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Abstract 

Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and 

extramedullary sites. We previously characterized a VQ model for human high-risk MM. 

Different VQ lines display distinct disease phenotypes and survivals, suggesting significant 

intra-model variation. Here, we use whole exome sequencing and copy number variation (CNV) 

analysis coupled with RNA-Seq to stratify VQ lines into corresponding clusters: Cluster I VQ 

cells carried recurrent amplification of chromosome (chr) 3 and displayed upregulation of growth 

pathways and high-risk myeloma gene signatures, whereas Cluster II cells had monosomy chr5 

and overexpressed genes and pathways associated with positive response to bortezomib (Btz) 

treatment in human MM patients. Consistently, in sharp contrast to Cluster II VQ cells that 

showed short-term response to Btz, Cluster I VQ cells were de novo resistant to Btz in vivo. Our 

study highlights Cluster I VQ lines as highly representative of human high-risk MM subset. 
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Introduction 

Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells (PCs) that 

primarily grow in the bone marrow (BM) [1]. MM arises from the pre-malignant condition 

monoclonal gammopathy of undetermined significance (MGUS), in which the accumulation of 

chromosomal copy number variations (CNVs), primary translocations, and somatic mutations 

leads to the expansion of a clonal PC population [2]. MGUS and MM share a number of 

overlapping CNVs, including hyperdiploidy [3], as well as primary translocations such as t(4;14) 

[4] and t(11;14) [5]. The genetic heterogeneity of MM is further increased by acquiring 

secondary CNVs [6] and point mutations [7] and a greatly altered landscape of DNA methylation 

compared to healthy PCs [8].  

 

Genetic events (i.e. CNVs and primary translocations) present at time of diagnosis play a 

significant role in patient prognosis [9] and in the stratification of high-risk multiple myeloma 

(hrMM) [10,11]. These events include two translocations involving the immunoglobulin heavy 

chain (IgH) locus: the t(4;14) translocation in which both fibroblast growth factor receptor 3 

(FGFR3) and multiple myeloma SET domain (MMSET) are put under the control of the IgH 

promoter [12,13], and t(14;16) in which the transcription factor c-MAF is overexpressed [14]. 

Amplification (≥4 copies) of the long arm of chromosome 1 (amp(1q)) is an hrMM prognostic 

marker [15], while a gain of a single copy (gain(1q)) is considered high risk when combined with 

a second hrMM chromosomal abnormality [16]. At the level of gene expression, two 

independent, and largely non-overlapping gene signatures predicting increased relapse risk and 

poorer overall survival have been developed for use in diagnosing hrMM: a 70 gene signature 

developed by the University of Arkansas for Medical Sciences (UAMS-70) [17], and a 92 gene 

signature developed by the Erasmus University Medical Center (EMC-92 or SKY92) [18]. 

Diagnosis of patients with hrMM is particularly important as these patients are likely to have a 

poor response to current treatment options [19,20]. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

 

Murine models of MM play an essential role in dissecting mechanisms of disease growth [21] 

and as pre-clinical platforms for testing new anti-MM therapies [22]. The genetic basis for MM 

models ranges from the forced overexpression of a single MM-related oncogene such as the 

Eµ-MAF model [23], transgenic models in which oncogene overexpression is activated through 

plasma cell maturation as in the Vĸ*MYC model [24], or spontaneous MM development owing to 

genetic inbreeding as in the 5TMM family of myeloma models [25,26]. Due to the 

heterogeneous genetic origins of human MM and the downstream pathological and therapeutic 

consequences, genomic characterization of these murine myeloma cells is necessary to 

establish what sub-type of MM they best model. Genetic landscape characterization of the 

5TMM models has shown notable genomic differences between different lines, with the 5T2 line 

showing CNVs syntenic for gain(1q) MM whereas the 5T33 and 5TGM1 lines show CNVs 

syntenic for del(13q) [27]. Within transgenic MM models some chromosomal variability is also 

observed: CNV analysis of both primary and transplantable Vĸ*MYC showed that about 50% of 

sequenced lines had monosomy 5, and within these mice half additionally had monosomy 14, 

including a region syntenic to del(13) in human MM [28]. Further analysis of monosomy 14 

Vĸ*MYC lines identified loss of the region containing the cell-cycle regulating miRNA cluster 

MIR15A/16-1 as driving MM progression in the Vĸ*MYC model and as a potential mechanism to 

explain del(13) as an early initiating CNV in the transition from MGUS to MM [29]. 

 

Previously, we developed and characterized a mouse model of MM driven by both the Vĸ*MYC 

transgene and oncogenic NRasLSL-Q61R inducible via IgG1-Cre [30]. This so-called VQ model 

shows characteristics representative of hrMM, as it is highly proliferative, develops 

extramedullary disease, and is enriched for the UAMS-70 high-risk gene signature compared to 

control PCs [30]. In our initial study, five lines of VQ myeloma were isolated from primary mice 

(VQ-D1 through VQ-D5). In four of these VQ lines (VQ-D1, D2, D4, and D5), we established 
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survival of recipient mice transplanted with donor VQ cells and carried out bulk RNA-Seq 

analysis. Finally, we established two VQ cell lines from two VQ-D2 recipients, termed VQ 4935 

and 4938. Further drug testing of the VQ model also showed de novo resistance to the BCL-2 

inhibitor venetoclax in the VQ cell lines, as well as reduced responses to the proteasome-

inhibitors (PIs) bortezomib and carfilzomib in VQ-D1 recipient mice in vivo [31]. Although all VQ 

cells are driven by MYC dysregulation and RAS hyperactivation, different lines display distinct 

patterns of extramedullary disease, antibody sub-type, and survival (Figure 1A). The genetic 

and/or transcriptional bases for these phenotypic differences remain elusive. Additionally, what 

subtypes of hrMM they may individually represent (if any) are unknown. In the current study, we 

aim to address these questions through the molecular characterization of five VQ lines using B 

cell receptor (BCR) repertoire sequencing, whole exome sequencing, CNV analysis, and RNA-

Seq. 

 

Materials and Methods 

High-throughput sequencing of B cell receptor repertoire 

We performed paired-end full-length high-throughput sequencing of the immunoglobulin heavey 

and light (IgH and IgL) chains using a unique molecular identifier (UMI)-based protocol detailed 

by Turchaninova et al [32]. In brief, we extracted mRNA, synthesized cDNA, and incorporated 

UMIs and a universal primer at the 5’ end with a template switch reaction. To prepare library, 

cDNA equivalent to 5 x 104 B cells for each sample was amplified with two rounds of PCR. For 

immunoglobulin heavy chain amplification, the first PCR used a 5’ end universal primer and 

pooled 3’ end primers specific to mouse IgG or IgA constant region; for immunoglobulin light 

chain amplification, pooled 3’ end primers specific to mouse Igκ and Igλ were used. The second 

PCR used a 5’ and a 3’ universal primer with integrated sample barcoding at both ends. The 

Illumina adaptors were ligated to each sample library to allow for multiple sample sequencing 

simultaneously. We prepared barcoded libraries for each sample and then pooled the libraries 
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to perform asymmetric 400 + 100 bp paired-end IgSeq in one run using Miseq Reagent Kit V3 

(Illumina, Miseq Reagent Kit V3, 600-cycles) on Illumina MiSeq platform.  

 

B cell receptor repertoire analysis  

Sequences were firstly demultiplexed and unique molecular identifier (UMI) were extracted by 

MIGEC v1.2.9 as previously described [32]. Briefly, we demultiplexed fastq files using sample 

barcodes and estimated the MIG (molecular identifier groups, a set of reads tagged with the 

same UMI) size distribution. Sequences with the same UMI in the presence of at least 2 times 

were then assembled and paired sequences were merged from 5’ end to 3’ end reads. We then 

mapped MIG consensus sequences to mouse IgH or IgL germline references and assembled 

clonotypes using MiXCR v3.0.3 [33]. Somatic hypermutation frequencies were calculated using 

the SHazaM package v1.1.0 [34] and plotted using ggplot2 v3.3.5 in R v4.0.3. 

 

Whole exome sequencing 

Genomic DNA was extracted from CD138+ BM cells and tail tissues of moribund Vĸ*Myc; 

NrasLSL-Q61R/+; IgG1-Cre mice using Gentra Puregene Cell Kit (Qiagen). Whole-exome targeted 

capture was carried out using the SureSelect XT Mouse Exome Kit, 49.6 Mb (Cat# 5190-4641; 

Agilent Technologies). Exome capture, exome library amplification, and data analysis was 

carried out as described previously [35]. 

 

Copy number variation analysis 

Whole exome sequencing data was aligned to the mm10 reference genome using BWA MEM 

[36]. Copy number variation analysis was carried out using matched controls for each sample 

with the CNVkit Python library and command-line software toolkit to infer and visualize copy 

number from high-throughput DNA sequencing data as described [37]. Copy number calling 
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was performed with default parameters, with the exception of increasing stringency through the 

use of -m clonal –purity 1 arguments. 

 

RNA-Seq analysis 

Demultiplexed RNA-Seq reads were aligned to Mus musculus mm10 reference genome and 

expression counts were generated using STAR pipeline on Basepair tech 

(https://www.basepairtech.com). Gene counts were then normalized, filtered and potential 

batch effect from tissue was removed using limma v3.46.0 [38] and edgeR v3.32.1 (39). TSNE 

plots were generated using Rtsne v0.15. Differential gene expression among groups was 

determined using DESeq2 v1.30.1 [40]. For gene set enrichment analyses (GSEA), pre-ranked 

gene lists were generated based on shrunken log2 fold changes (LFC) using “ashr” method 

[41]. GSEA tests were done in clusterProfiler v3.18.1 [42] using KEGG [43] and Reactome [44] 

database. For differential expression test and GSEA analysis, adjust p-values for false-

discovery rate was calculated using the Benjamini-Hochberg method [45]. Plots were 

generated using ggplot2 v3.3.6. 

 

High-risk multiple myeloma gene signature analysis 

The method for the calculation of EMC-92 signature risk score was modified for use in murine 

samples from the initial study [18]. Briefly, gene counts of RNA-Seq data were imported as a 

DESeq object and then applied with DESeq normalization. Variance-stabilizing log2-like 

transformation of the data was applied using vst command in DESeq package. Human EMC-

92 signature genes were firstly mapped to HGNC symbols (https://www.genenames.org) and 

then converted to mus musculus orthologues. Among all the EMC-92 signature genes, 84 

genes were converted to mouse orthologues, in which “C1S”, “FTL”, “DONSON” were found 

with 2 different orthologues and “SUN1 / GET4” was converted to 2 individual mouse genes. In 

total, a gene set of 88 genes was used for the calculation. EMC-92 signature risk scores of 
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each sample were then calculated by multiplying the normalized, mean-variance standardized 

gene expression value with the weighting coefficient factors and the sums of the products 

(expression value x weighting coefficient) were determined as the EMC-92 signature risk 

scores. 

 

Analysis of the UAMS-70 gene signature was done through gene set enrichment analysis 

(GSEA) of the mouse orthologs of the 51 human genes determined to be upregulated in high-

risk myeloma patients as described previously [17]. 

 

Mice 

CD45.1+ transplant recipients were purchased from Jackson Laboratory (stock # 002014) and 

maintained at Biotron Animal Research Services facility, University of Wisconsin-Madison. 

Mice were 8-14 weeks old at time of transplant and male and female mice were used in 

approximately equal proportion. All animal experiments were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals and approved by an Animal Care and Use 

Committee at UW-Madison.  The program is accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care.  All animal experiments in this study are reported in 

accordance with ARRIVE guidelines (https://arriveguidelines.org). 

 

Transplantation of myeloma cells 

Total splenocytes from a moribund VQ-D2 MM bearing mouse were manually ground through 

a 70µm filter and washed with sterile PBS containing 2% FBS and antibiotic before being 

resuspended in 90% FBS/10% DMSO and stored in liquid nitrogen until needed. Frozen VQ-

D2 donor cells were gently thawed at 37˚C before being washed twice in PBS containing 2% 

mouse serum (Jackson ImmunoResearch, #015-000-120). Donor cells were then resuspended 

in 200 μl of PBS containing 2% mouse serum. Eight- to fourteen-week-old CD45.1+ recipient 
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mice were sub-lethally irradiated at 4.0 Gy using a CIX3 irradiator (Xstrahl) and transplanted 

with 2x105 donor cells via retro-orbital injection.  

 

Serum protein electrophoresis (SPEP) 

Mice were retro-orbitally bled with plain micro hematocrit tubes (Bris, ISO12772). Blood 

samples were spun in microtainer tubes (BD, 365967) at 4,000x g for 10 minutes to collect 

serum. Serum was loaded into Hydragel agarose gel (Sebia, 4140) and processed using the 

Hydrasys instrument (Sebia) following the manufacturer’s instruction. The processed film was 

scanned, and pixel density of Albumin and γ-globulin bands were quantified using Adobe 

Photoshop. 

 

Complete blood count  

Peripheral blood samples were collected via retro-orbital bleeding and analyzed with a 

Hemavet 950FS (Drew Scientific). 

 

Small compound treatment 

For in vivo bortezomib treatment, bortezomib (Selleck) was dissolved in sterile PBS and 

administered at 0.5mg/kg twice a week via intra-peritoneal (IP) injection. 

For in vivo trametinib treatment, trametinib (Chemietek) was dissolved in 0.5% 

hydroxypropylmethylcellulose (Sigma) and 0.2% Tween-80 (Sigma) in distilled water (pH 8.0) 

and administered at 0.25mg/kg via oral gavage daily.  

 

Mice were allocated to treatment groups so that CBC parameters were statistically similar 

between each group prior to treatment (One-way Analysis of Variance with Tukey-Kramer 

test). Small compounds were not administered to animals in a blinded manner due to 

necessary daily preparation of working concentrations for treatment. Animal care staff were 
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blinded to experimental groups during animal assessment. Post-experiment data analysis was 

not blinded.  

 

Statistics 

For Kaplan–Meier survival curves, survival differences between groups were assessed with the 

log-rank test, assuming significance at p<0.05. Unpaired, two-way t Test was used to 

determine significant differences between two groups unless specified. One-way Analysis of 

Variance with Tukey-Kramer test was used to determine the significance between multiple data 

sets simultaneously unless specified, assuming significance at p<0.05. Statistical analysis was 

carried out using GraphPad Prism v9.1. 

 

Data Availability 

All data generated in this study are available upon reasonable request from the corresponding 

author. 

 

Results 

B cell receptor repertoire sequencing shows low rates of somatic hypermutation in VQ 

myeloma 

We previously characterized 4-5 VQ myeloma lines, which have distinct sites of MM growth 

(including the bone marrow, spleen, or lymph node) and dramatically different survival (Figure 

1A) [30]. In addition, isotyping of serum antibody from 5 primary VQ mice revealed ubiquitous 

kappa light chain secretion, with the VQ-D3 line also secreting lambda light chain but no heavy 

chain (HC) (Figure 1A). All other lines (VQ-D1, D2, D4, and D5) characterized secreted IgA or 

IgG class-switched HC (Figure 1A), consistent with a post-germinal center derivation [46]. 

Germinal center B cells undergo somatic hypermutation (SHM) as part of the antibody affinity 

maturation process [47]. To assess SHM rates in the VQ model, we carried out high-throughput 
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sequencing analysis of BCR repertoire [48] on four primary VQ donor lines (VQ-D1, D2, D4, and 

D5), as well as two cell lines derived from VQ-D2 recipient mice (4935 and 4938) [30]. Initial 

library preparation results showed BCR amplicons that were either clonal or oligoclonal with a 

dominant clone present in the four primary VQ lines (Figure 1B). Sequencing analysis showed 

monoclonal immunoglobulin heavy chain (IgH) sequences across all primary VQ lines as well as 

both cell lines (Figure 1C). In terms of immunoglobulin light chain (IgL) sequencing, VQ-D1, D2, 

and D4 cells showed near clonal IgL, with dominant IgL clones at a frequency of 95% or higher 

(Figure 1C). Meanwhile, VQ-D5 cells showed oligo-clonal IgL sequences, with three separate 

clones displaying a frequency of 5% or higher (Figure 1C). Although VQ 4935 and 4938 cell 

lines maintained clonal IgH similar to parental VQ-D2 cells, both cell lines developed a 

secondary IgL clone making up approximately 20-25% of sequences (Figure 1C). Interestingly, 

differences between IgL sequences in VQ cell lines and parental VQ-D2 cells showed clonal 

selection in vitro: the dominant IgL in the VQ 4935 cell line (clone 1) actually arose from a very 

minor clone in parental VQ-D2 cells with a frequency of only 0.7% (Figure 1C). This same IgL 

sequence was also present in VQ 4938 cells (clone 2) but did not become the dominant clone.  

 

Subsequent BCR repertoire analysis of all VQ lines showed median SHM rates of IgH chains 

≤3.0% (Figure 1D). This SHM frequency is significantly lower than studies in human MM 

patients, where median SHM rates of ~8-9% have been previously reported [49,50]. 

Corroborating initial library preparation, the VQ 4935 cell line showed a higher mean in SHM 

(mean = 7.1) compared to other samples, which all had mean SHM of < 4 (Figure 1D). Despite 

this, median SHM for 4935 cells remained low at 2.64%, while both median and mean SHM 

rates in VQ 4938 cells were similar as those in parental VQ-D2 cells (Figure 1D). Altogether, 

BCR repertoire analysis shows that VQ myeloma is characterized by secretion of dominant 

antibody clones that underwent relatively little affinity maturation prior to BM trafficking.  
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Identification of recurrently mutated genes and associated pathways in VQ myeloma 

cells 

Malignant transformation of the VQ model is driven by two common genetic events in human 

MM: MYC dysregulation and NRAS Q61R mutation. However, the prolonged disease latency 

and phenotypic heterogeneity across different VQ lines suggests the accumulation of additional 

driver mutations in VQ myeloma cells (Figure 1A). To identify additional mutations, we carried 

out whole exome sequencing (WES) of CD138+ cells from five VQ mice, as well as 

corresponding tail samples as germline controls. True mutations were defined as base changes 

with variant allele frequency (VAF) of >10% in CD138+ cells and <2.5% in matched tail 

samples. Overall, 11 genes were identified as being recurrently mutated in 2 or more VQ 

myeloma lines (Figure 2A).  

 

To determine if these genes were recurrently mutated in human MM, mutation status of human 

orthologs was determined using the Multiple Myeloma Research Foundation (MMRF) 

CoMMPass database. Of the 11 genes, only SP140 and FAT4 were found to be mutated in 

>3% of patients, Figure 2A), with 37 and 52 out of 1,171 patients, respectively. SP140 encodes 

a member of the speckled protein family of chromatin reader proteins [51], which is known to 

play a role in suppressing Type I interferon signaling in both B cells [52] and macrophages [53]. 

Frequency of SP140 mutation ranges from 2.5-7.5% [54,55,56,57] and is found in all stages of 

MM development from newly diagnosed [54,55] to drug-refractory [57] disease. FAT4 encodes a 

member of the protocadherin family previously identified as putative tumor suppressor gene in 

the context of breast [58] and colorectal cancers [59]. However, a role of FAT4 in MM 

pathogenesis has not been characterized. Frequency of FAT4 mutation was found in 2-12% of 

newly diagnosed patients [54,56], but not significant in rrMM. Of note, SP140 and FAT4 

mutations are not particularly enriched in MM patients with RAS/RAF pathway mutations as 
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44% of sequenced patients in the CoMMPass database display mutations in NRAS, KRAS, or 

BRAF. 

 

Next, we sought to determine expression of recurrently mutated genes and if their expression 

levels are altered in myeloma vs control PCs. We generated an expanded RNA-Seq dataset, 

which includes RNA-Seq analysis of MM cells isolated from multiple tissues from multiple 

recipient mice in each donor line. Minimum tissue differences were observed in Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM) from the same mouse.  We found that 

Erbb4 and Fat4 were not expressed in PCs (FPKM < 0.1) and 6 of the 11 recurrently mutated 

genes were differentially expressed in BM VQ cells compared to control PCs (Figure 2A, far 

right column). Among them, Map3k13, Memo1, and Dtwd2 were upregulated, while Phactr4, 

Sp110, and Sp140 were downregulated in VQ myeloma cells. Interestingly, none of these genes 

have previously been characterized in the context of MM. To determine the potential pathways 

affected by their dysregulation in the VQ model, we used the Cytoscape network analysis 

package [60] to create a protein interaction map using human orthologs of the six recurrently 

mutated and dysregulated genes, along with their 50 closest interacting proteins as determined 

by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis [61]  (Figure 

2B). We further integrated our RNA-Seq data with the protein-protein interaction network (see 

Figure 2B legend at bottom right). Intriguingly, we noticed that most of the genes in this 

interaction network were downregulated at the transcriptional level in VQ cells (Figure 2B). 

STRING functional enrichment of these proteins showed a significant association with both 

Type I and Type II Interferon signaling, as well as immune responses to viral and tuberculosis 

infection (Figure 2C). Corroborating these findings, gene set enrichment analysis (GSEA) of VQ 

MM cells showed downregulation of both Type I and Type II interferon signaling compared to 

control PCs (Figure 2D). Altogether, our data suggests that interferon signaling is 

downregulated in VQ myeloma cells. 
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Copy number variation analysis stratifies VQ myeloma lines into two clusters based on 

recurrent amplification of chromosome 3 and monosomy of chromosome 5  

CNVs are frequent in MM and play a well-established role in predicting patient prognosis [62]. 

Correspondingly, genetic characterization of the 5T and Vĸ*MYC transgenic mouse models also 

show a prevalence of CNVs in murine myeloma cells [27,28]. We thus sought to carry out CNV 

analysis of the five VQ lines using our WES data. Amplification (amp) of chromosome (chr) 3 

was observed in three of the five VQ lines (Cluster I: VQ-D2, VQ-D3, and VQ-D5) (Figure 3A), 

while monosomy of chr5 was observed in the other two lines (Cluster II: VQ-D1 and VQ-D4, 

Figure 3B). In addition, monosomy chr8, trisomy chr7, and trisomy chr15 were observed in VQ-

D1, VQ-D3, and VQ-D4, respectively (Figure 3A-B). Similar CNVs have also been observed in 

other transgenic MM models: the 5T2 line of the 5T model shows both trisomy 3 and monosomy 

5 [27], whereas monosomy 5 is observed in approximately 50% of primary Vĸ*MYC lines [28]. 

 

CNVs identified in the VQ model include several tumor suppressor genes and oncogenes that 

are highly relevant for MM pathogenesis (Figure 3A-B, highlighted in red). Notably, chr3 

includes the proto-oncogene Nras, as well as Fam46c encoding a non-canonical poly(A) 

polymerase that is frequently mutated in MM and acts as a tumor suppressor for MM 

development [63,64]. Chr5 includes Fgfr3 and Mmset, both of which are overexpressed in 

t(4;14) MM patients [12], and cyclin-dependent kinase 6 (Cdk6) that was recently found to be 

over-expressed in immunomodulatory drug-resistant MM cells [65]. Finally, chr15 includes the 

transcription factor Myc, frequently dysregulated in MM [66].  

 

We next wanted to determine if CNVs of the affected genes correlate to their transcriptional 

changes in VQ vs control PCs. We previously reported moderate overexpression of Myc in all 

VQ MM lines due to the Vk*MYC transgene [30] and absence of Fgfr3 expression in both 
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control and VQ myeloma PCs [31]. Using the expanded RNA-Seq dataset, we observed an 

approximately two-fold increase in Nras expression in Cluster I (VQ-D2 and VQ-D5) cells with 

chr3 amplification compared to control and Cluster II VQ lines without chr3 amplification (Figure 

3C). Despite chr3 amplification, expression of Fam46c was significantly lower in Cluster I cells 

compared to Cluster II and control PCs, suggesting an epigenetic mechanism involved in 

Fam46c downregulation (Figure 3D). In Cluster II (VQ-D1 and VQ-D4) cells with monosomy 

chr5, Cdk6 was nearly undetectable (average FPKM < 0.5), whereas VQ-D5 cells had a 3-fold 

decrease compared to VQ-D2 cells and control PCs (Figure 3E). Despite monosomy chr5, 

Mmset expression in Cluster II MM cells was comparable to that in control PCs, whereas it was 

approximately two-fold higher in Cluster I cells (Figure 3F). Taken together, our data 

demonstrate that gene copy numbers do not necessarily correlate with mRNA levels in VQ cells, 

suggesting that additional epigenetic mechanisms play an important role in controlling gene 

expression.  

 

We previously showed that daily treatment of trametinib (Tra), a potent MEK inhibitor, did not 

lower myeloma disease burden in VQ-D1 recipients as measured by the ratio of serum gamma-

globulin to albumin (G/A) using serum protein electrophoresis (SPEP) (Figure 3G). However, it 

significantly prolonged the survival of diseased mice [30,31] (Figure 3H). Because Cluster I VQ 

cells show increased Nras copy number and mRNA expression, we wanted to determine if VQ-

D2 cells were resistant to MEK inhibition. Here, we followed the same treatment schemes in 

VQ-D2 recipient mice as previously carried out in VQ-D1 mice (see Materials and Methods). 

Two weeks after VQ-D2 transplantation, recipients were divided into two groups with 

comparable CBC parameters and treated with vehicle (Veh) or Tra. Three weeks later, 

treatment efficacy was assessed via G/A ratio using SPEP assay. Despite the amplification of 

chr3 with the Nras locus in Cluster I myeloma lines, daily Tra treatment provided a survival 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16

benefit to VQ-D2 recipients similar to what has been previously observed in VQ-D1 mice (Figure 

3G and 3H). 

 

Gene transcription-based clustering of VQ lines yields highly consistent result with the 

CNV study 

Our CNV analysis separated VQ lines into two distinct clusters based on their characteristic 

genomic changes, which may cause consistent global transcriptional changes in VQ cells.  To 

test this idea, we performed unsupervised hierarchical clustering analysis of all control and VQ 

samples based on the transcriptional profiles generated in RNA-Seq. Not surprisingly, these 

samples split into three groups: Cluster I with chr3 amplification (VQ-D2 and VQ-D5), Cluster II 

with monosomy chr5 (VQ-D1 and VQ-D4), and control PCs (Figure 4A). Further analysis of 

sample similarity via t-distributed stochastic neighbor embedding (tSNE) (Figure 4B) and 

principal component analysis (PCA) (Figure S1) confirmed that VQ myeloma lines cluster into 

two distinct transcriptional subtypes. This result was not affected by tissue origins of MM cells 

as similar clustering result was obtained when tissue effect was removed (Figure S2). More 

importantly, the transcriptional clusters mirror recurrent CNVs observed in these VQ lines. 

  

Cluster I VQ cells display upregulation of growth pathways and high-risk myeloma gene 

signatures  

We next sought to differentiate transcriptional activity between Cluster I and Cluster II VQ 

myeloma. GSEA of hallmark signaling pathways, oncogenic signatures, and relevant MM-

related gene signatures showed numerous pathways significantly upregulated in Cluster I VQ 

cells, but relatively few in Cluster II (Figure 5A). Interestingly, we observed that essential cancer 

growth pathways were highly upregulated in Cluster I VQ cells (Figure 5A), including E2F 

targets (Figure 5B), G2M checkpoint (Figure 5C), and Myc target pathways (Figure 5D). 

Moreover, Cluster I VQ cells showed significant upregulation of the UAMS-70 and EMC-92 high-
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risk MM gene signatures compared to Cluster II VQ lines (Figures 5E). Similar results were 

observed when we compared hrMM gene signatures of VQ clusters to the transplantable 

Vĸ*Myc line t-Vk12653 [67]. While the UAMS-70 gene signature was enriched in Cluster I VQ 

compared to t-Vk12653 (Figure S3A), neither of the hrMM gene signatures was enriched in VQ 

Cluster II cells (Figure S3B). Because EMC92 gene signature includes both positive and 

negative risk genes with different weights, we calculated the EMC-92 risk scores in Cluster I and 

II as well as t-Vk12653 MM cells based on a modified version of the published algorithm [18].  

The EMC-92 risk score of Cluster I MM cells was significantly higher than those of Cluster II and 

t-Vk12653 cells (Figure S3C). These analyses clearly defined VQ Cluster I myeloma lines as 

having high-risk gene expression in comparison to either VQ Cluster II or t-Vk12653 cells.  

 

One of the most significantly upregulated genes in Cluster II VQ is the transcription factor Pbx1, 

which has recently been characterized as a driver oncogene in the context of chr1q-amp hrMM 

[68]. PBX1, along with its downstream target FOXM1, were found to drive proliferation and drug 

resistance in chr1q-amp MM patients [68]. Interestingly, despite loss of Pbx1 in Cluster I VQ 

(Figure S4A), transcriptional levels of Foxm1 in Cluster I VQ cells were significantly higher than 

that in Cluster II VQ cells or control PCs (Figure S4B). We further assessed the PBX1-FOXM1 

axis in VQ myeloma using the recently characterized PBX1 gene signature [68] and a previously 

established FOXM1 pathway signature [69]. Interestingly, we found that while neither VQ-D2 

nor VQ-D5 cells expressed detectable PBX1, Cluster I VQ was enriched for both the PBX1 

(Figure S4C) and FOXM1 (Figure S4D) gene signatures compared to both Cluster II VQ and 

control PCs. In addition, despite high Pbx1 mRNA expression in VQ-D1 and VQ-D4 cells, 

neither gene signature was significantly enriched in Cluster II VQ compared to control PCs. The 

enrichment of PBX1 and FOXM1 gene signatures in Cluster I VQ cells is consistent with their 

high-risk nature. 
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Cluster I and Cluster II VQ show distinct responses to bortezomib in vivo 

When studying the pathways enriched in Cluster II vs Cluster I VQ MM cells, we found that both 

NF-ĸB and TNF-α signaling via NF-ĸB pathways were significantly upregulated in Cluster II VQ 

(Figure 6A and 6B). We also observed comparable expression of Il2rg and increased 

expression of Cd74 and Tnfaip3 in Cluster II vs Cluster I myeloma cells (Figure S5A-C). The 

expression levels of these three genes are positively correlated to bortezomib (Btz) response in 

human MM [70]. In addition, in comparison to control PCs, Cluster I myeloma cells 

overexpressed Psmb1, Psmb2, and Psmb 5 (Figure 6E), which encode the potential Btz 

targeted proteasome subunits [71]. By contrast, Cluster II myeloma cells only overexpressed 

Psmb1 and Psmb 5 (Figure 6E). Together, our results suggest that Cluster I and II myeloma 

cells may respond differently to Btz treatment.  

 

We previously established the single-agent efficacy of inhibiting the proteasome pathway in VQ-

D1 via Btz [31]. Here, we followed the same Btz treatment scheme in VQ-D2 recipient mice as 

previously established in VQ-D1 (see Materials and Methods). Two weeks after VQ-D2 

transplantation, recipients were divided into two groups with comparable CBC parameters and 

treated with vehicle (Veh) or Btz. Three weeks later, treatment efficacy was assessed via G/A 

ratio. In contrast to VQ-D1 mice, in which Btz lowered myeloma burden after three weeks of 

treatment and provided a moderate but significant survival boost [31], this same Btz treatment 

showed no efficacy in VQ-D2 mice and did not provide any survival benefit compared to Veh 

treated mice (Figure 6F). This in vivo study validated our molecular characterization, 

demonstrating that Cluster I VQ-D2 has de novo Btz resistance and can thus be considered 

higher risk than Cluster II VQ-D1. 

 

Discussion 
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Previously, our group developed the Ras-driven VQ myeloma model and phenotypically 

characterized five lines derived from primary VQ mice (Figure 1A) [30]. In the current study, we 

combined BCR repertoire sequencing, WES, and CNV with RNA-Seq to characterize the 

genomic and transcriptomic landscapes of VQ MM lines. Both genomic and transcriptional 

analyses stratified VQ lines into two distinct clusters. Cluster I includes VQ-D2 and VQ-D5, 

which carry chr3 amplification and display both UAMS-70 and EMC-92 hrMM gene signatures 

vs Cluster II VQ and t-Vk12653 Vĸ*Myc myeloma. By contrast, Cluster II includes VQ-D1 and 

VQ-D4, which harbor monosomy chr5 and express hrMM gene signatures comparable to t-

Vk12653 Vĸ*MYC myeloma. Consistent with their molecular classification, Cluster I myeloma 

cells showed de novo resistance to Btz treatment in vivo, while Cluster II myeloma cells 

exhibited a reduced response to Btz. Interestingly, both Cluster I and II VQ lines responded to 

Tra. Our molecular stratification of VQ lines provide a foundation to predict the potential 

outcomes of therapeutic regiments in different populations of human MM patients. 

 

A negative association between the rate of SHM and patient prognosis has been previously 

established in CLL [72]. However, such an association is unclear in the context of MM, as SHM 

has been found to have a positive correlation with patient prognosis [49] or none at all [50]. With 

the exception of the VQ 4935 cell line, BCR repertoire analysis showed relatively low rates of 

SHM in VQ cells compared to human myeloma [49], with mutation frequencies ≤3.0%. Although 

median SHM frequency was slightly higher in Cluster I VQ (VQ-D2/D5) (Figure 1B), there was 

no significant correlation with median survival of different VQ lines (Figure 1A). Notably, SHM in 

VQ cells is comparable to levels in primary Vĸ*MYC mice, where a median frequency of 2.6% in 

IgH was observed [24]. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20

WES of five VQ lines identified 11 recurrently mutated genes (Figure 2). Human orthologs of 

two of these genes, FAT4 and SP140, have been identified as recurrently mutated in numerous 

MM patient sequencing studies [36-40]. Combining mRNA expression and mutation frequencies 

during human MM development, we believe that FAT4 and SP140 mutations play distinct roles 

in MM development. Fat4 expression was nearly undetectable at the mRNA level in both VQ 

and control PCs (Figure 2A). RNA-Seq data compiled by the MMRF’s CoMMPass database 

shows similarly low expression, with 80% of patients having <2 transcripts per million reads for 

the FAT4 gene (data not shown). Moreover, although FAT4 mutations were detected in a 

fraction of newly diagnosed patients [54,55], they remained stable in a recent temporal 

sequencing study of 62 MM patients [73]. Together, these data suggest that FAT4 mutations 

serve a passenger role in myeloma progression. By contrast, Sp140 was found to be expressed 

in both control and VQ PCs and its mRNA level was significantly downregulated in VQ MM cells 

(Figure 2A). In MM patients, frequency of SP140 mutation increases in more advanced stages 

of disease [54,55,56,57] and also increased over time in the same temporal sequencing study 

[73]. Altogether, these data suggest that SP140 mutation plays an important role in MM 

development and progression. 

 

SP140 encodes a member of the speckled protein family of chromatin reader proteins [51], and 

has been previously characterized for its role in downregulating interferon signaling in select 

immune cells [52, 53]. Sp110, encoding a homolog of Sp140 [51], was also found to be 

recurrently mutated in VQ cells and downregulated at the transcriptional level compared to 

control PCs (Figure 2A). STRING analysis showed that Sp110, along with Phosphatase and 

actin regulator 4 (Phactr4), whose gene was also recurrently mutated in VQ MM cells, share 

interactions with several proteins that were also downregulated at the mRNA level in VQ cells 

(Figure 2B). Pathway analysis of this group of proteins found that they were enriched in Type I 

and Type II interferon signaling (Figure 2C). Although Phactr4 has been found to act as a tumor 
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suppressor in hepatocellular carcinoma due to its inhibition of the IL-6/STAT3 pathway [74] and 

both Sp110 and Sp140 were previously implicated in interferon signaling in response to 

tuberculosis infection [75], none of these genes have previously been implicated in interferon 

signaling in the context of MM. Evolutionarily, attenuating Type I and Type II interferon signaling 

could be beneficial to MM immune evasion and survival. Prior to the development of current 

novel therapy regiments, IFN-α2b was used as a MM treatment [76] with limited  long-term use 

due to its systemic toxicity [77]. More recent studies in which IFN-α2b is conjugated to 

antibodies targeting CD38 [78] or HLA-DR [79] on the myeloma cell surface have also shown 

both in vitro and in vivo efficacy. Therefore, the role of Sp110 and Sp140 in shaping the 

interferon response in VQ as well as in human MM is an interesting question worth future 

consideration. 

 

Large-scale chromosomal changes, including translocations and aneuploidies, have significant 

impacts on treatment outcomes in MM patient prognosis. For example, use of the BCL-2 

inhibitor venetoclax for t(11;14) MM [80] or the innate resistance of t(14;16) MM to PIs due to c-

MAF overexpression [81,82] are well documented. Therefore, we performed CNV analysis in 

five VQ lines and identified two recurrent, mutually exclusive events: amplification of chr3, which 

was present in Cluster I (VQ-D2, D3, and D5; Figure 3A), and monosomy chr5, which was 

present in Cluster II (VQ-D1 and D4; Figure 3B). Neither of these CNVs are unique to the VQ 

model. Full gain(chr3) has been identified in the 5T2 line, while the 5TGM1 cells showed partial 

duplication [27]. Interestingly, monosomy 5 is a unifying CNV across all three murine MM 

models. Monosomy 5 was also observed in 5T2 cells, while only partially deleted in 5T33vv and 

5TGM1 lines. Noticeably, monosomy 5 was present in 13/26 sequenced Vĸ*MYC lines [28]. The 

high incidence of monosomy chr5 across multiple MM models warrants further investigation. 
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Consistent with our CNV analysis, gene transcriptional analyses of RNA-Seq data, including 

non-supervised hierarchal clustering, PCA, and tSNE, identified two distinct transcriptional 

clusters (Figure 4 and Figure S1) regardless of their discrete tissue origins (Figure S2). 

Extensive pathway analysis between these two clusters as well as in comparison to the t-

Vk12653 Vk*MYC line revealed the hrMM order: Cluster I > Cluster II = t-Vk12653 (Figure 5 and 

S4), On the other hand, Cluster II (VQ-D1/D4) cells were enriched for the TNF-α/NF-ĸB 

signaling (Figure 6A and 6B) and increased expression of genes linked to Btz response in 

patients (Figure 6C). These transcriptional differences led us to speculate that Cluster I cells 

may be more resistant to PIs than Cluster II cells. In our initial study, treatment of VQ-D1 

recipient mice with Btz following a dosing schedule found to be effective in the Vĸ*MYC model 

(1.0mg/kg Btz treatment on days 1,4,8,11) [67] was not effective as a single agent, but did 

provide a survival benefit when combined with the MEK inhibitor selumetinib [30]. However, in a 

more recent study, we found that reducing Btz dosage to current clinical practices provided a 

modest but significant boost to VQ-D1 survival and significantly reduced G/A ratio after three 

weeks of treatment [31] (Figure 6F). By contrast, in our current study we found that the same 

Btz treatment was completely ineffective against VQ-D2 cells (Figure 6F), corroborating our 

molecular analysis.  

 

We observed that despite chr3 amplification and Nras overexpression in Cluster I MM, both VQ-

D1 and VQ-D2 MM cells responded to Tra treatment (Figure 3). By contrast, 5T2 MM cells 

showed increased resistance to Tra compared to other 5T lines, though this is complicated by 

the fact that the genomic region containing Kras is also duplicated in 5T2 cells [27]. 

Nonetheless, our results provide a strong rationale to develop Tra-based combination therapies 

in hrMM and rrMM, particularly in the context of RAS mutations. 
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Altogether, our data further elucidate the genomic and transcriptional landscapes of the VQ 

model. These molecular characterizations, along with functional validation via in vivo treatment 

experiments, supports an intra-model stratification where Cluster II VQ (VQ-D1/D4) models 

Ras-driven MM with some hrMM features comparable to non-Ras-driven MM (e.g. t-Vk*MYC), 

whereas Cluster I VQ (VQ-D2/D5) represents ultra-high risk multiple myeloma. Future studies 

using the VQ model as pre-clinical platform must necessarily take these intra-model differences 

into account when designing mechanistic studies or testing novel treatments.  
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Figure Legends 

Figure 1. B cell receptor repertoire analysis shows dominant clonality and low somatic 

hypermutation (SHM) rates in primary VQ cells and VQ cell lines. (A) Table summarizing 

previously established characteristics of VQ donor lines. (B-D) B cell receptor heavy-chain and 

light-chain repertoire analysis was carried out as described in Methods. (B) Tapestation image 

showing immunoglobulin heavy chain and light chain library amplification for samples in panels 

C and D. (C) Pie charts depicting clonal frequency for immunoglobulin heavy chain (IgH) 

sequences (top) and immunoglobulin light chain sequences (bottom) sequences from primary 

VQ cells (VQ-D1, D2, D4, and D5) and from VQ-D2 derived cell lines (4935 and 4938). (D) 

Violin plots showing mean (black dots) and distribution of the total somatic hypermutation 

frequencies across B-cell IgH sequences from primary VQ cells (VQ-D1, D2, D4, and D5) and 

from VQ-D2 derived cell lines (4935 and 4938). 

 

Figure 2. Whole exome sequencing identifies recurrently mutated genes in VQ myeloma 

cells. Five paired tail DNA (non-leukemia control) and genomic DNA from VQ CD138+ B220-

plasma cells were subjected to whole exome sequencing as described in Materials and 

Methods. (A) Recurrently mutated genes (mutated in > 2/4 mice) and their variant allele 

frequencies (VAF) in VQ cells, frequency of mutation in human orthologs as determined from a 

cohort of 1,171 MM patient samples from the CoMMPass database, and mRNA expression (as 

determined by Fragments Per Kilobase of gene per Million mapped reads [FPKM]) in VQ cells 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 32

are shown. (B) Cytoscape-generated STRING network of recurrently mutated genes with 

differential RNA expression, as well as 40 closest interacting proteins as determined by 

STRING analysis. Recurrently mutated genes are represented by diamonds. Interacting 

proteins are denoted by circles. Genes with differential expression are color-coded. (C) Select 

list of pathways enriched in genes highlighted in panel B. (D) GSEA of Reactome gene sets for 

interferon alpha/beta signaling (top) and interferon gamma signaling (bottom) between VQ and 

control plasma cells. NES, normalized enrichment score. FDR, false discovery rate. 

 

Figure 3. Copy number variation (CNV) analysis stratifies VQ cells based on recurrent 

amplification of chromosome 3 and monosomy chromosome 5. (A-B) CNV analysis was 

performed using the whole exome sequencing data as described in Materials and Methods. 

Orange dots indicate significant changes in log2 copy ratio for a given call segment in plasma 

cells compared to non-leukemia control samples. Location and name of tumor suppressors and 

oncogenes related to myeloma pathogenesis are shown in red. CNV plots are grouped 

according to recurrent CNV status. (C-F) Transcript levels of genes highlighted in red in panels 

A and B are shown in CD138+ B220- cells from control and VQ recipient mice. FPKM, 

Fragments Per Kilobase of transcript per Million mapped reads. One-way analysis of variance 

with Tukey’s post-test was performed. Tissue of origin for individual samples is denoted by 

legend. (G-H) CD45.1 recipient mice were sub-lethally irradiated and injected with bone marrow 

cells from moribund VQ-D1 donor mouse or splenocytes from moribund VQ-D2 donor mouse. 

Six weeks (VQ-D1) or two weeks (VQ-D2) post-transplant, mice were treated with vehicle or 

trametinib. (G) Serum protein electrophoresis was performed to quantify the γ-globulin/Albumin 

(G/A) ratios in VQ-D1 and VQ-D2 recipient mice at day 21 of treatment. Two-sided t-test was 

performed. (H) Kaplan-Meier survival curves were plotted against days after treatment. Log-rank 
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test was performed. Note: VQ-D1 results are combined from historical [30,31] and new data. ns, 

not significant. *, p<0.05. **, p<0.01. ***, p<0.001. ****, p<0.0001. 

 

Figure 4. RNA-Seq analysis reveals two distinct transcriptional clusters of VQ myeloma. 

Bulk RNA-Seq analysis was performed using flow sorted CD138+ B220- CD45.2+ cells from 

bone marrow (BM) of control mice (n=3) and BM, spleen (SPL), lymph node (LN), or liver (Liv) 

of multiple VQ-D1, VQ-D2, VQ-D4, and VQ-D5 recipients. (A) Clustered heat map of RNA-seq 

gene count data. Samples are color-coded by tissue sites and VQ lines as indicated. (B) tSNE 

analysis of gene counts data of VQ myeloma samples. Samples are color-coded by VQ lines as 

in panel A. Tissue of origin for individual samples is denoted by legend.  

 

Figure 5. VQ Cluster I myeloma cells have increased expression of Hallmark growth 

pathways and high-risk MM gene signatures. (A) Overview of gene set enrichment analysis 

between Cluster I (VQ-D2/D5) and Cluster II (VQ-D1/D4) VQ myeloma cells. Relevant pathways 

are highlighted in red. (B-E) GSEA plots comparing Cluster I to Cluster II for (B) 

Hallmark_E2F_Targets, (C) Hallmark_G2M Targets, (D) Hallmark_MYC_Targets_V1 (left) 

Hallmark_MYC_Targets_V2 (right), and (E) EMC-92 hrMM gene signature (left) and UAMS-70 

hrMM gene signature (right). NES, normalized enrichment score; FDR, false discovery rate; p. 

adj., adjusted P-value.  

 

Figure 6. Cluster I and Cluster II VQ cells display distinct responses to bortezomib in 

vivo. (A-C) Gene set enrichment analysis of proteasome inhibitor related pathways between 

Cluster I (VQ-D2/D5) and Cluster II (VQ-D1/D4) VQ myeloma cells. KEGG_ NF-kappa B 

signaling pathway (A), Hallmark_TNFA signaling via NFKB (B), and KEGG_Proteasome 
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pathway (C). (D) Transcript levels of NF-ĸB related genes Tnfaip3, CD74, and Il2rg in CD138+ 

B220- cells from Cluster I and II VQ myeloma mice. Two-sided t-Test was performed. VQ donor 

of origin is color-coded as indicated. Results are presented as mean + SD. FPKM, Fragments 

Per Kilobase of transcript per Million mapped reads. (E) Transcript levels of proteasome related 

genes Psmb1, Psmb2, and Psmb5 in CD138+ B220- cells from control plasma cells (Control) 

and Cluster I and II VQ cells. Two-sided t-Test was performed. VQ donor of origin is color-coded 

as indicated. Results are presented as mean + SD. (F-G) CD45.1 recipient mice were sub-

lethally irradiated and injected with bone marrow cells from moribund VQ-D1 donor mouse or 

splenocytes from moribund VQ-D2 donor mouse. Six weeks (VQ-D1) or two weeks (VQ-D2) 

posttransplant, mice were treated with vehicle or bortezomib as described in Materials and 

Methods. (F) Serum protein electrophoresis was performed to quantify the γ-globulin/Albumin 

(G/A) ratios in VQ-D2 recipient mice at day 21 of treatment. Two-sided t-Test was performed. 

(G) Kaplan-Meier survival curves were plotted against days after treatment. Log-rank test was 

performed. Note: VQ-D1 results are taken from historical data [31]. FDR, false discovery rate; 

NES, normalized enrichment score; ns, not significant; p. adj., adjusted P-value. *, p <0.05; **, p 

<0.01; ***, p <0.001; ****, p <0.0001.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1-Zhang

40

30

20

10

0M
ut

at
io

n 
fre

qu
en

cy
(to

ta
l)

A

C

Mouse Ig Heavy Chain

VQ-D1 VQ-D2 VQ-D4 VQ-D5 4935 4938Ladder

Mouse Ig Light Chain

VQ-D1 VQ-D2 VQ-D4 VQ-D5 4935 4938

VQ Line Gender 
Dominant 

clone 
Disease 

sites 

Median 
Survival 
(days) 

D1 M IgG2κ BM, SPL 80 
D2 M IgAκ SPL, LN 21 
D3 F κ + λ only LN n/a 
D4 M IgAκ BM, LN 60 
D5 F IgAκ SPL, LN 40 

  
 

B

Mean: 1.59
Median: 1.37
StdDev: ±1.46

Mean: 2.94
Median: 2.56
StdDev: ±2.06

Mean: 1.65
Median: 0.63
StdDev: ±2.87

Mean: 2.97
Median: 2.68
StdDev: ±0.93

Mean: 7.06
Median: 2.64
StdDev: ±8.56

Mean: 3.87
Median: 2.74
StdDev: ±3.4

VQ-D1 VQ-D2 VQ-D4 VQ-D5
4935

cell line
4938

cell line
D

IgH

IgL

VQ-D1 VQ-D2 VQ-D4 VQ-D5
4935

cell line
4938

cell line

1

1 2 3 4

1 1 1 1 1

1 2 1 2 1 21 2 31 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2-Zhang
A

B

Log2 fold change

-3.5 3.5

Recurrently mutated gene

Interacting protein 
(expressed)
Interacting protein 
(not expressed)Type I 

Interferon 
signaling

STRING of human orthologs

Missense
Nonsense
Frameshift

Upregulated
Downregulated
No Change

D1 D2 D3 D4 D5
Erbb4 0.39 0 0 0.32 0.69 13 (31%) 0.00

Map3k13 0 0 0 0.24 0.11 1 (0%) 4.31
Trrap 0 0.15 0 0.45 0.44 14 (50%) 8.74

Phactr4 0 0.17 0.73 0 0.40 4 (75%) 2.31
Sp110 0 0 0.21 0.19 0 2 (0%) 0.61
Sp140 0.23 0 0 0.15 0.33 37 (46%) 7.09
Fat4 0 0 1.00 0.28 0.59 52 (56%) 0.02

Memo1 0 0.23 0 0.50 0 2 (0%) 7.08
Cdc5l 0 0.25 0 0.52 1.00 1 (0%) 20.12
Dtwd2 0.31 0 0.80 0 0 1 (0%) 1.84
Dnajb6 0 0.12 0.64 0 0 2 (0%) 3.14

Other

VQ RNA 
expression 

(FPKM)

Variant Allele Frequency 
for recurrent mutations in 

>=2 mice

VQ Donor #
CoMMPass 

database  
n=1171              

(% reurrence with 
RAS/RAF)

Protein kinase

Protein 
phosphatase
Transcription 

factor

Cell Migration

0 5 10 15 20 25

Type I interferon signaling pathway

Type I interferon induction and 
signaling during SARS-CoV-2 infection

Immune response to tuberculosis

Negative regulation of 
viral genome replication

ISG15 antiviral mechanism

SARS-CoV-2 innate immunity evasion 
and cell-specific immune response

Response to interferon-alpha

Type II interferon signaling (IFNG)

Number of proteins

(1.91E-25)

(4.45E-12)

(1.1E-10)

(3.55E-8)

(6.64E-8)

(1.79E-6)

(6.56E-6)

(1.31E-5)
FDRC

NES: -1.79
FDR q-val:0.005

VQ

REACTOME_INTEFERON_
ALPHA_BETA_SIGNALING

WT

REACTOME_INTEFERON_
GAMMA_SIGNALING

VQ WT

NES: -1.92
FDR q-val:0.001

D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.21.504657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3-ZhangA
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Figure 5-Zhang
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Figure 6-Zhang
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