type as in C.

Scatter plot comparing genes induced by NK cell co-culture in target cells and genes correlating with NK and T cell infiltration (cytolytic score)
in DLBCL patient samples from Reddy et al. Genes with significant correlation and differential expression (FDR < 0.05) and scRNA-seq log2
fold change > 0.3 are labeled in red. Genes included in the core NK-induced genes are labeled in green.

Dot plot of ligand-receptor interactions induced by NK cell activation. Dot size and color indicates the number of cell lines (out of total 26) having
significant interactions with each cluster of expanded NK cells according to CellPhoneDB. Shown are interactions most enriched in the three
activation-related clusters (activated, type | IFN, cytokine-producing) compared to the two other clusters (resting and adaptive), indicating
interactions induced by NK cell activation states. Interactions are ordered based on functional categories.

Dot plot of ligand-receptor interactions induced by cancer cell response to NK cells. Dot size and color indicates the number of cell lines (out of
total 26) having significant interactions with each cluster of expanded NK cells according to CellPhoneDB. Shown are interactions most enriched
in the NK cell-treated conditions compared to untreated, indicating interactions induced by cancer cell response to NK cell attack. Interactions

are ordered based on functional categories.
See also Figure S1 and Table S1.

gene core set, correlated positively with NK cell infiltration,
suggesting that similar transcriptomic responses occur in
Vivo.

Given the observed changes in expression of various
receptors in NK cells and ligands in cancer cells, we used
the CellPhoneDB (Efremova et al., 2020) to study which
ligand-receptor interactions would be unique to cells in the
interacting states, as opposed to resting states. Several
interactions were more frequent between the cancer cells
and co-culture-related NK cell clusters (activated, type |
IFN, or cytokine), compared to the resting or adaptive-like
clusters (Figure 2F). These included ligands for activating
and inhibitory receptors (TNFSF9-TNFRSF9, TNFSF4-
TNFRSF4, LGALS9-HAVCR2), death  receptors
(TNFRSF10A/B-TNFSF10, FAS-FASLG), cytokines
(TGFB1/3-TGFBR2), and adhesion molecules (ICAM1-
aMb2/aXb2 complex, EFNA3/4/5-EPHA4), indicating that
new interactions emerge upon NK cell transition into the
cancer cell-induced states. In turn, several interactions
were induced by transition of the cancer cells to the NK
cell-treated states, including interactions of MHC-I with
inhibitory receptors, and the engagement of the IFNy-
regulated cytokine CXCL10 with the CXCRS3 receptor
(Figure 2G). Taken together, the transcriptomic responses
of tumor cells to NK cell attack depend on the lineage and
correlate with NK cell activation, resulting in new ligand-
receptor interactions not found in the resting state.

Molecular correlates of NK cell sensitivity across
blood cancers

To study cancer cell sensitivity to NK cells across different
lineages and stages of maturation, we performed
phenotypic studies on a pool of 63 molecularly-annotated
DNA-barcoded blood cancer cell lines, including myeloid
and lymphoblastic leukemia, DLBCL, and MM cells
(PRISM system, Figure 3A) (Yu et al, 2016). We
quantified the dose-dependent responses to primary NK
cells using the relative abundance of barcodes in treated
cells compared to controls (Table S2), followed by

integrated computational analyses to identify candidate
molecular markers correlating with tumor cell sensitivity or
resistance to NK cells.

We observed substantial heterogeneity across blood
cancer types in their sensitivity to NK cells (Figures 3B-3C
and S2A). AML cell lines were the most sensitive, whereas
B-ALL cells were generally resistant. MM cell lines were
on average relatively resistant and T-ALL cell lines were
sensitive, but both showed a high degree of variation
between individual cell lines, implying the existence of
sensitive and resistant subgroups. Such heterogeneity
could also be observed when comparing the sensitivity of
each individual cell line and the corresponding percentage
of NK cells shifting towards the activated/type | IFN
clusters (Figures 3D, 1H, and S2B). Not all responsive cell
lines elicited a strong transition of the effector cells into an
activated/type | IFN phenotype. However, all of the
resistant cell lines we tested failed to induce this
phenotype, indicating that the ability to induce an NK cell
activation state is one of the possible mechanisms
explaining the heterogeneity across disease subtypes
(Figure 1G).

We next asked which molecular features could explain the
observed variation in NK cell sensitivity. We explored
correlations of the AUC of NK cell sensitivity to gene
expression, DNA methylation, mutations, microRNAs,
proteomics, and metabolomics in the Cancer Cell Line
Encyclopedia (CCLE) multi-omics data (Barretina et al.,
2012; Ghandi et al., 2019) (Figures 3E and S2C). Among
the genes most highly correlated with sensitivity to NK
cells were the activating receptor ligands NCR3LG1 and
ULBP1 (false discovery rate (FDR) cutoff 15%).
Expression of NCR3LG1 and ULBP1 correlated negatively
with methylation of their promoter regions (Figures 3F-
3G), suggesting methylation-based epigenetic regulation
as a basis for cancer type heterogeneity of these activating
signals. Genes that correlated with resistance to NK cells
included components of the alternative NF-kB pathway
(TNFRSF13B/TACI, MAP3K14/NIK).
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Figure 3. PRISM screen of NK cell sensitivity across blood cancer cell lines
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PRISM screen workflow.

Examples of dose-response curves of NK cell sensitivity at various effector-to-target ratios obtained using PRISM for two cell lines, 697 (B-
ALL) and THP-1 (AML). The percent viability of the target cells at each effector-to-target ratio is obtained by normalizing the luminescence
values to the mean of the untreated (0:1) condition. Colored dots represent technical replicates (n = 8), black dots indicate mean, error bars
indicate standard deviation, and the area under the dose-response curve (AUC) is shown next to the curve. Lower AUC denotes sensitivity to
NK cells and higher AUC resistance.

Box plot of the sensitivity of different hematological malignancies to NK cell cytotoxicity shown as AUC of the dose-response curve. P value
between all groups shown in the figure is obtained using a Kruskal-Wallis test and p values between each pair using Wilcoxon rank sum tests
followed by Benjamini-Hochberg (BH) adjustment. Only p values for significant pairs are shown (* < 0.05, ** < 0.01). Boxes indicate IQR with
a line at the median. Whiskers represent the min and max values at most 1.5 IQR from the quartiles.

Scatter plot comparing NK cell activation (percentage of NK cells in activated and type | IFN clusters after co-culture with the cell lines) and
sensitivity of the cell lines to NK cells in PRISM quantified as AUC of the dose-response curve. Correlation coefficient and p value are obtained
using Spearman'’s rank correlation. Dots are colored according to cancer type as in C.

Heatmap of molecular correlates of sensitivity to NK cells across blood cancer cell lines. Cell lines are ordered by decreasing sensitivity
(increasing PRISM AUC). Expression of genes and mutations most highly correlated with sensitivity or resistance to NK cells are shown. For
the shown genes, correlation of expression with methylation is shown on the right, with a separate column indicating significance of the
correlation at 5% FDR. In addition, expression of the core NK cell response gene set derived from co-culture scRNA-seq experiments as GSVA
score and HLA | score summarizing expression of MHC-I complex genes are shown.

Scatter plot comparing expression of NCR3LG 1 with NK cell sensitivity (PRISM AUC). Dot color indicates NCR3LG1 methylation. Correlation
coefficient and p value are obtained using Spearman'’s rank correlation.

Scatter plot comparing expression of ULBP1 with NK cell sensitivity (PRISM AUC). Dot color indicates ULBP1 methylation. Correlation
coefficient and p value are obtained using Spearman'’s rank correlation.

Scatter plot comparing expression of the core NK cell response gene set as GSVA score with NK cell sensitivity (PRISM AUC). Correlation
coefficient and p value are obtained using Spearman’s rank correlation.

Scatter plot comparing HLA | score summarizing expression of HLA | complex genes with NK cell sensitivity (PRISM AUC). Correlation
coefficient and p value are obtained using Spearman'’s rank correlation.

See also Figure S2 and Table S2.

In gene set variation analysis (GSVA), the core NK cell
response signature derived from single-cell data (Figure
2B) correlated with resistance (Figure 3H) concordantly
with the class | HLA expression score (Figure 3l). This
observation supports the hypothesis that pre-existing
expression of those adaptive response molecules may
contribute to the intrinsic resistance of cancer cells to NK
cells. Although not meeting the criteria for significance
after multiple testing correction, several genetic alterations
and protein, miRNA, and metabolite levels were
associated with sensitivity to NK cells (Figures 3E and
S2C). TRAF3 mutations mostly found in MM and KRAS
mutations found in multiple cancer types correlated with
resistance (Figure 3E). In contrast, NLRC5 mutations
were associated with sensitivity, consistent with the MHC-
I regulatory function of NLRC5 (Meissner et al., 2010).
These molecular correlates may partially reflect different
patterns across cancer types, which itself emerged as a
key determinant of NK cell sensitivity, but also potential
mechanistic roles of the respective molecules in regulating
NK cell response.

CRISPR screens identify genetic determinants of NK
cell sensitivity and resistance in hematological
malignancies

To further explore mechanisms that could potentially
explain the observed heterogeneity in response to NK
cells, we performed genome-scale CRISPR screens in cell
lines representing a spectrum of hematologic
malignancies, with variable baseline sensitivity to NK cells.
We transduced cell lines from BCL (SUDHL4), B-ALL
(NALM6), MM (MM1.S, LP1, KMS11), CML (K562), and
AML (MOLM14) with either the GeCKO v2 library (Sanjana
et al., 2014) or the Brunello library (Doench et al., 2016)
for loss-of-function (LOF) screens (see Methods). MM cell
lines were also transduced with the gain-of-function (GOF)
Calabrese library (Sanson et al., 2018) in order to uncover
genes with low expression at baseline whose
overexpression might alter the cancer cell response to NK

cells. Pools of transduced tumor cells were then co-
cultured with IL-2-expanded donor-derived NK cells or the
NK cell line KHYG1 for a period ranging from a minimum
of 24 hours to up to two weeks (Figure 4A; Table S2).

As expected, LOF of molecules belonging to the MHC-I
complex and the antigen presentation machinery were
significantly depleted across all cell lines, reflecting the
missing-self mechanism of NK cell activation and thus
providing an internal quality control of the screens (Figures
4B-4C and S3A). In addition, other depleted knockouts
included genes controlling MHC-lI transcriptional
regulation, such as NLRC5, RFXAP, and RFXANK, as well
as peptide-loading complex components TAP1, TAP2,
and TAPBP, indispensable for MHC-I surface expression.
Also, LOF of genes belonging to the IFNy signaling
pathway — namely JAKT and STAT1 — were significantly
depleted in co-culture conditions compared to controls
across most cell lines, in keeping with the role of IFNy-
related NK cell response signature in driving reduced NK
cell sensitivity observed in the PRISM data (Figures 3H-
3l). These findings highlight that genes associated with
IFNy signaling and the antigen presentation machinery are
prominent suppressors of NK cell killing regardless of the
lineage and the disease subtype.

In contrast, LOF of the death receptor signaling pathway
genes — specifically TNFRSF1B, TNFRSF10A,
TNFRSF10B, FAS, FADD, BID, and CASP8 — was
associated with decreased response to NK cell killing,
while the overexpression of TNFRSF10D conferred higher
sensitivity in two MM cell lines (Figure 4B-C). Consistent
with these findings, LOF of the negative regulators of
death receptor signaling CFLAR (c-FLIP), TRAF2, and
XIAP sensitized multiple cell lines to NK cells. An
integrative analysis of data obtained in NALMG6 cells
treated with either NK cells or CAR T cells (Dufva et al.,
2020a) indicated FADD and TNFRSF10B LOF as a
shared mechanism of resistance, consistent with death
receptor signaling mediating both NK and T cell
cytotoxicity (Figure S3B). Gene set enrichment analysis
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Figure 4. Genome-scale CRISPR screens of NK cell resistance and sensitivity in hematological malignancies

(A)
(B)

(©)

(D)

(E)

(F)
(©)

Genome-scale CRISPR screen workflow.

Scatter plot of genes conferring resistance or sensitivity to NK cells in genome-scale CRISPR screens. The y axis indicates the p value
multiplied by the sign of the log2 fold change. Genes with p < 0.0001 and absolute value of the log2 fold change > 0.75 in at least one screen
are shown for the screen with the highest significance for each gene. Dot size indicates the absolute value of the log2 fold change of the
labeled genes. Genes are in a randomly sampled order on the x axis. Selected genes out of those with p < 0.0001 included in Figure 1C are
colored based on the functional categories.

Dot plot of genes conferring resistance or sensitivity to NK cells in genome-scale CRISPR screens. Shown are selected genes out of those
with p < 0.0001 in at least one screen or genes validated in separate assays. Color indicates log2 fold change between NK cell-treated and
untreated conditions and dot size indicates the negative log10 p value, with only dots where p < 0.05 shown. In LOF screens, blue color
indicates depletion of the edited cells and red color enrichment with NK cell treatment. In GOF screens, green color indicates enrichment and
pink indicates depletion of the edited cells with NK cell treatment.

Selected genes validated using pooled CRISPR screens with focused libraries targeting genome-wide screen hits in MM cell lines. Plots show
log2 fold change between NK-treated and untreated cells for each guide RNA. Olfactory receptor (OR) genes were used as a control and
shown in gray is the average of all OR genes sgRNAs log2 fold change, while the dashed lines represent the 95% confidence interval.
Genes validated using single gene targeting of genome-wide screen hits with a luciferase cytotoxicity assay. Plots show log2 fold change of
luciferase-based cell viability between NK-treated and untreated cells for each guide RNA. Dots indicate means of technical replicates for each
sgRNA, with two sgRNAs used for each gene.

Frequency of mutations in CRISPR screen hit genes in patients with hematological malignancies. Stacked bars indicate percentages of
mutated samples of each cancer type cohort. Only genes with mutations in > 1.5% patients cumulatively in all cancer types are shown.
Volcano plot comparing expression of CRISPR screen hit genes between blood cancer and solid tumor cell lines in CCLE RNA-seq data.
Adjusted p values (-log10) on the y axis are obtained using Wilcoxon rank sum tests followed by Bonferroni correction and log2 fold change
of medians is shown on the x axis. Genes with log2 fold change > 2 or < -2 and negative log2 adjusted p value > 20 are labeled and shown as

colored dots.
See also Figures S4 and S5 and Tables S3 and S4.

(GSEA) revealed enrichment of pathways including
FASL/CD95L signaling, transcription of death receptors
and ligands, TRAIL signaling and TNFR1 induced NFkB
signaling pathway as well as IFNy signaling, antigen
processing and presentation, class | HLA assembly and
peptide loading in multiple cell lines, supporting the broad
relevance of death receptor apoptosis and MHC-I in
regulating NK cell cytotoxicity (Figure S3C).

The overexpression of several activating NK cell receptor
ligands sensitized cells to NK cell-mediated killing in our
MM1.S GOF screen. These included the CD2 ligand
CD58, the NKG2D ligands ULBP1, ULBP2, ULBP3, and
MICA, the 2B4 ligand CD48, the DNAM-1 ligand PVR, as
well as the TNFSF9, the ligand for the 4-1BB receptor
induced in NK cells by tumor challenge in our scRNA-seq
analyses. However, the activating receptor ligands
showed a heterogeneous pattern across cell lines in the
LOF screens. NCR3LG1, encoding the ligand for NKp30,
emerged as an important mediator of NK cell cytotoxicity
against CML K562 and AML MOLM14 cells (Figure 4B-C)
and was coherently highly expressed in NK-sensitive
myeloid leukemias in the PRISM studies (Figure 3E).
Other NK cell activating ligands that were depleted in
tumor cells surviving NK cell treatment included CD58 in
K562 cells, CD48 in ALL NALM6 and myeloma MM1.S
cells, as well as ULBPZ2 in NALMG6 cells (Figure 4B-C).
Activating receptor ligands NCR3LG1 and ULBP1 were
concordantly among the genes most highly correlated with
NK cell sensitivity in the PRISM studies (Figure 3E).
Altogether, these findings suggest that while inhibitory
signals by MHC-I and death receptor-mediated apoptosis
are common across cell lines and cancer types, distinct
activating receptor ligands promote NK cell cytotoxicity
depending on the cell line.

Several adhesion molecules regulated the response to NK
cell cytotoxicity. Beyond the established LFA-1 ligand
ICAM1, which promoted NK cell killing of several cell lines,
we also identified other adhesion molecules not previously
associated with NK cell function, including SPN (CD43),
the P-selectin ligand SELPLG (PSGL1), and CD44, which
promoted resistance to NK cell killing. It has been reported
that PSGL1, which was a hit in MM.1S, requires O-glycan
fucosylation to become functional (Harjunpaa et al., 2019).

Interestingly, other fucosylation-related genes were
identified regulating response to NK cell cytotoxicity in the
LP1 cell line. The engagement of LP1 with NK cells was
associated with a strong depletion of sgRNAs for genes
essential for fucosylation including FUT8, GMDS and
SLC35C1 (Schneider et al.,, 2017), while the
overexpression of terminal-fucosylation gene FUT4
induced resistance to NK cell killing in the same cell line
(Figure S3A). Overexpression of the mucin genes MUC1
and MUC21 conferred resistance to NK cells in MM lines.
Altogether, these data point to a potential role of
glycoproteins and surface ligand fucosylation for
promoting resistance to NK cells.

A broad collection of transcriptional regulators and
chromatin modifiers regulated NK cell response in
hematologic malignancies. For example, loss of ARID1A,
a member of the SWI/SNF chromatin remodeling complex,
conferred resistance to NK cells in four cell lines (Figure
4B). In particular, the MM line MM1.S exhibited decreased
response to NK cell treatment when ARID1A expression
was lost, while it became significantly more sensitive when
the same gene was overexpressed in the GOF screen.
Several other regulators of gene expression also
influenced sensitivity to NK cells, including the erythroid
transcription factors GF/1B and TAL1 in K562 CML cells,
as well as the m6A RNA methylation modifier YTHDF2
and the transcription factors CMIP, FOXA1, PCGFS},
RBBP4, IRF4, MYB, and MSI2 in other cell lines.

Other genes not previously linked to NK cell resistance
included SPPL3 in NALM6. LOF of the peptidase and
positive regulator of HLA-I presentation SPPL3 (Jongsma
et al., 2020) conferred resistance also against CAR T cells,
suggesting a mechanism related to general lymphocyte
cytotoxicity instead of an NK cell-specific effect. In
addition, our genome-scale screens identified the NF-kB
negative regulator NFKBIA, the G-protein alpha subunit
GNA13, and the antiviral gene ZC3HAV1, which was
identified in both LOF and GOF screens in the MM cell line
MM1.S.

We validated results from the genome-scale screens
using a focused subgenome-scale sgRNA library as well
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as by targeting individual genes in select cell lines (Figures
4D-4E and S4A). These experiments largely reproduced
the findings from the genome-scale screens, including the
above-mentioned genes not previously linked to NK cell
sensitivity, confirming their role in functionally regulating
sensitivity to NK cell cytotoxicity.

Genetic alterations and transcriptional regulation of
NK cell susceptibility genes in cancer cells from
patients with blood cancers

Alterations in CRISPR screen hit genes in cancer cells
from patients with hematological malignancies could
influence the efficacy of both the endogenous NK cell
response and NK cell-based immunotherapies. To explore
this, we first searched for somatic mutations in public
datasets of AML, ALL, MM, DLBCL, and CLL. Somatic
mutations occurred in the MHC-lI complex subunit gene
B2M, NF-kB signaling genes (NFKBIA, BIRCS3),
transcription factors and epigenetic modifiers (ARID1A,
IRF4, STAG2, MYB), the CD2 ligand CD58, the extrinsic
apoptosis mediator CASP8, as well as other genes such
as GNA13 (Figures 4F and S4B; Table S3). Many of these
mutations were particularly prevalent in DLBCL (Figure
4F).

In addition to mutations, we investigated potential
mechanisms regulating the expression of the CRISPR
screen hits, including copy number alterations (CNAs) and
DNA methylation, using multi-omics data from MM
(CoMMpass), DLBCL (Reddy et al., 2017), and AML
(TCGA, (2013)) (Figure S4C-D). Losses or deletions of
TRAF2 in MM and JAK1, CD58, and ARID1A in DLBCL
were associated with reduced expression of the respective
genes (Figure S4D; Table S3). CRISPR screen hits whose
expression negatively correlated with DNA methylation of
the transcription start site region included TNFRSF1B,
ULBP1, and ULBP3 in TCGA AML and TNFRSF1B,
ULBP1, and PVR in TCGA DLBCL (Figure S4E; Table
S3). AML patients with monocytic or myelomonocytic
leukemia had the highest TNFRSF1B expression,
indicating that both DNA methylation and cell type-specific
transcriptional regulation can influence the expression of
NK cell susceptibility genes such as TNFRSF1B (Figure
S4E).

Regulators of NK cell sensitivity expressed exclusively or
preferentially in blood cancers could represent blood
cancer-specific NK cell regulators with potential for
therapeutic targeting. Across all CCLE cell lines, we found
the expression of CD48, SPN, RHOH, MYB, SELPLG, and
TNFRSF1B as highly selective for blood cancers (Figures
4G and S4F). In solid tumor cell lines, these genes were
highly methylated, indicating strong lineage-specific
regulation of expression (Figure S4F). In contrast, the
DNAM-1/CD226 and TIGIT ligand PVR and the NKG2D
ligand ULBP3 were enriched in solid tumors, although
myeloid malignancies expressed PVR and T cell
lymphomas (TCL) expressed ULBP3 (Figures 4G and
S4F). These expression patterns were also evident in
primary patient samples in TCGA data (Figure S4F) as
well as in normal healthy tissues (Figure S4G), indicating
cell type, rather than oncogenic transformation, as the
driver of the observed differences. Given their inhibitory
function on NK cell cytotoxicity, genes such as SELPLG,

SPN, and MYB therefore represent examples of blood-
cancer-specific NK cell regulators that may present new
therapeutic targets.

Integration of CRISPR and PRISM screens reveals
cancer subtype-specific NK cell evasion mechanisms
To find out if the mechanisms identified in our CRISPR
screens could explain differential NK cell sensitivity of cell
lines observed in the PRISM studies, we investigated
whether transcript levels of genes (based on CCLE data)
identified as hits in CRISPR screens correlated with the
PRISM AUC. Across cancer types, high expression of
genes including NCR3LG1, ULBP1, and PVR correlated
with sensitivity, while B2M, NLRCS, TAP1, CD44, and
MSI2 correlated with resistance, indicating that these
genes contribute to the differential NK cell sensitivity
across blood cancer types (Figures 5A and S5A; Table
S5). Stratified by cancer type, NK cell sensitivity correlated
with high expression of FAS, PVR and ULBP1 in T-ALL,
NCR3LG1 in B cell ymphoma (BCL), and PVR in B-ALL
(Figure 5A), indicating heterogeneity in these activating
ligands within certain cancer types in addition to their
heterogeneity across cancers. The cancer type-specific
analysis also identified resistance genes with potential
preferential roles in individual neoplasms, including
NFKBIA in BCL, CFLAR in MM, and SPPL3 in B-ALL.
Analysis of genetic signatures recurrently associated with
NK cell resistance across all hematologic neoplasms
revealed that the IFNy response gene set retained its
association with high PRISM AUC in AML, MM, and BCL,
and a similar finding was observed for TNF alpha signaling
via NF-kB in MM and BCL (Figure S5B). The core NK cell
response signature and HLA | score correlated similarly
with NK cell resistance only in BCL and MM (Figures S5C-
S5D).

We next asked whether genetic subtypes, mutations, or
other factors could explain the heterogeneous expression
of the NK cell susceptibility genes leading to variation in
sensitivity within cancer types. In MM, among the genes
most highly correlated with NK cell resistance were
CFLAR encoding c-FLIP, a suppressor of death receptor-
mediated apoptosis, and MHC-I genes (Figure 5B). MM
cell lines harboring the t(4;14) (WHSC1) translocation
tended to be more resistant, while the t(11;14) (CCND1)
subtype tended to be more sensitive. Moreover, NK cell
resistance was associated with inactivating mutations in
TRAF3, known to induce activation of non-canonical NF-
KB signaling (Keats et al., 2007; Liao et al., 2004). As
CFLAR is a known NF-kB target gene (Micheau et al.,
2001), TRAF3 mutations could confer NK cell resistance
by inducing CFLAR, resulting in impaired death receptor-
mediated apoptosis.

We subsequently investigated whether these connections
could also be found in patients using the CoMMpass data.
We devised an NK cell sensitivity signature comprising
genes whose expression correlated with sensitivity in the
cell lines to identify patient subgroups with a molecular
profile matching either NK-sensitive or NK-resistant cell
lines. In agreement with the cell line data, the sensitivity
signature was high in the CCND1 patient subgroup and
low in the WHSC1 subgroup (Figure 5C), indicating that
the cell lines faithfully represent molecular subtypes found

7


https://doi.org/10.1101/2022.08.22.504722
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.22.504722; this version posted August 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

LBP1 MED30 CD44 MSsI2
All 2 ¢ e e HOETE =0 aps ®
NCR3LG1 o
PVR B2M- O & NLRCS
SPEN
AML - O 1RiM34 O Concordant
a4 CRISPR
ead hAREC) Q screen hits
T-ALL-
PVH’B— & gt o Psmai labeled
MYB
neRraLa1 XD FOwaT HLA-C Qi
BCL- LRC@\
MED30 O > NEKBIA
e} RTPN12
MM - §n © crLar
‘ MAPK14 HLAZC BN
B_ALL, EXpression correlates &R Lo Expression correlates
with sensitivity PVRO with resistance
-2.5 0.0 2.5
PRISM AUC Evpression (0g2) Signed P value (-log10) o |
Z-score GSVA Z-score Z-score - Median _
B 3R == [ - C B | (e;g;iz?:)n
Low High  Low High  Low High 5 10
FDR
NK sensitivity Subtype TRAF3 CFLAR 0Q®
SRR ISV ALC ¢ whsor : o e
- Subtype CCND1 FLAS ¥
0 O vp MAF & - . e o 2 ‘e | @@ wHsci
o H B CFLAR Hyper- e g ol . . f : P 4y Ae
diploid ‘ o8 s Wi ras )y g%,
> ] ] HLA I score Hyper- \@& . ¢ ; . g ptd
HEEE TRAF3 diploid,, .. 3 . 3 . s piocs o Dot
NK response @ TRAF3 ¢ . : X
IFN s @ TRAF3 mut . HD
-1 NF—ka [ TRAF3 del/loss Scaled expression 8.
SAOOMSONM - = T © & gl ® TRAF3 mut at ..’ -,: 0 I2- -“.“ CCND1
ASZ9maNar-ra0om- s + del/loss
8S3%233=-"3522 =) _
=< A S z22 xc [4)
26 283 xx UMAP 1 538
S g D <— KO sensitizes to NK cells 2 6
x Control ot O é
Subtype CCND1 MAF [l WHSCH CFLARknockoutin MM-1S . ot
Mutation [l Yes No TRAF3,, MM LP1 . ° .
KMS11 . . :
-10 1 Median
-3 -2 -1 0 1 )
Fold change (log2) . . (ezxféifﬁf)"
2 4 6
FDR
E NK sensitivity F Subtype PVR ULBP1 ( . ‘ (-log10)
DU Friovavc $ T (e e T =y oo o|tce
o B B swnpe o Liioie i ma | TR e S oA
- NKX2.1 | LYL1 . i S . ofelyy
- . FAS X NKX2.1 Scaled Scaled e
<| PVR TLOXS HOA Y. exp. Y Texp. e % g® ® | X1
® HOXA . 2 .
= ULBP1 e LMOY/ e WY, . . . I R NKX2.1
FAS LYLA1 . L) -._ . . 0 ° J’. ® | LMO1/2
%0 AL ’
PVR ~ TAL1 f.: . -’-'5‘.0 , . 1 A Cedlon| @ ® O] T1AL2
. + o _ o ® P
[ | ULBP1 e AR LA | L k TALA
EPSddsBrass _ =t T = o
§5§ggg§g‘§§; Methylation S8 ¢
S3X0a3 OozxshH _] UMAP 1 o 0 @
573 T %) z G S x
~ 0 05 1 Subt z
& pe
: URBNLE IR swove o o
PVR
Subtype W ALY TLX1 Other €g05012825 B || TLX Normal thymic
¢ m Lmoz TLX3 ULBP1 0 05 1 NKxpq  Preeursors
€g04059461 ’
-1.0 00 1.0 Median
- . expression
(Z-score)
H NK sensitivity I 25 75 125
FDR
I FrisM AuC Subtype GNA13 HLA | score o000 "
B M swue e eC 2
. s o, oo .
. . NCR3LG1 ® GCB RERE 0o e . e - . .« ® . ‘ ‘ GCB
. HLA-C ® Unc. . .: e ®° e, 0% 0 ° °°,
— NLRC5 CTorLt, ce o, .-, . . .
O | TAP1 L . .
o NFKBIA . e L e, . Un
. . . YB .'-..' e e . -: .' ® . * o. .o c.
[ | HLA | score e T TR :
| | | | GNA13 o o oo f .
BRS¢ : ! ° 0@
y o L3 © .
NF-kB < ot
CDNI—F—IN:E:CDFNFI—O) Subtype ) . — Qm (7]
rATJEIGZE0IQ-T yp Scaled expression < B C
—~Q 0 >
SR g 272552 M ABC W MCL  UMAP1 ® GNA13mut - - 235 8
23 Z z TO @ W Gee M cHL 2 1 0 1 2 s X
B [0 — (6] z
© © | Unc. M BL Other


https://doi.org/10.1101/2022.08.22.504722
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.22.504722; this version posted August 23, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 5. Integration of CRISPR and PRISM screens reveals cancer subtype-specific NK cell evasion mechanisms
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Gene expression correlations with sensitivity to NK cells (AUC) in PRISM shown as signed p values of the Spearman'’s rank correlations using
CCLE data. CRISPR screen hit genes (p < 0.0001) showing a correlation with PRISM AUC (p < 0.05) and with a correlation to the same
direction as in CRISPR screens (e.g. lower expression correlates with NK cell sensitivity in PRISM and CRISPR-mediated silencing sensitizes
to NK cells) are colored and labeled. Shown are correlations across all cell lines and within cell lines of individual cancer types. Dot color
indicates the signed p value.

Heatmap of MM cell lines ordered by sensitivity to NK cells (PRISM AUC). Genetic subtypes, CFLAR expression, HLA | score, TRAF3 mutation
status, and GSVA scores of the core NK cell response (NK response), Hallmark interferon gamma response (IFNy) and Hallmark TNFA
signaling via NF-kB (NF-kB) gene sets are shown.

UMAPs of MM transcriptomic data from CoMMpass (n = 767). Genetic subtypes, TRAF3 alterations, and CFLAR expression are colored on
the plots. Dot plot on the right shows the median expression of CFLAR, HLA | score, and NK sensitivity signature (50 genes most significantly
correlated with PRISM AUC in MM) across CoMMpass subtypes. Dot size indicates significance of differential expression between the
indicated subtype and all other subtypes.

Effect of CFLAR knockout in genome-wide CRISPR screens in TRAF3-mutated MM cell lines. Log2 fold change between NK-treated and
untreated cells is shown for each guide RNA. Olfactory receptor (OR) genes were used as a control and shown in gray is the average of all
OR genes sgRNAs log?2 fold change, while the dashed lines represent the 95% confidence interval.

Heatmap of T-ALL cell lines ordered by sensitivity to NK cells (PRISM AUC). Genetic subtypes, FAS, PVR, ULBP1, and ULBP2 expression,
and FAS, PVR and ULBP1 methylation are shown. Color keys are shown above panel B.

UMAPs of T-ALL transcriptomic data from Liu et al. (n = 262). Genetic subtypes and PVR and ULBP1 expressions are colored on the plots.
Dot plot on the right shows the median expressions of PVR, ULBP1, and NK sensitivity signatures (50 genes most significantly correlated with
PRISM AUC in T-ALL) across T-ALL subtypes. Dot size indicates significance of differential expression between the indicated subtype and all
other subtypes.

Heatmap of PVR and ULBP1 methylation in T-ALL patients (n = 109) and healthy controls (n = 20) from Roels et al. (GSE155333). The
methylation probes with highest variance across the samples are shown. Samples are ordered based on average methylation of the two genes.
Healthy thymocytes are shown on the left as comparison. Genetic subtypes are shown above according to Roels et al.

Heatmap of B cell lymphoma (BCL) cell lines ordered by sensitivity to NK cells (PRISM AUC). Lymphoma subtypes, expression of CRISPR
hits correlating with PRISM AUC, HLA | score, GNA13 mutations, and GSVA scores of the core NK cell response (NK response), Hallmark
interferon gamma response (IFNy) and Hallmark TNFA signaling via NF-kB (NF-kB) gene sets are shown. Color keys are shown above panel
B.

UMAPs of DLBCL transcriptomic data from Chapuy et al. (n = 137). Cell-of-origin subtypes, GNA13 mutations, and HLA | score are colored
on the plots. Dot plot on the right shows the median HLA | score, cytolytic score, and NK sensitivity signature (50 genes most significantly
correlated with PRISM AUC in BCL) across DLBCL subtypes. Dot size indicates significance of differential expression between the indicated

subtype and all other subtypes.
See also Figure S5 and Table S5.

in patients. TRAF3 alterations, including nonsynonymous
mutations, deletions, and losses, occurred both in a
distinct TRAF3-altered cluster and in a subset of patients
with WHSC1 translocations, consistent with the cell lines
where TRAF3 mutations and WHSC1 translocations often
co-occured (Figure 5C). CFLAR expression was enriched
in patients with TRAF3 alterations belonging to both of
these groups (Figures 5C and S5E). In addition, MHC-I
expression was enriched in the WHSC1 subgroup,
corroborating findings in the cell lines (Figures 5C and
S5F). The functional role of CFLAR was validated in
TRAF3 mutated cell lines MM.1S, KMS11 and LP1, in
which LOF of CFLAR induced increased response to NK
cell attack (Figure 5D). These results indicate that TRAF3
and WHSC1 alterations confer an NK cell immune evasion
phenotype in MM.

In T-ALL, NK cell sensitivity correlated with expression of
the death receptor FAS, the DNAM-1 ligand PVR and the
NKG2D ligand ULBP1 (Figure 5E). The sensitive cell lines
belonged to the TAL1 and LMOZ2 genetic subtypes
representing late cortical differentiation (Ferrando et al.,
2002) (Figure 5E). In contrast, other T-ALL lines showed
low expression and high DNA methylation of PVR and
ULBP1. Consistently, in patient genomic data from T-ALL
(Liu et al., 2017), we found PVR and ULBP1 expression
enriched in the TAL1, TAL2, and LMO2 genetic subtypes
corresponding to the late cortical stage (Figure S5F).
Conversely, other subtypes including the TLX1 and TLX3
representing the early cortical stage and LMO2/LYL1
representing a more immature stage showed Ilow
expression of FAS, PVR and ULBP1 (Figures 5F and
S5G). PVR and ULBP1 were unmethylated in patients with
the TAL subtype and healthy T cells at all maturation
stages, but showed increased methylation in other
subtypes, suggesting that epigenetic control by DNA

methylation may underlie the cancer-specific silencing of
PVR and ULBP1 in immature and early cortical T-ALL
(Figure 5G) (Roels et al., 2020). Together, these findings
suggest that the genetic background and differentiation
stage of T-ALL can enable evasion from NK cells through
decreased PVR and ULBP1 expression in immature
subtypes.

DLBCL cell lines of germinal center B-cell (GCB) cell-of-
origin tended to be more sensitive to NK cells, whereas
other BCL subtypes including MCL, CHL, Burkitt
lymphoma (BL), and activated B cell (ABC) were less
sensitive (Figure 5H). Expression of several CRISPR hits
correlated with sensitivity, such as NCR3LG1, or with
resistance, including NLRC5, TAP1, NFKBIA, MYB, IRFA4,
and MHC-I, also consistent with the IFNy and NF-«kB
response gene sets being enriched in the resistant BCL
cell lines. Mutations in GNA13 correlated with NK cell
sensitivity, in line with our CRISPR screen data showing
sensitization to NK cells upon GNA13 disruption (Figures
4C-4D). In DLBCL patients, the PRISM-derived NK cell
sensitivity signature was consistently enriched in the GCB
subtype, which harbored GNA13 mutations and showed
decreased expression of NLRC5, MHC-| genes, TAP1,
NFKBIA, and MYB compared to ABC tumors (Figures 5I
and S5H).

Single-cell transcriptomics CRISPR screens reveal NK
cell evasion mechanisms of genome-scale screen hits
We reasoned that the transcriptomic changes induced by
perturbing genes identified in the CRISPR screens could
reveal how these genes influence sensitivity to NK cells.
We therefore performed pooled CRISPR screens with a
single-cell transcriptome readout using the CROP-seq
platform (Datlinger et al., 2017). We selected highly
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scoring hits from the genome-scale screens with a focus
on likely transcriptional regulators, such as transcription
factors and signaling molecules, as well as select NK cell
ligands on tumor cells. We generated pools of cells
expressing sgRNAs targeting hits in each cell line,
including K562 (CML), SUDHL4 (DLBCL), NALM6 (B-
ALL), MM1.S (MM), and LP1 (MM) and exposed the cells
to NK cells at 1:16 or 1:4 effector-to-target ratios for 24 h
or left untreated, followed by scRNA-seq and sgRNA
assignment to cells (Figure 6A). In addition to the knockout
CROP-seq screens, we performed a CRISPR activation
(CRISPRa) CROP-seq analysis in MM1.S cells. From the
six single-cell screens, we obtained a total of 118,968 cells
with an assigned sgRNA, with three sgRNAs targeting
each of the 65 perturbed genes and on average 128 cells
representing each sgRNA (Table S5).

We analyzed differentially expressed genes between
malignant cells harboring each perturbation and those
carrying control sgRNAs, both with and without NK cell
exposure. Out of the 65 perturbed genes, 30 showed no
substantial transcriptomic changes, resulting in less than
5 differentially expressed genes in each perturbation
(Figures 6B and S6A). These included genes encoding
cell-surface proteins, such as NCR3LG1, CD58, ICAM1,
SPN, HLA-E, or MUC1, suggesting that their physical
interaction with NK cell surface molecules is the main
mechanism mediating their effect on NK cell cytotoxicity,
without other cancer cell-intrinsic molecular changes
induced by the binding. For the 35 perturbations with a
transcriptomic phenotype, we examined the common and
distinct patterns by comparing the overlap of the
differentially expressed genes (Figure S6B-C) and by
using UMAP dimensionality reduction after performing
linear discriminant analysis (Papalexi et al., 2021) (Figures
6C and S6D). Perturbations targeting IFNy signaling
mediators (IFNGR2, JAK1, JAK2, STATT1) grouped
together in the UMAP reduced space, as did those
targeting NF-kB regulators (TRAF2, NFKBIA, NFKBIB),
consistent with common transcriptional changes induced
by perturbing genes of the same pathway. In contrast,
most other perturbations grouped individually, indicating
distinct transcriptomic phenotypes. Some perturbations,
including those targeting IFNy and death receptor
signaling mediators, induced substantial transcriptomic
changes only in the presence of NK cells (Figures S6A and
S6D). Several perturbations influenced the core NK cell
response reflecting MHC-I genes and IFNy signaling
(Figures 6C and 6E), suggesting that these genes may
regulate sensitivity to NK cells by influencing the
transcriptomic response to NK cell attack.

We reasoned that if perturbing a CRISPR screen hit were
to influence the expression of other hits, such observations
could provide functional links between the former gene
and the regulation of NK cell activity. Indeed, LOF of genes
encoding IFNy signaling mediators (IFNGR2, JAK1, JAK?2,
STATT1) in multiple cell lines prevented the NK-cell driven
induction of the MHC-I complex genes, such as B2M,
HLA-E, HLA-A, HLA-B, and HLA-C, as well as TAP1 and
TAPBP (Figures 6C, 6E, S6C, S6D, and S7A). The
defective activation of HLA-E and other MHC-I genes
therefore explains the sensitization to NK cells by
disruption of the IFNy-JAK-STAT components, consistent
with an IFNy-mediated negative feedback loop enabling

target cell evasion from NK cells. Whereas LOF of the
IFNy signaling mediators showed a phenotype only in the
presence of NK cells (Figures S6A and S7B), silencing of
the HLA gene transactivator complex components NLRC5
and RFXAP downregulated MHC-I genes both with and
without NK cell exposure (Figure S7B).

Several genes which promoted NK cell killing, including
GFI1B in K562, YTHDF2 and BID in SUDHL4, PCGF5 in
MM1.S, and KIAA0922 in NALM6, emerged as novel
negative regulators of IFNy signaling and MHC-|
expression (Figures 6C, 6E, and S6B-S6D), providing a
potential mechanism for the NK cell resistance conferred
by their LOF. Conversely, LOF of MYB in LP1 cells
reduced both MHC-I and MHC-II expression, indicating
MYB as a positive regulator of antigen-presenting genes
(Figures 6C-E, S6B, S6D, and S7B). MHC-I genes and
IFNy response were in general among the most recurrent
differentially expressed genes and pathways across all
perturbations, underlining the role of MHC-I and IFNy
regulators in controlling sensitivity to NK cells (Figure
S6C).

To confirm some of the observed effects on MHC-I at the
surface protein level and to discover additional ones not
relying on transcriptional regulation, we integrated our
CRISPR hits with MHC-I regulators identified by Dersh et
al. (Dersh et al., 2021) (Figure S7D). Besides the known
MHC-I components and JAK? concordant across the two
sets of screens, ARID1A was identified as a negative
regulator of MHC-I in the BJAB cell line and concordantly
conferred resistance to NK cell attack in four of our
genome-scale screens. In contrast, TRAF2 and CFLAR
had discordant effects in the two sets of screens, being
negative regulators of MHC-I in Dersh cell lines and NK
cell sensitizers in our MM screens, showing that this latter
effect occurs through a different mechanism, overriding
the potential HLA-I modulation.

Among potential mechanisms unrelated to MHC-I
regulation, disruption of NFKBIA and TRAF2in MM1.S led
to increased expression of the death receptor FAS,
essential for susceptibility to NK cells in the MM1.S
CRISPR screen (Figures 6D-6E and S7B). GSK3B and
MYB LOF in LP1 downregulated CFLAR, a negative
regulator of death receptor signaling and NK cell
resistance gene identified in the CRISPR screens (Figures
6D-6E and S7B). CMIP disruption in NALM6 reduced the
expression of CD48, ligand for the activating receptor 2B4
and essential for NK cell killing of NALM6 (Figures 6E and
S7B). These regulatory networks between genes
identified in the CRISPR screens provide mechanistic
explanations for the observed resistance of sensitization
to NK cell cytotoxicity unrelated to MHC-I regulation.

In addition to regulation of CRISPR screen hits, other
perturbation-induced transcriptomic phenotypes could
influence the interaction of the cancer cells with NK cells.
In SUDHL4 cells, silencing of the death receptor apoptosis
mediators FADD or CASPS8 inhibited the NK cell-induced
NF-kB activation (Figures 6E and S7C). In addition to
mediating apoptotic signals, FADD and CASPS8 thus
appear to regulate the transcriptomic response to NK cell
attack (Henry and Martin, 2017; Kreuz et al., 2004). In
contrast, silencing of TRAF2, NFKBIA, or NFKBIB in
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Figure 6. Single-cell transcriptomics CRISPR screens of cancer cell-intrinsic NK cell sensitivity regulators

(A) Single-cell CRISPR screening (CROP-seq) workflow.

(B) Genes targeted in CROP-seq experiments, divided into groups with at least or less than 5 differentially expressed genes (DEGs) compared to
non-targeting control cells in any of the conditions (no NK, NK 1:16, or NK 1:4).

(C) UMAP visualizations of single-cell CRISPR screen data after running linear discriminant analysis in the indicated cell lines at 1:16 effector-to-
target ratio. Cells classified as knockout or non-targeting (Control) by mixscape are shown. Perturbed genes (top row) and core NK cell
response score (bottom row) are colored on the plots.

(D) Volcano plots of differentially expressed genes with selected perturbations compared to control sgRNA-expressing cells. Red dots indicate
genes with significantly (Bonferroni-adjusted p < 0.05) higher and blue dots lower expression in the CRISPR-targeted cells compared to control.

(E) Dot plot of genes differentially expressed in cancer cells (rows) where the indicated genes (columns) are perturbed compared to cells
expressing control sgRNAs. Perturbed genes with at least 5 DEGs are shown. For each perturbation, the condition (either NK 1:4, NK 1:16, or
no NK) with the most significant differential expression is shown. Color indicates log2 fold change between conditions and dot size indicates
the negative log10 adjusted p value. Only dots where p < 0.05 are shown, and circled dots indicate adjusted p value < 0.05. Enrichment or
depletion of genes in genome-scale CRISPR screens are shown as colored dots both for the perturbations and perturbed genes. Effector:target
(E:T) ratio for each perturbation is shown as colored dots above the plot. Selected molecular processes regulated by the perturbed genes are
highlighted using dotted lines.

(F) Examples of transcriptional changes induced by single-cell CRISPR screen perturbations with consistent changes observed in MM patients
harboring mutations in the same genes in the CoMMpass data. Density plots of gene expression in scRNA-seq data in perturbed (dark yellow)
and control cells (light yellow) are shown in the left column, and box plots of gene expression in patient RNA-seq data in mutated (‘Mut’) and
non-mutated (‘WT’) samples are shown in the right column. Boxes indicate IQR with a line at the median. Whiskers represent the min and

max values at most 1.5 IQR from the quartiles.
See also Figures S6 and S7 and Table S6.

MM1.S cells induced NF-kB signaling (Figures 6D-E and
S7A). This signature included known NF-kB targets such
as BIRC3, CD70, and the chemokines CXCL10 and CCL5
(Annunziata et al., 2007; Herishanu et al., 2011), which
may further increase immune reactivity through
recruitment of T and NK cells (Loetscher et al., 1996a,
1996b; Schall et al., 1990; Taub et al., 1993). Silencing of
CMIP (c-MAF interacting protein) in the pre-B-ALL cell line
NALMG6 led to increased expression of DNTT (TdT) and
CD9, markers of early pro-B cells, and concomitant
downregulation of genes expressed in more differentiated
pro-B cells, including CD79A, VPREB1, and VPREB3
(Figures 6E, S6D, and S7A). A more immature B cell state
controlled by CMIP therefore may drive resistance to NK
cell killing. Overall, the single-cell CRISPR perturbation
data offer a resource of the phenotypic consequences of
altering genes regulating NK cell-cancer cell interactions,
providing mechanistic explanations and testable
hypotheses for further exploration.

Given that NK cell susceptibility genes were mutated in
various hematological malignancies, we asked whether
these mutations would result in similar transcriptomic
alterations in patient cells as observed in the single-cell
CRISPR screens. We compared the differentially
expressed genes of each scRNA-seq perturbation with the
differentially expressed genes between patients with and
without mutations in the same gene using multi-omic data
from MM (CoMMpass), DLBCL (Reddy et al., 2017), and
AML (TCGA) (Figures 6F and S7E). MM patients with
mutations in the NF-kB negative regulators TRAF2 and
NFKBIA expressed higher levels of NF-kB target genes
also identified experimentally by CROP-seq (Figures 6F
and S7E). Moreover, MM patients with NLRCS5 mutations
had lower HLA-E expression consistent with CROP-seq
data (Figure 6F, S7E), indicating that although rare,
NLRC5 mutations in MM may result in an NK-sensitive
phenotype (Figure 6E). These findings provide evidence
that several regulatory mechanisms identified by the
single-cell CRISPR screens operate in patient cells and
therefore can influence susceptibility to NK cells in vivo.

Cancer-cell intrinsic perturbations modulate NK cell
transcriptomic states

Finally, we asked if perturbing CRISPR screen hits in the
cancer cells could influence the NK cell activation states
we originally observed upon co-culture with various cancer
cell lines (Figure 1C). We co-cultured ex vivo-expanded
NK cells with three cell lines (K562, SUDHL4, and NALMG6)
expressing individual sgRNAs targeting 14 different genes
(Figure 7A). After 24 h co-culture at 1:1 effector-to-target
ratio, leading to elimination of most target cells, we
performed multiplexed scRNA-seq on the NK cells using
cell hashing. To quantify the effects of the target cell
knockouts on NK cell activation, we computed an
activation score for each NK cell, comprising 50 genes
most significantly enriched in the activated NK cell cluster
(cluster 2). Comparison of the activation scores of NK cells
co-cultured with cancer cells harboring different
perturbations to those cultured with non-targeting control
sgRNA-expressing cells revealed that CD58 LOF in K562
strongly reduced NK cell activation (Figure 7B). In addition
to CDA58, other resistance-inducing perturbations including
CMIP and SPPL3 LOF in NALM®6 had significant inhibitory
effects. In contrast, JAK7 LOF induced stronger NK cell
activation, consistent with the sensitizing effect (Figure
7B). Interestingly, KCNH2 LOF induced resistance to NK
cell cytotoxicity but still showed an activating effect on NK
cells.

To visualize differences in NK cell states relative to those
identified in the co-culture experiments using the 26
different cell lines, we mapped the NK cells from the
present experiment to the UMAP dimensionality reduction
from the previous experiment (Figure 7C). While most NK
cells exposed to control K562 cells moved from the resting
to the activated cluster, CD58 LOF in K562 cells caused a
substantial fraction to remain in the resting state.
Conversely, JAK71 LOF induced almost all NK cells to
change to the activated state. These findings indicate a
key role for the CD2-CD58 interaction in promoting the
activated state and conversely for JAK1-mediated
signaling in inhibiting the activation. The perturbation-
induced transcriptional changes both in NK cells and in
target cells thus offer plausible mechanisms for how the
genes identified in CRISPR screens control sensitivity to
NK cells and provide a comprehensive resource of other
immunoregulatory effects (Figure 7D).
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Figure 7. Effects of cancer cell perturbations on NK cell activation states

(A) Workflow of identification of NK cell responses to cancer cells carrying different perturbations using single-cell transcriptomics.

(B) Box plot of NK cell activation scores across different target cell perturbations. Activation scores comprising top 50 genes enriched in the
activated NK cell cluster were normalized by subtracting the median activation score of the control sgRNA-expressing target cells of each cell
line. P values between each perturbation and the cell line-specific control are obtained using Wilcoxon rank sum test with Benjamini-Hochberg
adjustment. Only p values for significant pairs are shown (* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001). Boxes indicate IQR with a line at the
median. Whiskers represent the min and max values at most 1.5 IQR from the quartiles.

(C) UMARP visualizations of NK cells co-cultured with K562 cells expressing the indicated sgRNAs or NK cells cultured alone. The contour lines
and their color indicate the density of NK cells in different regions of the UMAP reduced space. The gray shading in the background shows the
density of all NK cells from Figure 1 and the clusters from Figure 1 are shown on the right as a reference.

(D) Summary tables of findings from the single-cell transcriptomics assays on perturbation effects both in the target cells (CROP-seq) and in NK
cells, including the proposed mechanism of induced sensitivity or resistance to NK cells and other transcriptional effects observed in knockout

(KO) cells.

All the data from multiplex scRNA-seq co-culture
experiments, genome-wide and single cell CRISPR
screens and PRISM screens together with the molecular
correlates are available for interactive exploration at
https://immunogenomics.shinyapps.io/nkheme/.

DISCUSSION

In this study, we systematically mapped the landscape of
the interaction of NK cells with diverse types of tumor cells
across hematological malignancies. We studied the
phenotypic changes induced by the interaction of effector
and target cells at single-cell resolution, profiled the
sensitivity of different cancers and molecular subtypes to
NK cells by PRISM profiling, and identified cancer cell
genes and pathways influencing sensitivity to NK cells
using CRISPR screens. Besides certain common core
mechanisms across different diseases, a key finding
emerging from the integration of these data is the
heterogeneity of mechanisms influencing NK cell
susceptibility between individual cancers driven by lineage
and molecular subtypes of cancer. Our findings indicate a
need to consider the cancer subtype and genetics for
optimal tailoring of NK cell-based therapies for blood
cancer patients.

The diverse adaptive, interaction-induced responses
detected in our single-cell studies reflected the
heterogeneity, as different cell lines induced in NK cells a
transition towards distinct activated states that ranged
from a full shift to very little or no changes at all. The NK
cell clusters enriched upon tumor cell exposure emerged
both in expanded NK cells and in unexpanded PBMC-
derived NK cells, and included an activated state (cluster
2), a cluster with high type | IFN signature (cluster 3)
possibly resembling the previously identified type | IFN-
responding cells (Smith et al., 2020) and inflamed NK cells
(Yang et al., 2019), and a cytokine-producing phenotype
(cluster 4). The activated state included genes encoding
receptors such as 4-1BB, OX-40, and CRTAM, shown also
previously to be induced by NK cell activation (Baessler et
al., 2010; Costanzo et al., 2018; Turaj et al., 2018). As the
activated states correlated with increased cytotoxicity
against target cells, interventions promoting the activated
state such as agonistic antibodies for activating immune
checkpoint  receptors could improve NK cell
immunotherapies. Some of the receptors induced upon
transition to the activated state inhibit NK cell function,
including TIM-3, TIGIT, and possibly also 4-1BB (Baessler
et al., 2010) and GITR (Baltz et al., 2007). Blocking these
inhibitory signals could further augment the function of NK
cells recognizing their targets.

The gene signature recurrently induced in cancer cells in
response to NK cell exposure reflecting IFNy signaling and
MHC-I is consistent with a negative feedback loop
suggested in early studies of NK cell effects on target cells
(Piontek et al., 1985; Trinchieri and Santoli, 1978). Our
single-cell CRISPR data confirm the role of interferon
signaling through JAK-STAT in driving the observed
responses. The same transcriptomic signatures that were
induced in cancer cells upon NK cell attack correlated with
resistance to NK cells across blood cancer cell lines. Pre-
existing activation of adaptive resistance pathways may
therefore explain primary resistance of cancer cells to NK
cells. Conversely, as defects in interferon signaling and
antigen presentation cause resistance to T cell
immunotherapies (Zaretsky et al., 2016) as suggested
also by previous CRISPR studies, (Freeman et al., 2019;
Sheffer et al., 2021) NK cells could offer an effective
alternative; and a concrete opportunity for individualized
use of NK cell therapies in patients whose blood cancer
cells harbor genomic defects in this molecular cascade.

Our findings challenge the notion that expression of
activating ligands for NK cells is a general feature of
transformed cells (“altered-self’). Instead, the cancer type,
lineage, and genomics appear to jointly define the
expression patterns. For example, previous CRISPR
screen studies of NK cell resistance in blood cancer cells
performed in K562 cells identified NCR3LG1 as essential
for NK cell cytotoxicity (Pech et al., 2019; Zhuang et al.,
2019). Our data confirm this finding but also provide key
new insights that NCR3LGT appears important for
effective NK cell killing particularly in myeloid leukemias,
unlike several other types of hematological malignancies.

The variation in expression of activating ligands, including
NCR3LG1, PVR, and ULBP1, translated into differences
in sensitivity to NK cells, with AML being sensitive
compared to pre-B-ALL as also previously suggested
(Pende et al., 2005). The expression of activating receptor
ligands and resulting sensitivity to NK cells may be
particularly pronounced in more differentiated myeloid
cells represented by most AML cell lines. Instead, a less
differentiated phenotype can enable evasion from NK cells
(Nowbakht et al., 2005; Paczulla et al., 2019). The lineage-
dependent expression of genes encoding activating
ligands such as PVR or apoptotic mediators such as
TNFRSF1B both in myeloid malignancies and their normal
counterparts implies that this expression pattern originates
from normal hematopoietic differentiation rather than
being a feature acquired upon transformation. Moreover,
identification of previously unknown blood cancer-specific
NK cell immune regulators including SPN and SELPLG
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and the lineage-driven expression of genes encoding
known ligands such as PVR and ULBP3 support that blood
cancers may be configured to interact with NK cells in a
way distinct from solid tumor cells, possibly because they
originate from various immune cell types that naturally
frequently interact with NK cells. Our CRISPR screens
implicated many previously underappreciated gene
classes in the regulation of NK cell responses, including
protein fucosylation, mucins, and a range of transcriptional
regulators, with potential relevance across blood cancers
and solid tumors. As many of these were uncovered only
in a subset of the cell lines, our data thus highlight the
importance of performing large unbiased screens in
diverse cancer types.

In addition to cancer types and lineages, our findings link
several previously established molecular subtypes of
blood cancers with characteristic genetic alterations to NK
cell evasion mechanisms. The transcriptomic cluster in
MM characterized by TRAF3 alterations and activation of
CFLAR and other NF-kB targets likely reflects the NF-kB
cluster identified in early transcriptomic studies of MM
(Broyl et al., 2010). Given that CFLAR appears to
influence sensitivity of cancer cells not only to NK cells as
indicated by our data but also T cells (Singh et al., 2020;
Vredevoogd et al., 2019), this finding may have relevance
to immunotherapy sensitivity beyond NK cells. The
methylation of PVR and ULBP1 in immature subtypes of
T-ALL may be linked to the CpG island methylation
phenotype (CIMP) found in non-TAL1-driven T-ALL
(Borssén et al., 2013; Kimura et al., 2020; Roels et al.,
2020), suggesting that one of the functions of CIMP in T-
ALL may be enabling immune evasion from NK cells.
Together, these findings begin to unravel the connections
between cancer genomic subtypes and responsiveness to
NK cells that have thus far remained largely unexplored.

While NK cell-mediated cytotoxicity depended on intact
death receptor signaling in several cell lines, this pathway
was not relevant in some cell lines, such as the classical
NK cell target K562. Thus, heterogeneity appears to exist
also in the apoptotic mechanisms even between NK-
sensitive cell lines. The reliance on distinct apoptotic
pathways in different cancers may influence the
therapeutic approaches to sensitize tumors to NK cells,
such as the recently proposed BH3 mimetics (Pan et al.,
2022). Given that the death receptor pathway can also
mediate bystander killing (Upadhyay et al., 2020), the
differential sensitivity of different cancers to bystander
killing may influence the efficacy of both NK and T cell
immunotherapies.

Our study has several limitations. Although our studies
included over 60 blood cancer cell lines, more rare types
of blood cancers were represented by few or no samples.
Moreover, our approach to investigate the mechanisms by
which genes identified in CRISPR screens influence NK
cell responsiveness using CROP-seq likely misses
several mechanisms that do not operate primarily through
altering gene expression. Furthermore, as many of the
discovered mechanisms are dynamic, validating the
results in vivo in patients would require multiple sampling
during adoptive cell transfer to capture the changes
occurring immediately when NK cells come in contact with
the cancer cells.

In summary, our study provides a comprehensive picture
of both the adaptive molecular changes in interacting NK
cells and tumor cells as well as genetic mechanisms of
response and resistance of blood cancer cells to NK cell
cytotoxicity. These molecular profiles offer a resource that
can inform efforts to develop NK cell immunotherapy
strategies particularly in hematological malignancies,
which are emerging as the primary clinical setting for the
application of NK cell-based therapies.

METHODS

Cell lines

PL21, GDM1, and SKM1 were cultured in RPMI-1640 with
10% heat-inactivated fetal bovine serum (FBS), 2 mM L-
glutamine, and 100 U/mL penicillin with 100 mg/mL
streptomycin (PS). OCIM1 were cultured in IMDM (Gibco)
with 10% FBS, 2 mM L-glutamine, and PS. All other cell
lines were grown in RPMI-1640 with 10% FBS, 2 mM L-
glutamine, and PS. All cultures were incubated at 37°C
with 5% COa.

PRISM cell line pools were cultured in phenol red-free
RPMI 1640 with 20% FBS and PS.

KHYG1 were cultured in RPMI-1640 with 10% FBS (20%
for first passage upon thawing as per manufacturer’s
instructions), 1% PS and 100 IU/ml of human recombinant
IL-2 (R&D Systems, 202-1L-050). Cells were used at low
passage numbers, in order to avoid the outgrowth of
growth factor independent subclones.

To generate Cas9-expressing K562, SUDHL4, NALMG,
and MOLM14 cells, the cells were transduced with virus
produced using the lentiCas9-EGFP plasmid (a gift from
Phil Sharp & Feng Zhang, Addgene plasmid # 63592),
single-cell sorted using a Sony SH800 cell sorter, and a
clone with high and uniform EGFP expression was
selected for screening. The MM.1S-Cas9+ cells were
generated and kindly gifted by the laboratory of Dr
Benjamin Ebert (DFCI). KMS11-Cas9+ cells and LP1-
Cas9+ cells (transduced with pLX 311-Cas9 construct,
Addgene plasmid # 96924) were obtained from the Broad
Institute, as well as MM.1S-dCas9VP64, KMS11-
dCas9/VP64 and LP1-dCas9/VP64 (transduced with lenti
dCAS-VP64_Blast, Addgene plasmid # 61425).

Luciferase-expressing K562 cells were generated using
the pLenti PGK V5-LUC Neo (w623-2) construct as
previously described for NALM6 (Dufva et al., 2020a). The
generation of luciferase-expressing SUDHL4 cells has
been previously described (Dufva et al., 2020a).

All cell lines were STR profiled and tested for Mycoplasma
using the MycoAlert kit (Lonza).

Primary NK cell isolation and expansion
Expansion with feeder cells

NK cells were expanded using K562-mblL21-41BBL
feeder cells as previously described (Denman et al.,
2012). Briefly, PBMCs were isolated from buffy coats of
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healthy donors using Ficoll-Paque gradient centrifugation.
Five million PBMC were suspended in 40 ml R10
supplemented with 10 ng/ml recombinant human IL-2
(R&D Systems, 202-1L-050) together with 10 million K562-
mblL21-41BBL feeder cells irradiated with 100 Gy. Cells
were passaged twice a week and feeder cells were added
in a 1:1 ratio after 7 days. After 14 days of culture, NK cells
were purified using the NK Cell Isolation Kit (Miltenyi) and
frozen. NK cells from various donors were thawed and
cultured for 5 days in R10 + IL-2 prior to genome-scale
CRISPR screens (K562, MOLM14, SUDHL4, NALMS).
For all multiplexed scRNA-seq and CROP-seq
experiments, NK cells from the same donor were used and
thawed and cultured 3 days prior to the experiments.

Expansion without feeder cells

PBMCs were isolated from consenting healthy donors.
CD3+ cells were depleted using the negative selection
cocktail RosetteSep™ (STEMCELL Technologies Inc.)
according to the manufacturer's instructions. CD3-
negative PBMCs were then seeded in 6-well plates at a
density of 1x10° cells/ml in GMP SCGM media (CellGenix)
with 10% heat-inactivated FBS, 1% Glutamax, 200 |U/ml
of recombinant human IL-2 (R&D Systems, 202-IL-050)
and expanded for 10 — 14 days. Expanded NK cells from
PBMCs from the same donor (donor #9) were used in the
genome-scale and focused-library screens with MM1S,
LP1, and KMS11 cells and the PRISM screen. Flow
cytometry was performed to verify primary NK cell viability,
purity (anti-CD56-PECy7 and anti-CD3-FITC), and
expression of p46 receptor (anti-NKp46-APC), surrogate
marker of NK cell activity.

Co-culture assays with multiplexed scRNA-seq
readout

Experiments and scRNA-seq library preparation

For the experiment involving 26 different cell lines, cancer
cells were plated at 500,000 cells/well on a 24-well plate
and day 17 feeder cell-expanded NK cells (1:4 effector-to-
target ratio) or NK cells directly extracted from PBMC from
the same donor (1:2 effector-to-target ratio) or only R10
culture medium (targets only) were added, resulting in a
total volume of 1 ml R10. Experiments were performed in
two batches of 13 cell lines, and wells with only NK cells
were included.

For the experiment involving CRISPR-targeted cell lines,
day 17 feeder cell-expanded NK cells were used at an 1:1
effector-to-target ratio.

After 24 h in 37°C and 5% COz, cells from each well were
washed 2-3 times with 10 ml PBS, resuspended in 100 pl
Cell Staining Buffer (BioLegend), 10 pl TruStain FcX
blocking reagent (BioLegend) was added, and cells were
blocked for 10 min. A unique TotalSeq-A hashing antibody
(BioLegend) was added to each sample (1-2 pl/1-2 ug per
sample) and cells were incubated for 30 min at +4°C
covered from light. Cells were then washed 3-5 times with
3 ml staining buffer and samples were combined in 1 ml
staining buffer, centrifuged, resuspended to PBS + 0.04%
bovine serum albumin (BSA) and proceeded to scRNA-

seq. The Chromium Single Cell 3'RNAseq run and library
preparations were done using the 10x Genomics
Chromium Next GEM Single Cell 3' Gene Expression
version 3.1 Dual Index chemistry with the modifications
described in Stoeckius et al. (Stoeckius et al., 2018),
https://cite-seq.com/ and according to the slightly
improved protocol described in www.biolegend.com/en-
us/protocols/totalseq-a-antibodies-and-cell-hashing-with-
10x-single-cell-3-reagent-kit-v3-3-1-protocol. The 3' GEX
and Cell Hashing (multiplexing) libraries were sequenced
using lllumina NovaSeq 6000 system using read lengths:
28bp (Read 1), 10bp (i7 Index), 10bp (i5 Index) and 90bp
(Read 2).

Data analysis

Data preprocessing was performed using 10x Genomics
Cell Ranger v6.0.2 pipelines. The ‘cellranger mkfastq’ was
used to produce FASTQ files and ‘cellranger count’ to
perform alignment, filtering, and UMI counting. The
lllumina bcl2fastq v2.2.0 was used to run mkfastq and
alignment was done against human genome GRCh38.
Count matrix for hashtag oligonucleotides (HTO) was
generated using the CITE-seq-Count-tool (DOI
10.5281/zeno0do.2590196) (Stoeckius et al., 2018).

The R package Seurat (v4.0.4) (Stuart et al., 2019) was
used for further scRNA-seq data processing. Cells with >
15% mitochondrial gene counts, > 50% or < 5% ribosomal
gene transcripts, < 700 UMI counts, or < 300 or > 10,000
detected genes were filtered out. Hashtag oligonucleotide
(HTO) demultiplexing to classify cells to samples was
performed on centered log-ratio-normalized HTO UMI
counts using the HTODemux function in Seurat with a
positive quantile of 0.99. Sample IDs based on HTO data
were transferred to transcriptome data and only cells
classified as singlets based on HTODemux were
considered for further analyses. After log-normalization,
the highly variable genes were calculated with the
FindVariableFeatures function using the “mean.var.plot”
selection method in Seurat. Data were scaled and the
effect of the cell cycle was corrected using the ScaleData
function with scores assigned to each cell using the
CellCycleScoring function with G2/M and S phase
markers provided in Seurat. Clusters were defined using
the FindClusters function with resolution set to 0.8 and cell
types were annotated using SingleR (Aran et al., 2019).
Clusters comprising NK cells were identified and
subsequent analyses were focused only on expanded or
PBMC NK cells (NK cell clusters) or cancer cells (all other
clusters). The UMAP dimensionality reduction (Mclnnes et
al., 2020) with default parameters was calculated using
RunUMAP with the top 20 principal components (PCs).

For the analysis focusing on NK cells (either expanded or
PBMC NK cells), data were re-scaled and the cell cycle
effect and batch (resulting from performing the
experiments in two batches) were corrected for using the
ScaleData function in Seurat. Clusters were defined using
the FindClusters function with resolution set to 0.3, and the
UMAP was calculated from the top 20 PCs. Differentially
expressed genes between clusters were obtained with a
Student’s t-test followed by Bonferroni correction using the
FindAlIMarkers function in Seurat. Pseudotime analysis
was performed using Slingshot (v2.2.0) (Street et al.,
2018) on the precalculated UMAP coordinates, with
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cluster 0 (“Resting”) assigned as the start and cluster 2
(“Activated”) as the end.

For the analysis focusing on cancer cells, differentially
expressed genes between NK cell-treated and untreated
cells were obtained with a Student’s t-test followed by
Bonferroni correction using the FindMarkers function in
Seurat. Multiple testing correction was performed
separately for each cell line comparison. For the
differential expression analysis across all cell lines (Figure
2A), 1,000 cells were subsampled from the treated and
untreated cells. For UMAP visualizations of each
individual cell line, data were scaled, the cell cycle effect
was regressed out using ScaleData, and small clusters
comprising less than 5% of cells (representing
misclassified other cell lines) were removed. The UMAP
dimensionality reduction with default parameters was
calculated from the top 20 principal components. The core
NK cell response score was calculated using the
AddModuleScore function in Seurat based on the 16
genes induced by co-culture with expanded NK cells in >
75% of the cell lines (B2M, HLA-A, HLA-B, HLA-C, HLA-
E, TAP1, STAT1, IRF1, IRF9, PSMBS8, PSMB9, PSMB10,
PSME1, PSME2, UBE2L6, GNLY, and CCL5).

Ligand-receptor interactions were calculated using
CellPhoneDB (Efremova et al., 2020) with default
parameters from each cell type subsampled to the same
number of cells. Interactions were calculated between all
NK cell clusters and each cell line (both untreated and NK
cell-treated), and the significant interactions (p < 0.05
permutation testing) based on CellPhoneDB were
considered for downstream analyses.

To compute the activation scores for the NK cells co-
cultured with CRISPR-targeted cell lines, the
AddModuleScore function in Seurat was used on the 50
genes most significantly enriched in the activated cluster
(cluster 2) in the cell line panel experiment. When NK cells
cultured with target cells expressing two different sgRNAs
targeting the same gene were available, the NK cells were
pooled together for the analysis. Wilcoxon rank sum test
was used to compare NK cells cultured with a gene-
targeted cell line to those cultured with the same cell line
expressing non-targeting control sgRNAs. The normalized
activation scores were obtained by subtracting the median
activation score of the same cell line control from the
activation scores of the NK cells co-cultured with gene-
targeted cell lines. The NK cells co-cultured with CRISPR-
targeted cell lines were projected onto the previously
computed UMAP visualization from the 26 cell line panel
experiment using the FindTransferAnchors and MapQuery
functions in Seurat.

Pooled PRISM screen of NK cell cytotoxicity against
DNA-barcoded cancer cell lines

PRISM is a platform that allows pooled screening of
mixtures of cancer cell lines by labeling each cell line with
24-nucleotide barcodes as previously described (Yu et al.,
2016). Briefly, 70 suspension blood cancer cell lines
(Table S2) stably expressing DNA barcode sequences
were seeded in 6-well plates in 8 experimental replicates
per condition. The cells were incubated in 5 ml PRISM

growth medium (RPMI-1640 without phenol red + 20%
FBS + PS) for 24 h. At that point, primary NK cells were
washed, resuspended in PRISM growth medium and
added to the PRISM cells in 4 different E:T ratios 5:1,
2.5:1, 1.25:1, and 0.625:1 (1 ml/well). Control wells were
added with the same volume of media only.

After 24 h co-culture, cells from each well were washed
with PBS and incubated for 1 hour at 60°C in lysis buffer
(1 ml per well), prepared using double-distilled water with
10% PCR buffer (20mM Tris-HCL PH 8.4, 50mM KCL),
0.45% NP40, 0.45% TWEEN and 10% proteinase K.
Genomic DNA from cell lysate was amplified, PCR product
was hybridized to Luminex beads with covalently attached
antisense barcodes, and streptavidin-phycoerythrin
addition, washing, and detection on Luminex FlexMap
machines was performed as previously described (Yu et
al., 2016).

Means of the eight experimental replicates of each cell line
were calculated for each E:T ratio and percent viability
values were obtained by dividing the mean of each E:T
ratio with the mean of the untreated control for each cell
line multiplied by 100. Area under the curve (AUC) values
were calculated with the percent viability values using the
AUC function in the DescTools (v0.99.43) R package.
Three non-hematological cell lines included in the pool
were removed from the analysis: gastric adenocarcinoma
cell lines HUG1N and SNU1; Ewing sarcoma cell line
CHLAS7. Cell lines with incomplete data at all E:T ratios
were similarly removed from the analysis, resulting in 63
cell lines.

Genome-scale CRISPR/Cas9-based gene editing or
gene activation screens

Production of viral particles

Brunello/Calabrese screens: Lenti-X-293T cells (Takara
Bio) were plated in T-175 culture flasks (0.6x10° cells/ml)
in DMEM (Life Technologies) with 10% FBS for 24 h. After
decanting the cell medium, OPTI-MEM (6 ml) and
Lipofectamine 2000 (100 pl; Life Technologies) were
added to each flask plus packaging plasmids psPAX2 (20
pg) and MD2.G (10 ug) and plasmid preps of the Brunello
sgRNA library or Calabrese sgRNA library (20 ug per prep;
lentiGuide-Puro). Plasmid preps for the Brunello and the
Calabrese sgRNA libraries were purchased from Addgene
(#73178 and #1000000111). The transfected Lenti-X-
293T cells were incubated at 37°C (20 min), topped up
with fresh media (25 ml), and then refreshed again after
16 hours. Viral supernatants were collected after 24 h and
stored at -80°C prior to use.

GeCKOvV2 screens: The genome-scale GeCKO v2 sgRNA
library in the lentiGuide-Puro plasmid (Sanjana et al.,
2014; Shalem et al., 2014) (a gift from Feng Zhang,
Addgene # 1000000049) was amplified using Endura
competent cells (Lucigen) according to instructions
provided by the Zhang lab and Lucigen as previously
described (Dufva et al., 2020a). To produce lentivirus, 10
ug of both A and B library plasmids were transfected into
293FT cells seeded on the previous day at 11.4 million
cells/T-225 flask, together with 15 pg of psPAX2 and 10
pug of pCMV-VSV-G using 100 ul Lipofectamine 2000
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(Thermo Fisher Scientific) and 200 ul of Plus Reagent
(Thermo Fisher Scientific). After 6 h incubation, the culture
medium was replaced with 30 ml of D10 containing 1%
BSA. After 60 h, the viral supernatant was harvested,
filtered using a 0.45 um filter, and stored in -70°C.

Lentiviral transductions with sgRNA libraries

Brunello LOF screens: Tumor cell transductions were
performed in batches of 5x107 cells per library for three
replicates. Cells were incubated (18 h) in cell medium
containing polybrene (5 ug/ml; Santa Cruz Biotechnology),
10 mM HEPES (pH 7.4) (Gibco) and viral prep (30 ml)
diluted 1:1. Transduced cells were cultured at an initial
density of 1x10° cells/ml and were treated with puromycin
(1 pg/ml) for up to 5 days additional two days from
transduction. After stable transduction, pooled cells were
plated at 40x108 cells per flask (T-175, 100 ml) to enable
coverage of 500X and were sub-cultured at three- to four-
day intervals to prevent confluence.

Calabrese GOF screens: Tumor cells were transduced in
batches of 3x107 cells per sub-library in triplicates. Cells
were incubated (18h) in cell medium containing polybrene
(4 pg/ml; Santa Cruz Biotechnology), 10mM HEPES (pH
7.4) (Gibco) and viral prep (30 ml) diluted 1:1. Transduced
cells were cultured at an initial density of 1x10° cells/mL
and were treated with puromycin (1ug/mL) for up to 7 days
additional two days from transduction. After stable
transduction, pooled cells were plated at 30x10° cells per
flask (T-175, 100 ml) to enable coverage of 500X and were
treated with primary NK cells in either duplicates or
triplicates. The E:T ratio was selected to kill at least 50%
of the tumor cells, according to a dose-response curve.

GeCKO v2 LOF screens: The amount of lentivirus used to
transduce the cells was first optimized by transducing cells
with a range of virus concentrations on a 12-well plate,
where in each well 3 million cells were suspended in a total
volume of 1 ml containing 0-1000 pl of GeCKO V2 library
virus and 8 uyg/ml Polybrene. The plate was centrifuged at
room temperature at 800 g for 2 h after which virus 8 was
washed away. The cells were treated with or without 0.5
pg/ml puromycin (Thermo Fisher Scientific) for 6 days
starting 48 h post-transduction. Transduction efficiency
was measured after 72 h puromycin treatment using
CellTiter-Glo (CTG, Promega) (50 pl of cell suspension +
50 yl CTG), measured with a Fluostar plate reader (BMG
Labtech). Luminescence values (after subtracting
background signal obtained from the average of wells
containing only R10) in puromycin-treated wells at each
virus concentration were divided by values of non-
puromycin-treated wells. A concentration resulting in 10-
20% transduction efficiency was selected to ensure that
the majority of the cells receive only one sgRNA.

For the genome-scale screen, > 400 million cells were
transduced in 12-well plates. In each well, 3 million cells
were suspended in the titrated virus volume achieving 10-
20% transduction in a total volume of 1 ml/well topped up
with R10 in the presence of 8 ug/ml Polybrene. The plates
were centrifuged at room temperature at 800 g for 2 h,
after which the virus was washed away. Transduced cells
were selected with 0.5 pg/ml puromycin (0.9 pg/ml for
K562) for 6 days starting 24 h post-transduction (48 h for
NALM®6). On day 7 post-transduction (day 8 for NALMG),

cells were divided into NK-treated and untreated
conditions in T-225 flasks with 120 ml R10 and 60 million
target cells, with effector-to-target ratios as listed in Tables
S3A-S3B. In some screens, several different effector-to-
target ratios were used. The cells were passaged every 2-
3 days and cultured for a duration of 4-17 days as listed in
Tables S3A-S3B. To maintain sufficient selection
pressure, NK cells were added to the cultures 1-2 times
during the screens. Approximately 60 million cells were
pelleted at the end and at earlier timepoints, frozen in -70
°C, and later thawed for genomic DNA extraction using
Blood Maxi Kit (Qiagen).

Next generation sequencing

Brunello and Calabrese screens: Preparation of DNA for
next generation sequencing was undertaken using a two-
step PCR protocol as previously described (Shalem et al.,
2014). Briefly, DNA was extracted from frozen cell pellets
(3x107 cells; Blood & Cell Culture DNA Maxi Kit, Qiagen)
per manufacturer’s instructions. DNA concentration was
quantified by UV-spectroscopy (NanoDrop 8000;
ThermoFisher Scientific). In the first PCR, sgRNA loci
were selectively amplified from a total of 160 pg of
genomic DNA (10 pg DNA per sample x 16 reactions, 100
pl volume) using primers described in Table S3C and
Phusion® High-Fidelity DNA Polymerase (New England
Biolabs, Beverly, MA). This provides approximately 300X
coverage for sequencing. A second PCR was performed
using 5 pl of the pooled Step 1 PCR product per reaction
(1 reaction per 10,000 sgRNAs; 100 ul reaction volume) to
attach lllumina adaptors and to barcode samples (Table
S3C). Primers for the second PCR included a staggered
forward primer (to increase sequencing complexity) and
an 8bp barcode on the reverse primer for multiplexing of
disparate biological samples (Table S3C). PCR replicates
were combined, gel normalized (2% w/v) and pooled, then
the entire sample run on a gel for size extraction. The
bands containing the amplified and barcoded sgRNA
sequences (approximately 350-370 bp) were excised and
DNA extracted (QIAquick Gel Extraction Kit, Qiagen).
Multiplexed samples were then sequenced at the
Molecular Biology Core Facility (Dana-Farber Cancer
Institute) and/or The Genomics Platform (Broad Institute)
using an lllumina NextSeq 500 (lllumina, San Diego, CA),
allowing 4x108individual reads per multiplexed sample.

GeCKOv2 screens: Amplicons containing sgRNA
sequences were amplified with a 2-step PCR protocol
using primers flanking the sgRNA cassette (Table S3C) as
previously described (Dufva et al., 2020a). Briefly, the
following overhangs were added to the locus-specific
primers to make them compatible with the index primers:
Adapter1 (before locus specific forward primer 5- 3),
Adapter2 (before locus specific reverse primer 5’-3’). The
first PCR was performed using 1200 ng of sample DNA
and the locus-specific primers, with 96 separate
amplifications for each sample. After amplification, all
reactions were pooled for the second PCR, in which index
primers 1 and 2 and seven identical reactions for each
sample pool were used, with a unique combination of dual
indexes for each of the sample pools. The seven amplified
and indexed reactions were pooled together and purified
with Agencourt AMPure XP beads twice. Sample pools
were sequenced with lllumina HiSeq 2000 System
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(Numina) using read length PE100 or NovaSeq 6000
System (lllumina) using read length PE100.

Data analysis

Screen data were analyzed using MAGeCK v0.5.2 and
v0.5.7 (Li et al., 2014). Forward direction reads were
aligned to the GeCKO v2 library sgRNA sequences using
the mageck count function with default parameters.
Comparisons across conditions were performed on the
resulting sgRNA read count matrix using the mageck test
function with default parameters. For the GeCKO v2
screens with the K562, MOLM14, SUDHL4, and NALM6
cells, all NK-treated and untreated samples from different
replicates and E:T ratios were respectively pooled
together for the MAGeCK test analysis of each cell line.
GSEA was run using fgsea (Korotkevich et al., 2021) on
gene lists ranked based on signed MAGeCK p values. For
comparison of the NALM6 NK cell screen with CAR T cell
screen in the same cells, CAR T cell screen data were
downloaded from Supplemental Table 5 (Supplemental
File 6) in (Dufva et al., 2020a).

CRISPR screen with focused sgRNA library
Sub-genome scale CRISPR gene editing screens to
validate determinants of tumor cell response versus
resistance to NK cells in a pooled manner were performed
using the same reagents and protocols described in the
genome-scale Brunello section above. Six hundred thirty-
five target genes were selected by pooling top hits and
biologically relevant hits from our MM cell screens and our
solid tumor screens (Sheffer et al., 2021). Olfactory
receptor (OR) genes, which are generally not expressed
nor considered to influence tumor cell survival and
immune responses, were used to establish a control
distribution of sgRNAs. A total of 4,000 sgRNAs targeting
screen hits and OR gene control sgRNAs were cloned into
lentiCRISPRv2 (a gift from Feng Zhang, Addgene plasmid
# 52961), with an additional G added in the beginning of
the sgRNA sequence when indicated (Table S30).

Target cell lines MM.1S, LP1 and KMS11 were co-cultured
with donor-derived, IL-2 expanded NK cells (same donor
as genome-scale screens) or left untreated, in three
biological replicates at the following E:T ratios: LP1 and
KMS11 1:2, while MM.1S were treated at 2:1 in one
experiment and 1:1 in a subsequent experiment.

After each screen, DNA extraction, PCR amplification,
next generation sequencing, and processing of
sequencing data were performed as described for
genome-scale screens above.

One-sided test for enrichment and depletion of the
sgRNAs and sgRNA rank aggregation was performed for
each gene using MAGeCK, with default parameter
settings. OR genes were used to establish a control
distribution of sgRNAs for the rank aggregation procedure.
For validation purposes, only those genes included among
the top 200 in each genome-scale screen were included
in the analysis per each cell line.

Individual gene CRISPR validations

Single-guide RNAs targeting screen hits and non-targeting
control sgRNAs were cloned into lentiCRISPRv2 (a gift
from Feng Zhang, Addgene plasmid # 52961), with an
additional G added in the beginning of the sgRNA
sequence (Table S3P). Lentivirus was produced and
luciferase-expressing cells were transduced as described
above for the GeCKO library virus. Cells were selected
using 0.5 pg/ml puromycin (0.9 pg/ml for K562) prior to
experiments.

Cytotoxicity assays using a luciferase readout were
performed by plating 10,000 luciferase-expressing target
cells harboring each sgRNA were on a 384-well plate
alone or with expanded NK cells at 1:2 effector-to-target
ratio in a total volume of 25 pl with six replicate wells.
Plates were incubated at 37 °C and 5% COx for 48 h, after
which 25 yl ONE-Glo reagent was added to each well
luminescence measured with a Pherastar FS plate reader.
Raw luminescence values were normalized to the average
of technical replicates of target cells carrying each sgRNA
cultured without NK cells and average log2 fold changes
were calculated between NK-treated and untreated wells
for each sgRNA.

Analysis of CRISPR screen hit mutations and gene
expression

Mutations in CRISPR screen hit genes (p < 0.00005 and
FDR < 0.2 in any of the screens) were queried from
cBioPortal using the following datasets: Chronic
Lymphocytic Leukemia (Broad, Nature 2015), Diffuse
Large B-Cell Lymphoma (Duke, Cell 2017), Multiple
Myeloma (Broad, Cancer Cell 2014), Acute Myeloid
Leukemia (TCGA, PanCancer  Atlas), Acute
Lymphoblastic Leukemia (St Jude, Nat Genet 2016).

Processed gene expression data from normal cell types
from BLUEPRINT and ENCODE were downloaded from
https://github.com/dviraran/SingleR/blob/master/data/blue
print_encode.rda.

Multi-omics correlations with PRISM-based NK cell
sensitivity

Genetic subtypes of the cell lines were annotated based
on previous studies as listed in Table S2A. A data matrix
containing genomic and other multi-omic features was
generated for systematic pairwise correlation analyses
between PRISM AUC and genomic features in CCLE data.
CCLE 2021 quartile 4 data was downloaded from
https://depmap.org/portal/download/all/. A feature matrix
comprising all available data levels was built, harmonizing
sample names by DepMap-ID (columns) and categorizing
by features (rows) as numeric or binary. Each feature was
annotated as NUMERIC|BINARY:DATATYPE:FEATURE

using the following abbreviations: GEXP, gene
expression; RPPA, protein expression; METH,
methylation; CNVR, copy number variation, GNAB,

mutation; MIRN, miRNA; LCMS, metabolomics) were
distinguished from each other. In all instances, missing
data was reported as NA.

Feature pairs were compared using Spearman’s rank
correlation followed by p value adjustment using the
Benjamini-Hochberg method. In the case of discrete
features, only features with at least 5 observations (such

16


https://doi.org/10.1101/2022.08.22.504722
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.22.504722; this version posted August 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

as mutations) were used to limit the number of
comparisons. Statistical tests were performed to assess
whether PRISM-based NK cell sensitivity AUC was
correlated with other features, such as gene expression,
protein expression, clinical, CNA, mutations, miRNAs, and
metabolomics. For genes whose expression correlated
with PRISM AUC, the correlation between expression and
methylation of the same gene was analyzed. The analyses
were performed both across all cell lines and within each
cancer type (AML, BCL, B-ALL, T-ALL, MM).

To assess which gene sets were enriched in samples
sensitive or resistant to NK cells, GSEA was run using
fgsea (Korotkevich et al., 2021) on gene lists ranked based
on signed p values of the correlation with PRISM AUC.

Features identified using the pairwise correlation analyses
were visualized at the sample level with heatmaps
generated using ComplexHeatmap (Gu et al., 2016). The
enriched gene sets identified by GSEA were visualized at
the sample level using GSVA (Hanzelmann et al., 2013).

Patient genomic data analysis

Data collection and preprocessing

Feature matrices containing clinical data, processed gene
expression values, mutations, CNAs, and subtypes of
DLBCL patients from Reddy et al. (Reddy et al., 2017),
Chapuy et al. (Chapuy et al., 2018) and the TCGA dataset;
MM patients from the CoMMpass dataset (Manojlovic et
al,, 2017); and AML patients from the TCGA dataset
(2013) preprocessed as previously described (Dufva et al.,
2020b) were downloaded from Synapse (Reddy et al.
DLBCL:
https://www.synapse.org/#!Synapse:syn21995529,
Chapuy et al. DLBCL:
https://www.synapse.org/#!Synapse:syn21991358, TCGA
DLBCL:
https://www.synapse.org/#!Synapse:syn21995730,
CoMMpass MM:
https://www.synapse.org/#!Synapse:syn21995455, TCGA
AML: https://www.synapse.org/#!Synapse:syn21995719.

Clinical data, processed gene expression values,
mutations, and subtypes of 262 T-ALL patients were
downloaded from supplementary tables 1, 5, 8, and 15,
respectively (Liu et al., 2017).

Processed methylation beta values of 109 T-ALL patients
and 20 samples of normal thymocytes were downloaded
from GEO (GSE155333). Genetic subtypes were obtained
from supplementary table 6 (Roels et al., 2020).

Pairwise correlation analysis and visualization

Data matrices containing genomic and other multi-omic
features as well as clinical annotations were generated as
described above for systematic pairwise correlation
analyses, including correlations with the NK cell sensitivity
signatures (Figure 5) and with expression of CRISPR
screen hits in patient data (Figures 4 and S4). To find
patient samples with similar molecular phenotypes as the
NK-sensitive cell lines, NK cell sensitivity signatures were
obtained by taking 50 genes most significantly correlating
with sensitivity to NK cells based on PRISM AUC. The 50

genes were used to calculate an enrichment score of the
NK' sensitivity signature for each patient sample using
GSVA. The NK cell sensitivity signatures were derived
separately from MM, T-ALL, and BCL cell lines for use in
the corresponding patient datasets. Spearman’s rank
correlation followed by p value adjustment using the
Benjamini-Hochberg method was used to assess whether
the NK cell sensitivity signatures were correlated with
other features, such as gene expression, clinical, CNAs,
or mutations. A similar approach was used to test if the
expression of CRISPR screen hits correlated with
methylation or copy number of the same gene.

To visualize identified associations of CRISPR/PRISM
features with patient genomic and clinical data as dot
plots, differential expression between a sample group and
all other samples was calculated using Wilcoxon rank sum
test. For UMAP visualizations, expression values of 15%
of the most variable genes were used for dimensionality
reduction using the umap R package (Mclnnes et al.,
2020).

Single-cell transcriptomics CRISPR screens

Experiments and preparation of sScRNA-seq libraries

To generate lentiviral sgRNA libraries for single-cell
CRISPR screens, guides targeting screen hits (three
sgRNAs for each gene) and non-targeting control sgRNAs
(four for K562, six for other screens; Table S6A) were
cloned into CROPseg-Guide-Puro (a gift from Christoph
Bock, Addgene # 86708) (Datlinger et al., 2017) or into
CROP-sgRNA-MS2 (a gift from Wolf Reik, Addgene #
153457) (Alda-Catalinas et al., 2020). Lentivirus was
produced and cells were transduced as described above
using different concentrations of virus. Cells were selected
with puromycin (0.5 pg/ml for K562, SUDHL4, and
NALM®6; 1 pg/ml for MM1.S, LP1, and KMS11) and cells
transduced with a concentration resulting in a 10-20%
transduction efficiency based on a viability assay
described above were selected for screening. Target cells
were co-cultured with day 17 feeder cell-expanded NK
cells for 24 h at 1:16 and 1:4 effector-to-target ratios (only
1:16 for K562) or left untreated, and both conditions were
subjected to scRNA-seq after washing twice with 10 ml
PBS + 0.04% BSA.

The Chromium Single Cell 3 RNAseq run and library
preparation were done using the 10x Genomics Chromium
Next GEM Single Cell 3' Gene Expression v3.0 chemistry
(K562), v3.1 chemistry (SUDHL4, NALM6, MM1S), or v3.1
Dual Index chemistry (LP1, MM1S CRISPRa). CROP-seq
guide sequencing libraries were prepared using nested
PCRs described in Hill et al. 2018 and
https://github.com/shendurelab/single-cell-ko-

screens#enrichment-pcr. Briefly, 13 ng of full length 10x
cDNA was used as template for the first round of
amplification. The subsequent 2nd and 3rd PCR reactions
were done using SPRIselect Reagent (1.0X) purified and
1:25 diluted PCR product as template. Optimal
amplification cycles were selected based on quantitative
PCR analysis. The guide sequencing libraries were
sequenced alongside the 3 GEX libraries with
approximately 10% read depth when compared to 3' GEX
libraries. The K562, SUDHL4, NALM6, and MM1S sample
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libraries were sequenced on lllumina NovaSeq 6000
system using the following read lengths: 28bp (Read 1),
8bp (i7 Index), 0 bp (i5 Index) and 89bp (Read 2). The LP1
and MM1S CRISPRa sample libraries were sequenced on
lllumina NovaSeq 6000 system using the following read
lengths: 28bp (Read 1), 10bp (i7 Index), 10bp (i5 Index)
and 90bp (Read 2).

Data analysis

Data preprocessing was performed using 10x Genomics
Cell Ranger v3.1 (K562, SUDHL4, NALM6, MM1S) or
v6.0.2 (LP1, MM1S CRISPRa) pipelines. The ‘cellranger
mkfastq’ function was used to produce FASTQ files and
‘cellranger count’ to perform alignment, filtering, and UMI
counting. The Illumina bcl2fastq v2.2.0 was used to run
mkfastq function and alignment was done against the
human genome GRCh38.

FASTAQ files of the targeted sgRNA amplification libraries
were run through Cell Ranger count v3.1.0 pipeline. UMI
counts of guides associated with each cell were extracted
using the get barcodes.py script downloaded from
https://github.com/shendurelab/single-cell-ko-screens
(Hill et al., 2018). To assign guides to cells, cells harboring
sequences with > 10 UMI counts and accounting for > 50%
of the UMI counts in the cell were included in the analysis.
Out of these, cells in which the second most frequent
guide accounted for > 20% of the UMI counts were
considered to express two guides and were removed from
the analysis.

The R package Seurat (v4.0.4) (Stuart et al., 2019) was
used for further scRNA-seq data processing. Cells with >
10-15% mitochondrial gene counts, > 50% or < 5%
ribosomal gene transcripts, < 3,000 UMI counts, or < 300
or > 10,000 detected genes were filtered out. After log-
normalization, the highly variable genes were calculated
with the FindVariableFeatures function in Seurat using the
‘vst’ selection method. Data were scaled, clusters were
defined based on PCs with a standard deviation > 2 using
the FindNeighbors and FindClusters functions, and cell
types were annotated using SingleR. Clusters comprising
NK cells, doublets, or low-quality cells were removed. The
sgRNA—cell assignments were merged with the
expression object, which was subsetted to cells assigned
a single sgRNA. Differential expression between cells
expressing guides targeting a gene and non-targeting
controls or between untreated or NK cell-treated control
sgRNA-carrying cells was performed with a Student’s t-

REAGENTS AND RESOURCES

test using the FindMarkers function in Seurat with
logfc.threshold = 0.1. Multiple testing correction using the
Bonferroni method was performed separately for each
perturbation. Similarity of the differential expression gene
lists across perturbations was assessed using the
CompareLists function in the OrderedList package
(v1.64.0).

The mixscape tool in Seurat was used to detect
perturbations with a transcriptomic phenotype and
visualize their relative differences as previously described
(Papalexi et al., 2021). CalcPerturbSig was used to
calculate  perturbation  signatures reflecting the
perturbation-specific differences between cells expressing
gene-targeting guides and cells expressing control guides,
and cells were classified as perturbed or non-perturbed
using RunMixscape with logfc.threshold = 0.025 and
gene.count = 5. Cells classified as non-perturbed were
removed from the analysis and the similarity of the
perturbations was visualized as a UMAP based on linear
discriminant analysis computed using the MixscapeLDA
function.

The core NK cell response score was calculated as
described above and differential enrichment of the score
in various perturbations was calculated with the Student’s
t-test using the FindMarkers function in Seurat similarly as
for genes.

Comparison with patient data

For the genes perturbed in CROP-seq experiments
mutated in at least 5 patients with either MM (CoMMpass),
DLBCL (Reddy et al.), or AML (TCGA), differentially
expressed genes between patients with and without
mutations were determined using limma (Ritchie et al.,
2015). Genes significantly differentially expressed in the
same direction at a nominal p value threshold of 0.05 in
both CROP-seq and in patients when the same gene was
knocked out or mutated, respectively, were identified.

DATA AVAILABILITY

The results of the study can be interactively explored at:
https://immunogenomics.shinyapps.io/nkheme/. All
processed and raw sequencing data generated in this
study will be made publicly available upon final publication
of this work.

REAGENT or
RESOURCE

SOURCE

IDENTIFIER

Cell culture reagents

Cell Culture Phosphate
Buffered Saline (PBS)

Corning

Cat# 21040CV

Gemini Bio-

Products,

Serum
Negative

Fetal Bovine
Tetracycline
(FBS)

Cat# 100-800
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RPMI 1640 Gibco Cat# 11875119
RPMI 1640 Medium, no | Gibco Cat# 11835030
phenol red

GMP SCGM Cellgenix Usa Cat# 20802-0500
GlutaMAX, 200mM Gibco Cat# 35050061
Human recombinant IL-2 | R&D Systems Cat# 202-1L-050
RBC Lysis Buffer for | VWR Cat# 1BB-197
Human Red Blood Cells

Trypsin-EDTA  (0.05%), | Gibco Cat# 25300120
phenol red

Opti-MEM | Reduced | Gibco Cat# 31985070
Serum Medium

Hepes Gibco Cat# 15630080
Antibodies

NKp46 APC monoclonal | BD Biosciences Cat# BDB558051
antibody

CD314  (NKG2D)-APC | Miltenyi Biotec Cat# 130-117-830
monoclonal antibody

CD3-FITC  monoclonal | Miltenyi Biotec Cat# 130-098-162
antibody

CD56-PECy7 BD Biosciences Cat# BDB335809
NKp30 A488 monoclonal | Thermo Fisher Cat# FAB1849G
antibody

Antibiotics

Puromycin Fisher Scientific Cat# BP2956100
Dihydrochloride

Blasticidin Gibco Cat# R21001
Ampicillin Sigma Aldrich Cat# A5354
Penicillin-Streptomycin Corning Cat# 30001Cl
Solution

Critical Commercial Assays

Blood & Cell Culture DNA | Qiagen Cat# 13343
Midi Kit

Blood & Cell Culture DNA | Qiagen Cat# 13362
Maxi Kit

QlAquick Gel Extraction | Qiagen Cat# 28706
Kit

Qlamp DNA Mini Kit Qiagen Cat# 51304

MycoAlert KIT Lonza Cat# LT07-710
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Phusion High-Fidelity | New England | Cat# M0O531L
PCR Master Mix with HF | Biolabs

Buffer

NK Cell Isolation Kit, | Miltenyi Biotec Cat# 130-092-657

human

RosetteSep Human CD3 | StemCell Cat# 15661
Depletion Cocktall Technologies

PRISM lysis buffer

NP40 cell lysis buffer Invitrogen Cat# FNN0021
QIAGEN Proteinase K Qiagen Cat# 19133
TWEEN-20 Sigma Aldrich Cat# P9416
Experimental Models: Cell Lines

Lenti-X™ 293T Cell Line | Takara Bio Cat# 632180

KHYG1 DSMz Cat# ACC 725
MM1.S-Cas9 B Ebert’s lab N/A

KMS11-Cas9 Broad Institute, MIT | N/A

LP-1-Cas9 Broad Institute, MIT | N/A
LP-1-dCas9/VP64 Broad Institute, MIT | N/A
KMS11-dCas9/VP64 Broad Institute, MIT | N/A
K562-mblL21-41BBL Dean A. Lee

Competent Cells

ElectroMAX Stbl4 | Invitrogen Cat# 11635018
Competent Cells

Oligonucleotides

List of primers — see| IDT

Table S3

Recombinant DNA

lentiCas9-Blast Addgene Addgene Cat# 52962
lentiGuide-Puro Addgene Addgene Cat# 52963
psPAX2 Addgene Addgene Plasmid#12260
pMD2.G Addgene Addgene Cat #12259
pCMV-VSV-G Addgene Addgene Cat#8454
Lenti dCAS9-VP64 Blast | Addgene Addgene Cat#61425
Brunello human library Addgene Addgene Cat#73179
Human CRISPR | Addgene Addgene Cat#1000000111
Activation Pooled sgRNA

Library (Calabrese

library)
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GeCKO v2 human library | Addgene Addgene Cat# 1000000049
CROPseq-Guide-Puro Addgene Addgene Cat#86708
CROP-sgRNA-MS2 Addgene Addgene Cat#153457
lentiCRISPRv2 Addgene Addgene Cat#52961
Software and Algorithms

PRISM 8 GraphPad https://www.graphpad.com
FlowJo V9.7.6 Tree Star https://www.flowjo.com/

MAGeCK 0.5.2 and 0.5.7

(Li et al., 2014)

https://sourceforge.net/projects/mageck/

RStudio

Integrated
Development for R.
RStudio, PBC,
Boston, MA

http://www.rstudio.com/

Bioconductor 3.13

http://www. bioconductor.org/

ggplot2

https://ggplot2. tidyverse.org

ComplexHeatmap

(Gu et al., 2016)

MSigDB (Subramanian et
al., 2005)
R R Core Team https://www.r-project.orgs
Seurat 4.0.4 (Stuart et al., 2019) | https://cran.r-project. org/web/packages/Seurat/index.html
SingleR 1.6.1 (Aran et al., 2019) | https://github.com/dviraran/SingleR
CellPhoneDB (Efremova et al., | https://github.com/ Teichlab/cellphonedb
2020)
GSVA 1.24.0 (Hanzelmann et al., | https://bioconductor.org/packages/ release/bioc/html/GSVA.html

2013)

Slingshot 2.2.0

(Street et al., 2018)

https://bioconductor.org/packages/release/bioc/html/slingshot.html

DescTools 0.99.43

https://cran.r-project.org/web/packages/DescTools/index.html

Deposited Data

Raw sequencing data
from co-culture scRNA-
seq and CROP-seq
experiments

This paper

Processed data from co-
culture scRNA-seq and
CROP-seq experiments

This paper

Raw sequencing data
from CRISPR screen
experiments

This paper

Processed data from
CRISPR screen
experiments

This paper
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CCLE multi-omic data

(Barretina et al.,
2012; Ghandi et al.,
2019)

https://depmap.orag/portal/download/all/

DLBCL gene expression,

(Reddy et al., 2017)

EGA: EGAS00001002606

genetic alteration, and

clinical data

DLBCL gene expression, | (Chapuy et al., | GEO: GSE98588

genetic alteration, and | 2018)

clinical data

TCGA AML and DLBCL | TCGA  Research | dbGaP: phs000178.v8.p7
Network

CoMMpass MM gene | (Manojlovic et al., | https://research.themmrf.org/rp/download

expression, genetic | 2017)

alteration, and clinical

data

T-ALL gene expression,
genetic alteration, and
clinical data

(Liu et al., 2017)

T-ALL methylation data

(Roels et al., 2020)

GEO: GSE155333

CRISPR screening data

(Dersh et al., 2021)

of MHC-I regulators
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