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SUMMARY 
 
Natural killer (NK) cells are emerging as a promising therapeutic option in cancer. To better understand how cancer 
cells evade NK cells, we studied interacting NK and blood cancer cells using single-cell and genome-scale functional 
genomics screens. At single-cell resolution, interaction of NK and cancer cells induced distinct activation states in both 
cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to more 
resistant B-lymphoid cancers. CRISPR screens uncovered cancer cell-intrinsic genes driving sensitivity and resistance, 
including antigen presentation and death receptor signaling mediators, adhesion molecules, protein fucosylation genes, 
and transcriptional regulators. CRISPR screens with a single-cell transcriptomic readout revealed how these cancer cell 
genes influenced the gene expression landscape of both cell types, including regulation of activation states in both 
cancer and NK cells by IFNγ signaling. Our findings provide a resource for rational design of NK cell-based therapies in 
blood cancers. 
 
 
HIGHLIGHTS 
 

• Transcriptomic states of interacting NK cells and cancer cells depend on cancer cell lineage 
• Molecular correlates of increased sensitivity of myeloid compared to B-lymphoid cancers include activating 

receptor ligands NCR3LG1, PVR, and ULBP1 
• New regulators of NK cell resistance from 12 genome-scale CRISPR screens include blood cancer-specific 

regulators SELPLG, SPN, and MYB 
• Single-cell transcriptomics CRISPR screens targeting 65 genome-wide screen hits identify MHC-I, IFNy, and 

NF-κB regulation as underlying mechanisms 
 
 
 
INTRODUCTION 
 
NK cells are cytotoxic innate lymphoid cells which can 
directly eliminate cancer cells through secretion of 
cytolytic granules and trigger an immune response via 
secretion of immunomodulatory cytokines (Chiossone et 
al., 2018). NK cell activation relies on a balance between 
activating and inhibitory signals derived from surface 
receptors engaged with cognate ligands on target cells 
(Lanier, 2003). Data on NK cells driving the graft-versus-
leukemia effect in allogeneic hematopoietic stem cell 

transplantation (Ruggeri et al., 2002) and more recently on 
the efficacy of chimeric antigen receptor (CAR) NK cells 
(Liu et al., 2020) have provided encouraging evidence on 
the therapeutic potential of NK cells in blood cancers. As 
a result, NK cell-based immunotherapies (adoptive 
transfer of allogeneic NK cells, bispecific NK engager 
antibodies, and CAR NK cells) are actively pursued in 
patients with hematological malignancies (Myers and 
Miller, 2021; Shimasaki et al., 2020).  
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Single-cell analyses have provided unbiased 
transcriptional profiles of immune cell subsets derived 
from healthy and malignant tissues, as well as of 
transcriptional programs in tumor cells (Cheng et al., 2021; 
Crinier et al., 2018; Jerby-Arnon et al., 2018; Pfefferle et 
al., 2019; Smith et al., 2020; Yang et al., 2019; Zheng et 
al., 2021). However, these approaches are not optimally 
positioned to capture the dynamic changes in tumor and 
immune cells when these cells interact. How cytotoxic 
lymphocytes such as NK cells react to tumor cell challenge 
and how tumor cells in turn respond by altering their 
transcriptional states has not been investigated in a 
systematic, transcriptome-wide manner. 
 
Genome-scale CRISPR screens have revealed cancer 
cell-intrinsic mechanisms of evasion from T cell killing in 
solid tumors (Kearney et al., 2018; Lawson et al., 2020; 
Patel et al., 2017) and hematological malignancies (Dufva 
et al., 2020a; Singh et al., 2020), confirming that unbiased 
functional genomics can reveal underappreciated aspects 
of immune-cancer cell interactions. CRISPR screens and 
measurement of NK cell sensitivity across a large panel of 
genotypically diverse cell lines using PRISM (Yu et al., 
2016) identified molecular factors regulating sensitivity of 
solid tumor cells to NK cell mediated killing (Sheffer et al., 
2021). In contrast, a systematic evaluation of resistance 
and sensitivity to NK cell therapies across hematological 
malignancies has not been performed, limiting our 
biological understanding of endogenous NK cell-mediated 
anti-cancer immunity as well as the therapeutic use of NK 
cells for blood cancers, the main context for which clinical 
proof-of-concept is available and rapid further 
development is anticipated for NK cell-based therapies.  
 
As a result, several key questions in translating the 
potential of NK cells as effective therapies in blood 
cancers remain unanswered. How do NK cells and cancer 
cells respond to their interaction by changing their 
transcriptional profiles and do these changes differ 
depending on the phenotype or genetic makeup of the 
cancer cells? Are there previously undiscovered 
mechanisms mediating NK cell cytotoxicity, including 
mechanisms unique to blood cancers? Do genetic or 
epigenetic alterations in blood cancer cells from individual 
patients influence NK cell sensitivity/resistance 
mechanisms, ultimately leading to differences in sensitivity 
to NK cells between molecular subtypes of blood cancers? 
Linking genomic subtypes of blood cancers to NK cell 
sensitivity would enable identification of patient groups 
more likely to benefit from NK cell-based immunotherapy, 
and pinpoint molecular mechanisms that could be 
therapeutically targeted to sensitize resistant 
malignancies to NK-cell based therapies. 
 
Here, we sought to answer these questions by combining 
multiplexed single-cell RNA-seq (scRNA-seq) profiling of 
interacting NK cells and cancer cells, PRISM-based 
profiling of NK cell sensitivity across a panel of blood 
cancer cell lines, and genome-scale and single-cell 
transcriptomic CRISPR screens of cancer-cell intrinsic NK 
cell resistance mechanisms (Figure 1A). By integrating 
these data and patient genomic profiles, we provide a 
comprehensive landscape of functionally validated genetic 
mechanisms which influence how NK cells recognize and 
kill malignant hematopoietic cells. The results offer a 

roadmap to facilitate development of NK-cell based 
immunotherapy for blood cancers and beyond. The data 
are available for interactive exploration at 
https://immunogenomics.shinyapps.io/nkheme/. 
 
 
RESULTS 
 
Multiplexed scRNA-seq defines phenotypic changes 
in NK cells interacting with blood cancer cells 
Defining how NK cells and cancer cells change their 
phenotype upon their interaction is essential for 
understanding potential mechanisms of resistance. To 
comprehensively profile the cell states of interacting NK 
cells and blood cancer cells, we cultured 26 different cell 
lines representing diverse hematologic neoplasms either 
alone or with NK cells derived from a single donor (Figure 
1B, Table S1). The cancer types included acute and 
chronic myeloid leukemia (AML and CML), B and T cell 
acute lymphoblastic leukemia (B-ALL and T-ALL), B cell 
lymphoma (BCL), and multiple myeloma (MM). We 
studied both NK cells extracted directly from the peripheral 
blood and NK cells expanded ex vivo using feeder cells 
and IL-2, corresponding to those used in adoptive NK cell 
immunotherapy trials (Ciurea et al., 2017; Liu et al., 2020). 
After 24 h co-culture, we labeled the cells from each 
monoculture or co-culture condition with oligonucleotide-
conjugated antibodies against ubiquitously expressed 
surface proteins (with different oligonucleotide for each 
mono- or co-culture), enabling multiplexing in the scRNA 
seq using the cell hashing method (Stoeckius et al., 2018). 
Across the 82 scRNA-seq samples, we obtained a total of 
61,715 cells (753 cells per sample on average) classified 
as singlets based on hashtag barcodes, including 8,851 
NK cells (182 cells per sample on average) and 52,864 
target cells (645 cells per sample on average) (Figure 
S1A-B; Table S1).  
 
We first focused on NK cells. After correcting for cell cycle 
and batch effects, unsupervised clustering of the ex vivo 
expanded NK cells from all conditions revealed five distinct 
clusters (see Methods; Figures 1C and S1C). Most 
monocultured NK cells belonged to two clusters: resting 
NK cells (cluster 0) expressing markers of CD56bright NK 
cells (NCAM1/CD56, KLRC1/NKG2A, GZMK) (Crinier et 
al., 2018; Pfefferle et al., 2019; Smith et al., 2020; Yang et 
al., 2019), consistent with the CD56bright phenotype of 
expanded NK cells (Denman et al., 2012; Lieberman et al., 
2018), and adaptive NK cells (cluster 1) based on 
expression of KLRC2/NKG2C and LAG3 (Holmes et al., 
2021; Merino et al., 2019) (Figure 1C). In contrast, the 
remaining three NK cell clusters (clusters 2, 3, and 4) were 
present in very small quantities when NK cells were 
cultured alone, but were enriched in the co-culture 
conditions with tumor cells. NK cells with an activated 
phenotype (cluster 2) expressed genes encoding several 
co-stimulatory receptors TNFRSF18/GITR, TNFRSF9/4-
1BB, TNFRSF4/OX-40, and CRTAM, inhibitory receptors 
such as HAVRC2/TIM-3 and TIGIT, immediate-early 
genes DUSP2, DUSP4, and EGR2, the death receptor 
ligand TNFSF10/TRAIL, and ENTPD1/CD39 associated 
with tumor-reactive T cells and exhaustion (Gupta et al., 
2015; Sade-Feldman et al., 2018; Simoni et al., 2018). On 
a pseudotemporal trajectory from the resting to the 
activated cluster, BATF, HAVCR2, and ENTPD1 were 
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expressed early in the transition to the activated state, 
whereas TNFRSF18, TNFRSF9, TNFRSF4, and CRTAM 
marked the terminal point of the NK cell activation state 
spectrum (Figures 1D-1E). Other clusters enriched upon 
target cell enrichment included NK cells with high type I 
interferon (IFN) signature (cluster 3) expressing antiviral 
genes such as MX1, MX2, OAS1, OAS2, and OAS3 and 
cytokine-producing NK cells expressing several cytokine 
genes including CCL3, CCL4, TNF, and IFNG (cluster 4).  
 
Different cell lines induced distinct changes in the 
phenotype of NK cells. Some cell lines such as K562 
(CML), JURKAT (T-ALL), and SUDHL4 (BCL) induced 
over 50% of NK cells to transition into the activated state 
(cluster 2), compared to less than 20% with several B-ALL 
and MM cell lines (Figures 1F-1H). In contrast to the 
gradual differences in transition to the activated cluster 2 
across cell lines, the type I IFN NK cell state (cluster 3) 
was only induced by certain cell lines, including the AML 
lines GDM1, OCIM1, and THP1, and the BCL line RI1. As 
almost all cell lines were matched with the NK cells with 
regard to HLA-C1/HLA-C2 groups (Table S1), cancer cell 
features other than human leukocyte antigen (HLA) types 
are likely responsible for the distinct NK cell activation 
states in the co-culture conditions. 
 
NK cells extracted directly from peripheral blood 
mononuclear cells (PBMC) from the same donor without 
expansion showed largely similar responses to co-culture 
with cancer cells, indicating that the observed activation 
states are also relevant to NK cells normally found in 
circulation (Figures S1D-S1G). In PBMC NK cells, 
however, the transition to the activated cluster was tightly 
coupled with the cytokine cluster (Figure S1G), in contrast 
to expanded NK cells where the cytokine cluster varied 
independently of the activated cluster. Together, these 
findings indicate that NK cells shift into activated states 
with an altered repertoire of co-stimulatory and co-
inhibitory receptors in response to engagement with 
cancer cells, and that the magnitude and direction of the 
transition varies depending on the target cells. 
 
Transcriptomic responses of blood cancer cells to NK 
cell attack 
Having defined the changes in NK cell phenotypes 
resulting from co-culture, we examined the transcriptomic 
responses induced in cancer cells by the NK cell attack. 
Comparison of all expanded NK cell-treated target cells 
with the untreated controls indicated a strong interferon γ 
(IFNγ) response induced by NK cell treatment (Figure 2A; 
Table S1). A core set of 17 genes significantly induced in 

over 75% of the cell lines comprised the class I major 
histocompatibility complex (MHC-I) genes (B2M, HLA-A, 
HLA-B, HLA-C, and HLA-E), JAK-STAT signaling genes 
(STAT1, IRF1, IRF9), immunoproteasome genes 
(PSMB8, PSMB9, PSBM10, PSME1, PSME2), the 
ubiquitin-conjugating enzyme gene UBE2L6, granulysin 
(GNLY), and the chemokine-ligand 5 gene (CCL5) (Figure 
2B). To test which cell lines showed the strongest 
transcriptomic responses, we ranked the cell lines by the 
log2 fold change (log2FC) of a score comprising the 17 
core NK cell-induced genes (Figures 2B and S1H-S1I). 
This revealed particularly strong responses in T-ALL and 
myeloid AML and CML cell lines compared to other blood 
cancer types (Figure 2C). Transcriptomic changes 
induced by non-expanded PBMC-derived NK cells in 
blood cancer target cells were similar but less pronounced 
than those observed with expanded NK cells (Figure S1I).  
 
To uncover distinct transcriptional programs induced in 
subsets of the cell lines, we examined 200 genes most 
variably induced across cell lines by unsupervised 
clustering (Figure S1H). This highlighted IFNγ-associated 
programs, including the core set of NK-induced genes as 
well as cytokines such as CXCL9, CXCL10, and TNFSF10 
(TRAIL). MHC class II (MHC-II) genes were induced more 
prominently in monocytic cells and several B cell lines. A 
program related to differentiation of myeloid cells towards 
monocytes, macrophages, and neutrophils was induced in 
AML cells, including genes such as FCGR1A, CD63, 
cathepsins, and the TIM-3 ligand LGALS9, suggesting that 
NK cell attack may induce maturation of monocytic 
leukemias, as has been reported in response to IFNγ 
(Matsuo et al., 1997). Strikingly, a type I IFN signature was 
induced in many of the same cells which induced a similar 
signature in the NK cells (GDM1, R1, and THP1), 
indicating a coordinated response in both cell types 
evoked by their interaction (Figures 2B and S1H). When 
comparing the core NK signature induced in the target 
cells with the percentage of NK cells shifting towards the 
activated/type I IFN phenotypes, we indeed observed a 
positive correlation between NK cell and target cell 
activation (Figure 2D). 
 
To determine whether similar NK cell-induced signatures 
in cancer cells could be found in patient data, we 
compared the differentially expressed genes with vs. 
without NK cell co-culture in vitro to genes correlating with 
infiltration by cytotoxic lymphocytes (NK or T cells) in 
patients with diffuse large B cell lymphoma (DLBCL) 
(Reddy et al., 2017) or AML (2013) (Figures 2E and S1J). 
The majority of the NK-induced genes, particularly the 17-

Figure 1. Single-cell transcriptomics of NK cells interacting with blood cancer cells 
(A) Overview of the study. 
(B) Multiplexed co-culture scRNA-seq workflow. 
(C) UMAP visualization of expanded NK cells from all conditions, including co-culture with 26 cell lines and NK cells cultured alone. Cells are 

colored based on the clusters and marker genes are shown for each cluster selected from the genes significantly overexpressed in each cluster 
compared to other clusters. 

(D) UMAP visualizations as in C showing pseudotime starting from cluster 0 (resting) and ending in cluster 2 (activated) (top), and expression of 
genes enriched in the activated cluster (middle and bottom). Arrow indicates the pseudotime trajectory. 

(E) Heatmap of selected genes upregulated in the activated cluster. Cells included in the trajectory in D are shown ordered by pseudotime. 
(F) UMAP visualizations of expanded NK cells across all conditions, including co-culture with 26 cell lines and NK cells cultured alone.  
(G) Bar plot of percentages of NK cells belonging to different clusters in each condition, including co-culture with 26 cell lines and NK cells cultured 

alone. Conditions are ordered by the combined percentage of cells in resting and adaptive (clusters 0 and 1) in decreasing order.  
(H) Box plot of percentages of NK cells belonging to different clusters in each condition stratified by cancer type. P value between all groups is 

obtained using a Kruskal-Wallis test. Boxes indicate IQR with a line at the median. Whiskers represent the min and max values at most 1.5 
IQR from the quartiles.  
See also Figure S1 and Table S1. 
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gene core set, correlated positively with NK cell infiltration, 
suggesting that similar transcriptomic responses occur in 
vivo.  
 
Given the observed changes in expression of various 
receptors in NK cells and ligands in cancer cells, we used 
the CellPhoneDB (Efremova et al., 2020) to study which 
ligand-receptor interactions would be unique to cells in the 
interacting states, as opposed to resting states. Several 
interactions were more frequent between the cancer cells 
and co-culture-related NK cell clusters (activated, type I 
IFN, or cytokine), compared to the resting or adaptive-like 
clusters (Figure 2F). These included ligands for activating 
and inhibitory receptors (TNFSF9-TNFRSF9, TNFSF4-
TNFRSF4, LGALS9-HAVCR2), death receptors 
(TNFRSF10A/B-TNFSF10, FAS-FASLG), cytokines 
(TGFB1/3-TGFBR2), and adhesion molecules (ICAM1-
aMb2/aXb2 complex, EFNA3/4/5-EPHA4), indicating that 
new interactions emerge upon NK cell transition into the 
cancer cell-induced states. In turn, several interactions 
were induced by transition of the cancer cells to the NK 
cell-treated states, including interactions of MHC-I with 
inhibitory receptors, and the engagement of the IFNγ-
regulated cytokine CXCL10 with the CXCR3 receptor 
(Figure 2G). Taken together, the transcriptomic responses 
of tumor cells to NK cell attack depend on the lineage and 
correlate with NK cell activation, resulting in new ligand-
receptor interactions not found in the resting state. 
 
 
Molecular correlates of NK cell sensitivity across 
blood cancers 
To study cancer cell sensitivity to NK cells across different 
lineages and stages of maturation, we performed 
phenotypic studies on a pool of 63 molecularly-annotated 
DNA-barcoded blood cancer cell lines, including myeloid 
and lymphoblastic leukemia, DLBCL, and MM cells 
(PRISM system, Figure 3A) (Yu et al., 2016). We 
quantified the dose-dependent responses to primary NK 
cells using the relative abundance of barcodes in treated 
cells compared to controls (Table S2), followed by 

integrated computational analyses to identify candidate 
molecular markers correlating with tumor cell sensitivity or 
resistance to NK cells.  
 
We observed substantial heterogeneity across blood 
cancer types in their sensitivity to NK cells (Figures 3B-3C 
and S2A). AML cell lines were the most sensitive, whereas 
B-ALL cells were generally resistant. MM cell lines were 
on average relatively resistant and T-ALL cell lines were 
sensitive, but both showed a high degree of variation 
between individual cell lines, implying the existence of 
sensitive and resistant subgroups. Such heterogeneity 
could also be observed when comparing the sensitivity of 
each individual cell line and the corresponding percentage 
of NK cells shifting towards the activated/type I IFN 
clusters (Figures 3D, 1H, and S2B). Not all responsive cell 
lines elicited a strong transition of the effector cells into an 
activated/type I IFN phenotype. However, all of the 
resistant cell lines we tested failed to induce this 
phenotype, indicating that the ability to induce an NK cell 
activation state is one of the possible mechanisms 
explaining the heterogeneity across disease subtypes 
(Figure 1G). 
 
We next asked which molecular features could explain the 
observed variation in NK cell sensitivity. We explored 
correlations of the AUC of NK cell sensitivity to gene 
expression, DNA methylation, mutations, microRNAs, 
proteomics, and metabolomics in the Cancer Cell Line 
Encyclopedia (CCLE) multi-omics data (Barretina et al., 
2012; Ghandi et al., 2019) (Figures 3E and S2C). Among 
the genes most highly correlated with sensitivity to NK 
cells were the activating receptor ligands NCR3LG1 and 
ULBP1 (false discovery rate (FDR) cutoff 15%). 
Expression of NCR3LG1 and ULBP1 correlated negatively 
with methylation of their promoter regions (Figures 3F-
3G), suggesting methylation-based epigenetic regulation 
as a basis for cancer type heterogeneity of these activating 
signals. Genes that correlated with resistance to NK cells 
included components of the alternative NF-κB pathway 
(TNFRSF13B/TACI, MAP3K14/NIK). 

Figure 2. Transcriptomic responses of blood cancer cells to NK cell attack 
(A) Volcano plot of differentially expressed genes between all NK-cell treated cancer cell lines and the same cell lines cultured alone. Red dots 

indicate genes significantly (FDR < 0.05) enriched in NK-treated cells and blue dots indicate genes enriched in untreated cells. 
(B) Dot plot of selected genes upregulated in cancer cells upon exposure to expanded NK cells. The genes shown include the core NK cell-induced 

genes (17 genes induced in at least 75% of the cell lines) and other genes induced in subsets of the cell lines grouped based on functional 
categories. The cell lines are ordered based on the log2 fold change of a score comprising the core NK cell-induced genes shown as a bar plot 
at the top. Color indicates log2 fold change between conditions and dot size indicates the negative log10 FDR. Only dots where P < 0.05 are 
shown, and circled dots indicate FDR < 0.05. At the bottom, examples of UMAP visualizations of the cell lines GDM1, K562, and 697 are shown 
colored according to the co-culture condition. 

(C) Box plot of the log2 fold change of the core NK cell-induced gene score between NK-treated and untreated cells stratified by cancer type. P 
value between all groups is obtained using a Kruskal-Wallis test and p values between each pair using Wilcoxon rank sum tests followed by 
Benjamini-Hochberg (BH) adjustment. Only p values for significant pairs are shown (* < 0.05). Boxes indicate IQR with a line at the median. 
Whiskers represent the min and max values at most 1.5 IQR from the quartiles.  

(D) Scatter plot comparing NK cell activation (percentage of NK cells in activated and type I IFN clusters after co-culture with the cell lines) and core 
NK cell response gene set induction in NK-treated target cells (log2 fold change in core NK cell response score compared to untreated). 
Correlation coefficient and p value are obtained using Spearman’s rank correlation. Dots are colored according to cancer type as in C. 

(E) Scatter plot comparing genes induced by NK cell co-culture in target cells and genes correlating with NK and T cell infiltration (cytolytic score) 
in DLBCL patient samples from Reddy et al. Genes with significant correlation and differential expression (FDR < 0.05) and scRNA-seq log2 
fold change > 0.3 are labeled in red. Genes included in the core NK-induced genes are labeled in green. 

(F) Dot plot of ligand-receptor interactions induced by NK cell activation. Dot size and color indicates the number of cell lines (out of total 26) having 
significant interactions with each cluster of expanded NK cells according to CellPhoneDB. Shown are interactions most enriched in the three 
activation-related clusters (activated, type I IFN, cytokine-producing) compared to the two other clusters (resting and adaptive), indicating 
interactions induced by NK cell activation states. Interactions are ordered based on functional categories. 

(G) Dot plot of ligand-receptor interactions induced by cancer cell response to NK cells. Dot size and color indicates the number of cell lines (out of 
total 26) having significant interactions with each cluster of expanded NK cells according to CellPhoneDB. Shown are interactions most enriched 
in the NK cell-treated conditions compared to untreated, indicating interactions induced by cancer cell response to NK cell attack. Interactions 
are ordered based on functional categories. 
See also Figure S1 and Table S1. 
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In gene set variation analysis (GSVA), the core NK cell 
response signature derived from single-cell data (Figure 
2B) correlated with resistance (Figure 3H) concordantly 
with the class I HLA expression score (Figure 3I). This 
observation supports the hypothesis that pre-existing 
expression of those adaptive response molecules may 
contribute to the intrinsic resistance of cancer cells to NK 
cells. Although not meeting the criteria for significance 
after multiple testing correction, several genetic alterations 
and protein, miRNA, and metabolite levels were 
associated with sensitivity to NK cells (Figures 3E and 
S2C). TRAF3 mutations mostly found in MM and KRAS 
mutations found in multiple cancer types correlated with 
resistance (Figure 3E). In contrast, NLRC5 mutations 
were associated with sensitivity, consistent with the MHC-
I regulatory function of NLRC5 (Meissner et al., 2010). 
These molecular correlates may partially reflect different 
patterns across cancer types, which itself emerged as a 
key determinant of NK cell sensitivity, but also potential 
mechanistic roles of the respective molecules in regulating 
NK cell response.  
 
 
CRISPR screens identify genetic determinants of NK 
cell sensitivity and resistance in hematological 
malignancies 
To further explore mechanisms that could potentially 
explain the observed heterogeneity in response to NK 
cells, we performed genome-scale CRISPR screens in cell 
lines representing a spectrum of hematologic 
malignancies, with variable baseline sensitivity to NK cells. 
We transduced cell lines from BCL (SUDHL4), B-ALL 
(NALM6), MM (MM1.S, LP1, KMS11), CML (K562), and 
AML (MOLM14) with either the GeCKO v2 library (Sanjana 
et al., 2014) or the Brunello library (Doench et al., 2016) 
for loss-of-function (LOF) screens (see Methods). MM cell 
lines were also transduced with the gain-of-function (GOF) 
Calabrese library (Sanson et al., 2018) in order to uncover 
genes with low expression at baseline whose 
overexpression might alter the cancer cell response to NK 

cells. Pools of transduced tumor cells were then co-
cultured with IL-2-expanded donor-derived NK cells or the 
NK cell line KHYG1 for a period ranging from a minimum 
of 24 hours to up to two weeks (Figure 4A; Table S2).  
 
As expected, LOF of molecules belonging to the MHC-I 
complex and the antigen presentation machinery were 
significantly depleted across all cell lines, reflecting the 
missing-self mechanism of NK cell activation and thus 
providing an internal quality control of the screens (Figures 
4B-4C and S3A). In addition, other depleted knockouts 
included genes controlling MHC-I transcriptional 
regulation, such as NLRC5, RFXAP, and RFXANK, as well 
as peptide-loading complex components TAP1, TAP2, 
and TAPBP, indispensable for MHC-I surface expression. 
Also, LOF of genes belonging to the IFNγ signaling 
pathway – namely JAK1 and STAT1 – were significantly 
depleted in co-culture conditions compared to controls 
across most cell lines, in keeping with the role of IFNγ-
related NK cell response signature in driving reduced NK 
cell sensitivity observed in the PRISM data (Figures 3H-
3I). These findings highlight that genes associated with 
IFNγ signaling and the antigen presentation machinery are 
prominent suppressors of NK cell killing regardless of the 
lineage and the disease subtype.  
 
In contrast, LOF of the death receptor signaling pathway 
genes – specifically TNFRSF1B, TNFRSF10A, 
TNFRSF10B, FAS, FADD, BID, and CASP8 – was 
associated with decreased response to NK cell killing, 
while the overexpression of TNFRSF10D conferred higher 
sensitivity in two MM cell lines (Figure 4B-C). Consistent 
with these findings, LOF of the negative regulators of 
death receptor signaling CFLAR (c-FLIP), TRAF2, and 
XIAP sensitized multiple cell lines to NK cells. An 
integrative analysis of data obtained in NALM6 cells 
treated with either NK cells or CAR T cells (Dufva et al., 
2020a) indicated FADD and TNFRSF10B LOF as a 
shared mechanism of resistance, consistent with death 
receptor signaling mediating both NK and T cell 
cytotoxicity (Figure S3B). Gene set enrichment analysis 

Figure 3. PRISM screen of NK cell sensitivity across blood cancer cell lines 
(A) PRISM screen workflow. 
(B) Examples of dose-response curves of NK cell sensitivity at various effector-to-target ratios obtained using PRISM for two cell lines, 697 (B-

ALL) and THP-1 (AML). The percent viability of the target cells at each effector-to-target ratio is obtained by normalizing the luminescence 
values to the mean of the untreated (0:1) condition. Colored dots represent technical replicates (n = 8), black dots indicate mean, error bars 
indicate standard deviation, and the area under the dose-response curve (AUC) is shown next to the curve. Lower AUC denotes sensitivity to 
NK cells and higher AUC resistance. 

(C) Box plot of the sensitivity of different hematological malignancies to NK cell cytotoxicity shown as AUC of the dose-response curve. P value 
between all groups shown in the figure is obtained using a Kruskal-Wallis test and p values between each pair using Wilcoxon rank sum tests 
followed by Benjamini-Hochberg (BH) adjustment. Only p values for significant pairs are shown (* < 0.05, ** < 0.01). Boxes indicate IQR with 
a line at the median. Whiskers represent the min and max values at most 1.5 IQR from the quartiles.  

(D) Scatter plot comparing NK cell activation (percentage of NK cells in activated and type I IFN clusters after co-culture with the cell lines) and 
sensitivity of the cell lines to NK cells in PRISM quantified as AUC of the dose-response curve. Correlation coefficient and p value are obtained 
using Spearman’s rank correlation. Dots are colored according to cancer type as in C. 

(E) Heatmap of molecular correlates of sensitivity to NK cells across blood cancer cell lines. Cell lines are ordered by decreasing sensitivity 
(increasing PRISM AUC). Expression of genes and mutations most highly correlated with sensitivity or resistance to NK cells are shown. For 
the shown genes, correlation of expression with methylation is shown on the right, with a separate column indicating significance of the 
correlation at 5% FDR. In addition, expression of the core NK cell response gene set derived from co-culture scRNA-seq experiments as GSVA 
score and HLA I score summarizing expression of MHC-I complex genes are shown. 

(F) Scatter plot comparing expression of NCR3LG1 with NK cell sensitivity (PRISM AUC). Dot color indicates NCR3LG1 methylation. Correlation 
coefficient and p value are obtained using Spearman’s rank correlation. 

(G) Scatter plot comparing expression of ULBP1 with NK cell sensitivity (PRISM AUC). Dot color indicates ULBP1 methylation. Correlation 
coefficient and p value are obtained using Spearman’s rank correlation. 

(H) Scatter plot comparing expression of the core NK cell response gene set as GSVA score with NK cell sensitivity (PRISM AUC). Correlation 
coefficient and p value are obtained using Spearman’s rank correlation. 

(I) Scatter plot comparing HLA I score summarizing expression of HLA I complex genes with NK cell sensitivity (PRISM AUC). Correlation 
coefficient and p value are obtained using Spearman’s rank correlation. 
See also Figure S2 and Table S2. 
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(GSEA) revealed enrichment of pathways including 
FASL/CD95L signaling, transcription of death receptors 
and ligands, TRAIL signaling and TNFR1 induced NFkB 
signaling pathway as well as IFNγ signaling, antigen 
processing and presentation, class I HLA assembly and 
peptide loading in multiple cell lines, supporting the broad 
relevance of death receptor apoptosis and MHC-I in 
regulating NK cell cytotoxicity (Figure S3C).  
The overexpression of several activating NK cell receptor 
ligands sensitized cells to NK cell-mediated killing in our 
MM1.S GOF screen. These included the CD2 ligand 
CD58, the NKG2D ligands ULBP1, ULBP2, ULBP3, and 
MICA, the 2B4 ligand CD48, the DNAM-1 ligand PVR, as 
well as the TNFSF9, the ligand for the 4-1BB receptor 
induced in NK cells by tumor challenge in our scRNA-seq 
analyses.  However, the activating receptor ligands 
showed a heterogeneous pattern across cell lines in the 
LOF screens. NCR3LG1, encoding the ligand for NKp30, 
emerged as an important mediator of NK cell cytotoxicity 
against CML K562 and AML MOLM14 cells (Figure 4B-C) 
and was coherently highly expressed in NK-sensitive 
myeloid leukemias in the PRISM studies (Figure 3E). 
Other NK cell activating ligands that were depleted in 
tumor cells surviving NK cell treatment included CD58 in 
K562 cells, CD48 in ALL NALM6 and myeloma MM1.S 
cells, as well as ULBP2 in NALM6 cells (Figure 4B-C). 
Activating receptor ligands NCR3LG1 and ULBP1 were 
concordantly among the genes most highly correlated with 
NK cell sensitivity in the PRISM studies (Figure 3E). 
Altogether, these findings suggest that while inhibitory 
signals by MHC-I and death receptor-mediated apoptosis 
are common across cell lines and cancer types, distinct 
activating receptor ligands promote NK cell cytotoxicity 
depending on the cell line. 
 
Several adhesion molecules regulated the response to NK 
cell cytotoxicity. Beyond the established LFA-1 ligand 
ICAM1, which promoted NK cell killing of several cell lines, 
we also identified other adhesion molecules not previously 
associated with NK cell function, including SPN (CD43), 
the P-selectin ligand SELPLG (PSGL1), and CD44, which 
promoted resistance to NK cell killing. It has been reported 
that PSGL1, which was a hit in MM.1S, requires O-glycan 
fucosylation to become functional (Harjunpää et al., 2019). 

Interestingly, other fucosylation-related genes were 
identified regulating response to NK cell cytotoxicity in the 
LP1 cell line. The engagement of LP1 with NK cells was 
associated with a strong depletion of sgRNAs for genes 
essential for fucosylation including FUT8, GMDS and 
SLC35C1 (Schneider et al., 2017), while the 
overexpression of terminal-fucosylation gene FUT4 
induced resistance to NK cell killing in the same cell line 
(Figure S3A). Overexpression of the mucin genes MUC1 
and MUC21 conferred resistance to NK cells in MM lines. 
Altogether, these data point to a potential role of 
glycoproteins and surface ligand fucosylation for 
promoting resistance to NK cells. 
 
A broad collection of transcriptional regulators and 
chromatin modifiers regulated NK cell response in 
hematologic malignancies. For example, loss of ARID1A, 
a member of the SWI/SNF chromatin remodeling complex, 
conferred resistance to NK cells in four cell lines (Figure 
4B). In particular, the MM line MM1.S exhibited decreased 
response to NK cell treatment when ARID1A expression 
was lost, while it became significantly more sensitive when 
the same gene was overexpressed in the GOF screen. 
Several other regulators of gene expression also 
influenced sensitivity to NK cells, including the erythroid 
transcription factors GFI1B and TAL1 in K562 CML cells, 
as well as the m6A RNA methylation modifier YTHDF2 
and the transcription factors CMIP, FOXA1, PCGF5, 
RBBP4, IRF4, MYB, and MSI2 in other cell lines.  
 
Other genes not previously linked to NK cell resistance 
included SPPL3 in NALM6. LOF of the peptidase and 
positive regulator of HLA-I presentation SPPL3 (Jongsma 
et al., 2020) conferred resistance also against CAR T cells, 
suggesting a mechanism related to general lymphocyte 
cytotoxicity instead of an NK cell-specific effect. In 
addition, our genome-scale screens identified the NF-κB 
negative regulator NFKBIA, the G-protein alpha subunit 
GNA13, and the antiviral gene ZC3HAV1, which was 
identified in both LOF and GOF screens in the MM cell line 
MM1.S. 
 
We validated results from the genome-scale screens 
using a focused subgenome-scale sgRNA library as well 

Figure 4. Genome-scale CRISPR screens of NK cell resistance and sensitivity in hematological malignancies 
(A) Genome-scale CRISPR screen workflow. 
(B) Scatter plot of genes conferring resistance or sensitivity to NK cells in genome-scale CRISPR screens. The y axis indicates the p value 

multiplied by the sign of the log2 fold change. Genes with p < 0.0001 and absolute value of the log2 fold change > 0.75 in at least one screen 
are shown for the screen with the highest significance for each gene. Dot size indicates the absolute value of the log2 fold change of the 
labeled genes. Genes are in a randomly sampled order on the x axis. Selected genes out of those with p < 0.0001 included in Figure 1C are 
colored based on the functional categories.  

(C) Dot plot of genes conferring resistance or sensitivity to NK cells in genome-scale CRISPR screens. Shown are selected genes out of those 
with p < 0.0001 in at least one screen or genes validated in separate assays. Color indicates log2 fold change between NK cell-treated and 
untreated conditions and dot size indicates the negative log10 p value, with only dots where p < 0.05 shown. In LOF screens, blue color 
indicates depletion of the edited cells and red color enrichment with NK cell treatment. In GOF screens, green color indicates enrichment and 
pink indicates depletion of the edited cells with NK cell treatment. 

(D) Selected genes validated using pooled CRISPR screens with focused libraries targeting genome-wide screen hits in MM cell lines. Plots show 
log2 fold change between NK-treated and untreated cells for each guide RNA. Olfactory receptor (OR) genes were used as a control and 
shown in gray is the average of all OR genes sgRNAs log2 fold change, while the dashed lines represent the 95% confidence interval. 

(E) Genes validated using single gene targeting of genome-wide screen hits with a luciferase cytotoxicity assay. Plots show log2 fold change of 
luciferase-based cell viability between NK-treated and untreated cells for each guide RNA. Dots indicate means of technical replicates for each 
sgRNA, with two sgRNAs used for each gene. 

(F) Frequency of mutations in CRISPR screen hit genes in patients with hematological malignancies. Stacked bars indicate percentages of 
mutated samples of each cancer type cohort. Only genes with mutations in > 1.5% patients cumulatively in all cancer types are shown. 

(G) Volcano plot comparing expression of CRISPR screen hit genes between blood cancer and solid tumor cell lines in CCLE RNA-seq data. 
Adjusted p values (-log10) on the y axis are obtained using  Wilcoxon rank sum tests followed by Bonferroni correction and log2 fold change 
of medians is shown on the x axis. Genes with log2 fold change > 2 or < -2 and negative log2 adjusted p value > 20 are labeled and shown as 
colored dots. 
See also Figures S4 and S5 and Tables S3 and S4. 
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as by targeting individual genes in select cell lines (Figures 
4D-4E and S4A). These experiments largely reproduced 
the findings from the genome-scale screens, including the 
above-mentioned genes not previously linked to NK cell 
sensitivity, confirming their role in functionally regulating 
sensitivity to NK cell cytotoxicity.  
 
 
Genetic alterations and transcriptional regulation of 
NK cell susceptibility genes in cancer cells from 
patients with blood cancers 
Alterations in CRISPR screen hit genes in cancer cells 
from patients with hematological malignancies could 
influence the efficacy of both the endogenous NK cell 
response and NK cell-based immunotherapies. To explore 
this, we first searched for somatic mutations in public 
datasets of AML, ALL, MM, DLBCL, and CLL. Somatic 
mutations occurred in the MHC-I complex subunit gene 
B2M, NF-κB signaling genes (NFKBIA, BIRC3), 
transcription factors and epigenetic modifiers (ARID1A, 
IRF4, STAG2, MYB), the CD2 ligand CD58, the extrinsic 
apoptosis mediator CASP8, as well as other genes such 
as GNA13 (Figures 4F and S4B; Table S3). Many of these 
mutations were particularly prevalent in DLBCL (Figure 
4F).  
 
In addition to mutations, we investigated potential 
mechanisms regulating the expression of the CRISPR 
screen hits, including copy number alterations (CNAs) and 
DNA methylation, using multi-omics data from MM 
(CoMMpass), DLBCL (Reddy et al., 2017), and AML 
(TCGA, (2013)) (Figure S4C-D). Losses or deletions of 
TRAF2 in MM and JAK1, CD58, and ARID1A in DLBCL 
were associated with reduced expression of the respective 
genes (Figure S4D; Table S3). CRISPR screen hits whose 
expression negatively correlated with DNA methylation of 
the transcription start site region included TNFRSF1B, 
ULBP1, and ULBP3 in TCGA AML and TNFRSF1B, 
ULBP1, and PVR in TCGA DLBCL (Figure S4E; Table 
S3). AML patients with monocytic or myelomonocytic 
leukemia had the highest TNFRSF1B expression, 
indicating that both DNA methylation and cell type-specific 
transcriptional regulation can influence the expression of 
NK cell susceptibility genes such as TNFRSF1B (Figure 
S4E). 
 
Regulators of NK cell sensitivity expressed exclusively or 
preferentially in blood cancers could represent blood 
cancer-specific NK cell regulators with potential for 
therapeutic targeting. Across all CCLE cell lines, we found 
the expression of CD48, SPN, RHOH, MYB, SELPLG, and 
TNFRSF1B as highly selective for blood cancers (Figures 
4G and S4F). In solid tumor cell lines, these genes were 
highly methylated, indicating strong lineage-specific 
regulation of expression (Figure S4F). In contrast, the 
DNAM-1/CD226 and TIGIT ligand PVR and the NKG2D 
ligand ULBP3 were enriched in solid tumors, although 
myeloid malignancies expressed PVR and T cell 
lymphomas (TCL) expressed ULBP3 (Figures 4G and 
S4F). These expression patterns were also evident in 
primary patient samples in TCGA data (Figure S4F) as 
well as in normal healthy tissues (Figure S4G), indicating 
cell type, rather than oncogenic transformation, as the 
driver of the observed differences. Given their inhibitory 
function on NK cell cytotoxicity, genes such as SELPLG, 

SPN, and MYB therefore represent examples of blood-
cancer-specific NK cell regulators that may present new 
therapeutic targets.  
 
 
Integration of CRISPR and PRISM screens reveals 
cancer subtype-specific NK cell evasion mechanisms 
To find out if the mechanisms identified in our CRISPR 
screens could explain differential NK cell sensitivity of cell 
lines observed in the PRISM studies, we investigated 
whether transcript levels of genes (based on CCLE data) 
identified as hits in CRISPR screens correlated with the 
PRISM AUC. Across cancer types, high expression of 
genes including NCR3LG1, ULBP1, and PVR correlated 
with sensitivity, while B2M, NLRC5, TAP1, CD44, and 
MSI2 correlated with resistance, indicating that these 
genes contribute to the differential NK cell sensitivity 
across blood cancer types (Figures 5A and S5A; Table 
S5). Stratified by cancer type, NK cell sensitivity correlated 
with high expression of FAS, PVR and ULBP1 in T-ALL, 
NCR3LG1 in B cell lymphoma (BCL), and PVR in B-ALL 
(Figure 5A), indicating heterogeneity in these activating 
ligands within certain cancer types in addition to their 
heterogeneity across cancers. The cancer type-specific 
analysis also identified resistance genes with potential 
preferential roles in individual neoplasms, including 
NFKBIA in BCL, CFLAR in MM, and SPPL3 in B-ALL. 
Analysis of genetic signatures recurrently associated with 
NK cell resistance across all hematologic neoplasms 
revealed that the IFNγ response gene set retained its 
association with high PRISM AUC in AML, MM, and BCL, 
and a similar finding was observed for TNF alpha signaling 
via NF-κB in MM and BCL (Figure S5B). The core NK cell 
response signature and HLA I score correlated similarly 
with NK cell resistance only in BCL and MM (Figures S5C-
S5D). 
 
We next asked whether genetic subtypes, mutations, or 
other factors could explain the heterogeneous expression 
of the NK cell susceptibility genes leading to variation in 
sensitivity within cancer types. In MM, among the genes 
most highly correlated with NK cell resistance were 
CFLAR encoding c-FLIP, a suppressor of death receptor-
mediated apoptosis, and MHC-I genes (Figure 5B). MM 
cell lines harboring the t(4;14) (WHSC1) translocation 
tended to be more resistant, while the t(11;14) (CCND1) 
subtype tended to be more sensitive. Moreover, NK cell 
resistance was associated with inactivating mutations in 
TRAF3, known to induce activation of non-canonical NF-
κB signaling (Keats et al., 2007; Liao et al., 2004). As 
CFLAR is a known NF-κB target gene (Micheau et al., 
2001), TRAF3 mutations could confer NK cell resistance 
by inducing CFLAR, resulting in impaired death receptor-
mediated apoptosis. 
 
We subsequently investigated whether these connections 
could also be found in patients using the CoMMpass data. 
We devised an NK cell sensitivity signature comprising 
genes whose expression correlated with sensitivity in the 
cell lines to identify patient subgroups with a molecular 
profile matching either NK-sensitive or NK-resistant cell 
lines. In agreement with the cell line data, the sensitivity 
signature was high in the CCND1 patient subgroup and 
low in the WHSC1 subgroup (Figure 5C), indicating that 
the cell lines faithfully represent molecular subtypes found 
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in patients. TRAF3 alterations, including nonsynonymous 
mutations, deletions, and losses, occurred both in a 
distinct TRAF3-altered cluster and in a subset of patients 
with WHSC1 translocations, consistent with the cell lines 
where TRAF3 mutations and WHSC1 translocations often 
co-occured (Figure 5C). CFLAR expression was enriched 
in patients with TRAF3 alterations belonging to both of 
these groups (Figures 5C and S5E). In addition, MHC-I 
expression was enriched in the WHSC1 subgroup, 
corroborating findings in the cell lines (Figures 5C and 
S5F). The functional role of CFLAR was validated in 
TRAF3 mutated cell lines MM.1S, KMS11 and LP1, in 
which LOF of CFLAR induced increased response to NK 
cell attack (Figure 5D). These results indicate that TRAF3 
and WHSC1 alterations confer an NK cell immune evasion 
phenotype in MM. 
 
In T-ALL, NK cell sensitivity correlated with expression of 
the death receptor FAS, the DNAM-1 ligand PVR and the 
NKG2D ligand ULBP1 (Figure 5E). The sensitive cell lines 
belonged to the TAL1 and LMO2 genetic subtypes 
representing late cortical differentiation (Ferrando et al., 
2002) (Figure 5E). In contrast, other T-ALL lines showed 
low expression and high DNA methylation of PVR and 
ULBP1. Consistently, in patient genomic data from T-ALL 
(Liu et al., 2017), we found PVR and ULBP1 expression 
enriched in the TAL1, TAL2, and LMO2 genetic subtypes 
corresponding to the late cortical stage (Figure 5F). 
Conversely, other subtypes including the TLX1 and TLX3 
representing the early cortical stage and LMO2/LYL1 
representing a more immature stage showed low 
expression of FAS, PVR and ULBP1 (Figures 5F and 
S5G). PVR and ULBP1 were unmethylated in patients with 
the TAL subtype and healthy T cells at all maturation 
stages, but showed increased methylation in other 
subtypes, suggesting that epigenetic control by DNA 

methylation may underlie the cancer-specific silencing of 
PVR and ULBP1 in immature and early cortical T-ALL 
(Figure 5G) (Roels et al., 2020). Together, these findings 
suggest that the genetic background and differentiation 
stage of T-ALL can enable evasion from NK cells through 
decreased PVR and ULBP1 expression in immature 
subtypes. 
 
DLBCL cell lines of germinal center B-cell (GCB) cell-of-
origin tended to be more sensitive to NK cells, whereas 
other BCL subtypes including MCL, CHL, Burkitt 
lymphoma (BL), and activated B cell (ABC) were less 
sensitive (Figure 5H). Expression of several CRISPR hits 
correlated with sensitivity, such as NCR3LG1, or with 
resistance, including NLRC5, TAP1, NFKBIA, MYB, IRF4, 
and MHC-I, also consistent with the IFNγ and NF-κB 
response gene sets being enriched in the resistant BCL 
cell lines. Mutations in GNA13 correlated with NK cell 
sensitivity, in line with our CRISPR screen data showing 
sensitization to NK cells upon GNA13 disruption (Figures 
4C-4D). In DLBCL patients, the PRISM-derived NK cell 
sensitivity signature was consistently enriched in the GCB 
subtype, which harbored GNA13 mutations and showed 
decreased expression of NLRC5, MHC-I genes, TAP1, 
NFKBIA, and MYB compared to ABC tumors (Figures 5I 
and S5H). 
 
 
Single-cell transcriptomics CRISPR screens reveal NK 
cell evasion mechanisms of genome-scale screen hits 
We reasoned that the transcriptomic changes induced by 
perturbing genes identified in the CRISPR screens could 
reveal how these genes influence sensitivity to NK cells. 
We therefore performed pooled CRISPR screens with a 
single-cell transcriptome readout using the CROP-seq 
platform (Datlinger et al., 2017). We selected highly 

Figure 5. Integration of CRISPR and PRISM screens reveals cancer subtype-specific NK cell evasion mechanisms 
(A) Gene expression correlations with sensitivity to NK cells (AUC) in PRISM shown as signed p values of the Spearman’s rank correlations using 

CCLE data. CRISPR screen hit genes (p < 0.0001) showing a correlation with PRISM AUC (p < 0.05) and with a correlation to the same 
direction as in CRISPR screens (e.g. lower expression correlates with NK cell sensitivity in PRISM and CRISPR-mediated silencing sensitizes 
to NK cells) are colored and labeled. Shown are correlations across all cell lines and within cell lines of individual cancer types. Dot color 
indicates the signed p value. 

(B) Heatmap of MM cell lines ordered by sensitivity to NK cells (PRISM AUC). Genetic subtypes, CFLAR expression, HLA I score, TRAF3 mutation 
status, and GSVA scores of the core NK cell response (NK response), Hallmark interferon gamma response (IFNγ) and Hallmark TNFA 
signaling via NF-κB (NF-kB) gene sets are shown. 

(C) UMAPs of MM transcriptomic data from CoMMpass (n = 767). Genetic subtypes, TRAF3 alterations, and CFLAR expression are colored on 
the plots. Dot plot on the right shows the median expression of CFLAR, HLA I score, and NK sensitivity signature (50 genes most significantly 
correlated with PRISM AUC in MM) across CoMMpass subtypes. Dot size indicates significance of differential expression between the 
indicated subtype and all other subtypes. 

(D) Effect of CFLAR knockout in genome-wide CRISPR screens in TRAF3-mutated MM cell lines. Log2 fold change between NK-treated and 
untreated cells is shown for each guide RNA. Olfactory receptor (OR) genes were used as a control and shown in gray is the average of all 
OR genes sgRNAs log2 fold change, while the dashed lines represent the 95% confidence interval. 

(E) Heatmap of T-ALL cell lines ordered by sensitivity to NK cells (PRISM AUC). Genetic subtypes, FAS, PVR, ULBP1, and ULBP2 expression, 
and FAS, PVR and ULBP1 methylation are shown. Color keys are shown above panel B. 

(F) UMAPs of T-ALL transcriptomic data from Liu et al. (n = 262). Genetic subtypes and PVR and ULBP1 expressions are colored on the plots. 
Dot plot on the right shows the median expressions of PVR, ULBP1, and NK sensitivity signatures (50 genes most significantly correlated with 
PRISM AUC in T-ALL) across T-ALL subtypes. Dot size indicates significance of differential expression between the indicated subtype and all 
other subtypes. 

(G) Heatmap of PVR and ULBP1 methylation in T-ALL patients (n = 109) and healthy controls (n = 20) from Roels et al. (GSE155333). The 
methylation probes with highest variance across the samples are shown. Samples are ordered based on average methylation of the two genes. 
Healthy thymocytes are shown on the left as comparison. Genetic subtypes are shown above according to Roels et al. 

(H) Heatmap of B cell lymphoma (BCL) cell lines ordered by sensitivity to NK cells (PRISM AUC). Lymphoma subtypes, expression of CRISPR 
hits correlating with PRISM AUC,  HLA I score, GNA13 mutations, and GSVA scores of the core NK cell response (NK response), Hallmark 
interferon gamma response (IFNγ) and Hallmark TNFA signaling via NF-κB (NF-kB) gene sets are shown. Color keys are shown above panel 
B. 

(I) UMAPs of DLBCL transcriptomic data from Chapuy et al. (n = 137). Cell-of-origin subtypes, GNA13 mutations, and HLA I score are colored 
on the plots. Dot plot on the right shows the median HLA I score, cytolytic score, and NK sensitivity signature (50 genes most significantly 
correlated with PRISM AUC in BCL) across DLBCL subtypes. Dot size indicates significance of differential expression between the indicated 
subtype and all other subtypes. 
See also Figure S5 and Table S5. 
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scoring hits from the genome-scale screens with a focus 
on likely transcriptional regulators, such as transcription 
factors and signaling molecules, as well as select NK cell 
ligands on tumor cells. We generated pools of cells 
expressing sgRNAs targeting hits in each cell line, 
including K562 (CML), SUDHL4 (DLBCL), NALM6 (B-
ALL), MM1.S (MM), and LP1 (MM) and exposed the cells 
to NK cells at 1:16 or 1:4 effector-to-target ratios for 24 h 
or left untreated, followed by scRNA-seq and sgRNA 
assignment to cells (Figure 6A). In addition to the knockout 
CROP-seq screens, we performed a CRISPR activation 
(CRISPRa) CROP-seq analysis in MM1.S cells. From the 
six single-cell screens, we obtained a total of 118,968 cells 
with an assigned sgRNA, with three sgRNAs targeting 
each of the 65 perturbed genes and on average 128 cells 
representing each sgRNA (Table S5). 
 
We analyzed differentially expressed genes between 
malignant cells harboring each perturbation and those 
carrying control sgRNAs, both with and without NK cell 
exposure. Out of the 65 perturbed genes, 30 showed no 
substantial transcriptomic changes, resulting in less than 
5 differentially expressed genes in each perturbation 
(Figures 6B and S6A). These included genes encoding 
cell-surface proteins, such as NCR3LG1, CD58, ICAM1, 
SPN, HLA-E, or MUC1, suggesting that their physical 
interaction with NK cell surface molecules is the main 
mechanism mediating their effect on NK cell cytotoxicity, 
without other cancer cell-intrinsic molecular changes 
induced by the binding. For the 35 perturbations with a 
transcriptomic phenotype, we examined the common and 
distinct patterns by comparing the overlap of the 
differentially expressed genes (Figure S6B-C) and by 
using UMAP dimensionality reduction after performing 
linear discriminant analysis (Papalexi et al., 2021) (Figures 
6C and S6D). Perturbations targeting IFNγ signaling 
mediators (IFNGR2, JAK1, JAK2, STAT1) grouped 
together in the UMAP reduced space, as did those 
targeting NF-κB regulators (TRAF2, NFKBIA, NFKBIB), 
consistent with common transcriptional changes induced 
by perturbing genes of the same pathway. In contrast, 
most other perturbations grouped individually, indicating 
distinct transcriptomic phenotypes. Some perturbations, 
including those targeting IFNγ and death receptor 
signaling mediators, induced substantial transcriptomic 
changes only in the presence of NK cells (Figures S6A and 
S6D). Several perturbations influenced the core NK cell 
response reflecting MHC-I genes and IFNγ signaling 
(Figures 6C and 6E), suggesting that these genes may 
regulate sensitivity to NK cells by influencing the 
transcriptomic response to NK cell attack. 
 
We reasoned that if perturbing a CRISPR screen hit were 
to influence the expression of other hits, such observations 
could provide functional links between the former gene 
and the regulation of NK cell activity. Indeed, LOF of genes 
encoding IFNγ signaling mediators (IFNGR2, JAK1, JAK2, 
STAT1) in multiple cell lines prevented the NK-cell driven 
induction of the MHC-I complex genes, such as B2M, 
HLA-E, HLA-A, HLA-B, and HLA-C, as well as TAP1 and 
TAPBP (Figures 6C, 6E, S6C, S6D, and S7A). The 
defective activation of HLA-E and other MHC-I genes 
therefore explains the sensitization to NK cells by 
disruption of the IFNγ-JAK-STAT components, consistent 
with an IFNγ-mediated negative feedback loop enabling 

target cell evasion from NK cells. Whereas LOF of the 
IFNγ signaling mediators showed a phenotype only in the 
presence of NK cells (Figures S6A and S7B), silencing of 
the HLA gene transactivator complex components NLRC5 
and RFXAP downregulated MHC-I genes both with and 
without NK cell exposure (Figure S7B). 
 
Several genes which promoted NK cell killing, including 
GFI1B in K562, YTHDF2 and BID in SUDHL4, PCGF5 in 
MM1.S, and KIAA0922 in NALM6, emerged as novel 
negative regulators of IFNγ signaling and MHC-I 
expression (Figures 6C, 6E, and S6B-S6D), providing a 
potential mechanism for the NK cell resistance conferred 
by their LOF. Conversely, LOF of MYB in LP1 cells 
reduced both MHC-I and MHC-II expression, indicating 
MYB as a positive regulator of antigen-presenting genes 
(Figures 6C-E, S6B, S6D, and S7B). MHC-I genes and 
IFNγ response were in general among the most recurrent 
differentially expressed genes and pathways across all 
perturbations, underlining the role of MHC-I and IFNγ 
regulators in controlling sensitivity to NK cells (Figure 
S6C). 
 
To confirm some of the observed effects on MHC-I at the 
surface protein level and to discover additional ones not 
relying on transcriptional regulation, we integrated our 
CRISPR hits with MHC-I regulators identified by Dersh et 
al. (Dersh et al., 2021) (Figure S7D). Besides the known 
MHC-I components and JAK1 concordant across the two 
sets of screens, ARID1A was identified as a negative 
regulator of MHC-I in the BJAB cell line and concordantly 
conferred resistance to NK cell attack in four of our 
genome-scale screens. In contrast, TRAF2 and CFLAR 
had discordant effects in the two sets of screens, being 
negative regulators of MHC-I in Dersh cell lines and NK 
cell sensitizers in our MM screens, showing that this latter 
effect occurs through a different mechanism, overriding 
the potential HLA-I modulation.  
 
Among potential mechanisms unrelated to MHC-I 
regulation, disruption of NFKBIA and TRAF2 in MM1.S led 
to increased expression of the death receptor FAS, 
essential for susceptibility to NK cells in the MM1.S 
CRISPR screen (Figures 6D-6E and S7B). GSK3B and 
MYB LOF in LP1 downregulated CFLAR, a negative 
regulator of death receptor signaling and NK cell 
resistance gene identified in the CRISPR screens (Figures 
6D-6E and S7B). CMIP disruption in NALM6 reduced the 
expression of CD48, ligand for the activating receptor 2B4 
and essential for NK cell killing of NALM6 (Figures 6E and 
S7B). These regulatory networks between genes 
identified in the CRISPR screens provide mechanistic 
explanations for the observed resistance of sensitization 
to NK cell cytotoxicity unrelated to MHC-I regulation. 
  
In addition to regulation of CRISPR screen hits, other 
perturbation-induced transcriptomic phenotypes could 
influence the interaction of the cancer cells with NK cells. 
In SUDHL4 cells, silencing of the death receptor apoptosis 
mediators FADD or CASP8 inhibited the NK cell-induced 
NF-κB activation (Figures 6E and S7C). In addition to 
mediating apoptotic signals, FADD and CASP8 thus 
appear to regulate the transcriptomic response to NK cell 
attack (Henry and Martin, 2017; Kreuz et al., 2004). In 
contrast, silencing of TRAF2, NFKBIA, or NFKBIB in 
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MM1.S cells induced NF-κB signaling (Figures 6D-E and 
S7A). This signature included known NF-κB targets such 
as BIRC3, CD70, and the chemokines CXCL10 and CCL5 
(Annunziata et al., 2007; Herishanu et al., 2011), which 
may further increase immune reactivity through 
recruitment of T and NK cells (Loetscher et al., 1996a, 
1996b; Schall et al., 1990; Taub et al., 1993). Silencing of 
CMIP (c-MAF interacting protein) in the pre-B-ALL cell line 
NALM6 led to increased expression of DNTT (TdT) and 
CD9, markers of early pro-B cells, and concomitant 
downregulation of genes expressed in more differentiated 
pro-B cells, including CD79A, VPREB1, and VPREB3 
(Figures 6E, S6D, and S7A). A more immature B cell state 
controlled by CMIP therefore may drive resistance to NK 
cell killing. Overall, the single-cell CRISPR perturbation 
data offer a resource of the phenotypic consequences of 
altering genes regulating NK cell-cancer cell interactions, 
providing mechanistic explanations and testable 
hypotheses for further exploration. 
 
Given that NK cell susceptibility genes were mutated in 
various hematological malignancies, we asked whether 
these mutations would result in similar transcriptomic 
alterations in patient cells as observed in the single-cell 
CRISPR screens. We compared the differentially 
expressed genes of each scRNA-seq perturbation with the 
differentially expressed genes between patients with and 
without mutations in the same gene using multi-omic data 
from MM (CoMMpass), DLBCL (Reddy et al., 2017), and 
AML (TCGA) (Figures 6F and S7E). MM patients with 
mutations in the NF-κB negative regulators TRAF2 and 
NFKBIA expressed higher levels of NF-κB target genes 
also identified experimentally by CROP-seq (Figures 6F 
and S7E). Moreover, MM patients with NLRC5 mutations 
had lower HLA-E expression consistent with CROP-seq 
data (Figure 6F, S7E), indicating that although rare, 
NLRC5 mutations in MM may result in an NK-sensitive 
phenotype (Figure 6E). These findings provide evidence 
that several regulatory mechanisms identified by the 
single-cell CRISPR screens operate in patient cells and 
therefore can influence susceptibility to NK cells in vivo. 
 
   
Cancer-cell intrinsic perturbations modulate NK cell 
transcriptomic states 

Finally, we asked if perturbing CRISPR screen hits in the 
cancer cells could influence the NK cell activation states 
we originally observed upon co-culture with various cancer 
cell lines (Figure 1C). We co-cultured ex vivo-expanded 
NK cells with three cell lines (K562, SUDHL4, and NALM6) 
expressing individual sgRNAs targeting 14 different genes 
(Figure 7A). After 24 h co-culture at 1:1 effector-to-target 
ratio, leading to elimination of most target cells, we 
performed multiplexed scRNA-seq on the NK cells using 
cell hashing. To quantify the effects of the target cell 
knockouts on NK cell activation, we computed an 
activation score for each NK cell, comprising 50 genes 
most significantly enriched in the activated NK cell cluster 
(cluster 2). Comparison of the activation scores of NK cells 
co-cultured with cancer cells harboring different 
perturbations to those cultured with non-targeting control 
sgRNA-expressing cells revealed that CD58 LOF in K562 
strongly reduced NK cell activation (Figure 7B). In addition 
to CD58, other resistance-inducing perturbations including 
CMIP and SPPL3 LOF in NALM6 had significant inhibitory 
effects. In contrast, JAK1 LOF induced stronger NK cell 
activation, consistent with the sensitizing effect (Figure 
7B). Interestingly, KCNH2 LOF induced resistance to NK 
cell cytotoxicity but still showed an activating effect on NK 
cells. 
 
To visualize differences in NK cell states relative to those 
identified in the co-culture experiments using the 26 
different cell lines, we mapped the NK cells from the 
present experiment to the UMAP dimensionality reduction 
from the previous experiment (Figure 7C). While most NK 
cells exposed to control K562 cells moved from the resting 
to the activated cluster, CD58 LOF in K562 cells caused a 
substantial fraction to remain in the resting state. 
Conversely, JAK1 LOF induced almost all NK cells to 
change to the activated state. These findings indicate a 
key role for the CD2-CD58 interaction in promoting the 
activated state and conversely for JAK1-mediated 
signaling in inhibiting the activation. The perturbation-
induced transcriptional changes both in NK cells and in 
target cells thus offer plausible mechanisms for how the 
genes identified in CRISPR screens control sensitivity to 
NK cells and provide a comprehensive resource of other 
immunoregulatory effects (Figure 7D). 
 

Figure 6. Single-cell transcriptomics CRISPR screens of cancer cell-intrinsic NK cell sensitivity regulators 
(A) Single-cell CRISPR screening (CROP-seq) workflow.  
(B) Genes targeted in CROP-seq experiments, divided into groups with at least or less than 5 differentially expressed genes (DEGs) compared to 

non-targeting control cells in any of the conditions (no NK, NK 1:16, or NK 1:4).  
(C) UMAP visualizations of single-cell CRISPR screen data after running linear discriminant analysis in the indicated cell lines at 1:16 effector-to-

target ratio. Cells classified as knockout or non-targeting (Control) by mixscape are shown. Perturbed genes (top row) and core NK cell 
response score (bottom row) are colored on the plots. 

(D) Volcano plots of differentially expressed genes with selected perturbations compared to control sgRNA-expressing cells. Red dots indicate 
genes with significantly (Bonferroni-adjusted p < 0.05) higher and blue dots lower expression in the CRISPR-targeted cells compared to control.  

(E) Dot plot of genes differentially expressed in cancer cells (rows) where the indicated genes (columns) are perturbed compared to cells 
expressing control sgRNAs. Perturbed genes with at least 5 DEGs are shown. For each perturbation, the condition (either NK 1:4, NK 1:16, or 
no NK) with the most significant differential expression is shown. Color indicates log2 fold change between conditions and dot size indicates 
the negative log10 adjusted p value. Only dots where p < 0.05 are shown, and circled dots indicate adjusted p value < 0.05. Enrichment or 
depletion of genes in genome-scale CRISPR screens are shown as colored dots both for the perturbations and perturbed genes. Effector:target 
(E:T) ratio for each perturbation is shown as colored dots above the plot. Selected molecular processes regulated by the perturbed genes are 
highlighted using dotted lines. 

(F) Examples of transcriptional changes induced by single-cell CRISPR screen perturbations with consistent changes observed in MM patients 
harboring mutations in the same genes in the CoMMpass data. Density plots of gene expression in scRNA-seq data in perturbed (dark yellow) 
and control cells (light yellow) are shown in the left column, and box plots of gene expression in patient RNA-seq data in mutated (‘Mut’) and 
non-mutated (‘WT’) samples are shown in the right column.  Boxes indicate IQR with a line at the median. Whiskers represent the min and 
max values at most 1.5 IQR from the quartiles.  
See also Figures S6 and S7 and Table S6. 
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All the data from multiplex scRNA-seq co-culture 
experiments, genome-wide and single cell CRISPR 
screens and PRISM screens together with the molecular 
correlates are available for interactive exploration at 
https://immunogenomics.shinyapps.io/nkheme/. 
 
 
DISCUSSION 
 
In this study, we systematically mapped the landscape of 
the interaction of NK cells with diverse types of tumor cells 
across hematological malignancies. We studied the 
phenotypic changes induced by the interaction of effector 
and target cells at single-cell resolution, profiled the 
sensitivity of different cancers and molecular subtypes to 
NK cells by PRISM profiling, and identified cancer cell 
genes and pathways influencing sensitivity to NK cells 
using CRISPR screens. Besides certain common core 
mechanisms across different diseases, a key finding 
emerging from the integration of these data is the 
heterogeneity of mechanisms influencing NK cell 
susceptibility between individual cancers driven by lineage 
and molecular subtypes of cancer. Our findings indicate a 
need to consider the cancer subtype and genetics for 
optimal tailoring of NK cell-based therapies for blood 
cancer patients. 
 
The diverse adaptive, interaction-induced responses 
detected in our single-cell studies reflected the 
heterogeneity, as different cell lines induced in NK cells a 
transition towards distinct activated states that ranged 
from a full shift to very little or no changes at all. The NK 
cell clusters enriched upon tumor cell exposure emerged 
both in expanded NK cells and in unexpanded PBMC-
derived NK cells, and included an activated state (cluster 
2), a cluster with high type I IFN signature (cluster 3) 
possibly resembling the previously identified type I IFN-
responding cells (Smith et al., 2020) and inflamed NK cells 
(Yang et al., 2019), and a cytokine-producing phenotype 
(cluster 4). The activated state included genes encoding 
receptors such as 4-1BB, OX-40, and CRTAM, shown also 
previously to be induced by NK cell activation (Baessler et 
al., 2010; Costanzo et al., 2018; Turaj et al., 2018). As the 
activated states correlated with increased cytotoxicity 
against target cells, interventions promoting the activated 
state such as agonistic antibodies for activating immune 
checkpoint receptors could improve NK cell 
immunotherapies. Some of the receptors induced upon 
transition to the activated state inhibit NK cell function, 
including TIM-3, TIGIT, and possibly also 4-1BB (Baessler 
et al., 2010) and GITR (Baltz et al., 2007). Blocking these 
inhibitory signals could further augment the function of NK 
cells recognizing their targets. 

 
The gene signature recurrently induced in cancer cells in 
response to NK cell exposure reflecting IFNγ signaling and 
MHC-I is consistent with a negative feedback loop 
suggested in early studies of NK cell effects on target cells 
(Piontek et al., 1985; Trinchieri and Santoli, 1978). Our 
single-cell CRISPR data confirm the role of interferon 
signaling through JAK-STAT in driving the observed 
responses. The same transcriptomic signatures that were 
induced in cancer cells upon NK cell attack correlated with 
resistance to NK cells across blood cancer cell lines. Pre-
existing activation of adaptive resistance pathways may 
therefore explain primary resistance of cancer cells to NK 
cells. Conversely, as defects in interferon signaling and 
antigen presentation cause resistance to T cell 
immunotherapies (Zaretsky et al., 2016) as suggested 
also by previous CRISPR studies, (Freeman et al., 2019; 
Sheffer et al., 2021) NK cells could offer an effective 
alternative; and a concrete opportunity for individualized 
use of NK cell therapies in patients whose blood cancer 
cells harbor genomic defects in this molecular cascade. 
 
Our findings challenge the notion that expression of 
activating ligands for NK cells is a general feature of 
transformed cells (“altered-self”). Instead, the cancer type, 
lineage, and genomics appear to jointly define the 
expression patterns. For example, previous CRISPR 
screen studies of NK cell resistance in blood cancer cells 
performed in K562 cells identified NCR3LG1 as essential 
for NK cell cytotoxicity (Pech et al., 2019; Zhuang et al., 
2019). Our data confirm this finding but also provide key 
new insights that NCR3LG1 appears important for 
effective NK cell killing particularly in myeloid leukemias, 
unlike several other types of hematological malignancies. 
 
The variation in expression of activating ligands, including 
NCR3LG1, PVR, and ULBP1, translated into differences 
in sensitivity to NK cells, with AML being sensitive 
compared to pre-B-ALL as also previously suggested 
(Pende et al., 2005). The expression of activating receptor 
ligands and resulting sensitivity to NK cells may be 
particularly pronounced in more differentiated myeloid 
cells represented by most AML cell lines. Instead, a less 
differentiated phenotype can enable evasion from NK cells 
(Nowbakht et al., 2005; Paczulla et al., 2019). The lineage-
dependent expression of genes encoding activating 
ligands such as PVR or apoptotic mediators such as 
TNFRSF1B both in myeloid malignancies and their normal 
counterparts implies that this expression pattern originates 
from normal hematopoietic differentiation rather than 
being a feature acquired upon transformation. Moreover, 
identification of previously unknown blood cancer-specific 
NK cell immune regulators including SPN and SELPLG 

Figure 7. Effects of cancer cell perturbations on NK cell activation states 
(A) Workflow of identification of NK cell responses to cancer cells carrying different perturbations using single-cell transcriptomics.  
(B) Box plot of NK cell activation scores across different target cell perturbations. Activation scores comprising top 50 genes enriched in the 

activated NK cell cluster were normalized by subtracting the median activation score of the control sgRNA-expressing target cells of each cell 
line. P values between each perturbation and the cell line-specific control are obtained using Wilcoxon rank sum test with Benjamini-Hochberg 
adjustment. Only p values for significant pairs are shown (* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001). Boxes indicate IQR with a line at the 
median. Whiskers represent the min and max values at most 1.5 IQR from the quartiles.  

(C) UMAP visualizations of NK cells co-cultured with K562 cells expressing the indicated sgRNAs or NK cells cultured alone. The contour lines 
and their color indicate the density of NK cells in different regions of the UMAP reduced space. The gray shading in the background shows the 
density of all NK cells from Figure 1 and the clusters from Figure 1 are shown on the right as a reference. 

(D) Summary tables of findings from the single-cell transcriptomics assays on perturbation effects both in the target cells (CROP-seq) and in NK 
cells, including the proposed mechanism of induced sensitivity or resistance to NK cells and other transcriptional effects observed in knockout 
(KO) cells.  
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and the lineage-driven expression of genes encoding 
known ligands such as PVR and ULBP3 support that blood 
cancers may be configured to interact with NK cells in a 
way distinct from solid tumor cells, possibly because they 
originate from various immune cell types that naturally 
frequently interact with NK cells. Our CRISPR screens 
implicated many previously underappreciated gene 
classes in the regulation of NK cell responses, including 
protein fucosylation, mucins, and a range of transcriptional 
regulators, with potential relevance across blood cancers 
and solid tumors. As many of these were uncovered only 
in a subset of the cell lines, our data thus highlight the 
importance of performing large unbiased screens in 
diverse cancer types.  
 
In addition to cancer types and lineages, our findings link 
several previously established molecular subtypes of 
blood cancers with characteristic genetic alterations to NK 
cell evasion mechanisms. The transcriptomic cluster in 
MM characterized by TRAF3 alterations and activation of 
CFLAR and other NF-κB targets likely reflects the NF-κB 
cluster identified in early transcriptomic studies of MM 
(Broyl et al., 2010). Given that CFLAR appears to 
influence sensitivity of cancer cells not only to NK cells as 
indicated by our data but also T cells (Singh et al., 2020; 
Vredevoogd et al., 2019), this finding may have relevance 
to immunotherapy sensitivity beyond NK cells. The 
methylation of PVR and ULBP1 in immature subtypes of 
T-ALL may be linked to the CpG island methylation 
phenotype (CIMP) found in non-TAL1-driven T-ALL 
(Borssén et al., 2013; Kimura et al., 2020; Roels et al., 
2020), suggesting that one of the functions of CIMP in T-
ALL may be enabling immune evasion from NK cells. 
Together, these findings begin to unravel the connections 
between cancer genomic subtypes and responsiveness to 
NK cells that have thus far remained largely unexplored. 
 
While NK cell-mediated cytotoxicity depended on intact 
death receptor signaling in several cell lines, this pathway 
was not relevant in some cell lines, such as the classical 
NK cell target K562. Thus, heterogeneity appears to exist 
also in the apoptotic mechanisms even between NK-
sensitive cell lines. The reliance on distinct apoptotic 
pathways in different cancers may influence the 
therapeutic approaches to sensitize tumors to NK cells, 
such as the recently proposed BH3 mimetics (Pan et al., 
2022). Given that the death receptor pathway can also 
mediate bystander killing (Upadhyay et al., 2020), the 
differential sensitivity of different cancers to bystander 
killing may influence the efficacy of both NK and T cell 
immunotherapies. 
 
Our study has several limitations. Although our studies 
included over 60 blood cancer cell lines, more rare types 
of blood cancers were represented by few or no samples. 
Moreover, our approach to investigate the mechanisms by 
which genes identified in CRISPR screens influence NK 
cell responsiveness using CROP-seq likely misses 
several mechanisms that do not operate primarily through 
altering gene expression. Furthermore, as many of the 
discovered mechanisms are dynamic, validating the 
results in vivo in patients would require multiple sampling 
during adoptive cell transfer to capture the changes 
occurring immediately when NK cells come in contact with 
the cancer cells.  

 
In summary, our study provides a comprehensive picture 
of both the adaptive molecular changes in interacting NK 
cells and tumor cells as well as genetic mechanisms of 
response and resistance of blood cancer cells to NK cell 
cytotoxicity. These molecular profiles offer a resource that 
can inform efforts to develop NK cell immunotherapy 
strategies particularly in hematological malignancies, 
which are emerging as the primary clinical setting for the 
application of NK cell-based therapies. 
 
 
METHODS 
 
Cell lines 

PL21, GDM1, and SKM1 were cultured in RPMI-1640 with 
10% heat-inactivated fetal bovine serum (FBS), 2 mM L-
glutamine, and 100 U/mL penicillin with 100 mg/mL 
streptomycin (PS). OCIM1 were cultured in IMDM (Gibco) 
with 10% FBS, 2 mM L-glutamine, and PS. All other cell 
lines were grown in RPMI-1640 with 10% FBS, 2 mM L-
glutamine, and PS. All cultures were incubated at 37°C 
with 5% CO2. 

PRISM cell line pools were cultured in phenol red-free 
RPMI 1640 with 20% FBS and PS. 

KHYG1 were cultured in RPMI-1640 with 10% FBS (20% 
for first passage upon thawing as per manufacturer’s 
instructions), 1% PS and 100 IU/ml of human recombinant 
IL-2 (R&D Systems, 202-IL-050). Cells were used at low 
passage numbers, in order to avoid the outgrowth of 
growth factor independent subclones. 

To generate Cas9-expressing K562, SUDHL4, NALM6, 
and MOLM14 cells, the cells were transduced with virus 
produced using the lentiCas9-EGFP plasmid (a gift from 
Phil Sharp & Feng Zhang, Addgene plasmid # 63592), 
single-cell sorted using a Sony SH800 cell sorter, and a 
clone with high and uniform EGFP expression was 
selected for screening. The MM.1S-Cas9+ cells were 
generated and kindly gifted by the laboratory of Dr 
Benjamin Ebert (DFCI). KMS11-Cas9+ cells and LP1-
Cas9+ cells (transduced with pLX 311-Cas9 construct, 
Addgene plasmid # 96924) were obtained from the Broad 
Institute, as well as MM.1S-dCas9VP64, KMS11-
dCas9/VP64 and LP1-dCas9/VP64 (transduced with lenti 
dCAS-VP64_Blast, Addgene plasmid # 61425). 

Luciferase-expressing K562 cells were generated using 
the pLenti PGK V5-LUC Neo (w623-2) construct as 
previously described for NALM6 (Dufva et al., 2020a). The 
generation of luciferase-expressing SUDHL4 cells has 
been previously described (Dufva et al., 2020a). 

All cell lines were STR profiled and tested for Mycoplasma 
using the MycoAlert kit (Lonza). 

 

Primary NK cell isolation and expansion 

Expansion with feeder cells 

NK cells were expanded using K562-mbIL21-41BBL 
feeder cells as previously described (Denman et al., 
2012). Briefly, PBMCs were isolated from buffy coats of 
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healthy donors using Ficoll-Paque gradient centrifugation. 
Five million PBMC were suspended in 40 ml R10 
supplemented with 10 ng/ml recombinant human IL-2 
(R&D Systems, 202-IL-050) together with 10 million K562-
mbIL21-41BBL feeder cells irradiated with 100 Gy. Cells 
were passaged twice a week and feeder cells were added 
in a 1:1 ratio after 7 days. After 14 days of culture, NK cells 
were purified using the NK Cell Isolation Kit (Miltenyi) and 
frozen. NK cells from various donors were thawed and 
cultured for 5 days in R10 + IL-2 prior to genome-scale 
CRISPR screens (K562, MOLM14, SUDHL4, NALM6). 
For all multiplexed scRNA-seq and CROP-seq 
experiments, NK cells from the same donor were used and 
thawed and cultured 3 days prior to the experiments. 

 

Expansion without feeder cells 

PBMCs were isolated from consenting healthy donors. 
CD3+ cells were depleted using the negative selection 
cocktail RosetteSep™ (STEMCELL Technologies Inc.) 
according to the manufacturer’s instructions. CD3-
negative PBMCs were then seeded in 6-well plates at a 
density of 1x106 cells/ml in GMP SCGM media (CellGenix) 
with 10% heat-inactivated FBS, 1% Glutamax, 200 IU/ml 
of recombinant human IL-2 (R&D Systems, 202-IL-050) 
and expanded for 10 – 14 days. Expanded NK cells from 
PBMCs from the same donor (donor #9) were used in the 
genome-scale and focused-library screens with MM1S, 
LP1, and KMS11 cells and the PRISM screen. Flow 
cytometry was performed to verify primary NK cell viability, 
purity (anti-CD56-PECy7 and anti-CD3-FITC), and 
expression of p46 receptor (anti-NKp46-APC), surrogate 
marker of NK cell activity. 

 

Co-culture assays with multiplexed scRNA-seq 
readout 
 
Experiments and scRNA-seq library preparation 
For the experiment involving 26 different cell lines, cancer 
cells were plated at 500,000 cells/well on a 24-well plate 
and day 17 feeder cell-expanded NK cells (1:4 effector-to-
target ratio) or NK cells directly extracted from PBMC from 
the same donor (1:2 effector-to-target ratio) or only R10 
culture medium (targets only) were added, resulting in a 
total volume of 1 ml R10. Experiments were performed in 
two batches of 13 cell lines, and wells with only NK cells 
were included.  
 
For the experiment involving CRISPR-targeted cell lines, 
day 17 feeder cell-expanded NK cells were used at an 1:1 
effector-to-target ratio. 
 
After 24 h in 37°C and 5% CO2, cells from each well were 
washed 2-3 times with 10 ml PBS, resuspended in 100 µl 
Cell Staining Buffer (BioLegend), 10 µl TruStain FcX 
blocking reagent (BioLegend) was added, and cells were 
blocked for 10 min. A unique TotalSeq-A hashing antibody 
(BioLegend) was added to each sample (1-2 µl/1-2 µg per 
sample) and cells were incubated for 30 min at +4°C 
covered from light. Cells were then washed 3-5 times with 
3 ml staining buffer and samples were combined in 1 ml 
staining buffer, centrifuged, resuspended to PBS + 0.04% 
bovine serum albumin (BSA) and proceeded to scRNA-

seq. The Chromium Single Cell 3’RNAseq run and library 
preparations were done using the 10x Genomics 
Chromium Next GEM Single Cell 3' Gene Expression 
version 3.1 Dual Index chemistry with the modifications 
described in Stoeckius et al. (Stoeckius et al., 2018), 
https://cite-seq.com/ and according to the slightly 
improved protocol described in www.biolegend.com/en-
us/protocols/totalseq-a-antibodies-and-cell-hashing-with-
10x-single-cell-3-reagent-kit-v3-3-1-protocol. The 3’ GEX 
and Cell Hashing (multiplexing) libraries were sequenced 
using Illumina NovaSeq 6000 system using read lengths: 
28bp (Read 1), 10bp (i7 Index), 10bp (i5 Index) and 90bp 
(Read 2). 
 
Data analysis 
Data preprocessing was performed using 10x Genomics 
Cell Ranger v6.0.2 pipelines. The ‘cellranger mkfastq’ was 
used to produce FASTQ files and ‘cellranger count’ to 
perform alignment, filtering, and UMI counting. The 
Illumina bcl2fastq v2.2.0 was used to run mkfastq and 
alignment was done against human genome GRCh38. 
Count matrix for hashtag oligonucleotides (HTO) was 
generated using the CITE-seq-Count-tool (DOI 
10.5281/zenodo.2590196) (Stoeckius et al., 2018). 
 
The R package Seurat (v4.0.4) (Stuart et al., 2019) was 
used for further scRNA-seq data processing. Cells with > 
15% mitochondrial gene counts, > 50% or < 5% ribosomal 
gene transcripts, < 700 UMI counts, or < 300 or > 10,000 
detected genes were filtered out. Hashtag oligonucleotide 
(HTO) demultiplexing to classify cells to samples was 
performed on centered log-ratio-normalized HTO UMI 
counts using the HTODemux function in Seurat with a 
positive quantile of 0.99. Sample IDs based on HTO data 
were transferred to transcriptome data and only cells 
classified as singlets based on HTODemux were 
considered for further analyses. After log-normalization, 
the highly variable genes were calculated with the 
FindVariableFeatures function using the “mean.var.plot” 
selection method in Seurat. Data were scaled and the 
effect of the cell cycle was corrected using the ScaleData 
function with scores assigned to each cell using the 
CellCycleScoring function with G2/M and S phase 
markers provided in Seurat. Clusters were defined using 
the FindClusters function with resolution set to 0.8 and cell 
types were annotated using SingleR (Aran et al., 2019). 
Clusters comprising NK cells were identified and 
subsequent analyses were focused only on expanded or 
PBMC NK cells (NK cell clusters) or cancer cells (all other 
clusters). The UMAP dimensionality reduction (McInnes et 
al., 2020) with default parameters was calculated using 
RunUMAP with the top 20 principal components (PCs). 
 
For the analysis focusing on NK cells (either expanded or 
PBMC NK cells), data were re-scaled and the cell cycle 
effect and batch (resulting from performing the 
experiments in two batches) were corrected for using the 
ScaleData function in Seurat. Clusters were defined using 
the FindClusters function with resolution set to 0.3, and the 
UMAP was calculated from the top 20 PCs. Differentially 
expressed genes between clusters were obtained with a 
Student’s t-test followed by Bonferroni correction using the 
FindAllMarkers function in Seurat. Pseudotime analysis 
was performed using Slingshot (v2.2.0) (Street et al., 
2018) on the precalculated UMAP coordinates, with 
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cluster 0 (“Resting”) assigned as the start and cluster 2 
(“Activated”) as the end. 
 
For the analysis focusing on cancer cells, differentially 
expressed genes between NK cell-treated and untreated 
cells were obtained with a Student’s t-test followed by 
Bonferroni correction using the FindMarkers function in 
Seurat. Multiple testing correction was performed 
separately for each cell line comparison. For the 
differential expression analysis across all cell lines (Figure 
2A), 1,000 cells were subsampled from the treated and 
untreated cells. For UMAP visualizations of each 
individual cell line, data were scaled, the cell cycle effect 
was regressed out using ScaleData, and small clusters 
comprising less than 5% of cells (representing 
misclassified other cell lines) were removed. The UMAP 
dimensionality reduction with default parameters was 
calculated from the top 20 principal components. The core 
NK cell response score was calculated using the 
AddModuleScore function in Seurat based on the 16 
genes induced by co-culture with expanded NK cells in > 
75% of the cell lines (B2M, HLA-A, HLA-B, HLA-C, HLA-
E, TAP1, STAT1, IRF1, IRF9, PSMB8, PSMB9, PSMB10, 
PSME1, PSME2, UBE2L6, GNLY, and CCL5). 
 
Ligand-receptor interactions were calculated using 
CellPhoneDB (Efremova et al., 2020) with default 
parameters from each cell type subsampled to the same 
number of cells. Interactions were calculated between all 
NK cell clusters and each cell line (both untreated and NK 
cell-treated), and the significant interactions (p < 0.05 
permutation testing) based on CellPhoneDB were 
considered for downstream analyses.  
 
To compute the activation scores for the NK cells co-
cultured with CRISPR-targeted cell lines, the 
AddModuleScore function in Seurat was used on the 50 
genes most significantly enriched in the activated cluster 
(cluster 2) in the cell line panel experiment. When NK cells 
cultured with target cells expressing two different sgRNAs 
targeting the same gene were available, the NK cells were 
pooled together for the analysis. Wilcoxon rank sum test 
was used to compare NK cells cultured with a gene-
targeted cell line to those cultured with the same cell line 
expressing non-targeting control sgRNAs. The normalized 
activation scores were obtained by subtracting the median 
activation score of the same cell line control from the 
activation scores of the NK cells co-cultured with gene-
targeted cell lines. The NK cells co-cultured with CRISPR-
targeted cell lines were projected onto the previously 
computed UMAP visualization from the 26 cell line panel 
experiment using the FindTransferAnchors and MapQuery 
functions in Seurat.  
 
 
Pooled PRISM screen of NK cell cytotoxicity against 
DNA-barcoded cancer cell lines 
 
PRISM is a platform that allows pooled screening of 
mixtures of cancer cell lines by labeling each cell line with 
24-nucleotide barcodes as previously described (Yu et al., 
2016). Briefly, 70 suspension blood cancer cell lines 
(Table S2) stably expressing DNA barcode sequences 
were seeded in 6-well plates in 8 experimental replicates 
per condition. The cells were incubated in 5 ml PRISM 

growth medium (RPMI-1640 without phenol red + 20% 
FBS + PS) for 24 h. At that point, primary NK cells were 
washed, resuspended in PRISM growth medium and 
added to the PRISM cells in 4 different E:T ratios 5:1, 
2.5:1, 1.25:1, and 0.625:1 (1 ml/well). Control wells were 
added with the same volume of media only. 
 
After 24 h co-culture, cells from each well were washed 
with PBS and incubated for 1 hour at 60°C in lysis buffer 
(1 ml per well), prepared using double-distilled water with 
10% PCR buffer (20mM Tris-HCL PH 8.4, 50mM KCL), 
0.45% NP40, 0.45% TWEEN and 10% proteinase K. 
Genomic DNA from cell lysate was amplified, PCR product 
was hybridized to Luminex beads with covalently attached 
antisense barcodes, and streptavidin-phycoerythrin 
addition, washing, and detection on Luminex FlexMap 
machines was performed as previously described (Yu et 
al., 2016). 
 
Means of the eight experimental replicates of each cell line 
were calculated for each E:T ratio and percent viability 
values were obtained by dividing the mean of each E:T 
ratio with the mean of the untreated control for each cell 
line multiplied by 100. Area under the curve (AUC) values 
were calculated with the percent viability values using the 
AUC function in the DescTools (v0.99.43) R package. 
Three non-hematological cell lines included in the pool 
were removed from the analysis: gastric adenocarcinoma 
cell lines HUG1N and SNU1; Ewing sarcoma cell line 
CHLA57. Cell lines with incomplete data at all E:T ratios 
were similarly removed from the analysis, resulting in 63 
cell lines. 
 
 
Genome-scale CRISPR/Cas9-based gene editing or 
gene activation screens 

Production of viral particles 

Brunello/Calabrese screens: Lenti-X-293T cells (Takara 
Bio) were plated in T-175 culture flasks (0.6x106 cells/ml) 
in DMEM (Life Technologies) with 10% FBS for 24 h. After 
decanting the cell medium, OPTI-MEM (6 ml) and 
Lipofectamine 2000 (100 μl; Life Technologies) were 
added to each flask plus packaging plasmids psPAX2 (20 
μg) and MD2.G (10 μg) and plasmid preps of the Brunello 
sgRNA library or Calabrese sgRNA library (20 μg per prep; 
lentiGuide-Puro). Plasmid preps for the Brunello and the 
Calabrese sgRNA libraries were purchased from Addgene 
(#73178 and #1000000111). The transfected Lenti-X-
293T cells were incubated at 37ºC (20 min), topped up 
with fresh media (25 ml), and then refreshed again after 
16 hours. Viral supernatants were collected after 24 h and 
stored at -80ºC prior to use. 

GeCKOv2 screens: The genome-scale GeCKO v2 sgRNA 
library in the lentiGuide-Puro plasmid (Sanjana et al., 
2014; Shalem et al., 2014) (a gift from Feng Zhang, 
Addgene # 1000000049) was amplified using Endura 
competent cells (Lucigen) according to instructions 
provided by the Zhang lab and Lucigen as previously 
described (Dufva et al., 2020a). To produce lentivirus, 10 
µg of both A and B library plasmids were transfected into 
293FT cells seeded on the previous day at 11.4 million 
cells/T-225 flask, together with 15 µg of psPAX2 and 10 
µg of pCMV-VSV-G using 100 µl Lipofectamine 2000 
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(Thermo Fisher Scientific) and 200 µl of Plus Reagent 
(Thermo Fisher Scientific). After 6 h incubation, the culture 
medium was replaced with 30 ml of D10 containing 1% 
BSA. After 60 h, the viral supernatant was harvested, 
filtered using a 0.45 µm filter, and stored in -70°C.  

 
Lentiviral transductions with sgRNA libraries 

Brunello LOF screens: Tumor cell transductions were 
performed in batches of 5x107 cells per library for three 
replicates. Cells were incubated (18 h) in cell medium 
containing polybrene (5 μg/ml; Santa Cruz Biotechnology), 
10 mM HEPES (pH 7.4) (Gibco) and viral prep (30 ml) 
diluted 1:1. Transduced cells were cultured at an initial 
density of 1x106 cells/ml and were treated with puromycin 
(1 μg/ml) for up to 5 days additional two days from 
transduction. After stable transduction, pooled cells were 
plated at 40x106 cells per flask (T-175, 100 ml) to enable 
coverage of 500X and were sub-cultured at three- to four-
day intervals to prevent confluence.  

Calabrese GOF screens: Tumor cells were transduced in 
batches of 3x107 cells per sub-library in triplicates. Cells 
were incubated (18h) in cell medium containing polybrene 
(4 μg/ml; Santa Cruz Biotechnology), 10mM HEPES (pH 
7.4) (Gibco) and viral prep (30 ml) diluted 1:1. Transduced 
cells were cultured at an initial density of 1x106 cells/mL 
and were treated with puromycin (1μg/mL) for up to 7 days 
additional two days from transduction. After stable 
transduction, pooled cells were plated at 30x106 cells per 
flask (T-175, 100 ml) to enable coverage of 500X and were 
treated with primary NK cells in either duplicates or 
triplicates. The E:T ratio was selected to kill at least 50% 
of the tumor cells, according to a dose-response curve. 

GeCKO v2 LOF screens: The amount of lentivirus used to 
transduce the cells was first optimized by transducing cells 
with a range of virus concentrations on a 12-well plate, 
where in each well 3 million cells were suspended in a total 
volume of 1 ml containing 0-1000 µl of GeCKO v2 library 
virus and 8 µg/ml Polybrene. The plate was centrifuged at 
room temperature at 800 g for 2 h after which virus 8 was 
washed away. The cells were treated with or without 0.5 
µg/ml puromycin (Thermo Fisher Scientific) for 6 days 
starting 48 h post-transduction. Transduction efficiency 
was measured after 72 h puromycin treatment using 
CellTiter-Glo (CTG, Promega) (50 µl of cell suspension + 
50 µl CTG), measured with a Fluostar plate reader (BMG 
Labtech). Luminescence values (after subtracting 
background signal obtained from the average of wells 
containing only R10) in puromycin-treated wells at each 
virus concentration were divided by values of non-
puromycin-treated wells. A concentration resulting in 10-
20% transduction efficiency was selected to ensure that 
the majority of the cells receive only one sgRNA. 

For the genome-scale screen, > 400 million cells were 
transduced in 12-well plates. In each well, 3 million cells 
were suspended in the titrated virus volume achieving 10-
20% transduction in a total volume of 1 ml/well topped up 
with R10 in the presence of 8 µg/ml Polybrene. The plates 
were centrifuged at room temperature at 800 g for 2 h, 
after which the virus was washed away. Transduced cells 
were selected with 0.5 µg/ml puromycin (0.9 µg/ml for 
K562) for 6 days starting 24 h post-transduction (48 h for 
NALM6). On day 7 post-transduction (day 8 for NALM6), 

cells were divided into NK-treated and untreated 
conditions in T-225 flasks with 120 ml R10 and 60 million 
target cells, with effector-to-target ratios as listed in Tables 
S3A-S3B. In some screens, several different effector-to-
target ratios were used. The cells were passaged every 2-
3 days and cultured for a duration of 4-17 days as listed in 
Tables S3A-S3B. To maintain sufficient selection 
pressure, NK cells were added to the cultures 1-2 times 
during the screens. Approximately 60 million cells were 
pelleted at the end and at earlier timepoints, frozen in -70 
°C, and later thawed for genomic DNA extraction using 
Blood Maxi Kit (Qiagen). 

Next generation sequencing 
Brunello and Calabrese screens: Preparation of DNA for 
next generation sequencing was undertaken using a two-
step PCR protocol as previously described (Shalem et al., 
2014). Briefly, DNA was extracted from frozen cell pellets 
(3x107 cells; Blood & Cell Culture DNA Maxi Kit, Qiagen) 
per manufacturer’s instructions. DNA concentration was 
quantified by UV-spectroscopy (NanoDrop 8000; 
ThermoFisher Scientific). In the first PCR, sgRNA loci 
were selectively amplified from a total of 160 µg of 
genomic DNA (10 µg DNA per sample x 16 reactions, 100 
µl volume) using primers described in Table S3C and 
Phusion® High-Fidelity DNA Polymerase (New England 
Biolabs, Beverly, MA). This provides approximately 300X 
coverage for sequencing. A second PCR was performed 
using 5 µl of the pooled Step 1 PCR product per reaction 
(1 reaction per 10,000 sgRNAs; 100 µl reaction volume) to 
attach Illumina adaptors and to barcode samples (Table 
S3C). Primers for the second PCR included a staggered 
forward primer (to increase sequencing complexity) and 
an 8bp barcode on the reverse primer for multiplexing of 
disparate biological samples (Table S3C). PCR replicates 
were combined, gel normalized (2% w/v) and pooled, then 
the entire sample run on a gel for size extraction. The 
bands containing the amplified and barcoded sgRNA 
sequences (approximately 350-370 bp) were excised and 
DNA extracted (QIAquick Gel Extraction Kit, Qiagen). 
Multiplexed samples were then sequenced at the 
Molecular Biology Core Facility (Dana-Farber Cancer 
Institute) and/or The Genomics Platform (Broad Institute) 
using an Illumina NextSeq 500 (Illumina, San Diego, CA), 
allowing 4x108 individual reads per multiplexed sample.  
 
GeCKOv2 screens: Amplicons containing sgRNA 
sequences were amplified with a 2-step PCR protocol 
using primers flanking the sgRNA cassette (Table S3C) as 
previously described (Dufva et al., 2020a). Briefly, the 
following overhangs were added to the locus-specific 
primers to make them compatible with the index primers: 
Adapter1 (before locus specific forward primer 5’- 3’), 
Adapter2 (before locus specific reverse primer 5’-3’). The 
first PCR was performed using 1200 ng of sample DNA 
and the locus-specific primers, with 96 separate 
amplifications for each sample. After amplification, all 
reactions were pooled for the second PCR, in which index 
primers 1 and 2 and seven identical reactions for each 
sample pool were used, with a unique combination of dual 
indexes for each of the sample pools. The seven amplified 
and indexed reactions were pooled together and purified 
with Agencourt AMPure XP beads twice. Sample pools 
were sequenced with Illumina HiSeq 2000 System 
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(Illumina) using read length PE100 or NovaSeq 6000 
System (Illumina) using read length PE100. 
 
Data analysis 
Screen data were analyzed using MAGeCK v0.5.2 and 
v0.5.7 (Li et al., 2014). Forward direction reads were 
aligned to the GeCKO v2 library sgRNA sequences using 
the mageck count function with default parameters. 
Comparisons across conditions were performed on the 
resulting sgRNA read count matrix using the mageck test 
function with default parameters. For the GeCKO v2 
screens with the K562, MOLM14, SUDHL4, and NALM6 
cells, all NK-treated and untreated samples from different 
replicates and E:T ratios were respectively pooled 
together for the MAGeCK test analysis of each cell line. 
GSEA was run using fgsea (Korotkevich et al., 2021) on 
gene lists ranked based on signed MAGeCK p values. For 
comparison of the NALM6 NK cell screen with CAR T cell 
screen in the same cells, CAR T cell screen data were 
downloaded from Supplemental Table 5 (Supplemental 
File 6) in (Dufva et al., 2020a). 
 
 
CRISPR screen with focused sgRNA library 
Sub-genome scale CRISPR gene editing screens to 
validate determinants of tumor cell response versus 
resistance to NK cells in a pooled manner were performed 
using the same reagents and protocols described in the 
genome-scale Brunello section above. Six hundred thirty-
five target genes were selected by pooling top hits and 
biologically relevant hits from our MM cell screens and our 
solid tumor screens (Sheffer et al., 2021). Olfactory 
receptor (OR) genes, which are generally not expressed 
nor considered to influence tumor cell survival and 
immune responses, were used to establish a control 
distribution of sgRNAs. A total of 4,000 sgRNAs targeting 
screen hits and OR gene control sgRNAs were cloned into 
lentiCRISPRv2 (a gift from Feng Zhang, Addgene plasmid 
# 52961), with an additional G added in the beginning of 
the sgRNA sequence when indicated (Table S3O). 
 
Target cell lines MM.1S, LP1 and KMS11 were co-cultured 
with donor-derived, IL-2 expanded NK cells (same donor 
as genome-scale screens) or left untreated, in three 
biological replicates at the following E:T ratios: LP1 and 
KMS11 1:2, while MM.1S were treated at 2:1 in one 
experiment and 1:1 in a subsequent experiment.  
 
After each screen, DNA extraction, PCR amplification, 
next generation sequencing, and processing of 
sequencing data were performed as described for 
genome-scale screens above. 
 
One-sided test for enrichment and depletion of the 
sgRNAs and sgRNA rank aggregation was performed for 
each gene using MAGeCK, with default parameter 
settings. OR genes were used to establish a control 
distribution of sgRNAs for the rank aggregation procedure. 
For validation purposes, only those genes included among 
the top 200 in each genome-scale screen were included 
in the analysis per each cell line.    
  
 
Individual gene CRISPR validations 

Single-guide RNAs targeting screen hits and non-targeting 
control sgRNAs were cloned into lentiCRISPRv2 (a gift 
from Feng Zhang, Addgene plasmid # 52961), with an 
additional G added in the beginning of the sgRNA 
sequence (Table S3P). Lentivirus was produced and 
luciferase-expressing cells were transduced as described 
above for the GeCKO library virus. Cells were selected 
using 0.5 μg/ml puromycin (0.9 μg/ml for K562) prior to 
experiments. 
 
Cytotoxicity assays using a luciferase readout were 
performed by plating 10,000 luciferase-expressing target 
cells harboring each sgRNA were on a 384-well plate 
alone or with expanded NK cells at 1:2 effector-to-target 
ratio in a total volume of 25 μl with six replicate wells. 
Plates were incubated at 37 °C and 5% CO2 for 48 h, after 
which 25 μl ONE-Glo reagent was added to each well 
luminescence measured with a Pherastar FS plate reader. 
Raw luminescence values were normalized to the average 
of technical replicates of target cells carrying each sgRNA 
cultured without NK cells and average log2 fold changes 
were calculated between NK-treated and untreated wells 
for each sgRNA. 
 
Analysis of CRISPR screen hit mutations and gene 
expression 
Mutations in CRISPR screen hit genes (p < 0.00005 and 
FDR < 0.2 in any of the screens) were queried from 
cBioPortal using the following datasets: Chronic 
Lymphocytic Leukemia (Broad, Nature 2015), Diffuse 
Large B-Cell Lymphoma (Duke, Cell 2017), Multiple 
Myeloma (Broad, Cancer Cell 2014), Acute Myeloid 
Leukemia (TCGA, PanCancer Atlas), Acute 
Lymphoblastic Leukemia (St Jude, Nat Genet 2016).  
 
Processed gene expression data from normal cell types 
from BLUEPRINT and ENCODE were downloaded from 
https://github.com/dviraran/SingleR/blob/master/data/blue
print_encode.rda.  
 
 
Multi-omics correlations with PRISM-based NK cell 
sensitivity 
Genetic subtypes of the cell lines were annotated based 
on previous studies as listed in Table S2A. A data matrix 
containing genomic and other multi-omic features was 
generated for systematic pairwise correlation analyses 
between PRISM AUC and genomic features in CCLE data. 
CCLE 2021 quartile 4 data was downloaded from 
https://depmap.org/portal/download/all/. A feature matrix 
comprising all available data levels was built, harmonizing 
sample names by DepMap-ID (columns) and categorizing 
by features (rows) as numeric or binary. Each feature was 
annotated as NUMERIC|BINARY:DATATYPE:FEATURE 
using the following abbreviations: GEXP, gene 
expression; RPPA, protein expression; METH, 
methylation; CNVR, copy number variation, GNAB, 
mutation; MIRN, miRNA; LCMS, metabolomics) were 
distinguished from each other.  In all instances, missing 
data was reported as NA.  
 
Feature pairs were compared using Spearman’s rank 
correlation followed by p value adjustment using the 
Benjamini-Hochberg method. In the case of discrete 
features, only features with at least 5 observations (such 
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as mutations) were used to limit the number of 
comparisons. Statistical tests were performed to assess 
whether PRISM-based NK cell sensitivity AUC was 
correlated with other features, such as gene expression, 
protein expression, clinical, CNA, mutations, miRNAs, and 
metabolomics. For genes whose expression correlated 
with PRISM AUC, the correlation between expression and 
methylation of the same gene was analyzed. The analyses 
were performed both across all cell lines and within each 
cancer type (AML, BCL, B-ALL, T-ALL, MM).  
 
To assess which gene sets were enriched in samples 
sensitive or resistant to NK cells, GSEA was run using 
fgsea (Korotkevich et al., 2021) on gene lists ranked based 
on signed p values of the correlation with PRISM AUC. 
 
Features identified using the pairwise correlation analyses 
were visualized at the sample level with heatmaps 
generated using ComplexHeatmap (Gu et al., 2016). The 
enriched gene sets identified by GSEA were visualized at 
the sample level using GSVA (Hänzelmann et al., 2013).  
 
 
Patient genomic data analysis 
 
Data collection and preprocessing 
Feature matrices containing clinical data, processed gene 
expression values, mutations, CNAs, and subtypes of 
DLBCL patients from Reddy et al. (Reddy et al., 2017), 
Chapuy et al. (Chapuy et al., 2018) and the TCGA dataset; 
MM patients from the CoMMpass dataset (Manojlovic et 
al., 2017); and AML patients from the TCGA dataset 
(2013) preprocessed as previously described (Dufva et al., 
2020b) were downloaded from Synapse (Reddy et al. 
DLBCL: 
https://www.synapse.org/#!Synapse:syn21995529, 
Chapuy et al. DLBCL: 
https://www.synapse.org/#!Synapse:syn21991358, TCGA 
DLBCL: 
https://www.synapse.org/#!Synapse:syn21995730, 
CoMMpass MM: 
https://www.synapse.org/#!Synapse:syn21995455, TCGA 
AML: https://www.synapse.org/#!Synapse:syn21995719. 
 
Clinical data, processed gene expression values, 
mutations, and subtypes of 262 T-ALL patients were 
downloaded from supplementary tables 1, 5, 8, and 15, 
respectively (Liu et al., 2017).  
 
Processed methylation beta values of 109 T-ALL patients 
and 20 samples of normal thymocytes were downloaded 
from GEO (GSE155333). Genetic subtypes were obtained 
from supplementary table 6 (Roels et al., 2020).  
 
Pairwise correlation analysis and visualization 
Data matrices containing genomic and other multi-omic 
features as well as clinical annotations were generated as 
described above for systematic pairwise correlation 
analyses, including correlations with the NK cell sensitivity 
signatures (Figure 5) and with expression of CRISPR 
screen hits in patient data (Figures 4 and S4). To find 
patient samples with similar molecular phenotypes as the 
NK-sensitive cell lines, NK cell sensitivity signatures were 
obtained by taking 50 genes most significantly correlating 
with sensitivity to NK cells based on PRISM AUC. The 50 

genes were used to calculate an enrichment score of the 
NK sensitivity signature for each patient sample using 
GSVA. The NK cell sensitivity signatures were derived 
separately from MM, T-ALL, and BCL cell lines for use in 
the corresponding patient datasets. Spearman’s rank 
correlation followed by p value adjustment using the 
Benjamini-Hochberg method was used to assess whether 
the NK cell sensitivity signatures were correlated with 
other features, such as gene expression, clinical, CNAs, 
or mutations. A similar approach was used to test if the 
expression of CRISPR screen hits correlated with 
methylation or copy number of the same gene.  
 
To visualize identified associations of CRISPR/PRISM 
features with patient genomic and clinical data as dot 
plots, differential expression between a sample group and 
all other samples was calculated using Wilcoxon rank sum 
test. For UMAP visualizations, expression values of 15% 
of the most variable genes were used for dimensionality 
reduction using the umap R package (McInnes et al., 
2020). 
 
 
Single-cell transcriptomics CRISPR screens 
 
Experiments and preparation of scRNA-seq libraries 
To generate lentiviral sgRNA libraries for single-cell 
CRISPR screens, guides targeting screen hits (three 
sgRNAs for each gene) and non-targeting control sgRNAs 
(four for K562, six for other screens; Table S6A) were 
cloned into CROPseq-Guide-Puro (a gift from Christoph 
Bock, Addgene # 86708) (Datlinger et al., 2017) or into 
CROP-sgRNA-MS2 (a gift from Wolf Reik, Addgene # 
153457) (Alda-Catalinas et al., 2020). Lentivirus was 
produced and cells were transduced as described above 
using different concentrations of virus. Cells were selected 
with puromycin (0.5 µg/ml for K562, SUDHL4, and 
NALM6; 1 µg/ml for MM1.S, LP1, and KMS11) and cells 
transduced with a concentration resulting in a 10-20% 
transduction efficiency based on a viability assay 
described above were selected for screening. Target cells 
were co-cultured with day 17 feeder cell-expanded NK 
cells for 24 h at 1:16 and 1:4 effector-to-target ratios (only 
1:16 for K562) or left untreated, and both conditions were 
subjected to scRNA-seq after washing twice with 10 ml 
PBS + 0.04% BSA. 
 
The Chromium Single Cell 3’ RNAseq run and library 
preparation were done using the 10x Genomics Chromium 
Next GEM Single Cell 3' Gene Expression v3.0 chemistry 
(K562), v3.1 chemistry (SUDHL4, NALM6, MM1S), or v3.1 
Dual Index chemistry (LP1, MM1S CRISPRa). CROP-seq 
guide sequencing libraries were prepared using nested 
PCRs described in Hill et al. 2018 and 
https://github.com/shendurelab/single-cell-ko-
screens#enrichment-pcr. Briefly, 13 ng of full length 10x 
cDNA was used as template for the first round of 
amplification. The subsequent 2nd and 3rd PCR reactions 
were done using SPRIselect Reagent (1.0X) purified and 
1:25 diluted PCR product as template. Optimal 
amplification cycles were selected based on quantitative 
PCR analysis. The guide sequencing libraries were 
sequenced alongside the 3’ GEX libraries with 
approximately 10% read depth when compared to 3’ GEX 
libraries. The K562, SUDHL4, NALM6, and MM1S sample 
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libraries were sequenced on Illumina NovaSeq 6000 
system using the following read lengths: 28bp (Read 1), 
8bp (i7 Index), 0 bp (i5 Index) and 89bp (Read 2). The LP1 
and MM1S CRISPRa sample libraries were sequenced on 
Illumina NovaSeq 6000 system using the following read 
lengths: 28bp (Read 1), 10bp (i7 Index), 10bp (i5 Index) 
and 90bp (Read 2). 
 
Data analysis 
Data preprocessing was performed using 10x Genomics 
Cell Ranger v3.1 (K562, SUDHL4, NALM6, MM1S) or 
v6.0.2 (LP1, MM1S CRISPRa) pipelines. The ‘cellranger 
mkfastq’ function was used to produce FASTQ files and 
‘cellranger count’ to perform alignment, filtering, and UMI 
counting. The Illumina bcl2fastq v2.2.0 was used to run 
mkfastq function and alignment was done against the 
human genome GRCh38. 
  
FASTQ files of the targeted sgRNA amplification libraries 
were run through Cell Ranger count v3.1.0 pipeline. UMI 
counts of guides associated with each cell were extracted 
using the get_barcodes.py script downloaded from 
https://github.com/shendurelab/single-cell-ko-screens 
(Hill et al., 2018). To assign guides to cells, cells harboring 
sequences with > 10 UMI counts and accounting for > 50% 
of the UMI counts in the cell were included in the analysis. 
Out of these, cells in which the second most frequent 
guide accounted for > 20% of the UMI counts were 
considered to express two guides and were removed from 
the analysis. 
  
The R package Seurat (v4.0.4) (Stuart et al., 2019) was 
used for further scRNA-seq data processing. Cells with > 
10-15% mitochondrial gene counts, > 50% or < 5% 
ribosomal gene transcripts, < 3,000 UMI counts, or < 300 
or > 10,000 detected genes were filtered out. After log-
normalization, the highly variable genes were calculated 
with the FindVariableFeatures function in Seurat using the 
‘vst’ selection method. Data were scaled, clusters were 
defined based on PCs with a standard deviation > 2 using 
the FindNeighbors and FindClusters functions, and cell 
types were annotated using SingleR. Clusters comprising 
NK cells, doublets, or low-quality cells were removed. The 
sgRNA–cell assignments were merged with the 
expression object, which was subsetted to cells assigned 
a single sgRNA. Differential expression between cells 
expressing guides targeting a gene and non-targeting 
controls or between untreated or NK cell-treated control 
sgRNA-carrying cells was performed with a Student’s t-

test using the FindMarkers function in Seurat with 
logfc.threshold = 0.1. Multiple testing correction using the 
Bonferroni method was performed separately for each 
perturbation. Similarity of the differential expression gene 
lists across perturbations was assessed using the 
CompareLists function in the OrderedList package 
(v1.64.0). 
 
The mixscape tool in Seurat was used to detect 
perturbations with a transcriptomic phenotype and 
visualize their relative differences as previously described 
(Papalexi et al., 2021). CalcPerturbSig was used to 
calculate perturbation signatures reflecting the 
perturbation-specific differences between cells expressing 
gene-targeting guides and cells expressing control guides, 
and cells were classified as perturbed or non-perturbed 
using RunMixscape with logfc.threshold = 0.025 and 
gene.count = 5. Cells classified as non-perturbed were 
removed from the analysis and the similarity of the 
perturbations was visualized as a UMAP based on linear 
discriminant analysis computed using the MixscapeLDA 
function. 
 
The core NK cell response score was calculated as 
described above and differential enrichment of the score 
in various perturbations was calculated with the Student’s 
t-test using the FindMarkers function in Seurat similarly as 
for genes.  
 
Comparison with patient data 
For the genes perturbed in CROP-seq experiments 
mutated in at least 5 patients with either MM (CoMMpass), 
DLBCL (Reddy et al.), or AML (TCGA), differentially 
expressed genes between patients with and without 
mutations were determined using limma (Ritchie et al., 
2015). Genes significantly differentially expressed in the 
same direction at a nominal p value threshold of 0.05 in 
both CROP-seq and in patients when the same gene was 
knocked out or mutated, respectively, were identified. 
 
 
DATA AVAILABILITY 
 
The results of the study can be interactively explored at: 
https://immunogenomics.shinyapps.io/nkheme/. All 
processed and raw sequencing data generated in this 
study will be made publicly available upon final publication 
of this work. 

 
 
REAGENTS AND RESOURCES 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Cell culture reagents  

Cell Culture Phosphate 
Buffered Saline (PBS) 

Corning Cat# 21040CV 

Fetal Bovine Serum 
Tetracycline Negative 
(FBS) 

Gemini Bio-
Products,  

Cat# 100-800 
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RPMI 1640 Gibco Cat# 11875119 

RPMI 1640 Medium, no 
phenol red 

Gibco Cat# 11835030 

GMP SCGM Cellgenix Usa Cat# 20802-0500 

GlutaMAX, 200mM Gibco Cat# 35050061 

Human recombinant IL-2 R&D Systems Cat# 202-IL-050  

RBC Lysis Buffer for 
Human Red Blood Cells 

VWR Cat# IBB-197 

Trypsin-EDTA (0.05%), 
phenol red 

Gibco Cat# 25300120 

Opti-MEM I Reduced 
Serum Medium 

Gibco Cat# 31985070 

Hepes Gibco Cat# 15630080 

Antibodies 

NKp46 APC monoclonal 
antibody 

BD Biosciences Cat# BDB558051 

CD314 (NKG2D)-APC 
monoclonal antibody 

Miltenyi Biotec Cat# 130-117-830 

CD3-FITC monoclonal 
antibody 

Miltenyi Biotec Cat# 130-098-162 

CD56-PECy7 BD Biosciences Cat# BDB335809 

NKp30 A488 monoclonal 
antibody 

Thermo Fisher Cat# FAB1849G 

Antibiotics 

Puromycin 
Dihydrochloride 

Fisher Scientific Cat# BP2956100 

Blasticidin Gibco Cat# R21001 

Ampicillin Sigma Aldrich Cat# A5354 

Penicillin-Streptomycin 
Solution 

Corning Cat# 30001CI 

Critical Commercial Assays 

Blood & Cell Culture DNA 
Midi Kit  

Qiagen Cat# 13343 

Blood & Cell Culture DNA 
Maxi Kit 

Qiagen Cat# 13362 

QIAquick Gel Extraction 
Kit 

Qiagen Cat# 28706 

QIamp DNA Mini Kit Qiagen Cat# 51304 

MycoAlert KIT Lonza Cat# LT07-710 
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Phusion High-Fidelity 
PCR Master Mix with HF 
Buffer 

New England 
Biolabs 

Cat# M0531L 

NK Cell Isolation Kit, 
human 

Miltenyi Biotec Cat# 130-092-657 

RosetteSep Human CD3 
Depletion Cocktail 

StemCell 
Technologies 

Cat# 15661 

PRISM lysis buffer 

NP40 cell lysis buffer Invitrogen Cat# FNN0021 

QIAGEN Proteinase K Qiagen Cat# 19133 

TWEEN-20 Sigma Aldrich Cat# P9416 

Experimental Models: Cell Lines 

Lenti-XTM 293T Cell Line Takara Bio Cat# 632180 

KHYG1 DSMZ Cat# ACC 725 

MM1.S-Cas9 B Ebert’s lab N/A 

KMS11-Cas9 Broad Institute, MIT N/A 

LP-1-Cas9 Broad Institute, MIT N/A 

LP-1-dCas9/VP64 Broad Institute, MIT N/A 

KMS11-dCas9/VP64 Broad Institute, MIT N/A 

K562-mbIL21-41BBL Dean A. Lee  

Competent Cells 

ElectroMAX Stbl4 
Competent Cells 

Invitrogen Cat# 11635018 

Oligonucleotides 

List of primers – see 
Table S3 

IDT   

Recombinant DNA 

lentiCas9-Blast Addgene Addgene Cat# 52962 

lentiGuide-Puro Addgene Addgene Cat# 52963 

psPAX2 Addgene Addgene Plasmid#12260 

pMD2.G Addgene Addgene Cat #12259 

pCMV-VSV-G Addgene Addgene Cat#8454 

Lenti dCAS9-VP64_Blast Addgene Addgene Cat#61425 

Brunello human library Addgene Addgene Cat#73179 

Human CRISPR 
Activation Pooled sgRNA 
Library (Calabrese 
library) 

Addgene Addgene Cat#1000000111 
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GeCKO v2 human library Addgene Addgene Cat# 1000000049 

CROPseq-Guide-Puro Addgene Addgene Cat#86708 

CROP-sgRNA-MS2 Addgene Addgene Cat#153457 

lentiCRISPRv2 Addgene Addgene Cat#52961 

Software and Algorithms 

PRISM 8 GraphPad https://www.graphpad.com 

FlowJo V9.7.6 Tree Star https://www.flowjo.com/ 

MAGeCK 0.5.2 and 0.5.7 (Li et al., 2014) https://sourceforge.net/projects/mageck/ 

RStudio Integrated 
Development for R. 
RStudio, PBC, 
Boston, MA 

http://www.rstudio.com/ 

Bioconductor 3.13  http://www. bioconductor.org/ 

ggplot2  https://ggplot2. tidyverse.org 

ComplexHeatmap (Gu et al., 2016)  

MSigDB (Subramanian et 
al., 2005) 

 

R R Core Team https://www.r-project.orgs 

Seurat 4.0.4 (Stuart et al., 2019) https://cran.r-project. org/web/packages/Seurat/index.html 

SingleR 1.6.1 (Aran et al., 2019) https://github.com/dviraran/SingleR 

CellPhoneDB (Efremova et al., 
2020) 

https://github.com/ Teichlab/cellphonedb 

GSVA 1.24.0 (Hänzelmann et al., 
2013) 

https://bioconductor.org/packages/ release/bioc/html/GSVA.html 

Slingshot 2.2.0 (Street et al., 2018) https://bioconductor.org/packages/release/bioc/html/slingshot.html 

DescTools 0.99.43  https://cran.r-project.org/web/packages/DescTools/index.html 

Deposited Data 

Raw sequencing data 
from co-culture scRNA-
seq and CROP-seq 
experiments 

This paper  

Processed data from co-
culture scRNA-seq and 
CROP-seq experiments 

This paper  

Raw sequencing data 
from CRISPR screen 
experiments 

This paper  

Processed data from 
CRISPR screen 
experiments 

This paper  
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CCLE multi-omic data (Barretina et al., 
2012; Ghandi et al., 
2019) 

https://depmap.org/portal/download/all/ 

DLBCL gene expression, 
genetic alteration, and 
clinical data 

(Reddy et al., 2017) EGA: EGAS00001002606 

DLBCL gene expression, 
genetic alteration, and 
clinical data 

(Chapuy et al., 
2018) 

GEO: GSE98588 

TCGA AML and DLBCL TCGA Research 
Network 

dbGaP: phs000178.v8.p7 

CoMMpass MM gene 
expression, genetic 
alteration, and clinical 
data 

(Manojlovic et al., 
2017) 

https://research.themmrf.org/rp/download 

T-ALL gene expression, 
genetic alteration, and 
clinical data 

(Liu et al., 2017)  

T-ALL methylation data (Roels et al., 2020) GEO: GSE155333 

CRISPR screening data 
of MHC-I regulators 

(Dersh et al., 2021)  
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