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Abstract

As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell
carcinoma (ESCC) and adenocarcinoma (EAC), arising from distinct cells-of-origin. However,
distinguishing cell-type-specific molecular features from cancer-specific characteristics has been
challenging. Here, we analyze whole-genome bisulfite sequencing (WGBS) data on 45
esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-
aware method to identify large partially methylated domains (PMDs), revealing profound
heterogeneity at both the methylation level (depth) and genomic distribution (breadth) of PMDs
across tumor samples. We identify subtype-specific PMDs, which are associated with repressive
transcription, chromatin B compartments and high somatic mutation rate. While the genomic
locations of these PMDs are pre-established in normal cells, the degree of loss is significantly
higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie the
genomic distribution PMDs. At a smaller genomic scale, both cell-type- and cancer-specific
differentially methylated regions (DMRs) are identified for each subtype. Using binding motif
analysis within these DMRs, we show that a cell-type-specific transcription factor such as HNF4A
can maintain the binding sites that it establishes in normal cells, while being recruited to new
binding sites with novel partners such as FOSL1 in cancer. Finally, leveraging pan-tissue single-
cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of the cell-
type-specific PMDs and DMRs identified here in esophageal cancer, are actually markers that co-
occur in other cancers originating from related cell types. These findings advance our
understanding of the DNA methylation dynamics at various genomic scales in normal and
malignant states, providing novel mechanistic insights into cell-type- and cancer-specific

epigenetic regulations.
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Introduction

Ranking seventh in cancer incidence and sixth in mortality worldwide, esophageal carcinoma
is highly aggressive and its patients have poor outcomes, with a 5-year survival rate lower than
20%"2. Esophageal cancer comprises two major histologic subtypes: squamous cell carcinoma
(ESCC) and adenocarcinoma (EAC). These two subtypes have distinct clinical characteristics.
ESCC occurs predominantly in the upper and mid-esophagus; EAC is prevalent in the lower
esophagus near the gastroesophageal junction (GEJ) and is associated with the precursor lesion
known as Barrett’s esophagus (BE). Biologically, ESCC arises from the squamous epithelial cells
and has common features with other squamous cell carcinomas (SCC), such as head and neck
SCC (HNSCC). In comparison, EAC has columnar cell features and shares many characteristics
with tubular gastrointestinal adenocarcinomas. In particular, EAC is almost indistinguishable from
GEJ adenocarcinoma in terms of genomic, biological and clinical features.

Epigenetically, multiple studies have reported molecular changes in esophageal cancer,
especially at the DNA methylation level>®. For example, methylation differences across
thousands of loci between ESCC and EAC were noted by The Cancer Genome Atlas (TCGA)®
consortium. However, these prior works focused largely on the analyses of DNA methylation in
gene promoter regions, which only make up ~6% of all CpG sites across the human genome.
DNA methylation is known to play important roles in other noncoding regions, such as
enhancers'®, partially methylated domains (PMDs)"", as well as repetitive elements'?. Therefore,
the DNA methylome of esophageal cancer awaits further and comprehensive characterization
through genome-wide single-base resolution approaches such as whole-genome bisulfite
sequencing (WGBS).

CpG island (CGIl) promoter hypermethylation and global DNA hypomethylation are two
epigenomic hallmarks in cancer'®. In most healthy tissues, the vast majority of CpG sites (>80%)
across the genome are fully methylated, except for the CpG-rich regions (e.g., CGls) and other
regulatory elements (predominantly enhancers)™. Indeed, focal demethylation is a reliable
signature of gene promoters and enhancers, and their methylation levels are robustly maintained
across healthy tissues. Additionally, methylation patterns of CpG sites across the genome are
notably variable across various normal cell types, and can be grouped into cell-type-specific
differentially methylated regions (DMRs), which are linked to cell-type-specific regulatory
regions''°. By contrast, abnormal CGI promoter hypermethylation is frequently observed in

cancer, which is commonly associated with long-term and stable gene repression™.
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83 With respect to the global methylation loss, large hypomethylated blocks, also known as
84  PMDs, cover more than one-third of the genome and coincide with heterochromatin, chromatin
85  “B” compartment (determined by HiC) and nuclear lamina associated domains'®'8, We and others
86 recently found that accumulation of PMD hypomethylation is linked to cumulative mitotic cell
87  divisions, late replication timing as well as the deposition of the histone mark H3K36me3'9%.
88  Functionally, PMDs are associated with inactive gene transcription, heightened genomic
89 instability and may be accompanied by activation of transposable elements (TEs)'®?'. While
90 incompletely understood, the majority of the PMD regions are possibly shared across
91  developmental lineages'®. However, there are enough cell-type specific PMDs to differentiate

17.22.23 and between different healthy cell types?.

92  between different cancer cell types
93 Several important questions on cell-type- and cancer-specific DMRs and PMDs await further
94  characterization, including: i) the degree of the regional specificity of these domains (i.e, the
95  proportions of DMR/PMD that are cell-type- and cancer-specific), ii) the functional significance of
96 DMRs and PMDs in cancer biology, and iii) underlying mechanisms of the alteration of DMRs and
97  PMDs during tumorigenesis. To address these questions, we performed analyses of WGBS data
98 generated from a cohort of 45 esophageal samples, including 21 ESCC and 5 nonmalignant
99  esophageal squamous (NESQ) tissues, as well as 12 EAC/GEJ tumors and 7 nonmalignant GEJ
100 (NGEJ) tissues (Fig. 1A). We chose esophageal cancer as the disease model considering that
101  the two subtypes are developed from distinct cell-of-origins, and we hypothesized that
102  characterization of their methylome profiles might reveal cell-type- and cancer-specific

103  methylation changes, together with underlying epigenetic mechanisms.

104 Results

105 Development of a novel sequence-aware calling method to identify PMDs

106 To characterize the esophageal cancer methylome, we analyzed WGBS profiles of 45
107  esophageal samples from two different cancer subtypes and their corresponding nonmalignant
108 tissues® (Fig. 1A, Supplementary Fig. 2A). All of the nonmalignant esophageal squamous
109 (NESQ) tissues showed high inter-sample correlation despite that they were from two different
110 cohorts (Supplementary Fig. 2B and Supplementary Table 1). To analyze the overall
111 methylation pattern, we first investigated the methylation level at various genomic domains (Fig.
112 1B). As anticipated, both global hypomethylation (especially in common PMDs, defined as shared
113  PMDs identified from 40 different cancer types'®) and CGI promoter hypermethylation were

114  observed in tumor samples. EAC tumors harbored notably higher methylation levels in CGI
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115  promoters than ESCC tumors, in line with TCGA results showing that gastrointestinal
116  adenocarcinoma had higher frequency of CGI hypermethylation than cancers from most other
117  tissues?. Interestingly, most NGEJ tissues showed higher CGI promoter methylation levels than
118  NESAQ tissues, and usually even higher than ESCC tumor samples. Similar to EAC, BE samples
119  (a recognized precursor lesion of EAC) were reported to have a hypermethylation pattern at CGl
120  promoters’. Since our NGEJ tissues were pathologically confirmed as inflammatory tissues but
121 devoid of apparent BE, this result suggests that CGI hypermethylation may occur in inflamed GEJ.
122 Interestingly, CGIl hypermethylation has been observed in long-term-cultured colon organoids and
123 cells upon prolonged exposure to cigarette smoke extract?’?®. These data suggest that prolonged
124  extrinsic pressure may result in DNA methylation changes at CGls. Repetitive elements,
125  especially from the LINE and LTR classes, lost DNA methylation in tumors compared with
126  nonmalignant tissues (Fig. 1B), which might be accompanied with the activation of repetitive

127  elements in tumor samples?'?°.

128 Considering the importance of PMDs in cancer biology'"'9%22®

, we sought to characterize
129  this epigenomic domain in depth. Computational tools have been developed for the identification
130  of PMDs, including MethPipe®* and MethylSeekR*'. However, they sometimes fail or return
131  unsatisfactory results for WGBS samples, either from tissues which have very slight
132  hypomethylation (see Sample 1 in Fig. 1C) or tumors with near-complete methylation loss (see
133 Sample 2 in Fig. 1C).

134 We recently used a deep learning neural network approach to establish universal sequence
135 features that are almost entirely predictive of CpG methylation loss or retention in PMD regions
136  of the human genome®. We hypothesized that utilizing sequence features associated with DNA
137  methylation loss and exploiting the variation patterns among different CpGs within PMDs could
138 improve the predictive models used in these tools (Supplementary Fig. 1A-D; see Methods).
139 To this end, we developed a sequence-aware PMD calling method based on the Hidden Markov
140  Model (HMM) used in MethylSeekR (Fig. 1C; see Methods), which was termed Multi-model PMD
141 SeekR (MMSeekR). Importantly, using tumor samples from the Blueprint consortium, we showed
142  that MMSeekR outperformed both MethylSeekR and MethPipe (Supplementary Fig. 1E-F).
143  Indeed, MMSeekR successfully identified PMD fractions consistently across all samples (using
144  common PMDs as benchmark, top bar, Supplementary Fig. 1E and Supplementary Table 2).
145  MethylSeekR performed well in general, but was noisier and failed on several samples
146  (Supplementary Fig. 1E, red arrows). MethPipe performs poorly on samples with a small degree
147  of PMD methylation loss; indeed, this tool failed to identify PMD in almost half of these samples
148  (Supplementary Fig. 1E and Supplementary Table 2). PMD has been shown to exhibit cancer
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22,23

149  type specificity">=>, which can also be used to evaluate the performance of these methods.
150 Notably, MMSeekR almost completely separated different cancer types, while both MethylSeekR
151  and MethPipe produced much less clean separation (Supplementary Fig. 1F).

152 Encouraged by these results, we next applied MMSeekR to our esophageal samples.
153  Importantly, Principal Component Analysis (PCA) using PMDs identified by three different
154  methods again confirmed that MMSeekR outperformed MethylSeekR and MethPipe, completely
155  separating EAC and ESCC samples (Fig. 1D and Supplementary Fig. 1G). Interestingly,
156  nonmalignant samples clustered together with the corresponding cancer subtype. We also
157  provided exemplary PMDs that failed to be identified by either MethPipe (Fig. 1E) or MethylSeekR

158  (Fig. 1F).

159  Characterization of shared and subtype-specific PMDs in esophageal samples

160 We performed a genome-wide annotation of PMDs on a sample-by-sample basis (Fig. 2A).
161 Consistent with our earlier report'® and the genome-wide analysis (Fig. 1B), PMDs showed a
162  slight decrease of DNA methylation in nonmalignant samples and lost methylation further in
163  tumors. Notably, PMDs exhibited high inter-sample heterogeneity in both their depth (i.e., DNA
164  methylation beta value) and breadth (i.e., genomic location). Indeed, the genome fraction covered
165 by PMDs varied markedly across samples, ranging from 24.3% to 63.4% (Supplementary Fig.
166  2C). We categorized these methylation domains into 4 groups based on the frequencies of their
167  occurrence in our cohort: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs and shared
168 HMDs (Fig. 2B and Supplementary Fig. 2D-E; also see Methods). Interestingly, EAC-specific
169 PMDs covered significantly more of the genome than ESCC-specific PMDs (121.9Mb vs.
170  12.4Mb). To verify our results, we used solo-WCGW CpGs, which lose methylation faster than
171  other CpGs', to measure the average methylation loss within the 4 domain groups. In EAC
172  samples, shared PMDs and EAC-specific PMDs had lower methylation levels than the other two
173  groups, as expected (Fig. 2C, left panel). Reciprocally in ESCC samples, shared PMDs and
174  ESCC-specific PMDs had lower methylation levels (Fig. 2C, right panel). Independent cohorts
175  from either the TCGA (Fig. 2D) or other individual studies (Supplementary Fig. 2F-G) further
176  validated these subtype-specific patterns of DNA methylation loss. Since PMDs are associated
177  with the HiC B compartment'? we next mathematically modeled the A/B chromatin
178 compartments for each esophageal cancer subtype using a method based on the HM450k
179  array*. Indeed, subtype-specific PMDs were enriched in B compartments in a subtype-specific
180 manner (Fig. 2E). By contrast, shared PMDs showed, as anticipated, no such specificity

181 (Supplementary Fig. 2H). PMD regions were also reported to have higher somatic mutation rate
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182  compared with non-PMD regions in cancer***. We analyzed the whole-genome sequencing
183 (WGS) dataset from the OCCAMS (which has the largest number of EAC samples), finding a
184  significantly higher somatic mutation rate in EAC-specific PMDs than in either ESCC-specific
185  PMDs or HMDs (Fig. 2F, left panel). A reciprocal pattern was observed in the largest ESCC WGS
186  cohort (Fig. 2F, right panel).

187 At the transcription level, PMDs are reported to be less transcriptionally active than HMDs.
188  We confirmed that subtype-specific PMDs were associated with low levels of gene expression
189  specifically in the corresponding subtypes (Fig. 3A-B). To explore the biological implication of
190  subtype-specific PMDs, we performed Cistrome-GO analysis using genes which were under-
191  expressed in the subtype-specific PMD regions, finding that biological processes characteristic
192 for the other subtype were enriched and repressed (Fig. 3C-D). Specifically, pathways of
193  cornification, keratinocyte differentiation and epidermis development, which are central to
194  squamous cell differentiation and function, were enriched and inactive in EAC-specific PMDs (Fig.
195  3C). For example, many keratinocyte-specific genes were clustered within EAC-specific PMDs
196 (Fig. 3E, left panel) and downregulated in EAC tumors (Fig. 3F, upper panel). On the other
197  hand, pathways important for gastrointestinal cell function, such as digestive system process,
198 intestinal absorption, lipid metabolic process and O-glycan processing, were enriched and
199  suppressed in ESCC-specific PMDs (Fig. 3D). The right panel of Fig. 3E shows as an example
200 that SLC2A2, which contributes to digestive system process and absorption, was located in
201  ESCC-specific PMDs and downregulated in ESCC samples (Fig. 3F, lower panel). These results
202  suggest that subtype-specific PMDs contain inactive genes which are associated with cell-type-

203  specific functions.

204 H3K36me2 is inversely associated with PMDs in a cell-type-specific manner

205 Both H3K36me2 and H3K36me3 were observed to recruit DNA methyltransferases
206  (DNMT3A% and DNMT3B%, respectively) to maintain DNA methylation levels in large chromatin
207 domains. H3K36me3 is enriched in gene bodies of active transcripts, while H3K36me2 covers
208 larger multi-gene domains. Indeed, we have previously shown that the deposition of H3K36me3
209 s inversely associated with PMD distribution'. Here, we further hypothesized that H3K36me2
210  also contributed to maintaining DNA methylation levels, and the histone modification by this mark
211 might affect the genomic distribution of PMDs and HMDs. To test this, we performed H3K36me2
212  ChIP-seq in both EAC and ESCC cell lines. Indeed, shared HMDs (black line) showed high
213  H3K36me2 intensity in both cell types, while shared PMDs (purple line) exhibited the lowest
214  signals (Fig. 4A). EAC-specific PMDs (blue line) had low H3K36me2 levels in EAC cells but high
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215 H3K36me2 levels in ESCC cells. The reciprocal pattern was observed in ESCC-specific PMDs
216  (red line). For example, H3K36me2 signals were undetectable in an EAC-specific PMD covering
217  theloci of XR_945002.2 and XR_945004.2 in EAC cells, but were strong in ESCC (Fig. 4B, right
218  panel). On the other hand, shared HMDs such as the one covering the VSP8 gene were
219  decorated highly with H3K36me2 in both cell types (Fig. 4B, left panel).

220 To further verify these results, we interrogated public H3K36me2 ChlP-seq data from
221 HNSCC cell lines (squamous cancer highly similar to ESCC in terms of cell-of-origin and
222  epigenome). Indeed, a similar pattern of H3K36me2 distribution to ESCC was observed in Cal27
223  and Det562 HNSCC cells. Specifically, both shared PMDs and ESCC-specific PMDs harbored
224 low signals in HNSCC cell lines, while high H3K36me2 levels were found in HMDs and EAC-
225  specific PMDs (Fig. 4C). However, FaDu appeared to be an outlier, showing invariably high levels
226  across different regions (Fig. 4C), which warrants further investigation. Together, these results
227  demonstrate a prominent depletion of H3K36me2 mark in PMDs in a cell-type-specific manner,
228  whichis likely owing to the finding that H3K36me2 promotes the maintenance of DNA methylation
229 by recruiting DNMT3A.

230 Subtype-specific differentially methylated regions (DMRs) in esophageal cancer

231 We next sought to investigate differentially methylated regions (DMRs) at small genomic
232  scales, given their direct roles in transcriptional regulation. However, our above results suggest
233  an overwhelming, global effect of PMD hypomethylation in tumor samples, which can strongly
234  affect the calling of focal DMRs. Indeed, PCA analysis of the most variable CpGs genome-wide
235 revealed that PC1, the most significant component, was clearly driven by methylation loss at
236 PMDs (Supplementary Fig. 3A).

237 To factor out the effect of PMD hypomethylation, we masked any PMD found within two thirds
238  of either EAC or ESCC samples (Supplementary Fig. 3B). We re-performed the PCA analysis,
239 finding that the two cancer subtypes were completely separated by PC1, which was the most
240 significant component and accounted for 42.2% of the total methylation variance (Supplementary
241  Fig. 3C, left panel). In addition, nonmalignant and tumor samples were separated along PC2,
242  and all NESQ samples were clustered closely together despite being generated from two different
243  cohorts. Notaly, this approach removed most correlation with the global methylation level
244  (Supplementary Fig. 3C, right panel). Thus, it is critical to remove the effects of global
245  hypomethylation when investigating cancer-associated methylation features outside PMDs.

246 We next identified DMRs between EAC and ESCC samples within the PMD-subtracted

247  genome described above (~46.5% of the genome). Under the cutoff of q value < 0.05 and absolute
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248  delta methylation change > 0.2, a total of 7,734 DMRs were hypomethylated in EAC and 5,470 in
249  ESCC (Fig. 5A). As expected, hypomethylated DMRs (hypoDMRs) had low average methylation
250 levels in corresponding subtypes (Supplementary Fig. 3D-E). The majority of DMRs were about
251 1-2 kb long and located mostly in intronic and intergenic regions (Fig. 5B), similar to that of the
252  random background (Supplementary Fig. 3F). To investigate the epigenomic characteristics of
253 hypoDMRs, we systematically evaluated the chromatin accessibility at these regions, using the
254  ATAC-seq data from the TCGA®® and H3K27ac ChIP-seq data from previous studies®**. Relative
255  to random background regions, EAC hypoDMRs were accessible exclusively in EAC samples,
256 and ESCC hypoDMRs exclusively in ESCC samples (Fig. 5C-D). Additionally, EAC hypoDMRs
257  had high H3K27ac signals in 70% (5/7) of EAC cell lines (Supplementary Fig. 3G). A similar
258  observation was made in ESCC cell lines (Supplementary Fig. 3H). These data demonstrate
259 that hypoDMR regions are associated with accessible chromatin and active histone marks.

260 To explore the relevance of DMRs in gene transcription, we assigned each hypoDMR to the

261 closest genes annotated by HOMER*#

, and performed correlational analyses using TCGA
262  transcriptomic data of esophageal cancers. Consistent with prior findings*®, about 30%
263 (3,986/13,204) of the DMRs were associated with differentially expressed genes
264  (Supplementary Fig. 3l). Expectedly, an inverse correlation between DNA methylation and gene
265  expression accounted for the majority (~59%) of these associations, and these DMRs had a larger
266  overlap with promoter and enhancer regions (Supplementary Fig. 3J). Importantly, functional
267  annotation using the Cistrome-GO method revealed that subtype hypoDMRs were enriched in
268  cell-type-specific biological processes. For example, lipid metabolic process, digestive system
269 process and O-glycan processing, which are housekeeping functions for gastrointestinal
270  columnar cells, were specifically enriched in EAC hypoDMRs (Fig. 5E). On the other hand,
271 epidermis development, cornification and epithelial cell differentiation, which are unique to
272  squamous cells, were enriched in ESCC hypoDMRs (Fig. 5F). These results indicate that a large
273  number of hypoDMRs regulate the transcription of cell-type-specific genes.

274 We next performed sequence motif enrichment analysis of hypoDMRs, which have
275 previously been associated with transcription-factor-binding sites'?>%°. A number of known
276  esophageal cell-specific transcription factors were identified, including GATA4/6, HNF4A/G,
277  HNF1B, ELF3, EHF in EAC***4" and TP63, SOX2 and MAFB in ESCC*'“® (Fig. 5G-H). To
278  validate these results, we focused on the top-ranking transcription factors (GATA4 for EAC, TP63
279  for ESCC). Specifically, we performed WGBS in an EAC cell line (ESO26) where we previously
280 generated ChlP-seq data for GATA4 and H3K27ac. Indeed, GATA4 ChIP-seq peaks were
281  associated with high H3K27ac signal, DNA hypomethylation and GATA4 binding motif sequence
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282  (Fig. 5l). Moreover, ~20% of GATA4 peaks overlapped with EAC hypoDMRs. In sharp contrast,
283 almost no GATA4 peaks were found in ESCC hypoDMRs (Fig. 5l, left bars). We similarly
284  performed WGBS on an ESCC cell line (TE5), and analyzed TP63 ChIP-Seq data that we
285 generated in the same sample. We noted consistent patterns and significant overlap with ESCC
286 hypoDMRs in this ESCC-specific transcription factor, and almost no overlap with EAC hypoDMRs
287  (Fig. 5J). These results demonstrate that subtype-specific DMRs are occupied by cell-type-

288  specific transcription factors and contribute to regulation of cell-type-specific functions.

289 Identification of tumor-specific hypoDMRs
290 To identify tumor-specific hypoDMRs from the above subtype-specific DMRs and to

291 investigate their role in cancer biology, we next performed a methylation comparison between
292  tumors and their corresponding nonmalignant samples for each hypoDMR. We found that 25.5%
293 (1,972/7,734) of EAC hypoDMRs (Fig. 6A) and 12.0% (654/5,470) of ESCC hypoDMRs
294  (Supplementary Fig. 4A) had significantly lower (FDR<0.05) methylation levels in tumors than
295  corresponding nonmalignant samples, which were referred to as “tumor specific hypoDMRs (ts-
296 hypoDMRs)’, while the rest were referred to as “cell-type-specific DMRs (cts-hypoDMRs)”. Ts-
297 hypoDRMs were distributed in both intergenic and intronic domains, similar to hypoDMRs overall
298 and the random background (Fig. 6B and Supplementary Fig. 4B). Between 18.0-21.4% of ts-
299 hypoDMRs were correlated with the expression of nearest genes (Supplementary Fig. 4C-D).
300 Importantly, ts-hypoDMRs were strongly enriched in cancer-related pathways such as cell cycle
301  progression (in both EAC and ESCC), and extracellular structure organization in ESCC (Fig. 6C-
302 D). These data suggest that ts-hypoDMRs are associated with genes which contribute to tumor-
303  specific functions.

304 The identification of ts-hypoDMRs and cts-hypoDMRs allowed us to further investigate
305 properties of tumor-specific regulatory regions vs. cell-type-specific regulatory regions. This is
306 particularly helpful for the epigenetic understanding of ESCC and EAC, which contain both tumor-
307 and cell-type-specific features. In addition, lineage-specific developmental factors have been

308 shown to promote malignant cell states**

, and thus it is important to distinguish their functional
309  contribution to normal development vs. cancer biology. To this end, we performed motif
310  enrichment analysis to identify transcription-factor-binding sites that were unique to either ts- or
311 cts-hypoDMRs, and integrated expression patterns of the corresponding transcription factors. For
312  EAC, this approach revealed cancer-upregulated transcription factors which favored binding ts-
313  hypoDMRs, including HNF4A, HNF4G, and FOSL1 (upper right corner of Fig. 6E). In comparison,

314  the lower left corner of Fig. 6E contained cancer-downregulated transcription factors which
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315  preferred occupying cts-hypoDMRs, including GATA4/6 and FOXA, which are well-recognized for
316  their key roles in the development of gastrointestinal cell lineage®*?. The top factor for ts-
317  hypoDMR, HNF4A, had its binding motif in 46.6% ts-hypoDMRs but only 32.6% cts-hypoDMRs
318  (Fig. 6F). Indeed, ChlP-seq data of HNF4A in EAC cell lines (ESO26 and OE19) validated this
319  bias: HNF4A binding peaks overlapped with 14.2% ts-hypoDMRs but only 7.6% cts-hypoDMRs
320 (Fig. 6G). To identify factors that may facilitate recruitment of HNF4A specifically to hypoDMRs,
321 we performed enrichment analyses restricted within HNF4A-motif-containing hypoDMRs.
322 Interestingly, AP-1 motifs (such as JUN, FOSL1, FOSL2 and FOSB) were enriched in these
323 HNF4A" ts-hypoDMRs, while FOXA1/2 in cts-hypoDMRs (Fig. 6H). A parallel analysis was
324 performed in ESCC, which identified a number of tumor-specific factors, including RUNX1/3,
325 SOX2/4 and CEBPA/B (Supplementary Fig. 4E). This distinct pattern of co-occurring motifs
326  between ts- and cts-hypoDMRs in EAC is noteworthy, considering that AP-1 family transcription

t53

327  factors contribute to EAC tumor development™ while FOXA1/2 are required for normal

t52

328  gastrointestinal cell development™. It is also notable that our analysis identified FOSL1 as an AP-

329 1 factor due to its high tumor expression (Fig. 6E).

330 PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic features

331 The above data identified both cell-type- and cancer-specific methylation differences in tumor
332 hypoDMRs, and we next asked whether tumor PMDs likewise harbor both of these two types of
333  methylation differences. In subtype-specific PMDs that were defined based on tumor methylomes
334  alone, nonmalignant tissues notably exhibited the same pattern of methylation changes as their
335  malignant counterparts (Fig. 7A). For example, EAC-specific PMDs had low methylation levels in
336  NGEJ but high in NESQ (Fig. 7A, left), and a reciprocal pattern was found in ESCC-specific
337 PMDs (Fig. 7A, right). Statistically, a large subset of subtype-specific PMDs (33.0% for EAC and
338 26.5% for ESCC) were already hypomethylated in their respective nonmalignant samples (Fig.
339 7B). The same analyses for hypoDMRs confirmed that more than 80% of subtype hypoDMRs
340 significantly decreased DNA methylation in their corresponding nonmalignant samples (Fig. 7C-
341 D). These data demonstrate that a substantial fraction of both subtype-specific PMDs and
342 hypoDMRs identified from tumor samples reflect methylation differences present in normal
343  counterparts. Nonetheless, while the genomic locations of PMDs are established in normal
344  samples, the degree of methylation loss is significantly higher in tumors (Fig. 2C and
345  Supplementary Fig. 3D).

346 To understand further PMDs and hypoDMRs in normal samples, we analyzed public single-

347  cell ATAC-seq data from 146,305 normal epithelial cells across 24 tissues (including esophageal
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348  samples)®, by measuring the chromatin accessibility of our subtype-specific PMDs or hypoDMRSs.
349  This is premised on the fact that focal ATAC-seq peaks are almost always DNA demethylated*®,
350 and reduced ATAC-seq signals measured in large genomic windows reflect the Hi-C B
351  compartment which results in PMD hypomethylation'"?3. The published single-cell unsupervised
352  clustering contains a cluster of esophageal squamous epithelial cells (red dots in Fig. 7E, left
353  panel), the recognized cell-of-origin for ESCC. With respect to EAC, although its cell-of-origin is
354  still under intense investigation, the epigenome is likely close to gastrointestinal epithelial cells
355 (blue dots Fig. 7E, left panel). Importantly, normal esophageal squamous cells showed the
356 lowest chromatin accessibility in ESCC-specific PMDs; reciprocally, normal gastrointestinal
357  epithelial cells had the lowest ATAC-Seq signals in EAC-specific PMDs (Fig. 7E, middle panel;
358 quantified in Fig. 7F). In addition, keratinocytes, which belong to squamous cell type, also had
359 low ATAC-Seq signals in ESCC-specific PMDs. In sharp contrast to subtype-specific PMDs, no
360 difference was observed in either shared PMDs or HMDs in this single-cell analysis
361  (Supplementary Fig. 5C). We performed the same analysis for hypoDMRs, finding that ESCC
362 hypoDMRs had the highest accessibility in squamous cells while EAC hypoDMRs were more
363  openin gastrointestinal epithelial cells (Fig. 7E, right panel; quantified in Fig. 7G). These single-
364  cell results confirmed that both PMDs and hypoDMRs have strong normal cell-type-specificity.

365 Pan-cancer analysis of subtype-specific PMDs and hypoDMRs
366 The above results also suggest that PMDs and hypoDMRs that we identified in ESCC and

367 EAC may be shared with other squamous and gastrointestinal adenocarcinomas, respectively.
368 To test this, we analyzed TCGA pan-cancer samples, since the TCGA multi-omic clustering
369 scheme® has identified the pan-gastrointestinal cluster (adenocarcinomas from esophagus,
370  stomach and colon, blue samples in Fig. 8A) and the pan-squamous cluster (squamous cancers
371  from esophagus, head and neck, lung, cervix and bladder, red samples in Fig. 8A). We first
372  measured the methylation changes between subtype-specific PMDs and hypoDMRs across all
373 33 cancer types (Fig. 8B-E). Importantly, most pan-gastrointestinal tumors lost DNA methylation
374  in EAC-specific PMDs, while most pan-squamous tumors had reduced methylation in ESCC-
375  specific PMDs (Fig. 8B and 8D). Highly consistent results were observed in subtype hypoDMRs
376 (Fig. 8C and 8E). In contrast, no specific pattern was found in shared PMDs and HMDs
377  (Supplementary Fig. 5D), as anticipated.

378 We next analyzed the ATAC-seq data, which is available from a small subset of TCGA bulk
379  tumors®, shown based on multi-omic clustering from ref*° in Fig 8F. Importantly, consistent with

380 the single-cell ATAC-Seq results from healthy tissues, pan-squamous cancers showed the lowest
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381  chromatin accessibility in ESCC-specific PMDs and highest accessibility in ESCC hypoDMRs,
382  and the reciprocal results were obtained in pan-gastrointestinal cancers (Fig. 8G-J). Again, as
383  negative controls, shared PMDs and HMDs failed to generate this distinguishing epigenetic
384  pattern (Supplementary Fig. 5E).

385 These results prompted us to further investigate premalignant lesions, with the hypothesis
386 that these methylation changes are pre-established in normal cells and preserved during the
387  onset of neoplastic transformation. To address this, we interrogated public methylation data on
388 BE, a recognized precursor to EAC, from two different studies”®. Importantly, the methylation
389  patterns of BE samples were highly comparable with EAC tumors, showing reduced methylation
390 levels in both EAC-specific PMDs and hypoDMRs in two different cohorts (Fig. 8K-L). Overall,
391  these data strongly suggest that epigenomic changes of PMDs and hypoDMRs occur in normal
392 cells and are maintained in cancer, which further loses methylation in PMDs and gains additional
393 DMRs. Moreover, these region-specific epigenomic regulations are shared across related cell
394  types.

395 Discussion

396 We generated one of the largest WGBS datasets in esophageal cancer to date, and here
397  we focused on the analyses of PMDs (large scale) and DMRs (small scale) and revealed novel
398 epigenomic properties of these regions. PMDs are megabase-long genomic regions with
399 decreased DNA methylation, coinciding with heterochromatic late-replicating domains and Hi-C
400 B domains'. PMDs reflect long-range chromatin organization that help orchestrate gene
401  expression programs and can influence replication timing and 3D genome organization?*33°¢-
402 %8 In addition, PMDs are associated with increased genomic instability and possibly activation of
403  transposable elements (TEs)'®?'. Nevertheless, apart from these correlational observations, we
404 have only limited mechanistic understanding of the origin and regulation of cancer PMD.
405 Moreover, direct mechanisms linking PMDs to gene transcription remain to be established. Thus,
406 a deeper characterization of PMD is warranted, which first requires an accurate and sensitive
407 identification of these large domains from WGBS data. However, current PMD callers, including
408 MethylSeekR and MethPipe, either are insensitive for the identification of shallow PMDs, or fail to
409 call PMDs in tumor samples with extreme hypomethylation.

410 We have previously demonstrated that a local sequence context (solo-WCGW) is a strong
411  determinant of DNA methylation loss at CpGs'®. Extending this finding, we recently performed

412  deep learning using the neural network method, and established universal sequence context
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413  features influencing the hypomethylation of CpGs across the genome*2. Here, we integrated this
414  sequence code into the MethylSeekR program and developed a novel multi-model PMD caller,
415 MMSeekR. Using both the Blueprint tumor WGBS dataset and our esophageal samples, we
416  demonstrated a superior performance of MMSeekR over other current tools. In order to facilitate
417  methodological development in the field of methylome investigation, we have made MMSeekR
418  available at Github as a free software package (https://github.com/yuanzi2/MMSeekR).

419 The degree of variation of PMD methylation levels (depth) and genomic distribution (breadth)
420 between cancer types was hitherto unclear. Here we observed strong heterogeneity at the PMD
421 methylation level across cancer samples, while nonmalignant samples harbored expectedly
422  shallow PMDs. Moreover, the genome fraction covered by PMDs varied profoundly among
423  different samples, ranging from 24.3% to 63.4%. We identified and characterized subtype-specific
424  PMDs, finding that they were associated with repressive transcription, B compartments and high
425 somatic mutation rate. We previously identified replication timing as a key determinant for
426  methylation loss in PMDs". However, this does not account for the variation in PMD genomic
427  distribution across cell types. By investigation of the genome-wide occupancy of H3K36me2 in
428  different cell types, we noted that H3K36me2 deposition correlated positively with HMD
429  localization, while negatively with PMD in a cell-type-specific manner. Considering that
430 H3K36me2 is able to recruit DNMT3A to maintain the level of DNA methylation®, these results
431  suggest that cell-type-specific deposition of H3K36me2 mark facilitates the maintenance of DNA
432  methylation, thereby dictating the genomic distribution of HMDs and PMDs.

433 At a smaller genomic scale, we identified over ten thousand hypoDMRs between the two
434  subtypes of esophageal cancer. Utilizing their matched nonmalignant samples, we further defined
435  cell-type- vs. cancer-specific hypoDMRs. Using motif sequence analysis combined with ChlP-
436  seq, we identified and validated candidate upstream regulators associated with either cell-type-
437  or cancer-specific hypoDMRs. This approach is important for understanding of the transcriptional
438  regulation during tumor development, particularly because increasing evidence has shown that
439  tumor-driving transcription factors are often lineage-specific developmental regulators functionally
440  co-opted to promote malignant cellular states***°. For example, our top candidate, HNF4A, is
441  essential for the epithelial differentiation of the gastrointestinal tract. Consistently, we found that
442  a substantial subset of cell-type-specific hypoDMRs contained HNF4A-binding sequence; these
443  HNF4A" cell-type-specific hypoDMRs were also co-enriched for transcript factors indispensable
444  for normal gut development, such as FOXA1 (Fig. 6H). Importantly, compared with cell-type-
445  specific hypoDMRs, HNF4A-binding sequence was significantly more enriched in tumor-specific
446  hypoDMRs (Fig. 6H). Moreover, instead of FOXA1, these HNF4A™ tumor-specific hypoDMRs


https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.18.504390; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

447  were co-enriched for AP-1 factors, which are well-recognized for their function in promoting EAC
448  malignancy®, similar to HNF4A itself*®*’. Consistently, one of the AP1 factors, FOSL1, has highly
449  enriched binding sites in tumor-specific hypoDMRs as well as upregulated mRNA expression in
450 EAC tumors relative to NGEJ. Together, careful dissection of cell-type- and cancer-specific
451 hypoDMRs suggest that lineage master regulators control both normal and tumor cell
452  transcriptomes, likely by occupying different genomic regions through cooperating with different
453  transcriptional factor partners.

454 We further characterized the cell-type-specificity of PMDs and DMRs in normal cells. Starting
455  from esophageal samples, we found that a large fraction of methylation changes in both PMDs
456 and DMRs were already evident in normal samples. Pan-tissue single-cell ATAC-seq with
457 145,594 normal epithelial cells further showed that both PMDs and DMRs identified in esophageal
458  cancer had strong specificity that was evident in related cell types. This was also observed in pan-
459  cancer analyses of both methylation and ATAC-seq data from primary tumors, wherein cancers
460 originating from related cell types exhibited similar profiles of both PMDs and DMRs. Moreover,
461 by measuring cancer precursor lesions, we demonstrated that epigenomic changes of PMDs and
462 DMRs were preserved during the onset of neoplastic transformation. Nonetheless, PMDs in
463 normal samples were much shallower than tumors (Fig. 2A and Fig 2C vs. Fig.7A). Overall,
464 these data highlight the presence of cell-type-specific PMDs and DMRs in normal cell types, which
465  are preserved in malignant cells. To our knowledge, this is the first demonstration of the prominent
466  cell-type-specificity of PMDs across normal, precursor and malignant states. While prior studies
467 have revealed that DMRs contain tissue-specific regulatory regions, here we present a paradigm
468  for distinguishing cell-type- vs. cancer-specific regions, and use those to identify tumor-specific

469  regulatory mechanisms.

470 Methods

471 Cell culture

472 Esophageal cancer cell lines, TE5, KYSE70, OE19 and ESO26, were grown in RPMI-1640
473  medium (Gibco, USA), supplemented with 10% FBS (Omega Scientific, USA) and 1% penicillin-
474  streptomycin (Thermo Scientific, USA). All cultures were maintained in a 37 °C incubator
475  supplemented with 5% CO2.

476  Whole genome bisulfite sequencing (WGBS)
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477 WGBS of ES026 or TES cells was performed at Novogene, Inc. Briefly, after DNA extraction
478  and quality control (QC), 3 ug DNA of ESO26 or TES cells spiked with 26 ng lambda DNA were
479  fragmented by sonication. The sonicated DNA was ligated with different cytosine-methylated
480 molecular barcodes. Next, bisulfite conversion was performed using EZ DNA Methylation-GoldTM
481 Kit (Zymo Research). PCR amplification with KAPA HiFi HotStart Uracil+Ready Mix (Kapa
482  Biosystems) was then applied to the DNA fragments. The clustering of index-coded DNA samples

483  were sequenced using the lllumina Hiseq 2500 platform.

484  H3K36me2 chromatin immunoprecipitation sequencing (ChiP-Seq)

485 Ten million esophageal cancer cells were harvested and transferred into 15 ml tubes,
486 followed by fixing with 4 ml of 1% paraformaldehyde for 10 min under room temperature. The
487  reaction was stopped by 2 ml of 250 mM of glycine. Cell samples were rinsed twice by 1X PBS
488 and lysed by 1 ml of 1X lysis/wash buffer (150 mM NaCl, 0.5 M EDTA pH 7.5, 1M Tris pH 7.5,
489  0.5% NP-40). Cell pellets were next resuspended using shearing buffer (1% SDS, 10 mM EDTA
490 pH 8.0,50nM Tris pH 8.0) followed by sonication using a Covaris sonicator. Subsequently, debris
491  was removed by centrifuge and supernatants were diluted five times with the buffer containing
492  0.01% SDS, 1% Triton X-100, 1.2 mM EDTA pH 8.0, 150 nM NaCl. 1 ug of the H3K36me2
493  antibody (Cell Signaling Technology, USA, Cat# 2901S) was added and incubated by rotation at
494  4°C overnight. Protein G Dynabeads (Life Technologies, USA) were added the next morning and
495 incubated by rotation for an additional 4 hours. Dynabeads were next washed with 1X wash buffer
496 followed by cold TE buffer. DNAs were reverse crosslinked, purified, followed by library

497  preparation and deep sequencing using the lllumina HiSeq platform.

498 Data sources

499 DNA methylome of esophageal samples were obtained from our recent work?®, including
500 WGBS on 21 ESCC, 3NESQ, 5 EAC, 7 GEJ tumors and 7 NGEJ tissues. We obtained additional
501 two NESQ samples from the ENCODE consortium to ensure statistical power. Considering the
502 indistinguishable clinical and molecular characteristics between EAC and GEJ tumors, in the
503 present study they were combined as the same subtype (referred to as EAC), which is a common
504  strategy in the field>. TCGA Pan-cancer DNA methylome derived from HM450k methylation array
505 was downloaded from GDC v16.0 by TCGAbiolinks package (version 2.13.6)*°. Other DNA
506  methylation data from individual studies, including EAC EPIC array data from the Oesophageal
507  Cancer Clinical and Molecular Stratification (OCCAMS) consortium (EGAD00010001822)°, EAC
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508 and BE methylome from GSE72874" and GSE81334%, along with ESCC tumor WGBS data
509 (GSE149608)°, were analyzed for validation purposes in this study.

510 Other public datasets which were analyzed included: bulk ATAC-seq data of pan-cancer
511  samples from TCGA®, single-cell ATAC-seq data across different adult human tissues
512  (GSE184462)*, H3K27ac ChIP-seq in EAC samples (GSE132680)*°, EAC cell lines (ESO26,
513  FLO1, JH-EsoAd1, OACp4C, OE19, OE33, SKGT4 from GSE132680)* and ESCC cell lines
514 (KYSE140, KYSE70, TE5 from GSE106563°; KYSE150, KYSE180, KYSE200 from
515  GSE131490*'; TE7 from GSE106433*?), HNF4A ChlP-seq in OE19 (E-MTAB-6858)* and ES026
516  cell lines (GSE132813)*", GATA4 ChIP-seq in ESO26 cell line (GSE132813)* and TP63 ChIP-
517  seqin TE5 cell line (GSE148920)*'. H3K36me2 bigwig files of wildtype (NSD1-WT) HNSCC cell
518 lines were downloaded from GSE149670%. Somatic mutation datasets were downloaded from
519 individual studies®®'. We also retrieved the transcriptomic data of esophageal cancer from the
520 TCGA consortium and GSE149609°.

521 CGIl promoters are annotated as regions ranging from 250 bp upstream to 500 bp
522  downstream of any TSSs overlapping with Takai CGIs®2. Repetitive elements, including long
523 interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) and long
524  terminal repeats (LTR), were extracted from UCSC website (http://hgdownload.soe.ucsc.edu).
525 We downloaded the annotation of common PMDs (defined as shared PMDs identified from 40

% as well as solo-WCGW from https://zwdzwd.github.io/pmd'® and

526  different cancer types)
527 ENCODE blacklist regions from https:/github.com/Boyle-Lab/Blacklist/tree/master/lists®. All of

528 the annotations were converted to the hg38 version using the UCSC LiftOver script

529  (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The human core transcription-factor-binding

530  sequences in the HOMOCOMO database (version 11) were used for motif annotation®.

531  DNA methylation data analysis
532 For WGBS data, raw reads were mapped to the human genome (GRCh38) by Biscuit align

533 command (version 0.1.4, https://www.githubcom/zwdzwd/biscuit) with default settings. Mapped

534 reads were sorted by genome position, and duplicates were marked using Picard MarkDuplicates
535  tool (version 1.136, http://broadinstitute.github.io/picard/). Biscuit pileup and vcf2bed command
536  were then used to extract DNA methylation information. All CpG sites with a coverage >=3
537 informative reads and outside of the ENCODE blacklist regions were retained for downstream
538 analyses. For EPIC and HM450K array data, methylation of each probe was extracted using the
539  SeSAME package with noob and dyeBiasCorrTypelNorm function for background subtraction and

540 dye bias correction®. According to the annotation of Infinium DNA methylation arrays®,
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541  recommended general masking probes were removed. HM450K methylation data were used to
542 estimate the chromatin B compartments using minfi compartments function with
543  “resolution=100*1000, what = “OpenSea” options®.

544  Development of a sequence-aware PMD calling method: Multi-model PMD SeekR
545 (MMSeekR)

546 We recently performed neural network-based machine learning to establish local DNA
547  sequence features of CpGs that were associated with global DNA methylation loss, and derived
548  a neural network (NN) score for each CpG across the human genome®. In order to exclude the
549  potential impact of high CpG density (such as CpG island), we reserved CpGs having 2 or fewer
550 neighboring CpGs within the 151 bp window centered on the reference CpG. We investigated the
551  correlation between NN scores and methylation in individual samples in non-overlapping 201-
552  CpG windows across the genome. As expected, due to the greater degree of methylation loss
553  within PMDs, there was a strong negative correlation between DNA methylation levels and NN
554  scores within windows in PMDs, in contrast to much more modest correlations within highly
555  methylated domains (HMD) windows (Supplementary Fig. 1A).

556 We next applied Pearson correlation coefficient (PCC) between our NN score and DNA
557  methylation, as well as the “alpha score” used in the MethylSeekR model, to 201-CpG windows
558 genome-wide. Compared with the NN score, the MethylSeekR alpha score is a very different
559  measurement, returning a high score if the distribution of methylation values is closer to a
560 unimodal beta distribution centered on 0.5 (typical of PMDs) than it is to a bimodal methylation
561  value distribution close to 0 and 1 (typical of HMDs). Specifically, we applied a Hidden Markov
562  Model (HMM) segmentation (as in MethylSeekR) to each model independently, and found that
563  both the PCC and MethylSeekR alpha score showed bimodal distributions for the testing sample
564 (Supplementary Fig. 1B-C). We hypothesized that since the PCC and the alpha score were very
565 different models, combining them might improve the performance of PMD calling
566 (Supplementary Fig. 1D). Thus we developed a “2-dimensional (2D)” model accordingly (Fig.
567  1C). This 2D model performed comparably well or better than either MethylSeekR or MethPipe in
568 most cases, returning results consistently and highly overlapping with common PMDs
569 (Supplementary Table 2).

570 While the 2D model generally performed well, we did note that it failed in a few samples with
571 extreme methylation loss. Interestingly, these failed cases universally showed PMD methylation
572  values very close to 0, which would be expected to violate the assumptions of both the PCC model

573  and alpha model due to lack of variance within PMDs (Fig. 1C right part). We thus postulated
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574  the raw methylation values (transformed to an M-value to disperse scores close to 0 and 1) might
575 provide additional predictive power in certain samples with extreme methylation loss, and we
576 developed a 3D model accordingly by adding the M-value model to the 2D model. In order to
577  decide whether the 2D or 3D model should be applied for any given sample, we first measured
578 the methylation values of all CpGs with 2 or fewer neighboring CpGs within a 151bp window,
579  which excludes most CpG islands, and contains a set of CpGs that are strongly associated with
580 PMD hypomethylation. If the bottom 10th percentile of these CpGs had a methylation value
581  below 0.025, the 3D model was selected, otherwise, the 2D model was selected. This was based
582  on the observation that the majority of samples with extreme methylation loss failed under both
583  the MethylSeekR and MMSeekR 2D model (Fig. 1C).

584  Application of MMSeekR to WGBS data
585 MMSeekR was applied to call PMDs in each WGBS sample. Before PMD calling, CpG sites

586  with coverage of fewer than 5 informative reads were excluded. Then ENCODE blacklist regions
587  were subtracted from the resulting PMDs. Within each esophageal cancer subtype, PMDs
588  generated from each sample were integrated using bedtools multiinter function (version 2.27.1,
589  https://bedtools.readthedocs.io/en/latest/). The common PMD set for each subtype contained
590 those occurring in at least two-thirds of samples from that subtype. We further defined subtype-
591  specific PMDs as those common PMDs from one subtype that were detected in fewer than one-
592  third of samples in the other subtype. Meanwhile, PMDs that were in both the common EAC set
593 and the common ESCC set were denoted as shared PMDs. Regions that were PMDs in <1/3

594  samples of both subtypes were denoted as shared HMDs.

595 Identification and characterization of DMRs

596 Regions belonging to either the common ESCC or common EAC PMD sets were masked
597  out from the DMR analysis. The Dmrseq package (version 1.10.0)¢
598 between ESCC and EAC tumors with the following parameters: cutoff =0.1, bpSpan=1000,

599  minInSpan=30, maxPerms=500. Since the coverage information of each CpG site is required by

was used to identify DMRs

600 dmrseq for statistical inference, here we included all CpG sites with >= 3 informative reads.
601  Regions with q value < 0.05 and absolute delta methylation change > 0.2 were identified as DMRs.
602  For hypomethylated DMRs (hypoDMRs) from each cancer subtype, we further performed one-
603 tailed t-tests comparing the mean methylation within the DMR in nonmalignant vs. tumor samples,
604  and those with FDR<0.1 were considered as tumor-specific (ts)-hypoDMRs. Both hypoDMRs and
605 ts-hypoDMRs were annotated using HOMER annotatePeaks.pl script (version 4.9.1)*.
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606 Calculation of mean DNA methylation levels

607 CpG sites with a coverage of at least 5 informative reads were used for this calculation.
608  Average methylation levels of CpG sites across the genome (global level), within CGI promoters,
609 commonPMDs, SINE, LINE and LTR in each sample were calculated independently. Besides, we
610 obtained the mean methylation of CpG sites in non-PMD regions. For genome/domain-wide
611  visualization, the average methylation of 10-kb consecutive non-overlapping tiles was shown. To
612 calculate the mean methylation levels within shared PMDs/HMDs, EAC-specific PMDs and
613  ESCC-specific PMDs, solo-WCGW CpG sites/probes were used.

614  Principal component analysis of WGBS data
615 PMDs were identified by either MethPipe, MethylSeekR or MMseekR (Fig. 1D). The whole

616 genome was split into 30-kb consecutive but non-overlapping tiles. For each tile, the ratio
617  overlapping with any PMD was calculated for each caller. The top 5,000 most variable 30-kb tiles
618  from each PMD caller were used in Principal component analysis (PCA). In Supplementary Fig.
619  3A and 3B, CpG sites with at least 7 reads across all esophageal samples were used. Then the
620 top 8,000 most variable CpG sites were selected for PCA using the R prcomp function. PCA was
621  performed before and after masking the combined common PMDs from EAC and ESCC, and
622  generated the point plots by ggplot2 package (version 3.1.0).

623 RNA-seq data analysis

624 According to the raw read counts obtained from the TCGA, we identified significant
625 upregulated genes by DESeq2 package (version 1.22.2) with adjusted p-value <0.05, fold
626  change > 1.5 and mean FPKM >1 in the corresponding sample groups®®. For expression datasets
627  of nonmalignant squamous and ESCC tissues, raw reads were aligned to GRCh38 using HISAT2
628  (version 2.0.4)%° and quantified by htseg-count program (version 0.11.2) at default setting.

629  Significant upregulated genes were identified using the same method as for the TCGA datasets.

630 ChlIP-seq data analysis

631 Raw reads were mapped to GRCh38 (ENSEMBL release 84) using BWA mem program
632  (version 0.7.15) with the default options’. Then the mapped reads were sorted using SAMtools
633  program (version 1.3.1)"", followed by removing PCR duplicates and blacklist regions by Picard
634  MarkDuplicates tool and bedtools (version 2.27.1). MACS2 (Model-Based Analysis of ChIP-Seq,
635 version 2.1.2) were applied to call peaks with the default setting for transcription factors, "-q 0.01-

636  extsize = 146 —nomodel" options for H3K27ac and "--broad -p 0.01 --extsize=146 --nomodel" for
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637 H3K36me2’2. Bigwig files were generated by deepTools bamCompare function (version 3.1.3)
638  with “-operation subtract --normalizeUsing CPM --extendReads 146 --binSize 20” parameters’®.
639 Average signals of shared PMDs/HMDs, EAC-only PMDs and ESCC-only PMDs in each
640 H3K27ac or H3K36me2 ChIP-seq sample were extracted from bigwig files using deepTools

641  computeMatrix function with "scale-regions" option.

642 ATAC-seq data analysis

643 For bulk pan-cancer ATAC-seq data obtained from the TCGA project, the average
644  accessibility of regions/domains was extracted from the available bigwig files using deepTools
645 computeMatrix function®®. To avoid the influence of scaling factors across different samples and
646  batches, the mean accessibility across the whole genome in each sample was calculated and
647  used for normalization. For single cell ATAC-seq data, based on the clustering and annotation
648  results from the publication®, only epithelial cell types were used for further analysis. Similarly,
649 the average accessibility of regions/domains was derived for each cell in each sample and

650 normalized by the mean signal across the whole genome.

651 DMR motif enrichment analysis

652 For each hypoDMR or ts-hypoDMR, we randomly sampled 10 regions with the same size
653 and number of CpGs to define the background set. Then motif searching of both DMRs and
654  background regions was performed using HOMER annotatePeaks.pl with "-noann -m
655 HOCOMOCOvV11_core HUMAN_mono_homer_format_0.0001.motif" parameters*. The
656 ELMER method was next applied to identify potential transcription-factor-binding sequences and
657  the top 15 transcription factors with g-value < 0.05 and FPKM > 5 in the corresponding cancer

658  subtype were reserved for further analysis’.

659 Pathway enrichment analysis

660 We performed the pathway (Biological Process) enrichment analysis by Cistrome-GO’® using
661 candidate regions with methylation changes and differential expression analysis results. For
662 hypoDMR analysis, subtype-specific DMRs and upregulated genes in the corresponding tumors
663  were used as input data. For subtype-specific PMDs, the input data contained PMD regions and
664 downregulated genes in the corresponding tumors. The top 15 enriched pathways with q value <
665  0.05 were shown.

666 Code Availability
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667 Source code for MMSeekR is available at https://github.com/yuanzi2/MMSeekR. Source
668 code for WGBS data analysis and figure reproduction is in
669 https://github.com/yuanzi2/ESCA WGBS analysis.

670 Data Availability

671 WGBS data and ChIP-seq data for H3K36me2 in EAC and ESCC cell lines were available
672 at GSE210220.
673
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875  Figure 1. Identification of PMDs in esophageal samples by a sequence-aware multi-model
876  PMD caller (MMSeekR). (A) A graphic model of the present study design. (B) Dot plots showing
877  average methylation levels for all CpGs across the whole genome, CpGs within CGI promoters,
878 common PMDs, SINE, LINE and LTR in different samples. The annotations from Takai et al®2.
879  were used for CGl methylation quantification. (C) Development of a new PMD caller. The
880  MethylSeekR a score measures the distribution of methylation levels in sliding windows with 201
881 consecutive CpGs across the genome. a score < 1 corresponds to a polarized distribution towards
882  a high or low methylation level (that is, HMDs), while a score >=1 corresponds to the distribution
883  towards intermediate methylation levels (that is, PMDs). PCC shows the correlation between the
884  predicted hypomethylation score based on a NN model, and the actual methylation level. A strong
885  negative correlation indicates regions favoring PMDs, while weak/null correlation favors HMDs.
886 (D) PCA analysis of 45 esophageal samples using the top 5,000 most variable 30-kb tiles for the
887 three PMD callers. (E-F) Representative windows showing PMDs successfully identified by
888 MMSeekR but failed to be detected by either MethPipe (E) or MethylSeekR (F).
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892 Figure 2. Characterization of shared and subtype-specific PMDs. (A) A representative
893  window of DNA methylation profiles from 45 esophageal samples. Average methylation values
894  are shown in consecutive and non-overlapping 10-kb tiles. CGI regions were masked using the
895 annotation from Irizarry et al’®. (B) Different PMD categories were identified based on the
896 frequency and overlap between the two esophageal cancer types. (C) Line plots showing average
897  methylation levels for different PMD categories in esophageal tumors, where each line represents
898 one sample. (D) Similar line plot patterns were observed using TCGA methylation datasets,

899  showing the mean and standard deviation across samples. Each row in the heatmap below shows
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900 an individual sample. (E) Bar plots showing the percentage of WGBS PMDs overlapping with
901  chromatin B compartments, which were predicted using TCGA methylation datasets and analyzed
902 by minfi package. (F) Somatic mutation rates based on WGS in the indicated studies, calculated
903 separately for each of the WGBS PMD categories.
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906 Figure 3. Subtype-specific PMDs control cell-type-specific functions. (A-B) In both EAC (A)
907 and ESCC (B), genes covered by PMDs are expressed at lower levels than those in non-PMDs
908 in a cancer-specific manner. (C-D) Cistrome-GO enrichment analyses using either EAC-specific
909 (C) or ESCC-specific (D) PMDs and the downregulated genes within them. The top 15 most
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910 significant pathways are shown, and the number of genes enriched in each pathway is shown on
911  the right. (E) Two representative genome windows showing the methylation profiles of EAC-
912  specific (left panel) and ESCC-specific PMDs (right panel). CGI regions were masked using the
913  annotation from lIrizarry et al’®. (F) Volcano plots showing that genes residing within genome
914  domains in (E) are downregulated in corresponding cancer subtypes.
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918 Figure 4. The H3K36me2 mark is inversely associated with PMDs in a cell-type-specific

919  manner. (A) Aggregation plots of H3K36me2 ChIP-seq levels in esophageal cancer cell lines
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920 across four different PMD categories: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs,
921  shared HMDs. (B) Representative genomic loci showing H3K36me2 signal from ChIP-seq, and
922  subtype-specific PMDs from WGBS data. CGI regions were masked using the annotation from
923  Irizarry et al’®. (C) Aggregation plots of H3K36me2 ChiIP-seq levels in HNSCC cell lines across
924  four different PMD categories. Bigwig files of the H3K36me2 ChIP-seq signal were obtained from
925 GSE149670.
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928 Figure 5. Subtype-specific DMRs in esophageal cancer. (A) Cancer hypoDMRs were
929 identified from the comparison between EAC and ESCC tumors. Regions with FDR < 0.05 and
930 absolute delta methylation levels > 0.2 were identified as DMRs. (B) Density plots showing the
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931  size distribution of hypoDMRs; stacked bar plots displaying fractions of hypoDMRs that overlap
932  with different genomic features. (C-D) Aggregation plots of ATAC-seq signals from esophageal
933 cancer samples within EAC (C) or ESCC (D) hypoDMRs or random genomic regions
934  (background), which contained 10-times randomly selected regions with the same CpG density.
935 ATAC-seq signals were obtained from the TCGA and normalized with the CPM method. (E-F)
936  Cistrome-GO enrichment analyses using EAC (E) or ESCC (F) hypoDMRs and upregulated
937  genes in the corresponding subtype. Top 15 most significant pathways are shown. The number
938 of genes enriched in each pathway is shown on the right. (G-H) Transcription-factor-binding motif
939  sequences were identified by the ELMER’” method using EAC (G) or ESCC (H) hypoDMRs as
940 the foreground and random regions as the background. (I-J) The most strongly enriched TFs in
941 EAC (GATA4) (I) and ESCC (TP63) (J) were chosen for the experimental validation, using TF
942  ChlIP-seq, H3K27ac ChIP-seq and WGBS in matched cell lines. Peaks overlapping with subtype
943 hypoDMRs are shown on the left; the percentages of overlapped peaks are expressed in the

944  column plots.
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947  Figure 6. Identification of tumor-specific hypoDMRs. (A) Heatmaps showing DNA
948 methylation levels for each EAC hypoDMR. Each column denotes one sample and the
949 row was ordered by the delta mean methylation between EAC and NGEJ (left). EAC ts-
950 hypoDMRs were identified using a one-tailed t test between EAC tumor and NGEJ
951 samples (right) with the FDR cutoff < 0.05. (B) Stacked bar plots showing fractions of ts-
952 hypoDMRs that overlap with different genomic features. (C-D) Cistrome-GO enrichment
953 analyses using either EAC (C) or ESCC (D) ts-hypoDMRs and the upregulated genes in
954 each subtype compared with corresponding nonmalignant samples. Top 15 most
955 significant pathways are shown. (E) Scatter plots showing transcription-factor-binding
956  sites that were enriched in EAC ts-hypoDMRs compared with cts-hypoDMRs. The X axis
957 represents the expression fold change between EAC and matched nonmalignant GEJ

958 samples. The Y axis shows the delta enrichment score of transcription-factor-binding sites
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959 between EAC ts- and cts-hypoDMRs. Expression data were from the TCGA and motif
960 enrichment analyses were performed by the ELMER method. (F) EAC ts-hypoDMRs
961  contained significantly more HNF4A-recognition motifs compared with cts-hypoDMRs.
962 (G) More HNF4A peaks overlapped with ts-hypoDMRs than cts-hypoDMRs. Peaks were
963 called from HNF4A ChIP-seq in ESO26 and OE19 cell lines. (H) HNF4A was predicted
964  to co-occupy with the AP-1 family in ts-hypoDMRs, while with FOXA1/2 in cts-hypoDMRs.
965 Sequence motif analysis was performed using ts- vs. cts-hypoDMRs containing HNF4A
966 motifs. Significant transcription factors with FDR < 0.05 are shown. OR value over 1
967 represents higher enrichment in ts-hypoDMRs, while below 1 represents higher
968 enrichment in cts-hypoDMRs.

969
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970 *Squamous cells  *Gastrointestinal cells < Other cells
971 Figure 7. PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic
972 features. (A) Line plots showing average methylation levels for different PMD or (C)
973 hypoDMR categories comparing two types of nonmalignant esophageal samples; these
974 changes in nonmalignant samples are similar to those seen in tumors (Fig. 2C,

975 Supplementary Fig. 3D-E). (B) Volcano plots showing average methylation levels for


https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.18.504390; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

976 different PMD or (D) hypoDMR categories in nonmalignant esophageal samples. Regions
977  with significant differences were determined by two-tailed t test with the FDR cutoff < 0.1.
978 (E) UMAP plots showing cell clusters (left), ATAC-seq levels in ESCC- vs. EAC-specific
979 PMDs (middle) or in ESCC- vs. EAC-specific hypoDMRs (right). Single-cell ATAC-seq
980 values and the cluster scheme were from Zhang et al. Total cell number is 146,305. (F-
981 G) Dot plots showing, at the sample level, delta ATAC-seq values in ESCC- vs. EAC-
982  specific PMDs (F) or in ESCC- vs. EAC-specific hypoDMRs (G).

983
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Figure 8. Analyses of PMDs and hypoDMRs in pan-cancer datasets. (A-C) TCGA

986
987

tumormap showing cancer type clusters (A), DNA methylation levels in ESCC- vs. EAC-
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988 specific PMDs (B), or in ESCC- vs. EAC-specific hypoDMRs (C). DNA methylation data
989  were obtained from the TCGA project. The TCGA-based clustering scheme denotes Pan-
990 Gastrointestinal cancers (COAD, READ, STAD and EAC) and Pan-squamous cancers
991 (ESCC, HNSC, LUSC and a subset of CESC and BLCA) are shown (A). The number of
992 samples is 8,915. The detailed study name of TCGA Study Abbreviations are listed in
993  https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations

994 (D) and (E) Dot plots quantification of the methylation differences in (B) and (C),

995 respectively. (F) t-SNE plots showing cancer type clusters, (G) ATAC-seq levels in ESCC-

996 vs. EAC-specific PMDs or in (H) ESCC- vs. EAC-specific hypoDMRs across tumor

997 samples. ATAC-seq data were downloaded from the TCGA project. The number of

998 samples is 362. (I) and (J) Dot plots quantification of the ATAC-seq values in (G) and (H),

999 respectively. (K-L) Line plots and heatmaps respectively showing average and individual
1000 methylation levels in BE and EAC samples from two different public datasets.
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