

1 **Autologous humanized PDX modeling for immuno-oncology recapitulates the
2 human tumor microenvironment**

3 Michael Chiorazzi^{1,2,*}, Jan Martinek^{3,*}, Bradley Krasnick^{4,*}, Yunjiang Zheng¹, Keenan J
4 Robbins⁴, Rihao Qu⁵, Gabriel Kaufmann¹, Zachary Skidmore⁴, Laura A Henze¹, Frederic
5 Brösecke¹, Adam Adonyi¹, Jun Zhao⁵, Liang Shan¹, Esen Sefik¹, Jacqueline Mudd⁴, Ye
6 Bi⁴, S Peter Goedegebuure⁴, Malachi Griffith⁴, Obi Griffith⁴, Abimbola Oyedele⁴, Sofia
7 Fertuzinhos⁶, Rolando Garcia-Milian⁶, Daniel Boffa⁷, Frank Detterbeck⁷, Andrew
8 Dhanasopon⁷, Justin Blasberg⁷, Benjamin Judson⁸, Scott Gettinger², Katerina Politi^{2,9},
9 Yuval Kluger⁵, A Karolina Palucka^{3,#}, Ryan Fields^{4,#} and Richard A Flavell^{1,10,11,#}

10 ¹Department of Immunobiology, Yale School of Medicine, New Haven, CT USA.

11 ²Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine,
12 New Haven, CT USA.

13 ³The Jackson Laboratory for Genomic Medicine, Farmington, CT USA.

14 ⁴Department of Surgery and the Alvin J. Siteman Comprehensive Cancer Center, Barnes-
15 Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri USA.

16 ⁵Program of Computational Biology and Bioinformatics; Department of Pathology, Yale
17 School of Medicine; Applied Mathematics Program, Yale University, New Haven, CT
18 USA.

19 ⁶Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of
20 Medicine, New Haven, CT USA.

21 ⁷Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New
22 Haven, CT USA.

23 ⁸Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New
24 Haven, CT USA.

25 ⁹Department of Pathology, Yale School of Medicine, New Haven, CT USA.

26 ¹⁰Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT USA.

27 *Co-first authors.

28 #Co-senior authors.

29 ¹¹Corresponding author.

30

31 **Abstract:**

32 Interactions between immune and tumor cells are critical to determining cancer
33 progression and response. In addition, preclinical prediction of immune-related drug
34 efficacy is limited by inter-species differences between human and mouse, as well as
35 inter-person germline and somatic variation. Here we develop an autologous system that
36 models the TME in individual patients. With patient-derived bone marrow, we engrafted
37 a patient's hematopoietic system in MISTRG6 mice followed by patient-derived xenograft
38 (PDX) tissue, providing a genetically matched autologous model. We used this system to
39 prospectively study tumor-immune interactions in solid tumor patients. Autologous PDX
40 mice generated innate and adaptive immune populations; these cells populated the TME;
41 and tumors from autologously engrafted mice grew larger than tumors from non-engrafted
42 littermate controls. Single-cell transcriptomics revealed a prominent VEGF-A signature in
43 TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth,
44 demonstrating the utility of the autologous PDX system for pre-clinical testing.

45

46 **Main Text:**

47 The immune milieu within tumors, consisting of diverse cell types including adaptive
48 immune cells as well as macrophages, dendritic cells, natural killer and other innate
49 immune cells, is critical to determining cancer outcome, be it progression or regression.¹
50 Macrophages especially can have pro- and anti-growth properties within the tumor
51 microenvironment (TME) in various cancers.²⁻⁴ However, the immune TME has been
52 challenging to model, owing to inherent inter-species differences.⁵⁻⁹ While advances in
53 humanized mice have expanded the repertoire of human immune cells that can
54 repopulate immunodeficient mice, the hematopoietic stem and progenitor cells (HSPCs)
55 used for transplantation have been largely limited to those derived from fetal or neonatal
56 stem cell donors. Thus, these mice do not reflect the systemic immune cell composition
57 of adult humans and remain inadequate models for the majority of human cancers. The
58 ability to pre-clinically model an individual adult cancer patient, capturing the unique
59 features of an individual such as germline genetic determinants of immune function and
60 somatic tumor heterogeneity, is critical to advancing our understanding of interpersonal
61 differences in tumor progression and response to cancer therapies.

62

63 MISTRG mice, in which the **M**-CSF (CSF1), CSF2/IL3, **S**IRPA, **T**HPO genes were
64 humanized on a **R**AG2^{-/-}, **IL**2RG^{-/-} immunodeficient background, generate functional
65 human monocytes, tissue macrophages, alveolar macrophages, and natural killer (NK)
66 cells in a profile more similar to humans than other models, affording an opportunity to
67 model multiple human immune cell types that interact with tumor cells in a human TME.¹⁰⁻
68¹² However, efficiency of engraftment in most mouse strains and even the relatively
69 efficient MISTRG mouse precludes the routine engraftment of adult HSPCs. Here, we
70 show that the MISTRG6 strain is a much more adept host recipient of human HSPCs and
71 demonstrate the utility of this system to study the TME in adult solid tumor patients by
72 modeling tumor-immune interactions in a fully genetically matched, autologous manner.
73 We found that humanization of the IL6 locus significantly improved human hematopoietic
74 engraftment of MISTRG6 mice compared with prior models, allowing efficient modeling
75 of individual patients' tumor-immune interactions using low numbers of HSPCs obtained
76 prospectively from bone marrow (BM) aspirates. Patient-derived xenograft (PDX) tumors
77 grown in mice engrafted with autologous CD34⁺ HSPCs displayed infiltration of patient
78 immune cells of both innate (e.g., macrophage) and adaptive (e.g., T cell) immune
79 subtypes. The transcriptional signatures of the latter imply activation and exhaustion in
80 the TME, whereas the signatures of the former suggest pro-tumor production of VEGF-A
81 in the TME as a major determinant of PDX progression in this model.

82

83 **Results:**

84 **MISTRG6 displays enhanced proportions of human hematopoietic cells, including**
85 **innate immune cell types.** Given the divergence between human and mouse IL-6
86 protein (41% identity) and to improve support of human HSPCs, we used the MISTRG6
87 mouse that bears the human IL6 gene in place of the murine gene in the same
88 chromosomal location, thereby preserving the surrounding regulatory sequences for IL6
89 control.^{13, 14} When intrahepatically engrafted with equivalent numbers of CD34⁺ cells from
90 human fetal liver (FL), neonatal cord blood (CB), adult mobilized peripheral blood (MPB),
91 or adult bone marrow (BM), MISTRG6 mice harbored greatly increased human
92 hematopoietic cells as a proportion of total hematopoietic cells in peripheral blood
93 compared with NOD-scid-gamma (NSG) and MISTRG mice (Figure 1A). Levels of human

94 hematopoietic cells were also higher in most tissues, including BM, liver, and lung (Fig.
95 1B), with the greatest differences being between MISTRG6 and NSG hosts. No significant
96 difference was detected in spleen across strains (Fig. 1B). Moreover, we found that
97 MISTRG6 mice could be engrafted with as few as 1,000 human HSPCs, arguably 100x
98 more efficient than other models, and achieve robust hematopoietic transplantation after
99 10-12 weeks (Fig. 1C), indicating the efficiency of this strain in supporting the growth of
100 hematopoietic cells.

101

102 To better elucidate the mechanism responsible for this enhanced human engraftment,
103 we enumerated human and mouse hematopoietic progenitors in BM of NSG, MISTRG,
104 and MISTRG6 mice. This revealed that human progenitors, including CD34⁺ and
105 CD34⁺CD38⁺ cells, were significantly increased in both frequency and absolute numbers
106 in MISTRG and MISTRG6 mice compared with NSG mice (Fig. 1D-E), and that the mouse
107 hematopoietic lin⁽⁻⁾cKit⁺ (LK) and lin⁽⁻⁾Sca1⁺cKit⁺ (LSK) progenitor populations were
108 significantly diminished, while granulomonocytic progenitor (GMP) cells were not
109 significantly different (Fig. 1F-G).¹⁵ In addition, MISTRG6 mice displayed more human
110 hCD34⁺CD38⁻ and fewer mouse LSK cells compared with MISTRG. Collectively, these
111 findings suggest that the enhanced hematopoietic engraftment observed in MISTRG6 is,
112 in part, a consequence of increased human progenitor frequency and reduced mouse
113 progenitor competition.

114

115 Humanization of the CSF1 locus in MISTRG enables development of human myeloid
116 lineage cells (CD33⁺) with robust functionality.¹⁰⁻¹² As expected, this property was
117 preserved in the MISTRG6 model, regardless of human HSPC source or tissue assayed
118 (Supplementary Fig. 1A-F). MISTRG6 mice had a significantly increased proportion of
119 hCD33⁺ myeloid cells than NSG mice in peripheral blood when engrafted with FL- or
120 MPB-derived CD34⁺ cells, with concomitant decrease in frequency of hCD19⁺ B cells
121 (Supp. Fig. 1A, B). In addition, when engrafted with MPB-derived CD34⁺ cells, hNKp46⁺
122 NK cells were present in equal proportions in MISTRG and MISTRG6 mice but were
123 lacking in NSG mice (Supp. Fig. 1B). These trends persisted in tissues, with CD33⁺
124 myeloid cells being significantly increased in MISTRG and MISTRG6 mice in spleen, liver,

125 and lung (Supp. Fig. 1C-F). In BM, spleen, liver, and lung, MISTRG6 mice had
126 significantly larger proportions of human NK cells and hCD66b⁺SSC^{hi} granulocytes as
127 well as fewer B cells than NSG mice. T cell proportions did not differ significantly between
128 the strains (Supp. Fig. 1C-F).

129 In summary, MISTRG6 is highly efficient at supporting development of human
130 hematopoietic cells, including innate immune cells.

131

132 **MISTRG6 allows efficient engraftment of patient-derived HSPCs.** Having
133 documented that MISTRG6 better supports development of human hematopoietic cells
134 from adult donors and requires transplantation of fewer cells to do so, we sought to apply
135 this prospectively to model individual patients' TME. For proof of concept, we initially
136 utilized CD34⁺ cells from G-CSF-mobilized peripheral blood samples that were collected
137 from metastatic melanoma patients enrolled in a dendritic cell vaccine trial.¹⁶ Consistent
138 with the data in Fig. 1 using HSPCs from healthy adults, this showed that engrafting fewer
139 cells yielded higher levels of human engraftment in MISTRG6 compared with MISTRG
140 mice, and that efficient engraftment was feasible with 100,000 to 300,000 CD34⁺ cells
141 (Fig. 2A). Importantly, this enabled engrafting >30 recipient animals. For example, for
142 patient Mel2, engrafting 400,000 CD34⁺ cells in MISTRG hosts yielded a mean of 14.8%
143 human hematopoietic cells in mouse peripheral blood, while engrafting 120,000 CD34⁺
144 cells in MISTRG6 hosts yielded significantly increased mean human hematopoietic
145 engraftment (34.7%) (Fig. 2A). Similar results were obtained for patients Mel1 and Mel3,
146 for whom fewer cells achieved greater proportions of human hematopoietic cells in
147 MISTRG6 compared with MISTRG, albeit not achieving statistical significance (Fig. 2A).
148 Nevertheless, these results suggest that the enhanced engraftment and growth in
149 MISTRG6 compared to MISTRG is influenced by the individual donor, since Mel3 was
150 superior to Mel1, even though the proportion of HSPCs transferred was greater for Mel1
151 than Mel3 (800 vs. 220 for Mel1 and 480 vs. 290 for Mel3).

152 With successful generation of humanized mice bearing individual patients' immune
153 systems, we expanded these efforts to prospective collection of BM-derived CD34⁺ cells
154 from patients under active treatment along with tumor tissue from the same patient (i.e.,
155 an autologous platform). Under IRB-approved protocols at two cancer centers, we

156 enrolled patients with melanoma (MeI), non-small cell lung cancer (NSCLC), pancreatic
157 adenocarcinoma (PDAC), and head and neck squamous cell carcinoma (HNSCC) to
158 provide BM aspirate, peripheral blood, and tumor tissue at the time of surgery or biopsy.
159 CD34⁺ cells were isolated from BM aspirates using magnetic bead purification and
160 cryopreserved. Viable tumor tissue was utilized to generate PDXs in non-engrafted NSG
161 or MISTRG6 hosts. Overall, 71 patients were enrolled, 46 melanoma, 19 NSCLC, 4
162 PDAC, 2 HNSCC, ages 22-85, 39% females (Suppl. Table 1). These yielded autologous,
163 immune-reconstituted MISTRG6 hosts from 14 melanoma, 5 NSCLC, 2 PDAC, and 1
164 HNSCC patients (Fig. 2B).

165 Autologously engrafted MISTRG6 mice displayed the gamut of human immune cells
166 of adaptive and innate types in peripheral blood at 7 weeks of age (Fig. 2C). Notably, this
167 included CD33⁺ myeloid lineage cells such as CD14⁺CD16⁻ classical, CD14⁺CD16⁺
168 intermediate, and CD14⁻CD16⁺ non-classical monocytes in peripheral blood (Fig. 2D).
169 Moreover, dendritic cells (DCs), key innate immune cells for initiation of anti-tumor and
170 other immune responses that derive from CD33⁺ cells,¹⁷ were readily detected by flow
171 cytometry in spleens of autologously-engrafted mice, including human cDC1, cDC2, and
172 pDC populations (Fig. 2E).

173

174 **MISTRG6 mice bearing a patient's hematopoietic cells support autologous PDX**
175 **growth.** Having achieved successful engraftment of patient hematopoietic systems in
176 MISTRG6 hosts, we next subcutaneously introduced the patient's matched PDX tumor
177 tissue to generate autologously engrafted PDX mice. We monitored tumor growth by
178 caliper measurements in autologously engrafted and non-engrafted (i.e., mice lacking
179 human hematopoietic cells) MISTRG6 littermates, finding that autologous PDX
180 experiments were feasible in MISTRG6 with tumors reaching up to 1000 mm³ (Fig. 3A
181 and Suppl. Fig. 2). As expected, PDXs from different patients displayed distinct tumor
182 growth dynamics, with some PDXs growing more or less rapidly. For most patients,
183 tumors grown in autologous HSPC-engrafted hosts were significantly larger than in non-
184 engrafted hosts (Fig. 3A and Suppl. Fig. 2). Harvested xenografted tumors were
185 histologically similar to the parental version and showed hCD45⁺ hematopoietic
186 infiltration (Fig. 3B). Multicolor immunofluorescence staining of PDX tumors

187 demonstrated that human immune cells, including CD3+ T cells, CD14+ and HLA-DR+
188 myeloid cells, penetrated deeply into the tumor and co-localized with tumor cells as well
189 as with other engrafted immune cells (Fig. 3C). Indeed, HLA-DR⁺CD14⁺ macrophages
190 and HLA-DR⁺CD14⁽⁻⁾ dendritic cells were present, and direct physical interaction between
191 T cells and macrophages was evident (Fig. 3C, bottom panel).

192

193 **Whole-exome sequencing reveals preservation of mutations from patient to**
194 **humanized xenograft.** To determine the mutational landscape of tumors generated in
195 MISTRG6 hosts bearing autologous hematopoietic cells and compare to a patient's tumor
196 as well as those in PDXs grown in non-engrafted mice, we performed whole-exome
197 sequencing (WES) on these samples from Mel738. PBMCs from the patient were used
198 as reference. This analysis indicated that 225 somatic changes were shared between the
199 patient's surgical resection sample (1° Met), two PDX tumors from non-engrafted mice
200 lacking human immune cells (NE tumor A and B), two PDX tumors from mice with
201 autologous engraftment (HuMo A and B), and a cell line derived from the patient's tumor
202 (Fig. 3D). 5 additional changes were shared among the tumor samples and absent from
203 the cell line, with 36 additional mutations being specific to the cell line. These data
204 underscore the capacity of the autologous PDX method to recapitulate the somatic
205 heterogeneity that the patient tumor encompasses.

206

207 **Autologous MISTRG6 mice display diverse human immune cell populations**
208 **circulating in the blood and within the tumor, and they recapitulate an**
209 **immunosuppressive tumor microenvironment.** To fully characterize the autologous
210 MISTRG6 model and investigate mechanisms by which autologous human immune cells
211 enhance tumor growth, we performed single cell transcriptomics on hCD45⁺-enriched
212 cells from blood and tumor isolated from Mel1199 and Mel1824 mice (Fig. 4A). After
213 filtering for *bona fide* human cells of high quality, 9,044 cells from blood and 5,559 cells
214 from tumor were analyzed from the two autologous models. All cells were combined,
215 clustered and visualized using UMAP. Examination of cluster-specific gene markers
216 revealed 16 distinct cell subtypes, including 3 myeloid, 2 NK cell, 2 CD8 T cell, 3 CD4 T
217 cell, 2 cycling lymphocyte, 1 B cell, and 3 melanoma cell clusters (Fig. 4B). As expected,

218 these subtypes were differentially represented across tissues (tumor vs blood). For
219 example, monocyte cluster 1 was more highly enriched in blood, while the macrophage
220 cluster was dominant in the TME (Fig. 4C-D).

221 Given the importance of myeloid cell subtypes in promoting and inhibiting tumor
222 growth, and the unique presence and functionality of these human cells in autologous
223 MISTRG6 models, we reclustered the data to reveal the myeloid subtypes present (Fig.
224 4E). This revealed 9 distinct clusters including 4 monocyte (distinguished by genes such
225 as LGALS2, SERPINA1, FCGR3A, LYZ), 4 macrophage (defined by APOE, C1QC,
226 APOC1, TREM2), and 1 DC (with high expression of CD1C, FCER1A, FLT3, MHC II
227 genes) cluster (Fig. 4F). As expected, the majority of DC and macrophage cells were
228 detected in the tumor, while most monocytes were present in the blood, reflecting their
229 expected biological homing and plasticity (Fig. 4C-E).

230

231 Given the central importance of CD8 T cells as effectors of anti-tumor immune
232 responses, we next characterized the CD8 T cell compartments in autologous models by
233 performing focused sub-clustering of human CD8 T cells (Fig 5A). Comparing CD8 T cells
234 present in blood versus tumor revealed that the most differentially expressed genes
235 (DEGs) found in blood were characteristic of naïve T cells (e.g., LEF1, TCF7, SELL),
236 while genes present in the TME were consistent with activated T cell phenotypes, such
237 as CD69, STAT1, and CXCR4 (Fig. 5B). In addition, sub-clustering revealed 3 distinct
238 CD8 T cell types that included two activated-like populations expressing genes such as
239 CD40LG, XCL1, and XCL2, with one of these populations also expressing an
240 activated/exhausted program typified by expression of PDCD1, LAG3, and GZMA. The
241 third CD8 population expressed naïve-type genes such as LEF1, TCF7, SELL (Fig. 5C).
242 Naïve-like T cells were most highly represented in the blood, while activated and
243 activated/exhausted-like genes were more present in the TME (Fig. 5D).

244

245 CD4 T cells sub-clustered into 5 distinct groups with divergent localizations between
246 blood and tumor; clusters 1, 3 and 5 were more prevalent in blood, while clusters 2 and
247 4 were almost exclusively present in tumor (Suppl. Fig. 3A-B). Cluster 1 was
248 characterized by naïve T cell genes, while the TME-associated cluster 4 displayed high

249 expression of interferon-signature genes (e.g., IFIT1, IFIT2, IFIT3, MX1), suggesting that
250 these may facilitate effector T cell function (Suppl. Fig. 3C).

251

252 To further define the genes and pathways dominant in the autologous MISTRG6
253 model, we utilized Ingenuity Pathway Analysis (IPA) to analyze pathways
254 overrepresented in tumor compared with blood across cell types. We found significant
255 associations with T cell activation in tumor including T Cell Receptor Signaling, Th1, Th2,
256 Interferon Signaling, Jak/STAT Signaling, IL-17 Signaling, Antigen Presentation
257 Pathways (Fig. 6A). In addition, genes representing the PD-1/PD-L1 Cancer
258 Immunotherapy, T Cell Exhaustion Signaling, and Tumor Microenvironment Pathways
259 were significantly associated with the TME.

260

261 Notably, IPA Upstream Regulator Analysis identified VEGFA, a central player in tumor
262 growth and vascularization across multiple tumor types,¹⁸⁻²⁰ as a key upstream inducer of
263 genes in the TME (FDR p= 5.65x10⁻¹³, Fig. 6B). Indeed, expression VEGFA itself was
264 nearly absent in blood but induced in the TME, especially in macrophages (Fig. 6C). In
265 addition, VEGFA direct and indirect targets were highly represented among the DEGs
266 between tumor and blood in the myeloid cell types (Fig. 6B-C).

267

268 **Inhibiting the actions of human VEGF-A blocks the enhanced tumor growth in
269 autologously engrafted mice.** To test the imputed relevance of VEGF-A in the TME and
270 its effect on tumor growth, we chose to selectively block human VEGF-A as the murine
271 subcutaneous microenvironment is replete with murine VEGF which could compound the
272 results. Thus, we treated autologous mice humanized with HSPCs and PDXs from Mel2
273 with the anti-human-VEGF-A antibody bevacizumab that has high affinity for human
274 VEGF-A yet low affinity for mouse VEGF-A and which does not affect tumor growth in
275 non-engrafted hosts.^{10, 21} The Mel2 PDXs grown in autologously engrafted MISTRG6
276 mice grew significantly larger than those in non-engrafted littermate control hosts. When
277 treated with bevacizumab (10 mg/kg, weekly intraperitoneal injection), the enhanced
278 tumor growth seen with human autologous engraftment was significantly abrogated, with
279 bevacizumab-treated mice bearing significantly smaller tumors compared with controls

280 (Fig 6D). Thus, these *in silico* and *in vivo* results suggest that human VEGF-A production
281 in the TME of mice bearing an autologous human TME enhances tumor growth in
282 MISTRG6 PDX models.

283

284 ***Discussion:***

285 While advances in immunotherapy have greatly improved quality and length of life for
286 people with cancer, there remains significant variability in individual patient responses to
287 treatment. For example, nearly 40% of patients with metastatic melanoma, a disease with
288 among the most immunotherapy successes, do not respond initially to combination CTLA-
289 4 and PD-1 inhibition and of those that respond, the duration of response is limited by as-
290 yet undefined mechanisms of acquired resistance.^{22, 23} Hence, there is a need for
291 personalized models that faithfully reflect the TME of individual patients, and that can
292 therefore be used to test primary and acquired resistance to therapies. By engrafting mice
293 with bone marrow derived stem cells followed by implantation of tumor derived from the
294 same donor, we have demonstrated that autologous MISTRG6 models recapitulate
295 important features of the human TME, including sufficient immunosuppression to prevent
296 tumor clearance, presence of activated/exhausted-like T cells, and harboring innate
297 immune cells including DCs, monocytes, NK cells, and macrophages, the latter being
298 especially relevant by the production of VEGF-A.

299 While humanized mice have long been utilized for engraftment of human
300 hematopoietic cells to study myriad processes,²⁴ MISTRG6 mice allow engraftment with
301 few HSPCs and creation of humanized mice that reflect the immune makeup of living
302 patients. Indeed, we found that a low-volume BM aspiration can provide sufficient HSPCs
303 ($1-5 \times 10^6$) to engraft multiple mice on a scale not seen previously. These cohorts are
304 large enough to facilitate drug or other comparisons, opening the door to exciting
305 experiments such as prospective co-clinical trials.

306 Importantly, MISTRG6 mice engrafted autologously with BM-derived patient HSPCs
307 support tumor growth for multiple weeks, permitting study of tumor expansion in a timeline
308 similar to other models. Notably, we found that tumors grown in autologously-engrafted
309 hosts were larger than those grown in non-HSPC-engrafted hosts, underscoring the
310 functionality of the human cell engraftment and the pro-growth effects that the TME can

311 acquire and provide. However, not all autologous models displayed enhanced growth in
312 the presence of autologous human cells, underlining the inter-patient differences that our
313 MISTRG6 model elucidates and that will be important for future personalized medicine
314 approaches.

315 The ability to study the myeloid cell fraction of the TME is critical to understanding
316 tumor-immune interactions. Indeed, myeloid lineage cells, such as macrophages and
317 dendritic cells, are major components of a patient's TME that are recapitulated in our
318 approach, and these innate immune cells have drastic and varied effects on tumor growth
319 as well as immune function^{25, 26} Our single cell transcriptomic analyses pointed to the
320 myeloid compartment as producers of VEGF-A in the TME, a central pro-tumor cytokine.
321 In support of this cytokine's importance, functional inhibition of human VEGF-A with
322 bevacizumab abrogated the enhanced growth effects in the model and indicates the
323 potential of the model for pre-clinical drug testing.

324 Myeloid cells are also important orchestrators of adaptive immune responses,
325 functioning as antigen-capturing and -presenting cells, as well as modulators of the
326 activity of other immune cells, especially effector T cells. Each of these cell types can
327 have direct pro- and anti-tumor effects on malignant cells. For example, macrophages
328 can exhibit pro- or anti-inflammatory phenotypes. The former are linked with type 1
329 inflammation, intracellular pathogen killing, and tumor resistance, while the latter exhibit
330 immunoregulatory and pro-angiogenic properties, promote tissue repair, and contribute
331 to tumor progression^{3, 27-30}. In this regard, the demonstration of several macrophage
332 subtypes in the TME of autologously engrafted MISTRG6 mice may provide a way to
333 decipher these processes *in vivo*. Finally, the presence of DCs in our model makes it
334 more likely that the T cell effector functions that occur have biologic relevance since they
335 can occur in an MHC-matched manner.

336 Thus, due to their unique sensing abilities, their functional plasticity, and their central
337 position in the TME, macrophages, monocytes, and DCs are essential elements to
338 investigate the variability in response to cancer and to its treatment. It is critically important
339 to credential a model of humanized mice where these lineages are properly developed
340 and functionally mature.

341

342 Like other pre-clinical models, our method has limitations. While MISTRG6 autologous
343 mice develop major innate immune cell types as discussed, like most other humanized
344 mouse models, they lack large numbers of human neutrophils, basophils, and
345 eosinophils; further research is required to identify the genes required to support the
346 development of these human cell types. In addition, like other PDX methods, the
347 autologous technique is limited by the fact that not all fresh tumor tissue samples generate
348 efficient PDXs that grow robustly in the timeline of an experiment. In addition, the yield of
349 BM aspiration is variable, and in rare cases too few HSPCs are obtained. Further
350 humanization of recipient mice is likely to improve engraftability, such that autologous
351 mice may be engrafted with fewer and fewer adult HSCs. Finally, the chronological lag
352 between tissue collection and autologous modeling inherent in the technique due to the
353 need for PDX generation, which can take weeks or months, may limit the ability to use
354 the model as a predictor of primary therapies. However, given that surgical tissue is often
355 collected early in a patient's clinical course (e.g., for resection of a primary NSCLC),
356 autologous modeling can begin early in a patient's course, and bear fruit in modeling
357 second or third therapies. Furthermore, PDX models can be successfully generated from
358 small biopsy specimens, broadening the applicability to most metastatic solid tumors³¹⁻³³.
359 Our findings demonstrate the broad utility of a genetically matched, fully autologous
360 humanized mouse model system for investigating the TME and treatment responses of
361 individual solid tumor patients.

362

363

364 **Acknowledgements:**

365 This work was funded by the Howard Hughes Medical Institute (R.A.F.). This study was
366 also supported, in part, by National Institute of Health grants T32HL007974 (M.C.),
367 K08CA245211 (M.C.), R01CA248277 (R.C.F and R.A.F.), T32CA009621 (K.J.R and
368 B.K.). M.C. and R.A.F. received funding from the Yale SPORE in Lung Cancer
369 1P50CA196530-01. R.C.F received funding from The Alvin J. Siteman Cancer Center
370 Siteman Investment Program, The Foundation for Barnes-Jewish Hospital Cancer
371 Frontier Fund, the National Cancer Institute Cancer Center Support Grant P30
372 CA091842, and the Barnard Trust. R.C.F. also received funding from the Washington

373 University PDX Development and Trial Center (U54CA224083) and the David Riebel
374 Cancer Research Fund. We thank the Siteman Tissue Procurement Core and the core
375 grant/services of the Washington University Digestive Diseases Research Core Center
376 (P30 DK052574) for supporting this work. We are grateful to Ricky Brewer, Eleanna Kaffe
377 and other members of the Flavell laboratory for helpful discussions and comments; J.
378 Alderman, C. Lieber, B. Cadigan, C. Hughes, D. Urbanos and E. Hughes-Picard for
379 administrative and technical assistance; P. Ranney, C. Weibel and for mouse colony
380 management; H. Lazowski, C. Bensley and A. Wurtz for assistance with patient consent;
381 L. Devine for assistance with cell sorting; G. Wang of the Yale Center for Genome
382 Analysis for assistance with scRNASeq experiments. This article is subject to HHMI's
383 Open Access to Publications policy. HHMI lab heads have previously granted a
384 nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their
385 research articles. Pursuant to those licenses, the author-accepted manuscript of this
386 article can be made freely available under a CC BY 4.0 license immediately upon
387 publication.

388

389 **Competing financial interests:**

390 R.A.F. is an advisor to Glaxo Smith Kline, Evolveimmune, and Ventus Therapeutics.

391

392 **Contributions:**

393 M.C. conceived the project, collected patient samples, performed experiments,
394 interpreted data and wrote the manuscript. J.M. and B.K. performed experiments,
395 interpreted data and edited the manuscript. Y.Z., K.J.R, R.Q., G.K., Z.S., L.H., F.B., A.A.,
396 J.Z., L.S., E.S., J.M., Y.B., A.O. performed experiments and interpreted data. S.P.G.,
397 M.G., O.G., S.F., R.G.M, Y.K. interpreted data. D.B., F.D., A.D., J.B., B.J., S.G., K.P.
398 assisted with patient consenting and tissue collection. A.K.P. and R.C.F conceived the
399 project, interpreted data and edited the manuscript; R.A.F. conceived and oversaw the
400 project, interpreted data and edited the manuscript.

401

402 **Figure Legends:**

403

404 **Figure 1: Humanization of the IL-6 locus enhances human hematopoietic**
405 **engraftment in MISTRG6 mice.**

406 A. Human hematopoietic engraftment (percent of hCD45⁺ cells as a proportion of total
407 hCD45⁺ and mCD45⁺ cells) in peripheral blood of NSG (triangles), MISTRG (circles) and
408 MISTRG6 (squares) mice engrafted with equal numbers of CD34⁺ HSPCs from indicated
409 sources; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, unpaired parametric t-test; bars
410 indicate mean and S.E.M.); each dot represents a single mouse.

411 B. Human hematopoietic engraftment (%hCD45⁺ of total CD45⁺) in indicated tissues of
412 NSG, MISTRG and MISTRG6 mice engrafted with equal numbers of CD34⁺ HSPCs.

413 C. Longitudinal analysis of human CD45⁺ cells in peripheral blood of MISTRG6 mice
414 engrafted with varying HSPC numbers as indicated.

415 D. Percentage among single cells of hCD34⁺, hCD34⁺hCD38⁺, and hCD34⁺hCD38⁽⁻⁾ cells
416 detected in BM of NSG, MISTRG and MISTRG6 mice engrafted with equal numbers of
417 hCD34⁺ HSPCs.

418 E. Absolute numbers of cells in BM of mice in (D).

419 F. Percentage among single cells of mouse LK, GMP and LSK cells detected by flow
420 cytometry in BM of NSG, MISTRG and MISTRG6 mice engrafted with equal numbers of
421 CD34⁺ HSPCs.

422 G. Absolute numbers of cells from BM of mice in (F).

423

424 **Figure 2: Improved engraftment in MISTRG6 compared with MISTRG mice of**
425 **HSPCs from solid tumor patients, with human innate and adaptive immune cells**
426 **represented.**

427 A. Analysis of peripheral blood of MISTRG (circles) and MISTRG6 (squares) mice
428 engrafted with HSPCs from the indicated melanoma patients with the HSPC dose shown
429 below; note improved human engraftment levels despite fewer HSPCs introduced in
430 MISTRG6 compared with MISTRG.

431 B. Human hematopoietic engraftment of MISTRG6 mice with HSPCs derived from
432 patients with melanoma (Mel), non-small cell lung cancer (NSCLC), pancreatic
433 adenocarcinoma (PDAC), and squamous cell carcinoma of the head and neck (HNSCC);
434 each dot represents a single mouse.

435 C. Percentage of human T cells (CD3⁺), B cells (CD19⁺), myeloid cells (CD33⁺) and NK
436 cells (NKp46⁺) out of total human hematopoietic cells in peripheral blood of autologously
437 engrafted mice from the indicated patients.
438 D. Proportions of human monocyte subsets (CD14⁺CD16⁻ classical, triangles; CD14⁺CD16⁺ intermediate, circles; CD14⁻CD16⁺ non-classical, squares) of total CD33⁺
439 myeloid cells in peripheral blood of Mel1963 autologously engrafted MISTRG6 mice.
440 E. Proportions of human dendritic cell subsets (HLA-DR⁺CD11c^{low}CD141⁺ cDC1, triangles; CD11c⁺CD1c⁺ cDC2, circles; CD14⁻CD11c⁻CD303⁺ pDC, squares) of total
441 hCD45⁺ cells in spleens of Mel1963 autologously engrafted MISTRG6 mice.
442
443

444

445 **Figure 3: Autologous engraftment enhances PDX growth and human immune cell**
446 **infiltrate demonstrates tumor-immune interactions.**

447 A. PDX growth in MISTRG6 littermates engrafted (magenta) or non-engrafted (blue) with
448 autologous HSPCs from indicated patients (see Suppl. Fig. 2 for comprehensive data).
449 B. Hematoxylin and eosin (left) and hCD45 immunohistochemical (right) staining of
450 tumors harvested from Mel1073 PDX grown in non-engrafted hosts (top), autologously
451 engrafted MISTRG6 hosts and the patient's primary tumor (bottom).
452 C. Sections of Mel1199 PDX tumor grown in autologously engrafted host stained for
453 human infiltrating immune cells; top panel blue = DAPI, cyan = hCD3, green = hCD14,
454 red = hHLA-DR, white = melanoma antigen, scale bar = 100 um. Bottom panel shows
455 same markers without melanoma antigen staining. Green arrows highlight HLA-
456 DR⁺CD14⁺ macrophages while red arrows highlight HLA-DR⁺CD14⁽⁻⁾ dendritic cells. Cyan
457 arrow highlights T cell-macrophage interaction. Scale bar = 50 um.
458 D. Number of somatic mutations (compared with germline reference) shared between the
459 indicated samples: Mel738 patient's surgical resection sample = 1° Met; PDX tumors from
460 non-engrafted mice (lacking human immune cells) = NE tumor A and B; PDX tumors from
461 mice with autologous engraftment = HuMo A and B; cell line derived from the patient's
462 tumor = Cell line.
463

464 **Figure 4: Single cell genomics reveal multiple human immune cell types in tumors**
465 **and blood of autologous MISTRG6 PDX mice, including innate immune cell types**
466 **present in the TME.**

467 A. Schematic representation of scRNAseq experiments.
468 B. UMAP embedding displaying unsupervised clustering of 14,603 human cells from
469 blood and tumor of autologous MISTRG6 mice. Cell types were identified by marker
470 genes and identities are listed.
471 C. UMAP embedding displaying tissue of origin for cells in A; red cells are derived from
472 blood libraries, blue cells from tumor libraries.
473 D. Proportions of cluster representation in blood vs tumor scRNAseq libraries.
474 E. Re-clustering of myeloid cells reveals sub-structure of 9 clusters including DCs,
475 macrophages and monocytes, in differential tissue representation as indicated in bottom
476 panel.
477 F. Heatmap indicating expression of top differentially expressed genes between each
478 cluster, highlighting presence of human DCs in TME and pro-inflammatory macrophage
479 subtypes.

480

481 **Figure 5: CD8 T cells circulating in the blood of autologous MISTRG6 mice display**
482 **features of naïve states while those in the TME express markers of activation and**
483 **exhaustion.**

484 A. Re-clustering of CD8 T cells reveals sub-structure of 3 clusters.
485 B. Differentially-expressed genes between CD8 T cells in blood vs tumor display features
486 of naïve (blood) and activated (tumor) states.
487 C. Heatmap indicating expression of top differentially expressed genes between each
488 cluster, highlighting activated/exhausted-like phenotype of CD8 1 cluster.
489 D. Cluster representation of CD8 T cell subclusters in tissues, demonstrating over-
490 representation of activated/exhausted-like CD8 T cells in the tumor microenvironment of
491 autologous mice.

492

493 **Figure 6: Immune cells in the TME display gene signatures associated with immune
494 activation and signaling, including VEGF-A signaling, and blockade of this
495 molecule abrogates enhanced tumor growth in engrafted autologous PDX mice.**

496 A. Canonical pathway representation in indicated cell types from blood (left) and tumor
497 (right).

498 B. Upstream pathway analysis identifies VEGFA and its target genes as highly
499 represented in the TME; red shading indicates VEGFA target gene expression level in
500 the TME.

501 C. VEGFA and its target genes are over-represented in the TME (red) of myeloid gene
502 clusters (monocyte 1, monocyte 2, macrophage 1); size of split dot plot circle indicates
503 percent expression of each gene among cells of that cluster, while intensity of color
504 indicates level of expression.

505 D. Treatment of autologously engrafted MISTRG6 Mel2 PDX mice with bevacizumab, a
506 clinical anti-hVEGF-A therapy, significantly reduces tumor growth compared with
507 autologous HSPC-engrafted control (asterisks indicate comparison between drug-treated
508 and control engrafted mice).

509

510 **Supplementary Figure Legends:**

511

512 **Supplementary Figure 1: MISTRG6 mice display robust peripheral blood and tissue
513 engraftment of human cell types, including innate immune cells.**

514 A. Human hematopoietic cells in peripheral blood from mice of indicated strains engrafted
515 with FL-derived CD34⁺ cells, including T cells (hCD3⁺, blue), B cells (hCD19⁺, green),
516 myeloid cells (hCD33⁺, red), neutrophils (hCD66b, SSC^{hi}, purple), NK cells (hNKp46⁺,
517 teal).

518 B. Human hematopoietic cell profiles in peripheral blood from mice of indicated strains
519 engrafted with CD34⁺ cells isolated from mobilized peripheral blood (MPB) of adult
520 donors.

521 C. Human hematopoietic cell profiles in BM from mice of indicated strains engrafted with
522 FL-derived CD34⁺ cells.

523 D. Human hematopoietic cell profiles in spleen from mice of indicated strains engrafted
524 with FL-derived CD34⁺ cells.
525 E. Human hematopoietic cell profiles in liver from mice of indicated strains engrafted with
526 FL-derived CD34⁺ cells.
527 F. Human hematopoietic cell profiles in lung from mice of indicated strains engrafted with
528 FL-derived CD34⁺ cells.

529
530 **Supplementary Figure 2: Autologously-engrafted MISTRG6 mice support**
531 **enhanced tumor growth in multiple patient models.**

532 Tumor growth curves for non-engrafted (blue) and autologously engrafted (magenta) PDX
533 mice representing indicated patients; * p<0.05, ** p<0.01, *** p<0.001, unpaired
534 parametric t-test; bars indicate mean and S.E.M.

535
536 **Supplementary Figure 3: Blood and tumor-resident CD4 T cells display distinct**
537 **transcriptional states including naïve and interferon-responsive subtypes.**

538 A. Re-clustering of CD4 T cells reveals sub-structure of 5 clusters.
539 B. Cluster representation of CD4 T cell subclusters in tissues.
540 C. Heatmap indicating expression of top differentially expressed genes between each
541 cluster, highlighting interferon activation signature of CD4 4 cluster.

542
543 **Supplementary Table 1.**
544 Clinical data of patients enrolled in prospective study collecting tumor and BM from solid
545 tumor patients; indicated PDXs grew sufficiently for autologous humanized mouse
546 modeling.

547
548 **Methods:**
549 Mice

550 MISTRG6 mice bear human knock-ins of M-CSF (CSF1), CSF2/IL3, SIRPA, THPO genes
551 were humanized on a RAG2^{-/-}, IL2RG^{-/-} immunodeficient background, as previously
552 described^{10, 13, 14}. Mice were maintained in a BSL-2 mouse facility on a 14-10 hr light-
553 dark cycle with 2 weeks on, 2 weeks off sulfamethoxazole/trimethoprim diet. Experimental

554 mice were cross-fostered with CD1 female mice from Charles River Laboratories for
555 maintenance of eubiotic flora. Newborn mice engrafted with adult HSPCs were pre-
556 conditioned with 150 rads of irradiation using an X-ray irradiator prior to intrahepatic
557 injection as previously described¹⁰.

558

559 **Human HSPC Isolation and Enrichment**

560 All human samples were obtained and handled in accordance with established Yale and
561 Washington University Human Investigational Committee protocols. Candidates for
562 participation were identified by investigators, and subsequently approached by
563 investigators or clinical trials staff to discuss participation in this study. Patients were
564 prospectively enrolled in Yale HIC #1603017380 or WUSM IRB # 201108117 after
565 informed consent. FL HSPCs were purified as previously described³⁴. BM aspirates were
566 performed using a 15 Gauge Illinois needle (VWR) with standard technique. 40-150 cc of
567 BM was aspirated from unilateral or bilateral iliac crests. Peripheral blood was also
568 collected from an intravenous line placed in the normal course of perioperative care. The
569 BM aspirate, peripheral blood, and a component of the resected tumor were subsequently
570 transported to our laboratory for further processing. Freshly-aspirated BM and peripheral
571 blood were anticoagulated with sterile EDTA and subjected to Ficoll density-mediated
572 separation for isolation of mononuclear cells. CD34+ cells were positively selected using
573 the EasySep Human CD34 Positive Selection Kit (STEMCELL Technologies) according
574 to the manufacturer's protocol. HSPCs and PBMCs were cryopreserved in 90% FBS +
575 10% DMSO until use.

576

577 **Tissue Processing and Flow Cytometry**

578 Fresh excess human tumor tissue was obtained from enrolled patients and divided into
579 1-2 mm³ pieces for subcutaneous implantation in the flank of MISTRG6 or NSG mice
580 lacking human HSPC reconstitution, as previously described^{31, 35}. Tumor growth was
581 monitored by caliper measurements, and when tumors reached 500-1000 mm³, mice
582 were euthanized and tumor tissue again divided into 1-2 mm³ pieces for PDX passaging.
583 PDXs were passaged 2-3 times, and histology confirmed with H&E staining. PDXs were
584 cryopreserved in 90% FBS + 10% DMSO in liquid nitrogen until use.

585 Tumors, spleen, lung, and liver tissues were minced in PBS+1%FBS and digested
586 with collagenase D (1mg/ml, Sigma) and DNase at 37°C for 15 minutes. Tumor-infiltrating
587 immune cells were isolated with a 40-80% Percoll density gradient (Sigma). Non-specific
588 staining was blocked with human (BD Biosciences) and mouse (Bio X Cell, BE0307) Fc
589 block for 10 min. Epitopes were stained at 4°C for 30 minutes and cells were fixed with
590 4% paraformaldehyde; intracellular staining was performed using BD permeabilization
591 buffer (BD Biosciences). Samples were analyzed on an LSRII flow cytometer, and data
592 parsed with FlowJo software v10 as well as GraphPad Prism v9. Cell sorting was
593 performed using a BD FACS Aria flow sorter under BSL2 containment. Sorted cells were
594 subjected to 10X Genomics 5'V2 library construction and sequenced using NovaSeq.
595 Data were filtered as described previously³⁴.

596

597 Immunofluorescence staining

598 Cryosections (8 um) were acetone fixed, air dried, washed with PBS and consecutively
599 treated with Fc Receptor Block (Innovex Bioscience) for 40 min + Background Buster
600 (Innovex Bioscience) for an additional 30 min. The sections were then stained with directly
601 conjugated antibody mix in PBS 5%BSA 0.1%Saponin for 1 hour at room temperature
602 and washed. Nuclei were counterstained with SytoxBlue 1:1000 for 2 min. Tissues were
603 mounted in Fluoromount-G mounting media. Images were acquired using a Leica SP8
604 confocal microscope.

605

606 Statistical Analyses

607 Unpaired parametric t-tests were utilized to compare immune cell frequencies and tumor
608 sizes, except where indicated otherwise in figure legends. Bars indicate mean +/- S.E.M.,
609 except where indicated otherwise. The single-cell RNA-seq data analysis was performed
610 using Seurat v4.0.1 R package,³⁶ including cell type stratification and comparative
611 analyses between tumor and blood samples. In the quality control (QC) analysis, poor-
612 quality cells with < 250 (likely cell fragments) or > 5,000 (potentially doublets) unique
613 expressed genes were excluded. Cells were removed if their mitochondrial gene
614 percentages were over 25% or if their ratios of reads mapped to human genome (over
615 the total reads mapped to humanized mouse genome) were lower than 90%. The data

616 was first integrated with default settings in Seurat (using 30 dimensions in the anchor
617 weighting procedure), followed by principal component analysis (PCA) for dimensionality
618 reduction. We retained 30 leading principal components for further visualization and cell
619 clustering. The Uniform Manifold Approximation and Projection (UMAP) algorithm was
620 used to visualize cells on a two-dimensional space.³⁷ Subsequently, the share nearest
621 neighbor (SNN) graph was constructed by calculating the Jaccard index between each
622 cell and its 20-nearest neighbors, which was then used for cell clustering based on
623 Louvain algorithm (with a resolution of 0.5). Each cluster was screened for marker genes
624 by differential expression analysis based on the non-parametric Wilcoxon rank sum test.
625 Based on checking the expression profile of those cluster-specific markers, we identified
626 16 distinct cell types, including different subtypes of CD4/CD8 T cells, B cells, myeloid
627 cells, NK cells, and melanoma cells. In the downstream analysis, we focused on myeloid
628 cells, CD8 T cells, and CD4 T cells respectively. Specifically, we separated out each cell
629 type and redid the clustering to define cell subtypes (states) in a high-resolution manner.
630 Differential expression analysis was performed to 1) reveal the functional role of each
631 subtype, and 2) identify differentially expressed genes (DEGs) between the blood and
632 tumor conditions. Top representative DEGs were visualized using heatmaps or dot plots.
633 For Ingenuity Pathway Analysis, differentially expressed genes were identified by filtering
634 group comparisons for biological (ABS(FC) > 1.5) and statistical significance (adjusted
635 p < 0.05). These were uploaded into Ingenuity Pathway Analysis (IPA) software (Qiagen,
636 Content version 73620684, 2022 <http://www.ingenuity.com>), mapped to their
637 corresponding IPA identifier, and used for functional analysis. Pathways and upstream
638 regulators were determined using an FDR p < 0.05 calculated with a right-tailed Fisher's
639 exact test.

640

641 Sequence Alignment

642 WES data were processed using the immuno.cwl analysis workflow
643 (<https://github.com/genome/analysis-workflows/tree/master/definitions/pipelines>). Briefly
644 all alignment data was processed through xenome (1.0.0) and reads classified as either
645 "graft" (*H. sapiens*) or "both" were retained in order to remove incidental data from the
646 host xenograft samples. WES data was then aligned to GRCH38 via bwa-mem (0.7.15)

647 and read duplicates marked with picard (2.18.1). BQSR correction was performed via
648 GATK (4.1.8.1). Variant calling was performed via Mutect (GATK4.2.3.0), Strelka (2.9.9),
649 Varscan2 (2.4.2), and Pindel (1.4.2), and a log-likelihood ratio filter applied. Called
650 variants were further refined by the following criteria: variant caller count > 2, tumor depth
651 >= 50 & tumor variant count >= 2, normal depth >= 20 & normal variant count <= 3. Variant
652 intersection amongst related samples was then performed using R (4.1.1) and Upset plots
653 created using the UpSetR R package.

654

655 **Antibodies:**

656 mCD45 (Clone: 30-F11), hCD45 (HI30), hCD3 (UCHT1), hCD14 (HCD14), hCD16 (3G8),
657 hCD19 (HIB19), hCD33 (WM53), hCD20 (2H7), hCD11B (M1/70), hCD11C (3.9), HLA-
658 DR (LN3), hPD1 (A17188B), hNKp46 (9E2), hCD4 (OKT4), hCD8 (SK1), mCD117 (2B8),
659 hCD117 (104D2), mSca1 (D7), hCD34 (581), hCD38 (HIT2), mCD34 (HM34), mCD38
660 (90), hCD31 (WM59). All antibodies were obtained from BioLegend and used at 1:300
661 dilution in PBS + 1% FCS.

662

663 **References:**

- 664 1. Palucka, A.K. & Coussens, L.M. The Basis of Oncoimmunology. *Cell* **164**, 1233-
665 1247 (2016).
- 666 2. Martinek, J. et al. Transcriptional profiling of macrophages *in situ* in metastatic
667 melanoma reveals localization-dependent phenotypes and function. *Cell Rep Med*
668 **3**, 100621 (2022).
- 669 3. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and
670 metastasis. *Cell* **141**, 39-51 (2010).
- 671 4. Locati, M., Curtale, G. & Mantovani, A. Diversity, Mechanisms, and Significance of
672 Macrophage Plasticity. *Annu Rev Pathol* **15**, 123-147 (2020).
- 673 5. Rangarajan, A. & Weinberg, R.A. Opinion: Comparative biology of mouse versus
674 human cells: modelling human cancer in mice. *Nat Rev Cancer* **3**, 952-959 (2003).
- 675 6. Mestas, J. & Hughes, C.C. Of mice and not men: differences between mouse and
676 human immunology. *J Immunol* **172**, 2731-2738 (2004).
- 677 7. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future
678 potential for medicine. *Annu Rev Immunol* **31**, 635-674 (2013).
- 679 8. Crozat, K. et al. Comparative genomics as a tool to reveal functional equivalences
680 between human and mouse dendritic cell subsets. *Immunol Rev* **234**, 177-198
681 (2010).
- 682 9. Ju, X., Clark, G. & Hart, D.N. Review of human DC subtypes. *Methods Mol Biol*
683 **595**, 3-20 (2010).

684 10. Rongvaux, A. et al. Development and function of human innate immune cells in a
685 humanized mouse model. *Nat Biotechnol* **32**, 364-372 (2014).

686 11. Sippel, T.R., Radtke, S., Olsen, T.M., Kiem, H.P. & Rongvaux, A. Human
687 hematopoietic stem cell maintenance and myeloid cell development in next-
688 generation humanized mouse models. *Blood Adv* **3**, 268-274 (2019).

689 12. Patel, A.A. et al. The fate and lifespan of human monocyte subsets in steady state
690 and systemic inflammation. *J Exp Med* **214**, 1913-1923 (2017).

691 13. Das, R. et al. Microenvironment-dependent growth of preneoplastic and malignant
692 plasma cells in humanized mice. *Nat Med* **22**, 1351-1357 (2016).

693 14. Yu, H. et al. A novel humanized mouse model with significant improvement of
694 class-switched, antigen-specific antibody production. *Blood* **129**, 959-969 (2017).

695 15. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications
696 for clinical application. *Annu Rev Immunol* **21**, 759-806 (2003).

697 16. Banchereau, J. et al. Immune and clinical responses in patients with metastatic
698 melanoma to CD34(+) progenitor-derived dendritic cell vaccine. *Cancer Res* **61**,
699 6451-6458 (2001).

700 17. Gerhard, G.M., Bill, R., Messemaker, M., Klein, A.M. & Pittet, M.J. Tumor-
701 infiltrating dendritic cell states are conserved across solid human cancers. *J Exp
702 Med* **218** (2021).

703 18. Apte, R.S., Chen, D.S. & Ferrara, N. VEGF in Signaling and Disease: Beyond
704 Discovery and Development. *Cell* **176**, 1248-1264 (2019).

705 19. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation
706 of the VEGF gene. *Nature* **380**, 439-442 (1996).

707 20. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors.
708 *Nat Med* **9**, 669-676 (2003).

709 21. Yu, L. et al. Interaction between bevacizumab and murine VEGF-A: a
710 reassessment. *Invest Ophthalmol Vis Sci* **49**, 522-527 (2008).

711 22. Larkin, J. et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated
712 Melanoma. *N Engl J Med* **373**, 23-34 (2015).

713 23. Wolchok, J.D. et al. Nivolumab plus ipilimumab in advanced melanoma. *N Engl J
714 Med* **369**, 122-133 (2013).

715 24. Walsh, N.C. et al. Humanized Mouse Models of Clinical Disease. *Annu Rev Pathol
716* **12**, 187-215 (2017).

717 25. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance,
718 tolerance, and diversity. *Curr Opin Immunol* **22**, 231-237 (2010).

719 26. Balkwill, F., Charles, K.A. & Mantovani, A. Smoldering and polarized inflammation
720 in the initiation and promotion of malignant disease. *Cancer Cell* **7**, 211-217 (2005).

721 27. Pulendran, B. Variegation of the immune response with dendritic cells and
722 pathogen recognition receptors. *J Immunol* **174**, 2457-2465 (2005).

723 28. Chomarat, P., Banchereau, J., Davoust, J. & Palucka, A.K. IL-6 switches the
724 differentiation of monocytes from dendritic cells to macrophages. *Nat Immunol* **1**,
725 510-514 (2000).

726 29. Condeelis, J. & Pollard, J.W. Macrophages: obligate partners for tumor cell
727 migration, invasion, and metastasis. *Cell* **124**, 263-266 (2006).

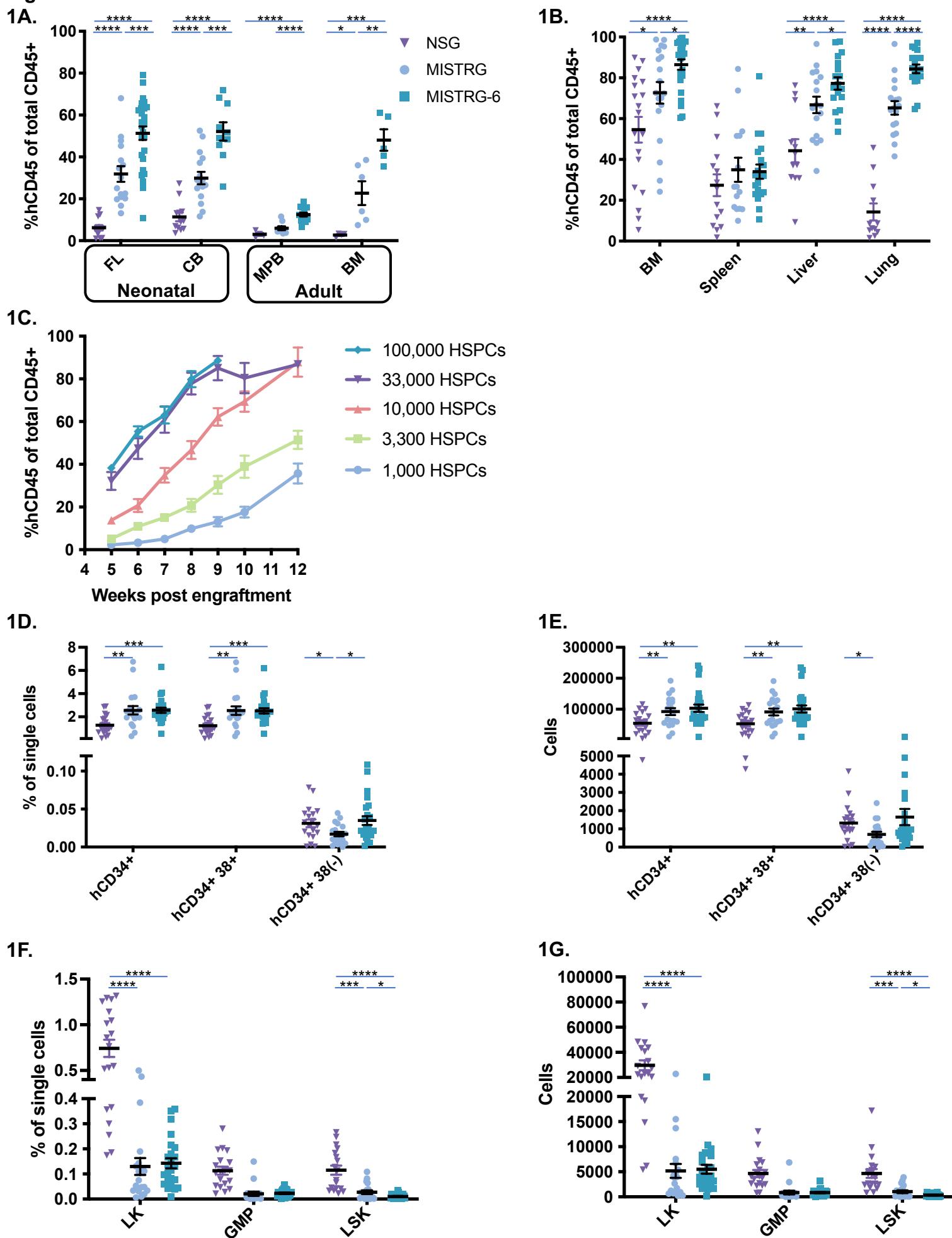
728 30. Noy, R. & Pollard, J.W. Tumor-associated macrophages: from mechanisms to
729 therapy. *Immunity* **41**, 49-61 (2014).

730 31. Dang, H.X. et al. The clonal evolution of metastatic colorectal cancer. *Sci Adv* **6**,
731 eaay9691 (2020).

732 32. Sun, H. et al. Comprehensive characterization of 536 patient-derived xenograft
733 models prioritizes candidates for targeted treatment. *Nat Commun* **12**, 5086 (2021).

734 33. Siolas, D. & Hannon, G.J. Patient-derived tumor xenografts: transforming clinical
735 samples into mouse models. *Cancer Res* **73**, 5315-5319 (2013).

736 34. Sefik, E. et al. A humanized mouse model of chronic COVID-19. *Nat Biotechnol*
737 **40**, 906-920 (2022).


738 35. Silva-Fisher, J.M. et al. Long non-coding RNA RAMS11 promotes metastatic
739 colorectal cancer progression. *Nat Commun* **11**, 2156 (2020).

740 36. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
741 1902 e1821 (2019).

742 37. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using
743 UMAP. *Nat Biotechnol* (2018).

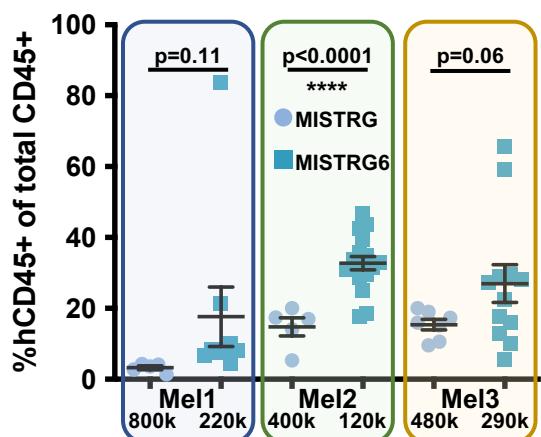

744

Figure 1

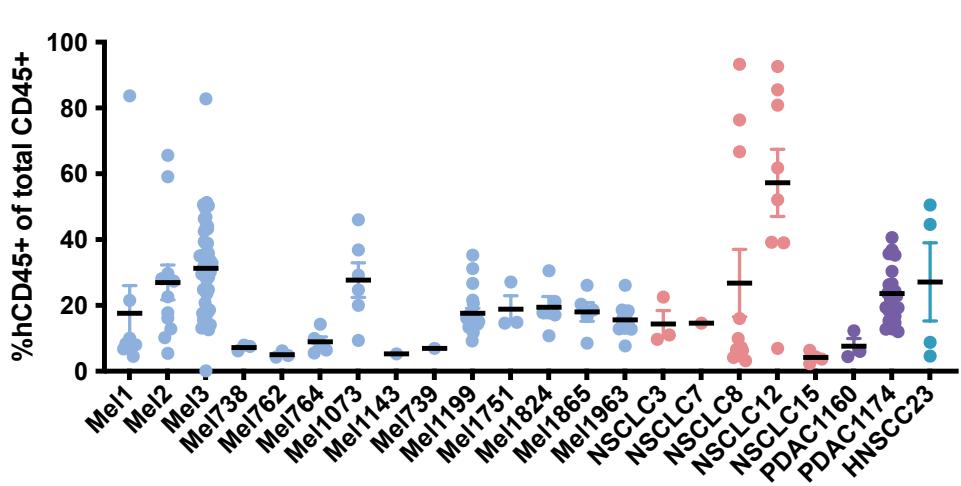
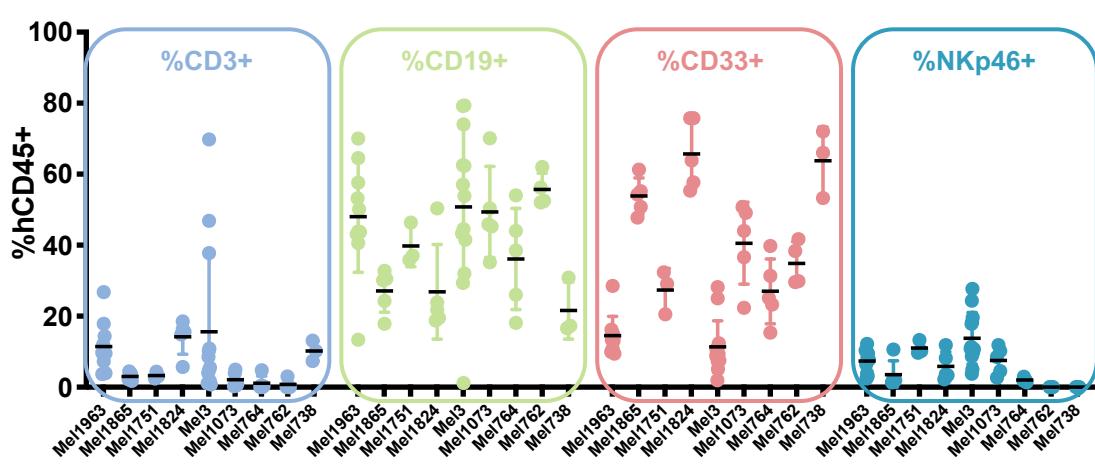
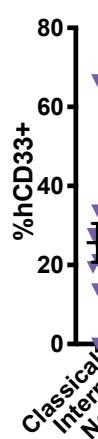


Figure 2


2A.


2B.

2C.

2D.

2E.

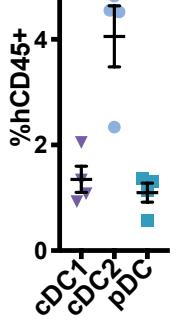
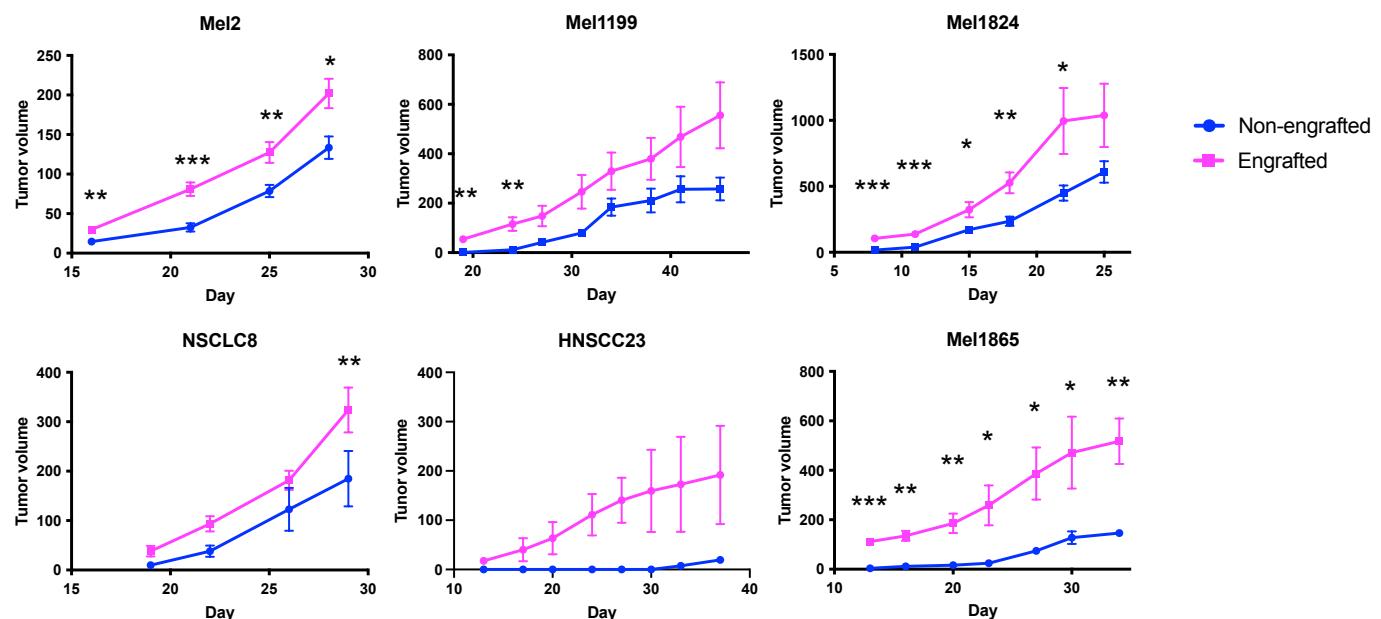
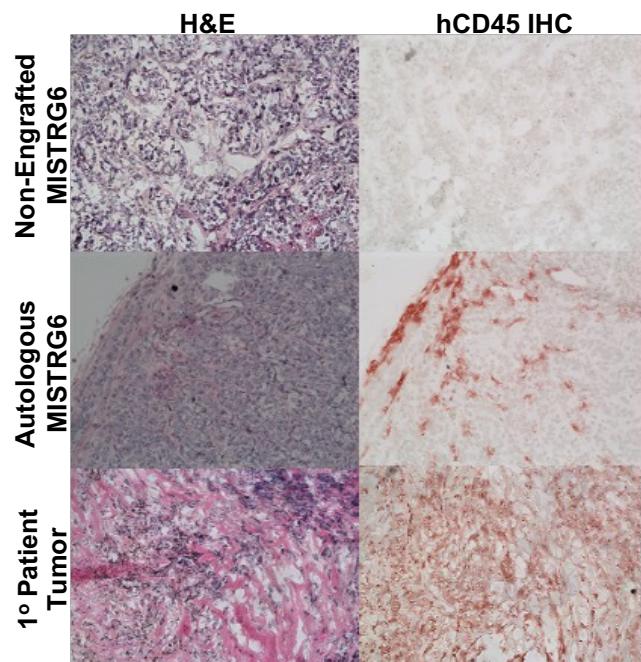
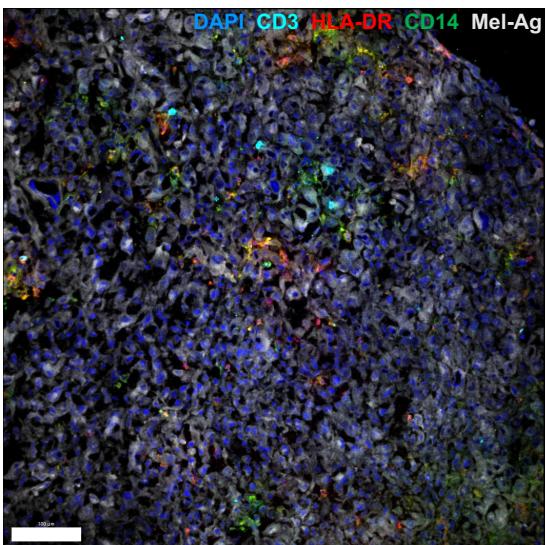
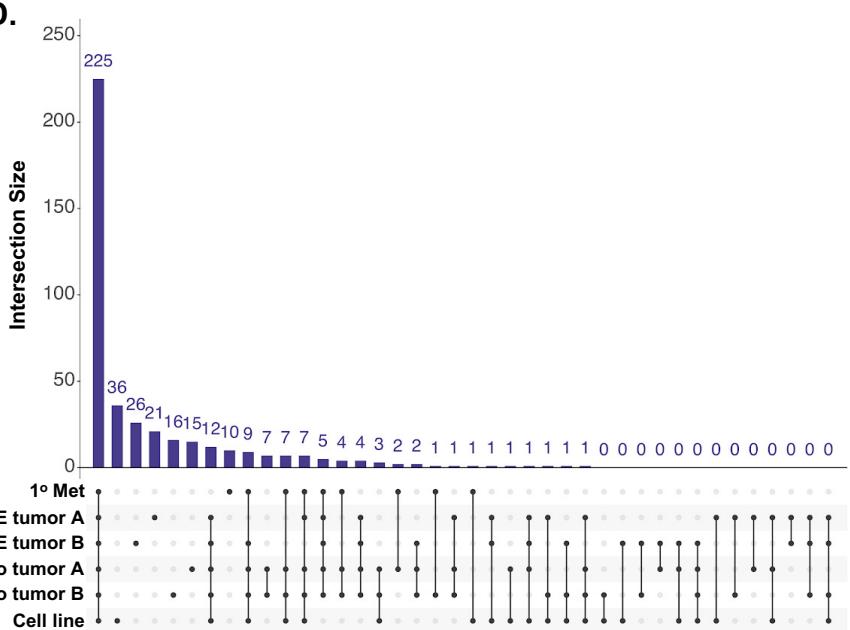
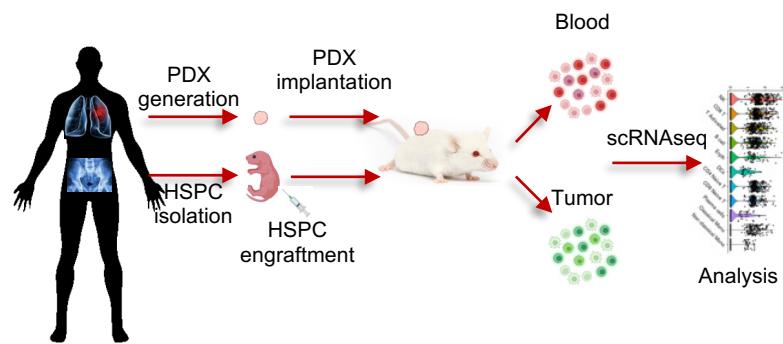




Figure 3


3A.


3B.

3C.



3D

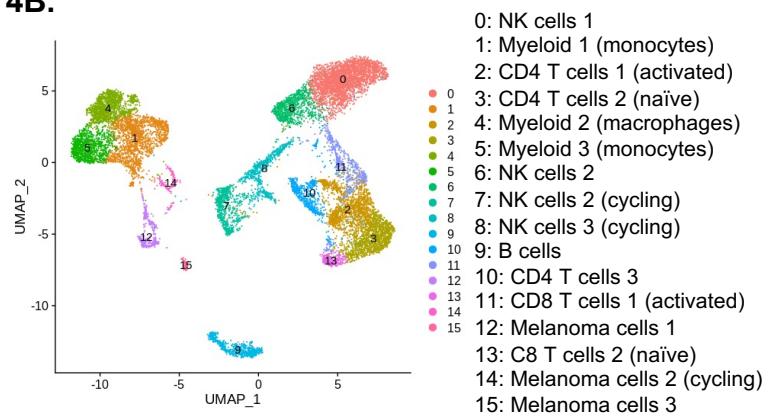
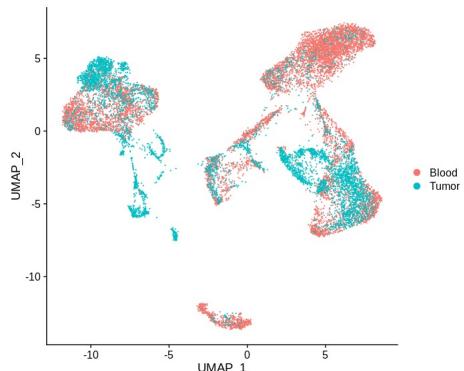
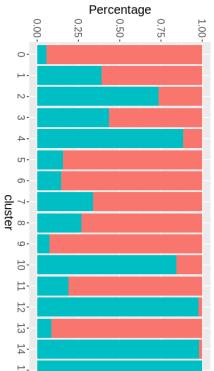
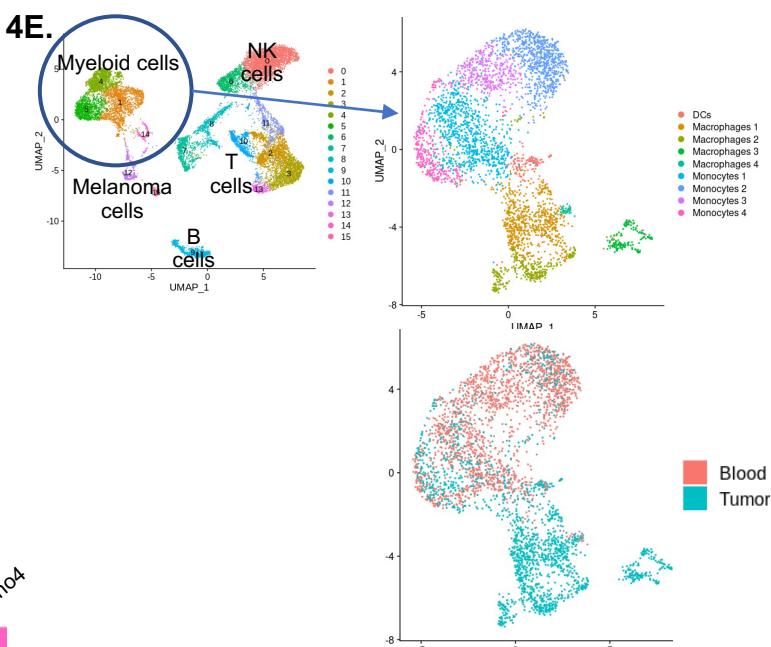
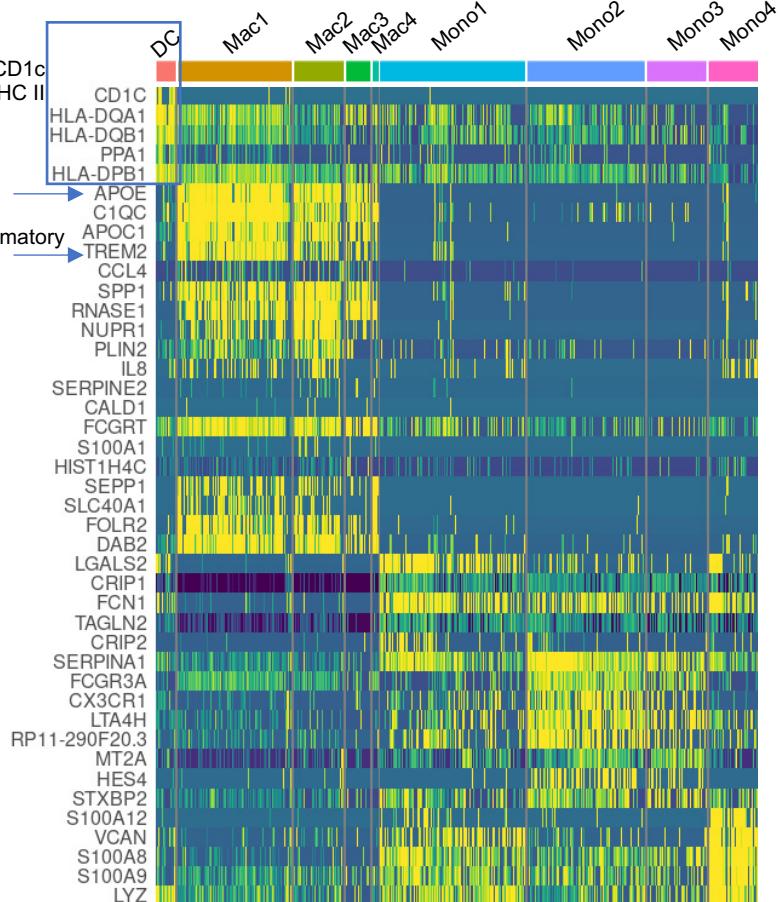


Figure 4

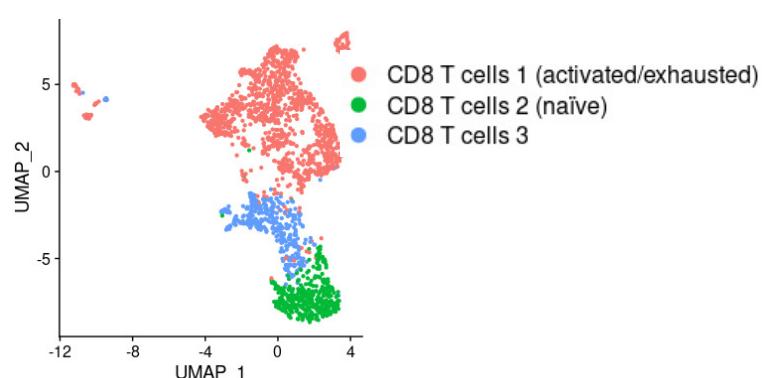

4A.


4B.


4C.


4D.

4E.



4F.

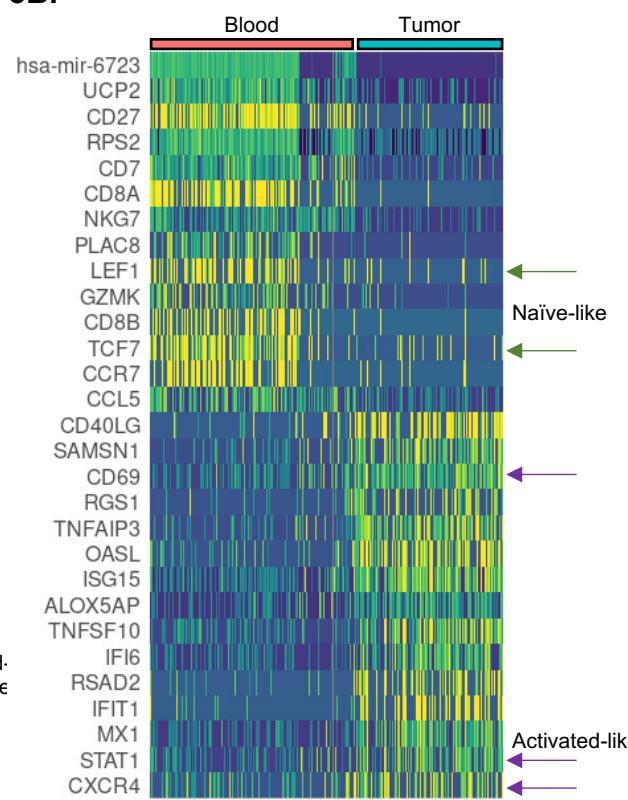
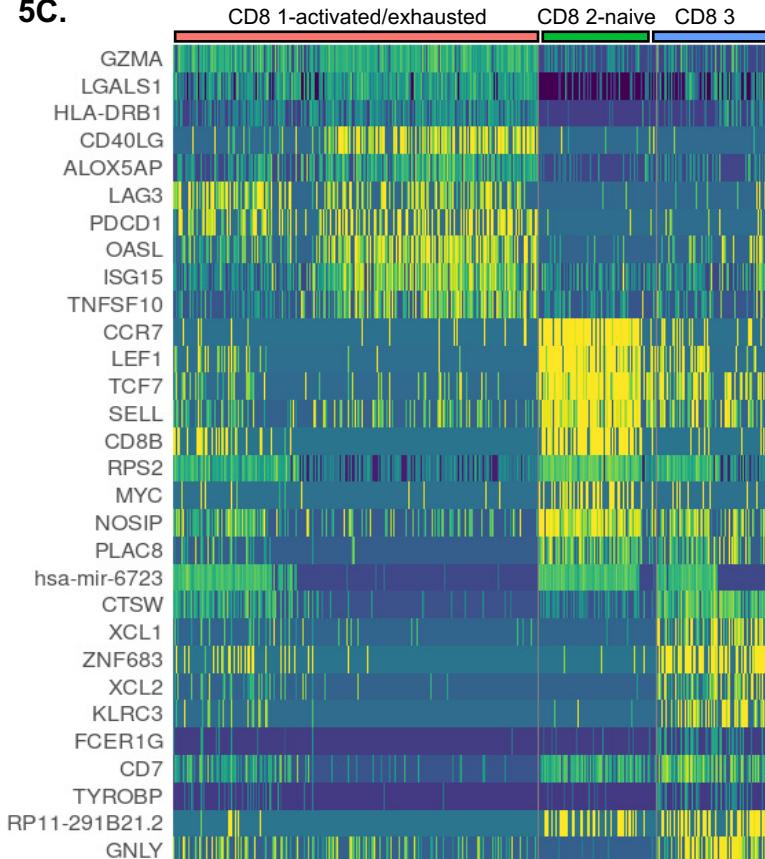
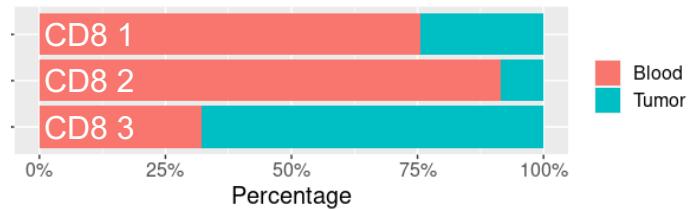
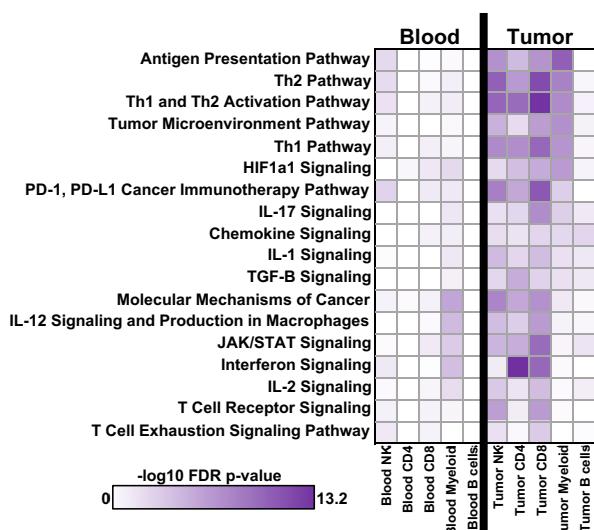


Figure 5


5A.


5B.

5C.



5D.

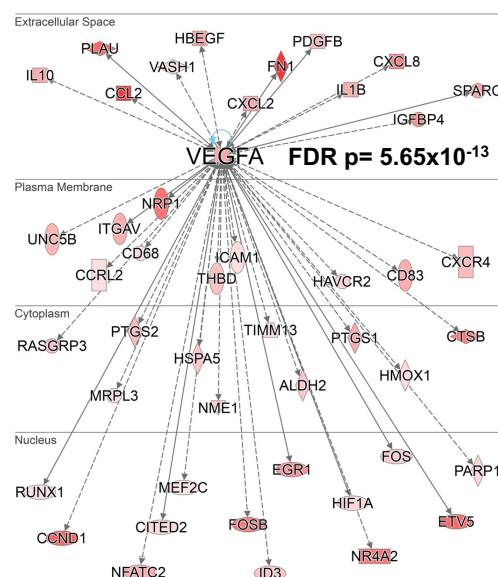
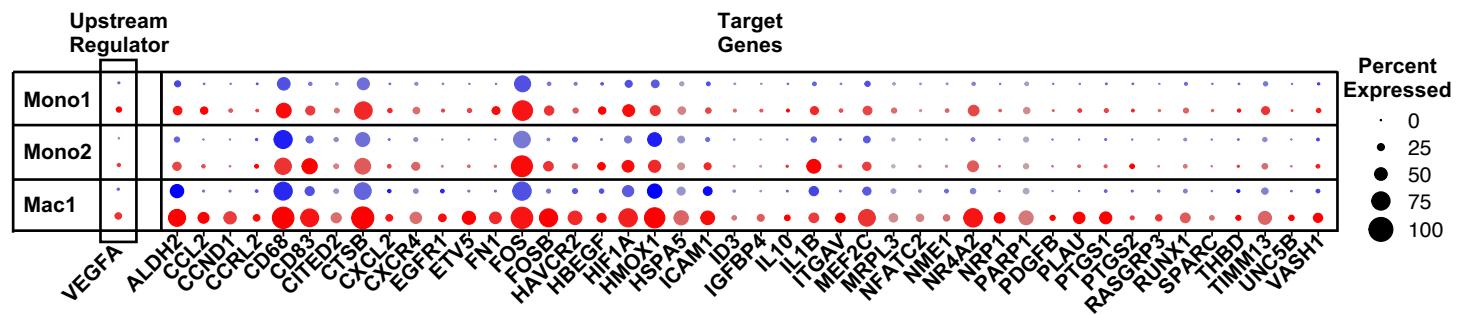
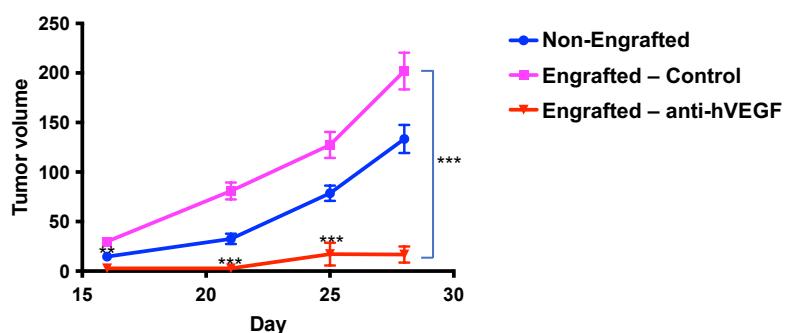
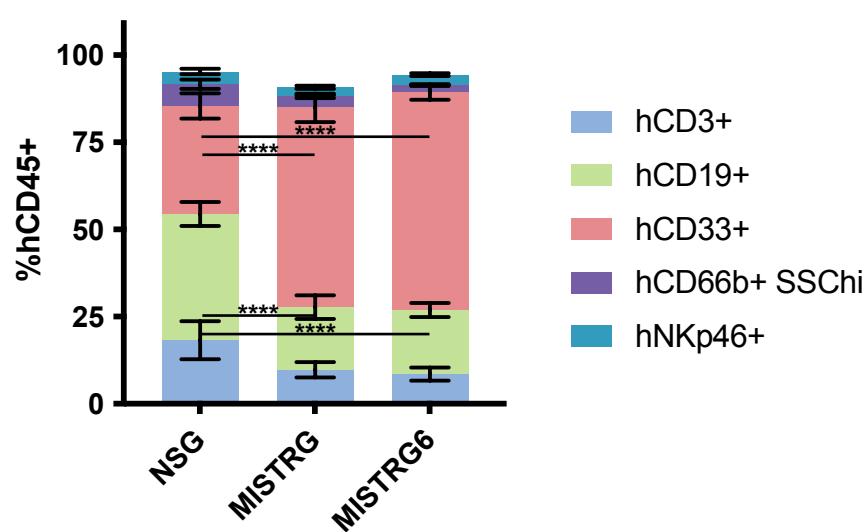


Figure 6

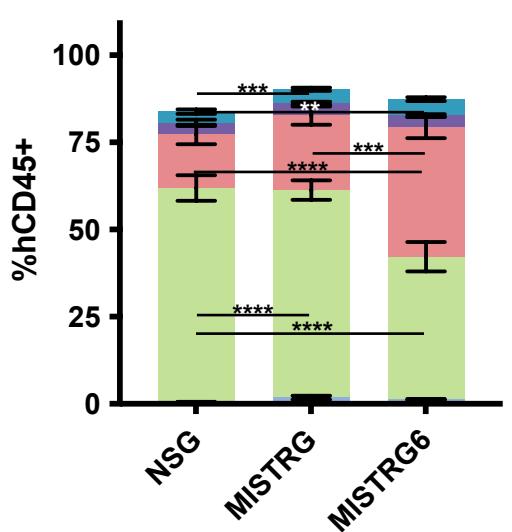

6A.


6B.

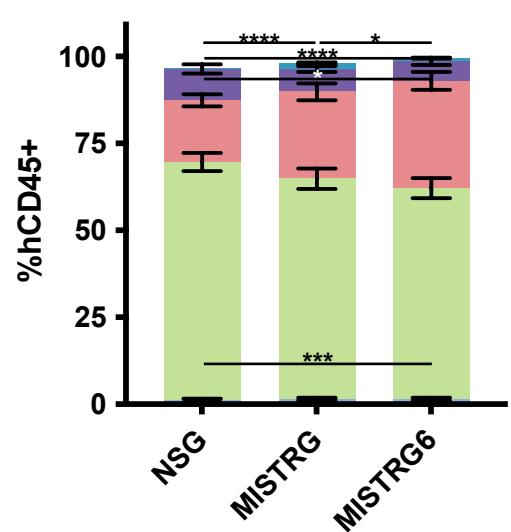
6C.


6D.

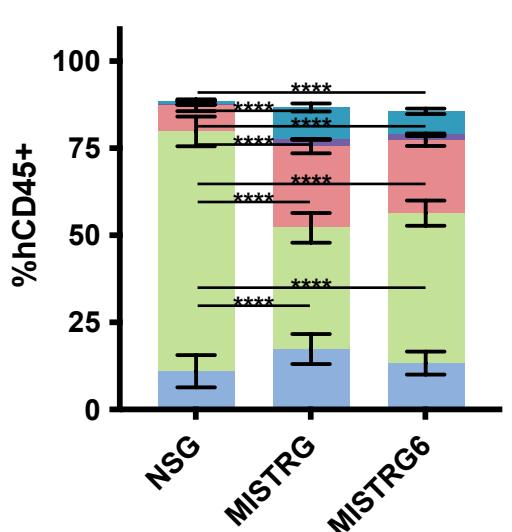
Supplementary Figure 1


S1A.

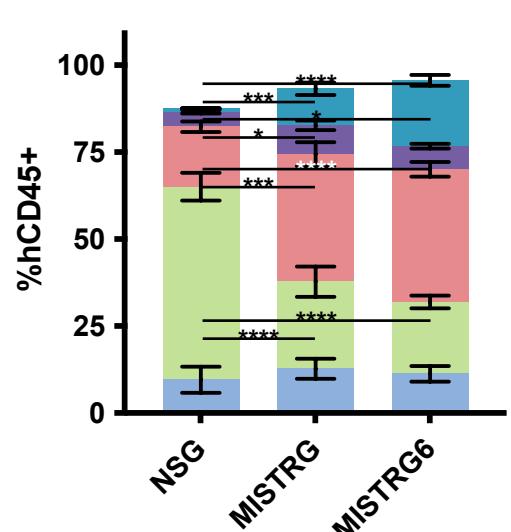
FL


S1B.

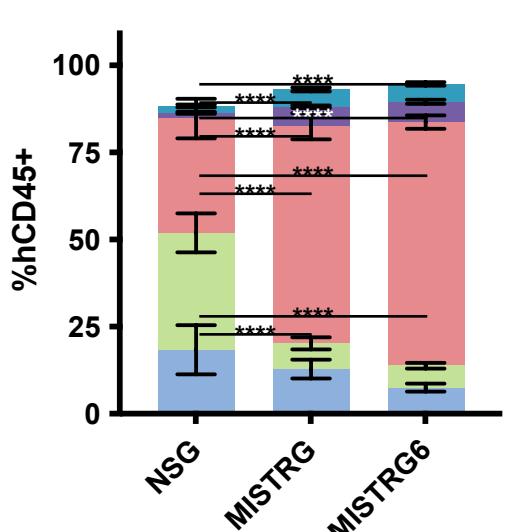
MPB


S1C.

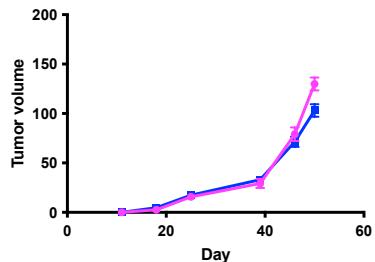
BM


S1D.

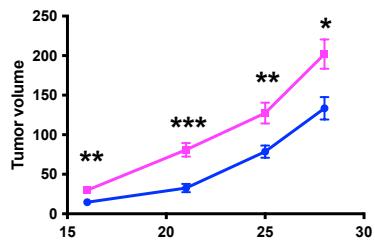
Spleen


S1E.

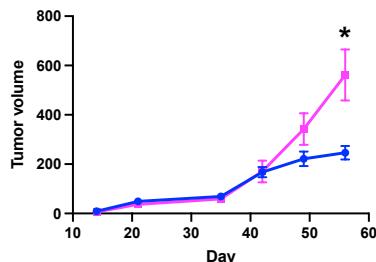
Liver

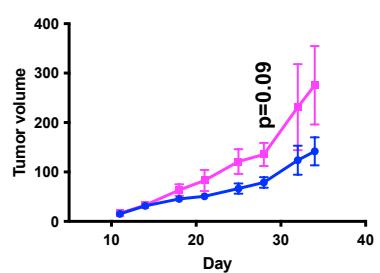

S1F.

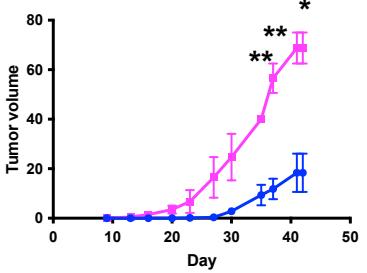
Lung

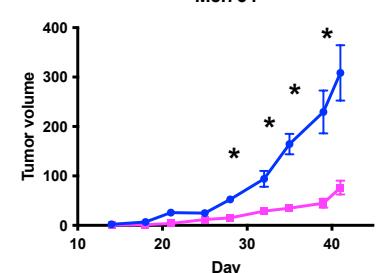


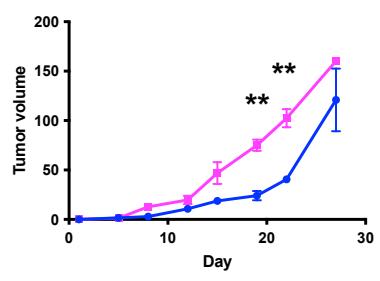
Supplementary Figure 2

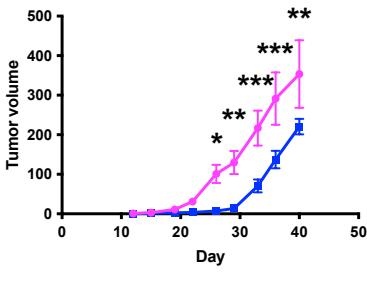

Mel1

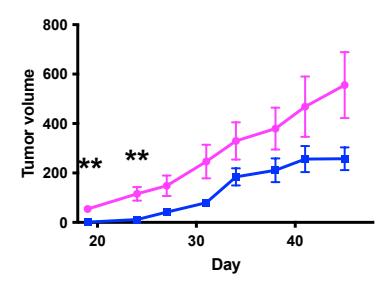

Mel2

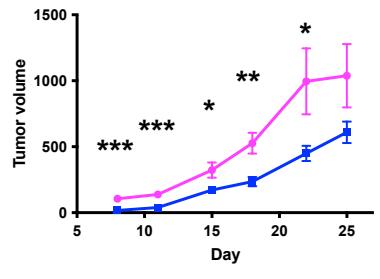

Mel3

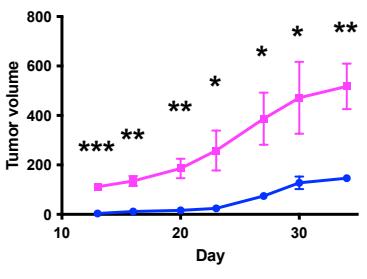

Mel738

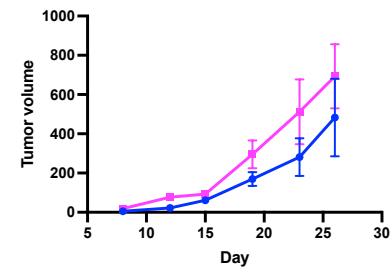

Mel762

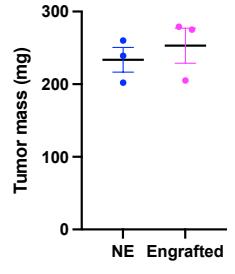

Mel764

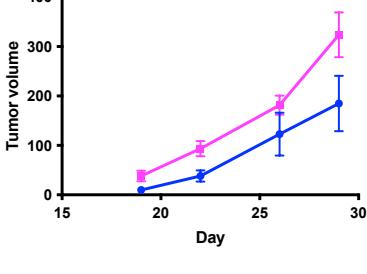

Mel1073

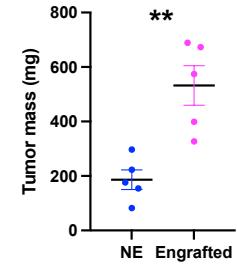

Mel1143

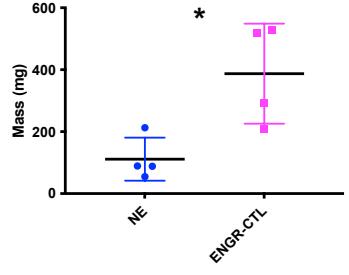

Mel1199

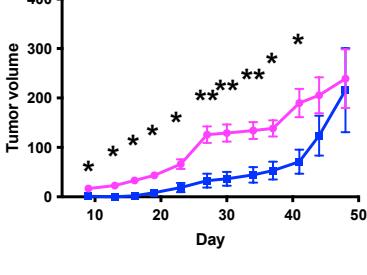

Mel1824

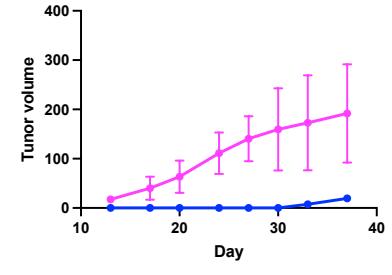

Mel1865


Mel1963

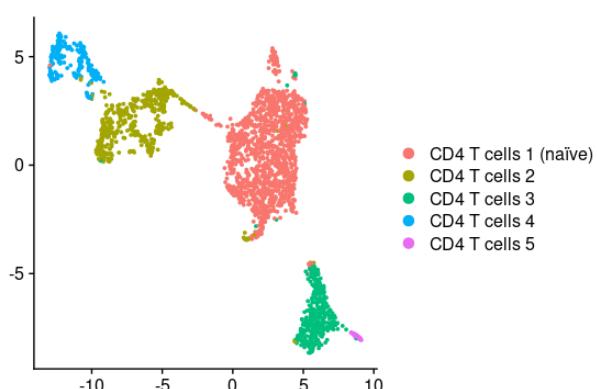

NSCLC3


NSCLC8

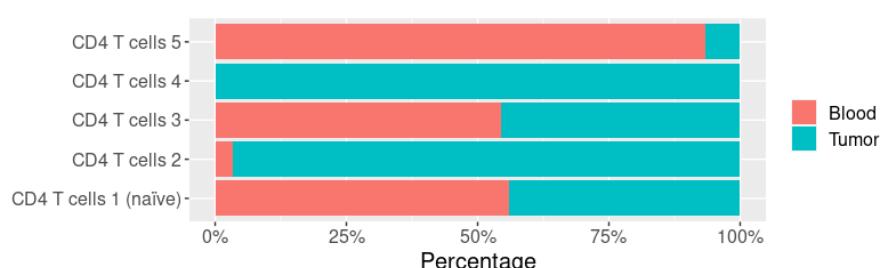

NSCLC12


NSCLC15

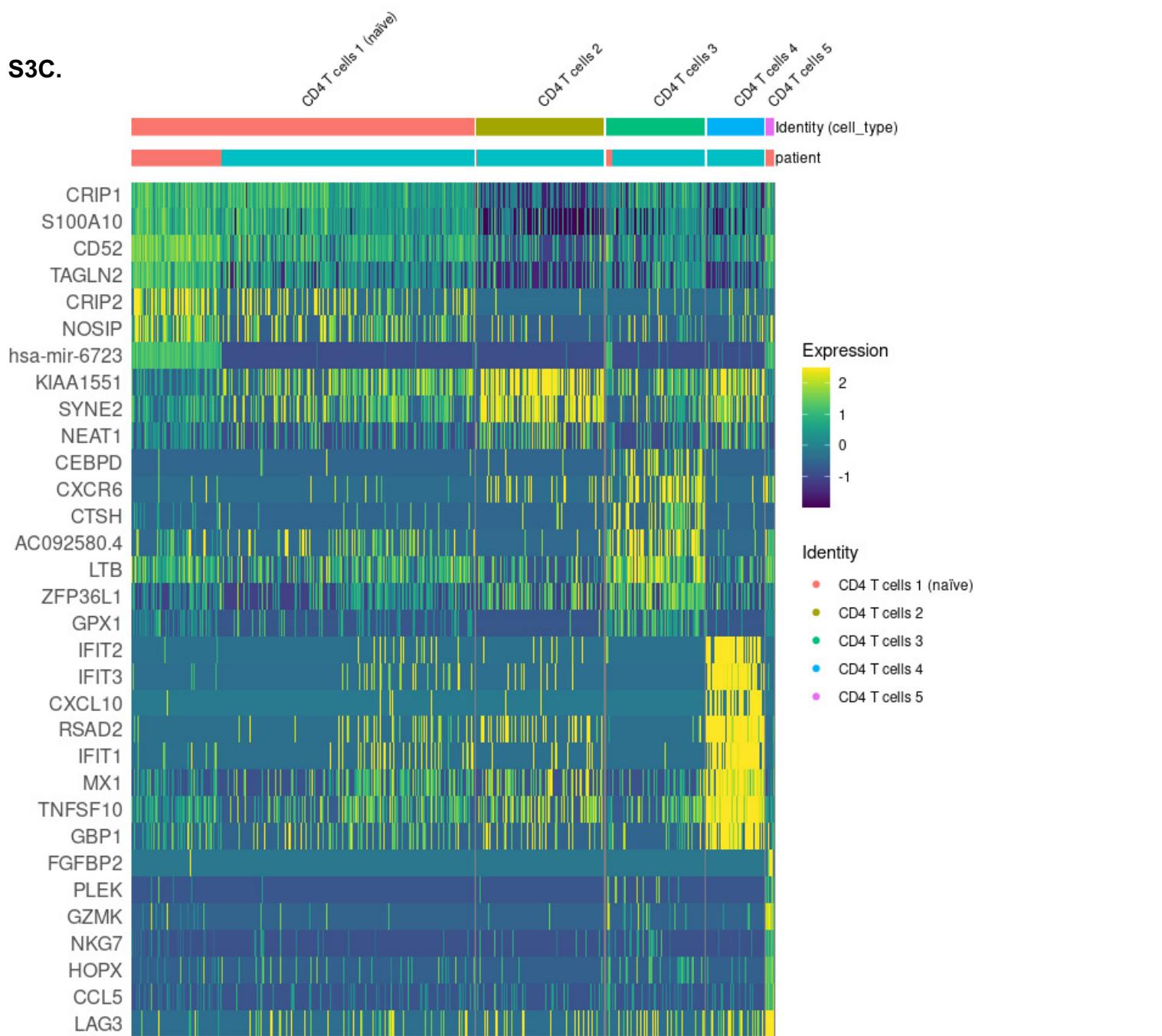
PDAC 1174



HNSCC23



Supplementary Figure 3


S3A.

S3B.

S3C.

Supplementary Table 1

Patient	Age	Sex	Tumor Type	Diagnosis	CD34+ cell #	PDX?
1	65	F	NSCLC	Stage IA adenocarcinoma	<100k	
2	73	F	NSCLC	Stage IA adenocarcinoma	150k	
3	82	F	NSCLC	Stage IA squamous cell carcinoma	3.9 million	Yes
4	56	M	NSCLC	Stage IIB large cell carcinoma	4 million	
5	70	F	NSCLC	Mucoepidermoid carcinoma	5.1 million	
6	57	F	NSCLC	Adenosquamous carcinoma	7 million	
7	70	M	NSCLC	Stage IB adenocarcinoma	6.5 million	Yes
8	62	F	NSCLC	Stage IA adenocarcinoma	6 million	Yes
9	79	M	NSCLC	Stage IIA squamous cell carcinoma	3.7 million	Yes
10	71	M	NSCLC	Stage IA adenocarcinoma	14 million	
11	63	F	NSCLC	Stage IA adenocarcinoma	8.2 million	
12	79	F	NSCLC	Stage IV squamous cell carcinoma	2.7 million	Yes
13	54	F	NSCLC	Stage II adenocarcinoma	5.0 million	
14	57	M	NSCLC	Stage IV NSCLC	2.5 million	
15	72	M	NSCLC	Stage IV adenocarcinoma	3.6 million	Yes
16	74	M	NSCLC	Stage IV adenocarcinoma	3.4 million	
17	73	M	NSCLC	Stage IV neuroendocrine tumor	6.6 million	
18	72	F	NSCLC	Stage IV NSCLC	4 million	
19	79	F	NSCLC	Stage IV NSCLC	2.7 million	Yes
20	78	F	HNSCC	Stage II HNSCC of lateral tongue	1 million	Yes
21	63	F	HNSCC	Stage IVa HNSCC of buccal mucosa	2 million	Yes
22	46	F	Melanoma	Stage IV melanoma	6 million	
23	70	F	Melanoma	Stage IIIC melanoma	250k	
24	62	M	Melanoma	Stage IV melanoma	2.2 million	
25	67	M	Melanoma	Melanoma	1.8 million	
26	61	M	Melanoma	Stage IIIC melanoma	100k	
27	34	M	Melanoma	Melanoma	1.9 million	
28	61	F	Melanoma	Stage IV melanoma	1 million	
29	57	M	Melanoma	Stage IV melanoma	2.5 million	Yes
30	55	F	Melanoma	Melanoma	2 million	
31	42	M	Melanoma	Stage IV melanoma	4.8 million	Yes
32	22	M	Melanoma	Stage IIIC melanoma	3 million	
33	52	F	Melanoma	Stage IIIB melanoma	4 million	Yes
34	65	M	Melanoma	Stage IV melanoma	n/a	
35	71	F	Melanoma	Melanoma	500k	
36	53	M	Melanoma	Stage IIIC melanoma	600k	
37	71	M	Melanoma	Melanoma	80k	
38	65	M	Melanoma	Stage IIIC melanoma	1.5 million	
39	73	M	Melanoma	Stage IIIB melanoma	3.4 million	
40	65	M	Melanoma	Stage IIIB melanoma	1.8 million	
41	43	F	Melanoma	Stage IIIC melanoma	3.6 million	
42	50	F	Melanoma	Stage IIIC melanoma	7 million	
43	42	M	Melanoma	Stage IIIC melanoma	3.6 million	Yes
44	54	F	PDAC	Pancreatic adenocarcinoma	1.2 million	
45	48	M	PDAC	Pancreatic adenocarcinoma	2.5 million	Yes
46	48	M	Melanoma	Stage IV melanoma	2.1 million	Yes
47	67	M	PDAC	Pancreatic adenocarcinoma	1.6 million	Yes
48	85	F	PDAC	Pancreatic adenocarcinoma	6.8 million	Yes
49	80	M	Melanoma	Stage IIIC melanoma	1.95 million	Yes
50	75	F	Melanoma	Stage IIIB melanoma	5.5 million	
51	51	M	Melanoma	Stage IIIC melanoma	8.5 million	Yes
52	74	M	Melanoma	Stage IV melanoma	5 million	Yes
53	35	M	Melanoma	Stage IIIC melanoma	6.1 million	
54	81	M	Melanoma	Stage IIIB melanoma	3 million	
55	63	M	Melanoma	Stage IIIC melanoma	3.1 million	Yes
56	35	M	Melanoma	Stage IIID melanoma	3 million	
57	60	M	Melanoma	Stage IV melanoma	1.4 million	
58	64	F	Melanoma	Stage IV melanoma	2.5 million	
59	57	M	Melanoma	Stage IIIC melanoma	4.5 million	
60	51	F	Melanoma	Stage IIIC melanoma	2.6 million	
61	58	F	Melanoma	Stage IV melanoma	2.4 million	
62	48	M	Melanoma	Stage IIIC melanoma	1.76 million	Yes
63	68	M	Melanoma	Stage IV melanoma	4 million	Yes
64	30	M	Melanoma	Stage IIIC melanoma	12 million	
65	79	M	Melanoma	Stage III melanoma	2.8 million	Yes
66	47	M	Melanoma	Stage IIIC melanoma	2.4 million	
67	42	M	Melanoma	Stage IIIB melanoma	4.6 million	Yes
68	83	M	Melanoma	Stage IIID melanoma	2.8 million	
69	33	M	Melanoma	Stage IIID melanoma	4.8 million	
70	58	M	Melanoma	Stage IIIC melanoma	1.8 million	
71	57	F	Melanoma	Stage IIIC melanoma	820k	