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Abstract 11 

 12 
Cell-cell signaling pathways comprise sets of variant receptors that are expressed in different 13 
combinations in different cell types. This architecture allows one pathway to be used in a variety 14 
of configurations, which could provide distinct functional capabilities, such as responding to 15 
different ligand variants. While individual pathways have been well-studied, we have lacked a 16 
comprehensive understanding of what receptor combinations are expressed and how they are 17 
distributed across cell types. Here, combining data from multiple single-cell gene expression 18 
atlases, we analyzed the expression profiles of core signaling pathways, including TGF-β, 19 
Notch, Wnt, and Eph-ephrin, as well as non-signaling pathways. In many pathways, a limited set 20 
of receptor expression profiles are used recurrently in many distinct cell types. While some 21 
recurrent profiles are restricted to groups of closely related cells, others, which we term pathway 22 
expression motifs, reappear in distantly related cell types spanning diverse tissues and organs. 23 
Motif usage was generally uncorrelated between pathways, remained stable in a given cell type 24 
during aging, but could change in sudden punctuated transitions during development. These 25 
results suggest a mosaic view of pathway usage, in which the same core pathways can be 26 
active in many or most cell types, but operate in one of a handful of distinct modes.  27 
 28 
 29 
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Introduction 31 

In metazoans, a handful of core cell-cell communication pathways such as TGF-β, Notch, Eph-32 
ephrin, and Wnt play critical roles in diverse developmental and physiological processes 33 
(Antebi, Nandagopal, et al., 2017; Gerhart, 1999; Li & Elowitz, 2019; Lim et al., 2015). Each of 34 
these pathways includes multiple, partly redundant, receptor variants that are expressed in 35 
distinct combinations in different cell types and interact in a many-to-many, or promiscuous, 36 
manner with corresponding sets of ligand variants (Figure 1A) (Derynck & Budi, 2019; 37 
Massagué, 2012; Okigawa et al., 2014; Rohani et al., 2014; Verkaar & Zaman, 2010; Wang et 38 
al., 2016). Within a given cell, the function of the pathway—which ligands it responds to, or 39 
which intracellular targets it activates—in general depends on which combination of components 40 
a cell expresses. For example, the TGF-β pathway, which plays pivotal roles in diverse 41 
developmental and physiological processes (David & Massagué, 2018), comprises 7 type I and 42 
5 type II receptor subunits that combine to form heterotetrameric receptors composed of two 43 
type I and two type II subunits (Wrana et al., 1992). Cell types with distinct receptor expression 44 
profiles preferentially respond to distinct combinations of BMP ligands (Antebi, Linton, et al., 45 
2017; Vilar et al., 2006), suggesting that different receptor combinations could provide distinct 46 
ligand specificities. Similarly, in mice, the Wnt pathway comprises a set of 10 Frizzled receptor 47 
variants that interact with 2 different LRP co-receptors, all of which are expressed in different 48 
combinations, and collectively control the cell’s response to combinations of Wnt ligand variants 49 
(Eubelen et al., 2018; Goentoro & Kirschner, 2009; Voloshanenko et al., 2017). The theme 50 
continues in the juxtacrine Notch and Eph-ephrin pathways where different membrane-bound 51 
ligand and receptor variants are expressed in diverse combinations and interact promiscuously 52 
to control which cells can signal to which others (Groot et al., 2014; Kania & Klein, 2016; Klein, 53 
2012; Lafkas et al., 2015; LeBon et al., 2014; Sprinzak et al., 2010). Despite the prevalence of 54 
these promiscuous combinatorial architectures, it has generally remained unclear what pathway 55 
expression profiles exist and how they are distributed across cell types and tissues.  56 

In principle, pathway expression profiles could be distributed across cell types in three 57 
qualitatively different ways. At one extreme, each cell type could express its own, completely 58 
unique, profile of pathway components (Figure 1B, left). In this case, one would observe as 59 
many distinct pathway profiles as cell types. Alternatively, sets of closely related 60 
(transcriptionally similar) cell types could share the same pathway expression profile (Figure 1B, 61 
center). This would result in fewer pathway profiles than cell types, and a correlation between 62 
the similarity of pathway profiles and the similarity of the overall transcriptomes of the cells in 63 
which they appear. Finally, a third possibility would be to observe a limited number of recurrent 64 
pathway profiles (as in the second case), but with individual profiles dispersed across multiple, 65 
distantly related cell types, rather than confined to sets of closely related cell types (Figure 1B, 66 
right). In this regime, otherwise similar cell types could exhibit divergent profiles for the pathway 67 
of interest, while, conversely, more distantly related cell types would converge on similar 68 
pathway profiles. In this last regime, a limited repertoire of profiles, which we term “pathway 69 
expression motifs,” are re-used in diverse cell contexts. Assuming that differences in pathway 70 
profile confer corresponding differences in ligand responsiveness or other properties, each of 71 
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these regimes implies something different about the number and distribution of functionally 72 
distinct signaling modes for a pathway of interest. 73 

Previously, systematically distinguishing among these potential classes of behavior would be 74 
difficult. Recently, however, single-cell RNA sequencing (scRNA-seq) cell atlases have begun to 75 
provide comprehensive gene expression profiles across most or all cell types in embryos and 76 
adult organisms. For example, the Tabula Muris project provided expression profiles for 77 
~100,000 cells across 20 organs in adult mice (Tabula Muris Consortium et al., 2018). This data 78 
set was later augmented with studies of mice at two additional ages (Tabula Muris Consortium, 79 
2020). In parallel, scRNA-seq studies of embryonic development have similarly provided 80 
transcriptional profiles for the cell states in the early embryo (Grosswendt et al., 2020) and 81 
specific organs later in organogenesis (He et al., 2020). Collectively, these data provide an 82 
opportunity to determine the combinatorial structure of pathway expression. 83 

Here, we introduce a statistical framework to identify pathway expression profiles and 84 
characterize their distribution across cell types in an aggregated data set spanning multiple 85 
atlases. This approach allowed us to identify the pathway expression motifs described above 86 
(Figure 1B, right) as well as “private” profiles that are limited to sets of closely related cell types 87 
(Figure 1B, middle) in core communication pathways including TGF-β, Notch, Eph-ephrin, and 88 
Wnt. These results suggest that each pathway can operate in a handful of distinct “modes.” 89 
Further, the mode used by one pathway appears to be independent of those used by other 90 
signaling pathways. Dynamically, pathway modes can remain remarkably stable during aging, 91 
or change suddenly as cells progressively differentiate during development. Together, these 92 
results provide a combinatorial view of signaling pathway states and suggest that many of the 93 
most central pathways can exist in a handful of different modes, which, in the future, may be 94 
studied independently of the cell types in which they appear. 95 

Results 96 

Integration of cell atlas data sets 97 

To analyze pathway expression profiles across a broad diversity of cell types, we first compiled 98 
data from multiple adult and developmental cell atlas data sets (Figure 2A, Table 1). These 99 
included the Tabula Muris cell atlas (Tabula Muris Consortium et al., 2018), which comprises 100 
40,000 cells distributed across 18 organs from a 3 month old mouse, as well as Tabula Senis 101 
(Tabula Muris Consortium, 2020), which augmented these data with ~100,000 additional cells 102 
from mice aged 1, 18, 24, and 32 months. We also included two early developmental whole 103 
embryo atlases from E6.5 to E8.5 (Grosswendt et al., 2020; Pijuan-Sala et al., 2019a), and a 104 
forelimb organogenesis atlas from E10.5 to E15 (He et al., 2020). Each of these data sets also 105 
contained a cell type annotation for each cell based on expression of known markers. 106 
Altogether, the aggregated data set included expression profiles and cell type annotations for 107 
~700,000 individual cells. 108 
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To allow a unified analysis of these data, we clustered the global transcriptional profiles from 109 
each dataset independently. This procedure resulted in 1206 clusters, spanning 917 unique cell 110 
type annotations (e.g. “Organ: Lung, cell type:endothelial, age: 3m”), providing a unified data set 111 
for further analysis (Figure 2B, Methods). For simplicity, in this work, we will refer to each global 112 
gene expression cluster as a “cell state” and not distinguish between formal “cell types” and 113 
other levels of variation. This clustering procedure and the cell states recovered from each 114 
dataset matched previous published analyses (Fig. 2–figure supplement 1A). 115 

To focus on expression differences between cell states, reduce the complexity of the data set, 116 
and minimize the impact of measurement noise, we computed the average transcriptome profile 117 
of each one of the 1206 clusters (Methods), similar to other recent integration approaches (Qiu 118 
et al., 2021). Similar cell states in different data sets shared similar expression profiles, including 119 
for the specific pathways discussed below (Figure 2–figure supplement 1B). A UMAP projection 120 
displays the variety of cell classes comprising the integrated atlas (Figure 2B, right). We note 121 
that cluster averaging potentially eliminates biologically meaningful gene expression variability 122 
within a cluster. However, pairs of genes that were highly expressed within a cluster average 123 
also showed significant co-expression in single cells (p < 0.001; Figure 2–figure supplement 124 
1C). The integrated, cluster-averaged dataset provides a basis for analyzing systematic 125 
changes in pathway gene expression between cell states in embryonic and adult contexts. 126 

TGF-β receptors exhibit recurrent expression profiles 127 

Using the integrated data set, we first focused on the TGF-β pathway. A functional TGF-β 128 
pathway requires expression of at least one type I and one type II receptor subunit. Across the 129 
1206 cell states, approximately half met this criteria, expressing at least one receptor of each 130 
type above a minimum threshold (Figure 2C, Methods). The most prevalent receptors, Bmpr1a 131 
and Acvr2a, were expressed in ~10 times more cell types than the least prevalent, Acvr1c and 132 
Bmpr1b (Figure 3–figure Supplement 1A). Nearly every receptor subunit was co-expressed with 133 
each other receptor subunit in at least some cell types (Figure 3–figure supplement 1C). Even 134 
Acvrl1 and Bmpr1a, which were mainly expressed in endothelial and epithelial cells, 135 
respectively, were also co-expressed in mesenchymal cells (Figure 3–source data 1). 136 
Exceptions included Bmpr1b and Acvr1c, which were less prevalent overall and were co-137 
expressed with a more limited set of other subunits (Figure 3–figure supplement 1C). Overall, 138 
these results provided TGF-β transcriptional expression profiles across cell types and revealed 139 
that they were strongly combinatorial. 140 

To test whether certain receptor profiles recurred across cell types as in Figure 1B, middle and 141 
right panels, we clustered cell types based only on their TGF-β pathway expression profiles 142 
(Figure 3A). To detect recurrent profiles, we computed the silhouette score, which compares the 143 
separation of points between clusters to the separation of points within a cluster, and penalizes 144 
for both over- and under-clustering (Figure 3–figure supplement 2A) (Rousseeuw, 1987). The 145 
silhouette score provides a metric to quantify the approximate number of distinct clusters in a 146 
dataset. We compared the silhouette from actual profiles to those determined from randomized 147 
data sets in which the expression level of each receptor was independently scrambled among 148 
cell types (Figure 3–figure supplement 2B, black and gray lines). Subtracting the randomized 149 
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silhouette score from that of the actual profile, and dividing by the standard deviation of 150 
randomized data, we obtained a z-score that quantifies how much the silhouette score from the 151 
actual profiles deviates that observed in the randomized control data, for a given number of 152 
clusters k. Finally, we selected the optimal number of clusters, 𝑘௢௣௧, that maximized this z-score 153 
(Figure 3—figure supplement 2B, blue). Altogether, this analysis revealed that 622 cell states 154 
expressing TGF-β receptors, collectively exhibit only about 30 distinct, recurrent pathway 155 
expression profiles (Figure 3A). Critically, every receptor subunit was expressed in at least one 156 
of these profiles, consistent with a combinatorial view of receptor utilization.  157 

TGF-β pathway expression motifs appeared in diverse cell types 158 

Having identified recurrent pathway expression profiles, we next asked how they were 159 
distributed across cell types, as in Figure 1B. To answer this question, we first visualized TGF-β 160 
pathway expression profiles on the dendrogram of global cell types (Figure 3B—supplementary 161 
file 1). We color-coded each profile in Figure 3A and then annotated each cell state on the 162 
global dendrogram with the color corresponding to its TGF-β profile (Figure 3B). Strikingly, 163 
many profiles were broadly distributed over diverse cell types (Figure 3B, colored arrows). For 164 
example, profile 10 (mint green) appeared in adult macrophages and leukocytes as well as 165 
mesenchymal adipose stem cells. On the other hand, a smaller number of pathway profiles 166 
showed the opposite behavior. They were restricted exclusively to a particular clade of closely 167 
related cell states (Figure 3B, colored asterisks). These results suggest that TGF-β could exhibit 168 
both pathway motifs and private profiles.  169 

One potential explanation for the dispersion of recurrent pathway profiles could be if general 170 
classes of cell types, such as macrophages, fibroblasts, epithelial cells, or endothelial cells each 171 
adopted a particular, characteristic profile, irrespective of their tissue or organ context. For 172 
example, a pathway profile could appear dispersed if it occurred in a broad set of otherwise 173 
diverse macrophage cell types. We therefore used a Sankey diagram to visualize the 174 
relationship between each of these four cell type classes, based on cell type annotations in the 175 
atlas, and the full set of TGF-β profiles (Figure 3C). Some classes, such as epithelial cells, used 176 
more diverse TGF-β profiles than others, such as endothelial cells. Nevertheless, each of the 177 
four cell type classes mapped onto multiple TGF-β profiles. Conversely, most of the profiles 178 
appeared in multiple cell type classes or cell types (Figure 3C, inset).  These results rule out 179 
these cell type classes as an explanation for dispersed use of recurrent pathway profiles, and 180 
suggest that pathway profile usage is based on other aspects of cell states. 181 

To more systematically and quantitatively characterize the distribution of each pathway profile, 182 
we defined the “dispersion” of a given TGF-β profile as the mean value of the pairwise euclidean 183 
transcriptome distances among all cell types that express it, computed in the space of the 100 184 
most significant principal components (Figure 4A). About 60% of TGF-β profiles were 185 
predominantly observed in specific sets of closely related cell types (Figure 4B, points between 186 
dashed lines). By contrast, 40% of TGF-β profiles were dispersed more broadly, often spanning 187 
distantly related cell types (Figure 4B, points above expected range). In fact, this subset of TGF-188 
β profiles exhibited cell type dispersion levels approaching those expected if TGF-β profiles 189 
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were assigned to cell types randomly (Figure 4C, blue versus black lines). Based on this 190 
analysis, we defined pathway expression motifs as profiles whose mean cell type dispersion 191 
exceeded a cutoff. For most analysis here, we set this cutoff at the 90th percentile of 192 
dispersions among groups of globally similar cell types (Figure 4D, Methods). Alternative 193 
dispersion metrics produced broadly similar, but not identical, motif sets, indicating some 194 
sensitivity to the definition of dispersion (Figure 4–figure supplement 1C). Finally, we note that 195 
this criteria is sensitive to an arbitrary threshold, the motif cutoff, here chosen at the 90th 196 
percentile. Reducing the motif cutoff would allow less dispersed profiles to be classified as 197 
motifs.   198 

To better understand the structure of motifs, we also examined expression correlations among 199 
individual BMP receptors. Among cell states expressing pathway motifs, almost half of the 200 
receptor pairs (25/55) showed no significant correlation, with the remaining pairs exhibiting a 201 
mix of positive and negative pairwise correlations (Figure 4–figure supplement 1A). For 202 
example, Bmpr1a was positively correlated with Acvr1 and Acvr2a, while Acvrl1 and Tgfbr2 203 
were strongly correlated, with Acvrl1 expressed in a subset of cell types that expressed Tgfbr2. 204 
Acvrl1 and Tgfbr2, which were previously shown to mediate signaling by BMP9, could also 205 
function together as a module in this context (Chen et al., 2013). 206 

TGF-β pathway motifs exhibited several interesting features. First, they were enriched for 207 
expression of the type I receptors Bmpr1a and Acvr1, as well as the type II receptor Acvr2a. In 208 
fact, almost all motifs co-expressed all three of these receptor subunits (Figure 4D). On the 209 
other hand, Bmpr1b, Acvrl1 and Acvr1c were the least represented receptor subunits, appearing 210 
in only 3, 3, or 4 of the motifs, respectively. The most prevalent motif, 8, was expressed in 9 211 
different mouse organs and is similar to the profile of NMuMG mammary epithelial cells, which 212 
were shown to compute complex responses to ligand combinations (Antebi, Linton, et al., 2017; 213 
Klumpe et al., 2020) (Figure 4D, rows). Motif 8 included the type 1 subunits Bmpr1a, Acvr1, and 214 
Tgfbr1, as well as the type II subunits Acvr2a, and Tgfbr2. Motif 15, which is similar to motif 8 215 
but with more Bmpr1b, was shown to exhibit reduced complexity of combinatorial ligand 216 
responsiveness (Klumpe et al., 2020), suggesting that even a change in a single receptor 217 
between profiles could be functionally significant.   218 

Motifs were broadly distributed across the organism, with some appearing in as many as 9 219 
different mouse organs (Figure 4E, rows). Conversely, multiple motifs appeared in the same 220 
organ. For example, the adult kidney included cell states with 9 different TGF-β receptor 221 
expression motifs (Figure 4E, columns). These results underscore the breadth of the dispersion 222 
of the pathway motifs. 223 

In contrast to motifs, other TGF-β profiles recurred in multiple cell types but exhibited low 224 
dispersion, as in Figure 1B, middle panel (Figure 4–figure supplement 1B). One of these 225 
groups, consisting of profiles 1,2, and 5, was in fact dispersed among diverse developmental 226 
cell types, including the primitive streak, ectoderm derivatives, and mesodermal tissues. 227 
However, it received a lower dispersion score due to the relative similarity of early embryonic 228 
cell types compared to adult cell types. We therefore classified these profiles as a 229 
developmental motif (Figure 3B, hot pink). These three profiles expressed a combination of 230 
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Bmpr1a and Acvr2b, and resembled the BMP receptor profile previously identified in mouse 231 
embryonic stem cells, suggesting that the early embryonic receptor profile is stably maintained 232 
during early germ layer cell fate diversification  (Klumpe et al., 2020). 233 

By contrast, profiles 29 and 30 were each confined to a single set of closely related cell types:  234 
chondrocytes (E13.5-E15.0) and macrophages, respectively. Because they were tightly 235 
associated with a particular set of cell types, these profiles are effectively the opposite of a 236 
motif, and we refer to them as “private” profiles. Notably, these private profiles both expressed 237 
Bmpr2, which is less prevalent compared to other receptors. Nevertheless, Bmpr2 is not a 238 
marker of private profiles, as it is also expressed in dispersed motifs, such as motifs 8, 9, 10, 13, 239 
and 27 (Figure 4D). Together, these results suggest that the TGF-β pathway exhibits a set of 240 
recurrent and dispersed expression motifs, as well as a relatively small number of private 241 
profiles.  242 

Additional signaling pathways also exhibit pathway expression motifs. 243 

Other signaling pathways also exhibited recurrent expression profiles (Figure 5). Using the 244 
PathBank database of biological pathways (Wishart et al., 2020), we identified 56 different 245 
annotated biological pathways involved in signaling and other functions (Figure 5–source data 246 
1). For each pathway, we assembled a corresponding list of genes, normalized their expression, 247 
clustered the resulting profiles, computed silhouette scores, and compared them to a null 248 
hypothesis in which the expression levels of each gene were independently and randomly 249 
reassigned to different cell types as described previously (Figure 5–figure supplement 1A). As 250 
with TGF-β, we identified the optimal number of clusters for each pathway by determining the 251 
peak value of the silhouette z-score. 252 

To classify pathways as recurrent or cell type-specific, we generated, for each pathway, a 253 
corresponding ensemble of ~100 pseudo-pathways of the same size but composed of randomly 254 
selected genes (Figure 5A, black; Figure 5–figure supplement 1B, black). By clustering 255 
expression for each pseudo-pathway, we computed a null hypothesis distribution of  𝑘௢௣௧ for 256 
each pathway of interest (Figure 5A, blue; Figure 5–figure supplement 1B, blue). We then 257 
calculated the difference between the observed number of clusters in the real pathway and the 258 
mean number of clusters found in the corresponding ensemble of pseudo-pathways (Figure 5B). 259 
Similar to TGF-β, several pathways exhibited fewer clusters than expected given their number 260 
of genes, indicating recurrent expression profiles (Figure 5B, right). These included core cell-cell 261 
communication pathways such as Notch, Ephrin, as well as the Srsf splicing protein family, 262 
including all 11 SR family splice regulatory proteins, and a protein degradation pathway defined 263 
at Pathbank consisting predominantly of different proteasome subunits (Wishart et al. 2020).  264 

We also observed the opposite behavior: in some cases, pathway expression profiles in 265 
different cell states differed even more from one another than the expression levels of randomly 266 
chosen sets of genes. These pathways were thus the opposite of recurrent, or equivalently, 267 
highly cell type-specific, in their expression. They included CXCR4 (Figure 5A, right), Rac1, and 268 
Lysophosphatidic acid (LPA6) signaling. In each of these cases, the silhouette z-score exhibited 269 
no clearly defined peak and remained elevated compared to the null distribution, even as the 270 
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number of clusters was increased (Figure 5B, left; Figure 5–figure supplement 1AB). Non-271 
recurrent pathways may allow cells to fine tune a pathway to highly individualized requirements 272 
of each cell type. For example, in the CXCR4 or LPA6 pathways, this mechanism could allow 273 
each cell state to respond with a distinct amplitude and specificity to different sets of cytokines 274 
or LPA variants. These results indicate that some pathways have a non-recurrent structure 275 
dominated by private profiles.  276 

Under our null hypothesis, signaling pathways were compared against a distribution of pseudo-277 
pathways composed of randomly selected genes across the transcriptome (Figure 5B, p-278 
values). We noted that this null distribution could underestimate the signal of the silhouette 279 
score since randomly selected genes exhibit different expression statistics compared to real 280 
pathways. Comparing against other randomized controls could increase the signal-to-noise for 281 
some pathways. 282 

Notch, Eph, and Wnt pathways exhibit dispersed expression motifs. 283 

Notch Signaling 284 

We next asked whether other developmental signaling pathways similarly exhibited 285 
combinatorial expression patterns with recurrent, dispersed profiles. Based on their status as 286 
core signaling pathways and their recurrence scores (Figure 5B), we focused on Notch, Eph-287 
ephrin, and Wnt.  288 

In contrast to TGF-β and Wnt, which both use secreted ligands, the Notch pathway involves 289 
juxtacrine interactions between a set of membrane anchored ligands, including Dll1, Dll4, Jag1, 290 
Jag2, and the cis-inhibitor Dll3, and a set of four Notch receptors, Notch1-4 (Artavanis-291 
Tsakonas et al., 1999; D’Souza et al., 2008; Siebel & Lendahl, 2017). Further, a set of three 292 
Fringe proteins (M-, R-, and L-Fng) modulates cis and trans ligand-receptor interaction 293 
strengths, both between adjacent cells (trans) as well as within the same cell (cis) (Kakuda et 294 
al., 2020; Kakuda & Haltiwanger, 2017). We therefore defined a minimal Notch pathway 295 
comprising 11 ligands, receptors, and Fringe proteins (Figure 5C). This definition excludes 296 
ADAM family metalloproteases, γ-secretase, the CSL complex, and other components, in order 297 
to focus specifically on ligands, receptors, and the Fringe proteins that directly modulate their 298 
interactions, all of which exist in multiple variants. We classified pathway expression as “on” if at 299 
least 2 of these genes were expressed above a minimum threshold of 20% of the maximum 300 
observed expression level across all cell types. With these criteria, the Notch pathway was “on” 301 
in 37% of cell states (450 out of 1200) (Figure 2C).  302 

As with TGF-β, the Notch pathway exhibited combinations of co-expressed components, 303 
including receptors, ligands and Fringe proteins (Figure 5C). The pathway exhibited a peak 304 
Silhouette score at ~31 cell clusters (Figure 5–figure supplement 1A), 16 of which qualified as 305 
motifs based on their dispersion scores (Figure 5-figure supplement 2, Figure 5C).  306 

These profiles agreed with previous observations. For example, B cells (Notch motif 19) are 307 
known to express the Notch2 receptor and no ligands (Saito et al. 2003; Yoon et al. 2009). The 308 
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combination of Notch1, Notch2 and Jag1 was prevalent, occurring in most of the motifs, which 309 
were distinguished by expression of other components (Figure 5C). Nevertheless, even among 310 
motifs expressing both Notch1 and Notch2, the ratio of the two receptors varied (compare Notch 311 
motifs 19 and 28, Figure 5C). Among the Fringe proteins, R-fng was expressed in all motifs, 312 
while L-fng and M-fng were restricted to a limited subset (Figure 5C). Nearly all motifs, with the 313 
exception of motif 26, which is expressed in cell types that comprise the blood vessels, co-314 
expressed both ligands and receptors. Notch ligands and receptors are known to exhibit 315 
inhibitory (cis-inhibition) and activating (cis-activation) same-cell interactions that can generate 316 
complex interaction specifiities with other cell types expressing similar or different ligand and 317 
receptor combinations. The prevalence of multi-component Notch motifs could help explain 318 
complex Notch behaviors with the potential to send or receive signals to or from specific cell 319 
types (del Álamo et al., 2011; LeBon et al., 2014; Li & Elowitz, 2019; Nandagopal et al., 2019).  320 

In addition to its expression motifs, Notch also exhibited a smaller set of ‘private’ expression 321 
profiles limited to closely related cell types (Figure 5–figure supplement 3A). Private motifs were 322 
used by muscle cells during forelimb development (profile 25), basal cells of the mammary 323 
gland (profile 21), mesodermal lineages at E7.0-E8.0, and the adult endothelium (profile 8). The 324 
private profiles exhibited greater expression of M-fng, and the Delta family ligands Dll1, 3, and 4 325 
compared to the motifs (Figure 5–figure supplement 3A). Taken together, these results reveal 326 
that the Notch pathway uses a set of recurrent and dispersed combinatorial expression motifs, 327 
as well as private expression profiles in some lineages. 328 

Eph-ephrin signaling 329 

The most recurrent core signaling pathway in our panel was Eph-ephrin (Figure 5B, rightmost 330 
blue point), another juxtacrine signaling pathway that plays key roles in development, including 331 
tissue boundary formation, axon guidance, bone development, and vasculogenesis, among 332 
many other processes (Arthur & Gronthos, 2021; Cramer & Miko, 2016; Kania & Klein, 2016; 333 
Klein, 2012). Eph-ephrin signaling has also been implicated in numerous cancers (Astin et al., 334 
2010; Merlos-Suárez & Batlle, 2008). The pathway implements juxtacrine communication 335 
bidirectionally between adjacent cells through combinations of Eph receptors and ephrin 336 
ligands, which are grouped into A and B families based on the specificity of their signaling 337 
interactions. Like Notch, Eph-ephrin interactions occur both in cis and in trans, and can also 338 
involve the formation of multi-component clusters  (Dudanova & Klein, 2011). Furthermore, 339 
since the same ephrin ligand signaling through different Eph receptors can produce different 340 
and even opposite physiological responses (Seiradake et al., 2013), these features are 341 
consistent with the idea that component combinations could dictate signaling specificity.  342 

Here, we tabulated the expression of 11 Eph variants and 8 ephrin variants, spanning both type 343 
A and B families (19 genes total). Silhouette analysis revealed a broad peak with a maximum at 344 
54 clusters for the combined Eph-ephrin pathway (Figure 5–figure supplement 1A). Strikingly, all 345 
of these clusters exhibited co-expression of multiple Eph and ephrin variants (Figure 5D and 346 
Figure 5–figure supplements 2B, 3B). While Ephs and ephrins were generally not expressed in 347 
blood cell types (Figure 5–source data 2), they were broadly expressed in many others (Figure 348 
5D). The Eph receptor expression profiles were also broadly distributed across these cell states, 349 
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generating a set of motifs (Figure 5D). Inspection of the motifs revealed highly combinatorial 350 
expression patterns, co-expressing 3.67±1.88 and 2.89±1.23 Eph and ephrin variants, 351 
respectively, and nearly always expressing components from both A and B families. As with 352 
TGF-β and Notch, individual motifs often occurred in multiple organs and, conversely, individual 353 
organs often contained multiple motifs (Figure 5D, right). However, tissue coverage was more 354 
sparse than the other two pathways, possibly reflecting the greater number of distinct motifs 355 
(Figure 5D, left). These observed motifs agree with established signaling interactions observed 356 
in vivo. For example, an EphB4-EfnB2 signaling complex is known to regulate vasculature 357 
formation and maintenance in developing and adult mice (Salvucci & Tosato, 2012). Endothelial 358 
cells (motifs 24 and 47) notably co-expressed these components, in addition to other Eph 359 
receptor and ephrin ligand components. 360 

The pathway also exhibited private profiles, which notably co-expressed a greater number of 361 
distinct components than the motifs (Figure 5–figure supplement 3B). Private profiles appeared 362 
in a variety of developmental tissues (profiles 17, 10, 7, 2, 1, and 14), as well as adult cell types 363 
(Figure 5–source data 2). Together, these results indicate that Eph-ephrin components are 364 
expressed in a combinatorial fashion with a mixture of motifs and private profiles, each broadly 365 
distributed across embryonic and adult tissues. 366 

Wnt Signaling 367 

Finally, as a fourth signaling pathway, we also analyzed Wnt, which plays critical roles in a vast 368 
range of developmental and physiological processes. Wnts can function as morphogens and 369 
are involved in regeneration, cancer, and disease (Grigoryan et al., 2008). Extracellular 370 
interactions between Wnt ligand and receptor variants exhibit promiscuity, with each ligand 371 
typically interacting with many receptor variants (Voloshanenko et al., 2017). Signaling involves 372 
Wnt ligands binding to Frizzled (Fzd1-10) receptors and low-density lipoprotein related co-373 
receptors 5/6 (LRP5/6) to stabilize β-Catenin, allowing it to activate transcription of target genes 374 
(Goentoro & Kirschner, 2009; MacDonald & He, 2012; Mikels & Nusse, 2006). Wnt signaling 375 
has also been shown to have combinatorial features (Buckles et al., 2004).  376 

The recurrence score for Wnt was slightly less than that of TGF-β and nitric oxide signaling 377 
(Figure 5B, red asterisks). Nonetheless, the pathway exhibited recurrent profiles. Silhouette 378 
score analysis showed a peak elevation at 𝑘௢௣௧ = 30 profiles, similar to TGF-β, and was 379 
elevated compared to a null model of randomly scrambled pathways constructed from the same 380 
genes (Figure 5–figure supplement 1A). Strikingly, these profiles all exhibited co-expression of 381 
multiple Fzd variants, and all but two co-expressed both the Lrp5 and Lrp6 co-receptors (Figure 382 
5–figure supplement 2C).  383 

A subset of Wnt pathway expression profiles were broadly dispersed (Figure 5–figure 384 
supplement 3D). All of these high dispersion profiles co-expressed multiple Frizzled variants 385 
(Figure 5–figure supplement 3D). Conversely, most Frizzled variants were expressed in multiple 386 
high dispersion profiles. The exceptions were Fzd9 and Fzd10, which were expressed at much 387 
lower levels in most cell types, although Fzd9 was highly expressed in profile 28, along with 388 
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other receptors (Figure 5–figure supplement 3C). These results show that the Wnt pathway also 389 
exhibits combinatorial expression motifs. 390 

Inter-pathway correlations reveal independent profile usage 391 

Identifying combinatorial expression profiles in multiple pathways provokes the question of 392 
whether component configurations are correlated between pathways. For example, in the limit 393 
of tight coordination, cells expressing one TGF-β profile might always express a corresponding 394 
Notch profile. In the opposite limit, profiles from one pathway might be used independently of 395 
those from another pathway, suggesting a more mosaic cellular organization.  396 

To quantify the correlation between expression profiles of different pathways, we computed the 397 
pairwise adjusted mutual information (AMI) between the profile labels of each pair of pathways 398 
across all cell types (numbers, Figures 2A, Figure 5–figure supplement 1A-C). The AMI metric 399 
quantifies the degree of statistical dependence between the two clusterings, controlling for 400 
correlations expected in a null, or completely independent, model. The full dataset of 1206 cell 401 
states was used for computing the pairwise AMI, assigning the profile label ‘0’ to cell states that 402 
do not express a given pathway. We visualized the results with a heatmap showing the pairwise 403 
AMI values across the main recurrent pathways (Figure 5E).   404 

In general, most pathway-pathway correlations were weak (AMI < 0.4) (Figure 5E). To ensure 405 
that the AMI was indeed capable of capturing correlations, we included a subset of the TGF-β 406 
receptors (the 7 BMP receptors) as a separate pathway (“BMP receptors”). Given their 407 
overlapping components, TGF-β and BMP showed elevated AMI values of ~0.6, as expected 408 
(Figure 5E). A notable exception was the strong correlation between the Ubiquitin-Proteasome 409 
pathway and SRSF splice regulators, which arose predominantly from developmental cell states 410 
expressing Ubiquitin-Proteasome profile 1 with SRSF profiles 1 and 2 (Figure 5–source data 2). 411 
Other pathway pairs, consisting of TGF-β, Wnt, or Eph-ephrin exhibited weaker relationships, 412 
whereas the Notch pathway showed little correlation with almost all other pathways. These 413 
results suggest that, at least for the limited set of components considered here, different 414 
pathways seem to adopt profiles largely independently of one another.  415 

Pathway profiles exhibit distinct dynamic behaviors during differentiation 416 

The relative independence of profile selection between pathways provokes the dynamic 417 
question of when and how pathways switch profiles during development. At one extreme, 418 
profiles could switch in a stepwise fashion, changing one component at a time. At the opposite 419 
extreme, they could change multiple components simultaneously, directly switching from one 420 
profile to another. Further, either type of change could occur gradually or suddenly, and could 421 
be temporally synchronized or unsynchronized between different pathways.  422 

Neural crest differentiation provides a well-characterized developmental process to address 423 
these questions. The neural crest is responsible for diverse cell types, including sensory 424 
neurons, autonomic cell types, and mesenchymal stem cells (Kléber et al., 2005; Simões-Costa 425 
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& Bronner, 2015). Further, TGF-β, Notch, Eph-ephrin, and Wnt, all play key roles in its 426 
differentiation (Bhatt et al., 2013). 427 

Soldatov et al. performed deep scRNA-seq analysis of neural crest development from 428 
embryonic day 9.5 cells using SMART-seq2 (Soldatov et al., 2019). We used the Slingshot 429 
package (Street et al., 2018) to construct pseudotime trajectories from these data and further 430 
identified 7 distinct pseudotime stages (Figure 6A). All expression counts were scaled to match 431 
the normalization used in the integrated atlas (Figure 2, Methods). This reconstruction 432 
recapitulated known cell fate trajectories, with neural crest progenitors differentiating into 433 
sensory neurons, autonomic neurons, and mesenchymal cells (Figure 6A). Except for a 434 
transient upregulation of Bmpr1b early on, the TGF-β profile was remarkably stable during the 435 
trajectory from progenitors to more differentiated cell types. The profile was dominated by 436 
Bmpr1a, Tgfbr1, Acvr2a, and Acvr2b (Figure 6B, first panel), closely matching profile 6 (Figure 437 
3A), which occurs in the developing forebrain and spinal cord, adult mesenchymal, and adult 438 
podocyte cell types. This profile is potentially functional, as TGF-β pathway inhibition in neural 439 
crest stem cells leads to cardiovascular defects (Wurdak, 2005). These results indicate that a 440 
developmental pathway can retain a stable profile along a differentiation trajectory.  441 

In contrast to the stability of TGF-β along this trajectory, Notch components exhibited a step-like 442 
transition at the end of the pseudotime trajectory (Figure 6B, second panel). Progenitors 443 
predominantly express the receptors Notch1 and Notch2; the ligands Dll1 and Jag1; and high 444 
levels of Rfng. This profile resembles Notch motif 16 (Figure 5C). Upon differentiation into 445 
sensory neurons, they switch on expression of Notch1, Dll3, and Mfng, as well as a lower level 446 
of Jag2, while down regulating Notch2, thus changing to private profile 27 (Figure 5C). 447 
Consistent with this analysis, profile 27 was independently derived from neural crest cells in the 448 
integrated data set (Figure 5–source data 2).  A similar pattern of discrete change also occurred 449 
in the Wnt pathway, where expression shifted in ~2 steps from profile 11 to profile 10 (Figure 450 
6B, fourth panel). Thus, the transition to the sensory neural fate involves an abrupt multi-gene 451 
alteration of Notch and Wnt pathway components, neither of which was synchronized with 452 
changes in TGF-β. 453 

By contrast, the dynamics of the Eph-ephrin pathway were more complex and gradual, with 454 
changes occurring in the expression of individual receptors at nearly every pseudotime stage. 455 
Eph-ephrin expression initially resembled profile 19 (Figure 5-figure supplement 2B), then 456 
switched more gradually to profile 11, before diverging slightly from it in the last pseudotime 457 
point (Figure 6B, third panel). Collectively, these results show that during neural crest 458 
development, different pathways can exhibit both stability and multi-step changes in their 459 
expression profiles. 460 

As a second case, we analyzed hematopoiesis, which occurs in temporally and spatially 461 
overlapping waves in close proximity to blood vascular endothelial cells (Canu & Ruhrberg, 462 
2021). Mesodermal hematoendothelial progenitors differentiate into both endothelium and 463 
erythroid cells (E7.5-E8.5), allowing analysis of how pathway profiles change during a branched 464 
differentiation trajectory (Figure 6C). Endothelial cells exhibit ‘private’ TGF-β profiles, 465 
characterized by expression of ACVRL1. Thus, this process provides an opportunity to analyze 466 
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how pathway profiles change during a branched transition and how private profiles are acquired 467 
dynamically. 468 

We clustered the subset of haemato-endothelial lineages from (Pijuan-Sala et al., 2019b) 469 
(15,645 single-cells), applied Slingshot to reconstruct branching pseudotime trajectories (Figure 470 
6C), and then analyzed changes in TGF-β receptor expression profiles over these trajectories.  471 
In contrast to its stability during neural crest differentiation, the TGF-β profiles exhibited 472 
complex, dynamic changes during vascular differentiation. Mesodermal cells predominantly 473 
express Bmpr1a, Acvrl1, Tgfbr1, Acvr2a and Acvr2b, and Acvr2b, resembling profile 5, which is 474 
prevalent in early development (Figure 3A). Along the erythroid lineage, cells exhibited a 475 
gradual reduction in expression of all TGF-β receptors. Similar decreases in expression were 476 
also observed for receptors and ligands in other pathways (Figure 6D, upper row), and may 477 
reflect preparations for the dramatic events of erythropoiesis. By contrast, cells differentiating 478 
into endothelial fates maintained Bmpr1a and Acvr2b expression and additionally up-regulated 479 
Acvrl1, an endothelial-specific BMP receptor known to mediate signaling by BMP9 and BMP10, 480 
and required for angiogenesis (Tual-Chalot et al., 2014). Thus, while one lineage gradually turns 481 
off receptor expression, the other activates a distinct endothelial specific receptor profile. 482 
Looking more broadly at the four pathways during differentiation to endothelium, we see similar 483 
themes as observed in the neural crest differentiation: unsynchronized transitions to different 484 
profiles in different pathways. Together, these results show how pathways discretely and 485 
independently alter their expression profiles during different developmental lineages. 486 

Discussion 487 

In multicellular organisms, a core set of molecular signaling pathways mediate a huge variety of 488 
developmental and physiological events. How can such a limited set of pathways play such a 489 
broad range of different roles? At a coarse level, each pathway may be considered competent 490 
for signaling in a given cell type if its receptors and other components are expressed and not 491 
inhibited by other cellular components. However, examining pathway expression patterns 492 
globally, as we did here, reveals a more subtle situation, in which pathways can be expressed in 493 
a finite number of distinct configurations, characterized by different expression levels for its 494 
components, all potentially competent to signal in response to suitable inputs. Each 495 
configuration could be functional in some contexts but nevertheless differ from other 496 
configurations in the specific input ligands it senses, or the downstream effectors it activates 497 
within the cell (Antebi, Nandagopal, et al., 2017; Buckles et al., 2004; Klumpe et al., 2020; 498 
LeBon et al., 2014; Li & Elowitz, 2019; Rohani et al., 2014; Su et al., 2020; Verkaar & Zaman, 499 
2010).  500 

To find out what configurations exist, we focused on cell-cell signaling pathways known to use 501 
sets of partially redundant component variants. Each of these pathways was already known to 502 
adopt multiple expression configurations in specific biological contexts. However, cell atlas data 503 
permit a systematic analysis of expression profiles in a broad set of cell and tissue contexts 504 
(Figures 2-5), revealing what pathway profiles are expressed, how they correlate with one 505 
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another between pathways (Figure 5G), and how they change dynamically during aging and 506 
development (Figure 6).  507 

The expression profiles of pathways are strikingly combinatorial. Across each of the four major 508 
pathways studied here, no two components exhibited identical expression patterns, and all were 509 
differentially regulated in some cell types. Further, almost all motifs comprised multiple receptor 510 
and/or ligand variants. The number of distinct expression profiles for each pathway was much 511 
smaller than one would expect if individual components varied independently. For instance, the 512 
Eph-ephrin pathway with 19 components exhibits ~54 profiles, which is less than two-fold 513 
greater than the ~30 profiles observed for the 11 TGF-β receptors, and far less than the 514 
219=524,288 pathway profiles one would expect if each of its 19 genes could independently vary 515 
between low and high expression states. Assuming that the pathway profile plays a key role in 516 
controlling pathway function, this finding suggests that analysis of a limited number of profiles 517 
could potentially explain pathway behavior in a much larger number of cell types.   518 

Expression profiles for different pathways appeared to vary independently across cell types 519 
(Figure 5G). This observation argues against tight coupling of specific expression receptor 520 
profiles in one pathway with those in another. However, it does not rule out the possibility that 521 
signaling through combinations of pathways could play special roles in some cases (Muñoz 522 
Descalzo & Martinez Arias, 2012). Analysis of pseudotime trajectories also revealed that 523 
different pathways sometimes switch among motifs in a punctuated manner, and largely 524 
independently of one another. While we focused on the pathways that show strong motif 525 
signatures, it is equally important to note that other pathways predominantly used cell type 526 
specific, or private, profiles (Figure 5B), and even the pathways that we focused on here also 527 
contained some private profiles. Nevertheless, these results suggest a “mosaic” view of cells, in 528 
which each cell type adopts a particular motif or private profile for each of its general purpose 529 
pathways (Figure 6E).  530 

Why use motifs? Motifs could provide a rich but limited repertoire of distinct functional behaviors 531 
for each pathway (Su et al., 2020). One appealing possibility is that each motif has a distinct but 532 
related signaling function that is retained in some way even in different cell types or contexts. 533 
For example, in a “combinatorial addressing” system, different ligand combinations could 534 
selectively activate sets of cell types based on their receptor expression profiles, to achieve 535 
greater cell type specificity in signaling (Klumpe et al., 2020; Su et al., 2020). A similar principle 536 
could apply to juxtacrine signaling pathways such as Notch and Eph-ephrin, where the 537 
combination of components expressed in a given cell type could control which other cell types it 538 
can communicate with, based on their own pathway expression profiles. To test this possibility, 539 
it will be important to determine what inputs each motif can respond to, and whether that 540 
specificity is retained across different cell contexts.  541 

Several limitations apply to the findings reported here. First, pathway definition starts with a 542 
human-curated list of receptors, ligands, or other components or previously annotated pathway 543 
definitions. Different pathway definitions could potentially alter these results. Second, while 544 
comprehensive, the data sets used here are likely incomplete, and could miss profiles used only 545 
by rare cell types or could inaccurately report expression levels for weakly expressed genes. 546 
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Third, clustering is an imperfect representation of expression variation, potentially averages over 547 
subtle quantitative differences in individual component levels between cells. In particular, 548 
unsynchronized single cell dynamics, such as those that occur during Notch-dependent fate 549 
determination (Kageyama et al., 2018), could therefore be missed. Moreover, we explored 550 
signaling dynamics in only a few developmental trajectories. A broader exploration of more 551 
developmental processes could potentially reveal other types of dynamic behaviors beyond 552 
those shown here. Finally, subcellular localization patterns, post-translational modifications, 553 
alternative splice forms, and other types of regulation could diversify the functional modes of the 554 
pathway beyond what can be detected by scRNA-seq. However, as single cell technology 555 
continues to improve and expand to the protein level, we anticipate that it should be possible to 556 
obtain more precise views of pathway states.  557 

The combinatorial nature of pathways makes it infeasible to experimentally characterize all 558 
possible configurations. Fortunately, however, a handful of motifs account for a large fraction of 559 
cell types, potentially enabling one to understand most of the functional repertoire of a pathway 560 
from a limited number of motifs and private profiles. While we focused on signaling here, the 561 
approach could be applied more generally to non-signaling pathways, such as splice regulation 562 
or protein degradation (Figure 5B). In the future, we anticipate that a functional understanding of 563 
pathway motifs could enable one to predict and control the activities of pathways in cell types 564 
based on their expression profiles.  565 
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Figures 576 

  577 
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Figure 1. Pathway expression profiles could be distributed across cell types 578 
in different ways (schematic)  579 

A. Cell-cell signaling pathways comprise multiple variants of key components such as 580 
receptors (cartoons, Rn). These variants can be expressed in different combinations in 581 
different cell types. Colored dots identify receptor profiles for comparison with B. 582 

B. Cell types can be arranged hierarchically based on similarities among their global 583 
(genome-wide) gene expression profiles (dendrogram). A hypothetical signaling pathway 584 
profile for each cell type is indicated by the gray intensity in the corresponding row of 585 
squares. In principle, each cell type could have a unique signaling pathway profile 586 
(unique, left); exhibit a smaller set of recurrent profiles, each used by a set of related cell 587 
types (recurrent and clustered, middle); or exhibit signaling pathway profiles that recur 588 
even among otherwise distantly related cell types (recurrent and dispersed, right). These 589 
possibilities are not exclusive and it is possible that some pathways or subsets of cell 590 
types might operate in different regimes.  591 

  592 
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Figure 2. Integration of scRNA-seq atlas data reveals widespread 593 
expression of signaling pathway components 594 

 595 
A. We integrated 14 published developmental and adult scRNA-seq datasets spanning 596 

different stages in the mouse lifespan from embryonic development to old age. These 597 
data sets differ in their representation of organs and cell type classes (colors). 598 

B. To generate an integrated cell state atlas, we first independently clustered each scRNA-599 
seq dataset, treating distinct time-points in the data set separately (Methods). We then 600 
averaged expression over all cells in each cluster to yield a “cell state” profile for that 601 
cluster, and represented each cluster by a single dot in an integrated cell state atlas data 602 
set (UMAP on right). Colors are consistent with the legend in (A). Notably, this 603 
integration captures cell type similarity across different datasets and sequencing 604 
technologies. 605 

C. Components of core signaling pathways are broadly expressed. Black or gray dots show 606 
clusters whose pathway components are expressed above or below threshold, 607 
respectively. 608 

  609 
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Figure 2, Supplement 1 610 

A. Analysis of scRNA-seq datasets using the standard Scanpy pipeline recapitulates 611 
published analyses, including (He et al., 2020). Independent analysis of mouse forelimb 612 
over days E10.5-E15.0 shows similar cell types (colors, left) and gene expression (right).   613 

B. The integrated atlas captures cell type similarity across datasets. Cell clusters with 614 
similar annotations in different data sets remain similar to each other in the integrated 615 
atlas. 616 

C. Cluster-averaged profiles reflect co-expression in single-cells. Shown is an example of a 617 
single cluster from the forelimb epithelial tissue data set at day E15. Left, expression of 618 
TGF-β receptor genes averaged over all cells in the cluster corresponding to forelimb 619 
epithelial tissue at day E15.0. Right, pairwise conditional probability in single cells of 620 
gene 2 expression conditioned on gene 1 expression. Pairs of genes with significant 621 
entries (**) are co-expressed in the cluster-averaged profile. Higher-order conditional 622 
probabilities were not computed due to dropout effects in scRNA-seq data. 623 

 624 
  625 
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Figure 3. TGF-β receptors exhibit recurrent and dispersed pathway 626 
expression profiles. 627 

A. Silhouette score analysis (Figure 3-figure supplement 2A) identified approximately 30 628 
TGF-β receptor expression profiles, indicated as color-labeled groups of rows. Colored 629 
arrows indicate examples of dispersed profiles highlighted on the global cell fate 630 
dendrogram in B. Asterisks indicate private profiles, also shown in B. Dendrogram at left 631 
represents similarity among different profiles. Each gene is standardized to a range of 0-632 
1 across all cell types (grayscale). 633 

B. Distribution of TGF-β receptor expression profiles across cell types. The global cell type 634 
dendrogram was computed using a cosine distance metric applied to the integrated 635 
transcriptome data set in a 20-component PCA space constructed from 4,000 highly 636 
variable genes (HVGs). Arrows indicate featured TGF-β profiles that are broadly 637 
dispersed across cell types, while asterisks indicate examples of private profiles. Cell 638 
types that do not express TGF-β receptors have no color (white). Colors match those in 639 
A. Note that blood cell types are relatively lacking in expression of TGF-β receptors.  640 

C. Key cell type classes, including epithelial, macrophage, fibroblast, and endothelial cell 641 
types, each span multiple TGF-β profiles. The white bar (top right) indicates the non-642 
expressing profile. Profiles are ordered to maximize the similarity of adjacent profiles. 643 
Each cell class mapped to multiple distinct pathway profiles, yet differed in their profile 644 
diversity. For example, epithelial cells comprise a broad spectrum of 18 distinct profiles, 645 
whereas macrophages and endothelial cells are primarily restricted to smaller subsets of 646 
more closely related profiles. Inset, cell type composition of each TGF-β profile, where 647 
“other” includes all cell states in the atlas that do not fall into the epithelial, macrophage, 648 
fibroblast or endothelial cell types. 649 
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Figure 3, Supplement 1. Further analysis of TGF-β pathway expression 652 
profiles. 653 

A. Histogram showing the number of cell types in the integrated atlas with normalized 654 
expression of TGF-β receptors above a threshold of 0.2 in standardized expression 655 
units. 656 

B. Number of TGF-β receptor components simultaneously expressed for different values of 657 
the minimum expression threshold (colors). 658 

C. Pairwise co-expression of TGF-β receptor expression reveals broad receptor co-659 
expression patterns. Off-diagonal elements indicate the number of cell states co-660 
expressing, above threshold, the indicated pair of components. Diagonal elements 661 
indicate the number of cell states expressing the corresponding individual gene. 662 
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Figure 3, Supplement 2. Silhouette analysis can be used to identify optimal 665 
clustering thresholds. 666 

A. The silhouette score quantifies clustering quality (schematic). For a given clustering, we 667 
compute the silhouette score on every data point 𝑖. We compute 𝑎(𝑖), the mean distance 668 
between 𝑖 and every other point in the same cluster, and 𝑏(𝑖), the mean distance 669 
between 𝑖 and the nearest neighboring cluster. The silhouette score for data point 𝑖 is 670 
then defined as the difference between the inter- and intra-cluster distances, normalized 671 
to the maximum of the two (equations). A silhouette score value close to 1 corresponds 672 
to well-defined clusters, where data point 𝑖 is similar to other members of its cluster and 673 
dissimilar to other clusters, while a value close to -1 suggests poor cluster assignment. 674 
The silhouette score for a given clustering, is taken as the average of the individual 675 
scores for all data points.  676 

B. The silhouette score identifies the approximate number of unique TGF-β receptor 677 
expression profiles. We computed the silhouette score across expression values of the 678 
pathway genes (black), as well as for 100 random gene sets (gray) where pathway gene 679 
expression was independently scrambled for each gene. We then computed the z-score 680 
(blue), defined as the silhouette score for pathway genes normalized to the silhouette 681 
score for randomized gene sets. We defined the optimal number of receptor profiles 𝑘௢௣௧ 682 
as the number of clusters that produced the peak z-score value (dashed line).  683 
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Figure 4. TGF-β expression motifs are dispersed across cell types and 685 
organs. 686 

A. We defined the dispersion of a receptor expression profile to be the within-class pairwise 687 
distance computed in a 100 dimensional PCA space constructed from the top 4,000 688 
highly variable genes (HVGs) (left). Dispersed profiles (black) show high cell type 689 
diversity, whereas non-dispersed profiles (gray) are closer together in PCA space.  690 

B. The dispersion of actual TGF-β expression profiles. Dashed lines indicate the range of 691 
dispersions obtained for scrambled profiles. Note the large number of profiles with larger 692 
dispersions than expected from random profiles.  693 

C. Empirical cumulative distribution functions of TGF-β profile dispersion. The observed 694 
dispersion distribution (turquoise) lies between the extremes of cell type-specific profiles 695 
(gray) and profiles obtained by randomizing cell type distances by shuffling cell type 696 
labels (black). We classified motifs in the shaded region, defined as being in at least the 697 
90th percentile of the related cell type dispersion distribution (gray) as motifs.  698 

D. We identified 14 TGF-β motifs, displayed in ranked order of dispersion from most (top) to 699 
least (bottom) dispersed. For each motif, the number of cell states in which it appears is 700 
indicated by the histogram at right. 701 

E. TGF-β motifs (rows) are broadly distributed across different tissues and organs 702 
(columns). Each matrix element represents the number of cell states in the indicated 703 
tissue or organ expressing the corresponding motif. Note that most motifs are expressed 704 
in multiple tissues or organs and most tissues or organs contain multiple motifs.  705 

 706 
  707 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

Figure 4, Supplement 1. Pairwise correlations among TGF-β receptors and 708 
identification of private profiles.  709 

A. TGF-β profiles exhibit unique pairwise receptor correlations. Each matrix represents the 710 
correlation coefficient for each pair of receptors across all cell states (left), cell states 711 
associated with motifs (middle), cell states associated with private profiles (right). 712 

B. TGF-β profiles with less than 30 percentile cell type dispersion were classified as private 713 
profiles. We identified 5 such profiles for TGF-β. Profiles 1, 2, and 5 come from 714 
developmental states, while 29 and 30 represent adult cell types. 715 

C. Alternative definitions of the dispersion metric recover similar sets of motifs. The mean of 716 
intra-class pairwise distances was used as the dispersion metric throughout this work, 717 
but we tested two additional dispersion metrics, one that uses the maximum of intra-718 
class pairwise distances, the second that uses the top 10th percentile. The Venn 719 
diagram shows profiles identified as motifs from these three distinct definitions of the 720 
dispersion metric. The majority of profiles (shown in the intersection of the three circles) 721 
are robust to the definition of dispersion. Notably, the dispersion metric that utilizes the 722 
maximum of pairwise distances only captures profiles in this intersection. The mean 723 
pairwise distance, however, captures two additional profiles as motifs, profiles 21 and 724 
24. Profile 24 contains only two cell states, liver B cells and bone marrow NK cells. The 725 
top 10th percentile of pairwise distances captures the adult endothelium-specific profile, 726 
25, as a motif. However, the maximum metric omits profiles 13 and 15, even though they 727 
appear to be motifs, since they are both dispersed across the adult smooth muscle and 728 
adult kidney epithelium. 729 
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Figure 5: Expression motifs occur in multiple pathways. 731 

A. In order to classify a pathway as cell type-specific or recurrent, we compared the number 732 
of distinct profiles for a pathway (blue line) against a null distribution of the numbers of 733 
distinct profiles identified in random gene sets (black line). We computed these null 734 
distributions specific to the number of components in a pathway to avoid confounding 735 
the number of distinct profiles with pathway size, i.e., we would expect more 736 
combinatorial profiles for a pathway containing more genes. Left: examples of recurrent 737 
pathways (TGF-β and SRSF splice regulators), which have fewer clusters than expected 738 
from the null distribution. Right: example of pathway with more clusters than expected 739 
from the null distribution. 740 

B. Deviations of pathways from random gene sets. We curated 56 gene sets from the 741 
PathBank database and generated corresponding null distributions, analyzing each 742 
pathway for cell type-specific or recurrent behavior as in A. We normalized the number 743 
of identified clusters to the number of pathway components and computed the deviation 744 
of this ratio from the null distribution (y-axis). Negative deviations show that a signaling 745 
pathway has fewer clusters than expected for a given pathway size, indicating 746 
recurrence. By contrast, positive deviations occur when there are more clusters than 747 
expected, indicating strong cell type specificity. Pathways with significant deviations from 748 
the null distribution (adjusted p-value < 0.05) are highlighted in blue. Red asterisks 749 
indicate recurrent pathways that have strong, but not statistically significant, deviation 750 
from the null distribution. 751 

C. Motifs in the Notch pathway and their distribution across tissues and organs, similar to 752 
Figure 4D,E. 753 

D. Motifs in the Eph-ephrin pathway and their distribution across tissues and organs, similar 754 
to Figure 4D,E. 755 

E. Correlations in profile usage between pathways were quantified by the adjusted mutual 756 
information between their respective profile labels.  757 
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Figure 5, Supplement 1. Silhouette profiles for various pathways.  759 

A. Silhouette analysis of indicated pathways, as in Figure 3-figure supplement 2B.  760 
B. Gene set null distributions for various pathways, as in Figure 5A.  761 
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Figure 5, Supplement 2. Pathway profiles for Notch, Eph-ephrin, and Wnt 764 
receptor receptors.  765 

A-C. For each pathway, all pathway profiles are indicated with corresponding labels, as in 766 
Figure 2A.  767 
 768 
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Figure 5, Supplement 3. Pathway component prevalence and private 770 
profiles for Notch, Eph-ephrin, and Wnt pathways. 771 

A-C. Left: Histogram showing the number of cell types in the integrated atlas with normalized 772 
expression of Notch (A), Eph-ephrin (B), or Wnt (C) components above a threshold of 0.2 in 773 
standardized expression units. Center: Pairwise co-expression analysis of indicated pathway 774 
components. Off-diagonal elements indicate the number of cell states co-expressing, above 775 
threshold, the indicated pair of components. Diagonal elements indicate the number of cell 776 
states expressing the corresponding individual gene. Right: Private profiles for each pathway. 777 
Each profile is shown alongside the number of cell states in which it appears (histogram, far 778 
right).  779 
 780 
D. Wnt pathway motifs and their distribution across tissues and organs. These plots are similar 781 
to Figure 4D,E and 5C,D but for the Wnt pathway. 782 
 783 
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Figure 6. Developmental transitions of pathway profiles.  785 

A. Pseudotime trajectory analysis of the trunk neural crest (Soldatov et al., 2019) captures 786 
delamination of progenitors into three distinct cell fates in a ForceAtlas projection: 787 
sensory neurons, autonomic neurons, and the mesenchyme. Here, we follow the 788 
sensory neuron trajectory (black arrow). 789 

B. Developmental pathways show distinct expression dynamics in neural crest 790 
differentiation. For each pathway, corresponding mean expression profiles are shown in 791 
grayscale for each of the cell states indicated in A. Colored dots indicate which 792 
populations are being averaged. Profile numbers indicate the closest match to one of the 793 
reference pathway profiles shown in Figures 3A and 5-figure supplement 2. Two 794 
numbers are indicated for profiles that are approximately equally similar to the 795 
corresponding reference profiles.  796 

C. In early vascular differentiation (Pijuan-Sala et al., 2019b), mesodermal progenitors 797 
differentiate into endothelial and erythroid cell fates (gray arrows in ForceAtlas 798 
projection).  799 

D. Dynamics of four core pathways for each of the two trajectories in C: erythroid 800 
differentiation (upper row of heat maps) and endothelial differentiation (lower row). 801 
Colored dots indicate cell populations in C. Profile numbers indicate closest matches in 802 
reference profiles (Figure 3A, Figure 5-figure supplement 2).  803 

E. Mosaic view of profile usage (schematic). Cell states can express each of their 804 
pathways, using any of the distinct available profiles (indicated schematically by profile 805 
ticks). In this way, cell states can be thought of, in part, as mosaics built from 806 
combinations of available pathway profiles. 807 
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Methods 809 

Clustering single cells and defining cell states  810 

We obtained raw scRNA-seq matrices directly from the GEO repositories or specific locations 811 
indicated by the authors for the data sets appearing in the table below. Clustering of single cells 812 
started from the count matrices of single cells vs genes. First, we applied quality control (when 813 
needed, since some datasets were already filtered) by filtering out cells with high mitochondrial 814 
RNA content, low number of detected transcripts or low number of detected counts. We then 815 
applied a standard pipeline for clustering scRNA-seq data. Briefly, we applied principal 816 
component analysis and used the first 50 principal components as input for graph-based 817 
(Leiden) clustering using Scanpy (Traag et al., 2019; Wolf et al., 2018). Finally, we labeled the 818 
resulting clusters using the cell type annotations provided by the authors. All datasets analyzed 819 
in this study included ground truth cell type annotations that we use throughout the manuscript. 820 
All raw and processed data, along with scripts, are available at . Code can be found at 821 
https://github.com/nkanrar/motifs.git. 822 

Table 1. Single-cell data sets used in this work 823 
 824 
Dataset Time points Reference Cells Mice 

sampled 
Technology 

Forelimb atlas (The 
changing mouse 
embryo transcriptome at 
whole tissue and single-
cell resolution) 

E10.5, E11.0, 
E11.5, E12.0, 
E13.0, E13.5, 
E14.0, E15.0 

(He et al., 2020) 90,637 Pair of 
forelimbs 
per time 
point 

10X 

A single-cell molecular 
map of mouse 
gastrulation and early 
organogenesis 

E6.5, E6.75, 
E7.0, E7.25, 
E7.5, E7.75, 
E8.0, E8.25, 
E8.5 

(Pijuan-Sala et al., 
2019b) 

116,312 411 mouse 
embryos 

10X 

The emergent 
landscape of the mouse 
gut endoderm at single-
cell resolution 

E5.5 (Nowotschin et al., 
2019) 

- - 10X 

Single-cell RNA-seq 
analysis unveils a 
prevalent 
epithelial/mesenchymal 
hybrid state during 
mouse organogenesis 

E9.5-E11.5 (Dong et al., 2018) 1916 7 embryos Smart-seq2 

Epigenetic regulator 
function through mouse 
gastrulation 

E6.5, E7.0, 
E7.5, E8.0, 
E8.5 

(Grosswendt et al., 
2020) 

88,779 50 embryos 10X 

Tabula muris and 
Tabula muris senis 

1mo, 3mo, 
18mo, 21mo, 
24mo, 30mo 

(Tabula Muris 
Consortium, 2020; 
Tabula Muris 

450,000+ - 10X, Smart-
seq2 
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Consortium et al., 2018) 

Integration of multiple datasets 825 

To integrate the above datasets into a single matrix of gene expression, we first generated a 826 
pseudo-bulk expression matrix for each dataset by averaging the log-normalized gene 827 
expression values of individual cells in a cluster. The resulting matrix has dimensions N x M, 828 
where N is the number of cell states in the dataset and M is the number of distinct genes. To 829 
account for differences in gene detection across datasets, we found the intersection of detected 830 
genes across all datasets and subsampled each matrix to include only genes that appeared in 831 
all data sets. The intersection of detected genes across all datasets comprised ~11,000 genes 832 
that we then used for all downstream analysis. Having defined the intersection gene set, we 833 
concatenated individual datasets into a global average expression matrix containing 1206 834 
clusters and ~11,000 genes.  835 

To normalize gene expression values from different datasets to a common scale, we applied a 836 
second round of normalization to the global expression matrix. First, we transformed the log-837 
normalized matrix  using the exponential function to obtain a matrix 𝑀௜௝of “counts” per gene: 838 𝑀′௜௝ = 𝑒𝑥𝑝(𝑀௜௝) + 1. We then normalized, scaled and clustered the resulting matrix following the 839 
standard methods from Seurat v3 (total RNA counts per cell state = 1e4, 4,000 highly-variable 840 
genes and 50 principal components), which resulted in the clustering and UMAP shown in 841 
Figure 2. We verified that cell states from different datasets and sequencing technologies 842 
clustered together (Figure 2B), as an indication that the integrated and normalized UMAP 843 
recovers the biological diversity across development, adult and aging datasets.  844 

Clustering pathway expression profiles across cell states  845 

All downstream analysis on pathway genes starts from the normalized pseudo-bulk gene 846 
expression matrix described above. We noticed that pathway genes showed different dynamic 847 
ranges in their expression across cell states. To give each pathway gene equal weight during 848 
clustering of pathway profiles, we applied a MinMax scaling for each gene, using the 95% 849 
percentile observed across all 1206 cell states as the maximum value. After scaling, each gene 850 
in the pathway had a dynamic range from 0 to 1, corresponding to the range of 0-95% of the 851 
maximum value in the data set for that gene. For each cell state, we classified a pathway as 852 
being “on” if at least two of the pathway genes showed expression above a threshold of 0.2 on 853 
this scale, meaning that the gene is expressed at a level of at least  20% of its maximum 854 
observed value. This threshold allowed us to filter out cell states in which all genes in the 855 
pathway are zero or showed low expression compared to most other cell states, and focus 856 
instead on the cell states showing combinatorial expression of multiple genes (Figure 2–figure 857 
supplement 1B, C). We computed all pairwise cosine distances between cell states with an “on” 858 
pathway profile, considering only the pathway genes, and applied hierarchical clustering to the 859 
resulting distance matrix (Figure 3A).  860 
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For each pathway, we found the approximate optimal number of clusters, kopt, using the 861 
silhouette score metric. After applying hierarchical clustering to the pathway expression matrix, 862 
one can define a number of clusters, k, by setting a depth cut-off and splitting the associated 863 
dendrogram (Figure 3A). We therefore computed the average silhouette score for a range of k 864 
values (from 3 to 100). To account for potential clustering artifacts, we randomized the pathway 865 
gene expression matrix, shuffling the expression values for each gene across cell states, and 866 
repeated the clustering procedure. By independently randomizing the matrix 200 times, we 867 
generated a null distribution for the expected silhouette score at different values of k (Figure 3-868 
figure supplement 2B gray). From this null distribution, we computed z-scores for the silhouette 869 
scores obtained from the real pathway expression matrix and defined the optimal number of 870 
clusters, kopt,  as the value of 𝑘 with the most significant z-score (Figure 3—figure supplement 871 
2B, dotted line).  872 

Defining motifs and private profiles based on cell type diversity 873 

Having defined the kopt  clusters, or pathway profiles, we computed the diversity of cell states 874 
expressing each profile based on their transcriptome similarity. In principle, pathway profiles 875 
might comprise similar cell types (high transcriptome similarity) or sets of diverse cell types (low 876 
transcriptome similarity). We calculated their pairwise Euclidean distances in the PCA projection 877 
constructed from the top 4000 highly variable genes (50 principal components) to measure 878 
transcriptome similarity in a subset of cell states. We first verified that this metric was low for 879 
closely related cell states (as defined by their cell type annotation) and largest for randomly 880 
selected cell states (Figure 2—figure supplement 1B). We then defined dispersion as the 881 
average pairwise PCA distance among a subset of cell states.  882 

To find the lower bound of dispersion, we computed the expected dispersion for related cell 883 
states by clustering their transcriptomes using the first 50 principal components, resulting in a 884 
global dendrogram of cell states (Figure 3B). We then identified the clustering threshold for the 885 
global dendrogram to obtain the same number of clusters k as observed for the pathway in 886 
question, therefore generating k groups of cell states that are each closely related. We then 887 
compared the distribution of dispersions for clusters of related cell states and the dispersions for 888 
cell states within the pathway profiles (Figure 4C). The dispersion distribution observed for 889 
related cell states (gray line Figure 4C) defines an approximate lower bound for the dispersion 890 
(Figure 4C). Conversely, we also computed dispersion values for randomly selected groups of 891 
cell states (Figure 4C, black). Random groups of cell states provide the dispersion expected if 892 
pathway expression states were completely uncorrelated with the overall expression similarity of 893 
the cells in which they appear. Finally, we defined a pathway profile as a motif if the cell states 894 
expressing it showed dispersion values higher than the 90% percentile value expected for 895 
related cell states (Figure 4C—shaded area). The 90% percentile threshold in dispersion 896 
identified pathway profiles expressed in the most diverse set of cell states. However, we 897 
observed additional pathway states that appeared dispersed among cell types but did not meet 898 
pass the 90% threshold. Therefore, this method could underestimate the number of dispersed 899 
pathway profiles and the threshold can be adjusted to allow a more flexible definition of pathway 900 
motifs.  901 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504714
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 

In contrast to pathway motifs, “private” profiles are cell-state specific, effectively the opposite of 902 
motifs. By definition, private profiles are confined to sets of  similar cell states and therefore 903 
show low dispersion values. To classify private profiles, we identified those profiles whose cell 904 
state dispersion overlapped with the expectation for highly-related cell states. Specifically, we 905 
considered profiles with dispersion < 30% percentile of the lower-bound distribution as “private.” 906 
For  a pathway to be cell-state specific we expected the dispersion to be similar to that observed 907 
in closely related cell states. The threshold can be increased to allow for identification of other 908 
pathway profiles with dispersion values comparable to related cell states.  909 

Recurrence screening in multiple pathways  910 

We calculated recurrence across multiple signaling and protein pathways from the PathBank 911 
(Wishart et al. 2020) database. First, we generated pathway expression matrices for 56 912 
pathways annotated as ‘Signaling’ or ‘Protein’ in PathBank, excluding pathways with less than 7 913 
genes. Next, we generated 200 pseudo-pathway expression matrices with the exact dimensions 914 
for each pathway expression matrix by randomly sampling genes from the transcriptome. We 915 
then generated a null distribution for the expected number of clusters in a typical set of genes in 916 
the transcriptome (Figure 5A) by following the procedure described above. Some pathways, 917 
however, did not show a clear peak in the z-score (Figure 5—figure supplement 1A). Therefore, 918 
when computing the optimal number of clusters for PathBank pathways (Figure 5A) we 919 
automated the silhouette score procedure by smoothing the z-score curve and selecting the 920 
minimum value of 𝑘 for which the z-score dropped below 70% of its maximum value, as the 921 
optimal number of clusters. We then computed a z-score for the observed number of clusters in 922 
the real pathway from these distributions. Since pathways have different numbers of genes, we 923 
generated a distinct null distribution for each pathway using the same number of genes as in the 924 
pathway itself (Figure 5-figure supplement 1B). Finally, we ranked the pathways based on their 925 
deviation from this matched null distribution. Some pathways showed signatures of recurrence 926 
(lower number of clusters than expected), whereas others showed more clusters than expected 927 
(an indication of high specificity across cell states) (Figure 5B). Additionally, we computed a p-928 
value for each pathway based on the fraction of random sets of genes with higher deviation. 929 
This p-value allowed us to identify the most significant pathways (Figure 5B - blue dots). 930 
However, we notice that an empirical p-value might be sensitive to the estimation of the null 931 
distribution and therefore decided to focus on the rank to identify the top recurrent and cell-state 932 
specific pathways. 933 

Interpathway correlations 934 

To detect potential statistical dependence between pathway states from different signaling 935 
pathways, we computed a pairwise Adjusted Mutual Information (AMI) for each pair of 936 
pathways. The AMI quantifies  statistical dependencies between categorical features in a 937 
dataset. In this case, each cell state has two different categorical labels, one for each pathway. 938 
The AMI accounts for the expected correlations if the two labels are assigned at random. An 939 
AMI value of 0 represents the expected co-occurrence of labels due to chance, while a value of 940 
1 represents perfect statistical dependence between the two clusterings. 941 
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Pseudotime trajectory analysis on developmental datasets 942 

To study transitions in pathway signaling profiles through the course of developmental 943 
processes, we performed pseudotime trajectory analysis on two developmental datasets that 944 
were not included in the main integrated data set (Figure 2): the neural crest developmental 945 
lineage from embryonic day 9.5 (Soldatov et al. 2019), and the haemato-endothelial lineages 946 
from embryonic development days 7.5 to 8.5 subsetted from a scRNA-seq atlas of early 947 
organogenesis (Pijuan-Sala et al., 2019). We clustered single-cell data as described above 948 
(Clustering single cells and defining cell states) and constructed a force-directed projection 949 
using the ForceAtlas2 algorithm (Jacomy, 2011). We used cluster annotations and the 950 
ForceAtlas2 reduced dimensional space as input to the Slingshot algorithm (Street et al., 2018) 951 
to obtain a global lineage structure. We then placed cell states in the ordering given by the 952 
resulting pseudotime coordinates (Figure 6 A, C). For comparison with integrated atlas counts, 953 
the counts from these developmental datasets were scaled in a similar manner to the integrated 954 
atlas (Figure 6 B,D). Finally, we used the k-nearest neighbors algorithm to obtain the profile 955 
numbers which match a given cell state along a developmental trajectory (Figure 6 B, D, 956 
numbers).   957 
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