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ABSTRACT 

 We recently measured the fitness effects of a large number of coding mutations in yeast 

under four laboratory conditions, finding that most synonymous mutations are strongly 

deleterious although they are overall significantly less detrimental than nonsynonymous 

mutations.  Kruglyak et al. believe that most nonsynonymous and nearly all synonymous 

mutations have no detectable fitness effects, so hypothesize that our results largely reflect the 

fitness effects of CRISPR/Cas9 off-target edits and secondary mutations that occurred in mutant 

construction.  Dhindsa et al. argue that our findings contradict other yeast and human 

mutagenesis studies, human allele frequency distributions, and disease gene mapping results.  

We find Kruglyak et al.’s hypothesis unsupported by prior yeast genome editing studies and 

mutation rate estimates.  Furthermore, their hypothesis makes a series of predictions that are 

falsified by our published and newly collected data.  Hence, their hypothesis cannot explain our 

observations.  Dhindsa et al.’s comparisons between synonymous and nonsynonymous mutations 

in prior mutagenesis studies and in contributions to disease are unfair and human allele 

frequency distributions can be compatible with our fitness estimates when multiple complicating 

factors are considered.  While our fitness estimates of yeast synonymous mutants overturn the 

(nearly) neutral assumption of synonymous mutations, they are not inconsistent with various 

existing data.  
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INTRODUCTION 

 We recently constructed 8,341 mutants each carrying a synonymous, nonsynonymous, or 

nonsense mutation in one of 21 representative genes of the yeast Saccharomyces cerevisiae [1].  

We found that most synonymous and most nonsynonymous mutants are significantly less fit than 

the wild type, although nonsynonymous mutations are overall more detrimental than 

synonymous ones [1].  Kruglyak et al. believe that “most nonsynonymous and nearly all 

synonymous mutations have no or minimal effects on fitness” and “only a subset of mutations, 

primarily nonsynonymous ones, would have significant effects on fitness” [2].  They hypothesize 

that our findings largely reflect the fitness effects of CRISPR/Cas9 off-target edits and secondary 

mutations that occurred in mutant construction [2].   

Our finding that most synonymous mutations are strongly deleterious (selection 

coefficient s < -0.001) led to the suggestion that human synonymous mutations may be 

substantially more important as a cause of disease than is currently thought [1].  Dhindsa et al. 

[3] argue that, compared with nonsynonymous mutations, human synonymous mutations are 

significantly less deleterious and are substantially less likely to cause disease.  Furthermore, they 

assert that previous mutagenesis studies found synonymous mutations to be far less harmful than 

nonsynonymous mutations in humans and yeast.   

In this article, we assess the validity of Kruglyak et al.’s hypothesis and Dhindsa et al.’s 

claims.  

 

RESULTS 

Testing Kruglyak et al.’s hypothesis 

Kruglyak et al. hypothesize that our estimates of fitness effects of synonymous and 

nonsynonymous mutations in yeast largely reflect the fitness effects of CRISPR/Cas9 off-target 

edits and secondary mutations that occurred in mutant construction [2].  While off-target edits 

are known in plants and animals, the rate of such edits is low and well-designed experiments can 

avoid off-target edits even in the human genome [4].  The genome is 250 times smaller and the 

efficiency of non-homologous end-joining relative to homologous recombination (a predictor of 

off-target editing [5]) is drastically lower [6] in yeast than in humans, rendering off-target editing 

negligible in yeast.  Indeed, no off-target edits were found by genome sequencing in previous 
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yeast studies [7,8].  In our study, gRNAs were carefully designed using Benchling 

(www.benchling.com/crispr) to minimize potential off-target editing. 

Although secondary mutations are possible, the mutation rate of the wild-type yeast used 

is only ~0.002 per genome per generation [9].  None of our 21 genes are among those that 

increase the mutation rate upon deletion (including transformation) found in a previous genome-

wide screening [10].  Furthermore, Kruglyak et al.’s belief that only a minority of 

nonsynonymous mutations are significantly deleterious implies that many potential secondary 

mutations would have no detectable fitness effects, contrasting their Fig. 1.  Note that the 

reported secondary genetic alterations in the yeast deletion collection resulted from selection for 

beneficial mutations that suppress the harm of gene deletion [11], so cannot explain the “lower-

than-expected” mutant fitness [2].  

 The above considerations suggest little if any effect on our mutant fitness measurement 

from potential off-target edits and secondary mutations.  Consistently, all three colonies of the 

wild-type control constructed through two rounds of CRISPR/Cas9 editing are equally fit as the 

original wild type (Extended Fig. 1c in [1]).   

 Kruglyak et al. are correct that each mutant is made up of multiple (~25 on average) 

independently edited cells in our mutant pool, and the fitness of the mutant measured via en 

masse competition is the average fitness of these cells.  They hypothesized the existence of an 

ascertainment bias in picking relatively healthy colonies for growth rate measurement, predicting 

that (1) the fitness of a mutant measured through en masse competition should be lower than that 

measured by the growth of a hand-picked colony and (2) the two fitness estimates should not be 

well correlated due to the influences of different off-target edits and secondary mutations.  These 

predictions are unsupported by our data, because the two fitness estimates show a strong 

correlation (r = 0.90, P = 1.3×10-9; see Fig. 1d in [1]) with the slope of the linear regression not 

significantly different from 1 (P > 0.2).  Kruglyak et al. commented that several mutations 

appear beneficial based on the growths of hand-picked colonies but deleterious based on the en 

masse competition (Fig. 3 in [2]).  In fact, only three mutations fit this criterion and the growth 

rate-based fitness effect is not significantly positive for any of them.  Note that the two methods 

of fitness estimation are equally sensitive for the mutants in Fig. 1d of [1] (average standard error 

SE = 0.00374 and 0.00377 for the X- and Y-axes of fitness estimates, respectively). 
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Kruglyak et al.’s hypothesis makes several predictions on the distribution of fitness 

effects (DFE) of mutations.  First, if synonymous mutations have no genuine fitness effects, the 

dispersion of the DFE of the synonymous mutations of a gene is caused entirely by off-target 

edits and secondary mutations in the second round of CRISPR/Cas9 editing that used the same 

gRNA for all genes, hence is expected to be equal for the 21 genes studied.  However, the 

dispersion (e.g., the interquartile range) varies greatly across the 21 genes (Fig. 2c in [1]).  Is this 

variation explainable by chance given that the number of synonymous mutants of a gene is 

limited?  Using the observed fitness effects of synonymous mutations, we performed a computer 

simulation to create the DFE of synonymous mutations of each gene under Kruglyak et al.’s 

hypothesis (see Methods).  These simulated DFEs (Fig. 1a) are highly similar across genes and 

distinct from the observed DFEs (Fig. 1b) in the interquartile range, contradicting the prediction 

of Kruglyak et al.’s hypothesis [2].   

 Second, Kruglyak et al. believed that only a minority of nonsynonymous mutants, 

especially those showing fitness lower than that of almost all synonymous mutants, are truly 

deleterious, while the rest are neutral.  We thus simulated DFEs of nonsynonymous mutations 

following their hypothesis (see Methods).  Again, the interquartile range of the simulated DFE of 

nonsynonymous mutations is highly similar across the 21 genes (Fig. 1a), contrasting the large 

variation observed (Fig. 1b).  Furthermore, the interquartile range of the DFE of nonsynonymous 

mutations is always close to that of synonymous mutations of the same gene in the simulated 

data (Fig. 1a), unlike the pattern in the actual data (Fig. 1b). 

Third, Kruglyak et al. believed that nonsense mutants of the same gene should all have 

the same fitness, so considered the observed relatively large fitness variation evidence for the 

hypothesized effects of off-target edits and secondary mutations.  Their hypothesis predicts that 

(1) the DFE of nonsense mutations has the same dispersion across the 21 genes and (2) the DFEs 

of synonymous and nonsense mutations have equal dispersions, both squarely contradicted by 

the observation (Fig. 4 in [2]).  Two factors explain the relatively large dispersion of the DFE of 

nonsense mutations.  First, because of the relatively low fitness of nonsense mutants, numbers of 

sequencing reads of these mutants after the competition tend to be low, increasing the sampling 

errors of the fitness estimates—the average SE of fitness is 0.006 (0.012 when fitness < 0.90) for 

nonsense mutants as opposed to 0.002 for synonymous mutants.  Second, transposon 

mutagenesis suggested that nonsense mutations at different positions of a gene can have 
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drastically different fitness effects and that the relationship between the position and effect can 

be complex [12].   

 We also collected new data to directly test Kruglyak et al.’s hypothesis.  Specifically, 

from the ΔEST1 strain used for constructing all coding mutants of EST1, we reconstructed wild-

type controls and randomly picked 27 colonies.  According to Kruglyak et al., the average fitness 

of the 27 colonies is an ideal neutral benchmark against which all EST1 mutants should be 

compared, because, as mentioned, each mutant in our en masse competition was made up of ~25 

independently edited cells.  We measured the growth rate of each of the 27 colonies once and 

found their average fitness relative to the wild-type control used in the en masse competition [1] 

to be 0.995 (SE = 0.003).  The fitness of the EST1 wild-type control is not significantly different 

from 1 (P = 0.16, t-test).  Importantly, our data reject the prediction from Kruglyak et al.’s 

hypothesis that the variance of the estimated fitness of synonymous mutants of EST1 equals that 

of wild-type controls (F = 0.0182/0.0032 = 36, P < 10-13).  This is also visually clear when the 65 

synonymous mutants of EST1 investigated in our study [1] are compared with an equal number 

of wild-type controls (generated from a normal distribution with mean = 0.995 and variance = 

0.0032) (Fig. 2).  Furthermore, 78.5% of EST1 synonymous mutations are significantly non-

neutral when compared with the new wild-type control (nominal P < 0.05, t-test), similar to that 

(81.5%) in [1].  

 Kruglyak et al. asserted that the deleterious mutations we reported should have been 

selectively purged and have no chance to be observed in other yeasts.  This inference is based on 

the unrealistic assumption that (1) the natural environment of yeast is identical to the lab 

environment and constant and (2) epistasis is minimal.  In fact, deleterious mutations in one 

species are sometimes fixed in another species [13-16].  Our finding that (synonymous and 

nonsynonymous) mutations unobserved in other yeasts are on average more detrimental in S. 

cerevisiae than those observed [1] provides unequivocal evidence that our measured fitness 

effects are biological.  

 Kruglyak et al. commented that the mean relative expression level (REL) of all mutants 

of a gene is not correlated with the mean fitness of the mutants of the gene in our data (their Fig. 

2).  As is clear from Fig. 3c in [1], the mean REL is irrelevant because the correlation between 

REL and (rescaled) fitness differs for REL <1 and REL >1.  Furthermore, because gene deletion 

(i.e., a 100% expression reduction) has different fitness effects for different genes, using rescaled 
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fitness is essential in analysis across genes.  It is worth emphasizing that the correlation between 

REL and rescaled fitness across all mutants with REL < 1 is moderate (ρ = 0.32 and 0.30 for 

synonymous and nonsynonymous mutants, respectively [1]).  This fact, coupled with the 

observation that the REL distribution for a gene can be skewed depending on the gene expression 

level (Extended Data Figs. 4i, 5f, 5h in [1]), means that the correlation between REL (when REL 

< 1) and fitness may or may not be significant for individual genes.  Note that even when the 

above correlation is not significant, it does not mean that the fitness estimates are wrong because 

coding mutations can affect fitness via multiple mechanisms [1].   

Together, the above analyses reject Kruglyak et al.’s hypothesis as an explanation of our 

data.  Kruglyak et al. commented that our results are inconsistent with a large body of literature, 

without realizing that the prior results were almost exclusively based on indirect inferences of 

fitness effects that depended on many simplifying assumptions that may or may not hold and that 

the analysis of prior mutagenesis studies by Dhindsa et al. is seriously flawed (see below). 

 

Evaluating Dhindsa et al.’s analyses and interpretations 

 In their Fig. 1, Dhindsa et al. [3] presented the cumulative probability distributions of 

minor allele frequencies (MAFs) of several types of mutations observed from 454,668 human 

exomes, noting that MAFs are overall higher for synonymous than nonsynonymous mutations.  

They interpret this disparity as weaker purifying selection on synonymous than nonsynonymous 

mutations.  We do not disagree with this interpretation but note the following important caveats.  

First, the infinite site model is violated when the sample size is so large [17].  Consequently, the 

mutation rate is a primary determinant of the MAF distribution [17].  Because transitions 

(especially CpG  TpG) occur more frequently than transversions and tend to be synonymous 

[17], synonymous mutations look less constrained in the MAF distribution than they actually are.  

In other words, the true difference in s between synonymous and nonsynonymous mutations is 

smaller than what their Fig. 1 implies.  Second, the MAF distributions largely reflect the 

coefficients of selection against deleterious mutations in the heterozygous state, while the 

mutational fitness effects were measured in haploid yeast in our experiment [1].  If dominance 

differs between synonymous and nonsynonymous mutations (e.g., synonymous mutations are 

completely recessive but nonsynonymous mutations are partially recessive), the MAF 

distributions could look different from those expected from our haploid experimental results.  
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Third, selections inferred from MAF distributions are not fundamentally different from those 

inferred from nonsynonymous to synonymous substitution rate ratios (dN/dS).  We discussed 

extensively scenarios under which observations of dN/dS <<1 can be reconciled with our 

experimental estimates of fitness effects [1], and the same applies here.  Fourth, while we 

emphasized the strong deleterious effects of synonymous mutations, our data showed that 

nonsynonymous mutations are overall significantly more deleterious than synonymous mutations 

in each of the four environments examined [1].  Hence, the human MAF distributions may not be 

inconsistent with our experimental results, especially when all of the above factors are 

considered.  Finally, we note that “neutral synonymous” (grey line) in Fig. 1 of [3] does not 

mean neutrality in fitness but neutrality in codon stability coefficient, so using this terminology 

when discussing fitness effects is misleading.  

 In their Fig. 2, Dhindsa et al. [3] reported that, using gene-based collapsing analysis 

performed on 394,694 UK Biobank participants, they found 2, 32, and 55 genes to be associated 

with at least one clinical phenotype when only synonymous, nonsynonymous, or nonsense 

mutations were considered, respectively.  However, this comparison is unfair because the authors 

restricted their analysis to nonsynonymous mutations predicted to be pathogenic (REVEL score 

[18] ≥ 0.25) while no similar restriction was set for synonymous mutations.  Furthermore, the 

very low numbers of genes identified to be phenotypically associated indicate that this analysis is 

severely underpowered; it underestimates the phenotypic contributions of all types of mutations 

so cannot inform the general clinical relevance of synonymous mutations.  It is entirely possible 

that the relative importance of synonymous and nonsynonymous mutations to disease shows a 

pattern substantially different from that in their Fig. 2 when (1) a fair comparison is made, (2) the 

statistical power is greatly increased, and (3) a much larger proportion of variants are examined 

(Fig. 2 analyzed only extremely rare variants).  Indeed, using single-nucleotide resolution 

quantitative trait locus mapping, She and Jarosz mapped many yeast growth traits to synonymous 

variants and found the effect size comparable between synonymous and nonsynonymous causal 

variants [19].   

 It is worth noting that the relationship between the impact of a mutation on disease and 

that on fitness is complex and nonlinear.  For example, a life-threatening disease may have a 

minimal fitness effect if it occurs after the reproductive age.  By contrast, a mutation that lowers 

the fertility (and hence fitness) by 5% probably will not even be considered disease-causing if it 
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has no other phenotypic effect.  It is thus also possible that synonymous and nonsynonymous 

mutations are significantly different in clinical relevance given their significant difference in 

fitness effect, especially that mutations with s < -0.05 are almost exclusively nonsynonymous in 

our data [1].  

 In Extended Data Fig. 1, Dhindsa et al. [3] presented a comparison between synonymous 

and nonsynonymous mutations using multiplexed assays of variant effect (MAVEs) for seven 

human genes (instead of eight mentioned in their Methods) and two yeast genes.  The lower 

median “score” of nonsynonymous than synonymous mutants and the proximity of the median 

score of synonymous mutants to the “no effect” line appear to suggest that nonsynonymous 

mutations are substantially more deleterious than synonymous mutations and that synonymous 

mutations are largely neutral.  A closer examination of the data (MaveDB [20]) behind this 

comparison raises many red flags.  Three problems are shared between the human and yeast data 

analyzed.  First, many nonsynonymous mutants each contained multiple nonsynonymous 

mutations while each synonymous mutant appears to contain only one synonymous mutation 

[21-27], making their comparison unfair.  Second, mutant genes were not in their native 

chromosomal locations but were placed on plasmids [21-25,27]; plasmid copy number variations 

affect mutant protein abundance and interfere with the quantification of the mutational effect.  

Third, the measurement error was large in at least some datasets, reducing the likelihood of 

detecting mutational effects.  For example, the average standard error of the mutant score in the 

human TPK1 dataset (urn:mavedb:00000001-d-1) was 0.09 (in the scale from 0 to 1).  If the 

score is equivalent to fitness, a mutant must have a fitness lower than 0.82 for the mutation to be 

called significantly deleterious.  By this standard, no synonymous mutations (but several 

nonsynonymous mutations) in our data would be significantly deleterious.  

 The human data analyzed by Dhindsa et al. [3] additionally suffered from the following 

problems.  First, in four (UBE2I, SUMO1, CALM1, and TPK1) of the seven genes studied, 

mutants were examined in yeast by a complementation assay [21]; to what extent the mutational 

effects measured in yeast are relevant to humans (or even human cells) is unknown.  

Furthermore, the scores were normalized to a scale from 0 to 1, where 0 corresponded to the 

median score of nonsense mutants while 1 had different meanings in different datasets.  In one 

dataset (00000001-a-4), 1 corresponded to the wild type.  However, in all other datasets 

(00000001-a-3, 00000001-b-2, 00000001-c-1, and 00000001-d-1), 1 corresponded to the median 
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score of synonymous mutants, artificially making synonymous mutations “neutral”.  Second, for 

the fifth and sixth human genes studied (PTEN and TMPT), the score reflected the protein 

expression level rather than fitness [26].  Finally, for the seventh human gene (CYP2C9), the 

score was again not fitness but enzyme activity measured in yeast cells [27] (in dataset 

00000095-a-1) or protein abundance measured in a human cell line [27] (in dataset 00000095-b-

1).   

 All yeast data analyzed by Dhindsa et al. [3] additionally had the problem of using non-

native promoters to drive the expression of mutant genes.  For example, in all three datasets of 

HSP90 (00000011-a-1, 00000039-a-1, and 00000040-a-1), mutant gene expression was driven 

by the GPD promoter [22,24] or ADH promoter [23].  Similarly, in the UBI4 dataset (00000037-

a-1), mutant gene expression was driven by the GPD promoter [25].  The biological relevance of 

the fitness effects measured under these non-native promoters is unknown.   

 It is therefore clear that Extended Data Fig. 1 in [3] does not provide valid information on 

the fitness effects of human or yeast synonymous and nonsynonymous mutations.  Additionally, 

under Kruglyak et al.’s hypothesis, secondary mutations would have affected these studies as 

well.  

 

DISCUSSION  

Our analysis of published and newly collected data demonstrates that Kruglyak et al.’s 

hypothesis cannot explain our estimates of fitness effects of mutations in yeast.  Kruglyak et al. 

recommended that the wild-type control be reconstructed along with all mutants in the same 

large-scale CRISPR/Cas9 editing experiment.  We had considered this option in our previous 

study, but because (1) the large-scale editing experiment cannot guarantee the generation of all 

designed genotypes (e.g., we were able to estimate the fitness of only ~90% of designed 

mutants), (2) the reconstructed wild type is required in our study, and (3) off-target editing is 

negligible and secondary mutations are rare in yeast, we chose to reconstruct the wild type 

separately to ensure its presence in the en masse competition.  This said, the risk of not 

generating the reconstructed wild type in the large-scale editing experiment can be minimized by 

increasing the concentration of the wild-type template DNA in the experiment.  Hence, we agree 

with Kruglyak et al. on their recommendation when off-target editing and secondary mutations 

are of concern.   
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We found that, when examined critically, Dhindsa et al.’s results are not inconsistent 

with our estimates of fitness effects of yeast synonymous and nonsynonymous mutations.  

Specifically, their comparisons between synonymous and nonsynonymous mutations in prior 

mutagenesis studies and in contributions to disease are unfair and human allele frequency 

distributions can be compatible with our fitness estimates when multiple complicating factors are 

considered. 

It is worth mentioning that recent years have seen an increasing number of reports of 

fitness effects of synonymous mutations from both case studies [28-32] and systematic analyses 

[19,33-35].  Notably, Lind et al. found similarly large fitness effects of synonymous and 

nonsynonymous mutations in two ribosomal protein genes of the bacterium Salmonella 

typhimurium [34].  Sane et al. found synonymous and nonsynonymous mutations observed from 

Escherichia coli mutation accumulation experiments to have comparable fitness effects [35].  

Sharon et al. reported similar fractions of synonymous and nonsynonymous differences between 

two yeast strains to have detectable fitness effects [33].  She and Jarosz mapped many yeast 

growth traits to synonymous variants and discovered their substantial causal growth effects [19].  

These findings, along with ours [1], suggest that many synonymous mutations are strongly non-

neutral.  More studies are certainly needed to examine the generality of these findings across the 

tree of life and explore its potentially very broad implications.  A number of synonymous 

mutations have already been reported to cause disease [36], and a systematic survey will only 

find more cases.   

 

METHODS 

Simulation of DFEs under Kruglyak et al.’s hypothesis 

 We simulated DFEs of synonymous and nonsynonymous mutations following Kruglyak 

et al.’s hypothesis.  Specifically, the simulation assumed that all synonymous mutations' fitness 

effects are due to errors (i.e., off-target edits and secondary mutations).  We separately inferred 

the fitness effects of errors from the two rounds of CRISPR/Cas9 editing (error_I and error_II, 

respectively).   

 Error_I is the same for all synonymous mutants of a gene, because they were all made 

from the same gene-deletion strain created by the first round of CRISPR/Cas9 editing.  For a 

gene, we chose the 95th percentile of its synonymous DFE as the value of its error_I, under the 
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assumption that 5% of synonymous mutants are made fitter while 95% are made less fit by errors 

in the second round of CRISPR/Cas9.  The simulation outcome (in terms of the dispersion of the 

DFE) is insensitive to the above percentile choice. 

 Because the second round of CRISPR/Cas9 is the same for all genes, we expect error_II 

to follow the same distribution for all mutants of all genes.  Under the assumption that each 

synonymous mutation’s fitness effect equals error_I + error_II, we estimated error_II of each 

synonymous mutation.  From all synonymous mutations of all genes, we obtained a probability 

distribution of error_II.  

 We then simulated the fitness effect of each synonymous mutation by adding its gene-

specific error_I and a random variable sampled from the probability distribution of error_II.  

This was done for every synonymous mutation in our data to create the simulated DFEs of 

synonymous mutations of the 21 genes.    

 Kruglyak et al. contended that only nonsynonymous mutations that are more deleterious 

than almost all synonymous mutations are genuinely deleterious.  Let Ai be the minimal fitness 

value of all synonymous mutants of gene i.  For a nonsynonymous mutant of gene i with fitness 

≥ Ai, we simulated its fitness the same way we simulated the fitness of a synonymous mutant of 

gene i; otherwise, the simulated fitness equals its observed fitness.  This was done for every 

nonsynonymous mutant in our data to create the simulated DFEs of nonsynonymous mutations 

of the 21 genes.    

 

Fitness distribution of EST1 wild-type controls 

 The experiments generally followed [1].  We amplified the wild-type EST1 gene from the 

genome of the haploid strain BY4742 by polymerase chain reaction (PCR) using the high-

fidelity Q5 polymerase (NEB) and inserted it into the ΔEST1 cells used in [1] by CRISPR/Cas9 

editing.  Twenty-seven colonies were randomly picked and the insert was confirmed by the PCR 

product length and Sanger sequencing for each of them.  The cells were then counter-selected on 

5-FOA plates to remove the CRISPR/Cas9 plasmids.  We measured the maximum growth rate of 

each of the 27 strains by monoculture [1], with one replicate per strain.  We also similarly 

measured the growth rate of the wild-type control used in [1] with 31 replicates.  The fitness of 

each of the 27 strains relative to the wild-type control used in [1] was calculated as in [1].  The 

average fitness of the 27 strains as well as its SE were then computed.  We compared the average 
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fitness of the 27 strains with that of the 31 replicates of the wild-type control by a t-test.  Because 

we measured the growth rate of each of the 27 strains only once, the SE is likely larger than its 

expected value in en masse competitions, making our conclusion that the SE (which equals the 

standard deviation of fitness among multiple wild-type controls) is smaller than the standard 

deviation of the fitness distribution of synonymous mutants of EST1 conservative.   
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Fig. 1. Simulated and experimentally measured fitness of synonymous (yellow) and 
nonsynonymous (blue) mutants of 21 yeast genes. a, Fitness simulated under Kruglyak et al.’s 
hypothesis. To be conservative in testing Kruglyak et al.’s hypothesis, we set the simulated 
fitness values of nonsynonymous mutants that are less fit than all synonymous mutants of the 
same gene at the values estimated in [1]. b, Estimated fitness from [1]. The lower and upper 
edges of a box represent the first and third quartiles, respectively, the horizontal line inside the 
box indicates the median, the whiskers extend to the most extreme values inside inner fences 
(median ± 1.5× interquartile range) and the dots show outliers. Panel b is redrawn using the data 
in [1]. See Methods for details of the simulation.  
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Fig. 2. Fitness distributions of 65 synonymous mutants (yellow) and 65 wild-type controls 
(white) of EST1, respectively.  The lower and upper edges of a box represent the first and third 
quartiles, respectively, the horizontal line inside the box indicates the median, the whiskers 
extend to the most extreme values inside inner fences (median ± 1.5× interquartile range) and the 
dots show outliers.  The wild-type control data are generated from N(0.995, 0.0032), as explained 
in the main text. 
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