

1 **Comprehensive analyses of partially methylated domains and**
2 **differentially methylated regions in esophageal cancer reveal**
3 **both cell-type- and cancer-specific epigenetic regulation**

4 Yueyuan Zheng^{1,2}, Benjamin Ziman^{2,3}, Allen S. Ho⁴, Uttam K. Sinha⁵, Li-Yan Xu⁶, En-Min
5 Li⁶, H Phillip Koeffler², Benjamin P. Berman^{7,*}, De-Chen Lin^{2,3,*}

6 ¹Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital
7 of Sun Yat-sen University, Shenzhen 518107, P.R. China.

8 ²Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical
9 Center, Los Angeles, USA.

10 ³Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris
11 Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA

12 ⁴Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin
13 Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA

14 ⁵Department of otolaryngology, Keck School of Medicine, University of Southern California

15 ⁶The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area,
16 Shantou University Medical College, Guangdong, China

17 ⁷Department of Developmental Biology and Cancer Research, Institute for Medical Research
18 Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel

19

20 *, To whom correspondence should be addressed:

21 Benjamin P. Berman, Ph.D: Department of Developmental Biology and Cancer Research,
22 Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of
23 Jerusalem, Israel. email: ben.berman@mail.huji.ac.il

24 De-Chen Lin, Ph.D: Center for Craniofacial Molecular Biology, University of Southern California,
25 2250 Alcazar Street – CSA 207D, Los Angeles, CA 90033. Phone: (323) 442-1220, Fax: (323)
26 442-2981, email: dechenli@usc.edu

27 Abstract

28 As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell
29 carcinoma (ESCC) and adenocarcinoma (EAC), arising from distinct cells-of-origin. However,
30 distinguishing cell-type-specific molecular features from cancer-specific characteristics has been
31 challenging. Here, we analyze whole-genome bisulfite sequencing (WGBS) data on 45
32 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-
33 aware method to identify large partially methylated domains (PMDs), revealing profound
34 heterogeneity at both the methylation level (depth) and genomic distribution (breadth) of PMDs
35 across tumor samples. We identify subtype-specific PMDs, which are associated with repressive
36 transcription, chromatin B compartments and high somatic mutation rate. While the genomic
37 locations of these PMDs are pre-established in normal cells, the degree of loss is significantly
38 higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie the
39 genomic distribution PMDs. At a smaller genomic scale, both cell-type- and cancer-specific
40 differentially methylated regions (DMRs) are identified for each subtype. Using binding motif
41 analysis within these DMRs, we show that a cell-type-specific transcription factor such as HNF4A
42 can maintain the binding sites that it establishes in normal cells, while being recruited to new
43 binding sites with novel partners such as FOSL1 in cancer. Finally, leveraging pan-tissue single-
44 cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of the cell-
45 type-specific PMDs and DMRs identified here in esophageal cancer, are actually markers that co-
46 occur in other cancers originating from related cell types. These findings advance our
47 understanding of the DNA methylation dynamics at various genomic scales in normal and
48 malignant states, providing novel mechanistic insights into cell-type- and cancer-specific
49 epigenetic regulations.

50

51 Introduction

52 Ranking seventh in cancer incidence and sixth in mortality worldwide, esophageal carcinoma
53 is highly aggressive and its patients have poor outcomes, with a 5-year survival rate lower than
54 20%^{1,2}. Esophageal cancer comprises two major histologic subtypes: squamous cell carcinoma
55 (ESCC) and adenocarcinoma (EAC). These two subtypes have distinct clinical characteristics.
56 ESCC occurs predominantly in the upper and mid-esophagus; EAC is prevalent in the lower
57 esophagus near the gastroesophageal junction (GEJ) and is associated with the precursor lesion
58 known as Barrett's esophagus (BE). Biologically, ESCC arises from the squamous epithelial cells
59 and has common features with other squamous cell carcinomas (SCC), such as head and neck
60 SCC (HNSCC). In comparison, EAC has columnar cell features and shares many characteristics
61 with tubular gastrointestinal adenocarcinomas. In particular, EAC is almost indistinguishable from
62 GEJ adenocarcinoma in terms of genomic, biological and clinical features.

63 Epigenetically, multiple studies have reported molecular changes in esophageal cancer,
64 especially at the DNA methylation level³⁻⁹. For example, methylation differences across
65 thousands of loci between ESCC and EAC were noted by The Cancer Genome Atlas (TCGA)³
66 consortium. However, these prior works focused largely on the analyses of DNA methylation in
67 gene promoter regions, which only make up ~6% of all CpG sites across the human genome.
68 DNA methylation is known to play important roles in other noncoding regions, such as
69 enhancers¹⁰, partially methylated domains (PMDs)¹¹, as well as repetitive elements¹². Therefore,
70 the DNA methylome of esophageal cancer awaits further and comprehensive characterization
71 through genome-wide single-base resolution approaches such as whole-genome bisulfite
72 sequencing (WGBS).

73 CpG island (CGI) promoter hypermethylation and global DNA hypomethylation are two
74 epigenomic hallmarks in cancer¹³. In most healthy tissues, the vast majority of CpG sites (>80%)
75 across the genome are fully methylated, except for the CpG-rich regions (e.g., CGIs) and other
76 regulatory elements (predominantly enhancers)¹⁴. Indeed, focal demethylation is a reliable
77 signature of gene promoters and enhancers, and their methylation levels are robustly maintained
78 across healthy tissues. Additionally, methylation patterns of CpG sites across the genome are
79 notably variable across various normal cell types, and can be grouped into cell-type-specific
80 differentially methylated regions (DMRs), which are linked to cell-type-specific regulatory
81 regions^{14,15}. By contrast, abnormal CGI promoter hypermethylation is frequently observed in
82 cancer, which is commonly associated with long-term and stable gene repression¹⁴.

83 With respect to the global methylation loss, large hypomethylated blocks, also known as
84 PMDs, cover more than one-third of the genome and coincide with heterochromatin, chromatin
85 "B" compartment (determined by HiC) and nuclear lamina associated domains¹⁶⁻¹⁸. We and others
86 recently found that accumulation of PMD hypomethylation is linked to cumulative mitotic cell
87 divisions, late replication timing as well as the deposition of the histone mark H3K36me3^{19,20}.
88 Functionally, PMDs are associated with inactive gene transcription, heightened genomic
89 instability and may be accompanied by activation of transposable elements (TEs)^{19,21}. While
90 incompletely understood, the majority of the PMD regions are possibly shared across
91 developmental lineages¹⁹. However, there are enough cell-type specific PMDs to differentiate
92 between different cancer cell types^{17,22,23} and between different healthy cell types²⁴.

93 Several important questions on cell-type- and cancer-specific DMRs and PMDs await further
94 characterization, including: i) the degree of the regional specificity of these domains (i.e, the
95 proportions of DMR/PMD that are cell-type- and cancer-specific), ii) the functional significance of
96 DMRs and PMDs in cancer biology, and iii) underlying mechanisms of the alteration of DMRs and
97 PMDs during tumorigenesis. To address these questions, we performed analyses of WGBS data
98 generated from a cohort of 45 esophageal samples, including 21 ESCC and 5 nonmalignant
99 esophageal squamous (NESQ) tissues, as well as 12 EAC/GEJ tumors and 7 nonmalignant GEJ
100 (NGEJ) tissues (**Fig. 1A**). We chose esophageal cancer as the disease model considering that
101 the two subtypes are developed from distinct cell-of-origins, and we hypothesized that
102 characterization of their methylome profiles might reveal cell-type- and cancer-specific
103 methylation changes, together with underlying epigenetic mechanisms.

104 **Results**

105 **Development of a novel sequence-aware calling method to identify PMDs**

106 To characterize the esophageal cancer methylome, we analyzed WGBS profiles of 45
107 esophageal samples from two different cancer subtypes and their corresponding nonmalignant
108 tissues²⁵ (**Fig. 1A, Supplementary Fig. 2A**). All of the nonmalignant esophageal squamous
109 (NESQ) tissues showed high inter-sample correlation despite that they were from two different
110 cohorts (**Supplementary Fig. 2B** and **Supplementary Table 1**). To analyze the overall
111 methylation pattern, we first investigated the methylation level at various genomic domains (**Fig.**
112 **1B**). As anticipated, both global hypomethylation (especially in common PMDs, defined as shared
113 PMDs identified from 40 different cancer types¹⁹) and CGI promoter hypermethylation were
114 observed in tumor samples. EAC tumors harbored notably higher methylation levels in CGI

115 promoters than ESCC tumors, in line with TCGA results showing that gastrointestinal
116 adenocarcinoma had higher frequency of CGI hypermethylation than cancers from most other
117 tissues²⁶. Interestingly, most NGEJ tissues showed higher CGI promoter methylation levels than
118 NESQ tissues, and usually even higher than ESCC tumor samples. Similar to EAC, BE samples
119 (a recognized precursor lesion of EAC) were reported to have a hypermethylation pattern at CGI
120 promoters⁷. Since our NGEJ tissues were pathologically confirmed as inflammatory tissues but
121 devoid of apparent BE, this result suggests that CGI hypermethylation may occur in inflamed GEJ.
122 Interestingly, CGI hypermethylation has been observed in long-term-cultured colon organoids and
123 cells upon prolonged exposure to cigarette smoke extract^{27,28}. These data suggest that prolonged
124 extrinsic pressure may result in DNA methylation changes at CGIs. Repetitive elements,
125 especially from the LINE and LTR classes, lost DNA methylation in tumors compared with
126 nonmalignant tissues (**Fig. 1B**), which might be accompanied with the activation of repetitive
127 elements in tumor samples^{21,29}.

128 Considering the importance of PMDs in cancer biology^{17,19,22,23}, we sought to characterize
129 this epigenomic domain in depth. Computational tools have been developed for the identification
130 of PMDs, including MethPipe³⁰ and MethylSeekR³¹. However, they sometimes fail or return
131 unsatisfactory results for WGBS samples, either from tissues which have very slight
132 hypomethylation (see Sample 1 in **Fig. 1C**) or tumors with near-complete methylation loss (see
133 Sample 2 in **Fig. 1C**).

134 We recently used a deep learning neural network approach to establish universal sequence
135 features that are almost entirely predictive of CpG methylation loss or retention in PMD regions
136 of the human genome³². We hypothesized that utilizing sequence features associated with DNA
137 methylation loss and exploiting the variation patterns among different CpGs within PMDs could
138 improve the predictive models used in these tools (**Supplementary Fig. 1A-D**; see **Methods**).
139 To this end, we developed a sequence-aware PMD calling method based on the Hidden Markov
140 Model (HMM) used in MethylSeekR (**Fig. 1C**; see **Methods**), which was termed Multi-model PMD
141 SeekR (MMSeekR). Importantly, using tumor samples from the Blueprint consortium, we showed
142 that MMSeekR outperformed both MethylSeekR and MethPipe (**Supplementary Fig. 1E-F**).
143 Indeed, MMSeekR successfully identified PMD fractions consistently across all samples (using
144 common PMDs as benchmark, top bar, **Supplementary Fig. 1E** and **Supplementary Table 2**).
145 MethylSeekR performed well in general, but was noisier and failed on several samples
146 (**Supplementary Fig. 1E**, red arrows). MethPipe performs poorly on samples with a small degree
147 of PMD methylation loss; indeed, this tool failed to identify PMD in almost half of these samples
148 (**Supplementary Fig. 1E** and **Supplementary Table 2**). PMD has been shown to exhibit cancer

149 type specificity^{22,23}, which can also be used to evaluate the performance of these methods.
150 Notably, MMSeekR almost completely separated different cancer types, while both MethylSeekR
151 and MethPipe produced much less clean separation (**Supplementary Fig. 1F**).

152 Encouraged by these results, we next applied MMSeekR to our esophageal samples.
153 Importantly, Principal Component Analysis (PCA) using PMDs identified by three different
154 methods again confirmed that MMSeekR outperformed MethylSeekR and MethPipe, completely
155 separating EAC and ESCC samples (**Fig. 1D** and **Supplementary Fig. 1G**). Interestingly,
156 nonmalignant samples clustered together with the corresponding cancer subtype. We also
157 provided exemplary PMDs that failed to be identified by either MethPipe (**Fig. 1E**) or MethylSeekR
158 (**Fig. 1F**).

159 **Characterization of shared and subtype-specific PMDs in esophageal samples**

160 We performed a genome-wide annotation of PMDs on a sample-by-sample basis (**Fig. 2A**).
161 Consistent with our earlier report¹⁹ and the genome-wide analysis (**Fig. 1B**), PMDs showed a
162 slight decrease of DNA methylation in nonmalignant samples and lost methylation further in
163 tumors. Notably, PMDs exhibited high inter-sample heterogeneity in both their depth (i.e., DNA
164 methylation beta value) and breadth (i.e., genomic location). Indeed, the genome fraction covered
165 by PMDs varied markedly across samples, ranging from 24.3% to 63.4% (**Supplementary Fig.**
166 **2C**). We categorized these methylation domains into 4 groups based on the frequencies of their
167 occurrence in our cohort: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs and shared
168 HMDs (**Fig. 2B** and **Supplementary Fig. 2D-E**; also see **Methods**). Interestingly, EAC-specific
169 PMDs covered significantly more of the genome than ESCC-specific PMDs (121.9Mb vs.
170 12.4Mb). To verify our results, we used solo-WCGW CpGs, which lose methylation faster than
171 other CpGs¹⁹, to measure the average methylation loss within the 4 domain groups. In EAC
172 samples, shared PMDs and EAC-specific PMDs had lower methylation levels than the other two
173 groups, as expected (**Fig. 2C, left panel**). Reciprocally in ESCC samples, shared PMDs and
174 ESCC-specific PMDs had lower methylation levels (**Fig. 2C, right panel**). Independent cohorts
175 from either the TCGA (**Fig. 2D**) or other individual studies (**Supplementary Fig. 2F-G**) further
176 validated these subtype-specific patterns of DNA methylation loss. Since PMDs are associated
177 with the HiC B compartment^{17,23}, we next mathematically modeled the A/B chromatin
178 compartments for each esophageal cancer subtype using a method based on the HM450k
179 array³³. Indeed, subtype-specific PMDs were enriched in B compartments in a subtype-specific
180 manner (**Fig. 2E**). By contrast, shared PMDs showed, as anticipated, no such specificity
181 (**Supplementary Fig. 2H**). PMD regions were also reported to have higher somatic mutation rate

182 compared with non-PMD regions in cancer^{34,35}. We analyzed the whole-genome sequencing
183 (WGS) dataset from the OCCAMS (which has the largest number of EAC samples), finding a
184 significantly higher somatic mutation rate in EAC-specific PMDs than in either ESCC-specific
185 PMDs or HMDs (**Fig. 2F, left panel**). A reciprocal pattern was observed in the largest ESCC WGS
186 cohort (**Fig. 2F, right panel**).

187 At the transcription level, PMDs are reported to be less transcriptionally active than HMDs.
188 We confirmed that subtype-specific PMDs were associated with low levels of gene expression
189 specifically in the corresponding subtypes (**Fig. 3A-B**). To explore the biological implication of
190 subtype-specific PMDs, we performed Cistrome-GO analysis using genes which were under-
191 expressed in the subtype-specific PMD regions, finding that biological processes characteristic
192 for the other subtype were enriched and repressed (**Fig. 3C-D**). Specifically, pathways of
193 cornification, keratinocyte differentiation and epidermis development, which are central to
194 squamous cell differentiation and function, were enriched and inactive in EAC-specific PMDs (**Fig.**
195 **3C**). For example, many keratinocyte-specific genes were clustered within EAC-specific PMDs
196 (**Fig. 3E, left panel**) and downregulated in EAC tumors (**Fig. 3F, upper panel**). On the other
197 hand, pathways important for gastrointestinal cell function, such as digestive system process,
198 intestinal absorption, lipid metabolic process and O-glycan processing, were enriched and
199 suppressed in ESCC-specific PMDs (**Fig. 3D**). The right panel of **Fig. 3E** shows as an example
200 that SLC2A2, which contributes to digestive system process and absorption, was located in
201 ESCC-specific PMDs and downregulated in ESCC samples (**Fig. 3F, lower panel**). These results
202 suggest that subtype-specific PMDs contain inactive genes which are associated with cell-type-
203 specific functions.

204 **H3K36me2 is inversely associated with PMDs in a cell-type-specific manner**

205 Both H3K36me2 and H3K36me3 were observed to recruit DNA methyltransferases
206 (DNMT3A³⁶ and DNMT3B³⁷, respectively) to maintain DNA methylation levels in large chromatin
207 domains. H3K36me3 is enriched in gene bodies of active transcripts, while H3K36me2 covers
208 larger multi-gene domains. Indeed, we have previously shown that the deposition of H3K36me3
209 is inversely associated with PMD distribution¹⁹. Here, we further hypothesized that H3K36me2
210 also contributed to maintaining DNA methylation levels, and the histone modification by this mark
211 might affect the genomic distribution of PMDs and HMDs. To test this, we performed H3K36me2
212 ChIP-seq in both EAC and ESCC cell lines. Indeed, shared HMDs (black line) showed high
213 H3K36me2 intensity in both cell types, while shared PMDs (purple line) exhibited the lowest
214 signals (**Fig. 4A**). EAC-specific PMDs (blue line) had low H3K36me2 levels in EAC cells but high

215 H3K36me2 levels in ESCC cells. The reciprocal pattern was observed in ESCC-specific PMDs
216 (red line). For example, H3K36me2 signals were undetectable in an EAC-specific PMD covering
217 the loci of *XR_945002.2* and *XR_945004.2* in EAC cells, but were strong in ESCC (**Fig. 4B, right**
218 **panel**). On the other hand, shared HMDs such as the one covering the *VSP8* gene were
219 decorated highly with H3K36me2 in both cell types (**Fig. 4B, left panel**).

220 To further verify these results, we interrogated public H3K36me2 ChIP-seq data from
221 HNSCC cell lines (squamous cancer highly similar to ESCC in terms of cell-of-origin and
222 epigenome). Indeed, a similar pattern of H3K36me2 distribution to ESCC was observed in Cal27
223 and Det562 HNSCC cells. Specifically, both shared PMDs and ESCC-specific PMDs harbored
224 low signals in HNSCC cell lines, while high H3K36me2 levels were found in HMDs and EAC-
225 specific PMDs (**Fig. 4C**). However, FaDu appeared to be an outlier, showing invariably high levels
226 across different regions (**Fig. 4C**), which warrants further investigation. Together, these results
227 demonstrate a prominent depletion of H3K36me2 mark in PMDs in a cell-type-specific manner,
228 which is likely owing to the finding that H3K36me2 promotes the maintenance of DNA methylation
229 by recruiting DNMT3A.

230 **Subtype-specific differentially methylated regions (DMRs) in esophageal cancer**

231 We next sought to investigate differentially methylated regions (DMRs) at small genomic
232 scales, given their direct roles in transcriptional regulation. However, our above results suggest
233 an overwhelming, global effect of PMD hypomethylation in tumor samples, which can strongly
234 affect the calling of focal DMRs. Indeed, PCA analysis of the most variable CpGs genome-wide
235 revealed that PC1, the most significant component, was clearly driven by methylation loss at
236 PMDs (**Supplementary Fig. 3A**).

237 To factor out the effect of PMD hypomethylation, we masked any PMD found within two thirds
238 of either EAC or ESCC samples (**Supplementary Fig. 3B**). We re-performed the PCA analysis,
239 finding that the two cancer subtypes were completely separated by PC1, which was the most
240 significant component and accounted for 42.2% of the total methylation variance (**Supplementary**
241 **Fig. 3C, left panel**). In addition, nonmalignant and tumor samples were separated along PC2,
242 and all NESQ samples were clustered closely together despite being generated from two different
243 cohorts. Notably, this approach removed most correlation with the global methylation level
244 (**Supplementary Fig. 3C, right panel**). Thus, it is critical to remove the effects of global
245 hypomethylation when investigating cancer-associated methylation features outside PMDs.

246 We next identified DMRs between EAC and ESCC samples within the PMD-subtracted
247 genome described above (~46.5% of the genome). Under the cutoff of q value < 0.05 and absolute

248 delta methylation change > 0.2, a total of 7,734 DMRs were hypomethylated in EAC and 5,470 in
249 ESCC (**Fig. 5A**). As expected, hypomethylated DMRs (hypoDMRs) had low average methylation
250 levels in corresponding subtypes (**Supplementary Fig. 3D-E**). The majority of DMRs were about
251 1-2 kb long and located mostly in intronic and intergenic regions (**Fig. 5B**), similar to that of the
252 random background (**Supplementary Fig. 3F**). To investigate the epigenomic characteristics of
253 hypoDMRs, we systematically evaluated the chromatin accessibility at these regions, using the
254 ATAC-seq data from the TCGA³⁸ and H3K27ac ChIP-seq data from previous studies³⁹⁻⁴². Relative
255 to random background regions, EAC hypoDMRs were accessible exclusively in EAC samples,
256 and ESCC hypoDMRs exclusively in ESCC samples (**Fig. 5C-D**). Additionally, EAC hypoDMRs
257 had high H3K27ac signals in 70% (5/7) of EAC cell lines (**Supplementary Fig. 3G**). A similar
258 observation was made in ESCC cell lines (**Supplementary Fig. 3H**). These data demonstrate
259 that hypoDMR regions are associated with accessible chromatin and active histone marks.

260 To explore the relevance of DMRs in gene transcription, we assigned each hypoDMR to the
261 closest genes annotated by HOMER^{43,44}, and performed correlational analyses using TCGA
262 transcriptomic data of esophageal cancers. Consistent with prior findings⁴³, about 30%
263 (3,986/13,204) of the DMRs were associated with differentially expressed genes
264 (**Supplementary Fig. 3I**). Expectedly, an inverse correlation between DNA methylation and gene
265 expression accounted for the majority (~59%) of these associations, and these DMRs had a larger
266 overlap with promoter and enhancer regions (**Supplementary Fig. 3J**). Importantly, functional
267 annotation using the Cistrome-GO method revealed that subtype hypoDMRs were enriched in
268 cell-type-specific biological processes. For example, lipid metabolic process, digestive system
269 process and O-glycan processing, which are housekeeping functions for gastrointestinal
270 columnar cells, were specifically enriched in EAC hypoDMRs (**Fig. 5E**). On the other hand,
271 epidermis development, cornification and epithelial cell differentiation, which are unique to
272 squamous cells, were enriched in ESCC hypoDMRs (**Fig. 5F**). These results indicate that a large
273 number of hypoDMRs regulate the transcription of cell-type-specific genes.

274 We next performed sequence motif enrichment analysis of hypoDMRs, which have
275 previously been associated with transcription-factor-binding sites^{17,22,45}. A number of known
276 esophageal cell-specific transcription factors were identified, including GATA4/6, HNF4A/G,
277 HNF1B, ELF3, EHF in EAC^{39,46,47} and TP63, SOX2 and MAFB in ESCC^{41,48} (**Fig. 5G-H**). To
278 validate these results, we focused on the top-ranking transcription factors (GATA4 for EAC, TP63
279 for ESCC). Specifically, we performed WGBS in an EAC cell line (ESO26) where we previously
280 generated ChIP-seq data for GATA4 and H3K27ac. Indeed, GATA4 ChIP-seq peaks were
281 associated with high H3K27ac signal, DNA hypomethylation and GATA4 binding motif sequence

282 (Fig. 5I). Moreover, ~20% of GATA4 peaks overlapped with EAC hypoDMRs. In sharp contrast,
283 almost no GATA4 peaks were found in ESCC hypoDMRs (Fig. 5I, **left bars**). We similarly
284 performed WGBS on an ESCC cell line (TE5), and analyzed TP63 ChIP-Seq data that we
285 generated in the same sample. We noted consistent patterns and significant overlap with ESCC
286 hypoDMRs in this ESCC-specific transcription factor, and almost no overlap with EAC hypoDMRs
287 (Fig. 5J). These results demonstrate that subtype-specific DMRs are occupied by cell-type-
288 specific transcription factors and contribute to regulation of cell-type-specific functions.

289 **Identification of tumor-specific hypoDMRs**

290 To identify tumor-specific hypoDMRs from the above subtype-specific DMRs and to
291 investigate their role in cancer biology, we next performed a methylation comparison between
292 tumors and their corresponding nonmalignant samples for each hypoDMR. We found that 25.5%
293 (1,972/7,734) of EAC hypoDMRs (Fig. 6A) and 12.0% (654/5,470) of ESCC hypoDMRs
294 (Supplementary Fig. 4A) had significantly lower (FDR<0.05) methylation levels in tumors than
295 corresponding nonmalignant samples, which were referred to as “tumor specific hypoDMRs (ts-
296 hypoDMRs)”, while the rest were referred to as “cell-type-specific DMRs (cts-hypoDMRs)”. Ts-
297 hypoDMRs were distributed in both intergenic and intronic domains, similar to hypoDMRs overall
298 and the random background (Fig. 6B and Supplementary Fig. 4B). Between 18.0-21.4% of ts-
299 hypoDMRs were correlated with the expression of nearest genes (Supplementary Fig. 4C-D).
300 Importantly, ts-hypoDMRs were strongly enriched in cancer-related pathways such as cell cycle
301 progression (in both EAC and ESCC), and extracellular structure organization in ESCC (Fig. 6C-
302 D). These data suggest that ts-hypoDMRs are associated with genes which contribute to tumor-
303 specific functions.

304 The identification of ts-hypoDMRs and cts-hypoDMRs allowed us to further investigate
305 properties of tumor-specific regulatory regions vs. cell-type-specific regulatory regions. This is
306 particularly helpful for the epigenetic understanding of ESCC and EAC, which contain both tumor-
307 and cell-type-specific features. In addition, lineage-specific developmental factors have been
308 shown to promote malignant cell states^{49,50}, and thus it is important to distinguish their functional
309 contribution to normal development vs. cancer biology. To this end, we performed motif
310 enrichment analysis to identify transcription-factor-binding sites that were unique to either ts- or
311 cts-hypoDMRs, and integrated expression patterns of the corresponding transcription factors. For
312 EAC, this approach revealed cancer-upregulated transcription factors which favored binding ts-
313 hypoDMRs, including HNF4A, HNF4G, and FOSL1 (upper right corner of Fig. 6E). In comparison,
314 the lower left corner of Fig. 6E contained cancer-downregulated transcription factors which

315 preferred occupying cts-hypoDMRs, including GATA4/6 and FOXA, which are well-recognized for
316 their key roles in the development of gastrointestinal cell lineage^{51,52}. The top factor for ts-
317 hypoDMR, HNF4A, had its binding motif in 46.6% ts-hypoDMRs but only 32.6% cts-hypoDMRs
318 (**Fig. 6F**). Indeed, ChIP-seq data of HNF4A in EAC cell lines (ESO26 and OE19) validated this
319 bias: HNF4A binding peaks overlapped with 14.2% ts-hypoDMRs but only 7.6% cts-hypoDMRs
320 (**Fig. 6G**). To identify factors that may facilitate recruitment of HNF4A specifically to hypoDMRs,
321 we performed enrichment analyses restricted within HNF4A-motif-containing hypoDMRs.
322 Interestingly, AP-1 motifs (such as JUN, FOSL1, FOSL2 and FOSB) were enriched in these
323 HNF4A⁺ ts-hypoDMRs, while FOXA1/2 in cts-hypoDMRs (**Fig. 6H**). A parallel analysis was
324 performed in ESCC, which identified a number of tumor-specific factors, including RUNX1/3,
325 SOX2/4 and CEBPA/B (**Supplementary Fig. 4E**). This distinct pattern of co-occurring motifs
326 between ts- and cts-hypoDMRs in EAC is noteworthy, considering that AP-1 family transcription
327 factors contribute to EAC tumor development⁵³ while FOXA1/2 are required for normal
328 gastrointestinal cell development⁵². It is also notable that our analysis identified FOSL1 as an AP-
329 1 factor due to its high tumor expression (**Fig. 6E**).

330 **PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic features**

331 The above data identified both cell-type- and cancer-specific methylation differences in tumor
332 hypoDMRs, and we next asked whether tumor PMDs likewise harbor both of these two types of
333 methylation differences. In subtype-specific PMDs that were defined based on tumor methylomes
334 alone, nonmalignant tissues notably exhibited the same pattern of methylation changes as their
335 malignant counterparts (**Fig. 7A**). For example, EAC-specific PMDs had low methylation levels in
336 NGEJ but high in NESQ (**Fig. 7A, left**), and a reciprocal pattern was found in ESCC-specific
337 PMDs (**Fig. 7A, right**). Statistically, a large subset of subtype-specific PMDs (33.0% for EAC and
338 26.5% for ESCC) were already hypomethylated in their respective nonmalignant samples (**Fig.**
339 **7B**). The same analyses for hypoDMRs confirmed that more than 80% of subtype hypoDMRs
340 significantly decreased DNA methylation in their corresponding nonmalignant samples (**Fig. 7C-**
341 **D**). These data demonstrate that a substantial fraction of both subtype-specific PMDs and
342 hypoDMRs identified from tumor samples reflect methylation differences present in normal
343 counterparts. Nonetheless, while the genomic locations of PMDs are established in normal
344 samples, the degree of methylation loss is significantly higher in tumors (**Fig. 2C** and
345 **Supplementary Fig. 3D**).

346 To understand further PMDs and hypoDMRs in normal samples, we analyzed public single-
347 cell ATAC-seq data from 146,305 normal epithelial cells across 24 tissues (including esophageal

348 samples)⁵⁴, by measuring the chromatin accessibility of our subtype-specific PMDs or hypoDMRs.
349 This is premised on the fact that focal ATAC-seq peaks are almost always DNA demethylated³⁸,
350 and reduced ATAC-seq signals measured in large genomic windows reflect the Hi-C B
351 compartment which results in PMD hypomethylation^{17,23}. The published single-cell unsupervised
352 clustering contains a cluster of esophageal squamous epithelial cells (red dots in **Fig. 7E, left**
353 **panel**), the recognized cell-of-origin for ESCC. With respect to EAC, although its cell-of-origin is
354 still under intense investigation, the epigenome is likely close to gastrointestinal epithelial cells
355 (blue dots **Fig. 7E, left panel**). Importantly, normal esophageal squamous cells showed the
356 lowest chromatin accessibility in ESCC-specific PMDs; reciprocally, normal gastrointestinal
357 epithelial cells had the lowest ATAC-Seq signals in EAC-specific PMDs (**Fig. 7E, middle panel**;
358 **quantified in Fig. 7F**). In addition, keratinocytes, which belong to squamous cell type, also had
359 low ATAC-Seq signals in ESCC-specific PMDs. In sharp contrast to subtype-specific PMDs, no
360 difference was observed in either shared PMDs or HMDs in this single-cell analysis
361 (**Supplementary Fig. 5C**). We performed the same analysis for hypoDMRs, finding that ESCC
362 hypoDMRs had the highest accessibility in squamous cells while EAC hypoDMRs were more
363 open in gastrointestinal epithelial cells (**Fig. 7E, right panel; quantified in Fig. 7G**). These single-
364 cell results confirmed that both PMDs and hypoDMRs have strong normal cell-type-specificity.

365 **Pan-cancer analysis of subtype-specific PMDs and hypoDMRs**

366 The above results also suggest that PMDs and hypoDMRs that we identified in ESCC and
367 EAC may be shared with other squamous and gastrointestinal adenocarcinomas, respectively.
368 To test this, we analyzed TCGA pan-cancer samples, since the TCGA multi-omic clustering
369 scheme⁵⁵ has identified the pan-gastrointestinal cluster (adenocarcinomas from esophagus,
370 stomach and colon, blue samples in **Fig. 8A**) and the pan-squamous cluster (squamous cancers
371 from esophagus, head and neck, lung, cervix and bladder, red samples in **Fig. 8A**). We first
372 measured the methylation changes between subtype-specific PMDs and hypoDMRs across all
373 33 cancer types (**Fig. 8B-E**). Importantly, most pan-gastrointestinal tumors lost DNA methylation
374 in EAC-specific PMDs, while most pan-squamous tumors had reduced methylation in ESCC-
375 specific PMDs (**Fig. 8B and 8D**). Highly consistent results were observed in subtype hypoDMRs
376 (**Fig. 8C and 8E**). In contrast, no specific pattern was found in shared PMDs and HMDs
377 (**Supplementary Fig. 5D**), as anticipated.

378 We next analyzed the ATAC-seq data, which is available from a small subset of TCGA bulk
379 tumors³⁸, shown based on multi-omic clustering from ref⁵⁵ in **Fig 8F**. Importantly, consistent with
380 the single-cell ATAC-Seq results from healthy tissues, pan-squamous cancers showed the lowest

381 chromatin accessibility in ESCC-specific PMDs and highest accessibility in ESCC hypoDMRs,
382 and the reciprocal results were obtained in pan-gastrointestinal cancers (**Fig. 8G-J**). Again, as
383 negative controls, shared PMDs and HMDs failed to generate this distinguishing epigenetic
384 pattern (**Supplementary Fig. 5E**).

385 These results prompted us to further investigate premalignant lesions, with the hypothesis
386 that these methylation changes are pre-established in normal cells and preserved during the
387 onset of neoplastic transformation. To address this, we interrogated public methylation data on
388 BE, a recognized precursor to EAC, from two different studies^{7,8}. Importantly, the methylation
389 patterns of BE samples were highly comparable with EAC tumors, showing reduced methylation
390 levels in both EAC-specific PMDs and hypoDMRs in two different cohorts (**Fig. 8K-L**). Overall,
391 these data strongly suggest that epigenomic changes of PMDs and hypoDMRs occur in normal
392 cells and are maintained in cancer, which further loses methylation in PMDs and gains additional
393 DMRs. Moreover, these region-specific epigenomic regulations are shared across related cell
394 types.

395 **Discussion**

396 We generated one of the largest WGBS datasets in esophageal cancer to date, and here
397 we focused on the analyses of PMDs (large scale) and DMRs (small scale) and revealed novel
398 epigenomic properties of these regions. PMDs are megabase-long genomic regions with
399 decreased DNA methylation, coinciding with heterochromatic late-replicating domains and Hi-C
400 B domains¹⁷. PMDs reflect long-range chromatin organization that help orchestrate gene
401 expression programs and can influence replication timing and 3D genome organization^{24,33,56–}
402 ⁵⁸. In addition, PMDs are associated with increased genomic instability and possibly activation of
403 transposable elements (TEs)^{19,21}. Nevertheless, apart from these correlational observations, we
404 have only limited mechanistic understanding of the origin and regulation of cancer PMD.
405 Moreover, direct mechanisms linking PMDs to gene transcription remain to be established. Thus,
406 a deeper characterization of PMD is warranted, which first requires an accurate and sensitive
407 identification of these large domains from WGBS data. However, current PMD callers, including
408 MethylSeekR and MethPipe, either are insensitive for the identification of shallow PMDs, or fail to
409 call PMDs in tumor samples with extreme hypomethylation.

410 We have previously demonstrated that a local sequence context (solo-WCGW) is a strong
411 determinant of DNA methylation loss at CpGs¹⁹. Extending this finding, we recently performed
412 deep learning using the neural network method, and established universal sequence context

413 features influencing the hypomethylation of CpGs across the genome³². Here, we integrated this
414 sequence code into the MethylSeekR program and developed a novel multi-model PMD caller,
415 MMSeekR. Using both the Blueprint tumor WGBS dataset and our esophageal samples, we
416 demonstrated a superior performance of MMSeekR over other current tools. In order to facilitate
417 methodological development in the field of methylome investigation, we have made MMSeekR
418 available at Github as a free software package (<https://github.com/yuanzi2/MMSeekR>).

419 The degree of variation of PMD methylation levels (depth) and genomic distribution (breadth)
420 between cancer types was hitherto unclear. Here we observed strong heterogeneity at the PMD
421 methylation level across cancer samples, while nonmalignant samples harbored expectedly
422 shallow PMDs. Moreover, the genome fraction covered by PMDs varied profoundly among
423 different samples, ranging from 24.3% to 63.4%. We identified and characterized subtype-specific
424 PMDs, finding that they were associated with repressive transcription, B compartments and high
425 somatic mutation rate. We previously identified replication timing as a key determinant for
426 methylation loss in PMDs¹⁹. However, this does not account for the variation in PMD genomic
427 distribution across cell types. By investigation of the genome-wide occupancy of H3K36me2 in
428 different cell types, we noted that H3K36me2 deposition correlated positively with HMD
429 localization, while negatively with PMD in a cell-type-specific manner. Considering that
430 H3K36me2 is able to recruit DNMT3A to maintain the level of DNA methylation³⁶, these results
431 suggest that cell-type-specific deposition of H3K36me2 mark facilitates the maintenance of DNA
432 methylation, thereby dictating the genomic distribution of HMDs and PMDs.

433 At a smaller genomic scale, we identified over ten thousand hypoDMRs between the two
434 subtypes of esophageal cancer. Utilizing their matched nonmalignant samples, we further defined
435 cell-type- vs. cancer-specific hypoDMRs. Using motif sequence analysis combined with ChIP-
436 seq, we identified and validated candidate upstream regulators associated with either cell-type-
437 or cancer-specific hypoDMRs. This approach is important for understanding of the transcriptional
438 regulation during tumor development, particularly because increasing evidence has shown that
439 tumor-driving transcription factors are often lineage-specific developmental regulators functionally
440 co-opted to promote malignant cellular states^{49,50}. For example, our top candidate, HNF4A, is
441 essential for the epithelial differentiation of the gastrointestinal tract. Consistently, we found that
442 a substantial subset of cell-type-specific hypoDMRs contained HNF4A-binding sequence; these
443 HNF4A⁺ cell-type-specific hypoDMRs were also co-enriched for transcript factors indispensable
444 for normal gut development, such as FOXA1 (**Fig. 6H**). Importantly, compared with cell-type-
445 specific hypoDMRs, HNF4A-binding sequence was significantly more enriched in tumor-specific
446 hypoDMRs (**Fig. 6H**). Moreover, instead of FOXA1, these HNF4A⁺ tumor-specific hypoDMRs

447 were co-enriched for AP-1 factors, which are well-recognized for their function in promoting EAC
448 malignancy⁵³, similar to HNF4A itself^{46,47}. Consistently, one of the AP1 factors, FOSL1, has highly
449 enriched binding sites in tumor-specific hypoDMRs as well as upregulated mRNA expression in
450 EAC tumors relative to NGEJ. Together, careful dissection of cell-type- and cancer-specific
451 hypoDMRs suggest that lineage master regulators control both normal and tumor cell
452 transcriptomes, likely by occupying different genomic regions through cooperating with different
453 transcriptional factor partners.

454 We further characterized the cell-type-specificity of PMDs and DMRs in normal cells. Starting
455 from esophageal samples, we found that a large fraction of methylation changes in both PMDs
456 and DMRs were already evident in normal samples. Pan-tissue single-cell ATAC-seq with
457 145,594 normal epithelial cells further showed that both PMDs and DMRs identified in esophageal
458 cancer had strong specificity that was evident in related cell types. This was also observed in pan-
459 cancer analyses of both methylation and ATAC-seq data from primary tumors, wherein cancers
460 originating from related cell types exhibited similar profiles of both PMDs and DMRs. Moreover,
461 by measuring cancer precursor lesions, we demonstrated that epigenomic changes of PMDs and
462 DMRs were preserved during the onset of neoplastic transformation. Nonetheless, PMDs in
463 normal samples were much shallower than tumors (**Fig. 2A** and **Fig 2C vs. Fig.7A**). Overall,
464 these data highlight the presence of cell-type-specific PMDs and DMRs in normal cell types, which
465 are preserved in malignant cells. To our knowledge, this is the first demonstration of the prominent
466 cell-type-specificity of PMDs across normal, precursor and malignant states. While prior studies
467 have revealed that DMRs contain tissue-specific regulatory regions, here we present a paradigm
468 for distinguishing cell-type- vs. cancer-specific regions, and use those to identify tumor-specific
469 regulatory mechanisms.

470 **Methods**

471 **Cell culture**

472 Esophageal cancer cell lines, TE5, KYSE70, OE19 and ESO26, were grown in RPMI-1640
473 medium (Gibco, USA), supplemented with 10% FBS (Omega Scientific, USA) and 1% penicillin-
474 streptomycin (Thermo Scientific, USA). All cultures were maintained in a 37 °C incubator
475 supplemented with 5% CO2.

476 **Whole genome bisulfite sequencing (WGBS)**

477 WGBS of ESO26 or TE5 cells was performed at Novogene, Inc. Briefly, after DNA extraction
478 and quality control (QC), 3 ug DNA of ESO26 or TE5 cells spiked with 26 ng lambda DNA were
479 fragmented by sonication. The sonicated DNA was ligated with different cytosine-methylated
480 molecular barcodes. Next, bisulfite conversion was performed using EZ DNA Methylation-GoldTM
481 Kit (Zymo Research). PCR amplification with KAPA HiFi HotStart Uracil+Ready Mix (Kapa
482 Biosystems) was then applied to the DNA fragments. The clustering of index-coded DNA samples
483 were sequenced using the Illumina Hiseq 2500 platform.

484 **H3K36me2 chromatin immunoprecipitation sequencing (ChIP-Seq)**

485 Ten million esophageal cancer cells were harvested and transferred into 15 ml tubes,
486 followed by fixing with 4 ml of 1% paraformaldehyde for 10 min under room temperature. The
487 reaction was stopped by 2 ml of 250 mM of glycine. Cell samples were rinsed twice by 1X PBS
488 and lysed by 1 ml of 1X lysis/wash buffer (150 mM NaCl, 0.5 M EDTA pH 7.5, 1M Tris pH 7.5,
489 0.5% NP-40). Cell pellets were next resuspended using shearing buffer (1% SDS, 10 mM EDTA
490 pH 8.0, 50 nM Tris pH 8.0) followed by sonication using a Covaris sonicator. Subsequently, debris
491 was removed by centrifuge and supernatants were diluted five times with the buffer containing
492 0.01% SDS, 1% Triton X-100, 1.2 mM EDTA pH 8.0, 150 nM NaCl. 1 ug of the H3K36me2
493 antibody (Cell Signaling Technology, USA, Cat# 2901S) was added and incubated by rotation at
494 4°C overnight. Protein G Dynabeads (Life Technologies, USA) were added the next morning and
495 incubated by rotation for an additional 4 hours. Dynabeads were next washed with 1X wash buffer
496 followed by cold TE buffer. DNAs were reverse crosslinked, purified, followed by library
497 preparation and deep sequencing using the Illumina HiSeq platform.

498 **Data sources**

499 DNA methylome of esophageal samples were obtained from our recent work²⁵, including
500 WGBS on 21 ESCC, 3 NESQ, 5 EAC, 7 GEJ tumors and 7 NGEJ tissues. We obtained additional
501 two NESQ samples from the ENCODE consortium to ensure statistical power. Considering the
502 indistinguishable clinical and molecular characteristics between EAC and GEJ tumors, in the
503 present study they were combined as the same subtype (referred to as EAC), which is a common
504 strategy in the field³. TCGA Pan-cancer DNA methylome derived from HM450k methylation array
505 was downloaded from GDC v16.0 by TCGAbiolinks package (version 2.13.6)⁵⁹. Other DNA
506 methylation data from individual studies, including EAC EPIC array data from the Oesophageal
507 Cancer Clinical and Molecular Stratification (OCCAMS) consortium (EGAD00010001822)⁹, EAC

508 and BE methylome from GSE72874⁷ and GSE81334⁸, along with ESCC tumor WGBS data
509 (GSE149608)⁶, were analyzed for validation purposes in this study.

510 Other public datasets which were analyzed included: bulk ATAC-seq data of pan-cancer
511 samples from TCGA³⁸, single-cell ATAC-seq data across different adult human tissues
512 (GSE184462)⁵⁴, H3K27ac ChIP-seq in EAC samples (GSE132680)³⁹, EAC cell lines (ESO26,
513 FLO1, JH-EsoAd1, OACp4C, OE19, OE33, SKGT4 from GSE132680)³⁹ and ESCC cell lines
514 (KYSE140, KYSE70, TE5 from GSE106563⁴⁰; KYSE150, KYSE180, KYSE200 from
515 GSE131490⁴¹; TE7 from GSE106433⁴²), HNF4A ChIP-seq in OE19 (E-MTAB-6858)⁴⁶ and ESO26
516 cell lines (GSE132813)⁴⁷, GATA4 ChIP-seq in ESO26 cell line (GSE132813)⁴⁷ and TP63 ChIP-
517 seq in TE5 cell line (GSE148920)⁴¹. H3K36me2 bigwig files of wildtype (NSD1-WT) HNSCC cell
518 lines were downloaded from GSE149670⁶⁰. Somatic mutation datasets were downloaded from
519 individual studies^{9,61}. We also retrieved the transcriptomic data of esophageal cancer from the
520 TCGA consortium and GSE149609⁶.

521 CGI promoters are annotated as regions ranging from 250 bp upstream to 500 bp
522 downstream of any TSSs overlapping with Takai CGIs⁶². Repetitive elements, including long
523 interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) and long
524 terminal repeats (LTR), were extracted from UCSC website (<http://hgdownload.soe.ucsc.edu>).
525 We downloaded the annotation of common PMDs (defined as shared PMDs identified from 40
526 different cancer types)¹⁹ as well as solo-WCGW from <https://zwdzwd.github.io/pmd>¹⁹ and
527 ENCODE blacklist regions from <https://github.com/Boyle-Lab/Blacklist/tree/master/lists>⁶³. All of
528 the annotations were converted to the hg38 version using the UCSC LiftOver script
529 (<https://genome.ucsc.edu/cgi-bin/hgLiftOver>). The human core transcription-factor-binding
530 sequences in the HOMOCOMO database (version 11) were used for motif annotation⁶⁴.

531 **DNA methylation data analysis**

532 For WGBS data, raw reads were mapped to the human genome (GRCh38) by Biscuit align
533 command (version 0.1.4, <https://www.github.com/zwdzwd/biscuit>) with default settings. Mapped
534 reads were sorted by genome position, and duplicates were marked using Picard MarkDuplicates
535 tool (version 1.136, <http://broadinstitute.github.io/picard/>). Biscuit pileup and vcf2bed command
536 were then used to extract DNA methylation information. All CpG sites with a coverage >=3
537 informative reads and outside of the ENCODE blacklist regions were retained for downstream
538 analyses. For EPIC and HM450K array data, methylation of each probe was extracted using the
539 SeSAME package with noob and dyeBiasCorrTypeIINorm function for background subtraction and
540 dye bias correction⁶⁵. According to the annotation of Infinium DNA methylation arrays⁶⁶,

541 recommended general masking probes were removed. HM450K methylation data were used to
542 estimate the chromatin B compartments using minfi compartments function with
543 “resolution=100*1000, what = “OpenSea”” options³³.

544 **Development of a sequence-aware PMD calling method: Multi-model PMD SeekR**
545 **(MMSeekR)**

546 We recently performed neural network-based machine learning to establish local DNA
547 sequence features of CpGs that were associated with global DNA methylation loss, and derived
548 a neural network (NN) score for each CpG across the human genome³². In order to exclude the
549 potential impact of high CpG density (such as CpG island), we reserved CpGs having 2 or fewer
550 neighboring CpGs within the 151 bp window centered on the reference CpG. We investigated the
551 correlation between NN scores and methylation in individual samples in non-overlapping 201-
552 CpG windows across the genome. As expected, due to the greater degree of methylation loss
553 within PMDs, there was a strong negative correlation between DNA methylation levels and NN
554 scores within windows in PMDs, in contrast to much more modest correlations within highly
555 methylated domains (HMD) windows (**Supplementary Fig. 1A**).

556 We next applied Pearson correlation coefficient (PCC) between our NN score and DNA
557 methylation, as well as the “alpha score” used in the MethylSeekR model, to 201-CpG windows
558 genome-wide. Compared with the NN score, the MethylSeekR alpha score is a very different
559 measurement, returning a high score if the distribution of methylation values is closer to a
560 unimodal beta distribution centered on 0.5 (typical of PMDs) than it is to a bimodal methylation
561 value distribution close to 0 and 1 (typical of HMDs). Specifically, we applied a Hidden Markov
562 Model (HMM) segmentation (as in MethylSeekR) to each model independently, and found that
563 both the PCC and MethylSeekR alpha score showed bimodal distributions for the testing sample
564 (**Supplementary Fig. 1B-C**). We hypothesized that since the PCC and the alpha score were very
565 different models, combining them might improve the performance of PMD calling
566 (**Supplementary Fig. 1D**). Thus we developed a “2-dimensional (2D)” model accordingly (**Fig.**
567 **1C**). This 2D model performed comparably well or better than either MethylSeekR or MethPipe in
568 most cases, returning results consistently and highly overlapping with common PMDs
569 (**Supplementary Table 2**).

570 While the 2D model generally performed well, we did note that it failed in a few samples with
571 extreme methylation loss. Interestingly, these failed cases universally showed PMD methylation
572 values very close to 0, which would be expected to violate the assumptions of both the PCC model
573 and alpha model due to lack of variance within PMDs (**Fig. 1C right part**). We thus postulated

574 the raw methylation values (transformed to an M-value to disperse scores close to 0 and 1) might
575 provide additional predictive power in certain samples with extreme methylation loss, and we
576 developed a 3D model accordingly by adding the M-value model to the 2D model. In order to
577 decide whether the 2D or 3D model should be applied for any given sample, we first measured
578 the methylation values of all CpGs with 2 or fewer neighboring CpGs within a 151bp window,
579 which excludes most CpG islands, and contains a set of CpGs that are strongly associated with
580 PMD hypomethylation¹⁹. If the bottom 10th percentile of these CpGs had a methylation value
581 below 0.025, the 3D model was selected, otherwise, the 2D model was selected. This was based
582 on the observation that the majority of samples with extreme methylation loss failed under both
583 the MethylSeekR and MMSeekR 2D model (**Fig. 1C**).

584 **Application of MMSeekR to WGBS data**

585 MMSeekR was applied to call PMDs in each WGBS sample. Before PMD calling, CpG sites
586 with coverage of fewer than 5 informative reads were excluded. Then ENCODE blacklist regions
587 were subtracted from the resulting PMDs. Within each esophageal cancer subtype, PMDs
588 generated from each sample were integrated using bedtools multiinter function (version 2.27.1,
589 <https://bedtools.readthedocs.io/en/latest/>). The common PMD set for each subtype contained
590 those occurring in at least two-thirds of samples from that subtype. We further defined subtype-
591 specific PMDs as those common PMDs from one subtype that were detected in fewer than one-
592 third of samples in the other subtype. Meanwhile, PMDs that were in both the common EAC set
593 and the common ESCC set were denoted as shared PMDs. Regions that were PMDs in <1/3
594 samples of both subtypes were denoted as shared HMDs.

595 **Identification and characterization of DMRs**

596 Regions belonging to either the common ESCC or common EAC PMD sets were masked
597 out from the DMR analysis. The Dmrseq package (version 1.10.0)⁶⁷ was used to identify DMRs
598 between ESCC and EAC tumors with the following parameters: cutoff =0.1, bpSpan=1000,
599 minInSpan=30, maxPerms=500. Since the coverage information of each CpG site is required by
600 dmrseq for statistical inference, here we included all CpG sites with >= 3 informative reads.
601 Regions with q value < 0.05 and absolute delta methylation change > 0.2 were identified as DMRs.
602 For hypomethylated DMRs (hypoDMRs) from each cancer subtype, we further performed one-
603 tailed t-tests comparing the mean methylation within the DMR in nonmalignant vs. tumor samples,
604 and those with FDR<0.1 were considered as tumor-specific (ts)-hypoDMRs. Both hypoDMRs and
605 ts-hypoDMRs were annotated using HOMER annotatePeaks.pl script (version 4.9.1)⁴⁴.

606 **Calculation of mean DNA methylation levels**

607 CpG sites with a coverage of at least 5 informative reads were used for this calculation.
608 Average methylation levels of CpG sites across the genome (global level), within CGI promoters,
609 commonPMDs, SINE, LINE and LTR in each sample were calculated independently. Besides, we
610 obtained the mean methylation of CpG sites in non-PMD regions. For genome/domain-wide
611 visualization, the average methylation of 10-kb consecutive non-overlapping tiles was shown. To
612 calculate the mean methylation levels within shared PMDs/HMDs, EAC-specific PMDs and
613 ESCC-specific PMDs, solo-WCGW CpG sites/probes were used.

614 **Principal component analysis of WGBS data**

615 PMDs were identified by either MethPipe, MethylSeekR or MMseekR (**Fig. 1D**). The whole
616 genome was split into 30-kb consecutive but non-overlapping tiles. For each tile, the ratio
617 overlapping with any PMD was calculated for each caller. The top 5,000 most variable 30-kb tiles
618 from each PMD caller were used in Principal component analysis (PCA). In **Supplementary Fig.**
619 **3A** and **3B**, CpG sites with at least 7 reads across all esophageal samples were used. Then the
620 top 8,000 most variable CpG sites were selected for PCA using the R prcomp function. PCA was
621 performed before and after masking the combined common PMDs from EAC and ESCC, and
622 generated the point plots by ggplot2 package (version 3.1.0).

623 **RNA-seq data analysis**

624 According to the raw read counts obtained from the TCGA, we identified significant
625 upregulated genes by DESeq2 package (version 1.22.2) with adjusted p-value < 0.05, fold
626 change > 1.5 and mean FPKM > 1 in the corresponding sample groups⁶⁸. For expression datasets
627 of nonmalignant squamous and ESCC tissues, raw reads were aligned to GRCh38 using HISAT2
628 (version 2.0.4)⁶⁹ and quantified by htseq-count program (version 0.11.2) at default setting.
629 Significant upregulated genes were identified using the same method as for the TCGA datasets.

630 **ChIP-seq data analysis**

631 Raw reads were mapped to GRCh38 (ENSEMBL release 84) using BWA mem program
632 (version 0.7.15) with the default options⁷⁰. Then the mapped reads were sorted using SAMtools
633 program (version 1.3.1)⁷¹, followed by removing PCR duplicates and blacklist regions by Picard
634 MarkDuplicates tool and bedtools (version 2.27.1). MACS2 (Model-Based Analysis of ChIP-Seq,
635 version 2.1.2) were applied to call peaks with the default setting for transcription factors, "-q 0.01–
636 extsize = 146 –nomodel" options for H3K27ac and "--broad -p 0.01 --extsize=146 --nomodel" for

637 H3K36me2⁷². Bigwig files were generated by deepTools bamCompare function (version 3.1.3)
638 with “--operation subtract --normalizeUsing CPM --extendReads 146 --binSize 20” parameters⁷³.
639 Average signals of shared PMDs/HMDs, EAC-only PMDs and ESCC-only PMDs in each
640 H3K27ac or H3K36me2 ChIP-seq sample were extracted from bigwig files using deepTools
641 computeMatrix function with "scale-regions" option.

642 **ATAC-seq data analysis**

643 For bulk pan-cancer ATAC-seq data obtained from the TCGA project, the average
644 accessibility of regions/domains was extracted from the available bigwig files using deepTools
645 computeMatrix function³⁸. To avoid the influence of scaling factors across different samples and
646 batches, the mean accessibility across the whole genome in each sample was calculated and
647 used for normalization. For single cell ATAC-seq data, based on the clustering and annotation
648 results from the publication⁵⁴, only epithelial cell types were used for further analysis. Similarly,
649 the average accessibility of regions/domains was derived for each cell in each sample and
650 normalized by the mean signal across the whole genome.

651 **DMR motif enrichment analysis**

652 For each hypoDMR or ts-hypoDMR, we randomly sampled 10 regions with the same size
653 and number of CpGs to define the background set. Then motif searching of both DMRs and
654 background regions was performed using HOMER annotatePeaks.pl with "-noann -m
655 HOCOMOCOv11_core_HUMAN_mono_homer_format_0.0001.motif" parameters⁴⁴. The
656 ELMER method was next applied to identify potential transcription-factor-binding sequences and
657 the top 15 transcription factors with q-value < 0.05 and FPKM > 5 in the corresponding cancer
658 subtype were reserved for further analysis⁷⁴.

659 **Pathway enrichment analysis**

660 We performed the pathway (Biological Process) enrichment analysis by Cistrome-GO⁷⁵ using
661 candidate regions with methylation changes and differential expression analysis results. For
662 hypoDMR analysis, subtype-specific DMRs and upregulated genes in the corresponding tumors
663 were used as input data. For subtype-specific PMDs, the input data contained PMD regions and
664 downregulated genes in the corresponding tumors. The top 15 enriched pathways with q value <
665 0.05 were shown.

666 **Code Availability**

667 Source code for MMSeekR is available at <https://github.com/yuanzi2/MMSeekR>. Source
668 code for WGBS data analysis and figure reproduction is in
669 https://github.com/yuanzi2/ESCA_WGBS_analysis.

670 **Data Availability**

671 WGBS data and ChIP-seq data for H3K36me2 in EAC and ESCC cell lines were available
672 at GSE210220.

673

674 **Reference**

- 675 1. Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
676 Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J. Clin.* **71**, 209–249
677 (2021).
- 678 2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. *CA Cancer J.*
679 *Clin.* **71**, 7–33 (2021).
- 680 3. Cancer Genome Atlas Research Network *et al.* Integrated genomic characterization of
681 oesophageal carcinoma. *Nature* **541**, 169–175 (2017).
- 682 4. Talukdar, F. R. *et al.* Genome-Wide DNA Methylation Profiling of Esophageal Squamous
683 Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential
684 Cancer Markers. *Cancer Res.* **81**, 2612–2624 (2021).
- 685 5. Teng, H. *et al.* Inter- and intratumor DNA methylation heterogeneity associated with lymph
686 node metastasis and prognosis of esophageal squamous cell carcinoma. *Theranostics* **10**,
687 3035–3048 (2020).
- 688 6. Cao, W. *et al.* Multi-faceted epigenetic dysregulation of gene expression promotes
689 esophageal squamous cell carcinoma. *Nat. Commun.* **11**, 3675 (2020).
- 690 7. Krause, L. *et al.* Identification of the CIMP-like subtype and aberrant methylation of
691 members of the chromosomal segregation and spindle assembly pathways in esophageal

692 adenocarcinoma. *Carcinogenesis* **37**, 356–365 (2016).

693 8. Yu, M. *et al.* Subtypes of Barrett's oesophagus and oesophageal adenocarcinoma based
694 on genome-wide methylation analysis. *Gut* **68**, 389–399 (2019).

695 9. Jammula, S. *et al.* Identification of Subtypes of Barrett's Esophagus and Esophageal
696 Adenocarcinoma Based on DNA Methylation Profiles and Integration of Transcriptome and
697 Genome Data. *Gastroenterology* **158**, 1682–1697.e1 (2020).

698 10. Angeloni, A. & Bogdanovic, O. Enhancer DNA methylation: implications for gene regulation.
699 *Essays Biochem.* **63**, 707–715 (2019).

700 11. Lister, R. *et al.* Human DNA methylomes at base resolution show widespread epigenomic
701 differences. *Nature* **462**, 315–322 (2009).

702 12. Slotkin, R. K., Keith Slotkin, R. & Martienssen, R. Transposable elements and the
703 epigenetic regulation of the genome. *Nature Reviews Genetics* vol. 8 272–285 (2007).

704 13. Baylin, S. B. & Jones, P. A. Epigenetic Determinants of Cancer. *Cold Spring Harb.*
705 *Perspect. Biol.* **8**, (2016).

706 14. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: In the right place at the right
707 time. *Science* **361**, 1336–1340 (2018).

708 15. Karlow, J. A., Miao, B., Xing, X., Wang, T. & Zhang, B. Common DNA methylation
709 dynamics in endometrioid adenocarcinoma and glioblastoma suggest universal epigenomic
710 alterations in tumorigenesis. *Commun Biol* **4**, 607 (2021).

711 16. Hansen, K. D. *et al.* Increased methylation variation in epigenetic domains across cancer
712 types. *Nat. Genet.* **43**, 768–775 (2011).

713 17. Berman, B. P. *et al.* Regions of focal DNA hypermethylation and long-range
714 hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. *Nat.*
715 *Genet.* **44**, 40–46 (2011).

716 18. Hon, G. C. *et al.* Global DNA hypomethylation coupled to repressive chromatin domain
717 formation and gene silencing in breast cancer. *Genome Res.* **22**, 246–258 (2012).

718 19. Zhou, W. *et al.* DNA methylation loss in late-replicating domains is linked to mitotic cell
719 division. *Nat. Genet.* **50**, 591–602 (2018).

720 20. Duran-Ferrer, M. *et al.* The proliferative history shapes the DNA methylome of B-cell tumors
721 and predicts clinical outcome. *Nat Cancer* **1**, 1066–1081 (2020).

722 21. Hur, K. *et al.* Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to
723 activation of proto-oncogenes in human colorectal cancer metastasis. *Gut* **63**, 635–646
724 (2014).

725 22. Hovestadt, V. *et al.* Decoding the regulatory landscape of medulloblastoma using DNA
726 methylation sequencing. *Nature* **510**, 537–541 (2014).

727 23. Brinkman, A. B. *et al.* Partially methylated domains are hypervariable in breast cancer and
728 fuel widespread CpG island hypermethylation. *Nat. Commun.* **10**, 1749 (2019).

729 24. Salhab, A. *et al.* A comprehensive analysis of 195 DNA methylomes reveals shared and
730 cell-specific features of partially methylated domains. *Genome Biol.* **19**, 150 (2018).

731 25. Pan, F. *et al.* Characterization of epigenetic alterations in esophageal cancer by whole-
732 genome bisulfite sequencing. *bioRxiv* 2021.12.05.471340 (2021)
733 doi:10.1101/2021.12.05.471340.

734 26. Liu, Y. *et al.* Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. *Cancer*
735 *Cell* **33**, 721–735.e8 (2018).

736 27. Tao, Y. *et al.* Aging-like Spontaneous Epigenetic Silencing Facilitates Wnt Activation,
737 Stemness, and Braf-Induced Tumorigenesis. *Cancer Cell* **35**, 315–328.e6 (2019).

738 28. Vaz, M. *et al.* Chronic Cigarette Smoke-Induced Epigenomic Changes Precede
739 Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS
740 Mutations. *Cancer Cell* **32**, 360–376.e6 (2017).

741 29. Ehrlich, M. & Lacey, M. DNA hypomethylation and hemimethylation in cancer. *Adv. Exp.*
742 *Med. Biol.* **754**, 31–56 (2013).

743 30. Decato, B. E. *et al.* Characterization of universal features of partially methylated domains

744 across tissues and species. *Epigenetics Chromatin* **13**, 39 (2020).

745 31. Burger, L., Gaidatzis, D., Schübeler, D. & Stadler, M. B. Identification of active regulatory
746 regions from DNA methylation data. *Nucleic Acids Res.* **41**, e155 (2013).

747 32. Bar, D. *et al.* A local sequence signature defines a subset of heterochromatin-associated
748 CpGs with minimal loss of methylation in healthy tissues but extensive loss in cancer.
749 *bioRxiv* 2022.08.16.504069 (2022) doi:10.1101/2022.08.16.504069.

750 33. Fortin, J.-P. & Hansen, K. D. Reconstructing A/B compartments as revealed by Hi-C using
751 long-range correlations in epigenetic data. *Genome Biol.* **16**, 180 (2015).

752 34. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional
753 mutation rates in human cancer cells. *Nature* **488**, 504–507 (2012).

754 35. Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new cancer-
755 associated genes. *Nature* **499**, 214–218 (2013).

756 36. Weinberg, D. N. *et al.* The histone mark H3K36me2 recruits DNMT3A and shapes the
757 intergenic DNA methylation landscape. *Nature* **573**, 281–286 (2019).

758 37. Neri, F. *et al.* Intragenic DNA methylation prevents spurious transcription initiation. *Nature*
759 **543**, 72–77 (2017).

760 38. Corces, M. R. *et al.* The chromatin accessibility landscape of primary human cancers.
761 *Science* **362**, (2018).

762 39. Chen, L. *et al.* Master transcription factors form interconnected circuitry and orchestrate
763 transcriptional networks in oesophageal adenocarcinoma. *Gut* **69**, 630–640 (2020).

764 40. Jiang, Y. *et al.* Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2
765 promotes squamous cancer progression. *Nat. Commun.* **9**, 3619 (2018).

766 41. Jiang, Y.-Y. *et al.* TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That
767 Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma
768 Cell Lines. *Gastroenterology* **159**, 1311–1327.e19 (2020).

769 42. Xie, J.-J. *et al.* Super-Enhancer-Driven Long Non-Coding RNA LINC01503, Regulated by

770 TP63, Is Over-Expressed and Oncogenic in Squamous Cell Carcinoma. *Gastroenterology*
771 **154**, 2137–2151.e1 (2018).

772 43. Espinet, E. *et al.* Aggressive PDACs Show Hypomethylation of Repetitive Elements and the
773 Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. *Cancer Discov.* **11**,
774 638–659 (2021).

775 44. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-
776 regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–589
777 (2010).

778 45. Aran, D., Sabato, S. & Hellman, A. DNA methylation of distal regulatory sites characterizes
779 dysregulation of cancer genes. *Genome Biol.* **14**, R21 (2013).

780 46. Rogerson, C. *et al.* Identification of a primitive intestinal transcription factor network shared
781 between esophageal adenocarcinoma and its precancerous precursor state. *Genome Res.*
782 **29**, 723–736 (2019).

783 47. Pan, J. *et al.* Lineage-Specific Epigenomic and Genomic Activation of Oncogene HNF4A
784 Promotes Gastrointestinal Adenocarcinomas. *Cancer Res.* **80**, 2722–2736 (2020).

785 48. Lopez-Pajares, V. *et al.* A LncRNA-MAF:MAFB transcription factor network regulates
786 epidermal differentiation. *Dev. Cell* **32**, 693–706 (2015).

787 49. Reddy, J. *et al.* Predicting master transcription factors from pan-cancer expression data.
788 *Sci Adv* **7**, eabf6123 (2021).

789 50. Sanda, T. *et al.* Core transcriptional regulatory circuit controlled by the TAL1 complex in
790 human T cell acute lymphoblastic leukemia. *Cancer Cell* **22**, 209–221 (2012).

791 51. Walker, E. M., Thompson, C. A. & Battle, M. A. GATA4 and GATA6 regulate intestinal
792 epithelial cytodifferentiation during development. *Dev. Biol.* **392**, 283–294 (2014).

793 52. Ye, D. Z. & Kaestner, K. H. Foxa1 and Foxa2 control the differentiation of goblet and
794 enteroendocrine L- and D-cells in mice. *Gastroenterology* **137**, 2052–2062 (2009).

795 53. Britton, E. *et al.* Open chromatin profiling identifies AP1 as a transcriptional regulator in

796 oesophageal adenocarcinoma. *PLoS Genet.* **13**, e1006879 (2017).

797 54. Zhang, K. *et al.* A single-cell atlas of chromatin accessibility in the human genome. *Cell*
798 **184**, 5985–6001.e19 (2021).

799 55. Hoadley, K. A. *et al.* Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000
800 Tumors from 33 Types of Cancer. *Cell* **173**, 291–304.e6 (2018).

801 56. Nothjunge, S. *et al.* DNA methylation signatures follow preformed chromatin compartments
802 in cardiac myocytes. *Nat. Commun.* **8**, 1667 (2017).

803 57. Du, Q. *et al.* DNA methylation is required to maintain both DNA replication timing precision
804 and 3D genome organization integrity. *Cell Rep.* **36**, 109722 (2021).

805 58. Johnstone, S. E. *et al.* Large-Scale Topological Changes Restrain Malignant Progression in
806 Colorectal Cancer. *Cell* **182**, 1474–1489.e23 (2020).

807 59. Mounir, M. *et al.* New functionalities in the TCGAbiolinks package for the study and
808 integration of cancer data from GDC and GTEx. *PLoS Comput. Biol.* **15**, e1006701 (2019).

809 60. Farhangdoost, N. *et al.* Chromatin dysregulation associated with NSD1 mutation in head
810 and neck squamous cell carcinoma. *Cell Rep.* **34**, 108769 (2021).

811 61. Cui, Y. *et al.* Whole-genome sequencing of 508 patients identifies key molecular features
812 associated with poor prognosis in esophageal squamous cell carcinoma. *Cell Res.* **30**,
813 902–913 (2020).

814 62. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes
815 21 and 22. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 3740–3745 (2002).

816 63. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of
817 Problematic Regions of the Genome. *Sci. Rep.* **9**, 9354 (2019).

818 64. Kulakovskiy, I. V. *et al.* HOCOMOCO: towards a complete collection of transcription factor
819 binding models for human and mouse via large-scale ChIP-Seq analysis. *Nucleic Acids
820 Res.* **46**, D252–D259 (2018).

821 65. Zhou, W., Triche, T. J., Jr, Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection

822 of DNA methylation by Infinium BeadChips in genomic deletions. *Nucleic Acids Res.* **46**,
823 e123 (2018).

824 66. Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and
825 innovative use of Infinium DNA methylation BeadChip probes. *Nucleic Acids Res.* **45**, e22
826 (2017).

827 67. Korthauer, K., Chakraborty, S., Benjamini, Y. & Irizarry, R. A. Detection and accurate false
828 discovery rate control of differentially methylated regions from whole genome bisulfite
829 sequencing. *Biostatistics* **20**, 367–383 (2019).

830 68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
831 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

832 69. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
833 requirements. *Nat. Methods* **12**, 357–360 (2015).

834 70. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
835 (2013).

836 71. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
837 2079 (2009).

838 72. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* **9**, R137 (2008).

839 73. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data
840 analysis. *Nucleic Acids Res.* **44**, W160–5 (2016).

841 74. Silva, T. C. *et al.* ELMER v.2: an R/Bioconductor package to reconstruct gene regulatory
842 networks from DNA methylation and transcriptome profiles. *Bioinformatics* **35**, 1974–1977
843 (2019).

844 75. Li, S. *et al.* Cistrome-GO: a web server for functional enrichment analysis of transcription
845 factor ChIP-seq peaks. *Nucleic Acids Res.* **47**, W206–W211 (2019).

846 76. Irizarry, R. A. *et al.* Genome-wide methylation analysis of human colon cancer reveals
847 similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. *Nat.*

848 *Genet.* **41**, 178 (2009).

849 77. Silva, T. C. et al. ELMER v.2: An R/Bioconductor package to reconstruct gene regulatory
850 networks from DNA methylation and transcriptome profiles. doi:10.1101/148726.

851 **Acknowledgement**

852 We thank the OCCAMS Study for sharing DNA methylation and somatic mutation data of EAC
853 samples. D.-C.L. was supported by NIH/NCI under awards P30CA014089 and R37CA237022.
854 Y.Y.Z. was partially supported by the Fundamental Research Funds For the Central Universities,
855 Sun Yat-sen University (22qntd3701). This work is also partially funded by the institutional funds
856 from the Herman Ostrow School of Dentistry of USC's Center for Craniofacial Molecular Biology
857 to B.Z and D.-C.L, and a Project Grant (845755) from the Israel Cancer Research Fund Project
858 Grant to B.P.B.

859 **Author contribution**

860 D.-C.L. and B.P.B. conceived and devised the study. D.-C.L., B.P.B., Y.Y.Z., and B.Z. designed
861 experiments and analyses. Y.Y.Z and B.P.B. performed bioinformatics and statistical analysis.
862 B.Z performed the experiments. Y.Y.Z., B.P.B., and D.-C.L. analyzed the data. B.P.B., D.-C.L.
863 supervised the research. A.S.H, U.K.S, L.Y.X, E.M.L and H.P.K. contributed the data and
864 materials. Y.Y.Z., and D.-C.L. wrote the manuscript with input from B.P.B. The last two authors
865 (D.-C.L. and B.P.B.) are co-senior authors who jointly supervised the work, and they have the
866 right to list their names last in their CV.

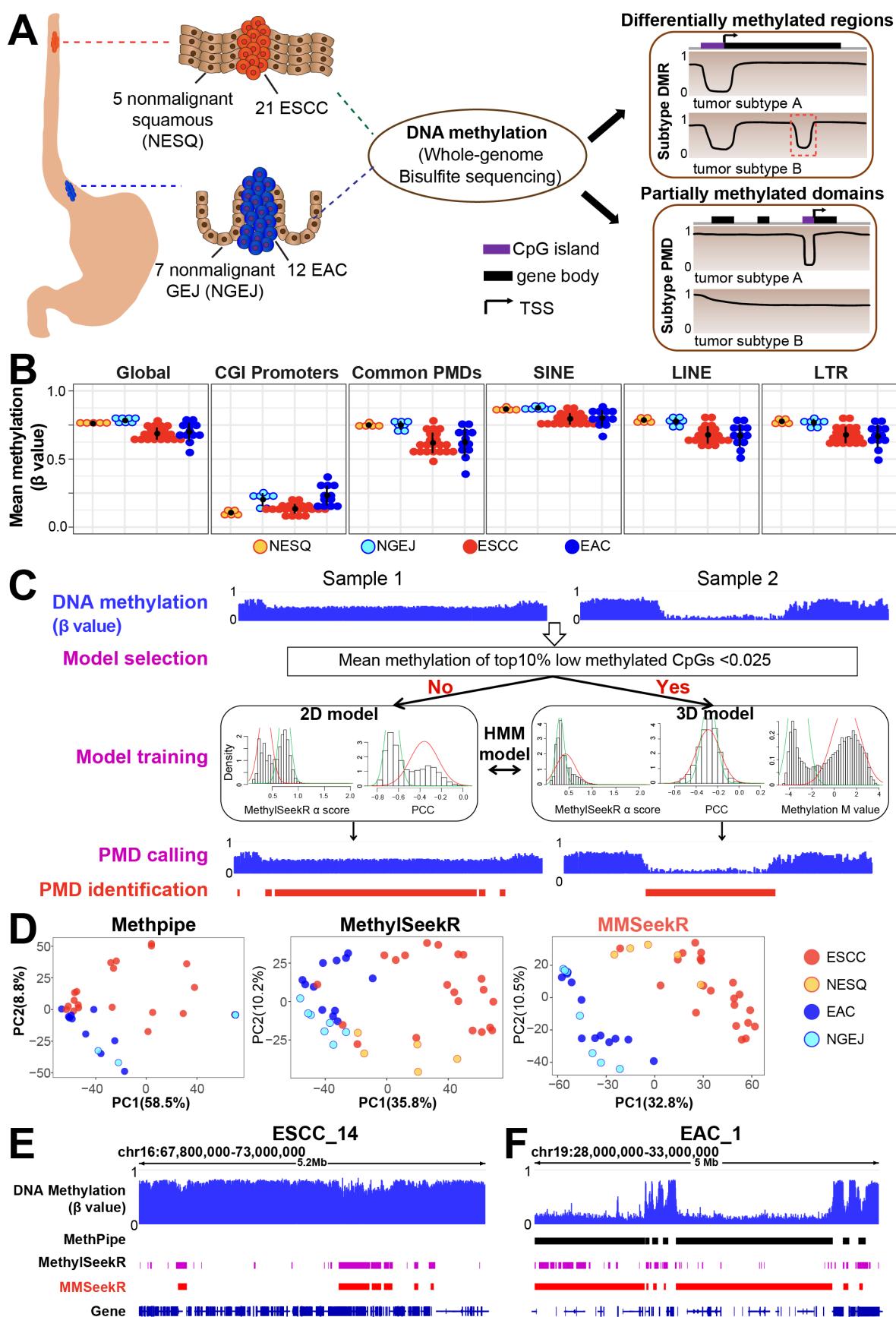
867 **Supplementary information**

868 **Supplementary Figures.docx**

869 **Supplementary Table 1.** WGBS data sets used in the current study.

870 **Supplementary Table 2.** The percent of PMDs identified by three different callers overlapping
871 with common PMDs or HMDs in each tumor sample from the Blueprint consortium or esophageal
872 tissue.

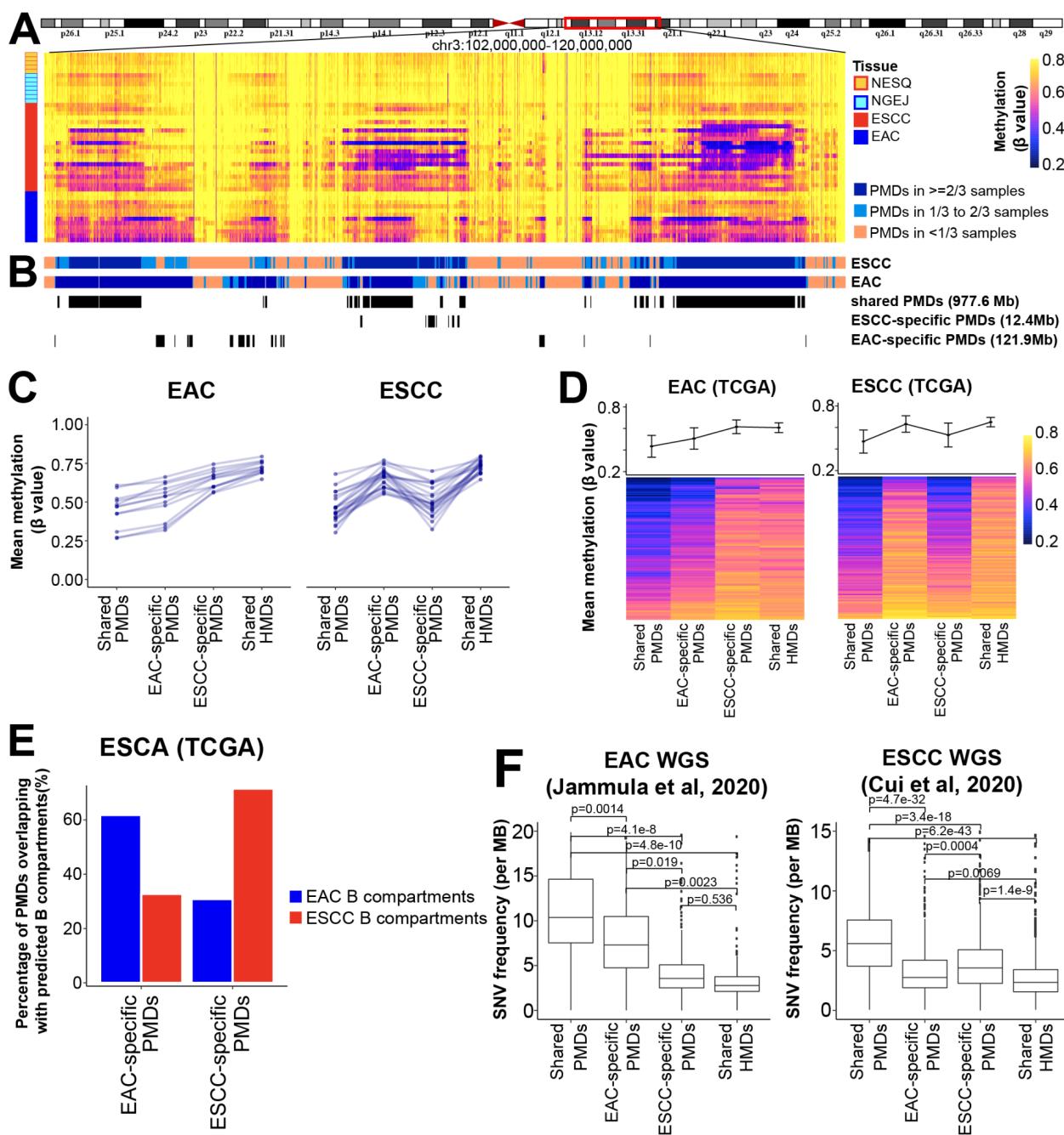
873



875 **Figure 1. Identification of PMDs in esophageal samples by a sequence-aware multi-model**
876 **PMD caller (MMSeekR).** **(A)** A graphic model of the present study design. **(B)** Dot plots showing
877 average methylation levels for all CpGs across the whole genome, CpGs within CGI promoters,
878 common PMDs, SINE, LINE and LTR in different samples. The annotations from Takai et al⁶².
879 were used for CGI methylation quantification. **(C)** Development of a new PMD caller. The
880 MethylSeekR α score measures the distribution of methylation levels in sliding windows with 201
881 consecutive CpGs across the genome. α score < 1 corresponds to a polarized distribution towards
882 a high or low methylation level (that is, HMDs), while α score ≥ 1 corresponds to the distribution
883 towards intermediate methylation levels (that is, PMDs). PCC shows the correlation between the
884 predicted hypomethylation score based on a NN model, and the actual methylation level. A strong
885 negative correlation indicates regions favoring PMDs, while weak/null correlation favors HMDs.
886 **(D)** PCA analysis of 45 esophageal samples using the top 5,000 most variable 30-kb tiles for the
887 three PMD callers. **(E-F)** Representative windows showing PMDs successfully identified by
888 MMSeekR but failed to be detected by either MethPipe **(E)** or MethylSeekR **(F)**.

889

890



891

892

Figure 2. Characterization of shared and subtype-specific PMDs. (A) A representative window of DNA methylation profiles from 45 esophageal samples. Average methylation values are shown in consecutive and non-overlapping 10-kb tiles. CGI regions were masked using the annotation from Irizarry et al⁷⁶. **(B)** Different PMD categories were identified based on the frequency and overlap between the two esophageal cancer types. **(C)** Line plots showing average methylation levels for different PMD categories in esophageal tumors, where each line represents one sample. **(D)** Similar line plot patterns were observed using TCGA methylation datasets, showing the mean and standard deviation across samples. Each row in the heatmap below shows

893

894

895

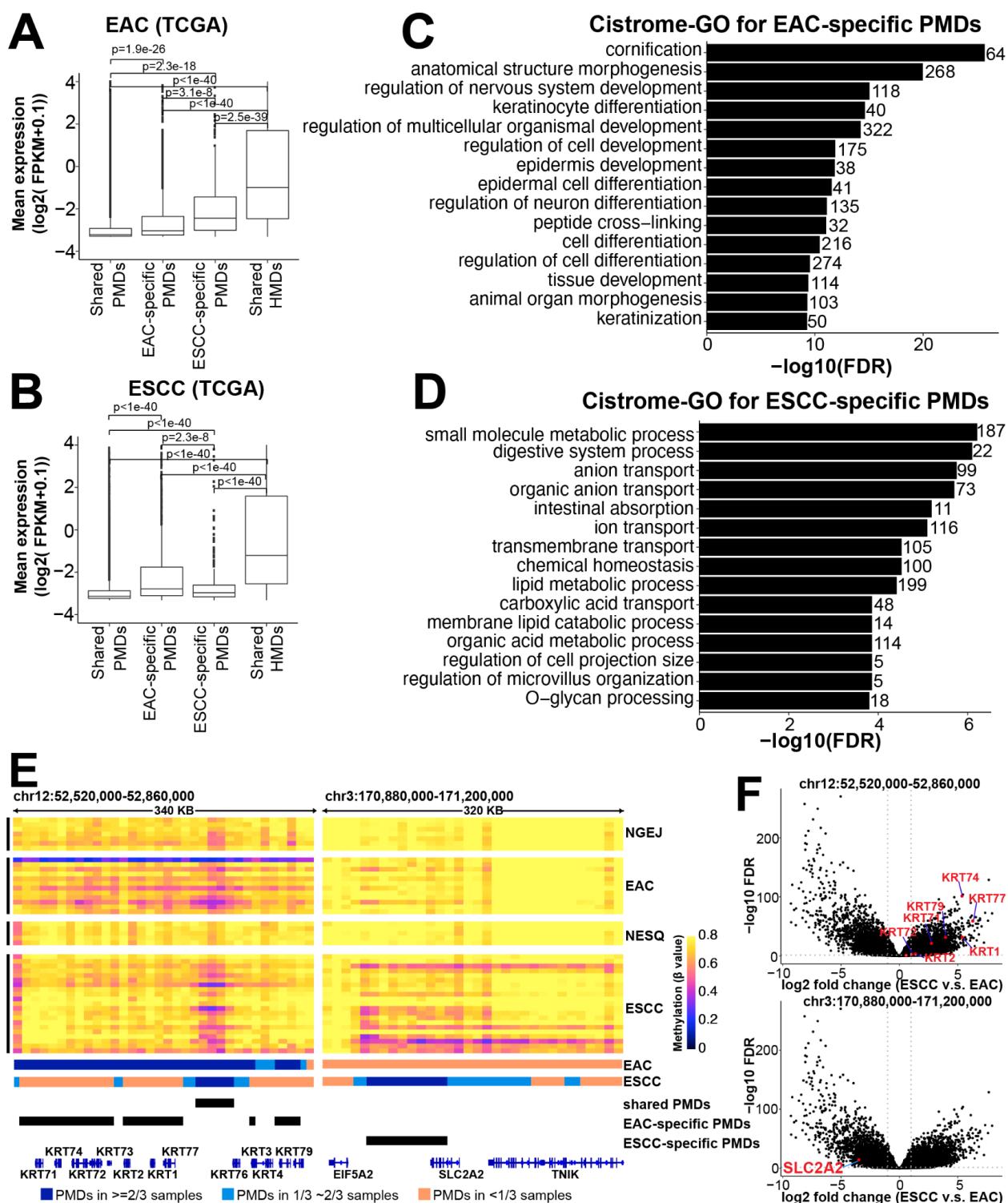
896

897

898

899

900 an individual sample. **(E)** Bar plots showing the percentage of WGBS PMDs overlapping with
901 chromatin B compartments, which were predicted using TCGA methylation datasets and analyzed
902 by minfi package. **(F)** Somatic mutation rates based on WGS in the indicated studies, calculated
903 separately for each of the WGBS PMD categories.
904

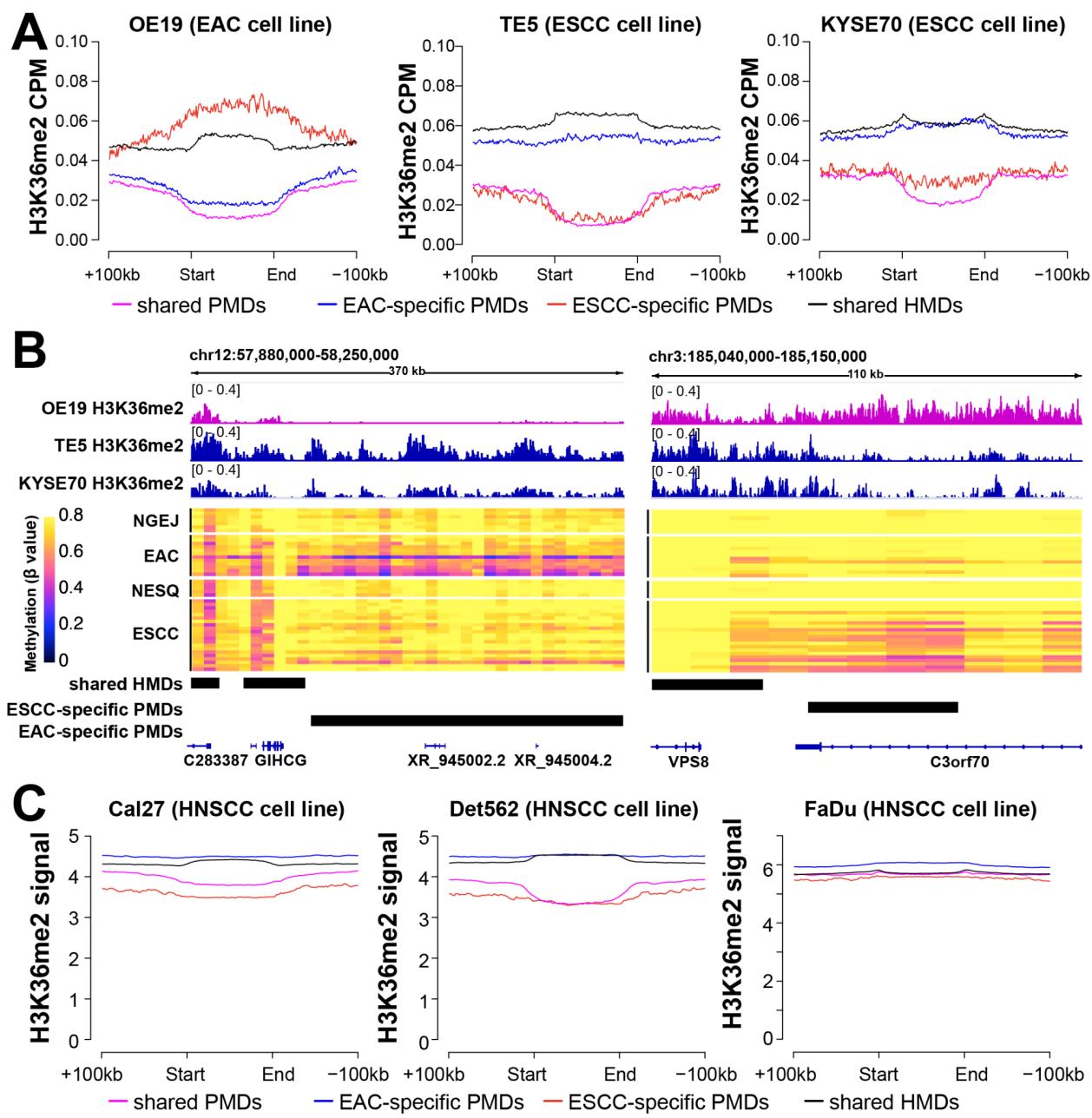


905

906 **Figure 3. Subtype-specific PMDs control cell-type-specific functions.** (A-B) In both EAC (A)
907 and ESCC (B), genes covered by PMDs are expressed at lower levels than those in non-PMDs
908 in a cancer-specific manner. (C-D) Cistrome-GO enrichment analyses using either EAC-specific
909 (C) or ESCC-specific (D) PMDs and the downregulated genes within them. The top 15 most

910 significant pathways are shown, and the number of genes enriched in each pathway is shown on
911 the right. **(E)** Two representative genome windows showing the methylation profiles of EAC-
912 specific (left panel) and ESCC-specific PMDs (right panel). CGI regions were masked using the
913 annotation from Irizarry et al⁷⁶. **(F)** Volcano plots showing that genes residing within genome
914 domains in **(E)** are downregulated in corresponding cancer subtypes.

915
916

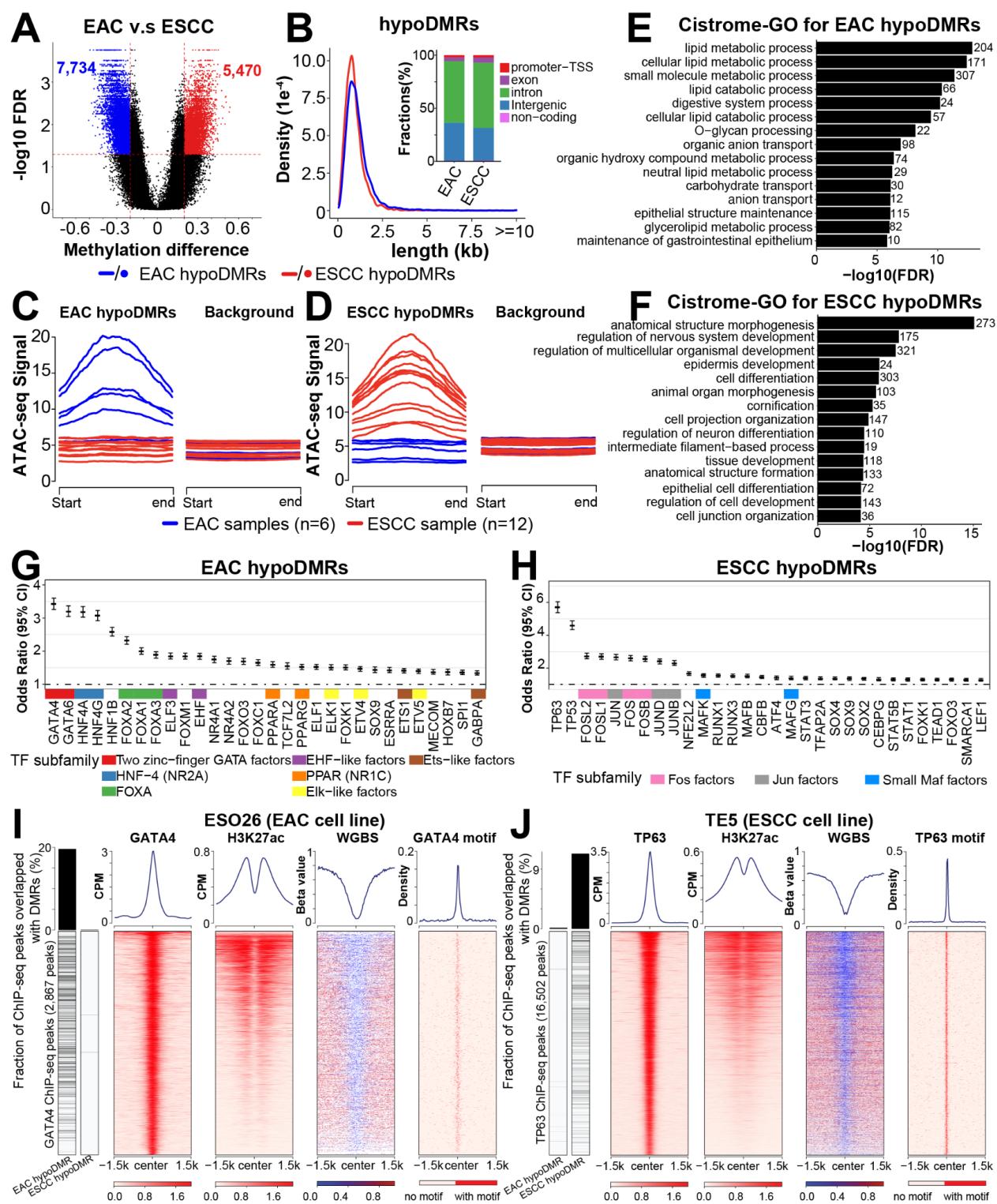


917

918 **Figure 4. The H3K36me2 mark is inversely associated with PMDs in a cell-type-specific**
919 **manner. (A)** Aggregation plots of H3K36me2 ChIP-seq levels in esophageal cancer cell lines

920 across four different PMD categories: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs,
921 shared HMDs. **(B)** Representative genomic loci showing H3K36me2 signal from ChIP-seq, and
922 subtype-specific PMDs from WGBS data. CGI regions were masked using the annotation from
923 Irizarry et al⁷⁶. **(C)** Aggregation plots of H3K36me2 ChIP-seq levels in HNSCC cell lines across
924 four different PMD categories. Bigwig files of the H3K36me2 ChIP-seq signal were obtained from
925 GSE149670.

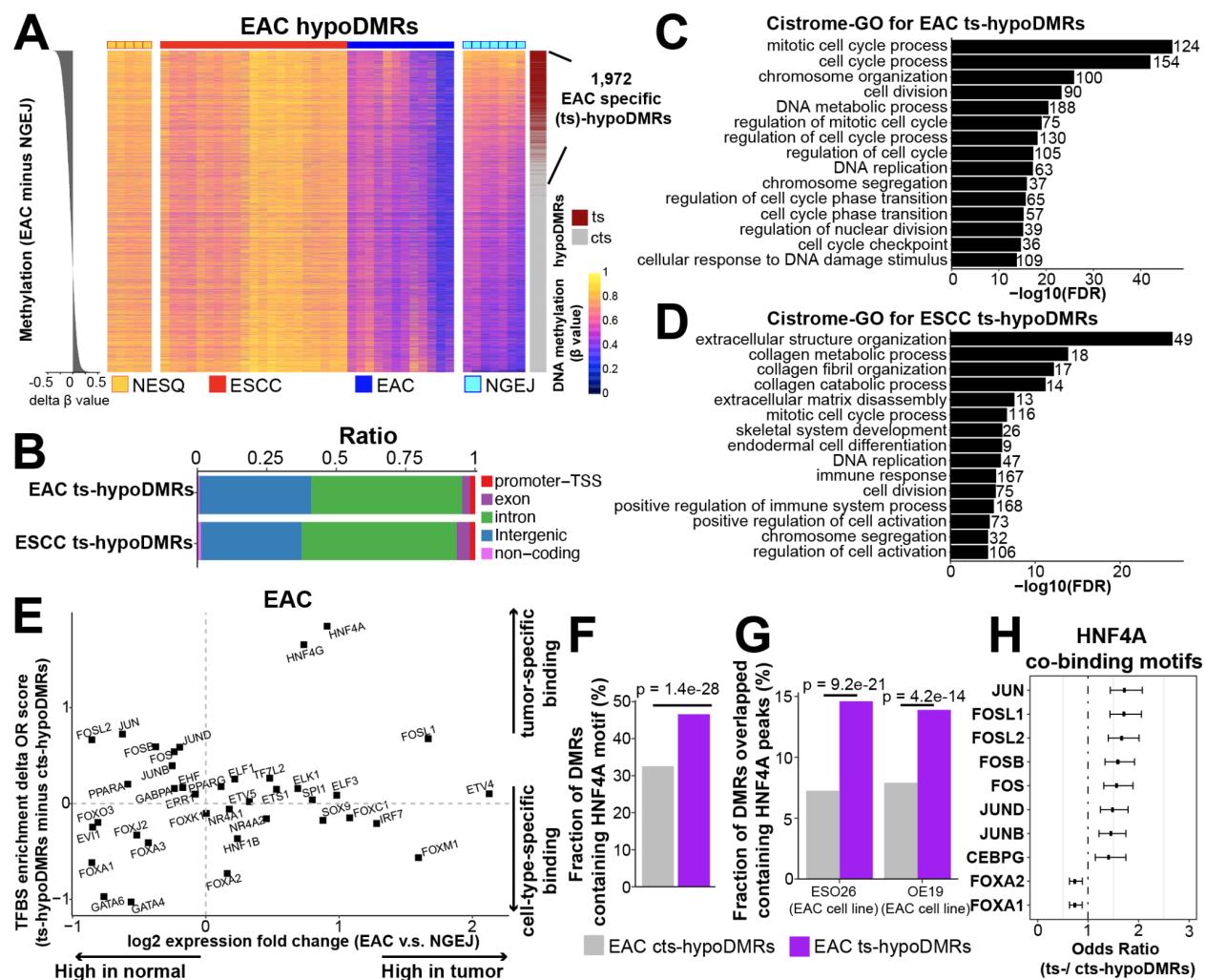
926



928 **Figure 5. Subtype-specific DMRs in esophageal cancer.** (A) Cancer hypodMRs were
929 identified from the comparison between EAC and ESCC tumors. Regions with FDR < 0.05 and
930 absolute delta methylation levels > 0.2 were identified as DMRs. (B) Density plots showing the

931 size distribution of hypoDMRs; stacked bar plots displaying fractions of hypoDMRs that overlap
932 with different genomic features. **(C-D)** Aggregation plots of ATAC-seq signals from esophageal
933 cancer samples within EAC **(C)** or ESCC **(D)** hypoDMRs or random genomic regions
934 (background), which contained 10-times randomly selected regions with the same CpG density.
935 ATAC-seq signals were obtained from the TCGA and normalized with the CPM method. **(E-F)**
936 Cistrome-GO enrichment analyses using EAC **(E)** or ESCC **(F)** hypoDMRs and upregulated
937 genes in the corresponding subtype. Top 15 most significant pathways are shown. The number
938 of genes enriched in each pathway is shown on the right. **(G-H)** Transcription-factor-binding motif
939 sequences were identified by the ELMER⁷⁷ method using EAC **(G)** or ESCC **(H)** hypoDMRs as
940 the foreground and random regions as the background. **(I-J)** The most strongly enriched TFs in
941 EAC (GATA4) **(I)** and ESCC (TP63) **(J)** were chosen for the experimental validation, using TF
942 ChIP-seq, H3K27ac ChIP-seq and WGBS in matched cell lines. Peaks overlapping with subtype
943 hypoDMRs are shown on the left; the percentages of overlapped peaks are expressed in the
944 column plots.

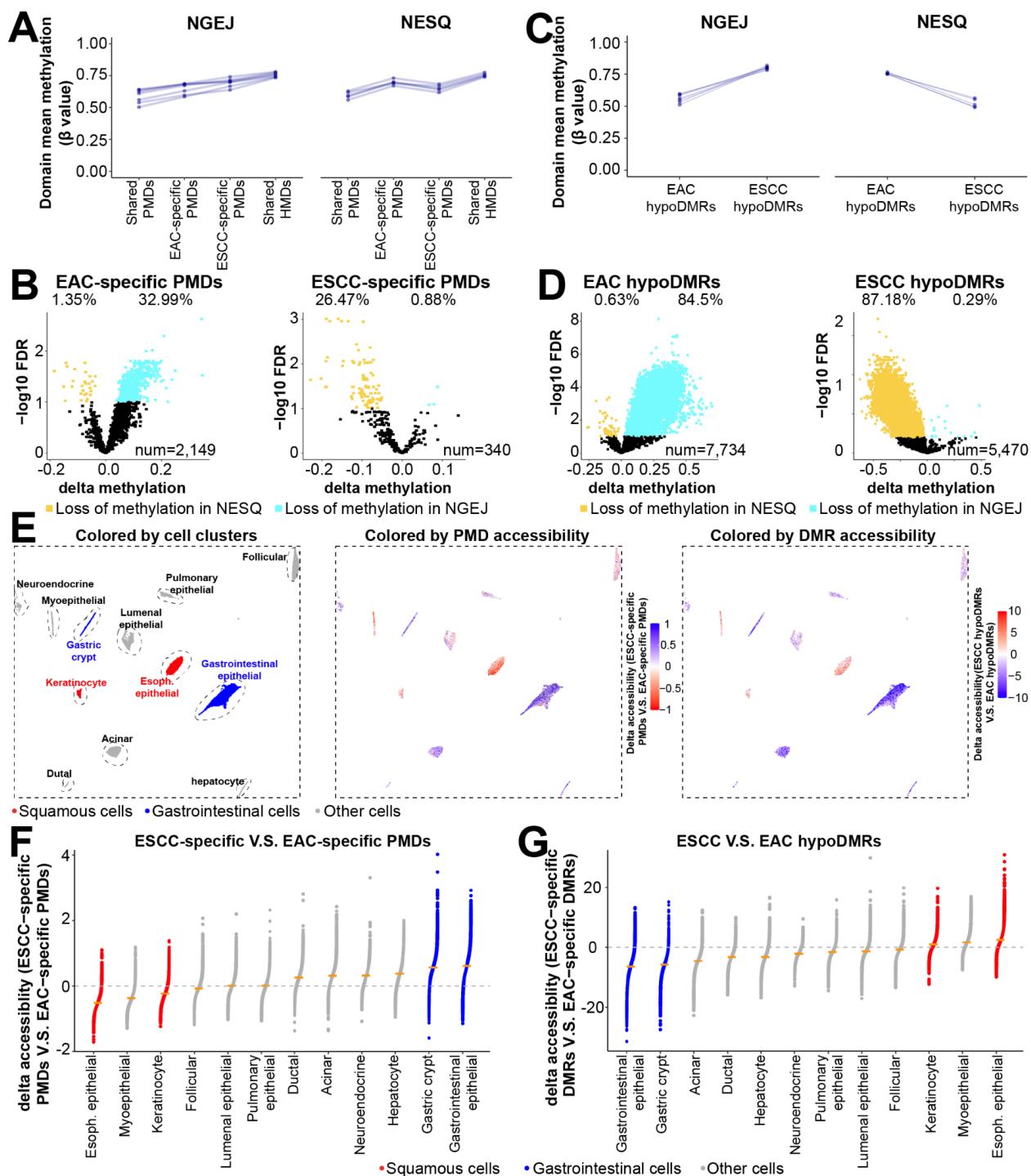
945



946 **Figure 6. Identification of tumor-specific hypoDMRs. (A)** Heatmaps showing DNA
947 methylation levels for each EAC hypoDMR. Each column denotes one sample and the
948 row was ordered by the delta mean methylation between EAC and NGEJ (left). EAC ts-
949 hypoDMRs were identified using a one-tailed t test between EAC tumor and NGEJ
950 samples (right) with the FDR cutoff < 0.05 . **(B)** Stacked bar plots showing fractions of ts-
951 hypoDMRs that overlap with different genomic features. **(C-D)** Cistrome-GO enrichment
952 analyses using either EAC **(C)** or ESCC **(D)** ts-hypoDMRs and the upregulated genes in
953 each subtype compared with corresponding nonmalignant samples. Top 15 most
954 significant pathways are shown. **(E)** Scatter plots showing transcription-factor-binding
955 sites that were enriched in EAC ts-hypoDMRs compared with cts-hypoDMRs. The X axis
956 represents the expression fold change between EAC and matched nonmalignant GEJ
957 samples. The Y axis shows the delta enrichment score of transcription-factor-binding sites
958

959 between EAC ts- and cts-hypoDMRs. Expression data were from the TCGA and motif
960 enrichment analyses were performed by the ELMER method. **(F)** EAC ts-hypoDMRs
961 contained significantly more HNF4A-recognition motifs compared with cts-hypoDMRs.
962 **(G)** More HNF4A peaks overlapped with ts-hypoDMRs than cts-hypoDMRs. Peaks were
963 called from HNF4A ChIP-seq in ESO26 and OE19 cell lines. **(H)** HNF4A was predicted
964 to co-occupy with the AP-1 family in ts-hypoDMRs, while with FOXA1/2 in cts-hypoDMRs.
965 Sequence motif analysis was performed using ts- vs. cts-hypoDMRs containing HNF4A
966 motifs. Significant transcription factors with FDR < 0.05 are shown. OR value over 1
967 represents higher enrichment in ts-hypoDMRs, while below 1 represents higher
968 enrichment in cts-hypoDMRs.

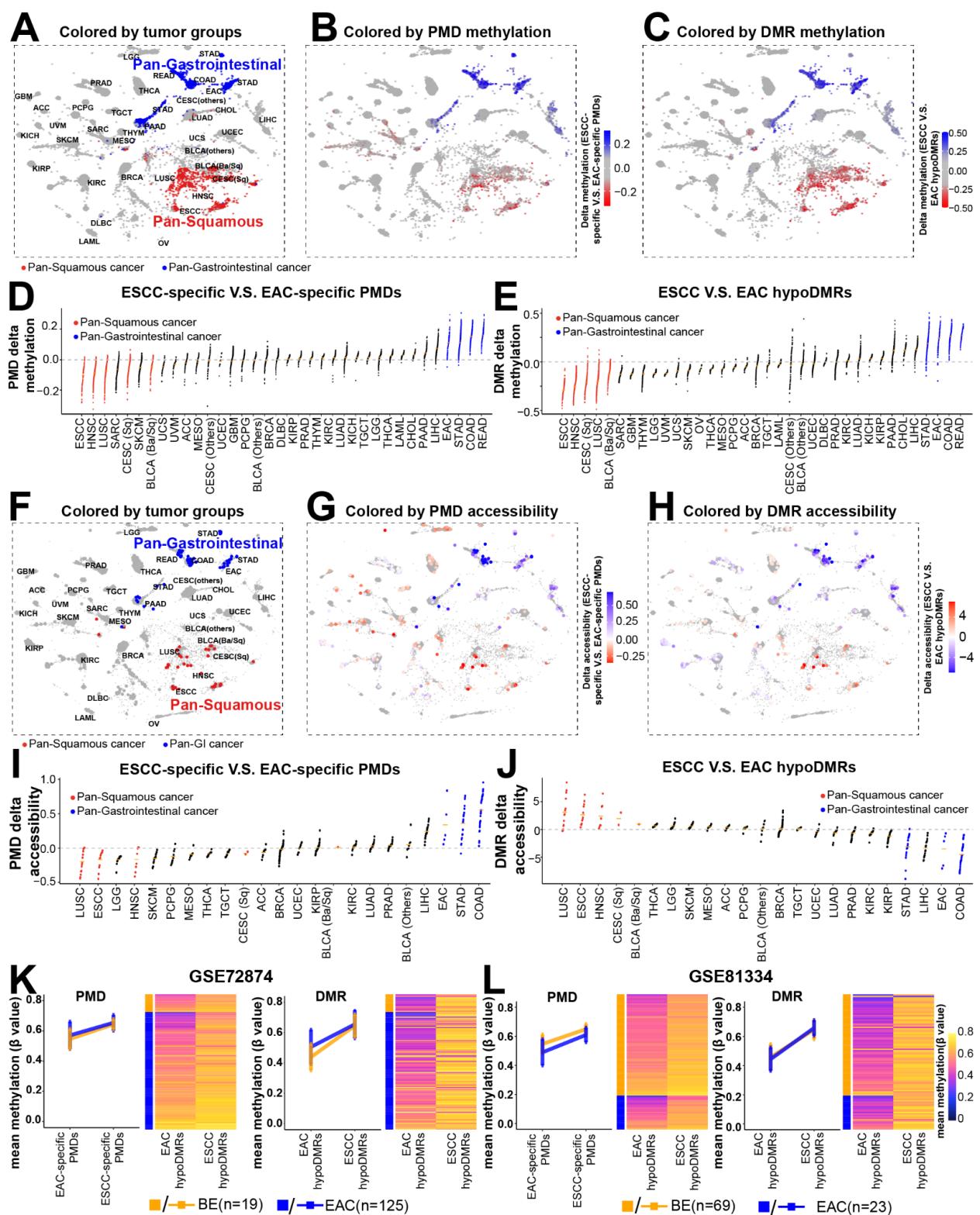
969



970

971 **Figure 7. PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic**
972 **features. (A)** Line plots showing average methylation levels for different PMD or **(C)**
973 hypoDMR categories comparing two types of nonmalignant esophageal samples; these
974 changes in nonmalignant samples are similar to those seen in tumors **(Fig. 2C,**
975 **Supplementary Fig. 3D-E).** **(B)** Volcano plots showing average methylation levels for

976 different PMD or (**D**) hypoDMR categories in nonmalignant esophageal samples. Regions
977 with significant differences were determined by two-tailed t test with the FDR cutoff < 0.1.
978 (**E**) UMAP plots showing cell clusters (left), ATAC-seq levels in ESCC- vs. EAC-specific
979 PMDs (middle) or in ESCC- vs. EAC-specific hypoDMRs (right). Single-cell ATAC-seq
980 values and the cluster scheme were from Zhang et al. Total cell number is 146,305. (**F-**
981 **G**) Dot plots showing, at the sample level, delta ATAC-seq values in ESCC- vs. EAC-
982 specific PMDs (**F**) or in ESCC- vs. EAC-specific hypoDMRs (**G**).
983
984



985

986 **Figure 8. Analyses of PMDs and hypoDMRs in pan-cancer datasets. (A-C)** TCGA
 987 tumormap showing cancer type clusters **(A)**, DNA methylation levels in ESCC- vs. EAC-

988 specific PMDs (**B**), or in ESCC- vs. EAC-specific hypoDMRs (**C**). DNA methylation data
989 were obtained from the TCGA project. The TCGA-based clustering scheme denotes Pan-
990 Gastrointestinal cancers (COAD, READ, STAD and EAC) and Pan-squamous cancers
991 (ESCC, HNSC, LUSC and a subset of CESC and BLCA) are shown (**A**). The number of
992 samples is 8,915. The detailed study name of TCGA Study Abbreviations are listed in
993 <https://gdc.cancer.gov/resources-tcga-users/tcq-a-code-tables/tcq-a-study-abbreviations>
994 (**D**) and (**E**) Dot plots quantification of the methylation differences in (**B**) and (**C**),
995 respectively. (**F**) t-SNE plots showing cancer type clusters, (**G**) ATAC-seq levels in ESCC-
996 vs. EAC-specific PMDs or in (**H**) ESCC- vs. EAC-specific hypoDMRs across tumor
997 samples. ATAC-seq data were downloaded from the TCGA project. The number of
998 samples is 362. (**I**) and (**J**) Dot plots quantification of the ATAC-seq values in (**G**) and (**H**),
999 respectively. (**K-L**) Line plots and heatmaps respectively showing average and individual
1000 methylation levels in BE and EAC samples from two different public datasets.