

1 **A parallel glycolysis supports rapid adaptation in dynamic environments**

2

3 Richard C. Law¹, Glenn Nurwono², and Junyoung O. Park^{1*}

4

5 ¹ Department of Chemical and Biomolecular Engineering,

6 ² Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095

7 * Correspondence should be addressed to J.O.P. (jop@ucla.edu)

8

9

10 Glycolysis is a universal metabolic process that breaks down glucose to produce cellular energy currency
11 ATP and biomass precursors¹. The Entner-Doudoroff pathway is a glycolytic pathway that parallels the
12 textbook glycolysis but yields half as many ATP². In organisms that possess both glycolytic pathways, such
13 as *Escherichia coli*, inactivating the less energy-efficient Entner-Doudoroff pathway does not alter growth
14 rates³. The benefit of the Entner-Doudoroff pathway has instead been hypothesized to be metabolic
15 flexibility as an auxiliary enzyme-efficient catabolic route⁴. However, its *raison d'être* remains incompletely
16 understood. Here we identify the advantage of employing parallel glycolytic pathways under dynamic
17 nutrient environments. Upon carbon and nitrogen upshifts, wild-type cells accelerate growth faster than
18 those with the Entner-Doudoroff pathway knocked out. Using stable isotope tracers and mass
19 spectrometry, we find that the Entner-Doudoroff pathway flux increases disproportionately faster than that
20 of the textbook glycolysis during nutrient upshifts. We attribute the fast response time of the Entner-
21 Doudoroff pathway to its strong thermodynamic driving force and concerted regulation facilitating glucose
22 uptake. Intermittent supply of nutrients manifests this evolutionary advantage of the parallel glycolysis.
23 Thus, the dynamic nature of an ostensibly redundant pathway's role in promoting rapid adaptation
24 constitutes a metabolic design principle.

25

26 By survival of the fittest, modern organisms efficiently utilize available nutrients and rapidly adapt growth
27 to changing environments⁵. Organisms across the domains of life use glycolysis, or the Embden-Meyerhof-
28 Parnas (EMP) pathway, for efficient generation of biomass precursors and energy^{1,6}. Glycolysis is regulated
29 to respond to environmental perturbations and changing cellular demands by rapidly modulating its flux
30 while maintaining metabolic homeostasis⁷.

31 Most organisms possess alternative glycolytic routes, such as the phosphoketolase pathway⁸, the pentose
32 phosphate pathway, and, common to ~25% of prokaryotes, the Enter-Doudoroff (ED) pathway (**Fig. 1a**)².
33 The EMP textbook glycolysis and the ED glycolysis are parallel from a carbon-centric perspective as both
34 pathways convert one glucose into two pyruvate molecules. The difference is that compared to the
35 textbook glycolysis, which yields two ATP and two NADH, the ED pathway yields one ATP, one NADH, and
36 one NADPH (**Fig. 1b**). Despite the less efficient ATP generation, some microorganisms exclusively use the
37 ED pathway due to its lower protein burden (i.e., fewer reaction steps) and higher exergonicity (i.e., greater
38 thermodynamic driving force; **Fig. 1b**) compared to the textbook glycolysis^{4,9,10}.

39 Interestingly, 14% of genome-annotated bacteria, including *E. coli*, possess both the EMP and the ED
40 pathways⁴. Despite the apparent redundancy, the ED pathway facilitates sugar acid catabolism¹¹ and
41 genetic resilience¹²⁻¹⁴. The two glycolytic pathways additionally have different transcriptional regulation
42 mechanisms¹⁵. The unique intermediate of the ED pathway 2-keto-3-deoxy-6-phosphogluconate (KDPG)
43 deactivates transcriptional repressor YebK, which is implicated in determining the duration of the lag
44 phase during nutrient downshift¹⁶. However, our understanding of the ED pathway is still limited
45 compared to that of the EMP pathway. Furthermore, there is no clear experimental support for an
46 evolutionary advantage of concurrent utilization of the parallel glycolytic pathways.

47 We were curious why an organism would retain and operate the ED pathway when it already has the EMP
48 pathway that generates ATP more efficiently. We sought to identify conditions in which the ED pathway's
49 contribution to cells becomes meaningful. In stable nutrient environments, knocking out the ED pathway in
50 *E. coli* had a negligible effect on cell growth. When we subjected the cells to nutrient upshift, however, the
51 initial acceleration of growth of the ED-pathway-capable strain was significantly faster than that of the
52 knockout strain. We found this difference to occur on a fast timescale (<10 mins.) during which cells would
53 exhibit a metabolic response without substantial proteome reallocation.

54 To gain a mechanistic insight into the observed growth dynamics, we developed a strategy for discerning
55 the fluxes through the two glycolytic pathways. Using stable isotope tracers and liquid chromatography-
56 mass spectrometry (LC-MS), we observed that the ratio of ED to EMP pathway fluxes dynamically increased
57 to 20% upon nitrogen upshift and 130% upon carbon upshift. Thus, the ED pathway aided cells in meeting
58 the rapidly increasing energetic and carbon demand. This transitory metabolic benefit underlies the
59 evolutionary advantage of parallel glycolytic pathways in intermittent nutrient availability over the short
60 and long term. We surmise that organisms may employ parallel pathways elsewhere in metabolism to
61 support rapid adaptation in dynamic environments.

62 Results

63 The ED pathway does not affect growth rates

64 To assess the contribution of the EMP and ED glycolytic enzymes on growth rates, we performed flux
65 balance analysis (FBA) on the genome-scale metabolic model of *E. coli* (iAF1260)¹⁷. We simulated knocking

66 out individual nonessential genes of the EMP and ED glycolysis and determined the maximum growth rates
67 within the feasible flux space (**Fig. 1c**). Unlike the EMP pathway genes, which slowed growth upon
68 knockout, the ED pathway genes had no effect on growth rates. We validated FBA predictions
69 experimentally by comparing the growth rates of *E. coli* with and without the ED pathway genes (i.e., WT
70 vs. Δ edd vs. Δ eda) under various nutrient conditions (**Fig. 1d**). The WT and Δ edd strains had
71 indistinguishable growth rates, corroborating our FBA simulations. We observed a 17% slowdown of
72 growth in the Δ eda strain. This difference was attributable to a 100-fold buildup of the ED pathway
73 intermediate KDPG in the Δ eda mutant (**Fig. 1e**), whose accumulation is correlated with bacteriostasis¹⁸.
74 The Δ eda strain accumulated KDPG to as much as 34 mM (**Supplementary Fig. 1**). Nonetheless, clean
75 elimination of the ED pathway in the Δ edd strain showed that the ED pathway itself exerted a negligible
76 direct effect on exponential growth rates.

77 **Parallel glycolysis accelerates growth**

78 A key trait of modern organisms is their ability to quickly detect and utilize scarce nutrient resources once
79 they become available^{19,20}. Since WT and Δ edd strains showed no differences in stable environments, we
80 investigated the role of the ED pathway during dynamic adaptation. We subjected these two strains to
81 carbon or nitrogen upshift, a transition from a nutrient-limited to a replete state. Carbon limitation was
82 achieved by using minimal media with a less favorable carbon source acetate in lieu of glucose. Acetate
83 forces cells to use the glyoxylate shunt and gluconeogenesis to produce larger carbon backbones and
84 supports slow growth^{21,22}. Nitrogen limitation was introduced by culturing cells in a low initial NH₄Cl
85 concentration (2 mM), which gets depleted and stalls cell growth, or replacing NH₄Cl with arginine, a less
86 favorable nitrogen source. We induced upshift by spiking in glucose and NH₄Cl to carbon- and nitrogen-
87 limited cultures, respectively.

88 Upon upshift, both WT and Δ edd strains immediately increased growth rates (**Fig. 2**). However, the
89 transition paths from slow to fast growth differed between the two strains. Upon carbon upshift, WT cells
90 increased growth faster than Δ edd cells and maintained faster growth for 15 minutes until they both
91 reached stable growth (**Fig. 2a** and **Supplementary Fig. 2**). This trend was similar in the arginine-to-NH₄Cl
92 nitrogen upshift, in which WT cells accelerated growth and maintained faster growth than Δ edd cells for an
93 hour until the two strains reached the same stable growth rate (**Fig. 2b** and **Supplementary Fig. 3**). For
94 NH₄Cl depletion to repletion, WT displayed a higher initial acceleration of growth in the first five minutes,
95 but the Δ edd strain outpaced WT in the subsequent 10 minutes (**Fig. 2c**). While the nitrogen upshifts
96 brought both strains to the stable growth rate of \sim 0.8 hr⁻¹ measured in the nutrient-replete state, the
97 carbon upshift did not. The incomplete recovery of the growth rate is due to the presence of high acetate
98 (**Supplementary Fig. 4**). These observations suggested that the ED pathway may contribute to the faster
99 growth acceleration in dynamic conditions.

100 To quantify this difference in growth dynamics, we computed growth acceleration, which is the time
101 derivative of the specific growth rate (μ), which is the time derivative of log culture density. The maximal
102 growth acceleration occurred in the first few minutes after upshift, and WT consistently outpaced Δ edd
103 during this period (**Fig. 2d**). This rapid growth acceleration reflects metabolic rewiring that is driven by
104 changes in metabolite levels rather than enzyme levels.

105

106 **Parallel glycolytic pathways activate upon upshift**

107 We sought to gain mechanistic insights into the disparate growth acceleration with and without the ED
108 pathway during nutrient upshift. To this end, we measured the levels of glycolytic intermediates and
109 cofactors before and shortly after upshift using LC-MS (**Fig. 3a**). All three nutrient upshifts resulted in rapid
110 changes in metabolite levels with the carbon upshift inducing the greatest overall change.

111 In both WT and Δ edd, carbon upshift increased the upper EMP glycolytic intermediates and 6-
112 phosphogluconate (6PG) while lowering phosphoenolpyruvate (PEP), which had accumulated in the
113 absence of glucose (**Fig. 3a**). The decrease in PEP levels reflected the unblocking of the phosphotransferase
114 system (PTS), which phosphorylates glucose using PEP while transporting glucose into the cell, upon
115 glucose addition²³. In the WT strain, Gibbs free energy change (ΔG) across the EMP and the ED glycolysis
116 became more forward-driven (i.e., $\Delta\Delta G < 0$) to -54.8 kJ/mol and -87.9 kJ/mol, respectively, while ΔG of
117 gluconeogenesis increased to 8.6 kJ/mol ($\Delta\Delta G = +10.8$ kJ/mol) in three minutes of carbon upshift (**Fig. 3b**).
118 Thus, the rapid metabolic shifts rendered glycolysis thermodynamically more favorable and
119 gluconeogenesis unfavorable in WT. On the other hand, thermodynamic shifts in Δ edd were less
120 pronounced (**Fig. 3c**).

121 Nitrogen upshift increases glycolytic flux through a combination of upregulation of glucose transport by
122 PTS by decreasing α -ketoglutarate (α KG), which inhibits Enzyme I of the PTS, and decreasing the
123 reversibility of glycolysis²⁴. Upon nitrogen upshift, the intermediates of glycolysis changed to a smaller
124 extent in WT compared to carbon upshift (**Fig. 3a**), and as a result, we observed smaller $\Delta\Delta G$ in both the
125 EMP and the ED glycolysis (**Fig. 3b**). $\Delta\Delta G$ of glycolytic pathways for Δ edd in nitrogen upshift was larger
126 than carbon upshift but otherwise comparable to nitrogen upshift in WT (**Fig. 3c**). While the initial values
127 of overall ΔG of the EMP and ED pathways were substantially different, their ΔG changed similarly upon
128 carbon and nitrogen upshift due to the similarity in the initial substrates and final products of the parallel
129 pathways. However, the intermediate metabolites unique to each pathway (e.g., fructose-1,6-bisphosphate
130 and KDPG), which do not contribute to overall pathway thermodynamics, displayed disparate dynamics
131 (**Fig. 3a**), suggesting different timescales at play in modulating the two glycolytic pathways.

132 **Asymmetric ¹³C-glucose reveals glycolytic fluxes**

133 To quantify fluxes through the parallel glycolytic pathways, we needed a glucose tracer that differentially
134 labels lower glycolytic metabolites depending on the pathway taken. Unlike the EMP glycolysis, in which
135 each glucose produces a pair of triose phosphates (glyceraldehyde-3-phosphate, GAP) by cleaving fructose
136 bisphosphate down the middle, the ED glycolysis shunts only the fourth, fifth, and sixth carbons of glucose
137 to the shared lower glycolysis as a triose phosphate (**Fig. 4a**). With $[1,2-^{13}\text{C}_2]$ glucose, the EMP pathway
138 generates unlabeled (M+0) and doubly labeled (M+2) triose phosphate at a one-to-one ratio while the ED
139 pathway generates only M+0 triose phosphate. The EMP versus ED glycolysis also result in unique
140 positional isotope labeling (**Fig. 4a**) that can be distinguished by MS/MS fragmentation of valine (**Fig. 4b**
141 and **Supplementary Fig. 5**). Furthermore, tracing $[1,2-^{13}\text{C}_2]$ glucose informs us of the oxidative pentose
142 phosphate pathway (OxPPP) flux, which uniquely generates singly labeled (M+1) triose phosphate
143 (**Supplementary Fig. 6**). In *E. coli* exponentially growing in a glucose minimal medium, 3-
144 phosphoglycerate (3PG) and valine labeling measurement indicated a slow ED pathway flux relative to the
145 EMP glycolysis (**Fig. 4a,b**).

146 The non-oxidative pentose phosphate pathway (non-OxPPP) and the reversibility of
147 phosphoglucoisomerase (PGI) potentially obscures our flux quantitation by opening the door for carbons to
148 recursively go through the PPP and produce various isotopomers of triose phosphate^{25,26}. To disambiguate
149 the central carbon metabolism fluxes, we also traced [5,6-¹³C₂]glucose (**Fig. 4c**). Similar to [1,2-¹³C₂]glucose,
150 [5,6-¹³C₂]glucose indicates the relative glycolytic fluxes based on the skewed labeling ratios but with the ED
151 pathway flux contributing to M+2 triose phosphate (**Supplementary Fig. 7**). Nonetheless, [5,6-¹³C₂]glucose
152 divulges the extent of the PPP recycling by uniquely generating unlabeled 6PG. Our 6PG labeling
153 measurement indicated a small recursive PPP flux (**Fig. 4c**). Additionally, since [5,6-¹³C₂]glucose does not
154 undergo labeling rearrangement in the PPP, balances on the two isotopomers it generates can also be used
155 to measure glycolytic fluxes (**Supplementary Fig. 8**). Thus, [1,2-¹³C₂]- and [5,6-¹³C₂]glucose, which are
156 labeled asymmetrically around the cleavage site, reveal the central carbon metabolism fluxes
157 (**Supplementary Notes 2-4**). We determined the ED-to-EMP flux ratio using the three approaches ([1,2-
158 ¹³C₂]glucose labeling of 3PG, correction with [5,6-¹³C₂]glucose, and [1,2-¹³C₂]glucose fragmentation of
159 valine. From these methods, we found the nutrient replete ED-to-EMP flux ratio to be in the range of 0.06 to
160 0.12.

161 **The ED pathway accelerates faster upon upshift**

162 We hypothesized that the adaptive (but not stable) growth advantage of the WT over Δedd was due to the
163 ED pathway enabling higher glycolytic flux in transitional periods. Using [1,2-¹³C₂] and [5,6-¹³C₂]glucose,
164 we set out to investigate how the use of the parallel glycolytic pathways changed during carbon and
165 nitrogen upshift. Glycolytic intermediates typically reach a stable labeling within a minute
166 (**Supplementary Fig. 9**) due to their fast turnover (~1 s⁻¹) (**Supplementary Fig. 10**). Thus, their isotopic
167 labeling can be approximated as a series of minute-scale pseudo-steady states. We measured the isotope
168 labeling of 3PG and 6PG from [1,2-¹³C₂]- and [5,6-¹³C₂]-glucose tracers before and 3, 5, 10, and 30 minutes
169 after upshift (**Fig. 5a,b** and **Supplementary Fig. 11**).

170 The ED pathway's contribution to overall glycolysis rapidly increased upon carbon and nitrogen upshift.
171 Upon carbon upshift, the ED pathway carried the major glycolytic flux (**Fig. 5a**). The relative EMP glycolytic
172 flux increased over time. Although we could not quantify the ED pathway flux in the carbon-limited
173 condition due to the absence of ¹³C glucose tracers, we found that even on acetate *E. coli* expressed the ED
174 pathway enzymes (**Supplementary Fig. 12**). Since any unlabeled glycolytic intermediates that had been
175 derived from unlabeled acetate affect our ability to compute glycolytic fluxes accurately, we took extra
176 caution by performing acetate-to-[U-¹³C₆]glucose upshift to account for residual acetate-sourced
177 intermediates (**Supplementary Fig. 13** and **Supplementary Note 4**). Both nitrogen upshifts from arginine
178 and low NH₄Cl rapidly increased the relative ED pathway flux (**Fig. 5b**). The extent of the ED pathway
179 utilization during nitrogen upshift was smaller than that of carbon upshift, demonstrating the benefit of a
180 reliable glycolytic route even in thermodynamically less favorable times of early carbon upshift.

181 Taken together, our flux quantitation revealed that while the EMP pathway is the main stable glycolytic
182 route, the ED pathway responds faster to upshift glycolysis (**Fig. 5c**). This faster acceleration of the ED
183 pathway flux was consistent with our earlier observation that the ED pathway-capable WT accelerated
184 growth faster than the Δedd ED pathway knockout strain even though they grew equally well under stable
185 nutrient conditions.

187 **Intermittent feeding favors parallel glycolysis**

188 We were curious about the evolutionary benefit that the transiently faster growth acceleration may confer
189 on *E. coli* with both EMP and ED glycolysis. In nature, access to favorable nutrients is often limited because
190 their supply is intermittent and subject to competition within microecosystems²⁷. We cultured WT and
191 Δ edd strains on low glucose (**Fig. 6a**) or low ammonia (**Fig. 6b**) until the limiting nutrient was depleted and
192 spiked in a low dose of the nutrient repeatedly after nutrient depletion.

193 Under these intermittent nutrient feeding conditions, cells possessing both glycolytic pathways achieved
194 increasingly higher culture densities than Δ edd cells (**Fig. 6a,b**). In three cycles of glucose nutrient feeding,
195 WT achieved a cell density of ~13 % higher than Δ edd. Similarly, four cycles of ammonia upshift widened
196 the growth gap between the two strains to ~5 %.

197 We further investigated the evolutionary relevance of the ED pathway using the *E. coli* long-term evolution
198 experiment (LTEE) by Lenski et al²⁸. In the LTEE, twelve initial populations derived from REL606 and
199 REL607 strains have been intermittently fed limiting amounts (25 mg/L) of glucose over 70,000
200 generations. The low glucose concentration led to glucose depletion, and daily subculturing into fresh
201 media introduced carbon upshift every 6.6 generations (**Fig. 6c**).

202 We analyzed the genome sequences of the twelve populations over 50,000 generations, which is the latest
203 generation with readily available genomic data. The mutation history was suggestive of increasing
204 adaptability as we observed more than expected genes with two or more mutations (**Supplementary Fig.**
205 **14**). Some genes even accumulated as many as 50 mutations (**Supplementary Fig. 15**). If random
206 mutations accumulated, the distribution of total number of mutations for a gene would closely match the
207 Poisson distribution.

208 We compared the mutation history of the EMP and the ED glycolytic pathways relative to other pathways.
209 The ED pathway was highly mutated early on, reaching the 96th percentile of pathways by 5,000
210 generations, while the EMP pathway was at the 67th percentile (**Fig. 6d** and **Supplementary Fig. 16**). At
211 5,000 generations, none of the mutations were silent (**Supplementary Fig. 17**). In subsequent generations,
212 the percentile ranks of both glycolytic pathways decreased, but the fractions of nonsynonymous and indel
213 mutations remained above 50%. With mutations in earlier generations generally leading to a greater
214 increase in the fitness of an organism^{29,30}, the early mutations in the ED pathway manifested its importance
215 under intermittent glucose supply. Up to 30,000 generations, mutations occurred in either of the two
216 glycolytic pathways (**Fig. 6e**). Furthermore, by 50,000 generations, more than 80% of those strains that
217 had mutations had only one of the two glycolytic pathways mutated (**Supplementary Fig. 18**). Taken
218 together, these observations hint at the distinct utility of the EMP and the ED glycolysis under stable and
219 transitional periods.

220 **Discussion**

221 Parallel reactions and pathways are prevalent in metabolism, yet the evolutionary advantage of their
222 concurrent utilization remains incompletely understood. In bacteria, the phosphotransferase system (PTS)
223 carries out the same function as the glucose transporter, hexokinase, and pyruvate kinase³¹. In eukaryotes,
224 parallel pathways are commonly found in different organelles (e.g., one-carbon metabolism and partially
225 the TCA cycle in the cytosol and mitochondria)³²⁻³⁴. Genetic redundancy is commonplace in diploids¹⁴. In all
226 organisms, multiple isoforms of various enzymes exist.

227 The EMP and the ED pathways are parallel glycolytic pathways that perform perhaps the most foundational
228 task in metabolism. In an organism with both glycolytic pathways, it is expected that they should both play
229 important roles, lest one of them would have been deprecated. Interestingly, in stable environmental
230 conditions, the ED pathway flux in *E. coli* is a small fraction of the EMP glycolysis, and when we knocked out
231 the ED pathway, we did not find any growth defect under steady-state culture conditions.

232 Instead, we found the benefit of the ED pathway to manifest during dynamic and transitory responses upon
233 nutrient upshift. In the first few minutes of carbon and nitrogen upshift, cells with the ED pathway
234 accelerated growth faster than those without. The quantitation of ED-to-EMP pathway flux ratios revealed
235 the rapid increase of the relative ED pathway flux concurrently with the growth acceleration. The stronger
236 thermodynamic driving force and fewer enzymatic steps of the ED pathway facilitate its rapid preferential
237 upregulation compared to the EMP pathway. These observations suggest that the ED glycolysis is designed
238 to jump once limiting nutrients become available, whereas the EMP glycolysis, although slower to respond
239 to nutrient upshift, is designed to efficiently generate ATP under steady state. The parallel glycolytic
240 pathways are thus complementary and ensure that cells are evolutionarily competitive in both stable and
241 dynamic environments.

242 The dynamics of growth acceleration differed slightly across our nutrient upshift experiments. We attribute
243 the differences to disparate thermodynamic driving forces and regulatory mechanisms at play³⁵. In the
244 carbon upshift experiment, the absence of glucose initially forces cells to halt glycolysis and use acetate for
245 gluconeogenesis. The addition of glucose initiates a switch from gluconeogenesis to glycolysis, which
246 requires flipping the sign of ΔG of every EMP glycolysis reaction step that participates in gluconeogenesis⁷.
247 On the other hand, the ED pathway steps do not participate in gluconeogenesis due to highly negative ΔG°
248 and thus can more rapidly increase its flux upon glucose addition. The ED pathway allows NADPH
249 generation and oxidative stress response like the OxPPP³⁶ but without decarboxylation. Thus, in addition to
250 facilitating rapid glycolytic response, another role of the ED pathway is carbon-efficient NADPH generation
251 (**Supplementary Fig. 19**). By feeding [1-²H]- and [3-²H]-glucose to cells, we observed NADPH production
252 through glucose-6-phosphate dehydrogenase (shared between the ED pathway and the OxPPP) that is
253 three times as high as that of the OxPPP exclusive step 6-phosphogluconate dehydrogenase
254 (**Supplementary Fig. 20**). This deuterated glucose labeling experiment revealed that the contributions of
255 the ED pathway and the OxPPP to NADPH production are comparable.

256 The mechanism of increasing glycolytic flux upon nitrogen upshift is different from that of carbon upshift.
257 In nitrogen limitation, cells voluntarily limit their glucose import via competitive inhibition of the PTS EI by
258 α KG. The PTS system is the main glucose importer and requires PEP as a substrate to transport. In glucose
259 limitation, PEP accumulates and acts as a reserve pool ready to increase the PTS flux as soon as glucose
260 becomes available²³. This is not the case for nitrogen limitation and upshift. Our observations suggest that
261 cells may procure PEP by rapid increase of the ED pathway flux. The ED pathway converts glucose to
262 pyruvate in five reaction steps, and pyruvate can be converted to PEP via phosphoenolpyruvate synthase
263 (PpsA). PpsA is also regulated by nitrogen availability with α KG acting as its inhibitor that blocks
264 phosphotransferase³⁷. While PpsA sacrifices ATP, which is not a concern for nitrogen-limited cells, the
265 concerted regulation of PpsA and PTS facilitates streamlined glucose transport that supports a rapid
266 increase of glycolytic flux. The ED pathway plays a crucial role in bridging PTS and PpsA via a productive
267 shortcut (**Supplementary Fig. 21**).

268 The short- and long-term intermittent feeding experiments corroborated the benefit of parallel glycolysis.
269 Repeated nutrient upshifts manifested the transitory yet evolutionary benefit of the ED pathway in rapid
270 acceleration of glycolysis for energy and biomass precursor generation. The Lenski long-term evolution
271 experiment, which provided the accumulation of beneficial and neutral mutations over 50,000 generations
272 of glucose upshift, demonstrated the comparable importance of the EMP and the ED pathways. Had the ED
273 pathway not played an important role in repeated glucose upshifts, its mutation history would be unlikely
274 to see the high activity in early generations.

275 In nature, rapid nutrient upshift is a common occurrence and nutrients are gradually depleted by
276 organisms. Bacteria readily adapt to these nutrient fluctuations³⁸ and have evolved to cope with short-term
277 changes³⁹. In addition to already discovered strategies, our results indicated the manifold benefits of the
278 parallel glycolysis for recovering from nutrient depletion. More generally, parallel pathways afford
279 flexibility. By employing different cofactors and substrate binding affinities attuned to different
280 environments, parallel reaction steps contribute to metabolic homeostasis under various conditions and
281 stresses⁴⁰. This may also help mitigate the impacts of when flux of one of the two pathways may become
282 misregulated⁴¹. Enzymes catalyzing the same reactions may also possess different regulatory mechanisms
283 as in the case of self-resistance enzymes that protect cells from natural product inhibitors they themselves
284 produce^{42,43}.

285 Glycolysis is often the highest flux-carrying metabolic pathway in heterotrophic organisms. The co-
286 existence of the EMP and the ED glycolytic pathways acts as structural support for rapid glycolytic flux
287 control. Even though the ED pathway flux in *E. coli* was relatively small compared to the EMP glycolysis
288 flux, the ED pathway still carried a substantial flux comparable to other pathways that branch off of central
289 carbon metabolism. Such “hardwired” flux control mechanisms add to the arsenal of rapid adaptation
290 strategies that include small-molecule-based regulation, thermodynamic shift, and post-translational
291 modification^{44,45}. Alternative glycolytic pathways are not unique to prokaryotes⁴⁶, and parallel pathways
292 are commonly found in metabolic maps. Thus, we postulate that dynamic pathway responses underlie a
293 metabolic design principle.

294 **Methods**

295 **Strains and culture conditions**

296 *E. coli* K-12 strain NCM3722 was the wild type (WT) in this study. The ED pathway knockout strains Δedd
297 and Δeda with the NCM3722 background were produced by P1 phage transduction⁴⁷ of a deletion allele
298 from the Keio collection⁴⁸. *E. coli* were grown in Gutnick minimal media⁴⁹ at 37 °C. Media contained either
299 0.2% (w/v) glucose or 0.273% (w/v) sodium acetate as the carbon source such that the same molar
300 availability of elemental carbon was achieved. For the nitrogen source, media contained 10 mM NH₄Cl for
301 the nitrogen-replete condition and either 2 mM NH₄Cl or 2.5 mM of arginine for the nitrogen-limited
302 conditions. Culture density (OD₆₀₀) was monitored by spectrophotometer or plate reader.

303 For carbon upshift, cells were initially grown on acetate. When cultures reached the mid-log phase of
304 growth (OD₆₀₀ ≈ 0.3), carbon upshift was performed by spiking in a concentrated glucose stock solution
305 into the culture to a final glucose concentration of 0.2% (w/v). For nitrogen upshift, cells were initially
306 cultured in media containing 2 mM NH₄Cl or 2.5 mM arginine until mid-log phase. At OD₆₀₀ ≈ 0.3, cells
307 consumed most of the nitrogen from NH₄Cl, slowing down cell growth, and arginine cultures were in the
308 mid-log phase. To induce upshift, NH₄Cl was spiked into cultures to a final concentration of 10 mM.
309 Metabolism was quenched and metabolites were extracted immediately prior to upshift (0 minutes) as well
310 as 3, 5, 10, and 30 minutes after upshift. For isotope labeling experiments, unlabeled glucose was replaced
311 with [1,2-¹³C₂]-, [5,6-¹³C₂]-, or [U-¹³C₆]-glucose.

312 **Flux balance analysis of single gene glycolysis knockouts**

313 Flux balance analysis was performed using the COBRA (COmstraint-Based Reconstruction and Analysis Toolbox
314 (COBRA) on MATLAB with the *E. coli* genome-scale reconstruction iAF1260⁵⁰. The objective function was
315 set to maximize biomass production while satisfying the mass balance constraints and carbon uptake rates
316 specified by:

317
$$S \cdot v = 0$$

318
$$lb \leq v \leq ub$$

319 S is the stoichiometric matrix and v is the vector corresponding to reaction fluxes. lb and ub are the lower
320 and upper bounds of v based on biochemical and thermodynamic considerations. Individual genes of the
321 EMP or ED glycolysis were silenced by constraining the respective reaction's flux bounds to 0
322 mmol/h/gDCW. For simulations of growth on glucose, the glucose uptake rate was set to 8 mmol/h/gDCW
323 to reflect typical substrate uptake rates⁵⁰.

324 **Nutrient upshift growth assays**

325 To measure growth rates and accelerations during nutrient upshift, cells were grown in 96-well plates in a
326 plate reader (BioTek) with shaking at 37 °C. Culture density (OD₆₀₀) measured every two minutes. For each
327 biological replicate, the median value of technical replicates across multiple wells was taken for growth
328 analysis. Growth acceleration was computed as the time derivative of the specific growth rate (μ), which is
329 the time derivative of log culture density (ln(C)):

330
$$\text{growth acceleration } (a) = \frac{d\mu}{dt} = \frac{d^2 \ln(C)}{dt^2}$$

331 Intermittent nutrient upshift growth curves were performed by culturing cells in a 96-well plate in the
332 plate reader. Cultures were first inoculated into plates with either glucose- or NH₄Cl-depleted media before
333 0.02% (w/v) glucose or 0.5 mM NH₄Cl was added at t = 0 minutes. Upshift was monitored until the limiting
334 nutrient was depleted and cell growth ceased for no longer than 15 minutes. For nutrient upshift, the plate
335 was taken out from the plate reader for spiking in 0.02% (w/v) glucose or 0.5 mM NH₄Cl. These nutrient
336 spike-in and growth monitoring steps were repeated a few times. All growth assays were performed in
337 biological triplicates and, for each biological replicate, 12 technical replicates.

338 **Metabolite extraction and measurement**

339 Metabolite extraction was conducted as quickly as possible to minimize perturbations in metabolism. To
340 quickly quench metabolism and extract metabolites, 1 mL of cultures was vacuum-filtered onto nylon
341 membrane filters (0.45 µm; Millipore) and flipped cell-side down into 400 µL of 40:40:20 HPLC-grade
342 acetonitrile/methanol/water that was pre-cooled to -20 °C in a 6-well plate. Extraction continued at -20 °C
343 for 20 minutes before the filter was flipped cell-side up and washed with the extraction solvent in the well.
344 The extract was collected in an Eppendorf tube and centrifuged at 4 °C. The supernatant was dried under
345 nitrogen flow and reconstituted in HPLC-grade water for LC-MS analysis.

346 The metabolite extract samples were analyzed by high performance liquid chromatography (Vanquish Duo
347 UHPLC, Thermo) coupled to a high-resolution orbitrap mass spectrometer (Q Exactive Plus, Thermo). The
348 LC separation was achieved using a hydrophilic interaction chromatography column (XBridge BEH Amide
349 XP Column, 130 Å, 2.5 µm, 2.1 mm X 150 mm, Waters). Mass spectrometry was performed in both positive
350 and negative mode using a mass resolution of 140,000 at 200 m/z. The resulting LC-MS data was processed
351 using the Metabolomic Analysis and Visualization Engine (MAVEN)⁵¹ with peaks identified by both the
352 known retention times and mass-to-charge ratios (m/z)⁵².

353 For LC-MS/MS analysis of valine, the same LC method was used with a modified MS protocol with a full
354 MS/data-dependent MS² scan using a normalized collision energy (NCE) of 35. The positive parent ions of
355 all valine isotopologues were inputted for MS² fragmentation. The resulting LC-MS/MS data was analyzed
356 on MAVEN by first identifying the parent m/z for each valine isotopologue and then extracting its fragment
357 spectra⁵¹.

358 **Quantitation of Gibbs free energy of reaction**

359 Absolute metabolite concentrations in different conditions and time points were obtained by comparing
360 peak areas to the known reference points in which the absolute concentrations of central carbon
361 metabolites of *E. coli* had been measured^{53,54}. The KDPG concentration was measured using an isotope-
362 ratio-based approach⁵⁵. Cellular metabolites were labeled by culturing *E. coli* on [U-¹³C₆]glucose for
363 multiple generations and extracted using the extraction solvent containing known concentrations of the
364 unlabeled KDPG internal standard.

365 Using absolute metabolite concentrations (**Supplementary Table 1**), Gibbs free energy of reaction (ΔG)
366 was computed using the following equation.

367
$$\Delta G = \Delta G^\circ + RT \ln Q$$

368 ΔG[°] is ΔG at standard biochemical conditions, R is the universal gas constant, T is the temperature in
369 kelvins, Q is the reaction quotient (i.e., the ratio of product-to-substrate activities, which are effective

370 concentrations in a non-ideal solution). ΔG and changes in ΔG from one state to another ($\Delta\Delta G$) were
371 computed for the EMP pathway, the ED pathway, and gluconeogenesis (**Supplementary Note 1**).

372 **Cell lysate assay**

373 Measurement of the ED pathway activity in acetate cultures was conducted by monitoring KDPG
374 production from cell lysates upon adding 6PG. Cells were grown on acetate until cultures reached ~ 0.4
375 OD₆₀₀. Cells were pelleted, washed twice in cold phosphate-buffered saline (PBS), and resuspended in PBS.
376 Cells were lysed by addition of 20 mg/mL lysozyme and sonication before subsequent centrifugation for 10
377 minutes. All lysis steps were conducted at 4 °C. The supernatant was moved to an Eppendorf tube and
378 heated to 37 °C. 5 mM 6PG was added to the cell lysate and the reaction mixture incubated at 37°C with
379 continuous shaking. Small aliquots of the reaction mixture were sampled over time. The reaction in those
380 aliquots was quenched by the addition of cold 40:40:20 methanol:acetonitrile:water at a 1:4 ratio of the
381 aliquot to the quenching solution. The mixture was centrifuged, and the supernatant was taken for the
382 measurement of KDPG by LC-MS.

383 **Glycolytic pathway flux quantitation via labeling in lower glycolysis metabolites**

384 Glycolytic fluxes were obtained using the intracellular metabolite labeling from [1,2-¹³C₂]-, [5,6-¹³C₂]-, or
385 [U-¹³C₆]-glucose tracers (**Supplementary Tables 2-10**). [1,2-¹³C₂]- and [5,6-¹³C₂]-glucose tracers provided
386 the necessary metabolite labeling (e.g., 3PG, 6PG, and Val) for determination of central carbon metabolism
387 fluxes (**Supplementary Notes 2 and 3**). For the carbon upshift case, [U-¹³C₆]-glucose tracer provided
388 information necessary to correct for incomplete turnover of 3PG in early time points (**Supplementary**
389 **Note 4**). Briefly, since the isotope labeling of 3PG from [1,2-¹³C₂]glucose depends on which route glucose
390 took (the EMP pathway, ED pathway, or pentose phosphate pathway), the following relationships between
391 pathway fluxes and 3PG isotopologues were derived.

392
$$3PG_{M+0} = \frac{v_{EMP} + v_{ED} + v_{PPP}}{Q}$$

393
$$3PG_{M+1} = \frac{\frac{1}{3}v_{PPP}}{Q}$$

394
$$3PG_{M+2} = \frac{v_{EMP} + \frac{1}{3}v_{PPP}}{Q}$$

395 Q is the normalization factor that ensures the sum of 3PG mass isotopomer fractions is 1. These equations
396 were rearranged to solve for the ED-to-EMP flux ratios in **Fig. 5**:

397
$$\frac{v_{ED}}{v_{EMP}} = \frac{3PG_{M+0} - 3PG_{M+2} - 2 \cdot 3PG_{M+1}}{3PG_{M+2} - 3PG_{M+1}}$$

398 **Analysis of long-term evolution experiment**

399 The long-term evolution experiment (LTEE) by Lenski et al. encompassed six cultures from each of the
400 ancestral strains REL606 and REL607 (12 cultures total) in a DM medium with 25 mg/L glucose (citrate
401 was also included in this medium as a chelating agent, which the ancestral strain does not grow on)²⁸.
402 Cultures were diluted 1:100 into the fresh medium daily, and two clones from each culture were sampled
403 periodically for sequencing. The mutation history of the 12 populations was downloaded
404 from <https://barricklab.org/shiny/LTEE-Ecoli/> and analyzed using MATLAB and Python programs.

405 Nonsynonymous (missense and nonsense) mutations and indels were considered for all analyses, and
406 synonymous mutations were also included where stated (e.g., **Supplementary Figs. 15 and 17**).

407 The mutation history of the ED and the EMP pathways were compared to other pathways. Since the
408 assignment of genes to metabolic pathways is not always one-to-one or clear-cut, pseudo pathways were
409 formed from randomly generated groups of genes. Each pseudo pathway was generated by randomly
410 selecting 10 genes from the *E. coli* genome. Mutations in the pathway genes were counted and normalized
411 by the number of genes in the pathway at each generation. This process was repeated for 1,000 pathways
412 as well as the EMP and the ED pathways, and the percentile ranks of the EMP and the ED pathways' per-
413 gene mutations were obtained. The EMP and the ED pathways included the following mutually exclusive
414 sets of glycolytic genes: *pgi*, *pfka*, *pfkb*, *fbaa*, *fbab*, and *tpia* were included in the EMP pathway; and *zwf*, *pgl*,
415 *edd*, and *eda* were included in the ED pathway. These gene sets were also used to track the number of
416 strains with mutations in the EMP and the ED pathways.

417 To assess the randomness of the mutation history, mutation data from generation 50,000 were compared
418 to the Poisson distribution. Without considering their identity, individual genes' mutations were counted
419 for all 24 clones. Since each of the populations begot two clones, which are thus not independent of each
420 other, 2^{12} sets of 12 independent clones were generated using only one of the two sequenced clones from
421 each population. Each set generated a distribution of frequencies of mutations in a gene. The mean and the
422 standard deviation of these distributions over the 2^{12} sets were obtained. The resulting distribution was fit
423 to a Poisson distribution using the MATLAB curve fitting toolbox (**Supplementary Fig.14**).

424 **Data availability**

425 Source data for Figures 1-6 are provided in Supplementary Tables 1-17 and the GitHub public repository:
426 https://github.com/richardlaw517/Parallel_Glycolysis

427 **Code availability**

428 The code for the analysis of metabolic fluxes and LTEE is available on the GitHub public repository:
429 https://github.com/richardlaw517/Parallel_Glycolysis

430

431 **Acknowledgements**

432 The authors would like to thank the members of the Park lab, the UCLA Metabolomics Center, and the UCLA
433 Molecular Instrumentation Center for helpful discussion. This work was supported by the National
434 Institute Of General Medical Sciences of the National Institutes of Health under Award Number
435 R35GM143127, the National Institutes of Health Instrumentation Grant Number 1S10OD016387-01, the
436 BioPACIFIC Materials Innovation Platform of the National Science Foundation under Award Number DMR-
437 1933487, and the Hellman Fellowship. The content is solely the responsibility of the authors and does not
438 necessarily represent the official views of the National Institutes of Health or the National Science
439 Foundation.

440 **Author Contributions**

441 R.C.L. and J.O.P. designed the study and wrote the paper. R.C.L. carried out the experiments. R.C.L. and J.O.P.
442 analyzed the metabolomic and isotope-labeling results. R.C.L., G.N., and J.O.P. analyzed the sequencing data
443 from the long-term evolution experiment.

444 **Competing Interests**

445 The authors declare no competing financial or non-financial interests.

446

447 **References**

- 448 1. Romano, A. H. & Conway, T. Evolution of carbohydrate metabolic pathways. *Research in*
449 *Microbiology* **147**, 448–455 (1996).
- 450 2. Chen, X. *et al.* The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria
451 and plants. *Proc Natl Acad Sci U S A* **113**, 5441–5446 (2016).
- 452 3. Long, C. P., Gonzalez, J. E., Sandoval, N. R. & Antoniewicz, M. R. Characterization of
453 physiological responses to 22 gene knockouts in *Escherichia coli* central carbon metabolism.
454 *Metabolic Engineering* **37**, 102–113 (2016).
- 455 4. Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a
456 tradeoff between energy yield and protein cost. *Proceedings of the National Academy of Sciences*
457 **110**, 10039–10044 (2013).
- 458 5. Basan, M. *et al.* A universal trade-off between growth and lag in fluctuating environments.
459 *Nature* **2020** 584:7821 **584**, 470–474 (2020).
- 460 6. Bar-Even, A., Flamholz, A., Noor, E. & Milo, R. Rethinking glycolysis: on the biochemical logic
461 of metabolic pathways. *Nature Chemical Biology* **2012** 8:6 **8**, 509–517 (2012).
- 462 7. Park, J. O. *et al.* Near-equilibrium glycolysis supports metabolic homeostasis and energy yield.
463 *Nature Chemical Biology* **15**, (2019).
- 464 8. Xiong, W. *et al.* Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.
465 *Nature Plants* **2015** 2:1 **2**, 1–8 (2015).
- 466 9. Basan, M. *et al.* Overflow metabolism in *Escherichia coli* results from efficient proteome
467 allocation. *Nature* **2015** 528:7580 **528**, 99–104 (2015).
- 468 10. Noor, E. *et al.* The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and
469 Cost Minimization. *PLOS Computational Biology* **12**, e1005167 (2016).
- 470 11. Peekhaus, N. & Conway, T. What's for dinner?: Entner-Doudoroff metabolism in *Escherichia*
471 *coli*. *Journal of Bacteriology* **180**, 3495–3502 (1998).
- 472 12. Mahadevan, R. & Lovley, D. R. The Degree of Redundancy in Metabolic Genes Is Linked to
473 Mode of Metabolism. *Biophysical Journal* **94**, 1216–1220 (2008).
- 474 13. Güell, O., Sagués, F. & Serrano, M. Á. Essential Plasticity and Redundancy of Metabolism
475 Unveiled by Synthetic Lethality Analysis. *PLOS Computational Biology* **10**, e1003637 (2014).
- 476 14. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy.
477 *Nature* **1997** 388:6638 **388**, 167–171 (1997).
- 478 15. Murray, E. L. & Conway, T. Multiple regulators control expression of the Entner-Doudoroff
479 aldolase (Eda) of *Escherichia coli*. *Journal of Bacteriology* **187**, 991–1000 (2005).
- 480 16. Parisutham, V. & Lee, S. K. Novel Functions and Regulation of Cryptic Cellobiose Operons in
481 *Escherichia coli*. *PLOS ONE* **10**, e0131928 (2015).
- 482 17. Feist, A. M. *et al.* A genome-scale metabolic reconstruction for *Escherichia coli* K-12 MG1655
483 that accounts for 1260 ORFs and thermodynamic information. *Molecular Systems Biology* **3**,
484 (2007).
- 485 18. Fuhrman, L. K., Wanken, A., Nickerson, K. W. & Conway, T. Rapid accumulation of
486 intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results
487 in bacteriostasis. doi:10.1111/j.1574-6968.1998.tb12870.x.
- 488 19. Chantranupong, L., Wolfson, R. L. & Sabatini, D. M. Nutrient-Sensing Mechanisms across
489 Evolution. *Cell* **161**, 67–83 (2015).
- 490 20. Korem Kohanim, Y. *et al.* A Bacterial Growth Law out of Steady State. *Cell Reports* **23**, 2891–
491 2900 (2018).

492 21. Towbin, B. D. *et al.* Optimality and sub-optimality in a bacterial growth law. *Nature Communications* 2017 **8**:1 **8**, 1–8 (2017).

493 22. Fischer, E. & Sauer, U. A Novel Metabolic Cycle Catalyzes Glucose Oxidation and Anaplerosis in Hungry *Escherichia coli**. *Journal of Biological Chemistry* **278**, 46446–46451 (2003).

494 23. Xu, Y. F., Amador-Noguez, D., Reaves, M. L., Feng, X. J. & Rabinowitz, J. D. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. *Nature Chemical Biology* 2012 **8**:6 **8**, 562–568 (2012).

495 24. Doucette, C. D., Schwab, D. J., Wingreen, N. S. & Rabinowitz, J. D. α -ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. *Nature Chemical Biology* 2011 **7**:12 **7**, 894–901 (2011).

496 25. Kleijn, R. J., van Winden, W. A., van Gulik, W. M. & Heijnen, J. J. Revisiting the ^{13}C -label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. *The FEBS Journal* **272**, 4970–4982 (2005).

497 26. Stincone, A. *et al.* The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. *Biological Reviews* **90**, 927–963 (2015).

498 27. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. *Environmental Microbiology* **19**, 1366–1378 (2017).

499 28. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-Term Experimental Evolution in *Escherichia coli*. I. Adaptation and Divergence During 2,000 Generations. <https://doi.org/10.1086/285289> **138**, 1315–1341 (2015).

500 29. Wünsche, A. *et al.* Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. *Nature Ecology & Evolution* 2017 **1**:4 **1**, 1–6 (2017).

501 30. Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. *The ISME Journal* 2017 **11**:10 **11**, 2181–2194 (2017).

502 31. Emmerling, M. *et al.* Metabolic flux responses to pyruvate kinase knockout in *Escherichia coli*. *Journal of Bacteriology* **184**, 152–164 (2002).

503 32. Burgos-Barragan, G. *et al.* Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. *Nature* 2017 **548**:7669 **548**, 549–554 (2017).

504 33. Tibbetts, A. S. & Appling, D. R. Compartmentalization of Mammalian Folate-Mediated One-Carbon Metabolism. <http://dx.doi.org/10.1146/annurev.nutr.012809.104810> **30**, 57–81 (2010).

505 34. Corbet, C. & Feron, O. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer* **1868**, 7–15 (2017).

506 35. Kiparissides, A. & Hatzimanikatis, V. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks. *Metabolic Engineering* **39**, 117–127 (2017).

507 36. Krüger, A. *et al.* The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. *Antioxidants and Redox Signaling* **15**, 311–324 (2011).

508 37. Kee, J. M., Oslund, R. C., Perlman, D. H. & Muir, T. W. A pan-specific antibody for direct detection of protein histidine phosphorylation. *Nature Chemical Biology* 2013 **9**:7 **9**, 416–421 (2013).

509 38. Nguyen, J. *et al.* A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. *Nature Communications* 2021 **12**:1 **12**, 1–12 (2021).

510 39. Sekar, K. *et al.* Bacterial glycogen provides short-term benefits in changing environments. *Applied and Environmental Microbiology* **86**, (2020).

536 40. Jenior, M. L., Moutinho, T. J., Dougherty, B. v. & Papin, J. A. Transcriptome-guided
537 parsimonious flux analysis improves predictions with metabolic networks in complex
538 environments. *PLOS Computational Biology* **16**, e1007099 (2020).

539 41. Wang, C. Y. *et al.* Metabolome and proteome analyses reveal transcriptional misregulation in
540 glycolysis of engineered *E. coli*. *Nature Communications* **2021** *12*:1 **12**, 1–12 (2021).

541 42. Yan, Y., Liu, N. & Tang, Y. Recent developments in self-resistance gene directed natural product
542 discovery. *Natural Product Reports* **37**, 879–892 (2020).

543 43. Almabruk, K. H., Dinh, L. K. & Philmus, B. Self-Resistance of Natural Product Producers: Past,
544 Present, and Future Focusing on Self-Resistant Protein Variants. *ACS Chemical Biology* **13**,
545 1426–1437 (2018).

546 44. Hofmeyr, J. H. S. & Cornish-Bowden, A. Quantitative assessment of regulation in metabolic
547 systems. *European Journal of Biochemistry* **200**, 223–236 (1991).

548 45. Kochanowski, K. *et al.* Global coordination of metabolic pathways in *Escherichia coli* by active
549 and passive regulation. *Molecular Systems Biology* **17**, e10064 (2021).

550 46. vander Heiden, M. G. *et al.* Evidence for an alternative glycolytic pathway in rapidly proliferating
551 cells. *Science* (1979) **329**, 1492–1499 (2010).

552 47. Saragliadis, A., Trunk, T. & Leo, J. C. Producing Gene Deletions in *Escherichia coli* by P1
553 Transduction with Excisable Antibiotic Resistance Cassettes. *Journal of Visualized Experiments :
554 JoVE* **2018**, 58267 (2018).

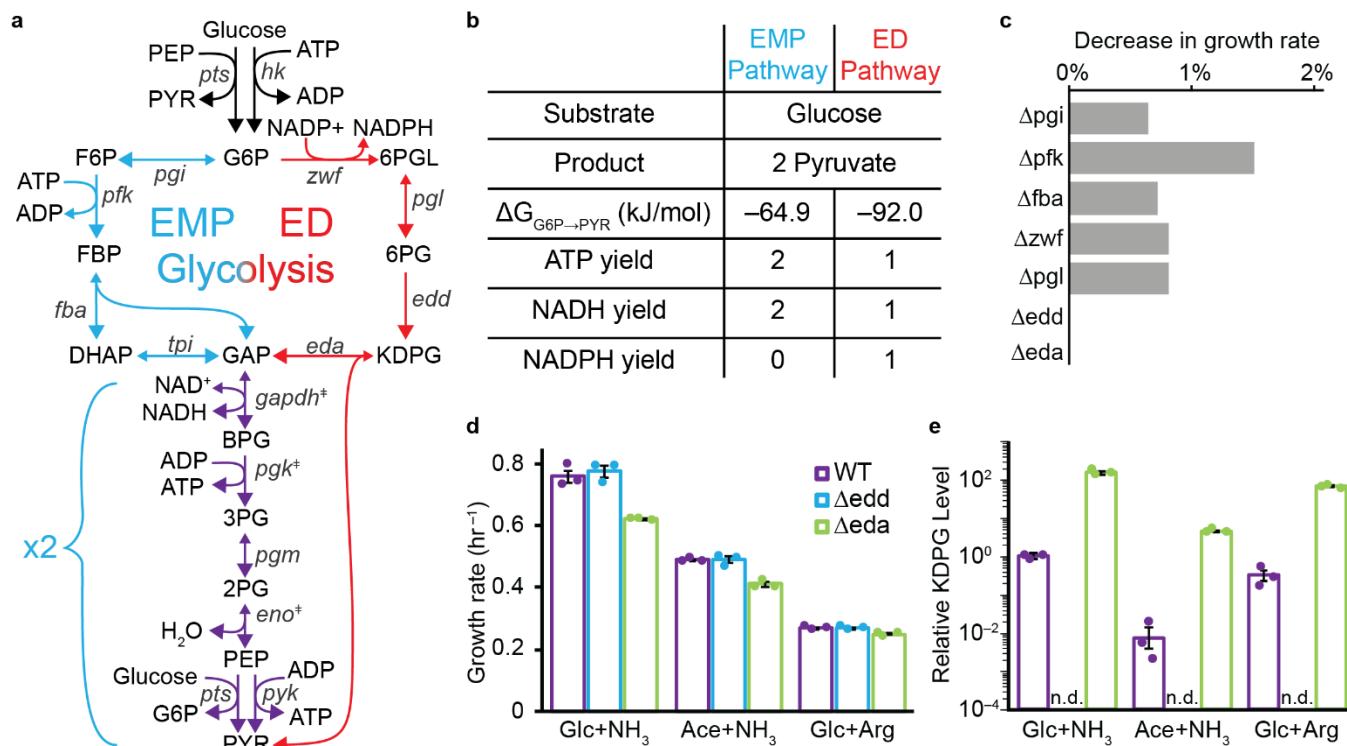
555 48. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the
556 Keio collection. *Molecular Systems Biology* **2**, 2006.0008 (2006).

557 49. Gutnick, D., Calvo, J. M., Klopotowski, T. & Ames, B. N. Compounds which serve as the sole
558 source of carbon or nitrogen for *Salmonella typhimurium* LT-2. *J Bacteriol* **100**, 215–219 (1969).

559 50. Orth, J. D. *et al.* A comprehensive genome-scale reconstruction of *Escherichia coli* metabolism—
560 2011. *Molecular Systems Biology* **7**, 535 (2011).

561 51. Seitzer, P., Bennett, B. & Melamud, E. MAVEN2: An Updated Open-Source Mass Spectrometry
562 Exploration Platform. *Metabolites* **2022**, Vol. 12, Page 684 **12**, 684 (2022).

563 52. Wang, L. *et al.* Peak Annotation and Verification Engine for Untargeted LC-MS Metabolomics.
564 *Analytical Chemistry* **91**, 1838–1846 (2019).

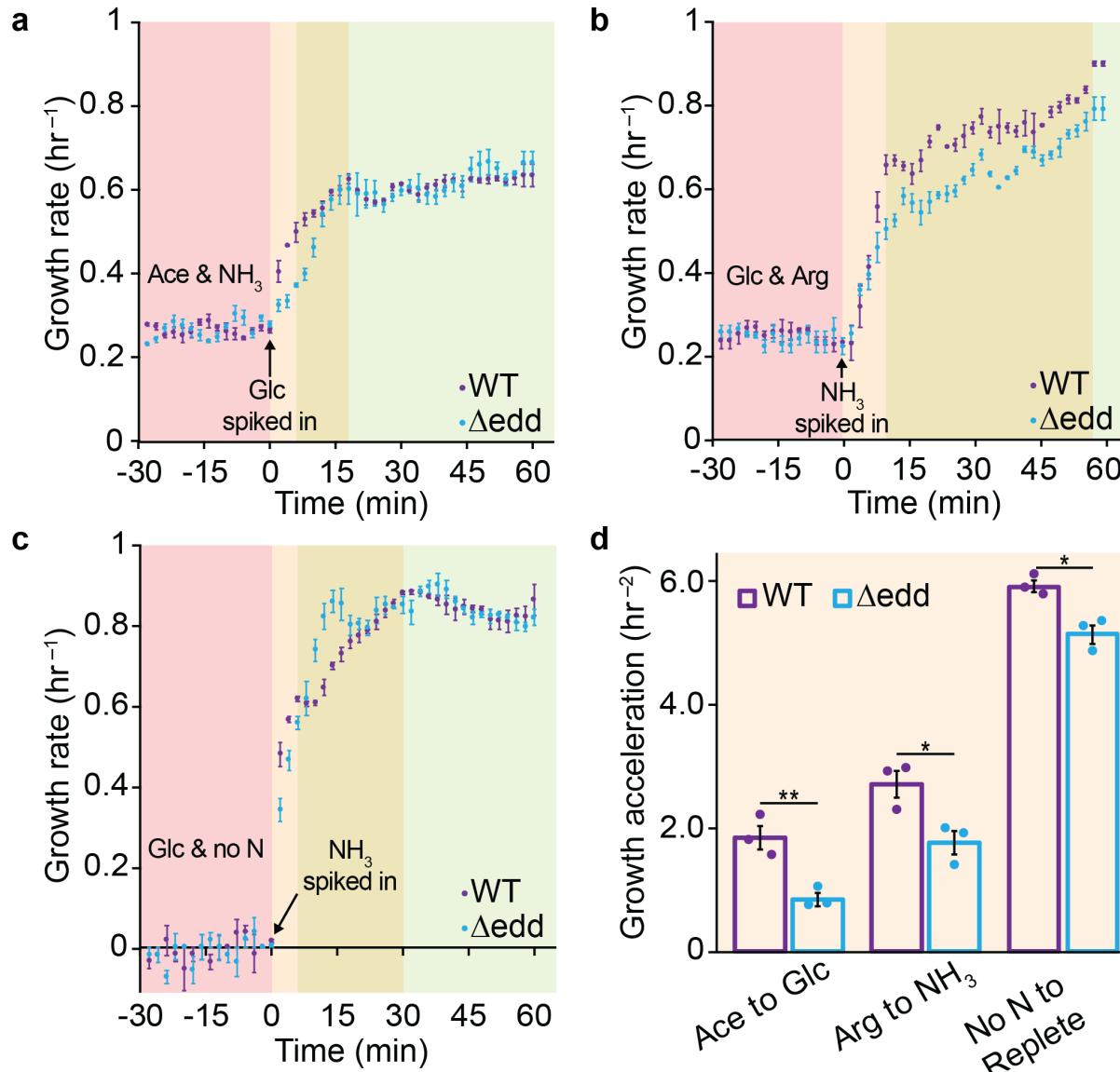

565 53. Yuan, J. *et al.* Metabolomics-driven quantitative analysis of ammonia assimilation in *E. coli*.
566 *Molecular Systems Biology* **5**, 302 (2009).

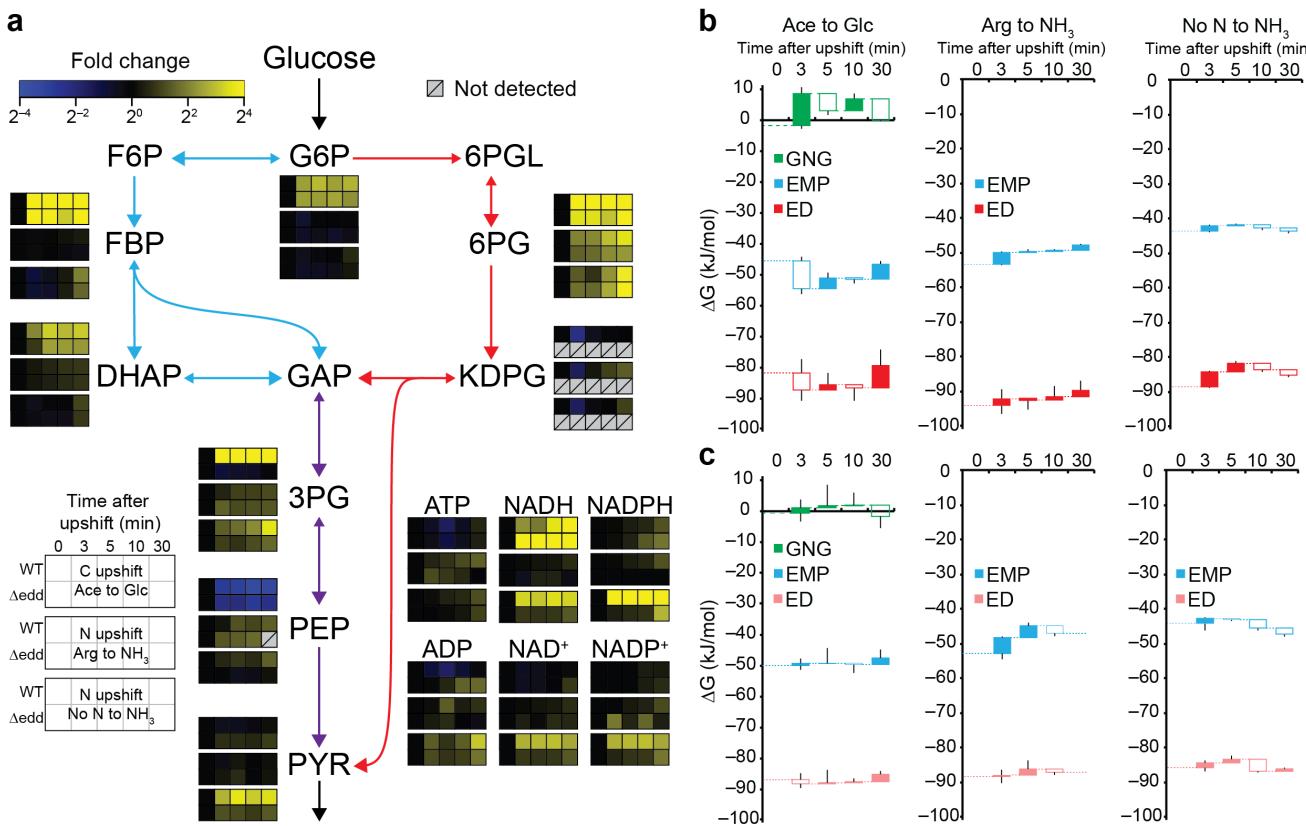
567 54. Park, J. O. *et al.* Metabolite concentrations, fluxes and free energies imply efficient enzyme
568 usage. *Nature Chemical Biology* **2016** *12*:7 **12**, 482–489 (2016).

569 55. Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular
570 metabolite concentrations by an isotope ratio-based approach. *Nature Protocols* **2008** *3*:8 **3**,
571 1299–1311 (2008).

572

573

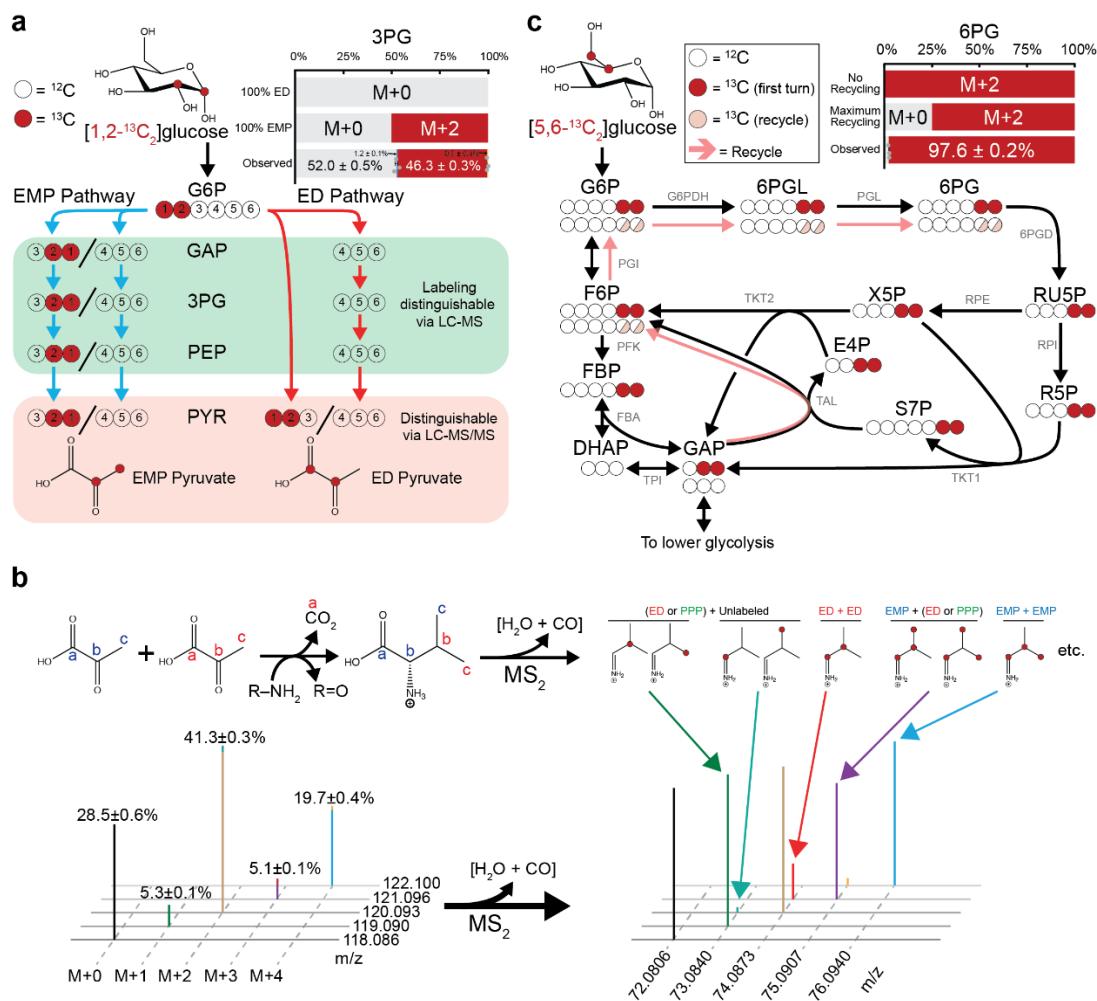



574

575 **Fig. 1: The ED pathway performs parallel glycolysis but does not affect cell growth rate.**

576 (a) The EMP glycolysis (red) and the ED glycolysis (blue) are parallel, and they share the steps of lower
577 glycolysis (purple). Essential genes are marked with ‡. (b) The EMP and ED pathways are parallel carbon-
578 wise with a bioenergetic difference. The ED pathway is thermodynamically more forward-driven (i.e., ΔG is
579 more negative). (c) Flux balance analysis (FBA) of single non-essential gene knockouts predicted negligible
580 impact of the ED pathway on cell growth. (d) The growth rates of WT and Δedd strains on different carbon
581 and nitrogen sources were similar, but Δeda consistently grew slower. (e) The slow growth of Δeda was
582 due to the buildup of the ED pathway intermediate 2-keto-3-deoxy-6-phosphogluconate (KDPG). Error bars
583 represent the standard error of the mean (s.e.m.) with n=3 biological replicates. G6P stands for glucose-6-
584 phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone
585 phosphate; GAP, glyceraldehyde-3-phosphate; 6PGL, 6-phosphogluconolactone; 6PG, 6-phosphogluconate;
586 KDPG, 2-dehydro-3-deoxy-phosphogluconate; BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate;
587 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; and PYR, pyruvate. *pts* represents the gene(s) for
588 phosphotransferase system; *hk*, hexokinase; *pgi*, phosphoglucoisomerase; *pfk*, phosphofructokinase; *fba*,
589 fructose bisphosphate aldolase; *tpi* triose phosphate isomerase; *zwf*, glucose-6-phosphate dehydrogenase;
590 *pgl*, 6-phosphogluconolactonase; *edd*, phosphogluconate dehydratase; *eda*, 2-dehydro-3-deoxy-
591 phosphogluconate aldolase; *gapdh*, glyceraldehyde-3-phosphate dehydrogenase; *pgk*, phosphoglycerate
592 kinase; *pgm*, phosphoglycerate mutase; *eno*, enolase; and *pyk*, pyruvate kinase.

593

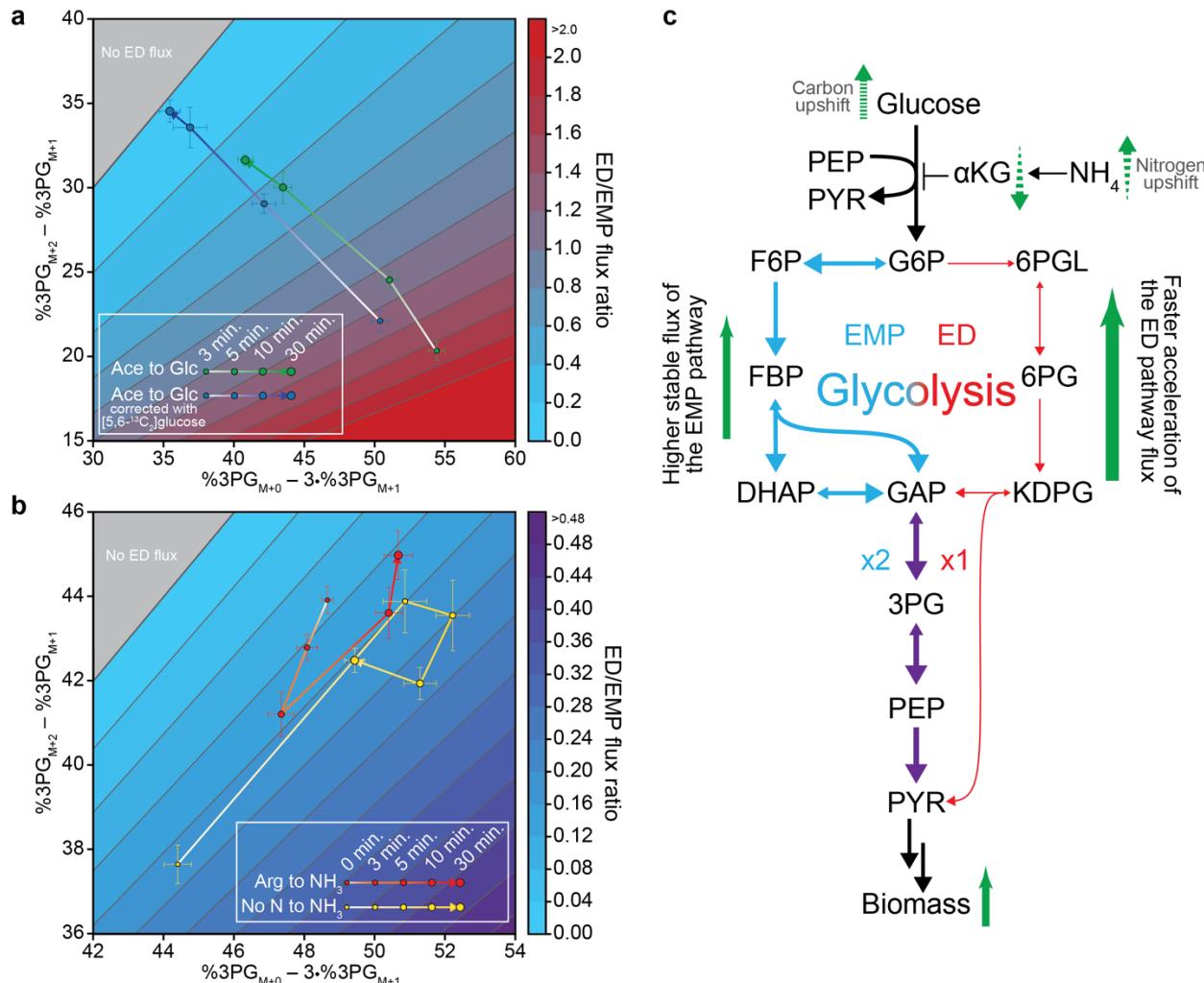


606

607 **Fig. 3: Both EMP and ED glycolytic pathways are activated upon nutrient upshift.**

608 (a) Most metabolites rapidly increased in WT and Δ edd strains following nutrient upshift. KDPG, an ED
 609 pathway specific intermediate, transiently decreased in the first five minutes of upshift and was not
 610 detected in the Δ edd strain. PEP decreased following glucose addition. (b, c) Gibbs free energy (Δ G) rapidly
 611 changed across the EMP pathway, the ED pathway, and gluconeogenesis (GNG) during upshift in (b) WT
 612 and (c) Δ edd. The Δ G of GNG immediately increased to positive value upon upshift in both strains. The EMP
 613 and ED glycolysis both remained thermodynamically forward-driven (Δ G<<0) during the transition. Since
 614 the ED pathway was inactive in Δ edd, its Δ G is shown in light red. The dotted lines represent the Δ G at the
 615 previous time points. Filled boxes indicate an increase in Δ G from the previous state and empty boxes
 616 indicate a decrease. Whiskers represent the s.e.m. (n = 3-6 biological replicates).

617

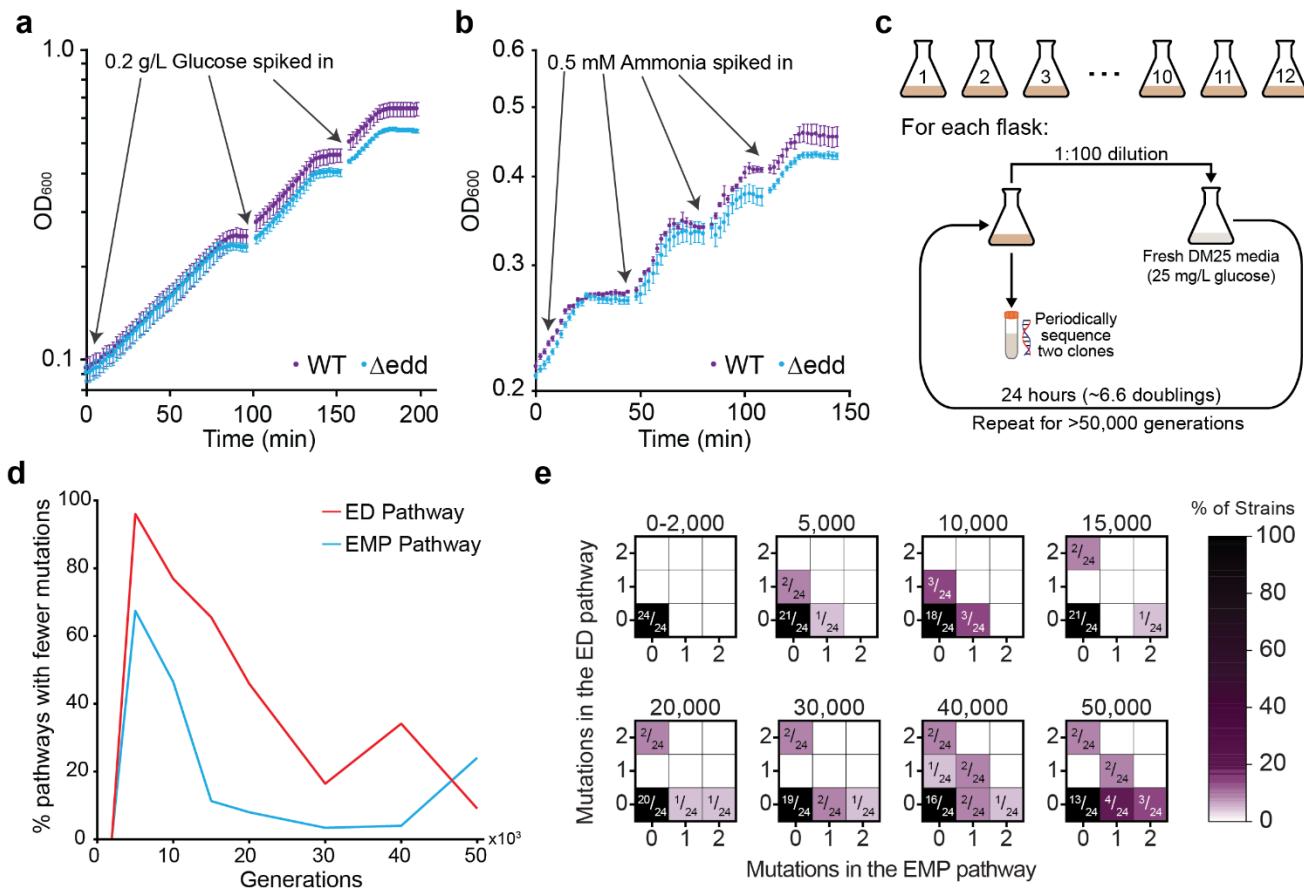


618

619 **Fig. 4: Asymmetrically ¹³C-labeled glucose tracers reveal glycolytic fluxes.**

620 (a) With [1,2-¹³C₂]glucose, only the EMP glycolysis generates labeled lower glycolytic intermediates. Both
621 the EMP and the ED pathways produced labeled pyruvate but at different positions. The labeling fraction of
622 3PG indicated the ED pathway activity, albeit much smaller than that of the EMP pathway, in cells without
623 any nutrient limitation. (b) Positional labeling of pyruvate can be distinguished using LC-MS/MS. Each of
624 the isotopologues of valine, which is synthesized from two pyruvate molecules, were fragmented. The MS₂
625 spectra revealed the positional labeling that is indicative of the ED pathway activity. (c) The unlabeled
626 fraction of 6PG from [5,6-¹³C₂]glucose tracing revealed a small degree of recursive pentose phosphate
627 pathway (PPP) usage, which we used to more accurately compute glycolytic fluxes. Unlabeled 6PG is only
628 generated from S7P and unlabeled GAP through the reactions in light red arrows. Error bars represent the
629 s.e.m. (n=3 biological replicates). RU5P stands for ribulose-5-phosphate; X5P, xylulose-5-phosphate; R5P,
630 ribose-5-phosphate; E4P, erythrose-4-phosphate; S7P, sedoheptulose-7-phosphate; PGI,
631 phosphoglucoisomerase; PFK, phosphofructokinase; FBA, fructose-1,6-bisphosphate aldolase; TPI, triose
632 phosphate isomerase; G6PDH, glucose-6-phosphate dehydrogenase; PGL, phosphogluconolactonase; 6PGD,
633 6-phosphogluconate dehydrogenase; RPE, ribulose phosphate epimerase; RPI, ribose phosphate isomerase;
634 TKT1 and TKT2, transketolase; and TAL, transaldolase.

635



636

637 **Fig. 5: ED pathway flux accelerates faster than the EMP glycolytic flux.**

638 (a) The ED-to-EMP flux ratios were obtained using the 3PG labeling from $[1,2-^{13}\text{C}_2]\text{glucose}$ (green) upon
639 carbon upshift. Due to some residual gluconeogenic activity, the 3PG labeling fractions were corrected
640 using the mirror-image tracer $[5,6-^{13}\text{C}_2]\text{glucose}$ (blue) (see **Methods** and **Supplementary Note 4**). The ED
641 pathway is the dominant glycolysis immediately following glucose addition. (b) Upon nitrogen upshift from
642 arginine (red) and no nitrogen (yellow), the ED pathway flux accelerated faster than the EMP pathway
643 within five minutes. Their flux ratios returned to the initial ratios after 30 minutes. (c) The EMP and the ED
644 pathways have complementary roles. The EMP pathway excels in maintaining high homeostatic glycolytic
645 flux while the ED pathway excels in rapidly bolstering glycolytic flux upon increased biomass and energy
646 demand. Error bars represent the s.e.m. (n=3 biological replicates).

647

648

649

Fig. 6: Importance of the ED pathway persists in short- and long-term intermittent nutrient feeding

650

651

652

653

654

655

656

657

658

(a) WT outperformed the Δ edd strain under intermittent supply of glucose. With each successive upshift, WT further pulled away from Δ edd in terms of culture density. (b) Similarly, intermittent feeding of ammonia led to higher growth in WT culture density. (c) The long-term evolution experiment mirrored intermittent glucose supply. 12 starter cultures of *E. coli* were transferred to fresh low-glucose media daily, inducing carbon upshift for >50,000 generations. From each culture, two clones were periodically sampled and sequenced. (d) The EMP and ED pathways accumulated mutations early on compared to other pathways. At generation 5,000, the ED pathway had a higher frequency of mutations than 96% of pathways. (see **Methods**). (e) The EMP and ED pathway mutations develop over time in parallel. No strains developed mutations in both pathways until generation 40,000. Error bars represent the s.e.m. (n=3 biological replicates).