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ABSTRACT

We recently measured the fitness effects of a large number of coding mutations in yeast
under four laboratory conditions, finding that most synonymous mutations are strongly
deleterious although they are overall significantly less detrimental than nonsynonymous
mutations. Kruglyak ef al. believe that most nonsynonymous and nearly all synonymous
mutations have no detectable fitness effects, so hypothesize that our results largely reflect the
fitness effects of CRISPR/Cas9 off-target edits and secondary mutations that occurred in mutant
construction. Dhindsa ef al. argue that our findings contradict other yeast and human
mutagenesis studies, human allele frequency distributions, and disease gene mapping results.
We find Kruglyak et al.’s hypothesis unsupported by prior yeast genome editing studies and
mutation rate estimates. Furthermore, their hypothesis makes a series of predictions that are
falsified by our published and newly collected data. Hence, their hypothesis cannot explain our
observations. Dhindsa et al.’s comparisons between synonymous and nonsynonymous mutations
in prior mutagenesis studies and in contributions to disease are unfair and human allele
frequency distributions can be compatible with our fitness estimates when multiple complicating
factors are considered. While our fitness estimates of yeast synonymous mutants overturn the
(nearly) neutral assumption of synonymous mutations, they are not inconsistent with various

existing data.
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INTRODUCTION

We recently constructed 8,341 mutants each carrying a synonymous, nonsynonymous, or
nonsense mutation in one of 21 representative genes of the yeast Saccharomyces cerevisiae [1].
We found that most synonymous and most nonsynonymous mutants are significantly less fit than
the wild type, although nonsynonymous mutations are overall more detrimental than
synonymous ones [1]. Kruglyak et al. believe that “most nonsynonymous and nearly all
synonymous mutations have no or minimal effects on fitness” and “only a subset of mutations,
primarily nonsynonymous ones, would have significant effects on fitness” [2]. They hypothesize
that our findings largely reflect the fitness effects of CRISPR/Cas9 off-target edits and secondary
mutations that occurred in mutant construction [2].

Our finding that most synonymous mutations are strongly deleterious (selection
coefficient s <-0.001) led to the suggestion that human synonymous mutations may be
substantially more important as a cause of disease than is currently thought [1]. Dhindsa et al.
[3] argue that, compared with nonsynonymous mutations, human synonymous mutations are
significantly less deleterious and are substantially less likely to cause disease. Furthermore, they
assert that previous mutagenesis studies found synonymous mutations to be far less harmful than
nonsynonymous mutations in humans and yeast.

In this article, we assess the validity of Kruglyak et al.’s hypothesis and Dhindsa et al.’s

claims.

RESULTS
Testing Kruglyak ez al.’s hypothesis

Kruglyak et al. hypothesize that our estimates of fitness effects of synonymous and
nonsynonymous mutations in yeast largely reflect the fitness effects of CRISPR/Cas9 off-target
edits and secondary mutations that occurred in mutant construction [2]. While off-target edits
are known in plants and animals, the rate of such edits is low and well-designed experiments can
avoid off-target edits even in the human genome [4]. The genome is 250 times smaller and the
efficiency of non-homologous end-joining relative to homologous recombination (a predictor of
off-target editing [5]) is drastically lower [6] in yeast than in humans, rendering off-target editing

negligible in yeast. Indeed, no off-target edits were found by genome sequencing in previous
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yeast studies [7,8]. In our study, gRNAs were carefully designed using Benchling

(www.benchling.com/crispr) to minimize potential off-target editing.

Although secondary mutations are possible, the mutation rate of the wild-type yeast used
is only ~0.002 per genome per generation [9]. None of our 21 genes are among those that
increase the mutation rate upon deletion (including transformation) found in a previous genome-
wide screening [10]. Furthermore, Kruglyak ef al.’s belief that only a minority of
nonsynonymous mutations are significantly deleterious implies that many potential secondary
mutations would have no detectable fitness effects, contrasting their Fig. 1. Note that the
reported secondary genetic alterations in the yeast deletion collection resulted from selection for
beneficial mutations that suppress the harm of gene deletion [11], so cannot explain the “lower-
than-expected” mutant fitness [2].

The above considerations suggest little if any effect on our mutant fitness measurement
from potential off-target edits and secondary mutations. Consistently, all three colonies of the
wild-type control constructed through two rounds of CRISPR/Cas9 editing are equally fit as the
original wild type (Extended Fig. 1c in [1]).

Kruglyak ef al. are correct that each mutant is made up of multiple (~25 on average)
independently edited cells in our mutant pool, and the fitness of the mutant measured via en
masse competition is the average fitness of these cells. They hypothesized the existence of an
ascertainment bias in picking relatively healthy colonies for growth rate measurement, predicting
that (1) the fitness of a mutant measured through en masse competition should be lower than that
measured by the growth of a hand-picked colony and (2) the two fitness estimates should not be
well correlated due to the influences of different off-target edits and secondary mutations. These
predictions are unsupported by our data, because the two fitness estimates show a strong
correlation (7 = 0.90, P = 1.3x10; see Fig. 1d in [1]) with the slope of the linear regression not
significantly different from 1 (P> 0.2). Kruglyak et al. commented that several mutations
appear beneficial based on the growths of hand-picked colonies but deleterious based on the en
masse competition (Fig. 3 in [2]). In fact, only three mutations fit this criterion and the growth
rate-based fitness effect is not significantly positive for any of them. Note that the two methods
of fitness estimation are equally sensitive for the mutants in Fig. 1d of [1] (average standard error

SE =0.00374 and 0.00377 for the X- and Y-axes of fitness estimates, respectively).
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Kruglyak ef al.’s hypothesis makes several predictions on the distribution of fitness
effects (DFE) of mutations. First, if synonymous mutations have no genuine fitness effects, the
dispersion of the DFE of the synonymous mutations of a gene is caused entirely by off-target
edits and secondary mutations in the second round of CRISPR/Cas9 editing that used the same
gRNA for all genes, hence is expected to be equal for the 21 genes studied. However, the
dispersion (e.g., the interquartile range) varies greatly across the 21 genes (Fig. 2c in [1]). Is this
variation explainable by chance given that the number of synonymous mutants of a gene is
limited? Using the observed fitness effects of synonymous mutations, we performed a computer
simulation to create the DFE of synonymous mutations of each gene under Kruglyak et al.’s
hypothesis (see Methods). These simulated DFEs (Fig. 1a) are highly similar across genes and
distinct from the observed DFEs (Fig. 1b) in the interquartile range, contradicting the prediction
of Kruglyak et al.’s hypothesis [2].

Second, Kruglyak ef al. believed that only a minority of nonsynonymous mutants,
especially those showing fitness lower than that of almost all synonymous mutants, are truly
deleterious, while the rest are neutral. We thus simulated DFEs of nonsynonymous mutations
following their hypothesis (see Methods). Again, the interquartile range of the simulated DFE of
nonsynonymous mutations is highly similar across the 21 genes (Fig. 1a), contrasting the large
variation observed (Fig. 1b). Furthermore, the interquartile range of the DFE of nonsynonymous
mutations is always close to that of synonymous mutations of the same gene in the simulated
data (Fig. 1a), unlike the pattern in the actual data (Fig. 1b).

Third, Kruglyak et al. believed that nonsense mutants of the same gene should all have
the same fitness, so considered the observed relatively large fitness variation evidence for the
hypothesized effects of off-target edits and secondary mutations. Their hypothesis predicts that
(1) the DFE of nonsense mutations has the same dispersion across the 21 genes and (2) the DFEs
of synonymous and nonsense mutations have equal dispersions, both squarely contradicted by
the observation (Fig. 4 in [2]). Two factors explain the relatively large dispersion of the DFE of
nonsense mutations. First, because of the relatively low fitness of nonsense mutants, numbers of
sequencing reads of these mutants after the competition tend to be low, increasing the sampling
errors of the fitness estimates—the average SE of fitness is 0.006 (0.012 when fitness < 0.90) for
nonsense mutants as opposed to 0.002 for synonymous mutants. Second, transposon

mutagenesis suggested that nonsense mutations at different positions of a gene can have
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drastically different fitness effects and that the relationship between the position and effect can
be complex [12].

We also collected new data to directly test Kruglyak et al.’s hypothesis. Specifically,
from the AEST strain used for constructing all coding mutants of £S7'/, we reconstructed wild-
type controls and randomly picked 27 colonies. According to Kruglyak et al., the average fitness
of the 27 colonies is an ideal neutral benchmark against which all £S77 mutants should be
compared, because, as mentioned, each mutant in our en masse competition was made up of ~25
independently edited cells. We measured the growth rate of each of the 27 colonies once and
found their average fitness relative to the wild-type control used in the en masse competition [1]
to be 0.995 (SE =0.003). The fitness of the EST7 wild-type control is not significantly different
from 1 (P =0.16, t-test). Importantly, our data reject the prediction from Kruglyak et al.’s
hypothesis that the variance of the estimated fitness of synonymous mutants of EST/ equals that
of wild-type controls (F = 0.018%/0.0032= 36, P < 10°'%). This is also visually clear when the 65
synonymous mutants of ST/ investigated in our study [1] are compared with an equal number
of wild-type controls (generated from a normal distribution with mean = 0.995 and variance =
0.0032) (Fig. 2). Furthermore, 78.5% of ESTI synonymous mutations are significantly non-
neutral when compared with the new wild-type control (nominal P < 0.05, ¢-test), similar to that
(81.5%) in [1].

Kruglyak et al. asserted that the deleterious mutations we reported should have been
selectively purged and have no chance to be observed in other yeasts. This inference is based on
the unrealistic assumption that (1) the natural environment of yeast is identical to the lab
environment and constant and (2) epistasis is minimal. In fact, deleterious mutations in one
species are sometimes fixed in another species [13-16]. Our finding that (synonymous and
nonsynonymous) mutations unobserved in other yeasts are on average more detrimental in S.
cerevisiae than those observed [1] provides unequivocal evidence that our measured fitness
effects are biological.

Kruglyak ef al. commented that the mean relative expression level (REL) of all mutants
of a gene is not correlated with the mean fitness of the mutants of the gene in our data (their Fig.
2). Asis clear from Fig. 3c in [1], the mean REL is irrelevant because the correlation between
REL and (rescaled) fitness differs for REL <1 and REL >1. Furthermore, because gene deletion

(i.e., a 100% expression reduction) has different fitness effects for different genes, using rescaled
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fitness is essential in analysis across genes. It is worth emphasizing that the correlation between
REL and rescaled fitness across all mutants with REL < 1 is moderate (p = 0.32 and 0.30 for
synonymous and nonsynonymous mutants, respectively [1]). This fact, coupled with the
observation that the REL distribution for a gene can be skewed depending on the gene expression
level (Extended Data Figs. 41, 5f, 5h in [1]), means that the correlation between REL (when REL
< 1) and fitness may or may not be significant for individual genes. Note that even when the
above correlation is not significant, it does not mean that the fitness estimates are wrong because
coding mutations can affect fitness via multiple mechanisms [1].

Together, the above analyses reject Kruglyak ef al.’s hypothesis as an explanation of our
data. Kruglyak ef al. commented that our results are inconsistent with a large body of literature,
without realizing that the prior results were almost exclusively based on indirect inferences of
fitness effects that depended on many simplifying assumptions that may or may not hold and that

the analysis of prior mutagenesis studies by Dhindsa et al. is seriously flawed (see below).

Evaluating Dhindsa ef al.’s analyses and interpretations

In their Fig. 1, Dhindsa et al. [3] presented the cumulative probability distributions of
minor allele frequencies (MAFs) of several types of mutations observed from 454,668 human
exomes, noting that MAFs are overall higher for synonymous than nonsynonymous mutations.
They interpret this disparity as weaker purifying selection on synonymous than nonsynonymous
mutations. We do not disagree with this interpretation but note the following important caveats.
First, the infinite site model is violated when the sample size is so large [17]. Consequently, the
mutation rate is a primary determinant of the MAF distribution [17]. Because transitions
(especially CpG = TpG) occur more frequently than transversions and tend to be synonymous
[17], synonymous mutations look less constrained in the MAF distribution than they actually are.
In other words, the true difference in s between synonymous and nonsynonymous mutations is
smaller than what their Fig. 1 implies. Second, the MAF distributions largely reflect the
coefficients of selection against deleterious mutations in the heterozygous state, while the
mutational fitness effects were measured in haploid yeast in our experiment [1]. If dominance
differs between synonymous and nonsynonymous mutations (e.g., synonymous mutations are
completely recessive but nonsynonymous mutations are partially recessive), the MAF

distributions could look different from those expected from our haploid experimental results.
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Third, selections inferred from MAF distributions are not fundamentally different from those
inferred from nonsynonymous to synonymous substitution rate ratios (dn/ds). We discussed
extensively scenarios under which observations of dn/ds <<1 can be reconciled with our
experimental estimates of fitness effects [1], and the same applies here. Fourth, while we
emphasized the strong deleterious effects of synonymous mutations, our data showed that
nonsynonymous mutations are overall significantly more deleterious than synonymous mutations
in each of the four environments examined [1]. Hence, the human MAF distributions may not be
inconsistent with our experimental results, especially when all of the above factors are
considered. Finally, we note that “neutral synonymous” (grey line) in Fig. 1 of [3] does not
mean neutrality in fitness but neutrality in codon stability coefficient, so using this terminology
when discussing fitness effects is misleading.

In their Fig. 2, Dhindsa et al. [3] reported that, using gene-based collapsing analysis
performed on 394,694 UK Biobank participants, they found 2, 32, and 55 genes to be associated
with at least one clinical phenotype when only synonymous, nonsynonymous, or nonsense
mutations were considered, respectively. However, this comparison is unfair because the authors
restricted their analysis to nonsynonymous mutations predicted to be pathogenic (REVEL score
[18] > 0.25) while no similar restriction was set for synonymous mutations. Furthermore, the
very low numbers of genes identified to be phenotypically associated indicate that this analysis is
severely underpowered; it underestimates the phenotypic contributions of all types of mutations
so cannot inform the general clinical relevance of synonymous mutations. It is entirely possible
that the relative importance of synonymous and nonsynonymous mutations to disease shows a
pattern substantially different from that in their Fig. 2 when (1) a fair comparison is made, (2) the
statistical power is greatly increased, and (3) a much larger proportion of variants are examined
(Fig. 2 analyzed only extremely rare variants). Indeed, using single-nucleotide resolution
quantitative trait locus mapping, She and Jarosz mapped many yeast growth traits to synonymous
variants and found the effect size comparable between synonymous and nonsynonymous causal
variants [19].

It is worth noting that the relationship between the impact of a mutation on disease and
that on fitness is complex and nonlinear. For example, a life-threatening disease may have a
minimal fitness effect if it occurs after the reproductive age. By contrast, a mutation that lowers

the fertility (and hence fitness) by 5% probably will not even be considered disease-causing if it
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has no other phenotypic effect. It is thus also possible that synonymous and nonsynonymous
mutations are significantly different in clinical relevance given their significant difference in
fitness effect, especially that mutations with s <-0.05 are almost exclusively nonsynonymous in
our data [1].

In Extended Data Fig. 1, Dhindsa ef al. [3] presented a comparison between synonymous
and nonsynonymous mutations using multiplexed assays of variant effect (MAVEs) for seven
human genes (instead of eight mentioned in their Methods) and two yeast genes. The lower
median “score” of nonsynonymous than synonymous mutants and the proximity of the median
score of synonymous mutants to the “no effect” line appear to suggest that nonsynonymous
mutations are substantially more deleterious than synonymous mutations and that synonymous
mutations are largely neutral. A closer examination of the data (MaveDB [20]) behind this
comparison raises many red flags. Three problems are shared between the human and yeast data
analyzed. First, many nonsynonymous mutants each contained multiple nonsynonymous
mutations while each synonymous mutant appears to contain only one synonymous mutation
[21-27], making their comparison unfair. Second, mutant genes were not in their native
chromosomal locations but were placed on plasmids [21-25,27]; plasmid copy number variations
affect mutant protein abundance and interfere with the quantification of the mutational effect.
Third, the measurement error was large in at least some datasets, reducing the likelihood of
detecting mutational effects. For example, the average standard error of the mutant score in the
human 7PK1 dataset (urn:mavedb:00000001-d-1) was 0.09 (in the scale from 0 to 1). If the
score is equivalent to fitness, a mutant must have a fitness lower than 0.82 for the mutation to be
called significantly deleterious. By this standard, no synonymous mutations (but several
nonsynonymous mutations) in our data would be significantly deleterious.

The human data analyzed by Dhindsa ef al. [3] additionally suffered from the following
problems. First, in four (UBE2I, SUMOI, CALM]I, and TPK1) of the seven genes studied,
mutants were examined in yeast by a complementation assay [21]; to what extent the mutational
effects measured in yeast are relevant to humans (or even human cells) is unknown.
Furthermore, the scores were normalized to a scale from 0 to 1, where 0 corresponded to the
median score of nonsense mutants while 1 had different meanings in different datasets. In one
dataset (00000001-a-4), 1 corresponded to the wild type. However, in all other datasets
(00000001-a-3, 00000001-b-2, 00000001-c-1, and 00000001-d-1), 1 corresponded to the median
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score of synonymous mutants, artificially making synonymous mutations “neutral”. Second, for
the fifth and sixth human genes studied (PTEN and TMPT), the score reflected the protein
expression level rather than fitness [26]. Finally, for the seventh human gene (CYP2CY), the
score was again not fitness but enzyme activity measured in yeast cells [27] (in dataset
00000095-a-1) or protein abundance measured in a human cell line [27] (in dataset 00000095-b-
1).

All yeast data analyzed by Dhindsa ef al. [3] additionally had the problem of using non-
native promoters to drive the expression of mutant genes. For example, in all three datasets of
HSP90 (00000011-a-1, 00000039-a-1, and 00000040-a-1), mutant gene expression was driven
by the GPD promoter [22,24] or ADH promoter [23]. Similarly, in the UBI4 dataset (00000037-
a-1), mutant gene expression was driven by the GPD promoter [25]. The biological relevance of
the fitness effects measured under these non-native promoters is unknown.

It is therefore clear that Extended Data Fig. 1 in [3] does not provide valid information on
the fitness effects of human or yeast synonymous and nonsynonymous mutations. Additionally,
under Kruglyak et al.’s hypothesis, secondary mutations would have affected these studies as

well.

DISCUSSION

Our analysis of published and newly collected data demonstrates that Kruglyak et al.’s
hypothesis cannot explain our estimates of fitness effects of mutations in yeast. Kruglyak et al.
recommended that the wild-type control be reconstructed along with all mutants in the same
large-scale CRISPR/Cas9 editing experiment. We had considered this option in our previous
study, but because (1) the large-scale editing experiment cannot guarantee the generation of all
designed genotypes (e.g., we were able to estimate the fitness of only ~90% of designed
mutants), (2) the reconstructed wild type is required in our study, and (3) off-target editing is
negligible and secondary mutations are rare in yeast, we chose to reconstruct the wild type
separately to ensure its presence in the en masse competition. This said, the risk of not
generating the reconstructed wild type in the large-scale editing experiment can be minimized by
increasing the concentration of the wild-type template DNA in the experiment. Hence, we agree
with Kruglyak et al. on their recommendation when off-target editing and secondary mutations

are of concern.

10
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We found that, when examined critically, Dhindsa ef al.’s results are not inconsistent
with our estimates of fitness effects of yeast synonymous and nonsynonymous mutations.
Specifically, their comparisons between synonymous and nonsynonymous mutations in prior
mutagenesis studies and in contributions to disease are unfair and human allele frequency
distributions can be compatible with our fitness estimates when multiple complicating factors are
considered.

It is worth mentioning that recent years have seen an increasing number of reports of
fitness effects of synonymous mutations from both case studies [28-32] and systematic analyses
[19,33-35]. Notably, Lind ef al. found similarly large fitness effects of synonymous and
nonsynonymous mutations in two ribosomal protein genes of the bacterium Sal/monella
typhimurium [34]. Sane et al. found synonymous and nonsynonymous mutations observed from
Escherichia coli mutation accumulation experiments to have comparable fitness effects [35].
Sharon et al. reported similar fractions of synonymous and nonsynonymous differences between
two yeast strains to have detectable fitness effects [33]. She and Jarosz mapped many yeast
growth traits to synonymous variants and discovered their substantial causal growth effects [19].
These findings, along with ours [1], suggest that many synonymous mutations are strongly non-
neutral. More studies are certainly needed to examine the generality of these findings across the
tree of life and explore its potentially very broad implications. A number of synonymous
mutations have already been reported to cause disease [36], and a systematic survey will only

find more cases.

METHODS
Simulation of DFEs under Kruglyak ef al.’s hypothesis

We simulated DFEs of synonymous and nonsynonymous mutations following Kruglyak
et al.’s hypothesis. Specifically, the simulation assumed that all synonymous mutations' fitness
effects are due to errors (i.e., off-target edits and secondary mutations). We separately inferred
the fitness effects of errors from the two rounds of CRISPR/Cas9 editing (error I and error II,
respectively).

Error I is the same for all synonymous mutants of a gene, because they were all made
from the same gene-deletion strain created by the first round of CRISPR/Cas9 editing. For a

gene, we chose the 95th percentile of its synonymous DFE as the value of its error_I, under the

11
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assumption that 5% of synonymous mutants are made fitter while 95% are made less fit by errors
in the second round of CRISPR/Cas9. The simulation outcome (in terms of the dispersion of the
DFE) is insensitive to the above percentile choice.

Because the second round of CRISPR/Cas9 is the same for all genes, we expect error 11
to follow the same distribution for all mutants of all genes. Under the assumption that each
synonymous mutation’s fitness effect equals error I+ error II, we estimated error II of each
synonymous mutation. From all synonymous mutations of all genes, we obtained a probability
distribution of error II.

We then simulated the fitness effect of each synonymous mutation by adding its gene-
specific error_I and a random variable sampled from the probability distribution of error II.
This was done for every synonymous mutation in our data to create the simulated DFEs of
synonymous mutations of the 21 genes.

Kruglyak ef al. contended that only nonsynonymous mutations that are more deleterious
than almost all synonymous mutations are genuinely deleterious. Let 4; be the minimal fitness
value of all synonymous mutants of gene i. For a nonsynonymous mutant of gene i with fitness
> Ai, we simulated its fitness the same way we simulated the fitness of a synonymous mutant of
gene i; otherwise, the simulated fitness equals its observed fitness. This was done for every
nonsynonymous mutant in our data to create the simulated DFEs of nonsynonymous mutations

of the 21 genes.

Fitness distribution of ES71 wild-type controls

The experiments generally followed [1]. We amplified the wild-type ESTI gene from the
genome of the haploid strain BY4742 by polymerase chain reaction (PCR) using the high-
fidelity Q5 polymerase (NEB) and inserted it into the AEST! cells used in [1] by CRISPR/Cas9
editing. Twenty-seven colonies were randomly picked and the insert was confirmed by the PCR
product length and Sanger sequencing for each of them. The cells were then counter-selected on
5-FOA plates to remove the CRISPR/Cas9 plasmids. We measured the maximum growth rate of
each of the 27 strains by monoculture [1], with one replicate per strain. We also similarly
measured the growth rate of the wild-type control used in [1] with 31 replicates. The fitness of
each of the 27 strains relative to the wild-type control used in [1] was calculated as in [1]. The

average fitness of the 27 strains as well as its SE were then computed. We compared the average
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fitness of the 27 strains with that of the 31 replicates of the wild-type control by a #-test. Because
we measured the growth rate of each of the 27 strains only once, the SE is likely larger than its
expected value in en masse competitions, making our conclusion that the SE (which equals the
standard deviation of fitness among multiple wild-type controls) is smaller than the standard

deviation of the fitness distribution of synonymous mutants of £S7/ conservative.
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Fig. 1. Simulated and experimentally measured fitness of synonymous (yellow) and
nonsynonymous (blue) mutants of 21 yeast genes. a, Fitness simulated under Kruglyak et al.’s
hypothesis. To be conservative in testing Kruglyak et al.’s hypothesis, we set the simulated
fitness values of nonsynonymous mutants that are less fit than all synonymous mutants of the
same gene at the values estimated in [1]. b, Estimated fitness from [1]. The lower and upper
edges of a box represent the first and third quartiles, respectively, the horizontal line inside the
box indicates the median, the whiskers extend to the most extreme values inside inner fences
(median £ 1.5% interquartile range) and the dots show outliers. Panel b is redrawn using the data
in [1]. See Methods for details of the simulation.
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Fig. 2. Fitness distributions of 65 synonymous mutants (yellow) and 65 wild-type controls
(white) of ESTI, respectively. The lower and upper edges of a box represent the first and third
quartiles, respectively, the horizontal line inside the box indicates the median, the whiskers
extend to the most extreme values inside inner fences (median + 1.5% interquartile range) and the
dots show outliers. The wild-type control data are generated from N(0.995, 0.0032), as explained
in the main text.
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