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Abstract

Cell-cell signaling pathways comprise sets of variant receptors that are expressed in different
combinations in different cell types. This architecture allows one pathway to be used in a variety
of configurations, which could provide distinct functional capabilities, such as responding to
different ligand variants. While individual pathways have been well-studied, we have lacked a
comprehensive understanding of what receptor combinations are expressed and how they are
distributed across cell types. Here, combining data from multiple single-cell gene expression
atlases, we analyzed the expression profiles of core signaling pathways, including TGF-j3,
Notch, Wnt, and Eph-ephrin, as well as non-signaling pathways. In many pathways, a limited set
of receptor expression profiles are used recurrently in many distinct cell types. While some
recurrent profiles are restricted to groups of closely related cells, others, which we term pathway
expression motifs, reappear in distantly related cell types spanning diverse tissues and organs.
Motif usage was generally uncorrelated between pathways, remained stable in a given cell type
during aging, but could change in sudden punctuated transitions during development. These
results suggest a mosaic view of pathway usage, in which the same core pathways can be
active in many or most cell types, but operate in one of a handful of distinct modes.
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Introduction

In metazoans, a handful of core cell-cell communication pathways such as TGF-3, Notch, Eph-
ephrin, and Wnt play critical roles in diverse developmental and physiological processes
(Antebi, Nandagopal, et al., 2017; Gerhart, 1999; Li & Elowitz, 2019; Lim et al., 2015). Each of
these pathways includes multiple, partly redundant, receptor variants that are expressed in
distinct combinations in different cell types and interact in a many-to-many, or promiscuous,
manner with corresponding sets of ligand variants (Figure 1A) (Derynck & Budi, 2019;
Massagué, 2012; Okigawa et al., 2014; Rohani et al., 2014; Verkaar & Zaman, 2010; Wang et
al., 2016). Within a given cell, the function of the pathway—which ligands it responds to, or
which intracellular targets it activates—in general depends on which combination of components
a cell expresses. For example, the TGF-3 pathway, which plays pivotal roles in diverse
developmental and physiological processes (David & Massagué, 2018), comprises 7 type | and
5 type Il receptor subunits that combine to form heterotetrameric receptors composed of two
type | and two type Il subunits (Wrana et al., 1992). Cell types with distinct receptor expression
profiles preferentially respond to distinct combinations of BMP ligands (Antebi, Linton, et al.,
2017; Vilar et al., 2006), suggesting that different receptor combinations could provide distinct
ligand specificities. Similarly, in mice, the Wnt pathway comprises a set of 10 Frizzled receptor
variants that interact with 2 different LRP co-receptors, all of which are expressed in different
combinations, and collectively control the cell's response to combinations of Wnt ligand variants
(Eubelen et al., 2018; Goentoro & Kirschner, 2009; Voloshanenko et al., 2017). The theme
continues in the juxtacrine Notch and Eph-ephrin pathways where different membrane-bound
ligand and receptor variants are expressed in diverse combinations and interact promiscuously
to control which cells can signal to which others (Groot et al., 2014; Kania & Klein, 2016; Klein,
2012; Lafkas et al., 2015; LeBon et al., 2014; Sprinzak et al., 2010). Despite the prevalence of
these promiscuous combinatorial architectures, it has generally remained unclear what pathway
expression profiles exist and how they are distributed across cell types and tissues.

In principle, pathway expression profiles could be distributed across cell types in three
qualitatively different ways. At one extreme, each cell type could express its own, completely
unique, profile of pathway components (Figure 1B, left). In this case, one would observe as
many distinct pathway profiles as cell types. Alternatively, sets of closely related
(transcriptionally similar) cell types could share the same pathway expression profile (Figure 1B,
center). This would result in fewer pathway profiles than cell types, and a correlation between
the similarity of pathway profiles and the similarity of the overall transcriptomes of the cells in
which they appear. Finally, a third possibility would be to observe a limited number of recurrent
pathway profiles (as in the second case), but with individual profiles dispersed across multiple,
distantly related cell types, rather than confined to sets of closely related cell types (Figure 1B,
right). In this regime, otherwise similar cell types could exhibit divergent profiles for the pathway
of interest, while, conversely, more distantly related cell types would converge on similar
pathway profiles. In this last regime, a limited repertoire of profiles, which we term “pathway
expression motifs,” are re-used in diverse cell contexts. Assuming that differences in pathway
profile confer corresponding differences in ligand responsiveness or other properties, each of
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72  these regimes implies something different about the number and distribution of functionally
73  distinct signaling modes for a pathway of interest.

74  Previously, systematically distinguishing among these potential classes of behavior would be

75  difficult. Recently, however, single-cell RNA sequencing (scRNA-seq) cell atlases have begun to
76  provide comprehensive gene expression profiles across most or all cell types in embryos and

77  adult organisms. For example, the Tabula Muris project provided expression profiles for

78  ~100,000 cells across 20 organs in adult mice (Tabula Muris Consortium et al., 2018). This data
79  set was later augmented with studies of mice at two additional ages (Tabula Muris Consortium,
80  2020). In parallel, scRNA-seq studies of embryonic development have similarly provided

81  transcriptional profiles for the cell states in the early embryo (Grosswendt et al., 2020) and

82  specific organs later in organogenesis (He et al., 2020). Collectively, these data provide an

83  opportunity to determine the combinatorial structure of pathway expression.

84  Here, we introduce a statistical framework to identify pathway expression profiles and

85 characterize their distribution across cell types in an aggregated data set spanning multiple
86 atlases. This approach allowed us to identify the pathway expression motifs described above
87  (Figure 1B, right) as well as “private” profiles that are limited to sets of closely related cell types
88  (Figure 1B, middle) in core communication pathways including TGF-, Notch, Eph-ephrin, and
89  Wnt. These results suggest that each pathway can operate in a handful of distinct “modes.”
90 Further, the mode used by one pathway appears to be independent of those used by other

91 signaling pathways. Dynamically, pathway modes can remain remarkably stable during aging,
92  or change suddenly as cells progressively differentiate during development. Together, these
93 results provide a combinatorial view of signaling pathway states and suggest that many of the
94  most central pathways can exist in a handful of different modes, which, in the future, may be
95 studied independently of the cell types in which they appear.

96 Results

97 Integration of cell atlas data sets

98 To analyze pathway expression profiles across a broad diversity of cell types, we first compiled

99 data from multiple adult and developmental cell atlas data sets (Figure 2A, Table 1). These
100  included the Tabula Muris cell atlas (Tabula Muris Consortium et al., 2018), which comprises
101 40,000 cells distributed across 18 organs from a 3 month old mouse, as well as Tabula Senis
102 (Tabula Muris Consortium, 2020), which augmented these data with ~100,000 additional cells
103  from mice aged 1, 18, 24, and 32 months. We also included two early developmental whole
104  embryo atlases from E6.5 to E8.5 (Grosswendt et al., 2020; Pijuan-Sala et al., 2019a), and a
105 forelimb organogenesis atlas from E10.5 to E15 (He et al., 2020). Each of these data sets also
106  contained a cell type annotation for each cell based on expression of known markers.
107  Altogether, the aggregated data set included expression profiles and cell type annotations for
108 ~700,000 individual cells.
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109 To allow a unified analysis of these data, we clustered the global transcriptional profiles from
110  each dataset independently. This procedure resulted in 1206 clusters, spanning 917 unique cell
111 type annotations (e.g. “Organ: Lung, cell type:endothelial, age: 3m”), providing a unified data set
112 for further analysis (Figure 2B, Methods). For simplicity, in this work, we will refer to each global
113  gene expression cluster as a “cell state” and not distinguish between formal “cell types” and

114  other levels of variation. This clustering procedure and the cell states recovered from each

115  dataset matched previous published analyses (Fig. 2—figure supplement 1A).

116  To focus on expression differences between cell states, reduce the complexity of the data set,
117  and minimize the impact of measurement noise, we computed the average transcriptome profile
118  of each one of the 1206 clusters (Methods), similar to other recent integration approaches (Qiu
119  etal., 2021). Similar cell states in different data sets shared similar expression profiles, including
120 for the specific pathways discussed below (Figure 2—figure supplement 1B). A UMAP projection
121  displays the variety of cell classes comprising the integrated atlas (Figure 2B, right). We note
122 that cluster averaging potentially eliminates biologically meaningful gene expression variability
123  within a cluster. However, pairs of genes that were highly expressed within a cluster average
124  also showed significant co-expression in single cells (p < 0.001; Figure 2—figure supplement
125 1C). The integrated, cluster-averaged dataset provides a basis for analyzing systematic

126  changes in pathway gene expression between cell states in embryonic and adult contexts.

127  TGF-[ receptors exhibit recurrent expression profiles

128  Using the integrated data set, we first focused on the TGF-f3 pathway. A functional TGF-3

129  pathway requires expression of at least one type | and one type Il receptor subunit. Across the
130 1206 cell states, approximately half met this criteria, expressing at least one receptor of each
131 type above a minimum threshold (Figure 2C, Methods). The most prevalent receptors, Bmpria
132  and Acvr2a, were expressed in ~10 times more cell types than the least prevalent, Acvric and
133  Bmpr1b (Figure 3—figure Supplement 1A). Nearly every receptor subunit was co-expressed with
134  each other receptor subunit in at least some cell types (Figure 3—figure supplement 1C). Even
135  Acvrl1 and Bmpr1a, which were mainly expressed in endothelial and epithelial cells,

136  respectively, were also co-expressed in mesenchymal cells (Figure 3—source data 1).

137  Exceptions included Bmpr1b and Acvric, which were less prevalent overall and were co-

138  expressed with a more limited set of other subunits (Figure 3—figure supplement 1C). Overall,
139  these results provided TGF-B transcriptional expression profiles across cell types and revealed
140 that they were strongly combinatorial.

141 To test whether certain receptor profiles recurred across cell types as in Figure 1B, middle and
142  right panels, we clustered cell types based only on their TGF- pathway expression profiles

143  (Figure 3A). To detect recurrent profiles, we computed the silhouette score, which compares the
144  separation of points between clusters to the separation of points within a cluster, and penalizes
145  for both over- and under-clustering (Figure 3—figure supplement 2A) (Rousseeuw, 1987). The
146  silhouette score provides a metric to quantify the approximate number of distinct clusters in a
147  dataset. We compared the silhouette from actual profiles to those determined from randomized
148  data sets in which the expression level of each receptor was independently scrambled among
149  cell types (Figure 3—figure supplement 2B, black and gray lines). Subtracting the randomized
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150 silhouette score from that of the actual profile, and dividing by the standard deviation of

151 randomized data, we obtained a z-score that quantifies how much the silhouette score from the
152  actual profiles deviates that observed in the randomized control data, for a given number of

153  clusters k. Finally, we selected the optimal number of clusters, k., that maximized this z-score
154  (Figure 3—figure supplement 2B, blue). Altogether, this analysis revealed that 622 cell states
155  expressing TGF- receptors, collectively exhibit only about 30 distinct, recurrent pathway

156  expression profiles (Figure 3A). Critically, every receptor subunit was expressed in at least one
157  of these profiles, consistent with a combinatorial view of receptor utilization.

158 TGF-3 pathway expression motifs appeared in diverse cell types

159  Having identified recurrent pathway expression profiles, we next asked how they were

160  distributed across cell types, as in Figure 1B. To answer this question, we first visualized TGF-3
161 pathway expression profiles on the dendrogram of global cell types (Figure 3B—supplementary
162 file 1). We color-coded each profile in Figure 3A and then annotated each cell state on the

163  global dendrogram with the color corresponding to its TGF- profile (Figure 3B). Strikingly,

164  many profiles were broadly distributed over diverse cell types (Figure 3B, colored arrows). For
165 example, profile 10 (mint green) appeared in adult macrophages and leukocytes as well as

166  mesenchymal adipose stem cells. On the other hand, a smaller number of pathway profiles

167  showed the opposite behavior. They were restricted exclusively to a particular clade of closely
168 related cell states (Figure 3B, colored asterisks). These results suggest that TGF-3 could exhibit
169  both pathway motifs and private profiles.

170  One potential explanation for the dispersion of recurrent pathway profiles could be if general
171  classes of cell types, such as macrophages, fibroblasts, epithelial cells, or endothelial cells each
172  adopted a particular, characteristic profile, irrespective of their tissue or organ context. For

173  example, a pathway profile could appear dispersed if it occurred in a broad set of otherwise

174  diverse macrophage cell types. We therefore used a Sankey diagram to visualize the

175  relationship between each of these four cell type classes, based on cell type annotations in the
176  atlas, and the full set of TGF-( profiles (Figure 3C). Some classes, such as epithelial cells, used
177  more diverse TGF-B profiles than others, such as endothelial cells. Nevertheless, each of the
178  four cell type classes mapped onto multiple TGF- profiles. Conversely, most of the profiles

179  appeared in multiple cell type classes or cell types (Figure 3C, inset). These results rule out
180 these cell type classes as an explanation for dispersed use of recurrent pathway profiles, and
181  suggest that pathway profile usage is based on other aspects of cell states.

182  To more systematically and quantitatively characterize the distribution of each pathway profile,
183  we defined the “dispersion” of a given TGF-f3 profile as the mean value of the pairwise euclidean
184  transcriptome distances among all cell types that express it, computed in the space of the 100
185  most significant principal components (Figure 4A). About 60% of TGF-B profiles were

186  predominantly observed in specific sets of closely related cell types (Figure 4B, points between
187  dashed lines). By contrast, 40% of TGF- profiles were dispersed more broadly, often spanning
188 distantly related cell types (Figure 4B, points above expected range). In fact, this subset of TGF-
189 [ profiles exhibited cell type dispersion levels approaching those expected if TGF- profiles
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190  were assigned to cell types randomly (Figure 4C, blue versus black lines). Based on this

191  analysis, we defined pathway expression motifs as profiles whose mean cell type dispersion
192  exceeded a cutoff. For most analysis here, we set this cutoff at the 90th percentile of

193  dispersions among groups of globally similar cell types (Figure 4D, Methods). Alternative

194  dispersion metrics produced broadly similar, but not identical, motif sets, indicating some

195  sensitivity to the definition of dispersion (Figure 4—figure supplement 1C). Finally, we note that
196 this criteria is sensitive to an arbitrary threshold, the motif cutoff, here chosen at the 90th

197  percentile. Reducing the motif cutoff would allow less dispersed profiles to be classified as
198  motifs.

199  To better understand the structure of motifs, we also examined expression correlations among
200 individual BMP receptors. Among cell states expressing pathway motifs, almost half of the

201 receptor pairs (25/55) showed no significant correlation, with the remaining pairs exhibiting a
202  mix of positive and negative pairwise correlations (Figure 4—figure supplement 1A). For

203 example, Bmpr1a was positively correlated with Acvr1 and Acvr2a, while Acvrl1 and Tgfbr2
204  were strongly correlated, with Acvrl1 expressed in a subset of cell types that expressed Tgfbr2.
205  Acvrl1 and Tgfbr2, which were previously shown to mediate signaling by BMP9, could also
206  function together as a module in this context (Chen et al., 2013).

207  TGF-B pathway motifs exhibited several interesting features. First, they were enriched for

208 expression of the type | receptors Bmpr1a and Acvr1, as well as the type Il receptor Acvr2a. In
209 fact, almost all motifs co-expressed all three of these receptor subunits (Figure 4D). On the

210  other hand, Bmpr1b, Acvrl1 and Acvric were the least represented receptor subunits, appearing
211 inonly 3, 3, or 4 of the motifs, respectively. The most prevalent motif, 8, was expressed in 9
212  different mouse organs and is similar to the profile of NMuMG mammary epithelial cells, which
213  were shown to compute complex responses to ligand combinations (Antebi, Linton, et al., 2017;
214  Klumpe et al., 2020) (Figure 4D, rows). Motif 8 included the type 1 subunits Bmpr1a, Acvr1, and
215  Tgfbr1, as well as the type Il subunits Acvr2a, and Tgfbr2. Motif 15, which is similar to motif 8
216  but with more Bmpr1b, was shown to exhibit reduced complexity of combinatorial ligand

217  responsiveness (Klumpe et al., 2020), suggesting that even a change in a single receptor

218  between profiles could be functionally significant.

219  Motifs were broadly distributed across the organism, with some appearing in as many as 9

220  different mouse organs (Figure 4E, rows). Conversely, multiple motifs appeared in the same
221 organ. For example, the adult kidney included cell states with 9 different TGF- receptor

222  expression motifs (Figure 4E, columns). These results underscore the breadth of the dispersion
223  of the pathway motifs.

224  In contrast to motifs, other TGF-B profiles recurred in multiple cell types but exhibited low
225  dispersion, as in Figure 1B, middle panel (Figure 4—figure supplement 1B). One of these
226  groups, consisting of profiles 1,2, and 5, was in fact dispersed among diverse developmental
227  cell types, including the primitive streak, ectoderm derivatives, and mesodermal tissues.

228 However, it received a lower dispersion score due to the relative similarity of early embryonic
229  cell types compared to adult cell types. We therefore classified these profiles as a

230 developmental motif (Figure 3B, hot pink). These three profiles expressed a combination of
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231 Bmpr1a and Acvr2b, and resembled the BMP receptor profile previously identified in mouse
232  embryonic stem cells, suggesting that the early embryonic receptor profile is stably maintained
233  during early germ layer cell fate diversification (Klumpe et al., 2020).

234 By contrast, profiles 29 and 30 were each confined to a single set of closely related cell types:
235 chondrocytes (E13.5-E15.0) and macrophages, respectively. Because they were tightly

236  associated with a particular set of cell types, these profiles are effectively the opposite of a

237  motif, and we refer to them as “private” profiles. Notably, these private profiles both expressed
238 Bmpr2, which is less prevalent compared to other receptors. Nevertheless, Bmpr2 is not a

239  marker of private profiles, as it is also expressed in dispersed motifs, such as motifs 8, 9, 10, 13,
240 and 27 (Figure 4D). Together, these results suggest that the TGF-3 pathway exhibits a set of
241 recurrent and dispersed expression motifs, as well as a relatively small number of private

242  profiles.

243  Additional signaling pathways also exhibit pathway expression motifs.

244  Other signaling pathways also exhibited recurrent expression profiles (Figure 5). Using the

245  PathBank database of biological pathways (Wishart et al., 2020), we identified 56 different

246  annotated biological pathways involved in signaling and other functions (Figure 5—source data
247  1). For each pathway, we assembled a corresponding list of genes, normalized their expression,
248  clustered the resulting profiles, computed silhouette scores, and compared them to a null

249  hypothesis in which the expression levels of each gene were independently and randomly

250 reassigned to different cell types as described previously (Figure 5—figure supplement 1A). As
251  with TGF-(3, we identified the optimal number of clusters for each pathway by determining the
252  peak value of the silhouette z-score.

253  To classify pathways as recurrent or cell type-specific, we generated, for each pathway, a

254  corresponding ensemble of ~100 pseudo-pathways of the same size but composed of randomly
255  selected genes (Figure 5A, black; Figure 5—figure supplement 1B, black). By clustering

256  expression for each pseudo-pathway, we computed a null hypothesis distribution of k,,,; for
257  each pathway of interest (Figure 5A, blue; Figure 5—figure supplement 1B, blue). We then

258 calculated the difference between the observed number of clusters in the real pathway and the
259  mean number of clusters found in the corresponding ensemble of pseudo-pathways (Figure 5B).
260  Similar to TGF-B, several pathways exhibited fewer clusters than expected given their number
261  of genes, indicating recurrent expression profiles (Figure 5B, right). These included core cell-cell
262 communication pathways such as Notch, Ephrin, as well as the Srsf splicing protein family,

263 including all 11 SR family splice regulatory proteins, and a protein degradation pathway defined
264  at Pathbank consisting predominantly of different proteasome subunits (Wishart et al. 2020).

265 We also observed the opposite behavior: in some cases, pathway expression profiles in

266  different cell states differed even more from one another than the expression levels of randomly
267 chosen sets of genes. These pathways were thus the opposite of recurrent, or equivalently,

268  highly cell type-specific, in their expression. They included CXCR4 (Figure 5A, right), Rac1, and
269 Lysophosphatidic acid (LPAG) signaling. In each of these cases, the silhouette z-score exhibited
270  no clearly defined peak and remained elevated compared to the null distribution, even as the
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271 number of clusters was increased (Figure 5B, left; Figure 5—figure supplement 1AB). Non-

272  recurrent pathways may allow cells to fine tune a pathway to highly individualized requirements
273  of each cell type. For example, in the CXCR4 or LPA6 pathways, this mechanism could allow
274  each cell state to respond with a distinct amplitude and specificity to different sets of cytokines
275  or LPA variants. These results indicate that some pathways have a non-recurrent structure
276  dominated by private profiles.

277  Under our null hypothesis, signaling pathways were compared against a distribution of pseudo-
278  pathways composed of randomly selected genes across the transcriptome (Figure 5B, p-

279  values). We noted that this null distribution could underestimate the signal of the silhouette
280  score since randomly selected genes exhibit different expression statistics compared to real
281  pathways. Comparing against other randomized controls could increase the signal-to-noise for
282  some pathways.

283 Notch, Eph, and Wnt pathways exhibit dispersed expression motifs.

284  Notch Signaling

285  We next asked whether other developmental signaling pathways similarly exhibited

286  combinatorial expression patterns with recurrent, dispersed profiles. Based on their status as
287  core signaling pathways and their recurrence scores (Figure 5B), we focused on Notch, Eph-
288  ephrin, and Wnt.

289 In contrast to TGF- and Wnt, which both use secreted ligands, the Notch pathway involves
290 juxtacrine interactions between a set of membrane anchored ligands, including DII1, DIl4, Jag1,
291 Jag2, and the cis-inhibitor DII3, and a set of four Notch receptors, Notch1-4 (Artavanis-

292  Tsakonas et al., 1999; D’Souza et al., 2008; Siebel & Lendahl, 2017). Further, a set of three
293  Fringe proteins (M-, R-, and L-Fng) modulates cis and trans ligand-receptor interaction

294  strengths, both between adjacent cells (trans) as well as within the same cell (cis) (Kakuda et
295  al, 2020; Kakuda & Haltiwanger, 2017). We therefore defined a minimal Notch pathway

296  comprising 11 ligands, receptors, and Fringe proteins (Figure 5C). This definition excludes

297  ADAM family metalloproteases, y-secretase, the CSL complex, and other components, in order
298 to focus specifically on ligands, receptors, and the Fringe proteins that directly modulate their
299 interactions, all of which exist in multiple variants. We classified pathway expression as “on” if at
300 least 2 of these genes were expressed above a minimum threshold of 20% of the maximum
301  observed expression level across all cell types. With these criteria, the Notch pathway was “on”
302  in 37% of cell states (450 out of 1200) (Figure 2C).

303  As with TGF-B, the Notch pathway exhibited combinations of co-expressed components,

304 including receptors, ligands and Fringe proteins (Figure 5C). The pathway exhibited a peak
305  Silhouette score at ~31 cell clusters (Figure 5—figure supplement 1A), 16 of which qualified as
306  motifs based on their dispersion scores (Figure 5-figure supplement 2, Figure 5C).

307 These profiles agreed with previous observations. For example, B cells (Notch motif 19) are
308  known to express the Notch2 receptor and no ligands (Saito et al. 2003; Yoon et al. 2009). The
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309 combination of Notch1, Notch2 and Jag1 was prevalent, occurring in most of the motifs, which
310  were distinguished by expression of other components (Figure 5C). Nevertheless, even among
311 motifs expressing both Notch1 and Notch2, the ratio of the two receptors varied (compare Notch
312  motifs 19 and 28, Figure 5C). Among the Fringe proteins, R-fng was expressed in all motifs,
313  while L-fng and M-fng were restricted to a limited subset (Figure 5C). Nearly all motifs, with the
314 exception of motif 26, which is expressed in cell types that comprise the blood vessels, co-
315  expressed both ligands and receptors. Notch ligands and receptors are known to exhibit

316  inhibitory (cis-inhibition) and activating (cis-activation) same-cell interactions that can generate
317  complex interaction specifiities with other cell types expressing similar or different ligand and
318  receptor combinations. The prevalence of multi-component Notch motifs could help explain
319  complex Notch behaviors with the potential to send or receive signals to or from specific cell
320 types (del Alamo et al., 2011; LeBon et al., 2014; Li & Elowitz, 2019; Nandagopal et al., 2019).

321 In addition to its expression motifs, Notch also exhibited a smaller set of ‘private’ expression
322  profiles limited to closely related cell types (Figure 5—figure supplement 3A). Private motifs were
323  used by muscle cells during forelimb development (profile 25), basal cells of the mammary

324  gland (profile 21), mesodermal lineages at E7.0-E8.0, and the adult endothelium (profile 8). The
325 private profiles exhibited greater expression of M-fng, and the Delta family ligands DII1, 3, and 4
326  compared to the motifs (Figure 5-figure supplement 3A). Taken together, these results reveal
327 that the Notch pathway uses a set of recurrent and dispersed combinatorial expression motifs,
328 as well as private expression profiles in some lineages.

329 Eph-ephrin signaling

330  The most recurrent core signaling pathway in our panel was Eph-ephrin (Figure 5B, rightmost
331 blue point), another juxtacrine signaling pathway that plays key roles in development, including
332  tissue boundary formation, axon guidance, bone development, and vasculogenesis, among
333  many other processes (Arthur & Gronthos, 2021; Cramer & Miko, 2016; Kania & Klein, 2016;
334  Klein, 2012). Eph-ephrin signaling has also been implicated in numerous cancers (Astin et al.,
335  2010; Merlos-Suarez & Batlle, 2008). The pathway implements juxtacrine communication

336  bidirectionally between adjacent cells through combinations of Eph receptors and ephrin

337 ligands, which are grouped into A and B families based on the specificity of their signaling
338 interactions. Like Notch, Eph-ephrin interactions occur both in cis and in trans, and can also
339 involve the formation of multi-component clusters (Dudanova & Klein, 2011). Furthermore,
340 since the same ephrin ligand signaling through different Eph receptors can produce different
341  and even opposite physiological responses (Seiradake et al., 2013), these features are

342  consistent with the idea that component combinations could dictate signaling specificity.

343  Here, we tabulated the expression of 11 Eph variants and 8 ephrin variants, spanning both type
344 A and B families (19 genes total). Silhouette analysis revealed a broad peak with a maximum at
345 54 clusters for the combined Eph-ephrin pathway (Figure 5—figure supplement 1A). Strikingly, all
346  of these clusters exhibited co-expression of multiple Eph and ephrin variants (Figure 5D and
347  Figure 5-figure supplements 2B, 3B). While Ephs and ephrins were generally not expressed in
348  blood cell types (Figure 5—source data 2), they were broadly expressed in many others (Figure
349  5D). The Eph receptor expression profiles were also broadly distributed across these cell states,
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350 generating a set of motifs (Figure 5D). Inspection of the motifs revealed highly combinatorial
351  expression patterns, co-expressing 3.67+1.88 and 2.89+1.23 Eph and ephrin variants,

352  respectively, and nearly always expressing components from both A and B families. As with
353  TGF-B and Notch, individual motifs often occurred in multiple organs and, conversely, individual
354  organs often contained multiple motifs (Figure 5D, right). However, tissue coverage was more
355  sparse than the other two pathways, possibly reflecting the greater number of distinct motifs
356  (Figure 5D, left). These observed motifs agree with established signaling interactions observed
357  invivo. For example, an EphB4-EfnB2 signaling complex is known to regulate vasculature

358  formation and maintenance in developing and adult mice (Salvucci & Tosato, 2012). Endothelial
359 cells (motifs 24 and 47) notably co-expressed these components, in addition to other Eph

360 receptor and ephrin ligand components.

361  The pathway also exhibited private profiles, which notably co-expressed a greater number of
362  distinct components than the motifs (Figure 5—figure supplement 3B). Private profiles appeared
363 in a variety of developmental tissues (profiles 17, 10, 7, 2, 1, and 14), as well as adult cell types
364  (Figure 5—source data 2). Together, these results indicate that Eph-ephrin components are

365  expressed in a combinatorial fashion with a mixture of motifs and private profiles, each broadly
366  distributed across embryonic and adult tissues.

367 Wnt Signaling

368  Finally, as a fourth signaling pathway, we also analyzed Wnt, which plays critical roles in a vast
369 range of developmental and physiological processes. Wnts can function as morphogens and
370 are involved in regeneration, cancer, and disease (Grigoryan et al., 2008). Extracellular

371 interactions between Wnt ligand and receptor variants exhibit promiscuity, with each ligand

372  typically interacting with many receptor variants (Voloshanenko et al., 2017). Signaling involves
373  Wnt ligands binding to Frizzled (Fzd1-10) receptors and low-density lipoprotein related co-

374  receptors 5/6 (LRP5/6) to stabilize -Catenin, allowing it to activate transcription of target genes
375  (Goentoro & Kirschner, 2009; MacDonald & He, 2012; Mikels & Nusse, 2006). Wnt signaling
376  has also been shown to have combinatorial features (Buckles et al., 2004).

377  The recurrence score for Wnt was slightly less than that of TGF-8 and nitric oxide signaling

378  (Figure 5B, red asterisks). Nonetheless, the pathway exhibited recurrent profiles. Silhouette
379  score analysis showed a peak elevation at k,,; = 30 profiles, similar to TGF-, and was

380 elevated compared to a null model of randomly scrambled pathways constructed from the same
381 genes (Figure 5—figure supplement 1A). Strikingly, these profiles all exhibited co-expression of
382  multiple Fzd variants, and all but two co-expressed both the Lrp5 and Lrp6 co-receptors (Figure
383  5-figure supplement 2C).

384 A subset of Wnt pathway expression profiles were broadly dispersed (Figure 5—figure

385  supplement 3D). All of these high dispersion profiles co-expressed multiple Frizzled variants
386  (Figure 5—figure supplement 3D). Conversely, most Frizzled variants were expressed in multiple
387  high dispersion profiles. The exceptions were Fzd9 and Fzd10, which were expressed at much
388 lower levels in most cell types, although Fzd9 was highly expressed in profile 28, along with
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389  other receptors (Figure 5-figure supplement 3C). These results show that the Wnt pathway also
390 exhibits combinatorial expression motifs.

391 Inter-pathway correlations reveal independent profile usage

392 Identifying combinatorial expression profiles in multiple pathways provokes the question of
393  whether component configurations are correlated between pathways. For example, in the limit
394  of tight coordination, cells expressing one TGF-[3 profile might always express a corresponding
395  Notch profile. In the opposite limit, profiles from one pathway might be used independently of
396 those from another pathway, suggesting a more mosaic cellular organization.

397  To quantify the correlation between expression profiles of different pathways, we computed the
398 pairwise adjusted mutual information (AMI) between the profile labels of each pair of pathways
399 across all cell types (numbers, Figures 2A, Figure 5—-figure supplement 1A-C). The AMI metric
400 quantifies the degree of statistical dependence between the two clusterings, controlling for

401 correlations expected in a null, or completely independent, model. The full dataset of 1206 cell
402  states was used for computing the pairwise AMI, assigning the profile label ‘0’ to cell states that
403 do not express a given pathway. We visualized the results with a heatmap showing the pairwise
404  AMI values across the main recurrent pathways (Figure 5E).

405 In general, most pathway-pathway correlations were weak (AMI < 0.4) (Figure 5E). To ensure
406 that the AMI was indeed capable of capturing correlations, we included a subset of the TGF-f3
407  receptors (the 7 BMP receptors) as a separate pathway (“BMP receptors”). Given their

408  overlapping components, TGF- and BMP showed elevated AMI values of ~0.6, as expected
409  (Figure 5E). A notable exception was the strong correlation between the Ubiquitin-Proteasome
410 pathway and SRSF splice regulators, which arose predominantly from developmental cell states
411  expressing Ubiquitin-Proteasome profile 1 with SRSF profiles 1 and 2 (Figure 5—source data 2).
412  Other pathway pairs, consisting of TGF-3, Wnt, or Eph-ephrin exhibited weaker relationships,
413  whereas the Notch pathway showed little correlation with almost all other pathways. These

414  results suggest that, at least for the limited set of components considered here, different

415  pathways seem to adopt profiles largely independently of one another.

416  Pathway profiles exhibit distinct dynamic behaviors during differentiation

417  The relative independence of profile selection between pathways provokes the dynamic

418  question of when and how pathways switch profiles during development. At one extreme,

419  profiles could switch in a stepwise fashion, changing one component at a time. At the opposite
420 extreme, they could change multiple components simultaneously, directly switching from one
421 profile to another. Further, either type of change could occur gradually or suddenly, and could
422  be temporally synchronized or unsynchronized between different pathways.

423  Neural crest differentiation provides a well-characterized developmental process to address
424  these questions. The neural crest is responsible for diverse cell types, including sensory
425 neurons, autonomic cell types, and mesenchymal stem cells (Kléber et al., 2005; Simdes-Costa
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426 & Bronner, 2015). Further, TGF-f3, Notch, Eph-ephrin, and Whnt, all play key roles in its
427  differentiation (Bhatt et al., 2013).

428  Soldatov et al. performed deep scRNA-seq analysis of neural crest development from

429  embryonic day 9.5 cells using SMART-seq2 (Soldatov et al., 2019). We used the Slingshot
430 package (Street et al., 2018) to construct pseudotime trajectories from these data and further
431 identified 7 distinct pseudotime stages (Figure 6A). All expression counts were scaled to match
432  the normalization used in the integrated atlas (Figure 2, Methods). This reconstruction

433  recapitulated known cell fate trajectories, with neural crest progenitors differentiating into

434  sensory neurons, autonomic neurons, and mesenchymal cells (Figure 6A). Except for a

435 transient upregulation of Bmpr1b early on, the TGF-f3 profile was remarkably stable during the
436 trajectory from progenitors to more differentiated cell types. The profile was dominated by

437 Bmpr1a, Tgfbr1, Acvr2a, and Acvr2b (Figure 6B, first panel), closely matching profile 6 (Figure
438  3A), which occurs in the developing forebrain and spinal cord, adult mesenchymal, and adult
439  podocyte cell types. This profile is potentially functional, as TGF-8 pathway inhibition in neural
440 crest stem cells leads to cardiovascular defects (Wurdak, 2005). These results indicate that a
441  developmental pathway can retain a stable profile along a differentiation trajectory.

442  In contrast to the stability of TGF- along this trajectory, Notch components exhibited a step-like
443  transition at the end of the pseudotime trajectory (Figure 6B, second panel). Progenitors

444  predominantly express the receptors Notch1 and Notch2; the ligands DIlI1 and Jag1; and high
445 levels of Rfng. This profile resembles Notch motif 16 (Figure 5C). Upon differentiation into

446  sensory neurons, they switch on expression of Notch1, DII3, and Mfng, as well as a lower level
447  of Jag2, while down regulating Notch2, thus changing to private profile 27 (Figure 5C).

448  Consistent with this analysis, profile 27 was independently derived from neural crest cells in the
449 integrated data set (Figure 5—source data 2). A similar pattern of discrete change also occurred
450 in the Wnt pathway, where expression shifted in ~2 steps from profile 11 to profile 10 (Figure
451 6B, fourth panel). Thus, the transition to the sensory neural fate involves an abrupt multi-gene
452  alteration of Notch and Wnt pathway components, neither of which was synchronized with

453 changes in TGF-p.

454 By contrast, the dynamics of the Eph-ephrin pathway were more complex and gradual, with
455  changes occurring in the expression of individual receptors at nearly every pseudotime stage.
456  Eph-ephrin expression initially resembled profile 19 (Figure 5-figure supplement 2B), then
457  switched more gradually to profile 11, before diverging slightly from it in the last pseudotime
458  point (Figure 6B, third panel). Collectively, these results show that during neural crest

459  development, different pathways can exhibit both stability and multi-step changes in their

460  expression profiles.

461  As a second case, we analyzed hematopoiesis, which occurs in temporally and spatially

462  overlapping waves in close proximity to blood vascular endothelial cells (Canu & Ruhrberg,

463  2021). Mesodermal hematoendothelial progenitors differentiate into both endothelium and

464  erythroid cells (E7.5-E8.5), allowing analysis of how pathway profiles change during a branched
465  differentiation trajectory (Figure 6C). Endothelial cells exhibit ‘private’ TGF-B profiles,

466  characterized by expression of ACVRL1. Thus, this process provides an opportunity to analyze
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467  how pathway profiles change during a branched transition and how private profiles are acquired
468  dynamically.

469  We clustered the subset of haemato-endothelial lineages from (Pijuan-Sala et al., 2019b)

470 (15,645 single-cells), applied Slingshot to reconstruct branching pseudotime trajectories (Figure
471  6C), and then analyzed changes in TGF-B receptor expression profiles over these trajectories.
472  In contrast to its stability during neural crest differentiation, the TGF-f profiles exhibited

473  complex, dynamic changes during vascular differentiation. Mesodermal cells predominantly
474  express Bmpr1a, Acvrl1, Tgfbr1, Acvr2a and Acvr2b, and Acvr2b, resembling profile 5, which is
475  prevalent in early development (Figure 3A). Along the erythroid lineage, cells exhibited a

476  gradual reduction in expression of all TGF-B receptors. Similar decreases in expression were
477  also observed for receptors and ligands in other pathways (Figure 6D, upper row), and may
478  reflect preparations for the dramatic events of erythropoiesis. By contrast, cells differentiating
479 into endothelial fates maintained Bmpr1a and Acvr2b expression and additionally up-regulated
480 Acvrl1, an endothelial-specific BMP receptor known to mediate signaling by BMP9 and BMP10,
481  and required for angiogenesis (Tual-Chalot et al., 2014). Thus, while one lineage gradually turns
482  off receptor expression, the other activates a distinct endothelial specific receptor profile.

483  Looking more broadly at the four pathways during differentiation to endothelium, we see similar
484  themes as observed in the neural crest differentiation: unsynchronized transitions to different
485  profiles in different pathways. Together, these results show how pathways discretely and

486 independently alter their expression profiles during different developmental lineages.

487 Discussion

488 In multicellular organisms, a core set of molecular signaling pathways mediate a huge variety of
489  developmental and physiological events. How can such a limited set of pathways play such a
490 broad range of different roles? At a coarse level, each pathway may be considered competent
491  for signaling in a given cell type if its receptors and other components are expressed and not
492  inhibited by other cellular components. However, examining pathway expression patterns

493  globally, as we did here, reveals a more subtle situation, in which pathways can be expressed in
494  a finite number of distinct configurations, characterized by different expression levels for its

495 components, all potentially competent to signal in response to suitable inputs. Each

496 configuration could be functional in some contexts but nevertheless differ from other

497  configurations in the specific input ligands it senses, or the downstream effectors it activates
498  within the cell (Antebi, Nandagopal, et al., 2017; Buckles et al., 2004; Klumpe et al., 2020;

499 LeBon et al., 2014; Li & Elowitz, 2019; Rohani et al., 2014; Su et al., 2020; Verkaar & Zaman,
500 2010).

501 To find out what configurations exist, we focused on cell-cell signaling pathways known to use
502  sets of partially redundant component variants. Each of these pathways was already known to
503 adopt multiple expression configurations in specific biological contexts. However, cell atlas data
504 permit a systematic analysis of expression profiles in a broad set of cell and tissue contexts
505 (Figures 2-5), revealing what pathway profiles are expressed, how they correlate with one
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506  another between pathways (Figure 5G), and how they change dynamically during aging and
507 development (Figure 6).

508 The expression profiles of pathways are strikingly combinatorial. Across each of the four major
509 pathways studied here, no two components exhibited identical expression patterns, and all were
510 differentially regulated in some cell types. Further, almost all motifs comprised multiple receptor
511 and/or ligand variants. The number of distinct expression profiles for each pathway was much
512  smaller than one would expect if individual components varied independently. For instance, the
513  Eph-ephrin pathway with 19 components exhibits ~54 profiles, which is less than two-fold

514  greater than the ~30 profiles observed for the 11 TGF-B receptors, and far less than the

515  2'9=524,288 pathway profiles one would expect if each of its 19 genes could independently vary
516  between low and high expression states. Assuming that the pathway profile plays a key role in
517  controlling pathway function, this finding suggests that analysis of a limited number of profiles
518 could potentially explain pathway behavior in a much larger number of cell types.

519  Expression profiles for different pathways appeared to vary independently across cell types
520 (Figure 5G). This observation argues against tight coupling of specific expression receptor
521 profiles in one pathway with those in another. However, it does not rule out the possibility that
522  signaling through combinations of pathways could play special roles in some cases (Muioz
523  Descalzo & Martinez Arias, 2012). Analysis of pseudotime trajectories also revealed that

524  different pathways sometimes switch among motifs in a punctuated manner, and largely

525 independently of one another. While we focused on the pathways that show strong motif

526  signatures, it is equally important to note that other pathways predominantly used cell type
527  specific, or private, profiles (Figure 5B), and even the pathways that we focused on here also
528 contained some private profiles. Nevertheless, these results suggest a “mosaic” view of cells, in
529  which each cell type adopts a particular motif or private profile for each of its general purpose
530 pathways (Figure 6E).

531  Why use motifs? Motifs could provide a rich but limited repertoire of distinct functional behaviors
532  for each pathway (Su et al., 2020). One appealing possibility is that each motif has a distinct but
533 related signaling function that is retained in some way even in different cell types or contexts.
534  For example, in a “combinatorial addressing” system, different ligand combinations could

535  selectively activate sets of cell types based on their receptor expression profiles, to achieve

536  greater cell type specificity in signaling (Klumpe et al., 2020; Su et al., 2020). A similar principle
537  could apply to juxtacrine signaling pathways such as Notch and Eph-ephrin, where the

538 combination of components expressed in a given cell type could control which other cell types it
539 can communicate with, based on their own pathway expression profiles. To test this possibility,
540 it will be important to determine what inputs each motif can respond to, and whether that

541  specificity is retained across different cell contexts.

542  Several limitations apply to the findings reported here. First, pathway definition starts with a

543  human-curated list of receptors, ligands, or other components or previously annotated pathway
544  definitions. Different pathway definitions could potentially alter these results. Second, while

545  comprehensive, the data sets used here are likely incomplete, and could miss profiles used only
546 by rare cell types or could inaccurately report expression levels for weakly expressed genes.
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547  Third, clustering is an imperfect representation of expression variation, potentially averages over
548  subtle quantitative differences in individual component levels between cells. In particular,

549  unsynchronized single cell dynamics, such as those that occur during Notch-dependent fate
550 determination (Kageyama et al., 2018), could therefore be missed. Moreover, we explored

551 signaling dynamics in only a few developmental trajectories. A broader exploration of more

552  developmental processes could potentially reveal other types of dynamic behaviors beyond

553 those shown here. Finally, subcellular localization patterns, post-translational modifications,

554  alternative splice forms, and other types of regulation could diversify the functional modes of the
555  pathway beyond what can be detected by scRNA-seq. However, as single cell technology

556  continues to improve and expand to the protein level, we anticipate that it should be possible to
557  obtain more precise views of pathway states.

558 The combinatorial nature of pathways makes it infeasible to experimentally characterize all

559  possible configurations. Fortunately, however, a handful of motifs account for a large fraction of
560 cell types, potentially enabling one to understand most of the functional repertoire of a pathway
561 from a limited number of motifs and private profiles. While we focused on signaling here, the
562  approach could be applied more generally to non-signaling pathways, such as splice regulation
563  or protein degradation (Figure 5B). In the future, we anticipate that a functional understanding of
564  pathway motifs could enable one to predict and control the activities of pathways in cell types
565 based on their expression profiles.
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578 Figure 1. Pathway expression profiles could be distributed across cell types
579 in different ways (schematic)

580 A. Cell-cell signaling pathways comprise multiple variants of key components such as

581 receptors (cartoons, R;). These variants can be expressed in different combinations in
582 different cell types. Colored dots identify receptor profiles for comparison with B.

583 B. Cell types can be arranged hierarchically based on similarities among their global

584 (genome-wide) gene expression profiles (dendrogram). A hypothetical signaling pathway
585 profile for each cell type is indicated by the gray intensity in the corresponding row of
586 squares. In principle, each cell type could have a unique signaling pathway profile

587 (unique, left); exhibit a smaller set of recurrent profiles, each used by a set of related cell
588 types (recurrent and clustered, middle); or exhibit signaling pathway profiles that recur
589 even among otherwise distantly related cell types (recurrent and dispersed, right). These
590 possibilities are not exclusive and it is possible that some pathways or subsets of cell
591 types might operate in different regimes.

592
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593 Figure 2. Integration of scRNA-seq atlas data reveals widespread
594  expression of signaling pathway components

595

596 A. We integrated 14 published developmental and adult scRNA-seq datasets spanning

597 different stages in the mouse lifespan from embryonic development to old age. These
598 data sets differ in their representation of organs and cell type classes (colors).

599 B. To generate an integrated cell state atlas, we first independently clustered each scRNA-
600 seq dataset, treating distinct time-points in the data set separately (Methods). We then
601 averaged expression over all cells in each cluster to yield a “cell state” profile for that
602 cluster, and represented each cluster by a single dot in an integrated cell state atlas data
603 set (UMAP on right). Colors are consistent with the legend in (A). Notably, this

604 integration captures cell type similarity across different datasets and sequencing

605 technologies.

606 C. Components of core signaling pathways are broadly expressed. Black or gray dots show
607 clusters whose pathway components are expressed above or below threshold,

608 respectively.

609
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610 Figure 2, Supplement 1

611 A. Analysis of scRNA-seq datasets using the standard Scanpy pipeline recapitulates

612 published analyses, including (He et al., 2020). Independent analysis of mouse forelimb
613 over days E10.5-E15.0 shows similar cell types (colors, left) and gene expression (right).
614 B. The integrated atlas captures cell type similarity across datasets. Cell clusters with

615 similar annotations in different data sets remain similar to each other in the integrated
616 atlas.

617 C. Cluster-averaged profiles reflect co-expression in single-cells. Shown is an example of a
618 single cluster from the forelimb epithelial tissue data set at day E15. Left, expression of
619 TGF-B receptor genes averaged over all cells in the cluster corresponding to forelimb
620 epithelial tissue at day E15.0. Right, pairwise conditional probability in single cells of

621 gene 2 expression conditioned on gene 1 expression. Pairs of genes with significant
622 entries (**) are co-expressed in the cluster-averaged profile. Higher-order conditional
623 probabilities were not computed due to dropout effects in scRNA-seq data.

624

625
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626 Figure 3. TGF-B receptors exhibit recurrent and dispersed pathway
627 expression profiles.

628 A. Silhouette score analysis (Figure 3-figure supplement 2A) identified approximately 30
629 TGF-B receptor expression profiles, indicated as color-labeled groups of rows. Colored
630 arrows indicate examples of dispersed profiles highlighted on the global cell fate

631 dendrogram in B. Asterisks indicate private profiles, also shown in B. Dendrogram at left
632 represents similarity among different profiles. Each gene is standardized to a range of 0-
633 1 across all cell types (grayscale).

634 B. Distribution of TGF-3 receptor expression profiles across cell types. The global cell type
635 dendrogram was computed using a cosine distance metric applied to the integrated

636 transcriptome data set in a 20-component PCA space constructed from 4,000 highly
637 variable genes (HVGs). Arrows indicate featured TGF-B profiles that are broadly

638 dispersed across cell types, while asterisks indicate examples of private profiles. Cell
639 types that do not express TGF- receptors have no color (white). Colors match those in
640 A. Note that blood cell types are relatively lacking in expression of TGF-f3 receptors.

641 C. Key cell type classes, including epithelial, macrophage, fibroblast, and endothelial cell
642 types, each span multiple TGF-f profiles. The white bar (top right) indicates the non-
643 expressing profile. Profiles are ordered to maximize the similarity of adjacent profiles.
644 Each cell class mapped to multiple distinct pathway profiles, yet differed in their profile
645 diversity. For example, epithelial cells comprise a broad spectrum of 18 distinct profiles,
646 whereas macrophages and endothelial cells are primarily restricted to smaller subsets of
647 more closely related profiles. Inset, cell type composition of each TGF-B profile, where
648 “other” includes all cell states in the atlas that do not fall into the epithelial, macrophage,
649 fibroblast or endothelial cell types.

650
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652 Figure 3, Supplement 1. Further analysis of TGF-f3 pathway expression

653 profiles.

654 A. Histogram showing the number of cell types in the integrated atlas with normalized
655 expression of TGF-3 receptors above a threshold of 0.2 in standardized expression
656 units.

657 B. Number of TGF-B receptor components simultaneously expressed for different values of
658 the minimum expression threshold (colors).

659 C. Pairwise co-expression of TGF-B receptor expression reveals broad receptor co-
660 expression patterns. Off-diagonal elements indicate the number of cell states co-
661 expressing, above threshold, the indicated pair of components. Diagonal elements
662 indicate the number of cell states expressing the corresponding individual gene.
663

664
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665 Figure 3, Supplement 2. Silhouette analysis can be used to identify optimal
666 clustering thresholds.

667 A. The silhouette score quantifies clustering quality (schematic). For a given clustering, we
668 compute the silhouette score on every data point i. We compute a(i), the mean distance
669 between i and every other point in the same cluster, and b (i), the mean distance

670 between i and the nearest neighboring cluster. The silhouette score for data point i is
671 then defined as the difference between the inter- and intra-cluster distances, normalized
672 to the maximum of the two (equations). A silhouette score value close to 1 corresponds
673 to well-defined clusters, where data point i is similar to other members of its cluster and
674 dissimilar to other clusters, while a value close to -1 suggests poor cluster assignment.
675 The silhouette score for a given clustering, is taken as the average of the individual

676 scores for all data points.

677 B. The silhouette score identifies the approximate number of unique TGF- receptor

678 expression profiles. We computed the silhouette score across expression values of the
679 pathway genes (black), as well as for 100 random gene sets (gray) where pathway gene
680 expression was independently scrambled for each gene. We then computed the z-score
681 (blue), defined as the silhouette score for pathway genes normalized to the silhouette
682 score for randomized gene sets. We defined the optimal number of receptor profiles k.
683 as the number of clusters that produced the peak z-score value (dashed line).

684
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685 Figure 4. TGF-B3 expression motifs are dispersed across cell types and
686 organs.

687 A. We defined the dispersion of a receptor expression profile to be the within-class pairwise
688 distance computed in a 100 dimensional PCA space constructed from the top 4,000

689 highly variable genes (HVGs) (left). Dispersed profiles (black) show high cell type

690 diversity, whereas non-dispersed profiles (gray) are closer together in PCA space.

691 B. The dispersion of actual TGF-3 expression profiles. Dashed lines indicate the range of
692 dispersions obtained for scrambled profiles. Note the large number of profiles with larger
693 dispersions than expected from random profiles.

694 C. Empirical cumulative distribution functions of TGF-f profile dispersion. The observed
695 dispersion distribution (turquoise) lies between the extremes of cell type-specific profiles
696 (gray) and profiles obtained by randomizing cell type distances by shuffling cell type

697 labels (black). We classified motifs in the shaded region, defined as being in at least the
698 90th percentile of the related cell type dispersion distribution (gray) as motifs.

699 D. We identified 14 TGF-B motifs, displayed in ranked order of dispersion from most (top) to
700 least (bottom) dispersed. For each motif, the number of cell states in which it appears is
701 indicated by the histogram at right.

702 E. TGF-B motifs (rows) are broadly distributed across different tissues and organs

703 (columns). Each matrix element represents the number of cell states in the indicated
704 tissue or organ expressing the corresponding motif. Note that most motifs are expressed
705 in multiple tissues or organs and most tissues or organs contain multiple motifs.

706
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708 Figure 4, Supplement 1. Pairwise correlations among TGF-3 receptors and
709 identification of private profiles.

710 A. TGF-p profiles exhibit unique pairwise receptor correlations. Each matrix represents the
711 correlation coefficient for each pair of receptors across all cell states (left), cell states
712 associated with motifs (middle), cell states associated with private profiles (right).

713 B. TGF-B profiles with less than 30 percentile cell type dispersion were classified as private
714 profiles. We identified 5 such profiles for TGF-B. Profiles 1, 2, and 5 come from

715 developmental states, while 29 and 30 represent adult cell types.

716 C. Alternative definitions of the dispersion metric recover similar sets of motifs. The mean of
717 intra-class pairwise distances was used as the dispersion metric throughout this work,
718 but we tested two additional dispersion metrics, one that uses the maximum of intra-
719 class pairwise distances, the second that uses the top 10th percentile. The Venn

720 diagram shows profiles identified as motifs from these three distinct definitions of the
721 dispersion metric. The majority of profiles (shown in the intersection of the three circles)
722 are robust to the definition of dispersion. Notably, the dispersion metric that utilizes the
723 maximum of pairwise distances only captures profiles in this intersection. The mean

724 pairwise distance, however, captures two additional profiles as motifs, profiles 21 and
725 24. Profile 24 contains only two cell states, liver B cells and bone marrow NK cells. The
726 top 10th percentile of pairwise distances captures the adult endothelium-specific profile,
727 25, as a motif. However, the maximum metric omits profiles 13 and 15, even though they
728 appear to be motifs, since they are both dispersed across the adult smooth muscle and
729 adult kidney epithelium.

730
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731 Figure 5: Expression motifs occur in multiple pathways.

732 A. In order to classify a pathway as cell type-specific or recurrent, we compared the number
733 of distinct profiles for a pathway (blue line) against a null distribution of the numbers of
734 distinct profiles identified in random gene sets (black line). We computed these null

735 distributions specific to the number of components in a pathway to avoid confounding
736 the number of distinct profiles with pathway size, i.e., we would expect more

737 combinatorial profiles for a pathway containing more genes. Left: examples of recurrent
738 pathways (TGF-3 and SRSF splice regulators), which have fewer clusters than expected
739 from the null distribution. Right: example of pathway with more clusters than expected
740 from the null distribution.

741 B. Deviations of pathways from random gene sets. We curated 56 gene sets from the

742 PathBank database and generated corresponding null distributions, analyzing each

743 pathway for cell type-specific or recurrent behavior as in A. We normalized the number
744 of identified clusters to the number of pathway components and computed the deviation
745 of this ratio from the null distribution (y-axis). Negative deviations show that a signaling
746 pathway has fewer clusters than expected for a given pathway size, indicating

747 recurrence. By contrast, positive deviations occur when there are more clusters than

748 expected, indicating strong cell type specificity. Pathways with significant deviations from
749 the null distribution (adjusted p-value < 0.05) are highlighted in blue. Red asterisks

750 indicate recurrent pathways that have strong, but not statistically significant, deviation
751 from the null distribution.

752 C. Motifs in the Notch pathway and their distribution across tissues and organs, similar to
753 Figure 4D,E.

754 D. Motifs in the Eph-ephrin pathway and their distribution across tissues and organs, similar
755 to Figure 4D,E.

756 E. Correlations in profile usage between pathways were quantified by the adjusted mutual
757 information between their respective profile labels.

758
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759 Figure 5, Supplement 1. Silhouette profiles for various pathways.

760 A. Silhouette analysis of indicated pathways, as in Figure 3-figure supplement 2B.
761 B. Gene set null distributions for various pathways, as in Figure 5A.

762

763
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764  Figure 5, Supplement 2. Pathway profiles for Notch, Eph-ephrin, and Wnt
765 receptor receptors.

766  A-C. For each pathway, all pathway profiles are indicated with corresponding labels, as in
767  Figure 2A.
768

769
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770  Figure 5, Supplement 3. Pathway component prevalence and private
771 profiles for Notch, Eph-ephrin, and Wnt pathways.

772  A-C. Left: Histogram showing the number of cell types in the integrated atlas with normalized
773  expression of Notch (A), Eph-ephrin (B), or Wnt (C) components above a threshold of 0.2 in
774  standardized expression units. Center: Pairwise co-expression analysis of indicated pathway
775  components. Off-diagonal elements indicate the number of cell states co-expressing, above
776  threshold, the indicated pair of components. Diagonal elements indicate the number of cell
777  states expressing the corresponding individual gene. Right: Private profiles for each pathway.
778  Each profile is shown alongside the number of cell states in which it appears (histogram, far
779  right).

780

781 D. Wnt pathway motifs and their distribution across tissues and organs. These plots are similar
782  to Figure 4D,E and 5C,D but for the Wnt pathway.

783

784

29


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

785 Figure 6. Developmental transitions of pathway profiles.

786 A. Pseudotime trajectory analysis of the trunk neural crest (Soldatov et al., 2019) captures
787 delamination of progenitors into three distinct cell fates in a ForceAtlas projection:

788 sensory neurons, autonomic neurons, and the mesenchyme. Here, we follow the

789 sensory neuron trajectory (black arrow).

790 B. Developmental pathways show distinct expression dynamics in neural crest

791 differentiation. For each pathway, corresponding mean expression profiles are shown in
792 grayscale for each of the cell states indicated in A. Colored dots indicate which

793 populations are being averaged. Profile numbers indicate the closest match to one of the
794 reference pathway profiles shown in Figures 3A and 5-figure supplement 2. Two

795 numbers are indicated for profiles that are approximately equally similar to the

796 corresponding reference profiles.

797 C. In early vascular differentiation (Pijuan-Sala et al., 2019b), mesodermal progenitors
798 differentiate into endothelial and erythroid cell fates (gray arrows in ForceAtlas

799 projection).

800 D. Dynamics of four core pathways for each of the two trajectories in C: erythroid

801 differentiation (upper row of heat maps) and endothelial differentiation (lower row).

802 Colored dots indicate cell populations in C. Profile numbers indicate closest matches in
803 reference profiles (Figure 3A, Figure 5-figure supplement 2).

804 E. Mosaic view of profile usage (schematic). Cell states can express each of their

805 pathways, using any of the distinct available profiles (indicated schematically by profile
806 ticks). In this way, cell states can be thought of, in part, as mosaics built from

807 combinations of available pathway profiles.

808
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809 Methods
810 Clustering single cells and defining cell states
811  We obtained raw scRNA-seq matrices directly from the GEO repositories or specific locations
812  indicated by the authors for the data sets appearing in the table below. Clustering of single cells
813  started from the count matrices of single cells vs genes. First, we applied quality control (when
814  needed, since some datasets were already filtered) by filtering out cells with high mitochondrial
815 RNA content, low number of detected transcripts or low number of detected counts. We then
816  applied a standard pipeline for clustering scRNA-seq data. Briefly, we applied principal
817  component analysis and used the first 50 principal components as input for graph-based
818  (Leiden) clustering using Scanpy (Traag et al., 2019; Wolf et al., 2018). Finally, we labeled the
819  resulting clusters using the cell type annotations provided by the authors. All datasets analyzed
820 in this study included ground truth cell type annotations that we use throughout the manuscript.
821  All raw and processed data, along with scripts, are available at . Code can be found at
822  https://github.com/nkanrar/motifs.git.
823 Table 1. Single-cell data sets used in this work
824

Dataset Time points |Reference Cells Mice Technology

sampled

Forelimb atlas (The E10.5, E11.0, [(He etal., 2020) 90,637 |Pair of 10X

changing mouse E11.5, E12.0, forelimbs

embryo transcriptome at|E13.0, E13.5, per time

whole tissue and single- |[E14.0, E15.0 point

cell resolution)

A single-cell molecular |EG6.5, E6.75, (Pijuan-Sala et al., 116,312 [411 mouse |10X

map of mouse E7.0, E7.25, |2019b) embryos

gastrulation and early E7.5, E7.75,

organogenesis E8.0, E8.25,

E8.5

The emergent ES.5 (Nowotschin et al., - - 10X

landscape of the mouse 2019)

gut endoderm at single-

cell resolution

Single-cell RNA-seq E9.5-E11.5 (Dong et al., 2018) 1916 7 embryos [Smart-seq2

analysis unveils a

prevalent

epithelial/mesenchymal

hybrid state during

mouse organogenesis

Epigenetic regulator E6.5, E7.0, (Grosswendt et al., 88,779 |50 embryos |10X

function through mouse [E7.5, E8.0, 2020)

gastrulation E8.5

Tabula muris and 1mo, 3mo, (Tabula Muris 450,000+ (- 10X, Smart-

Tabula muris senis 18mo, 21mo, |[Consortium, 2020; seq2

24mo, 30mo  |Tabula Muris
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Consortium et al., 2018) | |

825 Integration of multiple datasets

826  To integrate the above datasets into a single matrix of gene expression, we first generated a
827  pseudo-bulk expression matrix for each dataset by averaging the log-normalized gene

828  expression values of individual cells in a cluster. The resulting matrix has dimensions N x M,
829  where N is the number of cell states in the dataset and M is the number of distinct genes. To
830 account for differences in gene detection across datasets, we found the intersection of detected
831 genes across all datasets and subsampled each matrix to include only genes that appeared in
832  all data sets. The intersection of detected genes across all datasets comprised ~11,000 genes
833 that we then used for all downstream analysis. Having defined the intersection gene set, we
834  concatenated individual datasets into a global average expression matrix containing 1206

835 clusters and ~11,000 genes.

836  To normalize gene expression values from different datasets to a common scale, we applied a
837  second round of normalization to the global expression matrix. First, we transformed the log-
838  normalized matrix M using the exponential function to obtain a matrix M;;of “counts” per gene:

839  M';; = exp(M;;) + 1. We then normalized, scaled and clustered the resulting matrix following the

840  standard methods from Seurat v3 (total RNA counts per cell state = 1e4, 4,000 highly-variable
841  genes and 50 principal components), which resulted in the clustering and UMAP shown in
842  Figure 2. We verified that cell states from different datasets and sequencing technologies

843 clustered together (Figure 2B), as an indication that the integrated and normalized UMAP

844  recovers the biological diversity across development, adult and aging datasets.

845  Clustering pathway expression profiles across cell states

846  All downstream analysis on pathway genes starts from the normalized pseudo-bulk gene

847  expression matrix described above. We noticed that pathway genes showed different dynamic
848 ranges in their expression across cell states. To give each pathway gene equal weight during
849 clustering of pathway profiles, we applied a MinMax scaling for each gene, using the 95%

850 percentile observed across all 1206 cell states as the maximum value. After scaling, each gene
851 in the pathway had a dynamic range from 0 to 1, corresponding to the range of 0-95% of the
852  maximum value in the data set for that gene. For each cell state, we classified a pathway as
853 being “on” if at least two of the pathway genes showed expression above a threshold of 0.2 on
854  this scale, meaning that the gene is expressed at a level of at least 20% of its maximum

855  observed value. This threshold allowed us to filter out cell states in which all genes in the

856  pathway are zero or showed low expression compared to most other cell states, and focus

857 instead on the cell states showing combinatorial expression of multiple genes (Figure 2—figure
858 supplement 1B, C). We computed all pairwise cosine distances between cell states with an “on”
859  pathway profile, considering only the pathway genes, and applied hierarchical clustering to the
860 resulting distance matrix (Figure 3A).
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861 For each pathway, we found the approximate optimal number of clusters, Kopt, using the

862  silhouette score metric. After applying hierarchical clustering to the pathway expression matrix,
863 one can define a number of clusters, k, by setting a depth cut-off and splitting the associated
864  dendrogram (Figure 3A). We therefore computed the average silhouette score for a range of k
865  values (from 3 to 100). To account for potential clustering artifacts, we randomized the pathway
866  gene expression matrix, shuffling the expression values for each gene across cell states, and
867 repeated the clustering procedure. By independently randomizing the matrix 200 times, we
868 generated a null distribution for the expected silhouette score at different values of k (Figure 3-
869  figure supplement 2B gray). From this null distribution, we computed z-scores for the silhouette
870  scores obtained from the real pathway expression matrix and defined the optimal number of
871  clusters, kopt, as the value of k with the most significant z-score (Figure 3—figure supplement
872 2B, dotted line).

873  Defining motifs and private profiles based on cell type diversity

874  Having defined the kopt clusters, or pathway profiles, we computed the diversity of cell states
875  expressing each profile based on their transcriptome similarity. In principle, pathway profiles
876  might comprise similar cell types (high transcriptome similarity) or sets of diverse cell types (low
877  transcriptome similarity). We calculated their pairwise Euclidean distances in the PCA projection
878  constructed from the top 4000 highly variable genes (50 principal components) to measure

879 transcriptome similarity in a subset of cell states. We first verified that this metric was low for
880 closely related cell states (as defined by their cell type annotation) and largest for randomly

881  selected cell states (Figure 2—figure supplement 1B). We then defined dispersion as the

882  average pairwise PCA distance among a subset of cell states.

883  To find the lower bound of dispersion, we computed the expected dispersion for related cell

884  states by clustering their transcriptomes using the first 50 principal components, resulting in a
885  global dendrogram of cell states (Figure 3B). We then identified the clustering threshold for the
886  global dendrogram to obtain the same number of clusters k as observed for the pathway in

887  question, therefore generating k groups of cell states that are each closely related. We then

888 compared the distribution of dispersions for clusters of related cell states and the dispersions for
889 cell states within the pathway profiles (Figure 4C). The dispersion distribution observed for

890 related cell states (gray line Figure 4C) defines an approximate lower bound for the dispersion
891 (Figure 4C). Conversely, we also computed dispersion values for randomly selected groups of
892 cell states (Figure 4C, black). Random groups of cell states provide the dispersion expected if
893 pathway expression states were completely uncorrelated with the overall expression similarity of
894  the cells in which they appear. Finally, we defined a pathway profile as a motif if the cell states
895  expressing it showed dispersion values higher than the 90% percentile value expected for

896 related cell states (Figure 4C—shaded area). The 90% percentile threshold in dispersion

897 identified pathway profiles expressed in the most diverse set of cell states. However, we

898 observed additional pathway states that appeared dispersed among cell types but did not meet
899  pass the 90% threshold. Therefore, this method could underestimate the number of dispersed
900 pathway profiles and the threshold can be adjusted to allow a more flexible definition of pathway
901 motifs.
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902 In contrast to pathway motifs, “private” profiles are cell-state specific, effectively the opposite of
903 motifs. By definition, private profiles are confined to sets of similar cell states and therefore

904  show low dispersion values. To classify private profiles, we identified those profiles whose cell
905 state dispersion overlapped with the expectation for highly-related cell states. Specifically, we
906 considered profiles with dispersion < 30% percentile of the lower-bound distribution as “private.”
907 For a pathway to be cell-state specific we expected the dispersion to be similar to that observed
908 in closely related cell states. The threshold can be increased to allow for identification of other
909 pathway profiles with dispersion values comparable to related cell states.

910 Recurrence screening in multiple pathways

911  We calculated recurrence across multiple signaling and protein pathways from the PathBank
912  (Wishart et al. 2020) database. First, we generated pathway expression matrices for 56

913 pathways annotated as ‘Signaling’ or ‘Protein’ in PathBank, excluding pathways with less than 7
914  genes. Next, we generated 200 pseudo-pathway expression matrices with the exact dimensions
915  for each pathway expression matrix by randomly sampling genes from the transcriptome. We
916  then generated a null distribution for the expected number of clusters in a typical set of genes in
917  the transcriptome (Figure 5A) by following the procedure described above. Some pathways,
918  however, did not show a clear peak in the z-score (Figure 5—figure supplement 1A). Therefore,
919  when computing the optimal number of clusters for PathBank pathways (Figure 5A) we

920 automated the silhouette score procedure by smoothing the z-score curve and selecting the

921 minimum value of k for which the z-score dropped below 70% of its maximum value, as the

922  optimal number of clusters. We then computed a z-score for the observed number of clusters in
923  the real pathway from these distributions. Since pathways have different numbers of genes, we
924  generated a distinct null distribution for each pathway using the same number of genes as in the
925  pathway itself (Figure 5-figure supplement 1B). Finally, we ranked the pathways based on their
926  deviation from this matched null distribution. Some pathways showed signatures of recurrence
927  (lower number of clusters than expected), whereas others showed more clusters than expected
928 (an indication of high specificity across cell states) (Figure 5B). Additionally, we computed a p-
929  value for each pathway based on the fraction of random sets of genes with higher deviation.
930  This p-value allowed us to identify the most significant pathways (Figure 5B - blue dots).

931 However, we notice that an empirical p-value might be sensitive to the estimation of the null
932  distribution and therefore decided to focus on the rank to identify the top recurrent and cell-state
933  specific pathways.

934 Interpathway correlations

935 To detect potential statistical dependence between pathway states from different signaling

936 pathways, we computed a pairwise Adjusted Mutual Information (AMI) for each pair of

937 pathways. The AMI quantifies statistical dependencies between categorical features in a

938 dataset. In this case, each cell state has two different categorical labels, one for each pathway.
939 The AMI accounts for the expected correlations if the two labels are assigned at random. An
940  AMI value of 0 represents the expected co-occurrence of labels due to chance, while a value of
941 1 represents perfect statistical dependence between the two clusterings.
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942  Pseudotime trajectory analysis on developmental datasets

943  To study transitions in pathway signaling profiles through the course of developmental

944  processes, we performed pseudotime trajectory analysis on two developmental datasets that
945  were not included in the main integrated data set (Figure 2): the neural crest developmental
946 lineage from embryonic day 9.5 (Soldatov et al. 2019), and the haemato-endothelial lineages
947  from embryonic development days 7.5 to 8.5 subsetted from a scRNA-seq atlas of early

948 organogenesis (Pijuan-Sala et al., 2019). We clustered single-cell data as described above
949  (Clustering single cells and defining cell states) and constructed a force-directed projection

950 using the ForceAtlas2 algorithm (Jacomy, 2011). We used cluster annotations and the

951  ForceAtlas2 reduced dimensional space as input to the Slingshot algorithm (Street et al., 2018)
952  to obtain a global lineage structure. We then placed cell states in the ordering given by the

953 resulting pseudotime coordinates (Figure 6 A, C). For comparison with integrated atlas counts,
954  the counts from these developmental datasets were scaled in a similar manner to the integrated
955  atlas (Figure 6 B,D). Finally, we used the k-nearest neighbors algorithm to obtain the profile
956  numbers which match a given cell state along a developmental trajectory (Figure 6 B, D,

957  numbers).

35


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

958 References

959  Antebi, Y. E,, Linton, J. M., Klumpe, H., Bintu, B., Gong, M., Su, C., McCardell, R., & Elowitz, M.
960 B. (2017). Combinatorial Signal Perception in the BMP Pathway. Cell, 170(6), 1184—

961 1196.e24.

962  Antebi, Y. E., Nandagopal, N., & Elowitz, M. B. (2017). An operational view of intercellular

963 signaling pathways. Current Opinion in Systems Biology, 1, 16-24.

964  Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and
965 signal integration in development. Science, 284(5415), 770-776.

966  Arthur, A., & Gronthos, S. (2021). Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone
967 Microenvironment. Frontiers in Cell and Developmental Biology, 9, 598612.

968  Astin, J. W., Batson, J., Kadir, S., Charlet, J., Persad, R. A, Gillatt, D., Oxley, J. D., & Nobes, C.
969 D. (2010). Competition amongst Eph receptors regulates contact inhibition of locomotion
970 and invasiveness in prostate cancer cells. Nature Cell Biology, 12(12), 1194—1204.

971 Bhatt, S., Diaz, R., & Trainor, P. A. (2013). Signals and switches in Mammalian neural crest cell
972 differentiation. Cold Spring Harbor Perspectives in Biology, 5(2).

973 https://doi.org/10.1101/cshperspect.a008326

974  Buckles, G. R., Thorpe, C. J., Ramel, M.-C., & Lekven, A. C. (2004). Combinatorial Wnt control
975 of zebrafish midbrain-hindbrain boundary formation. Mechanisms of Development, 121(5),
976 437-447.

977  Canu, G., & Ruhrberg, C. (2021). First blood: the endothelial origins of hematopoietic

978 progenitors. Angiogenesis. https://doi.org/10.1007/s10456-021-09783-9

979  Chen, H., Brady Ridgway, J., Sai, T., Lai, J., Warming, S., Chen, H., Roose-Girma, M., Zhang,

980 G., Shou, W., & Yan, M. (2013). Context-dependent signaling defines roles of BMP9 and
981 BMP10 in embryonic and postnatal development. Proceedings of the National Academy of
982 Sciences of the United States of America, 110(29), 11887-11892.

36


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

983 Cramer, K. S., & Miko, I. J. (2016). Eph-ephrin signaling in nervous system development.

984 F1000Research, 5. https://doi.org/10.12688/f1000research.7417.1

985 David, C. J., & Massagué, J. (2018). Contextual determinants of TGFf action in development,
986 immunity and cancer. Nature Reviews. Molecular Cell Biology, 19(7), 419—435.

987  del Alamo, D., Rouault, H., & Schweisguth, F. (2011). Mechanism and significance of cis-

988 inhibition in Notch signalling. Current Biology: CB, 21(1), R40—R47.

989  Derynck, R., & Budi, E. H. (2019). Specificity, versatility, and control of TGF-B family signaling.
990 Science Signaling, 12(570). https://doi.org/10.1126/scisignal.aav5183

991 Dong, J., Hu, Y., Fan, X., Wu, X., Mao, Y., Hu, B., Guo, H., Wen, L., & Tang, F. (2018). Single-
992 cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during

993 mouse organogenesis. Genome Biology, 19(1), 31.

994  D’Souza, B., Miyamoto, A., & Weinmaster, G. (2008). The many facets of Notch ligands.

995 Oncogene, 27(38), 5148-5167.

996 Dudanova, I., & Klein, R. (2011). The axon’s balancing act: cis- and trans-interactions between
997 Ephs and ephrins [Review of The axon’s balancing act: cis- and trans-interactions between
998 Ephs and ephrins]. Neuron, 71(1), 1-3.

999  Eubelen, M., Bostaille, N., Cabochette, P., Gauquier, A., Tebabi, P., Dumitru, A. C., Koehler, M.,

1000 Gut, P., Alsteens, D., Stainier, D. Y. R., Garcia-Pino, A., & Vanhollebeke, B. (2018). A
1001 molecular mechanism for Wnt ligand-specific signaling. Science, 361(6403).
1002 https://doi.org/10.1126/science.aat1178

1003  Gerhart, J. (1999). 1998 Warkany lecture: signaling pathways in development. Teratology,
1004 60(4), 226—-239.

1005 Goentoro, L., & Kirschner, M. W. (2009). Evidence that fold-change, and not absolute level, of
1006 beta-catenin dictates Wnt signaling. Molecular Cell, 36(5), 872—884.

1007  Grigoryan, T., Wend, P., Klaus, A., & Birchmeier, W. (2008). Deciphering the function of

1008 canonical Wnt signals in development and disease: conditional loss- and gain-of-function

37


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1009 mutations of beta-catenin in mice. Genes & Development, 22(17), 2308—-2341.

1010 Groot, A. J., Habets, R., Yahyanejad, S., Hodin, C. M., Reiss, K., Saftig, P., Theys, J., & Vooijs,
1011 M. (2014). Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and
1012 presenilins. Molecular and Cellular Biology, 34(15), 2822—-2832.

1013 Grosswendt, S., Kretzmer, H., Smith, Z. D., Kumar, A. S., Hetzel, S., Wittler, L., Klages, S.,
1014 Timmermann, B., Mukherji, S., & Meissner, A. (2020). Epigenetic regulator function through
1015 mouse gastrulation. Nature, 584(7819), 102—108.

1016 He, P., Williams, B. A., Trout, D., Marinov, G. K., Amrhein, H., Berghella, L., Goh, S.-T., Plajzer-

1017 Frick, I., Afzal, V., Pennacchio, L. A., Dickel, D. E., Visel, A., Ren, B., Hardison, R. C.,
1018 Zhang, Y., & Wold, B. J. (2020). The changing mouse embryo transcriptome at whole
1019 tissue and single-cell resolution. Nature, 583(7818), 760-767.

1020 Jacomy, M. (2011). Force atlas 2 layout.

1021 Kageyama, R., Shimojo, H., & Isomura, A. (2018). Oscillatory Control of Notch Signaling in
1022 Development. Advances in Experimental Medicine and Biology, 1066, 265-277.

1023  Kakuda, S., & Haltiwanger, R. S. (2017). Deciphering the Fringe-Mediated Notch Code:

1024 Identification of Activating and Inhibiting Sites Allowing Discrimination between Ligands.
1025 Developmental Cell, 40(2), 193-201.

1026  Kakuda, S., LoPilato, R. K., Ito, A., & Haltiwanger, R. S. (2020). Canonical Notch ligands and
1027 Fringes have distinct effects on NOTCH1 and NOTCH2. The Journal of Biological

1028 Chemistry, 295(43), 14710-14722.

1029 Kania, A., & Klein, R. (2016). Mechanisms of ephrin—Eph signalling in development, physiology
1030 and disease. Nature Reviews. Molecular Cell Biology, 17(4), 240-256.

1031 Kléber, M., Lee, H.-Y., Wurdak, H., Buchstaller, J., Riccomagno, M. M., Ittner, L. M., Suter, U.,
1032 Epstein, D. J., & Sommer, L. (2005). Neural crest stem cell maintenance by combinatorial
1033 Wnt and BMP signaling. The Journal of Cell Biology, 169(2), 309-320.

1034 Klein, R. (2012). Eph/ephrin signalling during development. Development , 139(22), 4105-4109.

38


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1035 Klumpe, H., Langley, M. A, Linton, J. M., Su, C. J., Antebi, Y. E., & Elowitz, M. B. (2020). The
1036 context-dependent, combinatorial logic of BMP signaling. In bioRxiv (p.
1037 2020.12.08.416503). https://doi.org/10.1101/2020.12.08.416503

1038 Lafkas, D., Shelton, A., Chiu, C., de Leon Boenig, G., Chen, Y., Stawicki, S. S., Siltanen, C.,

1039 Reichelt, M., Zhou, M., Wu, X., Eastham-Anderson, J., Moore, H., Roose-Girma, M., Chinn,
1040 Y., Hang, J. Q., Warming, S., Egen, J., Lee, W. P., Austin, C., ... Siebel, C. W. (2015).
1041 Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature,
1042 528(7580), 127-131.

1043 LeBon, L., Lee, T. V., Sprinzak, D., Jafar-Nejad, H., & Elowitz, M. B. (2014). Fringe proteins
1044 modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 3,
1045 e02950.

1046  Lim, W., Mayer, B., & Pawson, T. (2015). Cell Signaling: Principles and Mechanisms. Garland
1047 Science.

1048 Li, P., & Elowitz, M. B. (2019). Communication codes in developmental signaling pathways.
1049 Development , 146(12). https://doi.org/10.1242/dev.170977

1050 MacDonald, B. T., & He, X. (2012). Frizzled and LRP5/6 receptors for Wnt/B-catenin signaling.
1051 Cold Spring Harbor Perspectives in Biology, 4(12).

1052 https://doi.org/10.1101/cshperspect.a007880

1053 Massagué, J. (2012). TGFp signalling in context. Nature Reviews. Molecular Cell Biology,
1054 13(10), 616—630.

1055 Merlos-Suarez, A., & Batlle, E. (2008). Eph—ephrin signalling in adult tissues and cancer.
1056 Current Opinion in Cell Biology, 20(2), 194—200.

1057  Mikels, A. J., & Nusse, R. (2006). Wnts as ligands: processing, secretion and reception.

1058 Oncogene, 25(57), 7461-7468.

1059 Munoz Descalzo, S., & Martinez Arias, A. (2012). The structure of Wntch signaling and the

1060 resolution of transition states in development. Seminars in Cell & Developmental Biology,

39


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1061 23(4), 443-449.
1062  Nandagopal, N., Santat, L. A., & Elowitz, M. B. (2019). activation in the Notch signaling
1063 pathway. eLife, 8. https://doi.org/10.7554/eLife.37880

1064  Nowotschin, S., Setty, M., Kuo, Y.-Y., Liu, V., Garg, V., Sharma, R., Simon, C. S., Saiz, N.,

1065 Gardner, R., Boutet, S. C., Church, D. M., Hoodless, P. A., Hadjantonakis, A.-K., & Pe’er,
1066 D. (2019). The emergent landscape of the mouse gut endoderm at single-cell resolution.
1067 Nature, 569(7756), 361-367.

1068 Okigawa, S., Mizoguchi, T., Okano, M., Tanaka, H., Isoda, M., Jiang, Y.-J., Suster, M.,

1069 Higashijima, S.-I., Kawakami, K., & Itoh, M. (2014). Different combinations of Notch ligands
1070 and receptors regulate V2 interneuron progenitor proliferation and V2a/V2b cell fate
1071 determination. Developmental Biology, 391(2), 196—-206.

1072  Pijuan-Sala, B., Griffiths, J. A., Guibentif, C., Hiscock, T. W., Jawaid, W., Calero-Nieto, F. J.,

1073 Mulas, C., Ibarra-Soria, X., Tyser, R. C. V., Ho, D. L. L., Reik, W., Srinivas, S., Simons, B.
1074 D., Nichols, J., Marioni, J. C., & Géttgens, B. (2019a). A single-cell molecular map of
1075 mouse gastrulation and early organogenesis. Nature, 566(7745), 490—-495.

1076 Pijuan-Sala, B., Griffiths, J. A., Guibentif, C., Hiscock, T. W., Jawaid, W., Calero-Nieto, F. J.,

1077 Mulas, C., Ibarra-Soria, X., Tyser, R. C. V., Ho, D. L. L., Reik, W., Srinivas, S., Simons, B.
1078 D., Nichols, J., Marioni, J. C., & Goéttgens, B. (2019b). A single-cell molecular map of
1079 mouse gastrulation and early organogenesis. Nature, 566(7745), 490—-495.

1080 Qiu, C., Cao, J., Li, T., Srivatsan, S., Huang, X., Calderon, D., Noble, W. S., Disteche, C. M.,

1081 Spielmann, M., Moens, C. B., Trapnell, C., & Shendure, J. (2021). Systematic
1082 reconstruction of the cellular trajectories of mammalian embryogenesis. In bioRxiv (p.
1083 2021.06.08.447626). https://doi.org/10.1101/2021.06.08.447626

1084  Rohani, N., Parmeggiani, A., Winklbauer, R., & Fagotto, F. (2014). Variable combinations of
1085 specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLoS

1086 Biology, 12(9), €1001955.

40


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1087  Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of
1088 cluster analysis. In Journal of Computational and Applied Mathematics (Vol. 20, pp. 53—-65).
1089 https://doi.org/10.1016/0377-0427(87)90125-7

1090 Salvucci, O., & Tosato, G. (2012). Essential roles of EphB receptors and EphrinB ligands in
1091 endothelial cell function and angiogenesis. Advances in Cancer Research, 114, 21-57.

1092  Seiradake, E., Schaupp, A., del Toro Ruiz, D., Kaufmann, R., Mitakidis, N., Harlos, K., Aricescu,

1093 A. R, Klein, R., & Jones, E. Y. (2013). Structurally encoded intraclass differences in EphA
1094 clusters drive distinct cell responses. Nature Structural & Molecular Biology, 20(8), 958—
1095 964.

1096  Siebel, C., & Lendahl, U. (2017). Notch Signaling in Development, Tissue Homeostasis, and
1097 Disease. Physiological Reviews, 97(4), 1235-1294.

1098 Simdes-Costa, M., & Bronner, M. E. (2015). Establishing neural crest identity: a gene regulatory
1099 recipe. Development , 142(2), 242-257.

1100  Soldatov, R., Kaucka, M., Kastriti, M. E., Petersen, J., Chontorotzea, T., Englmaier, L.,

1101 Akkuratova, N., Yang, Y., Haring, M., Dyachuk, V., Bock, C., Farlik, M., Piacentino, M. L.,
1102 Boismoreau, F., Hilscher, M. M., Yokota, C., Qian, X., Nilsson, M., Bronner, M. E., ...
1103 Adameyko, I. (2019). Spatiotemporal structure of cell fate decisions in murine neural crest.
1104 Science, 364(6444). https://doi.org/10.1126/science.aas9536

1105  Sprinzak, D., Lakhanpal, A., Lebon, L., Santat, L. A., Fontes, M. E., Anderson, G. A., Garcia-
1106 Ojalvo, J., & Elowitz, M. B. (2010). Cis-interactions between Notch and Delta generate
1107 mutually exclusive signalling states. Nature, 465(7294), 86—90.

1108  Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., Purdom, E., & Dudoit, S.

1109 (2018). Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.
1110 BMC Genomics, 19(1), 477.

1111 Su, C. J., Murugan, A,, Linton, J. M., Yeluri, A., Bois, J., Klumpe, H., Antebi, Y. E., & Elowitz, M.

1112 B. (2020). Ligand-receptor promiscuity enables cellular addressing. In bioRxiv (p.

41


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1113 2020.12.08.412643). https://doi.org/10.1101/2020.12.08.412643
1114  Tabula Muris Consortium. (2020). A single-cell transcriptomic atlas characterizes ageing tissues
1115 in the mouse. Nature, 583(7817), 590-595.

1116  Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and

1117 processing, Library preparation and sequencing, Computational data analysis, Cell type
1118 annotation, Writing group, Supplemental text writing group, & Principal investigators.
1119 (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature,
1120 562(7727), 367-372.

1121 Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-
1122 connected communities. Scientific Reports, 9(1), 5233.

1123  Tual-Chalot, S., Mahmoud, M., Allinson, K. R., Redgrave, R. E., Zhai, Z., Oh, S. P., Fruttiger,
1124 M., & Arthur, H. M. (2014). Endothelial depletion of Acvrl1 in mice leads to arteriovenous
1125 malformations associated with reduced endoglin expression. PloS One, 9(6), €98646.
1126  Verkaar, F., & Zaman, G. J. R. (2010). A model for signaling specificity of Wnt/Frizzled

1127 combinations through co-receptor recruitment. In FEBS Letters (Vol. 584, Issue 18, pp.
1128 3850-3854). https://doi.org/10.1016/j.febslet.2010.08.030

1129  Vilar, J. M. G., Jansen, R., & Sander, C. (2006). Signal processing in the TGF-beta superfamily
1130 ligand-receptor network. PLoS Computational Biology, 2(1), €3.

1131 Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., & Boutros, M. (2017). Mapping of Wnt-

1132 Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB
1133 Journal: Official Publication of the Federation of American Societies for Experimental
1134 Biology, 31(11), 4832—4844.

1135 Wang, Y., Chang, H., Rattner, A., & Nathans, J. (2016). Frizzled Receptors in Development and
1136 Disease. Current Topics in Developmental Biology, 117, 113-139.
1137  Wishart, D. S., Li, C., Marcu, A., Badran, H., Pon, A., Budinski, Z., Patron, J., Lipton, D., Cao,

1138 X., Oler, E., Li, K., Paccoud, M., Hong, C., Guo, A. C., Chan, C., Wei, W., & Ramirez-

42


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gaona, M. (2020). PathBank: a comprehensive pathway database for model organisms.
Nucleic Acids Research, 48(D1), D470-D478.

Wolf, F. A., Angerer, P., & Theis, F. J. (2018). SCANPY: large-scale single-cell gene expression
data analysis. Genome Biology, 19(1), 15.

Wrana, J. L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X.-F., &
Massague, J. (1992). TGFp signals through a heteromeric protein kinase receptor complex.
In Cell (Vol. 71, Issue 6, pp. 1003—1014). https://doi.org/10.1016/0092-8674(92)90395-s

Wurdak, H. (2005). Inactivation of TGF signaling in neural crest stem cells leads to multiple
defects reminiscent of DiGeorge syndrome. In Genes & Development (Vol. 19, Issue 5, pp.

530-535). https://doi.org/10.1101/gad.317405

43


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

v preprint doi: https:{/doi.org/1 101/2022 04.714; this version posted Augyst 22, 2022. Th
Figure 1@%1 wagt EXPIESIISN P &ecmtu fuﬁwee lbbltﬁffitamrdrss eeif iyl
available under aCC-BY-NC-ND 4.0 International I|cense
A B
Receptor expression profiles Pathway profiles could be...
Cell type 1 Cell type 2 Unique Recurrent Recurrent
(non-recurrent) and clustered and dispersed
B T :lJ\ R,R,R,R, R,R,R,R, R,R,R,R,
o Profile 1 @ Profile 2 H N e H N e H N e
H HNe H N e [ [
Cell type 3 Cell type 4 H e H B e [ ] He
HE o H N e H B e
,\IJ— o ms = H He
o Profile 3 Profile 4 HE He m= H me
HENe H He H  He
NENe H He H He
Nl N H He H E e
H  HNe H HNe [ [
f EEEe B He H He
R R R R ..... . .. . . o
2

Relative Expression
L |
— |

Global transcriptome
similarity

pyrlght holder for this preprint
Wﬁ?j@lunty It is made


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

jORXxiv preprint doi: httpsdgi org/10. 110 /2022.08.21.504714; this version posted ugust 22,2022. Th co,pyrlg holder for this preprint
Figure 2wd|raliag§a§tca itatadeveals: wyidg% dL\ 8SIeik ingepatityveay components.
avallable under aCC-BY-NC-ND 4. nternatlon |cense
A B
Individual cell atlases Integrated cell state atlas
. Single-cell transcriptome profiles Global cluster-averaged profiles
Multiple mouse cell atlas datasets 9 P P \ged p
1 dot=1 cell All data sets in (C)
2| E55 (Nowotschin) | Tabula senis (24 month old mouse) 1 dot =1 cell cluster
[} Heart
E6.5-8.5 (Grosswendt
g-E6585((P n-Sal ; nt w smooth T8
o fjuan-Sala I I - muscle Epithelial Mesenchymal Smooth muscle
o E9.5-115 (Tang) | |] @ -1~ _acuit ';‘i adult
8l 105150 (Peng He) [ "I ) N, \ 4
- 1m (TM 10x) il g :‘%.o e 1» . °
> [ 3m TM10x) T N T g
2 - L & Endothelial
< m (TM) | B Bladder ©*  ° 1--- R TN .
theli - e .
18m <TM 100 Sl 1 \’@ggﬁ el T e !
18m (TM) [ ] P devele .- % s
2 21m (TM 10x) In1 . p /“, ) 6;
2 | 24m (TM 10x) [ | Tabula muris (3 month old mouse) PR .
FA:;S 2£11_n'\1/| (1-|—0M) l | It I . 5; ®® e Mesoderm  Blbodcells
WUALSE | B %3 W Bladapr |-
0 25 50 75 100 , urothdllal ®*
Number of unique cell types :‘* Primitive streak
‘ LA \
Cell type class - <~ a . Blood
Blood ® Epiblast Mesenchymal Py .. Progenitors
Brain/Neurons @ Epithelium Mesoderm o E;ﬁlast =
® Connective ® Ex Ectoderm ® Muscle ) ! ° Ectoderm
Ectoderm Gut ® Neural crest Cardiac muscle cells
Endoderm Heart Organ specific
Endothelial Keratinocyte Primitive streak
® Spinal cord . .
Dataset UMAP coordinates Integrated UMAP coordinates
C TGF-B Notch Eph-ephrin Whnt
52% of cell states 37% of cell states 36% of cell states 31% of cell states
kS 4 % k4
l ot r o ’ L] ’
-,\' t Yo- 'l‘\ Qe d < A\ oy Yo A\ A Yo N
4 ) B 3 > 3 7‘- 2
Sy Ny & €Ly wnd g
¥ g) P s < .} { } \
i, LY Y 2..
ng- : % . o S "."
?‘;?J’l < N f'i: r "'-‘~ ?'f::i ! » ot
’ P13 8 v e \," P 3o ! ”, : ’.-'
3 3 : . -
- y f f . .\ . } :

Min. # of genes exp: 2
Threshold for exp.: 0.2

Dataset UMAP coordinates

Min. # of genes exp: 2
Threshold for exp.: 0.2

Min. # of genes exp: 2
Threshold for exp.: 0.3

Min. # of genes exp: 2
Threshold for exp.: 0.3


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

TGF-B pathway profiles

N
o
o

o
J
I3

Percent Composition
p o
N [
(6] o

5
o
S

_L

%4

. i i int doi; https://dai. 0.1101/2022.08.21.50
Figure 3(wbﬁﬁﬁ2§?r?e“2>@&m%5@ﬁ%%mmw rn

; this version

sted August 22, 2022. The co;ﬁqight holder for this preprint
ersgahpEth

VA Y [RXPEGSBINEY DED

available under aCC-BY-NC-ND 4.0 International license.

TGF-B Pathway Receptors

Type | Type Il
© Qo
£f€.zepegans
g 2 5 5 5 £ 5 5 5 2 8
E E © & 86 ©» & © © £ ©
nm o < < < < < < 0 -
B =
= BE =
[ | BE
| | |
_— —
T - == B
=== = T =
— — —
— —_— g
— — e —
= m= e _
= == = = —B
— —— — I _——
—_ | E— L
— E — e |
I I S
— —
_— = |
B . —_ |
| || = ]
[ ] N —_— —
—_— —_— —
— — — —
= — —_— ———
| — —
=_ - ==
L ——
— E— ess== |
——— — —
- == _—_———=
—_——— = E—
| | = _——

0

Relative Expression

B
02 04 06 08 1

B

B8t in perpetuity. It is made

Global distrubtion of pathway profiles

5 —&—

Cell-type pathway profiles (across tissues)

Epithelial

Macrophage

Fibroblast

Endothelial

Profile Tissue Composition

0 10 20 3

Profile Number

0

B Epithelium

Macrophage

[l Fibroblast

Endothelial
Other

NimminEmn ]

so|yoid Aemyred g-49 |

o
=Y

Epiblast

Non-express-

Adult macrophages

Adult leukocytes

E5.5-8.5 EXE ectoderm

Cell-type specific
pathway profiles

Adult epidermis basal cells
and keratinocytes

Bladder urothelial cells &
mammary gland luminal
epithelial cells

Adult kidney proximal
and distal convoluted
tubule epithelial cell

Endocardial cells

E7.75-E8.5 Ectoderm
Adult mesenchymal stem cell of adipose
Cardiac fibroblasts

Adult smooth muscle cells

Schwann cells

E6.5 - E7.5 Ectoderm —3p»—

—>

ing cells

Y

Y

Y ¥

Y
0 AR AT 1

ARAL

Mesoderm

_Early devel.
mesenchymal

Ectoderm
Primitive streak
Epiblast

NK and T cells

B cells

Microglia
byl‘a?roghage

%Monocyte/L ukocytes

Erythroid progenitors

Blood progenitors

Extraembryonic ectoderm

Endoderm

Intestinal

Epidermis epithelium

o
Ry

ancreati? cells

Brain/Neurons,

Neural crest
[——Muscle

=

I~~Kidney epithelial

~Liver epithelial
Endothelial

Mesoderm
£ .
£] derived

~ Later devel.
mesenchymal

@Ectoderm Gut

; Adult stenchymal
?Fibroblasts

| ———Smooth muscle

sanss|) auljwiab Aueg

slleo poojg

senss| Jnpe pue |ejuswdojsaap JajeT]


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4¢W“t?é1%ag%3?éﬂ°“ !

A

Global PC2

Profile number

://doi. 0.1101/2022.08.21.504714; thi i ted Al
CbaTIOLES) SHe: QISPRRRE OIS SRH DYRSeadie

22, 2022. The copyright holder for this preprint
OIGARPISy the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Pairwise distance computation B C
(schematic)
(Actual computation occurs in Number of cell types with
100-dimensional PCA space) TGF-B profile . ]
90" percentile motifs
100 1 ooe 1001
dispersed % 3 o*®
l,,l g (2] 075. .
d. .o D 76 . oo® o v — Actual pathway profiles
23,7 , < 75 .- «5%
’ Yi c =
," )/ 8 0o’ s 0.50 - — Related cell types
. ’ d12 £ ° g g
(34 ‘ not dispersed o 501 eve® S
\ Re d 9 o® Expected T — Uncorrelated
d\ a5 g o P S 025
13y 2 00®
! d d o 259 °
o e s . 0.004
0 10 20 30 50 100
Global PC1 Pathway profile Mean cell type dispersion within
each pathway profile
E
TGF-B Motifs TGF-B Motifs
HE EH = [ ] 2
HE B N [ ] 10
- N | 24
H H N [ 9
HE B B L1 ] | [] "
[%2]
2
HE N L] 14 A B
o] ]
H = [ ] £ 13 3
2 S K
o
H o el - :
o e} 2
H = maa N & g
Ll B B | 20 ’
H E ol 15
I e B 2
EEEmE B 22
omme W 2
T 2 T T 2T &8 89 L4 4ea DX B AL S OL N 2 P @ 2 QR @
55355855528 4700 R N R o
EETI2P 222482 Noofcel S LS SGET CXKLPGNS
o o < < << RN S 3P & R K
states AN & SR @‘o
Pathway genes Q)@“ RCIAY g

Relative Expression
B

0.0 0.2 05 0.7


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5(@%?

A Null distribution of 141

reprint doi:

https://doi.org/10,1101/2Q22.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
t@ﬂtiﬁﬁ&nlfﬁeémﬁﬂmv]ﬁk mﬂffpﬁmpta?hw granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Null distribution of 99 B

random sets of 11 genes random sets of 37 genes Deviations of Pathways from Random Gene Sets
recurrent cell type specific
1.0 Taof-B r tor: Rac 1 Cell Motility (21
gf-f receptors CXCR4 » K o , Cadmium S%S]all)ng in Macrophages (14)
0.8 . 0 'o.../gnRH (37) Ubiquitin-Proteasome (27)
SRSF Splice 2 % 1 ®ee SRSF Splice Regulators (11)
.
> 06 Regulators g g) o ‘ecsscces o .Nitric oxide signaling (8)*] l
£ ®eo oo -
& 0.4 random 2 3 I Apoptotic DNA Fragmentation Coe,
a v ane sets 8 g -1 and Tissue Homeostasis (8) ooy
0.2 g g5 ) Growth Hormone (22) Wnt recept_lqgo;, Bthgg/e?)t(grzs)?; 1)'/-
. o O — - °
a LPAG (8) Notch receptors, ligands and Fringe proteins (12) *° | ,
0.0 — -3| lcxcra (17) Eph-ephrin signaling (19) ~
25 50 75 100 125 4 5 6 7 8 [ T on - 00 ]
< >
clus(ers/Ngenes clusters' ' " genes p=>. i P> 5
29 W m 29
7 m mmmme um B 7
20 m s 20
9 rem = 9
5 ] | 5 5
. 2 mm mmul @ S . 23 .
3 19 m o=l 8 g 1 8
Notch E 16 m vmemmes = B 5 16 g
. c w =
motifs ® 6 m meonmesoms ° r..i—j 6 3
5 4 vmow ome o m 2 2 4 S
@© =
T 2 mems = N < o 2 |
30 m el 4 i 30 E
28 = memmoomme [l o 28 z
12 m maems meme B © 12
26 m mmmr = 26
17 W meems 17
COYTN-—qoY 29D 4 163664 5O AL ) @82 S O R 2R D@ DL 2
ooo %%ﬁﬁﬁﬁggf No. of cell b&zé}o\q}o\QIZ,GIZ}C)S\QQQLX\\(\%C}\‘,\‘@\\Q%Q\‘O\‘Z‘,b%\{}((&%\%‘Z’l\ﬂi’&\\&é\&
“TB85% Y ARG VYV RS SRS SGE
2223 states CXORS QXS S R < ’\‘C}QO‘QO\O
SIS S @‘@ ©
Vo N S
@<& \z@) N @
4 mm w m eenems mmmew 0l 44
18 W m mmen =mem 18
53 = m om mu B 53
20 mE w o ememms omes o [ 20|
s mm m - mmm m =mms BN 35 [ |
6 - mme mmeeem == N 26
47 om m omoon me seems B 47 P
2 2 mem mom e seame g 2 2
Eph-Ephrin € 46 r'm m= moms = em= E 46 || K
motifs S3 mm L B | c 38 3
Fumm = mus oue B = 24 BN B | 5
o =
& 52 = om onmn & 52 B
25 [ e seee 25 £
51 = = mn sones BN 51 3
54w e w e woem 0l 54 W
37 rmomem mom om =l 37
50 IS = 50
49 PEEETE EEETEE meees B0 49
TONOTONTNMTO —NOHO— N 2 16 36 SO A & @ \D S8 a3 < - R (]
EREREEESERS RREREREE o orcan O S S R S e
SELLLLLL A N PV NGO Xoofboo R
L L L L L oy W W Wl giaag RS TN QW KERKEEOLZ N
L 1L Il 1L ] PORN RN &'b‘ Q DS CASR SN
X
Epha Ephb  ephrin A ephrin B Q’%@Q Q@fé N3 2 @,b@
variants  variants Loox

Mutual information between
recurrent pathways

A B CDEFG

A. Tgf-B receptors
B. BMP receptors
C. Notch receptors, ligands and Fringe proteins

D. Frizzled and Lrp5/6 receptors for Wnt/3-Catenin Signaling
E. Eph-ephrin signaling
F. Ubiquitin-Proteasome

G. SRSF Splice Regulators

Adjusted Mutual Information

oyoads adAy 180

Juaainoal

16


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

e ® 9
- o o

-0.0

¥ o
c o
Y

uoissaldx3 aAneley

E[Tee]

9dn
gd
0lLpz4
6pz4
8pz4
1pz4
9pz4
Gpz4
Pz
£pz4
Zpz4
1pz4

Wnt Receptors

a[youd
cquy3
zZqu3
Lquy3
geuy3
euy3
ceuy3
zeu3
Lew3
9qud3
yqud3
equd3
zayd3
Lqud3
Jeyd3
geyd3
yeyd3
ceyd3
zeyd3
Leyd3

Premigratory 1
® Premigratory 2
Delamination 1
® Delamination 2
Sensory Neurons
® Autonomic Neurons
Eph-ephrin

o Glia
Mesenchyme

©® Intermediate

. this version posted August 22, 2022. The copyright holder for this preprint
ranted bioRxiv a license to display the preprint in perpetuity. It is made

C-BY-NC-ND 4.0 International license.

Trunk Neural Crest (E9.5)

ayoid

Autonomic

Buyq
Bupy
Buyy
#YOI0N
£4ol0N
ZUOI0N
LYoloN
Zber
|Ber
¥Ila
<l
Lia

08.21.50471
ge
Sensory
Neurons

a

202
p

available under a
Notch

ok

/10.11
BfASs

Mesenchyme

progenitors

dimension 2

-
c
o
7]
c
3]
E

©

sl

Figure GCV\%)gXiV reprint doi'tgtépfi%d

a[yoid
FALTT
zidwg
qzinoy
BZINY
oLJA0Y
BTTN
qLInoy
LHADY
Linoy
qlidwg
elidwg
aje)s [[99

TGF-B Receptors

O OWOOOON

s =N

OOOOOO©

progenitors
sensory

® Haematoendothelial progenitors
® Haematoendothelial progenitors

® Mixed mesoderm

Endothelium
® Blood progenitors 1

@ Blood progenitors 2

® Erythroid 1
e Erythroid 2
@ Erythroid 3

Early vascular differentiation

Erythroid [

Mesoderm

{

HE progenitors

Endothe |um.
dimension 2

| uoisuawip

Eph-ephrin Wnt Receptors

Notch

TGF-B Receptors

=
=

E[Tee]

9dn
gdn
0lLpz4
6pz4
8pz4
1pz4
9pz4
Gpz4
Pz
£pz4
Zpz4
1pz4

ajyoud
€qui3
Zqu3
Lqu3
geuy3
yeu3
ceu
zeu3
Leuw
9qud3
qud3
€qud3
Zqud3
Lqud3
/eyd3
Geyd3
yeydg
ceydg
zeyd3
Leydg

ajyoud

Buj
Buyy
Buyn
PUOION
EUOION
CYOI0N
LYJJON
cber
1ber
viia
ela
Lia

ajyoud
249461
zidwg
qzinoy
ezZINY
01IAOY
Lqib L
qLInoy
LHAOY
LInoy
qpldwg
elidwg

ajels |99

® «©
S o

s
S
r

-0.2
-0.0

uoissaldx3 anefey

<<+
LOSOOANANN

N0000M MMM

1

USSR
O

24

OO

1

Mesoderm

(X J
_

Erythroid

syold —ooo

9diT
gdi
0Lpz4

6pz4
8pz4
rz4 W
9pz4
gpz4

¥Pzd
€pz4
Zpzd

1Pz4

a0l o33
£quig [ |
zau3
Lquig
Geu3

yeuy

ceu3

zeus

jeua |
9qyd3

qud3

¢qud3

zZqud3

Laud3

Jeyd3

Geyd3 [ |
yeuds W
ceydy

zeyd3

Leyd3

<M
~ AN

Buy
Buyy
Buyn
#UOION
€UoJoN
ZUOIoN
LUojoN
zber

| Ber
viia
elna
wa

a[yold B
ziqibL
zidwg
qzInoy
BZINOY
OLINOY
Jqib L

quroy HEE

LUAOY
Aoy
qidwg
epidwg
QlEIS |90 e e e
—_—

Mesoderm

Endothelium

Pathways

Eph-ephrin

Notch

TGF-p

TGF-B motifs

sadA} jj8o


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

. bioRxiy preprint doi: Jldoi.org(10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
FighfeR B sh B R mR Rt

w) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A

available under aCC-BY-NC-ND 4.0 International license.

E10.5-E15.0 Forelimb Atlas (90,637 cells)

Euclidean Distance

Published UMAP: He et al, 2020 Same data, UMAP from this work Col3at Myog Perp
\j -
o & : g
- ’ This work i
e "
. Y
v watly B
A
<@
. He et al.
\_, ' > (2020) - e
o
Cell type annotation
@ Chondrocyte o Epithelial 2 ® Megakaryocyte ® Muscle 4
® Col1al+ muscle 4 @ Fibroblast Mesenchymal 1 Neural crest
EMP Foxp1+ perichondrial Mesenchymal 2 Osteoblast
Early erythrocyte Ihh+ chondrocyte Muscle 1 Perichondrial
® Endothelial o Late erythrocyte Muscle 2 Smooth muscle
o Epithelial 1 ® Macrophage © Muscle 3 Stressed mesenchymal
o Tenocyte
Centroid distance between clusters with same cell type annotation
150 =
n
o
a8
< 100 - . . .
O
o .
-— L]
5 . . .
5 ° .
a . o o
£ 50 - ° ==
s
g . e . O
S . ° °
el C e et '
s 2 oseHp-nstHetRsEs 7
0 = L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
=====€D=UJ===5=CD%CD(D®'U=“J;%_Q====%®===®==®®2====®®=‘(7,‘==‘(7J’G)<DE
8888828588858585225888E8888828885882258888-288888,25
TS 50F5T0 C0L20D50=Z0TELY ONMCLOETOOILTE500Tcaecmg S E
= 0EL88vTSF50n !l o o S C E>oE T8=Z09= S500ESTSS5B02E=E5S55500EESSE
D>508>88250c202 EZgSSoS 305 2T £ 9=253222a0Tl8cwc 238 2SsEEE
S52L£Z2582355cCcE SSETFS T£22L g2 %gEoe2ecsoElLEFE LR L0
Sc8%e 920085 ¢ SLLEDF 59TEY 5308728 £%Es5> 5 EZgog
E ©°25TE8agES & 82 E S5Etgo 88 383 seS 8 2 °5
ST OFE 50" E S 28 ¢ T 52080 258 95 888 2o ® 8o
ST ecgEg Pt o~ E ugogg a2 5 523 3 )
S % £ 3 2 @ o R § » E E T =62 E 3
£ 58 & 8 5 3 §°¢3T 5 5 8 5 % -
EE 3 3 g 3 E5 < T 8 ¢ 3
25 5 3 g 3 5e 5 g b 2
2 < £ £ 5° ES 3 =
S ° = a 3 8 )
@ k] o ) >
Q < o s S
£ ® T z £
i [
€ g
3 €
Cell type
Forelimb Epithelial Tissue, Day E15.0
Cluster-averaged expression Single-cell conditional probability
P(gene 2 | gene 1)
Bmpr2
4
§ Acvr2b
(73
3 3
< Acvr2a o p-value
& o s
1} ©
- S Bmprib E_ 5 * 0.05
S ) o *% 0.001
T Bmpria °
£
S
2

—
T
>
<]

<

Acvr2a
Acvr2b

Acvrl1

Acvri

Acvrl1
Bmpria
Bmprib

Bmpr2

gene

r =z & 2 8§ & ¢
& & < < o
Gene 1

log norm. exp.

high

low


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

. bigRxiv preprint d i httpséé%iorgllo .1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
Flgure tgwserstqam rlreview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B

Cell clusters with expression @ Number of receptors across Co-expression of TGF-
of TGF-f Receptors 2 ‘g different expression thresholds receptor components
Q-
— & 1.0+ : S Bmpria
600 © > 600

s 5 Bmpr1b

D o & 0.8 Acvr1 500

4 20

< o3 Acvrl1

B 400 e 400

= ® © 0.6 Acvrib

3 2 g Min exp. Tgfbr1 300

‘E ..% g 0.4 - E g?s Acvric 200

[] = .

o 200 > _g 002 Acvr2a 100

g % L oo 003 Acvr2b

z c8 m04 Bmpr2 0
o

0 .l B 2 0.0 o 05 Tgfbr2
o ST T J T J J 2O N N0 NNOA A0 A
TE§ErcE8€3dg +° ¢ 2 4 o 8 IOCEENEENSS Y
$E25P3<3pPz¢g Number of receptors simultaneously ~ < <
o o

expressed above indicated threshold

gene

uoissaldxa-00 yym
S9Je)S |]90 JO Jaquunu

(Z°0 < "dxa "uiw)


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint

Figure 3wlﬁigu1@ smppl@ﬁtemte@eview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
Silhouette score quantifies
clustering quality
cluster of In-class mean distance:
00 o v ali) = ey Y i)
@ ® Gl =1 6w
(; CK. . Neighboring class mean distance:
[ ; ® b(7) = min ! Z d(i, k)
0] a(i) ) K21 |Ck| heOw '
O b(i)
d(i, j Silhouette score:
O Jat.j)
@ 5(2) — b(L) — a’(l)
max{a(i),b(:)}
Gene 1
B
Silhouette score
TGF-B Receptors
0.40
pathway
0.35 4
2
©
3
2 0.30
» randomized
0.25 -
0.20
15.0 4
1 athway — rand
o 125- | 7P y
8 Orand
® 10.0- !
N I
7.5 |
I

25 50 75 100
Number clusters


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4«%%%?%&1

available under aCC-BY-NC-ND 4.0 International license.

Pairwise correlations
All cell states Cell states within motifs Cell states within private profiles
TTcz2pegiyy foczopog8yy Toczfpog8yy
225558 55 5240 225558555220 22555855520
EECOC O b B E B EECO OO OG0 ED EE SO0 B0 B ETD
g <<<rI<<ar do<< << < <adr 1 O <<<- << <@
Bmpria @ Bmpria @ Bpria@® @ )
Bmpr1b @ 08 Bmprib @ 08 Bmprib @
Acvrt @ 0.6 Acvrl @ 0.6 Acvrl @ )
Acvrit @ @[04 Acvill @ @04 Acvrit @ )
Acvrib @ 0.2 Acvrib @ 0.2 Acvrib @
Tgfor! @ 0 Tgfbr1 @ 0 Tgfor1 @
Acvric @ -0.2 Acvric @ -0.2 Acvric @
Acvr2a @ ~0.4 Acvr2a @ —04 Acv2a @ @
Avib @ @ Acvri2b @ _ Acvib @ © @
-0.6 0.6
Bmpr2 @ 08 Bmpr2 .D 08 Bmpr2 @
Totor2 @ . Tgfor2 @ Tofor2 @
-1 -1
TGF-B ‘private’ profiles
)
o
[
2
c
@
5
o

T 0 T = &8¢ © @ 9§ 100
553355555 ¢¢
] D O [&))
n%ﬂEJ<<<‘,:’|— 2 2 2 a2 Noofcell
states

TGF-B motifs obtained with different pairwise distance metrics

Mean of pairwise distances (in paper)

8
9 10 14

16 20 22
23 27

Top 10th percentile of pairwise distances Maximum of pairwise distances

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

1JU8ID11J800 UONE[81I00

0i: https:/édé?i.org/lO.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
e review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Absolute value of
correlation coefficient

O 10
O o075
O 050
o 025

0
—


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5«%@&1«0@55@9

A

Silhouette

Z-score

Silhouette

Z-score

Silhouette

Z-score

Density

Density

0.4

0.2
0.0
40
20

0.4

0.2

0.0
30
20
10

0.4

0.2

0.0
30

10

1.0
0.8
0.6
0.4
0.2
0.0

ORXiv preprint (1oi: https://dgi.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Lot}

CXCR4 Signaling Pathway

Bk

available under aCC-BY-NC-ND 4.0 International license.

Apoptotic DNA
Fragmentation and
Tissue Homeostasis

Rac 1 Cell Motility
Signaling Pathway

Lysophosphatidic Acid
| PA6 Signalling

Cadmium Signling in
Macrophages

\/ 0.4 Lw————— 0.4 V\/\____h 0.4 L/_/—/—’__—
0.2 0.2 0.2
0.0 0.0 0.0
40

| 1 10 1 1

I 10 1 5 I 20 1

1 5 1 1 0 1

00

0 25 50 75 100 0 25 50 75 100 0 25 50 75 1
Number of clusters

Growth Hormone

Insulin Signalling GnRH Signaling Pathway Signaling Pathway

A~

0.2 0.2 0.2

0.0 0.0 0.0

20 80 40
| 10 1 60 1 30 |
1 1 40 1 20 1
] 0 \ 20 | 10 \

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

RNA-splicing by SR

Number of clusters

Ubiquitin...Protea- Notch receptors, ligands,

protein family Eph-ephrin some Pathway and Fringe proteins Wnt receptors
0.6
A Y 04 0.4 L M T T
W—u 04
0.2 0.2 0.2
0.2
0.0 0.0 0.0
100 15.0 20
I gg I 8o N 128 : 15 I
60 . 1
: T : | gl g
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

104 random sets

Number of clusters

Random Gene Set Null Distributions

97 random sets 102 random sets 88 random sets

of 8 genes of 21 genes of 14 genes of 37 genes
| | Rac 1 Cell
LPAG Motility Calmodulin
Induces DNA...
Apoptotic DNA... GnRH
25 50 75 10.0 4 5 6 4 6 8 25 3.0 35 4.0

113 random sets

clusters/Ngenes

136 random sets 107 random sets 108 random sets

of 22 genes of 12 genes of 19 genes of 27 genes
ﬁmwm Notch... Eph-ephrin Ubiquitin-Proteasome
ormone
Whnt receptors
4 5 6 6 8 10 3 4 5 6 7 3 4 5

clusters/Ngenes


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

hioRxiv preprint doi: https://di.org/10.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint

Figure SMgmsupplmmanta review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A B
Notch Pathway Eph-ephrin Pathway
Ligands Receptors Fringes Receptors Ligands
ca5585 000 EEEEEE 0082859938523
C2YIPPC080EEE coocaoaaaaaEsEsEEL s
o00S8SS8Szzzz=&E5 LU L L0 L0 L L L L i i D 0
-— L m == -
1 - —
_1 = E =EEH = B E =!
— = Ee—
E =8 5 Al B = - =
= | E. mE =5 E&= =
ol = 9 ‘E — o _
= =
- — 25 = = = . —
= - - —— 1 ]:
| —— E 16 == s= e
S — === = = =
[: E T E» E
[r— = 23 = = = — ==
| == 19 —_ — —
- 24 — — —
= EE= S = =
1 == — - - =
= = 6
———_— -_— —
= = 18
—_ - — 2 — —
L [ m———— = 7
e — 28
“ e =K = B o
B = = 2
— — - 4 . —
—_—  — 27
= = e —
— = —_ -
== B F - 12 — —
= = — 3 [ - -
— 8 - — —
T K L -
t _— =
= e —
E == = BT
B 2 - == -
I} =E— _—
[ B =
E = e = — -
—=— - —
J: === = m ==
J;_ T = EE= =
I = = = == —
£ | = = =
- == = — = ==
J; = B = —
[m— =

l
I
I
|

a

38

24

21
46
23
31
27
47
40
20
53
42
32
34
52

51
25

14

50
37
54

- W

© N o

Wnt Pathway Receptors

Receptors

Co-receptors

i

i,

1

||ﬁll“l“wlllllll

IIHIIIII

" [IFmm M¥I|ll |¥ u

I
1

|

WIH\HWHIH\IMII ”NMMRII\IIIIHINII“IIIII !

16
20

17

12
15

21
22

18
28

23
13

27
25

14
24
19

Relative Expression

0.8
0.6

L 04


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

. é«?‘iORXiV preprint doi: https:/ déi.orgllo.1101/2022.08.21.504714; this version posted August 22, 2022. The copyright holder for this preprint
Flgure 5 giuves 8ot o ﬂmewé review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cell clusters with expression

Co-expression of Wnt

variants  variants

A Cell clusters with expression Co-expression of Notch ) i
of Notch components components Notch private profiles
1000 DIl g 2 m wosmecens
DII3 800 E2m mmmm = u=
& 800 DIl4 <2 51-----_
£ Jag1 ’ggg = 27mm e omm B
3 600 jagz M 60 S8 £ s m meses—
s [ eY O NNt DD ' .
$ Notch1 522 Co08RESSSEES 4 16
o Notch2 400 ~ S g SO 5880
© 400 Vg = zZzZzZ No. of cell
o Notch3 o8 q
g Notch4 200 L\l o g states
Z 200 III Lfng S8
Mfng 0
0 --ll.ll Rfng
OOETT=oNT O DN D D> QD ‘b‘((\‘(\‘lx‘éb,ob‘\(\q‘@g\(\o‘,
S0SEEEESELp UGN
=z P4 P4
B Cell clusters with expression Co-expression of o
of Eph-ephrin Eph-ephrin components Eph-ephrin private profiles
300 Ephat 17
!d H Ebhal M . [
2 Ephas 0 - E—
3 - Ebnad s 2 D me m - o we e T
2 200 T Epha7 300 353 36 moom smem w emees B
= Epnb2 5g8 Bmeom emmew smeeow
o Ephb3 [ 5
- Eghb4 200%298 [ o om oemm o = N
e Ephb6 °52 E 2mm rme oomm = N
o Efnal Vo= 2 4
£ 100 Efna2 o%a & o e e e
E | Emad 100 Mg £ 14 mn mme—————
n LR
z FE | Einas S £ 2 mmm o oomm  ceem
I Eimbl o 45 mmm m rmmemm e [

0 11 Efnb3 42 pm = emememm - ommec
OOONOINON NN N — O NS X0 ANLDOXOAN LD XN UD A0 mE » EH PEETEE EOEe -
S0TROT2TOLOTTITOTOTT  ARDBEBOOOCOLLLLELEODE
CCCCCCCCCCcccc el RAWAXNX R R RN R
EEEEEEREELEEEEEREE RRRRRRAIAISAIIIEEE Y mm s w —-

BN EHEDEE ©Em
TANOTONTNMOTO NI NG zl A '9
COOCOUOCOTOoOO0000TEOOTCoO0
ceccccccccccccecsss No. of cell
L L L L L Ly W W L L L states
] 1l 1L 1l I

Epha Ephb  ephrin Aephrin B

of Wnt receptors receptor components 5 Wnt receptor private profiles
400 i H Fzd1 E 30 mmm e o
Fzd2 400 S 7 pmem = [
3 Fzd3 PE £ 5 rme m - .
z -89 rorurrrwwwe x=- No. of cell
3 Fzd6 2gQ - states
%5 200 | Fz7 200 © 3 g
8 Fzd8 e & o
g Fzd9 100 N g' %
z Fzd10 a
Lrp5 0
0 ll Lrpé
O - O ©MW®OINNO© S LI 0 L8 OO0 P P
FERREREREREE COrriidaayy
D Wnt receptor motifs
2> NN W NN N 25
0 - I 10
15 mem . - ] 15 Il E
L — [ ] 16 2
S 14 | —— ] 14 =
T 4 L ¥
o 3 muCEe. [ 3 2
T 28 e 28 ] g,
&7 mE = [ 17 £
12 m e I 12 z
20 W e [ 20 0
X mm e I 26
' ' OO A& - -
R No. of cell RS SRLS Y ARP® << HER G
states Q{&%OQ &2 Q;\ 'S é“’b
«&Q ‘23'@ he N


https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/

