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Abstract

Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and
extramedullary sites. We previously characterized a VQ model for human high-risk MM.
Different VQ lines display distinct disease phenotypes and survivals, suggesting significant
intra-model variation. Here, we use whole exome sequencing and copy number variation (CNV)
analysis coupled with RNA-Seq to stratify VQ lines into corresponding clusters: Cluster | VQ
cells carried recurrent amplification of chromosome (chr) 3 and displayed upregulation of growth
pathways and high-risk myeloma gene signatures, whereas Cluster Il cells had monosomy chrb
and overexpressed genes and pathways associated with positive response to bortezomib (Btz)
treatment in human MM patients. Consistently, in sharp contrast to Cluster Il VQ cells that
showed short-term response to Btz, Cluster | VQ cells were de novo resistant to Btz in vivo. Our

study highlights Cluster | VQ lines as highly representative of human high-risk MM subset.
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Introduction

Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells (PCs) that
primarily grow in the bone marrow (BM) [1]. MM arises from the pre-malignant condition
monoclonal gammopathy of undetermined significance (MGUS), in which the accumulation of
chromosomal copy number variations (CNVs), primary translocations, and somatic mutations
leads to the expansion of a clonal PC population [2]. MGUS and MM share a number of
overlapping CNVs, including hyperdiploidy [3], as well as primary translocations such as t(4;14)
[4] and t(11;14) [5]. The genetic heterogeneity of MM is further increased by acquiring
secondary CNVs [6] and point mutations [7] and a greatly altered landscape of DNA methylation

compared to healthy PCs [8].

Genetic events (i.e. CNVs and primary translocations) present at time of diagnosis play a
significant role in patient prognosis [9] and in the stratification of high-risk multiple myeloma
(hrMM) [10,11]. These events include two translocations involving the immunoglobulin heavy
chain (IgH) locus: the t(4;14) translocation in which both fibroblast growth factor receptor 3
(FGFR3) and multiple myeloma SET domain (MMSET) are put under the control of the IgH
promoter [12,13], and t(14;16) in which the transcription factor c-MAF is overexpressed [14].
Amplification (=4 copies) of the long arm of chromosome 1 (amp(1q)) is an hrMM prognostic
marker [15], while a gain of a single copy (gain(1q)) is considered high risk when combined with
a second hrMM chromosomal abnormality [16]. At the level of gene expression, two
independent, and largely non-overlapping gene signatures predicting increased relapse risk and
poorer overall survival have been developed for use in diagnosing hrMM: a 70 gene signature
developed by the University of Arkansas for Medical Sciences (UAMS-70) [17], and a 92 gene
signature developed by the Erasmus University Medical Center (EMC-92 or SKY92) [18].
Diagnosis of patients with hrMM is particularly important as these patients are likely to have a

poor response to current treatment options [19,20].
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Murine models of MM play an essential role in dissecting mechanisms of disease growth [21]
and as pre-clinical platforms for testing new anti-MM therapies [22]. The genetic basis for MM
models ranges from the forced overexpression of a single MM-related oncogene such as the
Ep-MAF model [23], transgenic models in which oncogene overexpression is activated through
plasma cell maturation as in the Vk*MYC model [24], or spontaneous MM development owing to
genetic inbreeding as in the 5TMM family of myeloma models [25,26]. Due to the
heterogeneous genetic origins of human MM and the downstream pathological and therapeutic
consequences, genomic characterization of these murine myeloma cells is necessary to
establish what sub-type of MM they best model. Genetic landscape characterization of the
5TMM models has shown notable genomic differences between different lines, with the 5T2 line
showing CNVs syntenic for gain(1q) MM whereas the 5T33 and 5TGML1 lines show CNVs
syntenic for del(13q) [27]. Within transgenic MM models some chromosomal variability is also
observed: CNV analysis of both primary and transplantable Vx*MYC showed that about 50% of
sequenced lines had monosomy 5, and within these mice half additionally had monosomy 14,
including a region syntenic to del(13) in human MM [28]. Further analysis of monosomy 14
V*MYC lines identified loss of the region containing the cell-cycle regulating miRNA cluster
MIR15A/16-1 as driving MM progression in the Vk«*MYC model and as a potential mechanism to

explain del(13) as an early initiating CNV in the transition from MGUS to MM [29].

Previously, we developed and characterized a mouse model of MM driven by both the Vi*MYC
transgene and oncogenic NRas">"®*® inducible via IgG1-Cre [30]. This so-called VQ model
shows characteristics representative of hrMM, as it is highly proliferative, develops
extramedullary disease, and is enriched for the UAMS-70 high-risk gene signature compared to
control PCs [30]. In our initial study, five lines of VQ myeloma were isolated from primary mice

(VQ-D1 through VQ-D5). In four of these VQ lines (VQ-D1, D2, D4, and D5), we established
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survival of recipient mice transplanted with donor VQ cells and carried out bulk RNA-Seq
analysis. Finally, we established two VQ cell lines from two VQ-D2 recipients, termed VQ 4935
and 4938. Further drug testing of the VQ model also showed de novo resistance to the BCL-2
inhibitor venetoclax in the VQ cell lines, as well as reduced responses to the proteasome-
inhibitors (PIs) bortezomib and carfilzomib in VQ-D1 recipient mice in vivo [31]. Although all VQ
cells are driven by MYC dysregulation and RAS hyperactivation, different lines display distinct
patterns of extramedullary disease, antibody sub-type, and survival (Figure 1A). The genetic
and/or transcriptional bases for these phenotypic differences remain elusive. Additionally, what
subtypes of hrMM they may individually represent (if any) are unknown. In the current study, we
aim to address these questions through the molecular characterization of five VQ lines using B
cell receptor (BCR) repertoire sequencing, whole exome sequencing, CNV analysis, and RNA-

Seq.

Materials and Methods

High-throughput sequencing of B cell receptor repertoire

We performed paired-end full-length high-throughput sequencing of the immunoglobulin heavey
and light (IgH and IgL) chains using a unique molecular identifier (UMI)-based protocol detailed
by Turchaninova et al [32]. In brief, we extracted mRNA, synthesized cDNA, and incorporated
UMIs and a universal primer at the 5 end with a template switch reaction. To prepare library,
cDNA equivalent to 5 x 10* B cells for each sample was amplified with two rounds of PCR. For
immunoglobulin heavy chain amplification, the first PCR used a 5 end universal primer and
pooled 3’ end primers specific to mouse 1gG or IgA constant region; for immunoglobulin light
chain amplification, pooled 3’ end primers specific to mouse Igk and IgA were used. The second
PCR used a 5’ and a 3’ universal primer with integrated sample barcoding at both ends. The
lllumina adaptors were ligated to each sample library to allow for multiple sample sequencing

simultaneously. We prepared barcoded libraries for each sample and then pooled the libraries
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to perform asymmetric 400 + 100 bp paired-end IgSeq in one run using Miseq Reagent Kit V3

(Mlumina, Miseq Reagent Kit V3, 600-cycles) on Illlumina MiSeq platform.

B cell receptor repertoire analysis

Sequences were firstly demultiplexed and unique molecular identifier (UMI) were extracted by
MIGEC v1.2.9 as previously described [32]. Briefly, we demultiplexed fastq files using sample
barcodes and estimated the MIG (molecular identifier groups, a set of reads tagged with the
same UMI) size distribution. Sequences with the same UMI in the presence of at least 2 times
were then assembled and paired sequences were merged from 5’ end to 3’ end reads. We then
mapped MIG consensus sequences to mouse IgH or IgL germline references and assembled
clonotypes using MiXCR v3.0.3 [33]. Somatic hypermutation frequencies were calculated using

the SHazaM package v1.1.0 [34] and plotted using ggplot2 v3.3.5 in R v4.0.3.

Whole exome sequencing
Genomic DNA was extracted from CD138+ BM cells and tail tissues of moribund V«*Myc;

NrasLSL-QGlR/+;

IgG1-Cre mice using Gentra Puregene Cell Kit (Qiagen). Whole-exome targeted
capture was carried out using the SureSelect XT Mouse Exome Kit, 49.6 Mb (Cat# 5190-4641;
Agilent Technologies). Exome capture, exome library amplification, and data analysis was

carried out as described previously [35].

Copy number variation analysis

Whole exome sequencing data was aligned to the mm10 reference genome using BWA MEM
[36]. Copy number variation analysis was carried out using matched controls for each sample
with the CNVKkit Python library and command-line software toolkit to infer and visualize copy

number from high-throughput DNA sequencing data as described [37]. Copy number calling
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was performed with default parameters, with the exception of increasing stringency through the

use of -m clonal -purity 1 arguments.

RNA-Seq analysis
Demultiplexed RNA-Seq reads were aligned to Mus musculus mm10 reference genome and
expression counts were generated wusing STAR pipeline on Basepair tech

(https://www.basepairtech.com). Gene counts were then normalized, filtered and potential

batch effect from tissue was removed using limma v3.46.0 [38] and edgeR v3.32.1 (39). TSNE
plots were generated using Rtsne v0.15. Differential gene expression among groups was
determined using DESeq2 v1.30.1 [40]. For gene set enrichment analyses (GSEA), pre-ranked
gene lists were generated based on shrunken log2 fold changes (LFC) using “ashr” method
[41]. GSEA tests were done in clusterProfiler v3.18.1 [42] using KEGG [43] and Reactome [44]
database. For differential expression test and GSEA analysis, adjust p-values for false-
discovery rate was calculated using the Benjamini-Hochberg method [45]. Plots were

generated using ggplot2 v3.3.6.

High-risk multiple myeloma gene signature analysis

The method for the calculation of EMC-92 signature risk score was modified for use in murine
samples from the initial study [18]. Briefly, gene counts of RNA-Seq data were imported as a
DESeq object and then applied with DESeq normalization. Variance-stabilizing log2-like
transformation of the data was applied using vst command in DESeq package. Human EMC-
92 signature genes were firstly mapped to HGNC symbols (https://www.genenames.org) and
then converted to mus musculus orthologues. Among all the EMC-92 signature genes, 84
genes were converted to mouse orthologues, in which “C1S”, “FTL”, “DONSON” were found
with 2 different orthologues and “SUN1 / GET4” was converted to 2 individual mouse genes. In

total, a gene set of 88 genes was used for the calculation. EMC-92 signature risk scores of
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each sample were then calculated by multiplying the normalized, mean-variance standardized
gene expression value with the weighting coefficient factors and the sums of the products
(expression value x weighting coefficient) were determined as the EMC-92 signature risk

Scores.

Analysis of the UAMS-70 gene signature was done through gene set enrichment analysis
(GSEA) of the mouse orthologs of the 51 human genes determined to be upregulated in high-

risk myeloma patients as described previously [17].

Mice

CD45.1" transplant recipients were purchased from Jackson Laboratory (stock # 002014) and
maintained at Biotron Animal Research Services facility, University of Wisconsin-Madison.
Mice were 8-14 weeks old at time of transplant and male and female mice were used in
approximately equal proportion. All animal experiments were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals and approved by an Animal Care and Use
Committee at UW-Madison. The program is accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care. All animal experiments in this study are reported in

accordance with ARRIVE guidelines (https://arriveqguidelines.orq).

Transplantation of myeloma cells

Total splenocytes from a moribund VQ-D2 MM bearing mouse were manually ground through
a 70pm filter and washed with sterile PBS containing 2% FBS and antibiotic before being
resuspended in 90% FBS/10% DMSO and stored in liquid nitrogen until needed. Frozen VQ-
D2 donor cells were gently thawed at 37°C before being washed twice in PBS containing 2%
mouse serum (Jackson ImmunoResearch, #015-000-120). Donor cells were then resuspended

in 200 pl of PBS containing 2% mouse serum. Eight- to fourteen-week-old CD45.1+ recipient
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mice were sub-lethally irradiated at 4.0 Gy using a CIX3 irradiator (Xstrahl) and transplanted

with 2x10° donor cells via retro-orbital injection.

Serum protein electrophoresis (SPEP)

Mice were retro-orbitally bled with plain micro hematocrit tubes (Bris, 1SO12772). Blood
samples were spun in microtainer tubes (BD, 365967) at 4,000x g for 10 minutes to collect
serum. Serum was loaded into Hydragel agarose gel (Sebia, 4140) and processed using the
Hydrasys instrument (Sebia) following the manufacturer’s instruction. The processed film was
scanned, and pixel density of Albumin and y-globulin bands were quantified using Adobe

Photoshop.

Complete blood count
Peripheral blood samples were collected via retro-orbital bleeding and analyzed with a

Hemavet 950FS (Drew Scientific).

Small compound treatment

For in vivo bortezomib treatment, bortezomib (Selleck) was dissolved in sterile PBS and
administered at 0.5mg/kg twice a week via intra-peritoneal (IP) injection.

For in vivo trametinib treatment, trametinib (Chemietek) was dissolved in 0.5%
hydroxypropylmethylcellulose (Sigma) and 0.2% Tween-80 (Sigma) in distilled water (pH 8.0)

and administered at 0.25mg/kg via oral gavage daily.

Mice were allocated to treatment groups so that CBC parameters were statistically similar
between each group prior to treatment (One-way Analysis of Variance with Tukey-Kramer
test). Small compounds were not administered to animals in a blinded manner due to

necessary daily preparation of working concentrations for treatment. Animal care staff were
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blinded to experimental groups during animal assessment. Post-experiment data analysis was

not blinded.

Statistics

For Kaplan—Meier survival curves, survival differences between groups were assessed with the
log-rank test, assuming significance at p<0.05. Unpaired, two-way t Test was used to
determine significant differences between two groups unless specified. One-way Analysis of
Variance with Tukey-Kramer test was used to determine the significance between multiple data
sets simultaneously unless specified, assuming significance at p<0.05. Statistical analysis was

carried out using GraphPad Prism v9.1.

Data Availability
All data generated in this study are available upon reasonable request from the corresponding

author.

Results

B cell receptor repertoire sequencing shows low rates of somatic hypermutation in VQ
myeloma

We previously characterized 4-5 VQ myeloma lines, which have distinct sites of MM growth
(including the bone marrow, spleen, or lymph node) and dramatically different survival (Figure
1A) [30]. In addition, isotyping of serum antibody from 5 primary VQ mice revealed ubiquitous
kappa light chain secretion, with the VQ-D3 line also secreting lambda light chain but no heavy
chain (HC) (Figure 1A). All other lines (VQ-D1, D2, D4, and D5) characterized secreted IgA or
IgG class-switched HC (Figure 1A), consistent with a post-germinal center derivation [46].
Germinal center B cells undergo somatic hypermutation (SHM) as part of the antibody affinity

maturation process [47]. To assess SHM rates in the VQ model, we carried out high-throughput

10
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sequencing analysis of BCR repertoire [48] on four primary VQ donor lines (VQ-D1, D2, D4, and
D5), as well as two cell lines derived from VQ-D2 recipient mice (4935 and 4938) [30]. Initial
library preparation results showed BCR amplicons that were either clonal or oligoclonal with a
dominant clone present in the four primary VQ lines (Figure 1B). Sequencing analysis showed
monoclonal immunoglobulin heavy chain (IgH) sequences across all primary VQ lines as well as
both cell lines (Figure 1C). In terms of immunoglobulin light chain (IgL) sequencing, VQ-D1, D2,
and D4 cells showed near clonal IgL, with dominant IgL clones at a frequency of 95% or higher
(Figure 1C). Meanwhile, VQ-D5 cells showed oligo-clonal IgL sequences, with three separate
clones displaying a frequency of 5% or higher (Figure 1C). Although VQ 4935 and 4938 cell
lines maintained clonal IgH similar to parental VQ-D2 cells, both cell lines developed a
secondary IgL clone making up approximately 20-25% of sequences (Figure 1C). Interestingly,
differences between IgL sequences in VQ cell lines and parental VQ-D2 cells showed clonal
selection in vitro: the dominant IgL in the VQ 4935 cell line (clone 1) actually arose from a very
minor clone in parental VQ-D2 cells with a frequency of only 0.7% (Figure 1C). This same IgL

sequence was also present in VQ 4938 cells (clone 2) but did not become the dominant clone.

Subsequent BCR repertoire analysis of all VQ lines showed median SHM rates of IgH chains
<3.0% (Figure 1D). This SHM frequency is significantly lower than studies in human MM
patients, where median SHM rates of ~8-9% have been previously reported [49,50].
Corroborating initial library preparation, the VQ 4935 cell line showed a higher mean in SHM
(mean = 7.1) compared to other samples, which all had mean SHM of < 4 (Figure 1D). Despite
this, median SHM for 4935 cells remained low at 2.64%, while both median and mean SHM
rates in VQ 4938 cells were similar as those in parental VQ-D2 cells (Figure 1D). Altogether,
BCR repertoire analysis shows that VQ myeloma is characterized by secretion of dominant

antibody clones that underwent relatively little affinity maturation prior to BM trafficking.
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Identification of recurrently mutated genes and associated pathways in VQ myeloma
cells

Malignant transformation of the VQ model is driven by two common genetic events in human
MM: MYC dysregulation and NRAS Q61R mutation. However, the prolonged disease latency
and phenotypic heterogeneity across different VQ lines suggests the accumulation of additional
driver mutations in VQ myeloma cells (Figure 1A). To identify additional mutations, we carried
out whole exome sequencing (WES) of CD138+ cells from five VQ mice, as well as
corresponding tail samples as germline controls. True mutations were defined as base changes
with variant allele frequency (VAF) of >10% in CD138+ cells and <2.5% in matched tail
samples. Overall, 11 genes were identified as being recurrently mutated in 2 or more VQ

myeloma lines (Figure 2A).

To determine if these genes were recurrently mutated in human MM, mutation status of human
orthologs was determined using the Multiple Myeloma Research Foundation (MMRF)
CoMMPass database. Of the 11 genes, only SP140 and FAT4 were found to be mutated in
>3% of patients, Figure 2A), with 37 and 52 out of 1,171 patients, respectively. SP140 encodes
a member of the speckled protein family of chromatin reader proteins [51], which is known to
play a role in suppressing Type | interferon signaling in both B cells [52] and macrophages [53].
Frequency of SP140 mutation ranges from 2.5-7.5% [54,55,56,57] and is found in all stages of
MM development from newly diagnosed [54,55] to drug-refractory [57] disease. FAT4 encodes a
member of the protocadherin family previously identified as putative tumor suppressor gene in
the context of breast [58] and colorectal cancers [59]. However, a role of FAT4 in MM
pathogenesis has not been characterized. Frequency of FAT4 mutation was found in 2-12% of
newly diagnosed patients [54,56], but not significant in rrMM. Of note, SP140 and FAT4

mutations are not particularly enriched in MM patients with RAS/RAF pathway mutations as
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44% of sequenced patients in the CoMMPass database display mutations in NRAS, KRAS, or

BRAF.

Next, we sought to determine expression of recurrently mutated genes and if their expression
levels are altered in myeloma vs control PCs. We generated an expanded RNA-Seq dataset,
which includes RNA-Seq analysis of MM cells isolated from multiple tissues from multiple
recipient mice in each donor line. Minimum tissue differences were observed in Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) from the same mouse. We found that
Erbb4 and Fat4 were not expressed in PCs (FPKM < 0.1) and 6 of the 11 recurrently mutated
genes were differentially expressed in BM VQ cells compared to control PCs (Figure 2A, far
right column). Among them, Map3k13, Memol, and Dtwd2 were upregulated, while Phactr4,
Sp110, and Sp140 were downregulated in VQ myeloma cells. Interestingly, none of these genes
have previously been characterized in the context of MM. To determine the potential pathways
affected by their dysregulation in the VQ model, we used the Cytoscape network analysis
package [60] to create a protein interaction map using human orthologs of the six recurrently
mutated and dysregulated genes, along with their 50 closest interacting proteins as determined
by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis [61] (Figure
2B). We further integrated our RNA-Seq data with the protein-protein interaction network (see
Figure 2B legend at bottom right). Intriguingly, we noticed that most of the genes in this
interaction network were downregulated at the transcriptional level in VQ cells (Figure 2B).
STRING functional enrichment of these proteins showed a significant association with both
Type | and Type Il Interferon signaling, as well as immune responses to viral and tuberculosis
infection (Figure 2C). Corroborating these findings, gene set enrichment analysis (GSEA) of VQ
MM cells showed downregulation of both Type | and Type Il interferon signaling compared to
control PCs (Figure 2D). Altogether, our data suggests that interferon signaling is

downregulated in VQ myeloma cells.
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Copy number variation analysis stratifies VQ myeloma lines into two clusters based on
recurrent amplification of chromosome 3 and monosomy of chromosome 5

CNVs are frequent in MM and play a well-established role in predicting patient prognosis [62].
Correspondingly, genetic characterization of the 5T and Vx*MYC transgenic mouse models also
show a prevalence of CNVs in murine myeloma cells [27,28]. We thus sought to carry out CNV
analysis of the five VQ lines using our WES data. Amplification (amp) of chromosome (chr) 3
was observed in three of the five VQ lines (Cluster I: VQ-D2, VQ-D3, and VQ-D5) (Figure 3A),
while monosomy of chr5 was observed in the other two lines (Cluster 1l: VQ-D1 and VQ-D4,
Figure 3B). In addition, monosomy chr8, trisomy chr7, and trisomy chrl5 were observed in VQ-
D1, VQ-D3, and VQ-D4, respectively (Figure 3A-B). Similar CNVs have also been observed in
other transgenic MM models: the 5T2 line of the 5T model shows both trisomy 3 and monosomy

5 [27], whereas monosomy 5 is observed in approximately 50% of primary Vx*MYC lines [28].

CNVs identified in the VQ model include several tumor suppressor genes and oncogenes that
are highly relevant for MM pathogenesis (Figure 3A-B, highlighted in red). Notably, chr3
includes the proto-oncogene Nras, as well as Fam46c encoding a non-canonical poly(A)
polymerase that is frequently mutated in MM and acts as a tumor suppressor for MM
development [63,64]. Chr5 includes Fgfr3 and Mmset, both of which are overexpressed in
t(4;14) MM patients [12], and cyclin-dependent kinase 6 (Cdk6) that was recently found to be
over-expressed in immunomodulatory drug-resistant MM cells [65]. Finally, chrl5 includes the

transcription factor Myc, frequently dysregulated in MM [66].

We next wanted to determine if CNVs of the affected genes correlate to their transcriptional
changes in VQ vs control PCs. We previously reported moderate overexpression of Myc in all

VQ MM lines due to the Vk*MYC transgene [30] and absence of Fgfr3 expression in both
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control and VQ myeloma PCs [31]. Using the expanded RNA-Seq dataset, we observed an
approximately two-fold increase in Nras expression in Cluster | (VQ-D2 and VQ-D5) cells with
chr3 amplification compared to control and Cluster Il VQ lines without chr3 amplification (Figure
3C). Despite chr3 amplification, expression of Fam46c was significantly lower in Cluster | cells
compared to Cluster Il and control PCs, suggesting an epigenetic mechanism involved in
Fam46c downregulation (Figure 3D). In Cluster Il (VQ-D1 and VQ-D4) cells with monosomy
chr5, Cdk6 was nearly undetectable (average FPKM < 0.5), whereas VQ-D5 cells had a 3-fold
decrease compared to VQ-D2 cells and control PCs (Figure 3E). Despite monosomy chr5,
Mmset expression in Cluster Il MM cells was comparable to that in control PCs, whereas it was
approximately two-fold higher in Cluster | cells (Figure 3F). Taken together, our data
demonstrate that gene copy numbers do not necessarily correlate with mRNA levels in VQ cells,
suggesting that additional epigenetic mechanisms play an important role in controlling gene

expression.

We previously showed that daily treatment of trametinib (Tra), a potent MEK inhibitor, did not
lower myeloma disease burden in VQ-D1 recipients as measured by the ratio of serum gamma-
globulin to albumin (G/A) using serum protein electrophoresis (SPEP) (Figure 3G). However, it
significantly prolonged the survival of diseased mice [30,31] (Figure 3H). Because Cluster | VQ
cells show increased Nras copy number and mRNA expression, we wanted to determine if VQ-
D2 cells were resistant to MEK inhibition. Here, we followed the same treatment schemes in
VQ-D2 recipient mice as previously carried out in VQ-D1 mice (see Materials and Methods).
Two weeks after VQ-D2 transplantation, recipients were divided into two groups with
comparable CBC parameters and treated with vehicle (Veh) or Tra. Three weeks later,
treatment efficacy was assessed via G/A ratio using SPEP assay. Despite the amplification of

chr3 with the Nras locus in Cluster | myeloma lines, daily Tra treatment provided a survival
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benefit to VQ-D2 recipients similar to what has been previously observed in VQ-D1 mice (Figure

3G and 3H).

Gene transcription-based clustering of VQ lines yields highly consistent result with the
CNV study

Our CNV analysis separated VQ lines into two distinct clusters based on their characteristic
genomic changes, which may cause consistent global transcriptional changes in VQ cells. To
test this idea, we performed unsupervised hierarchical clustering analysis of all control and VQ
samples based on the transcriptional profiles generated in RNA-Seq. Not surprisingly, these
samples split into three groups: Cluster | with chr3 amplification (VQ-D2 and VQ-D5), Cluster I
with monosomy chr5 (VQ-D1 and VQ-D4), and control PCs (Figure 4A). Further analysis of
sample similarity via t-distributed stochastic neighbor embedding (tSNE) (Figure 4B) and
principal component analysis (PCA) (Figure S1) confirmed that VQ myeloma lines cluster into
two distinct transcriptional subtypes. This result was not affected by tissue origins of MM cells
as similar clustering result was obtained when tissue effect was removed (Figure S2). More

importantly, the transcriptional clusters mirror recurrent CNVs observed in these VQ lines.

Cluster | VQ cells display upregulation of growth pathways and high-risk myeloma gene
signatures

We next sought to differentiate transcriptional activity between Cluster | and Cluster Il VQ
myeloma. GSEA of hallmark signaling pathways, oncogenic signatures, and relevant MM-
related gene signatures showed numerous pathways significantly upregulated in Cluster |1 VQ
cells, but relatively few in Cluster Il (Figure 5A). Interestingly, we observed that essential cancer
growth pathways were highly upregulated in Cluster | VQ cells (Figure 5A), including E2F
targets (Figure 5B), G2M checkpoint (Figure 5C), and Myc target pathways (Figure 5D).

Moreover, Cluster | VQ cells showed significant upregulation of the UAMS-70 and EMC-92 high-
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risk MM gene signatures compared to Cluster Il VQ lines (Figures 5E). Similar results were
observed when we compared hrMM gene signatures of VQ clusters to the transplantable
VK*Myc line t-Vk12653 [67]. While the UAMS-70 gene signature was enriched in Cluster | VQ
compared to t-Vk12653 (Figure S3A), neither of the hrMM gene signatures was enriched in VQ
Cluster Il cells (Figure S3B). Because EMC92 gene signature includes both positive and
negative risk genes with different weights, we calculated the EMC-92 risk scores in Cluster | and
Il as well as t-Vk12653 MM cells based on a modified version of the published algorithm [18].
The EMC-92 risk score of Cluster | MM cells was significantly higher than those of Cluster Il and
t-Vk12653 cells (Figure S3C). These analyses clearly defined VQ Cluster | myeloma lines as

having high-risk gene expression in comparison to either VQ Cluster Il or t-Vk12653 cells.

One of the most significantly upregulated genes in Cluster Il VQ is the transcription factor Pbx1,
which has recently been characterized as a driver oncogene in the context of chrlg-amp hrMM
[68]. PBX1, along with its downstream target FOXM1, were found to drive proliferation and drug
resistance in chrlg-amp MM patients [68]. Interestingly, despite loss of Pbx1 in Cluster | VQ
(Figure S4A), transcriptional levels of Foxm1l in Cluster | VQ cells were significantly higher than
that in Cluster Il VQ cells or control PCs (Figure S4B). We further assessed the PBX1-FOXM1
axis in VQ myeloma using the recently characterized PBX1 gene signature [68] and a previously
established FOXM1 pathway signature [69]. Interestingly, we found that while neither VQ-D2
nor VQ-D5 cells expressed detectable PBX1, Cluster | VQ was enriched for both the PBX1
(Figure S4C) and FOXM1 (Figure S4D) gene signatures compared to both Cluster Il VQ and
control PCs. In addition, despite high Pbxl mRNA expression in VQ-D1 and VQ-D4 cells,
neither gene signature was significantly enriched in Cluster Il VQ compared to control PCs. The
enrichment of PBX1 and FOXM1 gene signatures in Cluster | VQ cells is consistent with their

high-risk nature.
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Cluster | and Cluster Il VQ show distinct responses to bortezomib in vivo

When studying the pathways enriched in Cluster Il vs Cluster | VQ MM cells, we found that both
NF-kB and TNF-« signaling via NF-kB pathways were significantly upregulated in Cluster Il VQ
(Figure 6A and 6B). We also observed comparable expression of 1l2rg and increased
expression of Cd74 and Tnfaip3 in Cluster Il vs Cluster | myeloma cells (Figure S5A-C). The
expression levels of these three genes are positively correlated to bortezomib (Btz) response in
human MM [70]. In addition, in comparison to control PCs, Cluster | myeloma cells
overexpressed Psmbl, Psmb2, and Psmb 5 (Figure 6E), which encode the potential Btz
targeted proteasome subunits [71]. By contrast, Cluster Il myeloma cells only overexpressed
Psmbl and Psmb 5 (Figure 6E). Together, our results suggest that Cluster | and Il myeloma

cells may respond differently to Btz treatment.

We previously established the single-agent efficacy of inhibiting the proteasome pathway in VQ-
D1 via Btz [31]. Here, we followed the same Btz treatment scheme in VQ-D2 recipient mice as
previously established in VQ-D1 (see Materials and Methods). Two weeks after VQ-D2
transplantation, recipients were divided into two groups with comparable CBC parameters and
treated with vehicle (Veh) or Btz. Three weeks later, treatment efficacy was assessed via G/A
ratio. In contrast to VQ-D1 mice, in which Btz lowered myeloma burden after three weeks of
treatment and provided a moderate but significant survival boost [31], this same Btz treatment
showed no efficacy in VQ-D2 mice and did not provide any survival benefit compared to Veh
treated mice (Figure 6F). This in vivo study validated our molecular characterization,
demonstrating that Cluster | VQ-D2 has de novo Btz resistance and can thus be considered

higher risk than Cluster Il VQ-D1.

Discussion
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Previously, our group developed the Ras-driven VQ myeloma model and phenotypically
characterized five lines derived from primary VQ mice (Figure 1A) [30]. In the current study, we
combined BCR repertoire sequencing, WES, and CNV with RNA-Seq to characterize the
genomic and transcriptomic landscapes of VQ MM lines. Both genomic and transcriptional
analyses stratified VQ lines into two distinct clusters. Cluster | includes VQ-D2 and VQ-D5,
which carry chr3 amplification and display both UAMS-70 and EMC-92 hrMM gene signatures
vs Cluster Il VQ and t-Vk12653 Vk*Myc myeloma. By contrast, Cluster Il includes VQ-D1 and
VQ-D4, which harbor monosomy chr5 and express hrMM gene signatures comparable to t-
Vk12653 VK*MYC myeloma. Consistent with their molecular classification, Cluster | myeloma
cells showed de novo resistance to Btz treatment in vivo, while Cluster Il myeloma cells
exhibited a reduced response to Btz. Interestingly, both Cluster | and Il VQ lines responded to
Tra. Our molecular stratification of VQ lines provide a foundation to predict the potential

outcomes of therapeutic regiments in different populations of human MM patients.

A negative association between the rate of SHM and patient prognosis has been previously
established in CLL [72]. However, such an association is unclear in the context of MM, as SHM
has been found to have a positive correlation with patient prognosis [49] or none at all [50]. With
the exception of the VQ 4935 cell line, BCR repertoire analysis showed relatively low rates of
SHM in VQ cells compared to human myeloma [49], with mutation frequencies <3.0%. Although
median SHM frequency was slightly higher in Cluster | VQ (VQ-D2/D5) (Figure 1B), there was
no significant correlation with median survival of different VQ lines (Figure 1A). Notably, SHM in
VQ cells is comparable to levels in primary VK*MYC mice, where a median frequency of 2.6% in

IgH was observed [24].
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WES of five VQ lines identified 11 recurrently mutated genes (Figure 2). Human orthologs of
two of these genes, FAT4 and SP140, have been identified as recurrently mutated in numerous
MM patient sequencing studies [36-40]. Combining mMRNA expression and mutation frequencies
during human MM development, we believe that FAT4 and SP140 mutations play distinct roles
in MM development. Fat4 expression was nearly undetectable at the mRNA level in both VQ
and control PCs (Figure 2A). RNA-Seq data compiled by the MMRF's CoMMPass database
shows similarly low expression, with 80% of patients having <2 transcripts per million reads for
the FAT4 gene (data not shown). Moreover, although FAT4 mutations were detected in a
fraction of newly diagnosed patients [54,55], they remained stable in a recent temporal
sequencing study of 62 MM patients [73]. Together, these data suggest that FAT4 mutations
serve a passenger role in myeloma progression. By contrast, Sp140 was found to be expressed
in both control and VQ PCs and its mRNA level was significantly downregulated in VQ MM cells
(Figure 2A). In MM patients, frequency of SP140 mutation increases in more advanced stages
of disease [54,55,56,57] and also increased over time in the same temporal sequencing study
[73]. Altogether, these data suggest that SP140 mutation plays an important role in MM

development and progression.

SP140 encodes a member of the speckled protein family of chromatin reader proteins [51], and
has been previously characterized for its role in downregulating interferon signaling in select
immune cells [52, 53]. Sp110, encoding a homolog of Sp140 [51], was also found to be
recurrently mutated in VQ cells and downregulated at the transcriptional level compared to
control PCs (Figure 2A). STRING analysis showed that Sp110, along with Phosphatase and
actin regulator 4 (Phactr4), whose gene was also recurrently mutated in VQ MM cells, share
interactions with several proteins that were also downregulated at the mRNA level in VQ cells
(Figure 2B). Pathway analysis of this group of proteins found that they were enriched in Type |

and Type Il interferon signaling (Figure 2C). Although Phactr4 has been found to act as a tumor
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suppressor in hepatocellular carcinoma due to its inhibition of the IL-6/STAT3 pathway [74] and
both Sp110 and Sp140 were previously implicated in interferon signaling in response to
tuberculosis infection [75], none of these genes have previously been implicated in interferon
signaling in the context of MM. Evolutionarily, attenuating Type | and Type Il interferon signaling
could be beneficial to MM immune evasion and survival. Prior to the development of current
novel therapy regiments, IFN-02b was used as a MM treatment [76] with limited long-term use
due to its systemic toxicity [77]. More recent studies in which IFN-a2b is conjugated to
antibodies targeting CD38 [78] or HLA-DR [79] on the myeloma cell surface have also shown
both in vitro and in vivo efficacy. Therefore, the role of Sp110 and Sp140 in shaping the
interferon response in VQ as well as in human MM is an interesting question worth future

consideration.

Large-scale chromosomal changes, including translocations and aneuploidies, have significant
impacts on treatment outcomes in MM patient prognosis. For example, use of the BCL-2
inhibitor venetoclax for t(11;14) MM [80] or the innate resistance of t(14;16) MM to Pls due to c-
MAF overexpression [81,82] are well documented. Therefore, we performed CNV analysis in
five VQ lines and identified two recurrent, mutually exclusive events: amplification of chr3, which
was present in Cluster | (VQ-D2, D3, and D5; Figure 3A), and monosomy chr5, which was
present in Cluster Il (VQ-D1 and D4; Figure 3B). Neither of these CNVs are unique to the VQ
model. Full gain(chr3) has been identified in the 5T2 line, while the 5TGM1 cells showed patrtial
duplication [27]. Interestingly, monosomy 5 is a unifying CNV across all three murine MM
models. Monosomy 5 was also observed in 5T2 cells, while only partially deleted in 5T33vv and
5TGML1 lines. Noticeably, monosomy 5 was present in 13/26 sequenced VK*MYC lines [28]. The

high incidence of monosomy chr5 across multiple MM models warrants further investigation.
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Consistent with our CNV analysis, gene transcriptional analyses of RNA-Seq data, including
non-supervised hierarchal clustering, PCA, and tSNE, identified two distinct transcriptional
clusters (Figure 4 and Figure S1) regardless of their discrete tissue origins (Figure S2).
Extensive pathway analysis between these two clusters as well as in comparison to the t-
Vk12653 VK*MYC line revealed the hrMM order: Cluster | > Cluster Il = t-Vk12653 (Figure 5 and
S4), On the other hand, Cluster Il (VQ-D1/D4) cells were enriched for the TNF-«/NF-xB
signaling (Figure 6A and 6B) and increased expression of genes linked to Btz response in
patients (Figure 6C). These transcriptional differences led us to speculate that Cluster | cells
may be more resistant to Pls than Cluster Il cells. In our initial study, treatment of VQ-D1
recipient mice with Btz following a dosing schedule found to be effective in the VK*MYC model
(1.0mg/kg Btz treatment on days 1,4,8,11) [67] was not effective as a single agent, but did
provide a survival benefit when combined with the MEK inhibitor selumetinib [30]. However, in a
more recent study, we found that reducing Btz dosage to current clinical practices provided a
modest but significant boost to VQ-D1 survival and significantly reduced G/A ratio after three
weeks of treatment [31] (Figure 6F). By contrast, in our current study we found that the same
Btz treatment was completely ineffective against VQ-D2 cells (Figure 6F), corroborating our

molecular analysis.

We observed that despite chr3 amplification and Nras overexpression in Cluster | MM, both VQ-
D1 and VQ-D2 MM cells responded to Tra treatment (Figure 3). By contrast, 5T2 MM cells
showed increased resistance to Tra compared to other 5T lines, though this is complicated by
the fact that the genomic region containing Kras is also duplicated in 5T2 cells [27].
Nonetheless, our results provide a strong rationale to develop Tra-based combination therapies

in hrMM and rrMM, particularly in the context of RAS mutations.
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Altogether, our data further elucidate the genomic and transcriptional landscapes of the VQ
model. These molecular characterizations, along with functional validation via in vivo treatment
experiments, supports an intra-model stratification where Cluster Il VQ (VQ-D1/D4) models
Ras-driven MM with some hrMM features comparable to non-Ras-driven MM (e.g. t-VK*MYC),
whereas Cluster | VQ (VQ-D2/D5) represents ultra-high risk multiple myeloma. Future studies
using the VQ model as pre-clinical platform must necessarily take these intra-model differences

into account when designing mechanistic studies or testing novel treatments.
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Figure Legends

Figure 1. B cell receptor repertoire analysis shows dominant clonality and low somatic
hypermutation (SHM) rates in primary VQ cells and VQ cell lines. (A) Table summarizing
previously established characteristics of VQ donor lines. (B-D) B cell receptor heavy-chain and
light-chain repertoire analysis was carried out as described in Methods. (B) Tapestation image
showing immunoglobulin heavy chain and light chain library amplification for samples in panels
C and D. (C) Pie charts depicting clonal frequency for immunoglobulin heavy chain (IgH)
sequences (top) and immunoglobulin light chain sequences (bottom) sequences from primary
VQ cells (VQ-D1, D2, D4, and D5) and from VQ-D2 derived cell lines (4935 and 4938). (D)
Violin plots showing mean (black dots) and distribution of the total somatic hypermutation
frequencies across B-cell IgH sequences from primary VQ cells (VQ-D1, D2, D4, and D5) and

from VQ-D2 derived cell lines (4935 and 4938).

Figure 2. Whole exome sequencing identifies recurrently mutated genes in VQ myeloma
cells. Five paired tail DNA (non-leukemia control) and genomic DNA from VQ CD138" B220
plasma cells were subjected to whole exome sequencing as described in Materials and
Methods. (A) Recurrently mutated genes (mutated in > 2/4 mice) and their variant allele
frequencies (VAF) in VQ cells, frequency of mutation in human orthologs as determined from a
cohort of 1,171 MM patient samples from the CoMMPass database, and mRNA expression (as

determined by Fragments Per Kilobase of gene per Million mapped reads [FPKM)]) in VQ cells
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are shown. (B) Cytoscape-generated STRING network of recurrently mutated genes with
differential RNA expression, as well as 40 closest interacting proteins as determined by
STRING analysis. Recurrently mutated genes are represented by diamonds. Interacting
proteins are denoted by circles. Genes with differential expression are color-coded. (C) Select
list of pathways enriched in genes highlighted in panel B. (D) GSEA of Reactome gene sets for
interferon alpha/beta signaling (top) and interferon gamma signaling (bottom) between VQ and

control plasma cells. NES, normalized enrichment score. FDR, false discovery rate.

Figure 3. Copy number variation (CNV) analysis stratifies VQ cells based on recurrent
amplification of chromosome 3 and monosomy chromosome 5. (A-B) CNV analysis was
performed using the whole exome sequencing data as described in Materials and Methods.
Orange dots indicate significant changes in log2 copy ratio for a given call segment in plasma
cells compared to non-leukemia control samples. Location and name of tumor suppressors and
oncogenes related to myeloma pathogenesis are shown in red. CNV plots are grouped
according to recurrent CNV status. (C-F) Transcript levels of genes highlighted in red in panels
A and B are shown in CD138+ B220- cells from control and VQ recipient mice. FPKM,
Fragments Per Kilobase of transcript per Million mapped reads. One-way analysis of variance
with Tukey’s post-test was performed. Tissue of origin for individual samples is denoted by
legend. (G-H) CD45.1 recipient mice were sub-lethally irradiated and injected with bone marrow
cells from moribund VQ-D1 donor mouse or splenocytes from moribund VQ-D2 donor mouse.
Six weeks (VQ-D1) or two weeks (VQ-D2) post-transplant, mice were treated with vehicle or
trametinib. (G) Serum protein electrophoresis was performed to quantify the y-globulin/Albumin
(G/A) ratios in VQ-D1 and VQ-D2 recipient mice at day 21 of treatment. Two-sided t-test was

performed. (H) Kaplan-Meier survival curves were plotted against days after treatment. Log-rank
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test was performed. Note: VQ-D1 results are combined from historical [30,31] and new data. ns,

not significant. *, p<0.05. **, p<0.01. ***, p<0.001. **** p<0.0001.

Figure 4. RNA-Seq analysis reveals two distinct transcriptional clusters of VQ myeloma.
Bulk RNA-Seq analysis was performed using flow sorted CD138+ B220- CD45.2+ cells from
bone marrow (BM) of control mice (n=3) and BM, spleen (SPL), lymph node (LN), or liver (Liv)
of multiple VQ-D1, VQ-D2, VQ-D4, and VQ-D5 recipients. (A) Clustered heat map of RNA-seq
gene count data. Samples are color-coded by tissue sites and VQ lines as indicated. (B) tSNE
analysis of gene counts data of VQ myeloma samples. Samples are color-coded by VQ lines as

in panel A. Tissue of origin for individual samples is denoted by legend.

Figure 5. VQ Cluster | myeloma cells have increased expression of Hallmark growth
pathways and high-risk MM gene signatures. (A) Overview of gene set enrichment analysis
between Cluster | (VQ-D2/D5) and Cluster Il (VQ-D1/D4) VQ myeloma cells. Relevant pathways
are highlighted in red. (B-E) GSEA plots comparing Cluster | to Cluster Il for (B)

Hallmark_E2F Targets, (C) Hallmark_G2M Targets, (D) Hallmark_MYC_Targets_V1 (left)
Hallmark_MYC_Targets_V2 (right), and (E) EMC-92 hrMM gene signature (left) and UAMS-70
hrMM gene signature (right). NES, normalized enrichment score; FDR, false discovery rate; p.

adj., adjusted P-value.

Figure 6. Cluster | and Cluster 11 VQ cells display distinct responses to bortezomib in
vivo. (A-C) Gene set enrichment analysis of proteasome inhibitor related pathways between
Cluster | (VQ-D2/D5) and Cluster Il (VQ-D1/D4) VQ myeloma cells. KEGG_ NF-kappa B

signaling pathway (A), Hallmark_TNFA signaling via NFKB (B), and KEGG_Proteasome
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pathway (C). (D) Transcript levels of NF-kB related genes Tnfaip3, CD74, and 112rg in CD138+
B220- cells from Cluster | and Il VQ myeloma mice. Two-sided t-Test was performed. VQ donor
of origin is color-coded as indicated. Results are presented as mean + SD. FPKM, Fragments
Per Kilobase of transcript per Million mapped reads. (E) Transcript levels of proteasome related
genes Psmbl, Psmb2, and Psmb5 in CD138+ B220- cells from control plasma cells (Control)
and Cluster | and Il VQ cells. Two-sided t-Test was performed. VQ donor of origin is color-coded
as indicated. Results are presented as mean + SD. (F-G) CD45.1 recipient mice were sub-
lethally irradiated and injected with bone marrow cells from moribund VQ-D1 donor mouse or
splenocytes from moribund VQ-D2 donor mouse. Six weeks (VQ-D1) or two weeks (VQ-D2)
posttransplant, mice were treated with vehicle or bortezomib as described in Materials and
Methods. (F) Serum protein electrophoresis was performed to quantify the y-globulin/Albumin
(G/A) ratios in VQ-D2 recipient mice at day 21 of treatment. Two-sided t-Test was performed.
(G) Kaplan-Meier survival curves were plotted against days after treatment. Log-rank test was
performed. Note: VQ-D1 results are taken from historical data [31]. FDR, false discovery rate;
NES, normalized enrichment score; ns, not significant; p. adj., adjusted P-value. *, p <0.05; **, p

<0.01; *** p <0.001; ****, p <0.0001.

34


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1-Zhang

Mouse Ig Heavy Chain Mouse Ig Light Chain

Ladder VQ-D1 VQ-D2 VQ-D4 VQ-D5 4935 4938 VQ-D1 VQ-D2 VQ-D4 VQ-D5 4935 4938
bl A0(L) AL B1L ci D1 El F1 Gl H1 A2 B2 Cc2 D2

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504657; this version posted August 22, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to displa)ﬁlas preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. L hq ﬁu I — a o9 1 7 o 7 3 [
L]

1000 | . ‘ ! ‘
o |7 e e gy e e
Dominant Disease Survival 500 p— ] « ) . ' .
VQ Line | Gender clone sites (days) 100 p— : ‘ '
D1 M IgG2k BM, SPL 80 00— ‘ ‘ ‘ R ‘
D2 M IgAK SPL, LN 21 ' ‘ . ‘ ‘
: 200 p— .
D3 F K + A only LN n/a
D4 M IgAK BM, LN 60 100
D5 F IgAK SPL, LN 40 —_—
D ——
4935 4938
VQ-D1 VQ-D2 VQ-D4 VQ-D5 cell line cell line

m]l =2 ]l m?2 mE]l =2 m3 ml m2m3ms ]l m?2 ]l m?2
4935 4938
- VQ-D1 VQ-D2 VQ-D4 VQ-D5 cell line cell line
g 40- : : - ]
g
> 30
R
g 20 -
o
© 10 l : i i
-}
= 0- ] ] ) ]
Mean: 1.59 Mean: 2.94 Mean: 1.65 Mean: 2.97 Mean: 7.06 Mean: 3.87
Median: 1.37 Median: 2.56 Median: 0.63 Median: 2.68 Median: 2.64 Median: 2.74

StdDev: +1.46 StdDev: +2.06 StdDev: +2.87 StdDev: £0.93 StdDev: +8.56 StdDev: +3.4


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2-Zhang

A CoMMPass
Variant Allele Frequency VQ Donor # database VQ RNA
for recurrent mutations in n=1171 expression
>=2 mice (% reurrence with| (FPKM)
D1 | D2 | D3 | D4 | D5 RAS/RAF)
Protein kinase Erbb4 | 0.39 0 0] 0.32]| 0.69 13 (31%) 0.00
Map3k13 0 0 0] 0.24] 0.11 1(0%) 4.31
Protein Trrap 0] 0.15 0] 0.45] 0.44 4 (50%) 8.74
phosphatase | Phactr4 0] 0.17] 0.73 0] 0.40 4 (75%) 2.31
Transcription | Sp110 0 0] 0.21] 0.19 0 2 (0%) 0.61
factor Sp140 | 0.23 0 0] 0.15] 0.33 37 (46%) 7.09
Cell Migration Fat4 0 0| 1.00] 0.28] 0.59 52 (56%) 0.02
Memo'1 0/ 0.23 0] 0.50 0 2 (0%) 7.08
Cdchl 0] 0.25 0] 0.52] 1.00 1 (0%) 20.12
Other Dtwd2 | 0.31 0] 0.80 0 0 1 (0%) 1.84
Dnajb6 0] 0.12] 0.64 0 0 2 (0%) 3.14
Missense Upregulated
e e B A e P e
B ajaiiahie wrdeif@CC-BY-NC-ND 4.0 International license. No C ange

STRING of human orthologs

TMEMS57

TACCA1 GBE1

\ERBB

ERBBZ

BTF3L4

SUGCT papsS2

2
| \\ COL24A1

MYCBP2
‘ E

ARHGDIB

3

PPP1CC MAP2K7'—-—H APK8IP2

IRS1 » MAPKS8IP1
USP7

OASZ

PPP1CA

FAM91A1

Céorf15

DPRX

Type Il interferon signaling (IFNG)

Response to interferon-alpha

SARS-CoV-2 innate immunity evasion
and cell-specific immune response

ISG15 antiviral mechanism

Negative regulation of
viral genome replication

Immune response to tuberculosis

Type | interferon induction and
signaling during SARS-CoV-2 infection

Type | interferon signaling pathway

FDR
(1.31E-5)

(6.56E-6)
(1.79E-6)
(6.64E-8)
(3.55E-8)
(1.1E-10)

(4.45E-12)

(1.91E-25)

I I
0 5 10 15 20 25

Number of proteins

DMXL1

Interferon
signaling

= !
O

OCRL

ARSK

Log2 fold change

Interacting protein

(expressed)

Interacting protein

(not expressed)

REACTOME_INTEFERON_
ALPHA BETA_SIGNALING

NES: -1.79
FDR g-val:0.005

il Ww

REACTOME_INTEFERON_
GAMMA_SIGNALING

NES: -1.92
FDR g-val:0.001

11 0

NUDT13

Recurrently mutated gene


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3-Zhang

Nras

Nras

Nras

Fam46¢c

Fam46¢c

Fam46¢c

(zBoy) oney Adog

. Iths mpade

e{prepfint.in| pergetui

Rxiv a license to display B

ternational license.

tli

VQ-D2

hvajable uhdel aQC-BYINC¢-ND4.0

pioRXiv prdpring doi:| https://dpi.ong/19.11j01/202%.08.211504657; thid vdrdion gosted August 22, 2022. The cppyright hdlder for this pfepript

4

3(which as rjot certifigd by pedr reyiew) is|the fauthorffungler |wHo Has|grarted

N A\ o A\m N [er]

(zb0y) oney Ado)

-4

Cdk6

Cdk6

Myc

Fgfr3

Fgfr3

vVQ-D4

tissue
e BM
o Liv
m LN
A SPL

i

o
[ 7
% ,ml B ovO.
* , 0\\
* o_.* — X
* , 90
A
4 Aﬁ o \0,0
° 7
= d — %
[ ] .A\As
T T T T %
o (=] o o o
o o o o
< ™ N -

NMdd d9ywed

() -
25 336
Ne o B «
**.F liﬁooo
* | 4
* - %
o)
A
o T o
v
O.\
\«\O
© o © o o V
< (3} N -
INMdd sedN

Mmset

VQ-D1

Mmset

(260]) oney Adoo

t
]
E
©
(]
=
| 9
4]
£
©
n
>
©
o
--—--—--—--—-- 0
[=} o o o o o
w 0 © < N
[eAIAING JuddIdd
T
< ©
[ rE| s
c - m
L ©
m__r >
- -—
. . o
| ! | ! | !
(3] N -~ o
oney v/oO
o
()] -
25 336
Ne ¢ W <«
A
H TA lﬂvooo
%
x| ¥ oTﬂlvO,O
A
4 L T4
o)
- L|— “ — / 7
0;\
.\AsO
R
NMdd }I9sWiy
(T
() -
25335
Ne o B <
8
: L e
- I— F & !
% < < 0.0
* VQ
2l* | o %
* _ 2 7
* Q
* 04
. Foo [ ] |\0.\
\Aso
© © © v ~ o 9
NMdd PO
1]


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4-Zhang

Heatmap Gene Counts
|

T [ e

| tissue
IV OEDSETVQ=D2m s Control VQ-D1 IVQ=D43N group

4 tissue
®ioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504657; this version posted August 22, 2022. The copyfight holderBiykhis preprint
(Ighich was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint i petuity. It is made
‘ available under aCC-BY-NC-ND 4.0 International license. 2 riSF’L
LN

Liv
group
D1
-2 D2
— D4
— D5
-4 Control
Cluster |
50+ sample_group
D1
D2
e D4
® D5
m Control
Z 01
2
tissue
e BM
¢ Liv
m LN
_50-
Control A SPL
Cluster Il
~40 -20 0 20 40

tSNE1


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

-log10(p.adjust)

7.5]

o
=)

ot
Sl

0.0;

Cluster |
(VQ-D2/D5)

E2F_Targets
[ N
MYC_Targets_v1

® G2M_Checkpoint

®MYC_Targets_v2

UAMS_70 @
°
Yo
°
—e ® EMC 92
ov

Cluster Il
(VQ-D1/D4)

TNFA_Signaling_via_NFKB @

NF-kappa B signaling athwayf

NES

Ranked List Metric Running Enrichment Score

O

ITl Ranked List Metric Running Enrichment Score
| \ )

Ranked List Metric Running Enrichment Score
!

0.0

-0.2
-0.4

-0.6

HALLMARK_MYC_TARGETS_V1

0.0

HALLMARK_E2F_TARGETS

NES = -2.26
FDR = 1.68E-09

VQ-D1/D4 VQ-D2/D5

5000 10000 15000 20000
Rank in Ordered Dataset

NES =-2.16
FDR = 1.68E-09

CIRELLL RUTN L

VQ-D1/D4 VQ-D2/D5

5000 10000 15000 20000
Rank in Ordered Dataset

EMC_92_gene_signature

NES = -1.42
FDR = 0.037

TLLUN WO

={VQ-D1/D4

VQ-D2/D5

5000 10000 15000 20000
Rank in Ordered Dataset

(@)

Ranked List Metric Running Enrichment Score

Ranked List Metric Running Enrichment Score
' | |

Ranked List Metric Running'Enrichment Score
| | |

o
o

=IVQ-D1/D4

Figure 5-Zhang

HALLMARK_G2M_CHECKPOINT

NES = -2.01
FDR = 8.53E-08

VQ-D2/D5

5000 10000 15000 20000
Rank in Ordered Dataset

HALLMARK_MYC_TARGETS_V2

0.0

-0.2

-0.4

-0.6

NES = -2.04
FDR = 2.41E-05

LI L UL LTI
VQ-D1/D4 VQ-D2/D5
5000 10000 15000 20000

Rank in Ordered Dataset

JAMS_70_gene_signature_UP

NES =-1.75
FDR = 0.0022

0.4
0.6
LLUTEC LT Ly
“IVQ-D1/D4 Q-D2/D5
0
o 5000 10000 15000 20000

Rank in Ordered Dataset


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

Tnfaip3 FPKM

Psmb1 FPKM

KEGG

NF kappa B signaling pathway

Ore;
o =] o
N > o

o
o

=N

NES =

NUMERLERLLL L

FDR =

=1.78
0.03

Ranked List Metric unning Enrichment Scor

10.1101/2022.08. 21 5
w) is the author/fihd
available unger

HALLMARK_TNFA_
SIGNALING_VIA_NFKB

oS
IS

ing Enrichment Score
o
>

‘:00

P4657; this version posted Al

NES = 1.80
FDR = 1.28E-04

22, 2022. Theoe
e to dlsplay)the

Figure 6-Zhang

KEGG Proteasome

o o
o o

ning Enrichment Score
s '
=

pyright holder for this

prepr|||1t |n||)Hr|#etL||ty| It

NES =-1.61
FDR=0.14

int

§ % vQ-D1/D4 VQ- D2/D5 > f ® VQ-D1/D4 VQ-D2/D5
500}%ank in (;r%??ed Datasi?oo % 713 5000 10000 15000 20000 :; " 5000 10000 15000 20000
20000 o Rank in Ordered Dataset x Rank in Ordered Dataset
e VQ-D2
* ok ok ok K e VQ-D5
- | 25004 [ 1 40— ns
40 n - m — m VQ-D1
2000_ m B u VQ'D4
30- E u u E 30-
X ] %
o 1500 o
L T8
20- <t | | o
E 1000- - S
5 = |
10- 500
| |
- =
0__*_ 0--* T | L
vQ vQ vQ vQ vQ vQ
Cluster| Cluster Il Cluster| Clusterll Clusterl Clusterll
sk %k %k Xk kK k
|—|—| ns
ns I 1
200- 1504 ! | 60— ns
 — * % % % % % —
]
® ® [
150 o :L = = m
°o® ] ¥ - ¥ 40— °
<100 .i. X 40 o T
T TH .
100- g ° 2
% 50— g 20-
0- T T 0- I L 0- | |
Control vQ vQ Control vQ vQ Control vQ vQ
Cluster | Cluster Il Cluster | Cluster i Cluster | Clusterll
%k %k %k
3 l l 100 v
i |
i —_ 1VQ-D1 |-
80-
g — Veh (N=5) .
o 2- - s e e r
5 S5 604 —— Btz (N=5) '
@ ns n . '
7 |
< ° — = 40— VQ-D2 T
O 14 8 1 ='= Veh (N=6) -
o - |ns e
= %‘ A$t a 20 —'= Btz(N=7) L1
. ] -
] ( |
0 l l l l 0 1] 1] T I L] 1] 1] l 1] L] l. l l. L) L] I
Veh Btz Veh Btz 0 10 20 30 40
Days after treatment
vVQ-D1 VQ-D2


https://doi.org/10.1101/2022.08.21.504657
http://creativecommons.org/licenses/by-nc-nd/4.0/

