

1 **Phat queens emerge fashionably late: body size and condition predict timing of spring**
2 **emergence for queen bumble bees**

3

4 Ellen C. Keaveny^{1*}, Michael E. Dillon¹

5

6 ¹University of Wyoming – Program in Ecology & Department of Zoology and Physiology

7 1000 E. University Avenue

8 Laramie Wyoming, 82072

9

10 *Corresponding author: ekeaveny@uwyo.edu

11

12

13 **Keywords:** *body mass, lipids*

14

15 **Abstract**

16 For insects, the timing of many life history events (phenology) depends on temperature cues.

17 Body size is a critical mediator of insect responses to temperature, so may also influence

18 phenology. The determinants of spring emergence of bumble bee queens are not well

19 understood, but body size is likely important for several reasons. In fall, queens accumulate

20 energy stores to fuel overwinter survival. Accumulation of fat stores prior to and depletion of fat

21 stores during overwintering are likely size-dependent: larger queens can accumulate more lipids

22 and have lower mass-specific metabolic rates. Therefore, larger queens and queens in relatively

23 better condition may have delayed depletion of energy stores, allowing for later spring

24 emergence. To test whether timing of spring emergence is associated with body size and

25 condition, we captured 295 *Bombus huntii* queens in Laramie, WY, during the 2020 and 2021

26 growing seasons, weighed them, and measured intertegular width (a size metric unaffected by

27 variation in feeding and hydration state). Early emerging queens were smaller than later

28 emerging queens across years. Mass relative to intertegular width increased as the season

29 progressed suggesting, as predicted, that body condition influences the timing of spring

30 emergence for these crucial pollinators.

31

32 **Introduction**

33 Temperature is a major factor influencing the timing of critical life history events for diverse
34 organisms (“phenology”; van Asch and Visser, 2007). Spring emergence, peak abundance, and
35 fall immersgence (e.g., entry into diapause, overwintering quiescence, or hibernation) have all
36 been linked to temperature cues (Forrest & Thomson, 2011; Parmesan & Yohe, 2003; Tauber &
37 Tauber, 1976), and phenological shifts are well-documented responses to ongoing climate
38 change. Yet, phenological responses of diverse taxa to changing climates often vary considerably
39 in magnitude and direction (Ovaskainen et al., 2013; Thackeray et al., 2010). At broad spatial
40 scales, drivers of phenological shifts appear to vary with latitude; temperature is a strong driver
41 at higher latitudes but become increasingly less important at tropical latitudes where
42 phenological shifts are tied more closely to precipitation (Cohen et al., 2018). On local scales,
43 some organisms emerge later when snowmelt is delayed (Kudo & Ida, 2013), whereas others
44 emerge earlier in the spring despite increased snowpack (Inouye et al., 2000). Such variation in
45 phenological responses to changing climate may reflect differences between the macroclimates
46 used to assess responses and the microclimates where organisms live (Pincebourde et al., 2021;
47 Potter et al., 2013; Woods et al., 2021). Further, differential physiological responses to
48 temperature and other cues may underly variability in phenological responses (Poethke et al.,
49 2016).

50

51 Some work suggests that microclimatic variation in temperature can strongly alter phenology
52 over small spatial scales. Flowers on south-facing slopes bloom as much as eleven days earlier
53 than those of the same species found only 50m away on north-facing slopes (Jackson, 1966); and
54 in insects, ash borer beetles (*Agrilus planipennis*) 30mm under the south-facing bark of urban
55 ash trees (*Fraxinus*) are predicted develop up to 30 days faster, thereby advancing emergence

56 relative to those exposed to cooler and more variable air temperatures (Vermunt et al., 2012).
57 Even within the same site or microclimate, variation in phenology has been linked to
58 physiological characteristics, like sex and reproductive strategy (i.e., time of season when mating
59 occurs; Graves and Duvall, 1990; Norquay and Willis, 2014). Phenological shifts can also
60 depend on age and gravidity. In little brown bats (*Myotis lucifugus*), mature females emerge from
61 hibernation earlier than both younger females and males (Norquay & Willis, 2014). In
62 Richardson's ground squirrels (*Spermophilus richardsonii*), entry into hibernation for females
63 varies with rate of weight gain which can be influenced by recovery from birthing and rearing of
64 offspring (Michener, 1978), providing evidence that the physiological state of an individual can
65 alter the timing of critical life events even within the same life stage.

66

67 Body size is a fundamental trait affecting physiology and ecology that may also influence timing
68 of spring emergence. Across taxa, overwintering survival is often positively correlated with body
69 size due in large part to links between size and both total lipid stores and rate of lipid depletion
70 (Armitage et al., 1976; S. N. Holm, 1972; Willis et al., 1956). Body size mediates ectotherm
71 responses to temperature and thus likely also mediates phenological responses (Chmura et al.,
72 2019; Ohlberger, 2013). Across taxa, phenological responses vary with body size, with some
73 organism emerging earlier as size increases while others emerge later; for some, phenology
74 doesn't vary with body size. For example, smaller bullfrogs (*Rana catesbeiana*) emerge from
75 hibernation earlier than larger individuals (Ryan, 1953; Willis et al., 1956) whereas in midges,
76 (*Chironomidae*) and damselflies (*Zygoptera*), body size (wing length) decreased with emergence
77 date (Wonglersak et al., 2020, 2021). In dragonflies (*Anisoptera*), body size was not linked to
78 timing of emergence (Wonglersak et al., 2020). Body mass and condition can also be important

79 determinants of emergence timing. In mason bees (*Osmia cornuta*), body mass was not linked to
80 the timing of emergence (Bosch & Kemp, 2004) whereas in little brown bats, heavier females
81 emerged earlier than lighter ones (Norquay & Willis, 2014). Interestingly, body mass did not
82 influence emergence timing of arctic ground squirrels (*Spermophilus parryii kennicottii*), but
83 body composition did: females with relatively more fat mass emerged earlier than females with
84 relatively more lean mass (Buck & Barnes, 1999). Conversely, heavier rattlesnakes (*Crotalus*
85 *viridis viridis*) emerged earlier than lighter ones, while body condition (estimated by the
86 relationship between mass to snake length) did not influence the timing of emergence of
87 wandering garter snakes (*Thamnophis elegans vagrans*) (Graves & Duvall, 1990). Individuals
88 that emerge early risk exposure to fatally cold temperatures while those that emerge late may
89 face increased competition for resources, but research on the influence of body size and more so
90 condition on timing of emergence remains surprisingly sparse.

91

92 Queen bumble bees eclose in late summer and fall, mate, and then overwinter underground
93 before emerging the following spring (Bols, 1937; Frison, 1926). In spring, newly emerged
94 queens feed on nectar and pollen as their ovaries develop (Cumber, 1949) and eventually find
95 suitable sites (usually underground) to start new colonies. The timing of spring emergence of
96 bumble bee queens is clearly, in part, related to temperature (Bartomeus et al., 2011), but can
97 vary strikingly even for the same species at the same site (S. V. Holm, 1960; Lanterman et al.,
98 2019; Skou et al., 1963) with important implications: those that emerge earlier may risk exposure
99 to spring cold snaps (Poethke et al., 2016) with increased likelihood of mortality (S. Holm, 1966;
100 S. V. Holm, 1960) while those that emerge later may face increased competition for suitable nest
101 sites and floral resources (Heinrich, 2004; Wignall et al., 2020).

102

103 What leads to pronounced variation in the timing of spring emergence of bumble bee queens?
104 Given that they are responding to temperature cues, differences in overwintering microclimates
105 may in part lead to different emergence times (DeGregorio et al., 2017; Fründ et al., 2013;
106 Graves & Duvall, 1990; Schenk et al., 2018). Body size may also play an important role given
107 potential effects of size on accumulation of lipid stores (larger queens can store more lipids;
108 Holm, 1972), and on mass-specific metabolism (Hulbert & Else, 2000; Kleiber, 1932, 1947)
109 which should mean that larger queens deplete lipid stores more slowly. If queens must emerge
110 before fully depleting stored lipids, we would predict that smaller queens would emerge earlier
111 because, given the same overwintering temperatures, they would deplete lipid reserves more
112 quickly (both due to smaller initial stores and higher overwintering metabolic rates). Similarly,
113 regardless of size, we would predict that queens with poorer body condition (i.e., smaller lipid
114 reserves relative to their fixed body size) would emerge earlier.

115

116 To test these predictions, we measured mass and intertegular width (ITW, a measurement of
117 exoskeletal size fixed at eclosion; Cane, 1987; Vogt and Dillon, 2013) of *Bombus huntii* queens
118 throughout the spring emergence period for two years in Laramie, WY. Queens that weighed less
119 emerged earlier as predicted. We used the comparison between mass and ITW to infer body
120 condition (BeeMI) and found a striking pattern: queens that were relatively light for their size (in
121 poor condition) emerged earlier, dominating the early spring emergence peak whereas those in
122 good condition (relatively heavy for their size) dominated the late spring emergence peak.

123

124 **Materials and methods**

125 *Animal collection*

126 Throughout the 2020 and 2021 growing seasons, we captured *B. huntii* queens by net once a
127 week in Laramie, WY (2188m; 41.316, -105.586 +/- 0.5mi), starting a few days after the first
128 bumble bee was seen (April 30, 2020 and 2021) and continuing until queens were no longer
129 captured during a collection event (Fig. 1). Collections were standardized for 3 person-hours, and
130 terminated early only when 50 total bees (queens or workers) were collected. Once captured,
131 each queen bee was kept in a ventilated vial on ice for transport to the lab.

132

133 *Body size and condition*

134 Immediately following each survey, bees were weighed to the nearest mg (Acculab ALC-210.4;
135 Sartorius Group, Göttingen, Germany). In 2021, bees were then photographed from the dorsal
136 view next to an object of known size, and released. The width between the tegulae (intertegular
137 width, ITW, mm, also termed intertegular span, ITS; Cane, 1987) was measured from
138 photographs by first setting the scale based on the object of known size and then measuring the
139 length of a straight line drawn between the outside edges of the tegula using ImageJ (Rasband,
140 1997; Schneider et al., 2012). ITW is not affected by variation in feeding or hydration state, so is
141 a reliable estimate of body size of bumble bees (Cane, 1987; Lozier et al., 2021; Vogt & Dillon,
142 2013). We estimated body condition of queens as the bee mass to ITW ratio (BeeMI). Higher
143 BeeMI indicates better body condition under the assumption that variation in mass of queens
144 with the same exoskeletal dimensions is due primarily to the mass of lipid stores (for bumble bee

145 queens prior to nest initiation, growth and depletion of the fat body is the dominant determinant
146 of variation in mass; Pridal and Hofbauer, 1996; Treanore et al., 2020; Woodard et al., 2019).

147

148 *Statistical Analyses*

149 After visual inspection for normality, we compared ordinary least squares (OLS) and standard
150 major axis (SMA) regressions of mass on ITW using package lmodel2 (Legendre, 2018) in R (R
151 Core Team, 2021; Supplementary Fig. 1). Based on visual inspection of plots and regression
152 outputs, SMA was used to predict mass from ITW ($R^2=0.249$; $n=165$). Predicted values were
153 extracted from the fitted lines, with those above and below the predicted lines heavier and lighter
154 than expected, respectively, based on exoskeletal size (ITW) fixed at eclosion (Fig. 2).

155

156 We confirmed that mass, ITW, and body condition (BeeMI) did not deviate strongly from
157 normality by visual inspection of residuals, Q-Q plots, and histograms. To account for
158 nonlinearity, we modeled the dependence of emergence time (day of year) on mass, ITW, and
159 body condition using generalized additive models (GAMs). Given 11 survey days in each year,
160 we limited smoothers to 3 knots to constrain the variance of the data and better explain the
161 biological relevance even though more knots increased the model fit. Models were also fitted
162 with a cubic regression smoother to prevent overfitting. We compared linear models and GAMs
163 with and without year as a covariate using Akaike information criterion values (AIC).

164 To further assess the relationship between body condition and emergence timing, we used a chi-
165 square contingency table to analyze the association between body condition categories (heavier
166 or lighter than expected) and the two clear emergence peaks.

167

168 **Results**

169 In total, we captured 132 queens between April and July of 2020 and 165 queens between April
170 and July of 2021. Although queens were captured each week throughout the span of the 2+
171 month spring emergence period, they emerged in two distinct waves in both years (Fig. 1). The
172 bimodal distribution of spring emergence occurred during the same weeks each year despite
173 large variation in weather conditions; a cold snap brought several inches of snow on June 8,
174 2020, whereas no late-spring cold snaps hit Laramie in 2021. Peak queen abundance was on May
175 19 and 18 (days 140 and 138) in 2020 and 2021, respectively, with the second peak occurring on
176 June 18 and 16 (days 170 and 167) in 2020 and 2021.

177

178 Masses from 235 individuals total were collected across both years (70 queens in 2020 and 165
179 queens in 2021). The GAM including year as a covariate and an interaction had the lowest AIC
180 value and was selected as the best fitting model (Table 1). Mass of bumble bee queens increased
181 significantly with day of emergence for both years, accounting for over 39% of the variation;
182 mass increased rapidly at the beginning of the emergence period, then tapered off (GAM,
183 $R^2=0.397$, d.f.=6.770; n=295; Fig. 3a). When modeling the relationship between ITW and
184 emergence timing, the GAM without knot limitations had the lowest AIC score, but the GAM
185 with knots limited to three was selected as the best fitting model given the small sample size
186 (Table 1). ITW varied nonlinearly, increasing with day of emergence though this trend was
187 statistically insignificant (GAM, $R^2=0.0794$, d.f.=3.448, n=165; Fig. 3b). Much like mass, body
188 condition (mass/ITW) increased nonlinearly as spring emergence progressed. We compared

189 GAMs describing the relationship between body condition and emergence timing and selected
190 the model with knots limited to 3 due to the low AIC score without fitting the data as suggested
191 in the initial model (Table 1). Early emerging queens had the lowest body condition (low BeeMI)
192 with later emerging queens having increasingly better body condition until early June, at which
193 point body condition plateaued (GAM, $R^2=0.456$, d.f.=3.958; n=165). While mass was positively
194 correlated to emergence timing, body condition better accounted for the timing of spring
195 emergence and explained over 45% of the variation of queen emergence timing (Fig. 3c).

196

197 After categorizing queen body condition as heavier or lighter than expected based on the
198 regression estimate (Fig. 2), emergence timing was strongly associated with relative body
199 condition for queen bees. The first emergence peak was dominated by queens that were lighter
200 than expected, while heavier than expected queens made up a larger fraction of the second
201 emergence peak ($\chi^2_1=17.87$, $P<0.0001$, n=165; Fig. 4a). Queens of lower body condition
202 emerged rapidly early on and then tapered off whereas queens with better body condition
203 emerged overall later with rate of emergence increasing later in the season (Fig. 4b).

204

205 **Discussion**

206 Mass alone explained 40% of the variation in timing of queen emergence (Fig. 3a; Table 1).
207 While body mass influences overwintering survival in other bee species (*Osmia*), it is sex-
208 specific—larger male mason bees had higher rates of survival during overwintering than smaller
209 males, but this pattern didn't hold true for females nor did it influence timing of emergence
210 (Bosch & Kemp, 2004). Mass is often used as a proxy for body condition. Our simple metric of

211 body condition (BeeMI) explained even more (over 45%) of the variation in phenology of queen
212 bumble bees. Relatively lighter queens emerged earlier (Fig. 4), providing evidence that timing
213 of bumble bee queen emergence is coupled to body condition. While previous studies have
214 recorded increased survival of queen bumble bees that emerged later in the season, body
215 condition was not assessed (S. Holm, 1966). We are unaware of work assessing patterns of this
216 sort in other insects, but other animals have shown the converse pattern: for both rattlesnakes
217 (*Crotalus viridis viridis*) and arctic ground squirrels (*Spermophilus parryii kennicottii*), relatively
218 heavier individuals emerged earlier than lighter ones (Buck & Barnes, 1999; Graves & Duvall,
219 1990). This contrasting pattern may be due to other reproductive pressures; for rattlesnakes, early
220 emergence increases the time available for mating (Graves & Duvall, 1990) and, for squirrels,
221 early emergence increases offspring growth and survival (Buck & Barnes, 1999). Bumble bees
222 mate in the fall so mating probability is decoupled from spring emergence. Only the first brood
223 of offspring (which eclose in roughly three weeks; Tian & Hines, 2018) is dependent on the
224 queen for resources as subsequent broods are provisioned by their sisters. As such, colony
225 growth may depend less on timing of spring emergence and more on the timing of local resource
226 availability (Kudo & Ida, 2013).

227
228 Queens of similar body condition still varied in timing of spring emergence (Fig. 3c). This
229 variability may be linked to selection of overwintering sites which, due to differences in
230 microclimatic conditions, may influence spring emergence and survival (Jackson, 1966; Rytteri
231 et al., 2021). Bumble bees overwinter underground (Liczner & Colla, 2019) where, dependent on
232 depth and soil characteristics, they may encounter strikingly different temperatures (Huey et al.,
233 2021). Therefore, where queens overwinter could alter when they experience temperatures that

234 trigger spring emergence. Characterizing overwintering sites in the field and measuring how
235 body size influences accumulation and depletion of energy stores in the fall and winter,
236 respectively, could reveal key drivers of phenology of queen bumble bees and facilitate
237 predictions of climate change impacts on these key pollinators.

238

239 Timing of emergence was not significantly linked to ITW (Fig. 3b), suggesting that condition,
240 not fixed size (exoskeletal size at eclosion) per se, is a key determinant of timing of spring
241 emergence. Nonetheless, measurements of ITW and mass for the same individual provide a
242 straightforward approach to estimate body condition for bumble bees (Fig. 2) and possibly other
243 insects as well. Such estimates of body condition may prove useful not only in phenology studies
244 but in studies on land use effects (Pisanty & Mandelik, 2015), habitat changes (Bommarco et al.,
245 2010), agriculture (Geslin et al., 2016), and conservation (Nooten & Rehan, 2020; Podgaiski et
246 al., 2018) on health of insect populations.

247

248 A bimodal distribution of emergence is apparent across both years (Fig. 1). Queen *B. huntii*
249 emerged over two months, a range witnessed in previous studies. Emergence timing varies with
250 species; *B. terrestris* emerge before *B. lapidarius* lasting for two to three months, though
251 duration and timing varies across years (S. V. Holm, 1960). During our surveys, however, the
252 timing of *B. huntii* emergence from start to end occurred in two distinct waves that overlapped
253 surprisingly closely with day of year across both years. These abundance peaks occurred within
254 three days of each other across two years despite differences in weather conditions, indicating
255 that emergence cues that overwintering queens are responding to may not be as strongly coupled
256 to acute variation in air temperatures or weather than other factors. Photoperiod can influence

257 phenology of some insects (reviewed in Tauber and Tauber, 1976), but this is likely not the case
258 for bumble bees as they overwinter underground, sheltered from sunlight cues. Aside from
259 external factors, internal factors (e.g., gene expression) may influence timing of spring
260 emergence resulting in the bimodal peaks of emerging queens (Denlinger et al., 2017).

261

262 In addition to temperature being a major driver of phenology in bumble bees (Bartomeus et al.,
263 2011), our findings highlight the importance of body condition in bumble bee phenology, with
264 queen physique tightly linked to timing of emergence in the spring. With over half of their lives
265 spent overwintering underground and emergence spanning over two months (Fig. 1), physical
266 condition of queens directly affects whether queens emerge earlier or later in the season, altering
267 their already short active season by weeks. Variation in lipid accumulation during a small
268 window in the fall (Alford, 1969; S. N. Holm, 1972) and in lipid depletion due to overwintering
269 site selection likely contribute substantially to the timing of queen emergence in the spring. As
270 bumble bee phenology shifts in response to changing climates with the most pronounced
271 responses occurring in the last 40 years (Bartomeus et al., 2011), further research characterizing
272 the impact of emergence timing on colony success may uncover cascading effects of this critical
273 life history stage on bumble bee populations.

274

275

276 **Acknowledgements**

277 We thank Megan K. Dillon for the original idea and continued support through this project, E.
278 Rowe, S. A. Waybright, and other members of the Dillon Lab for their assistance with bee

279 captures, as well as the kind neighbors within Laramie, WY, who provide pollinator habitat and
280 generously allowed us to collect in their gardens. This project was funded by the National
281 Science Foundation (EF-1921562 and OIS-1826834 awarded to MED).

282

283 **Conflict of interest**

284 The authors have no conflict of interest.

285

286 **Author contributions**

287 MED and ECK conceptualized the project, MED acquired funding and resources, ECK acquired
288 the data and wrote the initial draft, and all authors contributed substantially to analyzing the data
289 and editing the final manuscript.

290

291 **Data availability statement**

292 All data included in this manuscript will be provided once a DOI is made available.

293

294 **References**

295 Alford, D. V. (1969). Studies on the fat-body of adult bumble bees. *Journal of Apicultural*
296 *Research*, 8(1), 37–48. <https://doi.org/10.1080/00218839.1969.11100216>

297 Armitage, K. B., Downhower, J. F., & Svendsen, G. E. (1976). Seasonal changes in weights of
298 marmots. *The American Midland Naturalist*, 96(1), 36–51.
299 <https://doi.org/10.2307/2424566>

300 Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R.
301 (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated
302 plants. *Proceedings of the National Academy of Sciences*, 108(51), 20645–20649.
303 <https://doi.org/10.1073/pnas.1115559108>

304 Bols, J. H. (1937). Observations on *Bombus* and *Psithyrus*, especially on their hibernation.
305 *Proceedings of the Royal Entomological Society of London. Series A, General*
306 *Entomology*, 12(4–6), 47–50. <https://doi.org/10.1111/j.1365-3032.1937.tb00942.x>

307 Bommarco, R., Biesmeijer, J. C., Meyer, B., Potts, S. G., Pöyry, J., Roberts, S. P. M., Steffan-
308 Dewenter, I., & Öckinger, E. (2010). Dispersal capacity and diet breadth modify the
309 response of wild bees to habitat loss. *Proceedings of the Royal Society B: Biological*
310 *Sciences*, 277(1690), 2075–2082. <https://doi.org/10.1098/rspb.2009.2221>

311 Bosch, J., & Kemp, W. P. (2004). Effect of pre-wintering and wintering temperature regimes on
312 weight loss, survival, and emergence time in the mason bee *Osmia cornuta*
313 (*Hymenoptera: Megachilidae*). *Apidologie*, 35(5), 469–479.
314 <https://doi.org/10.1051/apido:2004035>

315 Buck, C. L., & Barnes, B. M. (1999). Annual cycle of body composition and hibernation in free-
316 living arctic ground squirrels. *Journal of Mammalogy*, 80(2), 430–442.
317 <https://doi.org/10.2307/1383291>

318 Cane, J. H. (1987). Estimation of bee size using intertegular span (*Apoidea*). *Journal of the
319 Kansas Entomological Society*, 60(1), 145–147.

320 Chmura, H. E., Kharouba, H. M., Ashander, J., Ehlman, S. M., Rivest, E. B., & Yang, L. H.
321 (2019). The mechanisms of phenology: The patterns and processes of phenological shifts.
322 *Ecological Monographs*, 89(1), e01337. <https://doi.org/10.1002/ecm.1337>

323 Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological
324 responses to climate change. *Nature Climate Change*, 8(3), 224–228.
325 <https://doi.org/10.1038/s41558-018-0067-3>

326 Cumber, R. A. (1949). The biology of humble-bees, with special reference to the production of
327 the worker caste. *Transactions of the Royal Entomological Society of London*, 100(1), 1–
328 45. <https://doi.org/10.1111/j.1365-2311.1949.tb01420.x>

329 DeGregorio, B. A., Tuberville, T. D., Kennamer, R. A., Harris, B. B., & Brisbin, I. L. (2017).
330 Spring emergence of Eastern Box Turtles (*Terrapene carolina*): Influences of individual
331 variation and scale of temperature correlates. *Canadian Journal of Zoology*, 95(1), 23–
332 30. <https://doi.org/10.1139/cjz-2016-0149>

333 Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M., & Bradshaw, W. E. (2017). Keeping
334 time without a spine: What can the insect clock teach us about seasonal adaptation?
335 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1734),
336 20160257. <https://doi.org/10.1098/rstb.2016.0257>

337 Forrest, J. R. K., & Thomson, J. D. (2011). An examination of synchrony between insect
338 emergence and flowering in Rocky Mountain meadows. *Ecological Monographs*, 81(3),
339 469–491. <https://doi.org/10.1890/10-1885.1>

340 Frison, T. H. (1926). Contribution to the knowledge of the interrelations of the bumblebees of
341 Illinois with their animate environment. *Annals of the Entomological Society of America*,
342 19(2), 203–235. <https://doi.org/10.1093/aesa/19.2.203>

343 Fründ, J., Zieger, S. L., & Tscharntke, T. (2013). Response diversity of wild bees to
344 overwintering temperatures. *Oecologia*, 173(4), 1639–1648.
345 <https://doi.org/10.1007/s00442-013-2729-1>

346 Geslin, B., Oddie, M., Folschweiller, M., Legras, G., Seymour, C. L., van Veen, F. J. F., &
347 Thébault, E. (2016). Spatiotemporal changes in flying insect abundance and their
348 functional diversity as a function of distance to natural habitats in a mass flowering crop.
349 *Agriculture, Ecosystems & Environment*, 229, 21–29.
350 <https://doi.org/10.1016/j.agee.2016.05.010>

351 Graves, B. M., & Duvall, D. (1990). Spring emergence patterns of Wandering Garter Snakes and
352 Prairie Rattlesnakes in Wyoming. *Journal of Herpetology*, 24(4), 351–356.
353 <https://doi.org/10.2307/1565049>

354 Heinrich, B. (2004). *Bumblebee Economics*. Harvard University Press.

355 Holm, S. (1966). Problems of the domestication of bumble bees. *Bee World*, 47(1), 179–186.

356 Holm, S. N. (1972). Weight and life length of hibernating bumble bee queens (*Hymenoptera:*
357 *Bombidae*) under controlled conditions. *Insect Systematics & Evolution*, 3(4), 313–320.
358 <https://doi.org/10.1163/187631272X00184>

359 Holm, S. V. (1960). *Experiments on the domestication of bumblebees (Bombus Latr.) in*
360 *particular B. lapidarius L. and B. terrestris L.* 1–19.

361 Huey, R. B., Ma, L., Levy, O., & Kearney, M. R. (2021). Three questions about the eco-
362 physiology of overwintering underground. *Ecology Letters*, 24(2), 170–185.
363 <https://doi.org/10.1111/ele.13636>

364 Hulbert, A. J., & Else, P. L. (2000). Mechanisms underlying the cost of living in animals. *Annual*
365 *Review of Physiology*, 62(1), 207–235. <https://doi.org/10.1146/annurev.physiol.62.1.207>

366 Inouye, D. W., Barr, B., Armitage, K. B., & Inouye, B. D. (2000). Climate change is affecting
367 altitudinal migrants and hibernating species. *Proceedings of the National Academy of*
368 *Sciences*, 97(4), 1630–1633. <https://doi.org/10.1073/pnas.97.4.1630>

369 Jackson, M. T. (1966). Effects of microclimate on spring flowering phenology. *Ecology*, 47(3),
370 407–415. <https://doi.org/10.2307/1932980>

371 Kleiber, M. (1932). Body size and metabolism. *Hilgardia: A Journal of Agricultural Science*,
372 6(11), 313–353.

373 Kleiber, M. (1947). Body size and metabolic rate. *Physiological Reviews*, 27(4), 511–541.
374 <https://doi.org/10.1152/physrev.1947.27.4.511>

375 Kudo, G., & Ida, T. Y. (2013). Early onset of spring increases the phenological mismatch
376 between plants and pollinators. *Ecology*, 94(10), 2311–2320. <https://doi.org/10.1890/12->
377 2003.1

378 Lanterman, J., Reeher, P., Mitchell, R. J., & Goodell, K. (2019). Habitat preference and
379 phenology of nest seeking and foraging spring bumble bee queens in northeastern North
380 America (Hymenoptera: Apidae: Bombus). *The American Midland Naturalist*, 182(2),
381 131–159.

382 Legendre, P. (2018). *lmodel2: Model II Regression* (R package version 1.7-3) [R].
383 <https://CRAN.R-project.org/package=lmodel2>

384 Liczner, A. R., & Colla, S. R. (2019). A systematic review of the nesting and overwintering
385 habitat of bumble bees globally. *Journal of Insect Conservation*, 23(5), 787–801.
386 <https://doi.org/10.1007/s10841-019-00173-7>

387 Lozier, J. D., Parsons, Z. M., Rachoki, L., Jackson, J. M., Pimsler, M. L., Oyen, K. J., Strange, J.,
388 & Dillon, M. E. (2021). Divergence in body mass, wing loading, and population structure
389 reveals species-specific and potentially adaptive trait variation across elevations in
390 montane bumble bees. *Insect Systematics and Diversity*, 5(5), 3.
391 <https://doi.org/10.1093/isd/ixab012>

392 Michener, G. R. (1978). Effect of age and parity on weight gain and entry into hibernation in
393 Richardson's ground squirrels. *Canadian Journal of Zoology*, 56(12), 2573–2577.
394 <https://doi.org/10.1139/z78-345>

395 Nooten, S. S., & Rehan, S. M. (2020). Historical changes in bumble bee body size and range
396 shift of declining species. *Biodiversity and Conservation*, 29(2), 451–467.
397 <https://doi.org/10.1007/s10531-019-01893-7>

398 Norquay, K. J. O., & Willis, C. K. R. (2014). Hibernation phenology of *Myotis lucifugus*.
399 *Journal of Zoology*, 294(2), 85–92. <https://doi.org/10.1111/jzo.12155>

400 Ohlberger, J. (2013). Climate warming and ectotherm body size – from individual physiology to
401 community ecology. *Functional Ecology*, 27(4), 991–1001. <https://doi.org/10.1111/1365-2435.12098>

403 Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, N.,
404 Shcherbakov, A., Meyke, E., & Delgado, M. d. M. (2013). Community-level

405 phenological response to climate change. *Proceedings of the National Academy of*
406 *Sciences*, 110(33), 13434–13439. <https://doi.org/10.1073/pnas.1305533110>

407 Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts
408 across natural systems. *Nature*, 421(6918), 37–42. <https://doi.org/10.1038/nature01286>

409 Pincebourde, S., Dillon, M. E., & Woods, H. A. (2021). Body size determines the thermal
410 coupling between insects and plant surfaces. *Functional Ecology*, 35(7), 1424–1436.
411 <https://doi.org/10.1111/1365-2435.13801>

412 Pisanty, G., & Mandelik, Y. (2015). Profiling crop pollinators: Life history traits predict habitat
413 use and crop visitation by Mediterranean wild bees. *Ecological Applications*, 25(3), 742–
414 752. <https://doi.org/10.1890/14-0910.1>

415 Podgaiski, L. R., Cavalleri, A., Ferrando, C. P. R., Pillar, V. D., & Mendonça Jr, M. de S. (2018).
416 Prescribed patch burnings increase thrips species richness and body size in grassland
417 communities. *Insect Conservation and Diversity*, 11(2), 204–212.
418 <https://doi.org/10.1111/icad.12269>

419 Poethke, H. J., Hovestadt, T., & Mitesser, O. (2016). The evolution of optimal emergence times:
420 Bet hedging and the quest for an ideal free temporal distribution of individuals. *Oikos*,
421 125, 1647–1656. <https://doi.org/10.1111/oik.03213>

422 Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in global
423 change biology. *Global Change Biology*, 19(10), 2932–2939.
424 <https://doi.org/10.1111/gcb.12257>

425 Pridal, A., & Hofbauer, J. (1996). Laboratory rearing and nutrition of young queens of
426 bumblebee (*Bombus terrestris* L.) from emergence to diapause. *Scientific Papers of the*
427 *Research Institute for Fruit Growing*, 14, 125–131.

428 R Core Team. (2021). *R: A language and environment for statistical computing* [R Foundation
429 for Statistical Computing]. <https://www.R-project.org/>

430 Rasband, W. S. (1997). *ImageJ*. U. S. National Institutes of Health, Bethesda, Maryland, USA.
431 <https://imagej.nih.gov/ij/>

432 Ryan, R. A. (1953). Growth rates of some ranids under natural conditions. *Copeia*, 1953(2), 73–
433 80. <https://doi.org/10.2307/1440128>

434 Rytteri, S., Kuussaari, M., & Saastamoinen, M. (2021). Microclimatic variability buffers
435 butterfly populations against increased mortality caused by phenological asynchrony
436 between larvae and their host plants. *Oikos*, 130(5), 753–765.
437 <https://doi.org/10.1111/oik.07653>

438 Schenk, M., Mitesser, O., Hovestadt, T., & Holzschuh, A. (2018). Overwintering temperature
439 and body condition shift emergence dates of spring-emerging solitary bees. *PeerJ*, 6,
440 e4721. <https://doi.org/10.7717/peerj.4721>

441 Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of
442 image analysis. *Nature Methods*, 9(7), 671–675. <https://doi.org/10.1038/nmeth.2089>

443 Skou, P., Holm, S. N., & Haas, H. (1963). Preliminary investigations on diseases in bumble-bees
444 (*Bombus latr.*). *Yearbook / Royal Veterinary and Agricultural College*, 27–41.

445 Tauber, M. J., & Tauber, C. A. (1976). Insect seasonality: Diapause maintenance, termination,
446 and postdiapause development. *Annual Review of Entomology*, 21(1), 81–107.
447 <https://doi.org/10.1146/annurev.en.21.010176.000501>

448 Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., Botham, M.
449 S., Brereton, T. M., Bright, P. W., Carvalho, L., Clutton-Brock, T., Dawson, A.,
450 Edwards, M., Elliott, J. M., Harrington, R., Johns, D., Jones, I. D., Jones, J. T., Leech, D.

451 I., ... Wanless, S. (2010). Trophic level asynchrony in rates of phenological change for
452 marine, freshwater and terrestrial environments: Phenological change across major
453 environments. *Global Change Biology*, 16(12), 3304–3313.
454 <https://doi.org/10.1111/j.1365-2486.2010.02165.x>

455 Tian, L., & Hines, H. M. (2018). Morphological characterization and staging of bumble bee
456 pupae. *PeerJ*. <http://dx.doi.org.libproxy.uwyo.edu/10.7717/peerj.6089>

457 Treanore, E. D., Kiner, J. M., Kerner, M. E., & Amsalem, E. (2020). Shift in worker physiology
458 and gene expression pattern from reproductive to diapause-like with colony age in the
459 bumble bee *Bombus impatiens*. *The Journal of Experimental Biology*, 223(9), jeb218768.
460 <https://doi.org/10.1242/jeb.218768>

461 van Asch, M., & Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: The
462 importance of synchrony. *Annual Review of Entomology*, 52(1), 37–55.
463 <https://doi.org/10.1146/annurev.ento.52.110405.091418>

464 Vermunt, B., Cuddington, K., Sobek-Swant, S., Crosthwaite, J. C., Barry Lyons, D., & Sinclair,
465 B. J. (2012). Temperatures experienced by wood-boring beetles in the under-bark
466 microclimate. *Forest Ecology and Management*, 269, 149–157.
467 <https://doi.org/10.1016/j.foreco.2011.12.019>

468 Vogt, J. R., & Dillon, M. E. (2013). Allometric scaling of tracheal morphology among
469 bumblebee sisters (*Apidae: Bombus*): Compensation for oxygen limitation at large body
470 sizes? *Physiological and Biochemical Zoology*, 86(5), 576–587.
471 <https://doi.org/10.1086/672211>

472 Wignall, V. R., Brolly, M., Uthoff, C., Norton, K. E., Chipperfield, H. M., Balfour, N. J., &
473 Ratnieks, F. L. W. (2020). Exploitative competition and displacement mediated by

474 eusocial bees: Experimental evidence in a wild pollinator community. *Behavioral*
475 *Ecology and Sociobiology*, 74(12), 152. <https://doi.org/10.1007/s00265-020-02924-y>

476 Willis, Y. L., Moyle, D. L., & Baskett, T. S. (1956). Emergence, breeding, hibernation,
477 movements and transformation of the bullfrog, *Rana catesbeiana*, in Missouri. *Copeia*,
478 1956(1), 30–41. <https://doi.org/10.2307/1439241>

479 Wonglersak, R., Fenberg, P. B., Langdon, P. G., Brooks, S. J., & Price, B. W. (2020).
480 Temperature-body size responses in insects: A case study of British *Odonata*. *Ecological*
481 *Entomology*, 45(4), 795–805. <https://doi.org/10.1111/een.12853>

482 Wonglersak, R., Fenberg, P. B., Langdon, P. G., Brooks, S. J., & Price, B. W. (2021). Insect
483 body size changes under future warming projections: A case study of *Chironomidae*
484 (*Insecta: Diptera*). *Hydrobiologia*, 848(11), 2785–2796. <https://doi.org/10.1007/s10750-021-04597-8>

486 Woodard, S. H., Duennes, M. A., Watrous, K. M., & Jha, S. (2019). Diet and nutritional status
487 during early adult life have immediate and persistent effects on queen bumble bees.
488 *Conservation Physiology*, 00. <https://doi.org/10.1093/conphys/coz048>

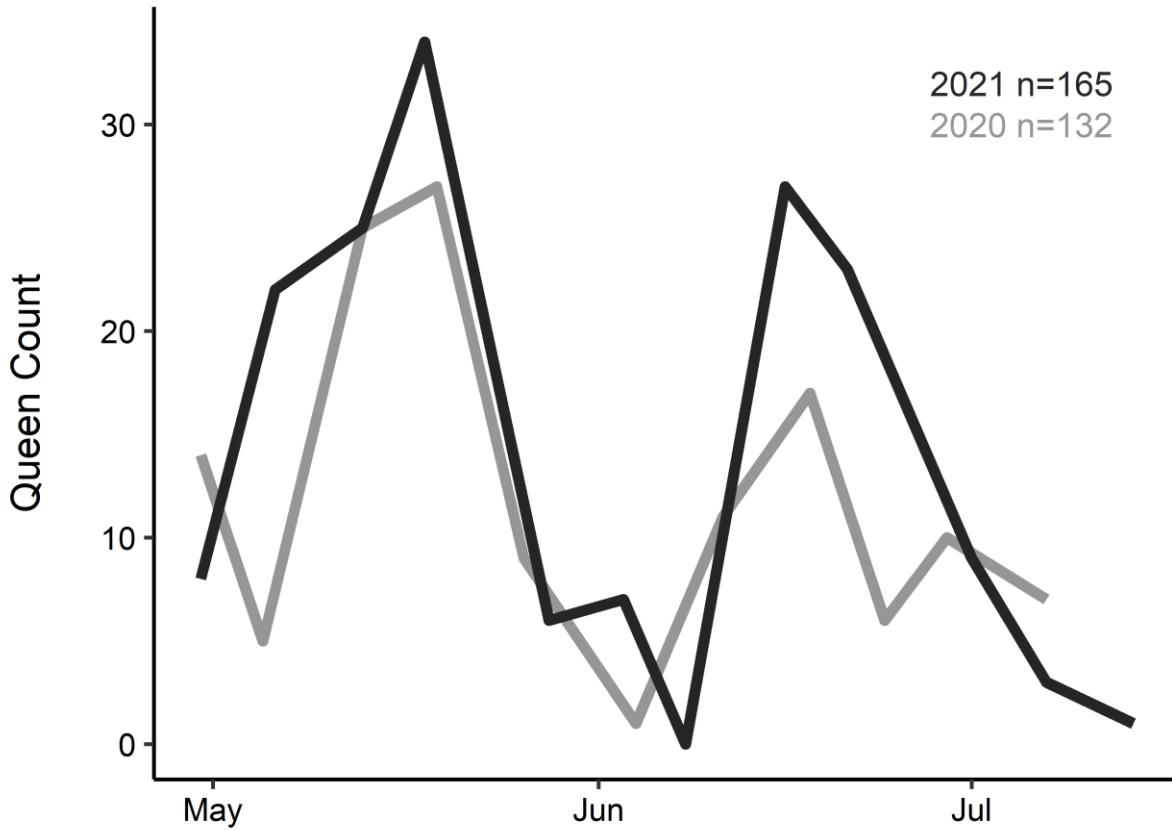
489 Woods, H. A., Pincebourde, S., Dillon, M. E., & Terblanche, J. S. (2021). Extended phenotypes:
490 Buffers or amplifiers of climate change? *Trends in Ecology & Evolution*, 36(10), 889–
491 898. <https://doi.org/10.1016/j.tree.2021.05.010>

492

493

494 **Table 1.** GAM outputs and AIC values from analyzing mass, ITW, and body condition with
 495 emergence timing. Aside from the initial model for each response variable, we limited smoothers
 496 to 3 knots to better explain the biological relevance and fit smoothers with a cubic regression to
 497 prevent overfitting. Best fit models are in bold.

498

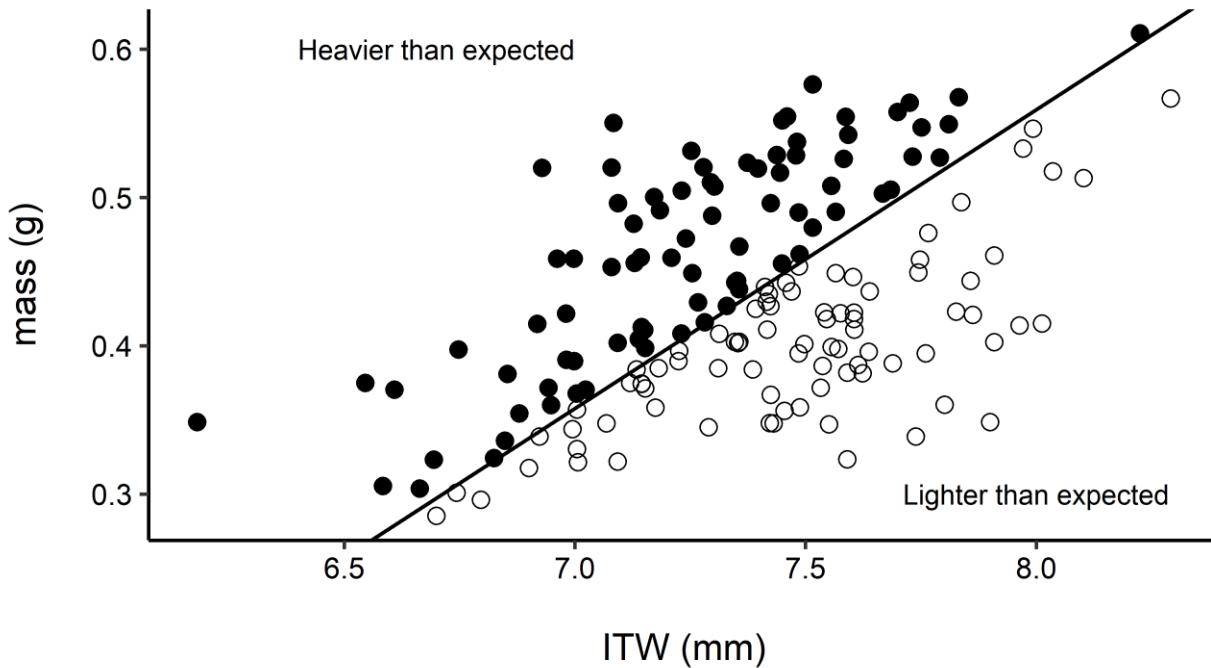

Response variable	Model	AIC	R ²	Deviance explained	edf	d.f.	n
mass	~ s(day of year)	-924.805	0.468	48.00%	6.353	8.352954	295
mass	~ s(day of year, k=3)	-888.142	0.389	39.30%	1.958	3.958283	295
mass	~ s(dayofyear, k=3) + year	-887.086	0.389	39.50%	1.958	4.958068	295
mass	~ s(day of year, k=3) + year +s(day of year)*year	-889.406	0.397	40.70%	2020:1.821 2021:1.950	6.770464	295
ITW	~ s(day of year)	117.1508	0.0779	8.57%	1.381	3.380522	165
ITW	~ s(day of year, k=3)	116.9413	0.0794	8.76%	1.448	3.447957	165

condition	~ s(day of year)	-1242.06	0.602	61.90%	6.892	8.891984	165
condition	~ s(day of year, k=3)	-1195.27	0.456	46.30%	1.958	3.957785	165

499

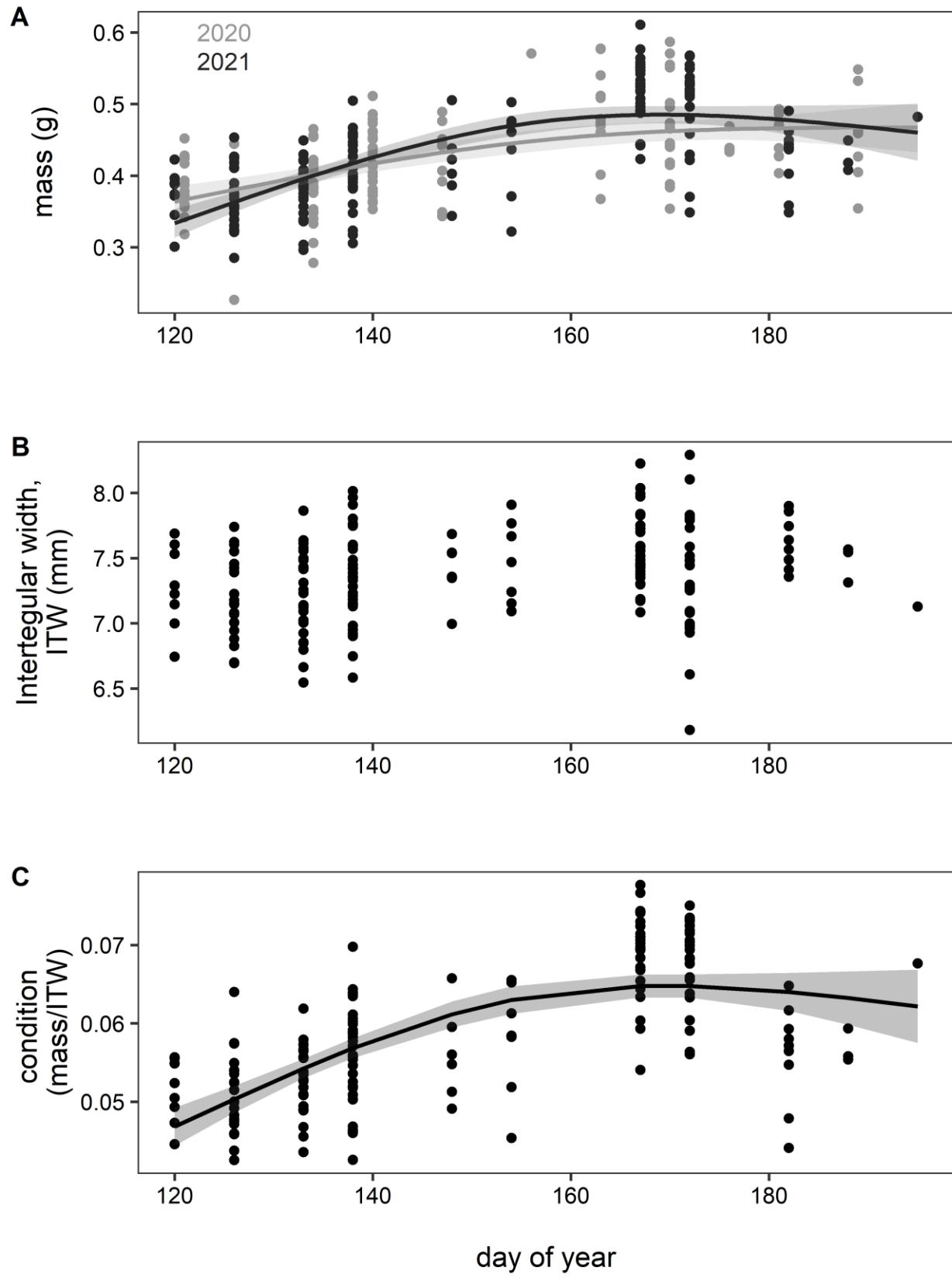
500

501



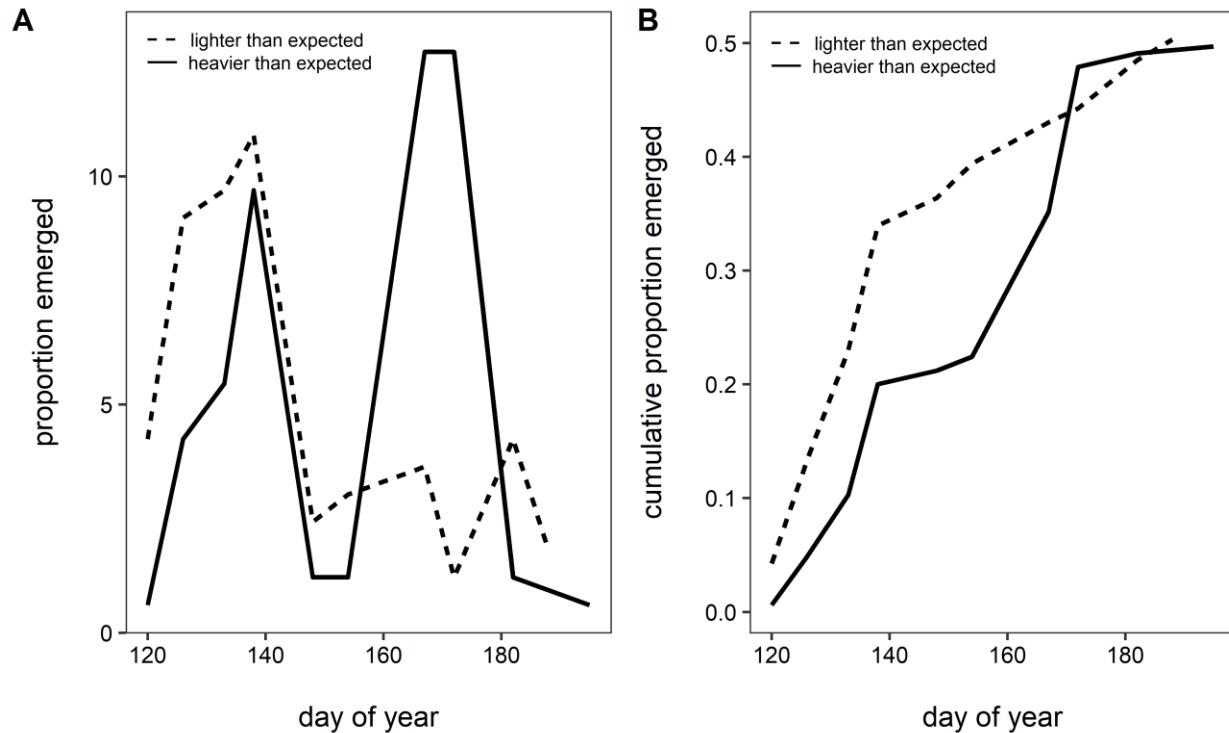
502

503 **Figure 1.** Bumble bee queens (*B. huntii*) emerged across two and a half months during the spring


504 with a marked bimodal distribution across both 2020 (grey; n=132) and 2021 (black; n=165).

505

506


507 **Figure 2.** Body mass generally tracks intertegular width for bumble bee queens, with variability
508 in mass at a given ITW indicative of body condition. Queens above the SMA regression line
509 ($R^2=0.249$) were heavier than expected (solid circles) and those below were lighter than expected
510 (empty circles) given exoskeletal size fixed at eclosion. ITW measurements were only available
511 for 2021.

513 **Figure 3. Mass and body condition varied with timing of queen emergence, while ITW did**
514 **not.** A. Queen mass increased significantly with day of emergence for both 2020 (gray points
515 and lines; n=130) and 2021 (black points and lines; n=165) (GAM, $R^2=0.397$, d.f.=6.770;
516 n=295; Table 1). B. ITW did not change significantly with day of year (GAM, $R^2=0.0794$,
517 d.f.=3.448, n=165; Table 1). C. Body condition (as estimated by the ratio of mass to ITW)
518 increased strikingly with day of queen emergence early in the season, with day of emergence
519 explaining over 45% of the variation in body condition (GAM, $R^2=0.456$, d.f.= 3.958, n=165;
520 Table 1).

521

522

523

524 **Figure 4. Queen body condition was strongly associated with the two queen emergence**
525 **peaks.** Relatively light queens (dashed lines) dominated the first emergence peak (A), and
526 tended to emerge rapidly early in the season (B). Conversely, relatively heavy queens (solid line)
527 emerged during both peaks, but dominated the second emergence peak, when lighter than
528 expected queens were scarce (A; $\chi^2_1=17.87$, $P<0.0001$, $n=165$).

529