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Abstract 27 

As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell 28 

carcinoma (ESCC) and adenocarcinoma (EAC), arising from distinct cells-of-origin. However, 29 

distinguishing cell-type-specific molecular features from cancer-specific characteristics has been 30 

challenging. Here, we analyze whole-genome bisulfite sequencing (WGBS) data on 45 31 

esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-32 

aware method to identify large partially methylated domains (PMDs), revealing profound 33 

heterogeneity at both the methylation level (depth) and genomic distribution (breadth) of PMDs 34 

across tumor samples. We identify subtype-specific PMDs, which are associated with repressive 35 

transcription, chromatin B compartments and high somatic mutation rate. While the genomic 36 

locations of these PMDs are pre-established in normal cells, the degree of loss is significantly 37 

higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie the 38 

genomic distribution PMDs. At a smaller genomic scale, both cell-type- and cancer-specific 39 

differentially methylated regions (DMRs) are identified for each subtype. Using binding motif 40 

analysis within these DMRs, we show that a cell-type-specific transcription factor such as HNF4A 41 

can maintain the binding sites that it establishes in normal cells, while being recruited to new 42 

binding sites with novel partners such as FOSL1 in cancer. Finally, leveraging pan-tissue single-43 

cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of the cell-44 

type-specific PMDs and DMRs identified here in esophageal cancer, are actually markers that co-45 

occur in other cancers originating from related cell types. These findings advance our 46 

understanding of the DNA methylation dynamics at various genomic scales in normal and 47 

malignant states, providing novel mechanistic insights into cell-type- and cancer-specific 48 

epigenetic regulations. 49 

  50 
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Introduction 51 

Ranking seventh in cancer incidence and sixth in mortality worldwide, esophageal carcinoma 52 

is highly aggressive and its patients have poor outcomes, with a 5-year survival rate lower than 53 

20%1,2. Esophageal cancer comprises two major histologic subtypes: squamous cell carcinoma 54 

(ESCC) and adenocarcinoma (EAC). These two subtypes have distinct clinical characteristics. 55 

ESCC occurs predominantly in the upper and mid-esophagus; EAC is prevalent in the lower 56 

esophagus near the gastroesophageal junction (GEJ) and is associated with the precursor lesion 57 

known as Barrett’s esophagus (BE). Biologically, ESCC arises from the squamous epithelial cells 58 

and has common features with other squamous cell carcinomas (SCC), such as head and neck 59 

SCC (HNSCC). In comparison, EAC has columnar cell features and shares many characteristics 60 

with tubular gastrointestinal adenocarcinomas. In particular, EAC is almost indistinguishable from 61 

GEJ adenocarcinoma in terms of genomic, biological and clinical features. 62 

Epigenetically, multiple studies have reported molecular changes in esophageal cancer, 63 

especially at the DNA methylation level3–9. For example, methylation differences across 64 

thousands of loci between ESCC and EAC were noted by The Cancer Genome Atlas (TCGA)3 65 

consortium. However, these prior works focused largely on the analyses of DNA methylation in 66 

gene promoter regions, which only make up ~6% of all CpG sites across the human genome. 67 

DNA methylation is known to play important roles in other noncoding regions, such as 68 

enhancers10, partially methylated domains (PMDs)11, as well as repetitive elements12. Therefore, 69 

the DNA methylome of esophageal cancer awaits further and comprehensive characterization 70 

through genome-wide single-base resolution approaches such as whole-genome bisulfite 71 

sequencing (WGBS). 72 

CpG island (CGI) promoter hypermethylation and global DNA hypomethylation are two 73 

epigenomic hallmarks in cancer13. In most healthy tissues, the vast majority of CpG sites (>80%) 74 

across the genome are fully methylated, except for the CpG-rich regions (e.g., CGIs) and other 75 

regulatory elements (predominantly enhancers)14. Indeed, focal demethylation is a reliable 76 

signature of gene promoters and enhancers, and their methylation levels are robustly maintained 77 

across healthy tissues. Additionally, methylation patterns of CpG sites across the genome are 78 

notably variable across various normal cell types, and can be grouped into cell-type-specific 79 

differentially methylated regions (DMRs), which are linked to cell-type-specific regulatory 80 

regions14,15. By contrast, abnormal CGI promoter hypermethylation is frequently observed in 81 

cancer, which is commonly associated with long-term and stable gene repression14. 82 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


With respect to the global methylation loss, large hypomethylated blocks, also known as 83 

PMDs, cover more than one-third of the genome and coincide with heterochromatin, chromatin 84 

“B” compartment (determined by HiC) and nuclear lamina associated domains16–18. We and others 85 

recently found that accumulation of PMD hypomethylation is linked to cumulative mitotic cell 86 

divisions, late replication timing as well as the deposition of the histone mark H3K36me319,20. 87 

Functionally, PMDs are associated with inactive gene transcription, heightened genomic 88 

instability and may be accompanied by activation of transposable elements (TEs)19,21. While 89 

incompletely understood, the majority of the PMD regions are possibly shared across 90 

developmental lineages19. However, there are enough cell-type specific PMDs to differentiate 91 

between different cancer cell types17,22,23 and between different healthy cell types24. 92 

Several important questions on cell-type- and cancer-specific DMRs and PMDs await further 93 

characterization, including: i) the degree of the regional specificity of these domains (i.e, the 94 

proportions of DMR/PMD that are cell-type- and cancer-specific), ii) the functional significance of 95 

DMRs and PMDs in cancer biology, and iii) underlying mechanisms of the alteration of DMRs and 96 

PMDs during tumorigenesis. To address these questions, we performed analyses of WGBS data 97 

generated from a cohort of 45 esophageal samples, including 21 ESCC and 5 nonmalignant 98 

esophageal squamous (NESQ) tissues, as well as 12 EAC/GEJ tumors and 7 nonmalignant GEJ 99 

(NGEJ) tissues (Fig. 1A). We chose esophageal cancer as the disease model considering that 100 

the two subtypes are developed from distinct cell-of-origins, and we hypothesized that 101 

characterization of their methylome profiles might reveal cell-type- and cancer-specific 102 

methylation changes, together with underlying epigenetic mechanisms. 103 

Results 104 

Development of a novel sequence-aware calling method to identify PMDs 105 

To characterize the esophageal cancer methylome, we analyzed WGBS profiles of 45 106 

esophageal samples from two different cancer subtypes and their corresponding nonmalignant 107 

tissues25 (Fig. 1A, Supplementary Fig. 2A). All of the nonmalignant esophageal squamous 108 

(NESQ) tissues showed high inter-sample correlation despite that they were from two different 109 

cohorts (Supplementary Fig. 2B and Supplementary Table 1). To analyze the overall 110 

methylation pattern, we first investigated the methylation level at various genomic domains (Fig. 111 

1B). As anticipated, both global hypomethylation (especially in common PMDs, defined as shared 112 

PMDs identified from 40 different cancer types19) and CGI promoter hypermethylation were 113 

observed in tumor samples. EAC tumors harbored notably higher methylation levels in CGI 114 
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promoters than ESCC tumors, in line with TCGA results showing that gastrointestinal 115 

adenocarcinoma had higher frequency of CGI hypermethylation than cancers from most other 116 

tissues26. Interestingly, most NGEJ tissues showed higher CGI promoter methylation levels than 117 

NESQ tissues, and usually even higher than ESCC tumor samples. Similar to EAC, BE samples 118 

(a recognized precursor lesion of EAC) were reported to have a hypermethylation pattern at CGI 119 

promoters7. Since our NGEJ tissues were pathologically confirmed as inflammatory tissues but 120 

devoid of apparent BE, this result suggests that CGI hypermethylation may occur in inflamed GEJ. 121 

Interestingly, CGI hypermethylation has been observed in long-term-cultured colon organoids and 122 

cells upon prolonged exposure to cigarette smoke extract27,28. These data suggest that prolonged 123 

extrinsic pressure may result in DNA methylation changes at CGIs. Repetitive elements, 124 

especially from the LINE and LTR classes, lost DNA methylation in tumors compared with 125 

nonmalignant tissues (Fig. 1B), which might be accompanied with the activation of repetitive 126 

elements in tumor samples21,29.  127 

Considering the importance of PMDs in cancer biology17,19,22,23, we sought to characterize 128 

this epigenomic domain in depth. Computational tools have been developed for the identification 129 

of PMDs, including MethPipe30 and MethylSeekR31. However, they sometimes fail or return 130 

unsatisfactory results for WGBS samples, either from tissues which have very slight 131 

hypomethylation (see Sample 1 in Fig. 1C) or tumors with near-complete methylation loss (see 132 

Sample 2 in Fig. 1C). 133 

We recently used a deep learning neural network approach to establish universal sequence 134 

features that are almost entirely predictive of CpG methylation loss or retention in PMD regions 135 

of the human genome32. We hypothesized that utilizing sequence features associated with DNA 136 

methylation loss and exploiting the variation patterns among different CpGs within PMDs could 137 

improve the predictive models used in these tools (Supplementary Fig. 1A-D; see Methods). 138 

To this end, we developed a sequence-aware PMD calling method based on the Hidden Markov 139 

Model (HMM) used in MethylSeekR (Fig. 1C; see Methods), which was termed Multi-model PMD 140 

SeekR (MMSeekR). Importantly, using tumor samples from the Blueprint consortium, we showed 141 

that MMSeekR outperformed both MethylSeekR and MethPipe (Supplementary Fig. 1E-F). 142 

Indeed, MMSeekR successfully identified PMD fractions consistently across all samples (using 143 

common PMDs as benchmark, top bar, Supplementary Fig. 1E and Supplementary Table 2). 144 

MethylSeekR performed well in general, but was noisier and failed on several samples 145 

(Supplementary Fig. 1E, red arrows). MethPipe performs poorly on samples with a small degree 146 

of PMD methylation loss; indeed, this tool failed to identify PMD in almost half of these samples 147 

(Supplementary Fig. 1E and Supplementary Table 2). PMD has been shown to exhibit cancer 148 
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type specificity22,23, which can also be used to evaluate the performance of these methods. 149 

Notably, MMSeekR almost completely separated different cancer types, while both MethylSeekR 150 

and MethPipe produced much less clean separation (Supplementary Fig. 1F). 151 

 Encouraged by these results, we next applied MMSeekR to our esophageal samples. 152 

Importantly, Principal Component Analysis (PCA) using PMDs identified by three different 153 

methods again confirmed that MMSeekR outperformed MethylSeekR and MethPipe, completely 154 

separating EAC and ESCC samples (Fig. 1D and Supplementary Fig. 1G). Interestingly, 155 

nonmalignant samples clustered together with the corresponding cancer subtype. We also 156 

provided exemplary PMDs that failed to be identified by either MethPipe (Fig. 1E) or MethylSeekR 157 

(Fig. 1F). 158 

Characterization of shared and subtype-specific PMDs in esophageal samples 159 

We performed a genome-wide annotation of PMDs on a sample-by-sample basis (Fig. 2A). 160 

Consistent with our earlier report19 and the genome-wide analysis (Fig. 1B), PMDs showed a 161 

slight decrease of DNA methylation in nonmalignant samples and lost methylation further in 162 

tumors. Notably, PMDs exhibited high inter-sample heterogeneity in both their depth (i.e., DNA 163 

methylation beta value) and breadth (i.e., genomic location). Indeed, the genome fraction covered 164 

by PMDs varied markedly across samples, ranging from 24.3% to 63.4% (Supplementary Fig. 165 

2C). We categorized these methylation domains into 4 groups based on the frequencies of their 166 

occurrence in our cohort: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs and shared 167 

HMDs (Fig. 2B and Supplementary Fig. 2D-E; also see Methods). Interestingly, EAC-specific 168 

PMDs covered significantly more of the genome than ESCC-specific PMDs (121.9Mb vs. 169 

12.4Mb). To verify our results, we used solo-WCGW CpGs, which lose methylation faster than 170 

other CpGs19, to measure the average methylation loss within the 4 domain groups. In EAC 171 

samples, shared PMDs and EAC-specific PMDs had lower methylation levels than the other two 172 

groups, as expected (Fig. 2C, left panel). Reciprocally in ESCC samples, shared PMDs and 173 

ESCC-specific PMDs had lower methylation levels (Fig. 2C, right panel). Independent cohorts 174 

from either the TCGA (Fig. 2D) or other individual studies (Supplementary Fig. 2F-G) further 175 

validated these subtype-specific patterns of DNA methylation loss. Since PMDs are associated 176 

with the HiC B compartment17,23, we next mathematically modeled the A/B chromatin 177 

compartments for each esophageal cancer subtype using a method based on the HM450k 178 

array33. Indeed, subtype-specific PMDs were enriched in B compartments in a subtype-specific 179 

manner (Fig. 2E). By contrast, shared PMDs showed, as anticipated, no such specificity 180 

(Supplementary Fig. 2H). PMD regions were also reported to have higher somatic mutation rate 181 
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compared with non-PMD regions in cancer34,35. We analyzed the whole-genome sequencing 182 

(WGS) dataset from the OCCAMS (which has the largest number of EAC samples), finding a 183 

significantly higher somatic mutation rate in EAC-specific PMDs than in either ESCC-specific 184 

PMDs or HMDs (Fig. 2F, left panel). A reciprocal pattern was observed in the largest ESCC WGS 185 

cohort (Fig. 2F, right panel). 186 

At the transcription level, PMDs are reported to be less transcriptionally active than HMDs. 187 

We confirmed that subtype-specific PMDs were associated with low levels of gene expression 188 

specifically in the corresponding subtypes (Fig. 3A-B). To explore the biological implication of 189 

subtype-specific PMDs, we performed Cistrome-GO analysis using genes which were under-190 

expressed in the subtype-specific PMD regions, finding that biological processes characteristic 191 

for the other subtype were enriched and repressed (Fig. 3C-D). Specifically, pathways of 192 

cornification, keratinocyte differentiation and epidermis development, which are central to 193 

squamous cell differentiation and function, were enriched and inactive in EAC-specific PMDs (Fig. 194 

3C). For example, many keratinocyte-specific genes were clustered within EAC-specific PMDs 195 

(Fig. 3E, left panel) and downregulated in EAC tumors (Fig. 3F, upper panel). On the other 196 

hand, pathways important for gastrointestinal cell function, such as digestive system process, 197 

intestinal absorption, lipid metabolic process and O−glycan processing, were enriched and 198 

suppressed in ESCC-specific PMDs (Fig. 3D). The right panel of Fig. 3E shows as an example 199 

that SLC2A2, which contributes to digestive system process and absorption, was located in 200 

ESCC-specific PMDs and downregulated in ESCC samples (Fig. 3F, lower panel). These results 201 

suggest that subtype-specific PMDs contain inactive genes which are associated with cell-type-202 

specific functions. 203 

H3K36me2 is inversely associated with PMDs in a cell-type-specific manner 204 

Both H3K36me2 and H3K36me3 were observed to recruit DNA methyltransferases 205 

(DNMT3A36 and DNMT3B37, respectively) to maintain DNA methylation levels in large chromatin 206 

domains. H3K36me3 is enriched in gene bodies of active transcripts, while H3K36me2 covers 207 

larger multi-gene domains. Indeed, we have previously shown that the deposition of H3K36me3 208 

is inversely associated with PMD distribution19. Here, we further hypothesized that H3K36me2 209 

also contributed to maintaining DNA methylation levels, and the histone modification by this mark 210 

might affect the genomic distribution of PMDs and HMDs. To test this, we performed H3K36me2 211 

ChIP-seq in both EAC and ESCC cell lines. Indeed, shared HMDs (black line) showed high 212 

H3K36me2 intensity in both cell types, while shared PMDs (purple line) exhibited the lowest 213 

signals (Fig. 4A). EAC-specific PMDs (blue line) had low H3K36me2 levels in EAC cells but high 214 
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H3K36me2 levels in ESCC cells. The reciprocal pattern was observed in ESCC-specific PMDs 215 

(red line). For example, H3K36me2 signals were undetectable in an EAC-specific PMD covering 216 

the loci of XR_945002.2 and XR_945004.2 in EAC cells, but were strong in ESCC (Fig. 4B, right 217 

panel). On the other hand, shared HMDs such as the one covering the VSP8 gene were 218 

decorated highly with H3K36me2 in both cell types (Fig. 4B, left panel). 219 

To further verify these results, we interrogated public H3K36me2 ChIP-seq data from 220 

HNSCC cell lines (squamous cancer highly similar to ESCC in terms of cell-of-origin and 221 

epigenome). Indeed, a similar pattern of H3K36me2 distribution to ESCC was observed in Cal27 222 

and Det562 HNSCC cells. Specifically, both shared PMDs and ESCC-specific PMDs harbored 223 

low signals in HNSCC cell lines, while high H3K36me2 levels were found in HMDs and EAC-224 

specific PMDs (Fig. 4C). However, FaDu appeared to be an outlier, showing invariably high levels 225 

across different regions (Fig. 4C), which warrants further investigation. Together, these results 226 

demonstrate a prominent depletion of H3K36me2 mark in PMDs in a cell-type-specific manner, 227 

which is likely owing to the finding that H3K36me2 promotes the maintenance of DNA methylation 228 

by recruiting DNMT3A. 229 

Subtype-specific differentially methylated regions (DMRs) in esophageal cancer 230 

We next sought to investigate differentially methylated regions (DMRs) at small genomic 231 

scales, given their direct roles in transcriptional regulation. However, our above results suggest 232 

an overwhelming, global effect of PMD hypomethylation in tumor samples, which can strongly 233 

affect the calling of focal DMRs. Indeed, PCA analysis of the most variable CpGs genome-wide 234 

revealed that PC1, the most significant component, was clearly driven by methylation loss at 235 

PMDs (Supplementary Fig. 3A). 236 

To factor out the effect of PMD hypomethylation, we masked any PMD found within two thirds 237 

of either EAC or ESCC samples (Supplementary Fig. 3B). We re-performed the PCA analysis, 238 

finding that the two cancer subtypes were completely separated by PC1, which was the most 239 

significant component and accounted for 42.2% of the total methylation variance (Supplementary 240 

Fig. 3C, left panel). In addition, nonmalignant and tumor samples were separated along PC2, 241 

and all NESQ samples were clustered closely together despite being generated from two different 242 

cohorts. Notaly, this approach removed most correlation with the global methylation level 243 

(Supplementary Fig. 3C, right panel). Thus, it is critical to remove the effects of global 244 

hypomethylation when investigating cancer-associated methylation features outside PMDs. 245 

We next identified DMRs between EAC and ESCC samples within the PMD-subtracted 246 

genome described above (~46.5% of the genome). Under the cutoff of q value < 0.05 and absolute 247 
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delta methylation change > 0.2, a total of 7,734 DMRs were hypomethylated in EAC and 5,470 in 248 

ESCC (Fig. 5A). As expected, hypomethylated DMRs (hypoDMRs) had low average methylation 249 

levels in corresponding subtypes (Supplementary Fig. 3D-E). The majority of DMRs were about 250 

1-2 kb long and located mostly in intronic and intergenic regions (Fig. 5B), similar to that of the 251 

random background (Supplementary Fig. 3F). To investigate the epigenomic characteristics of 252 

hypoDMRs, we systematically evaluated the chromatin accessibility at these regions, using the 253 

ATAC-seq data from the TCGA38 and H3K27ac ChIP-seq data from previous studies39–42. Relative 254 

to random background regions, EAC hypoDMRs were accessible exclusively in EAC samples, 255 

and ESCC hypoDMRs exclusively in ESCC samples (Fig. 5C-D). Additionally, EAC hypoDMRs 256 

had high H3K27ac signals in 70% (5/7) of EAC cell lines (Supplementary Fig. 3G). A similar 257 

observation was made in ESCC cell lines (Supplementary Fig. 3H). These data demonstrate 258 

that hypoDMR regions are associated with accessible chromatin and active histone marks. 259 

To explore the relevance of DMRs in gene transcription, we assigned each hypoDMR to the 260 

closest genes annotated by HOMER43,44, and performed correlational analyses using TCGA 261 

transcriptomic data of esophageal cancers. Consistent with prior findings43, about 30% 262 

(3,986/13,204) of the DMRs were associated with differentially expressed genes 263 

(Supplementary Fig. 3I). Expectedly, an inverse correlation between DNA methylation and gene 264 

expression accounted for the majority (~59%) of these associations, and these DMRs had a larger 265 

overlap with promoter and enhancer regions (Supplementary Fig. 3J). Importantly, functional 266 

annotation using the Cistrome-GO method revealed that subtype hypoDMRs were enriched in 267 

cell-type-specific biological processes. For example, lipid metabolic process, digestive system 268 

process and O−glycan processing, which are housekeeping functions for gastrointestinal 269 

columnar cells, were specifically enriched in EAC hypoDMRs (Fig. 5E). On the other hand, 270 

epidermis development, cornification and epithelial cell differentiation, which are unique to 271 

squamous cells, were enriched in ESCC hypoDMRs (Fig. 5F). These results indicate that a large 272 

number of hypoDMRs regulate the transcription of cell-type-specific genes. 273 

We next performed sequence motif enrichment analysis of hypoDMRs, which have 274 

previously been associated with transcription-factor-binding sites17,22,45. A number of known 275 

esophageal cell-specific transcription factors were identified, including GATA4/6, HNF4A/G, 276 

HNF1B, ELF3, EHF in EAC39,46,47 and TP63, SOX2 and MAFB in ESCC41,48 (Fig. 5G-H). To 277 

validate these results, we focused on the top-ranking transcription factors (GATA4 for EAC, TP63 278 

for ESCC). Specifically, we performed WGBS in an EAC cell line (ESO26) where we previously 279 

generated ChIP-seq data for GATA4 and H3K27ac. Indeed, GATA4 ChIP-seq peaks were 280 

associated with high H3K27ac signal, DNA hypomethylation and GATA4 binding motif sequence 281 
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(Fig. 5I). Moreover, ~20% of GATA4 peaks overlapped with EAC hypoDMRs. In sharp contrast, 282 

almost no GATA4 peaks were found in ESCC hypoDMRs (Fig. 5I, left bars). We similarly 283 

performed WGBS on an ESCC cell line (TE5), and analyzed TP63 ChIP-Seq data that we 284 

generated in the same sample. We noted consistent patterns and significant overlap with ESCC 285 

hypoDMRs in this ESCC-specific transcription factor, and almost no overlap with EAC hypoDMRs 286 

(Fig. 5J). These results demonstrate that subtype-specific DMRs are occupied by cell-type-287 

specific transcription factors and contribute to regulation of cell-type-specific functions. 288 

Identification of tumor-specific hypoDMRs 289 

To identify tumor-specific hypoDMRs from the above subtype-specific DMRs and to 290 

investigate their role in cancer biology, we next performed a methylation comparison between 291 

tumors and their corresponding nonmalignant samples for each hypoDMR. We found that 25.5% 292 

(1,972/7,734) of EAC hypoDMRs (Fig. 6A) and 12.0% (654/5,470) of ESCC hypoDMRs 293 

(Supplementary Fig. 4A) had significantly lower (FDR<0.05) methylation levels in tumors than 294 

corresponding nonmalignant samples, which were referred to as “tumor specific hypoDMRs (ts-295 

hypoDMRs)”, while the rest were referred to as “cell-type-specific DMRs (cts-hypoDMRs)”. Ts-296 

hypoDRMs were distributed in both intergenic and intronic domains, similar to hypoDMRs overall 297 

and the random background (Fig. 6B and Supplementary Fig. 4B). Between 18.0-21.4% of ts-298 

hypoDMRs were correlated with the expression of nearest genes (Supplementary Fig. 4C-D). 299 

Importantly, ts-hypoDMRs were strongly enriched in cancer-related pathways such as cell cycle 300 

progression (in both EAC and ESCC), and extracellular structure organization in ESCC (Fig. 6C-301 

D). These data suggest that ts-hypoDMRs are associated with genes which contribute to tumor-302 

specific functions. 303 

The identification of ts-hypoDMRs and cts-hypoDMRs allowed us to further investigate 304 

properties of tumor-specific regulatory regions vs. cell-type-specific regulatory regions. This is 305 

particularly helpful for the epigenetic understanding of ESCC and EAC, which contain both tumor- 306 

and cell-type-specific features. In addition, lineage-specific developmental factors have been 307 

shown to promote malignant cell states49,50, and thus it is important to distinguish their functional 308 

contribution to normal development vs. cancer biology. To this end, we performed motif 309 

enrichment analysis to identify transcription-factor-binding sites that were unique to either ts- or 310 

cts-hypoDMRs, and integrated expression patterns of the corresponding transcription factors. For 311 

EAC, this approach revealed cancer-upregulated transcription factors which favored binding ts-312 

hypoDMRs, including HNF4A, HNF4G, and FOSL1 (upper right corner of Fig. 6E). In comparison, 313 

the lower left corner of Fig. 6E contained cancer-downregulated transcription factors which 314 
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preferred occupying cts-hypoDMRs, including GATA4/6 and FOXA, which are well-recognized for 315 

their key roles in the development of gastrointestinal cell lineage51,52. The top factor for ts-316 

hypoDMR, HNF4A, had its binding motif in 46.6% ts-hypoDMRs but only 32.6% cts-hypoDMRs 317 

(Fig. 6F). Indeed, ChIP-seq data of HNF4A in EAC cell lines (ESO26 and OE19) validated this 318 

bias: HNF4A binding peaks overlapped with 14.2% ts-hypoDMRs but only 7.6% cts-hypoDMRs 319 

(Fig. 6G). To identify factors that may facilitate recruitment of HNF4A specifically to hypoDMRs, 320 

we performed enrichment analyses restricted within HNF4A-motif-containing hypoDMRs. 321 

Interestingly, AP-1 motifs (such as JUN, FOSL1, FOSL2 and FOSB) were enriched in these 322 

HNF4A+ ts-hypoDMRs, while FOXA1/2 in cts-hypoDMRs (Fig. 6H). A parallel analysis was 323 

performed in ESCC, which identified a number of tumor-specific factors, including RUNX1/3, 324 

SOX2/4 and CEBPA/B (Supplementary Fig. 4E). This distinct pattern of co-occurring motifs 325 

between ts- and cts-hypoDMRs in EAC is noteworthy, considering that AP-1 family transcription 326 

factors contribute to EAC tumor development53 while FOXA1/2 are required for normal 327 

gastrointestinal cell development52. It is also notable that our analysis identified FOSL1 as an AP-328 

1 factor due to its high tumor expression (Fig. 6E). 329 

PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic features 330 

The above data identified both cell-type- and cancer-specific methylation differences in tumor 331 

hypoDMRs, and we next asked whether tumor PMDs likewise harbor both of these two types of 332 

methylation differences. In subtype-specific PMDs that were defined based on tumor methylomes 333 

alone, nonmalignant tissues notably exhibited the same pattern of methylation changes as their 334 

malignant counterparts (Fig. 7A). For example, EAC-specific PMDs had low methylation levels in 335 

NGEJ but high in NESQ (Fig. 7A, left), and a reciprocal pattern was found in ESCC-specific 336 

PMDs (Fig. 7A, right). Statistically, a large subset of subtype-specific PMDs (33.0% for EAC and 337 

26.5% for ESCC) were already hypomethylated in their respective nonmalignant samples (Fig. 338 

7B). The same analyses for hypoDMRs confirmed that more than 80% of subtype hypoDMRs 339 

significantly decreased DNA methylation in their corresponding nonmalignant samples (Fig. 7C-340 

D). These data demonstrate that a substantial fraction of both subtype-specific PMDs and 341 

hypoDMRs identified from tumor samples reflect methylation differences present in normal 342 

counterparts. Nonetheless, while the genomic locations of PMDs are established in normal 343 

samples, the degree of methylation loss is significantly higher in tumors (Fig. 2C and 344 

Supplementary Fig. 3D). 345 

To understand further PMDs and hypoDMRs in normal samples, we analyzed public single-346 

cell ATAC-seq data from 146,305 normal epithelial cells across 24 tissues (including esophageal 347 
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samples)54, by measuring the chromatin accessibility of our subtype-specific PMDs or hypoDMRs. 348 

This is premised on the fact that focal ATAC-seq peaks are almost always DNA demethylated38, 349 

and reduced ATAC-seq signals measured in large genomic windows reflect the Hi-C B 350 

compartment which results in PMD hypomethylation17,23. The published single-cell unsupervised 351 

clustering contains a cluster of esophageal squamous epithelial cells (red dots in Fig. 7E, left 352 

panel), the recognized cell-of-origin for ESCC. With respect to EAC, although its cell-of-origin is 353 

still under intense investigation, the epigenome is likely close to gastrointestinal epithelial cells 354 

(blue dots Fig. 7E, left panel). Importantly, normal esophageal squamous cells showed the 355 

lowest chromatin accessibility in ESCC-specific PMDs; reciprocally, normal gastrointestinal 356 

epithelial cells had the lowest ATAC-Seq signals in EAC-specific PMDs (Fig. 7E, middle panel; 357 

quantified in Fig. 7F). In addition, keratinocytes, which belong to squamous cell type, also had 358 

low ATAC-Seq signals in ESCC-specific PMDs. In sharp contrast to subtype-specific PMDs, no 359 

difference was observed in either shared PMDs or HMDs in this single-cell analysis 360 

(Supplementary Fig. 5C). We performed the same analysis for hypoDMRs, finding that ESCC 361 

hypoDMRs had the highest accessibility in squamous cells while EAC hypoDMRs were more 362 

open in gastrointestinal epithelial cells (Fig. 7E, right panel; quantified in Fig. 7G). These single-363 

cell results confirmed that both PMDs and hypoDMRs have strong normal cell-type-specificity. 364 

Pan-cancer analysis of subtype-specific PMDs and hypoDMRs 365 

The above results also suggest that PMDs and hypoDMRs that we identified in ESCC and 366 

EAC may be shared with other squamous and gastrointestinal adenocarcinomas, respectively. 367 

To test this, we analyzed TCGA pan-cancer samples, since the TCGA multi-omic clustering 368 

scheme55 has identified the pan-gastrointestinal cluster (adenocarcinomas from esophagus, 369 

stomach and colon, blue samples in Fig. 8A) and the pan-squamous cluster (squamous cancers 370 

from esophagus, head and neck, lung, cervix and bladder, red samples in Fig. 8A). We first 371 

measured the methylation changes between subtype-specific PMDs and hypoDMRs across all 372 

33 cancer types (Fig. 8B-E). Importantly, most pan-gastrointestinal tumors lost DNA methylation 373 

in EAC-specific PMDs, while most pan-squamous tumors had reduced methylation in ESCC-374 

specific PMDs (Fig. 8B and 8D). Highly consistent results were observed in subtype hypoDMRs 375 

(Fig. 8C and 8E). In contrast, no specific pattern was found in shared PMDs and HMDs 376 

(Supplementary Fig. 5D), as anticipated. 377 

We next analyzed the ATAC-seq data, which is available from a small subset of TCGA bulk 378 

tumors38, shown based on multi-omic clustering from ref55 in Fig 8F. Importantly,  consistent with 379 

the single-cell ATAC-Seq results from healthy tissues, pan-squamous cancers showed the lowest 380 
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chromatin accessibility in ESCC-specific PMDs and highest accessibility in ESCC hypoDMRs, 381 

and the reciprocal results were obtained in pan-gastrointestinal cancers (Fig. 8G-J). Again, as 382 

negative controls, shared PMDs and HMDs failed to generate this distinguishing epigenetic 383 

pattern (Supplementary Fig. 5E). 384 

These results prompted us to further investigate premalignant lesions, with the hypothesis 385 

that these methylation changes are pre-established in normal cells and preserved during the 386 

onset of neoplastic transformation. To address this, we interrogated public methylation data on 387 

BE, a recognized precursor to EAC, from two different studies7,8. Importantly, the methylation 388 

patterns of BE samples were highly comparable with EAC tumors, showing reduced methylation 389 

levels in both EAC-specific PMDs and hypoDMRs in two different cohorts (Fig. 8K-L). Overall, 390 

these data strongly suggest that epigenomic changes of PMDs and hypoDMRs occur in normal 391 

cells and are maintained in cancer, which further loses methylation in PMDs and gains additional 392 

DMRs. Moreover, these region-specific epigenomic regulations are shared across related cell 393 

types. 394 

Discussion 395 

 We generated one of the largest WGBS datasets in esophageal cancer to date, and here 396 

we focused on the analyses of PMDs (large scale) and DMRs (small scale) and revealed novel 397 

epigenomic properties of these regions. PMDs are megabase-long genomic regions with 398 

decreased DNA methylation, coinciding with heterochromatic late-replicating domains and Hi-C 399 

B domains17. PMDs reflect long-range chromatin organization that help orchestrate gene 400 

expression programs and can influence replication timing and 3D genome organization24,33,56–401 
58. In addition, PMDs are associated with increased genomic instability and possibly activation of 402 

transposable elements (TEs)19,21. Nevertheless, apart from these correlational observations, we 403 

have only limited mechanistic understanding of the origin and regulation of cancer PMD. 404 

Moreover, direct mechanisms linking PMDs to gene transcription remain to be established. Thus, 405 

a deeper characterization of PMD is warranted, which first requires an accurate and sensitive 406 

identification of these large domains from WGBS data. However, current PMD callers, including 407 

MethylSeekR and MethPipe, either are insensitive for the identification of shallow PMDs, or fail to 408 

call PMDs in tumor samples with extreme hypomethylation. 409 

We have previously demonstrated that a local sequence context (solo-WCGW) is a strong 410 

determinant of DNA methylation loss at CpGs19. Extending this finding, we recently performed 411 

deep learning using the neural network method, and established universal sequence context 412 
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features influencing the hypomethylation of CpGs across the genome32. Here, we integrated this 413 

sequence code into the MethylSeekR program and developed a novel multi-model PMD caller, 414 

MMSeekR. Using both the Blueprint tumor WGBS dataset and our esophageal samples, we 415 

demonstrated a superior performance of MMSeekR over other current tools. In order to facilitate 416 

methodological development in the field of methylome investigation, we have made MMSeekR 417 

available at Github as a free software package (https://github.com/yuanzi2/MMSeekR). 418 

The degree of variation of PMD methylation levels (depth) and genomic distribution (breadth) 419 

between cancer types was hitherto unclear. Here we observed strong heterogeneity at the PMD 420 

methylation level across cancer samples, while nonmalignant samples harbored expectedly 421 

shallow PMDs. Moreover, the genome fraction covered by PMDs varied profoundly among 422 

different samples, ranging from 24.3% to 63.4%. We identified and characterized subtype-specific 423 

PMDs, finding that they were associated with repressive transcription, B compartments and high 424 

somatic mutation rate. We previously identified replication timing as a key determinant for 425 

methylation loss in PMDs19. However, this does not account for the variation in PMD genomic 426 

distribution across cell types. By investigation of the genome-wide occupancy of H3K36me2 in 427 

different cell types, we noted that H3K36me2 deposition correlated positively with HMD 428 

localization, while negatively with PMD in a cell-type-specific manner. Considering that 429 

H3K36me2 is able to recruit DNMT3A to maintain the level of DNA methylation36, these results 430 

suggest that cell-type-specific deposition of H3K36me2 mark facilitates the maintenance of DNA 431 

methylation, thereby dictating the genomic distribution of HMDs and PMDs. 432 

At a smaller genomic scale, we identified over ten thousand hypoDMRs between the two 433 

subtypes of esophageal cancer. Utilizing their matched nonmalignant samples, we further defined 434 

cell-type- vs. cancer-specific hypoDMRs. Using motif sequence analysis combined with ChIP-435 

seq, we identified and validated candidate upstream regulators associated with either cell-type- 436 

or cancer-specific hypoDMRs. This approach is important for understanding of the transcriptional 437 

regulation during tumor development, particularly because increasing evidence has shown that 438 

tumor-driving transcription factors are often lineage-specific developmental regulators functionally 439 

co-opted to promote malignant cellular states49,50. For example, our top candidate, HNF4A, is 440 

essential for the epithelial differentiation of the gastrointestinal tract. Consistently, we found that 441 

a substantial subset of cell-type-specific hypoDMRs contained HNF4A-binding sequence; these 442 

HNF4A+ cell-type-specific hypoDMRs were also co-enriched for transcript factors indispensable 443 

for normal gut development, such as FOXA1 (Fig. 6H). Importantly, compared with cell-type-444 

specific hypoDMRs, HNF4A-binding sequence was significantly more enriched in tumor-specific 445 

hypoDMRs (Fig. 6H). Moreover, instead of FOXA1, these HNF4A+ tumor-specific hypoDMRs 446 
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were co-enriched for AP-1 factors, which are well-recognized for their function in promoting EAC 447 

malignancy53, similar to HNF4A itself46,47. Consistently, one of the AP1 factors, FOSL1, has highly 448 

enriched binding sites in tumor-specific hypoDMRs as well as upregulated mRNA expression in 449 

EAC tumors relative to NGEJ. Together, careful dissection of cell-type- and cancer-specific 450 

hypoDMRs suggest that lineage master regulators control both normal and tumor cell 451 

transcriptomes, likely by occupying different genomic regions through cooperating with different 452 

transcriptional factor partners. 453 

We further characterized the cell-type-specificity of PMDs and DMRs in normal cells. Starting 454 

from esophageal samples, we found that a large fraction of methylation changes in both PMDs 455 

and DMRs were already evident in normal samples. Pan-tissue single-cell ATAC-seq with 456 

145,594 normal epithelial cells further showed that both PMDs and DMRs identified in esophageal 457 

cancer had strong specificity that was evident in related cell types. This was also observed in pan-458 

cancer analyses of both methylation and ATAC-seq data from primary tumors, wherein cancers 459 

originating from related cell types exhibited similar profiles of both PMDs and DMRs. Moreover, 460 

by measuring cancer precursor lesions, we demonstrated that epigenomic changes of PMDs and 461 

DMRs were preserved during the onset of neoplastic transformation. Nonetheless, PMDs in 462 

normal samples were much shallower than tumors (Fig. 2A and Fig 2C vs. Fig.7A). Overall, 463 

these data highlight the presence of cell-type-specific PMDs and DMRs in normal cell types, which 464 

are preserved in malignant cells. To our knowledge, this is the first demonstration of the prominent 465 

cell-type-specificity of PMDs across normal, precursor and malignant states. While prior studies 466 

have revealed that DMRs contain tissue-specific regulatory regions, here we present a paradigm 467 

for distinguishing cell-type- vs. cancer-specific regions, and use those to identify tumor-specific 468 

regulatory mechanisms. 469 

Methods 470 

Cell culture 471 

Esophageal cancer cell lines, TE5, KYSE70, OE19 and ESO26, were grown in RPMI-1640 472 

medium (Gibco, USA), supplemented with 10% FBS (Omega Scientific, USA) and 1% penicillin-473 

streptomycin (Thermo Scientific, USA). All cultures were maintained in a 37 °C incubator 474 

supplemented with 5% CO2. 475 

Whole genome bisulfite sequencing (WGBS) 476 
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WGBS of ESO26 or TE5 cells was performed at Novogene, Inc. Briefly, after DNA extraction 477 

and quality control (QC), 3 ug DNA of ESO26 or TE5 cells spiked with 26 ng lambda DNA were 478 

fragmented by sonication. The sonicated DNA was ligated with different cytosine-methylated 479 

molecular barcodes. Next, bisulfite conversion was performed using EZ DNA Methylation-GoldTM 480 

Kit (Zymo Research). PCR amplification with KAPA HiFi HotStart Uracil+Ready Mix (Kapa 481 

Biosystems) was then applied to the DNA fragments. The clustering of index-coded DNA samples 482 

were sequenced using the Illumina Hiseq 2500 platform. 483 

H3K36me2 chromatin immunoprecipitation sequencing (ChIP-Seq) 484 

Ten million esophageal cancer cells were harvested and transferred into 15 ml tubes, 485 

followed by fixing with 4 ml of 1% paraformaldehyde for 10 min under room temperature. The 486 

reaction was stopped by 2 ml of 250 mM of glycine. Cell samples were rinsed twice by 1X PBS 487 

and lysed by 1 ml of 1X lysis/wash buffer (150 mM NaCl, 0.5 M EDTA pH 7.5, 1M Tris pH 7.5, 488 

0.5% NP-40). Cell pellets were next resuspended using shearing buffer (1% SDS, 10 mM EDTA 489 

pH 8.0, 50 nM Tris pH 8.0) followed by sonication using a Covaris sonicator. Subsequently, debris 490 

was removed by centrifuge and supernatants were diluted five times with the buffer containing 491 

0.01% SDS, 1% Triton X-100, 1.2 mM EDTA pH 8.0, 150 nM NaCl. 1 ug of the H3K36me2 492 

antibody (Cell Signaling Technology, USA, Cat# 2901S) was added and incubated by rotation at 493 

4℃ overnight. Protein G Dynabeads (Life Technologies, USA) were added the next morning and 494 

incubated by rotation for an additional 4 hours. Dynabeads were next washed with 1X wash buffer 495 

followed by cold TE buffer. DNAs were reverse crosslinked, purified, followed by library 496 

preparation and deep sequencing using the Illumina HiSeq platform. 497 

Data sources 498 

DNA methylome of esophageal samples were obtained from our recent work25, including 499 

WGBS on 21 ESCC, 3 NESQ, 5 EAC, 7 GEJ tumors and 7 NGEJ tissues. We obtained additional 500 

two NESQ samples from the ENCODE consortium to ensure statistical power. Considering the 501 

indistinguishable clinical and molecular characteristics between EAC and GEJ tumors, in the 502 

present study they were combined as the same subtype (referred to as EAC), which is a common 503 

strategy in the field3. TCGA Pan-cancer DNA methylome derived from HM450k methylation array 504 

was downloaded from GDC v16.0 by TCGAbiolinks package (version 2.13.6)59. Other DNA 505 

methylation data from individual studies, including EAC EPIC array data from the Oesophageal 506 

Cancer Clinical and Molecular Stratification (OCCAMS) consortium (EGAD00010001822)9, EAC 507 
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and BE methylome from GSE728747 and GSE813348, along with ESCC tumor WGBS data 508 

(GSE149608)6, were analyzed for validation purposes in this study. 509 

Other public datasets which were analyzed included: bulk ATAC-seq data of pan-cancer 510 

samples from TCGA38, single-cell ATAC-seq data across different adult human tissues 511 

(GSE184462)54, H3K27ac ChIP-seq in EAC samples (GSE132680)39, EAC cell lines (ESO26, 512 

FLO1, JH-EsoAd1, OACp4C, OE19, OE33, SKGT4 from GSE132680)39 and ESCC cell lines 513 

(KYSE140, KYSE70, TE5 from GSE10656340; KYSE150, KYSE180, KYSE200 from 514 

GSE13149041; TE7 from GSE10643342), HNF4A ChIP-seq in OE19 (E-MTAB-6858)46 and ESO26 515 

cell lines (GSE132813)47, GATA4 ChIP-seq in ESO26 cell line (GSE132813)47 and TP63 ChIP-516 

seq in TE5 cell line (GSE148920)41. H3K36me2 bigwig files of wildtype (NSD1-WT) HNSCC cell 517 

lines were downloaded from GSE14967060. Somatic mutation datasets were downloaded from 518 

individual studies9,61. We also retrieved the transcriptomic data of esophageal cancer from the 519 

TCGA consortium and GSE1496096. 520 

CGI promoters are annotated as regions ranging from 250 bp upstream to 500 bp 521 

downstream of any TSSs overlapping with Takai CGIs62. Repetitive elements, including long 522 

interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) and long 523 

terminal repeats (LTR), were extracted from UCSC website (http://hgdownload.soe.ucsc.edu). 524 

We downloaded the annotation of common PMDs  (defined as shared PMDs identified from 40 525 

different cancer types)19 as well as solo-WCGW from https://zwdzwd.github.io/pmd19 and 526 

ENCODE blacklist regions from https://github.com/Boyle-Lab/Blacklist/tree/master/lists63. All of 527 

the annotations were converted to the hg38 version using the UCSC LiftOver script 528 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). The human core transcription-factor-binding 529 

sequences in the HOMOCOMO database (version 11) were used for motif annotation64. 530 

DNA methylation data analysis 531 

For WGBS data, raw reads were mapped to the human genome (GRCh38) by Biscuit align 532 

command (version 0.1.4, https://www.githubcom/zwdzwd/biscuit) with default settings. Mapped 533 

reads were sorted by genome position, and duplicates were marked using Picard MarkDuplicates 534 

tool (version 1.136, http://broadinstitute.github.io/picard/). Biscuit pileup and vcf2bed command 535 

were then used to extract DNA methylation information. All CpG sites with a coverage >=3 536 

informative reads and outside of the ENCODE blacklist regions were retained for downstream 537 

analyses. For EPIC and HM450K array data, methylation of each probe was extracted using the 538 

SeSAME package with noob and dyeBiasCorrTypeINorm function for background subtraction and 539 

dye bias correction65. According to the annotation of Infinium DNA methylation arrays66, 540 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


recommended general masking probes were removed. HM450K methylation data were used to 541 

estimate the chromatin B compartments using minfi compartments function with 542 

“resolution=100*1000, what = “OpenSea”” options33. 543 

Development of a sequence-aware PMD calling method: Multi-model PMD SeekR 544 

(MMSeekR) 545 

We recently performed neural network-based machine learning to establish local DNA 546 

sequence features of CpGs that were associated with global DNA methylation loss, and derived 547 

a neural network (NN) score for each CpG across the human genome32. In order to exclude the 548 

potential impact of high CpG density (such as CpG island), we reserved CpGs having 2 or fewer 549 

neighboring CpGs within the 151 bp window centered on the reference CpG. We investigated the 550 

correlation between NN scores and methylation in individual samples in non-overlapping 201-551 

CpG windows across the genome. As expected, due to the greater degree of methylation loss 552 

within PMDs, there was a strong negative correlation between DNA methylation levels and NN 553 

scores within windows in PMDs, in contrast to much more modest correlations within highly 554 

methylated domains (HMD) windows (Supplementary Fig. 1A). 555 

We next applied Pearson correlation coefficient (PCC) between our NN score and DNA 556 

methylation, as well as the “alpha score” used in the MethylSeekR model, to 201-CpG windows 557 

genome-wide. Compared with the NN score, the MethylSeekR alpha score is a very different 558 

measurement, returning a high score if the distribution of methylation values is closer to a 559 

unimodal beta distribution centered on 0.5 (typical of PMDs) than it is to a bimodal methylation 560 

value distribution close to 0 and 1 (typical of HMDs). Specifically, we applied a Hidden Markov 561 

Model (HMM) segmentation (as in MethylSeekR) to each model independently, and found that 562 

both the PCC and MethylSeekR alpha score showed bimodal distributions for the testing sample 563 

(Supplementary Fig. 1B-C). We hypothesized that since the PCC and the alpha score were very 564 

different models, combining them might improve the performance of PMD calling 565 

(Supplementary Fig. 1D). Thus we developed a “2-dimensional (2D)” model accordingly (Fig. 566 

1C). This 2D model performed comparably well or better than either MethylSeekR or MethPipe in 567 

most cases, returning results consistently and highly overlapping with common PMDs 568 

(Supplementary Table 2). 569 

While the 2D model generally performed well, we did note that it failed in a few samples with 570 

extreme methylation loss. Interestingly, these failed cases universally showed PMD methylation 571 

values very close to 0, which would be expected to violate the assumptions of both the PCC model 572 

and alpha model due to lack of variance within PMDs (Fig. 1C right part). We thus postulated 573 
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the raw methylation values (transformed to an M-value to disperse scores close to 0 and 1) might 574 

provide additional predictive power in certain samples with extreme methylation loss, and we 575 

developed a 3D model accordingly by adding the M-value model to the 2D model. In order to 576 

decide whether the 2D or 3D model should be applied for any given sample, we first measured 577 

the methylation values of all CpGs with 2 or fewer neighboring CpGs within a 151bp window, 578 

which excludes most CpG islands, and contains a set of CpGs that are strongly associated with 579 

PMD hypomethylation19. If the bottom 10th percentile of these CpGs had a methylation value 580 

below 0.025, the 3D model was selected, otherwise, the 2D model was selected. This was based 581 

on the observation that the majority of samples with extreme methylation loss failed under both 582 

the MethylSeekR and MMSeekR 2D model (Fig. 1C). 583 

Application of MMSeekR to WGBS data 584 

MMSeekR was applied to call PMDs in each WGBS sample. Before PMD calling, CpG sites 585 

with coverage of fewer than 5 informative reads were excluded. Then ENCODE blacklist regions 586 

were subtracted from the resulting PMDs. Within each esophageal cancer subtype, PMDs 587 

generated from each sample were integrated using bedtools multiinter function (version 2.27.1, 588 

https://bedtools.readthedocs.io/en/latest/). The common PMD set for each subtype contained 589 

those occurring in at least two-thirds of samples from that subtype. We further defined subtype-590 

specific PMDs as those common PMDs from one subtype that were detected in fewer than one-591 

third of samples in the other subtype. Meanwhile, PMDs that were in both the common EAC set 592 

and the common ESCC set were denoted as shared PMDs. Regions that were PMDs in <1/3 593 

samples of both subtypes were denoted as shared HMDs. 594 

Identification and characterization of DMRs 595 

Regions belonging to either the common ESCC or common EAC PMD sets were masked 596 

out from the DMR analysis. The Dmrseq package (version 1.10.0)67 was used to identify DMRs 597 

between ESCC and EAC tumors with the following parameters: cutoff =0.1, bpSpan=1000, 598 

minInSpan=30, maxPerms=500. Since the coverage information of each CpG site is required by 599 

dmrseq for statistical inference, here we included all CpG sites with >= 3 informative reads. 600 

Regions with q value < 0.05 and absolute delta methylation change > 0.2 were identified as DMRs. 601 

For hypomethylated DMRs (hypoDMRs) from each cancer subtype, we further performed one-602 

tailed t-tests comparing the mean methylation within the DMR in nonmalignant vs. tumor samples, 603 

and those with FDR<0.1 were considered as tumor-specific (ts)-hypoDMRs. Both hypoDMRs and 604 

ts-hypoDMRs were annotated using HOMER annotatePeaks.pl script (version 4.9.1)44. 605 
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Calculation of mean DNA methylation levels 606 

CpG sites with a coverage of at least 5 informative reads were used for this calculation. 607 

Average methylation levels of CpG sites across the genome (global level), within CGI promoters, 608 

commonPMDs, SINE, LINE and LTR in each sample were calculated independently. Besides, we 609 

obtained the mean methylation of CpG sites in non-PMD regions. For genome/domain-wide 610 

visualization, the average methylation of 10-kb consecutive non-overlapping tiles was shown. To 611 

calculate the mean methylation levels within shared PMDs/HMDs, EAC-specific PMDs and 612 

ESCC-specific PMDs, solo-WCGW CpG sites/probes were used. 613 

Principal component analysis of WGBS data 614 

PMDs were identified by either MethPipe, MethylSeekR or MMseekR (Fig. 1D). The whole 615 

genome was split into 30-kb consecutive but non-overlapping tiles. For each tile, the ratio 616 

overlapping with any PMD was calculated for each caller. The top 5,000 most variable 30-kb tiles 617 

from each PMD caller were used in Principal component analysis (PCA). In Supplementary Fig. 618 

3A and 3B, CpG sites with at least 7 reads across all esophageal samples were used. Then the 619 

top 8,000 most variable CpG sites were selected for PCA using the R prcomp function. PCA was 620 

performed before and after masking the combined common PMDs from EAC and ESCC, and 621 

generated the point plots by ggplot2 package (version 3.1.0). 622 

RNA-seq data analysis 623 

According to the raw read counts obtained from the TCGA, we identified significant 624 

upregulated genes by DESeq2 package (version 1.22.2) with adjusted p-value < 0.05, fold 625 

change > 1.5 and mean FPKM >1 in the corresponding sample groups68. For expression datasets 626 

of nonmalignant squamous and ESCC tissues, raw reads were aligned to GRCh38 using HISAT2 627 

(version 2.0.4)69 and quantified by htseq-count program (version 0.11.2) at default setting. 628 

Significant upregulated genes were identified using the same method as for the TCGA datasets. 629 

ChIP-seq data analysis 630 

Raw reads were mapped to GRCh38 (ENSEMBL release 84) using BWA mem program 631 

(version 0.7.15) with the default options70. Then the mapped reads were sorted using SAMtools 632 

program (version 1.3.1)71, followed by removing PCR duplicates and blacklist regions by Picard 633 

MarkDuplicates tool and bedtools (version 2.27.1). MACS2 (Model-Based Analysis of ChIP-Seq, 634 

version 2.1.2) were applied to call peaks with the default setting for transcription factors, ''-q 0.01–635 

extsize = 146 –nomodel'' options for H3K27ac and ''--broad -p 0.01 --extsize=146 --nomodel'' for 636 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


H3K36me272. Bigwig files were generated by deepTools bamCompare function (version 3.1.3) 637 

with “--operation subtract --normalizeUsing CPM --extendReads 146 --binSize 20” parameters73. 638 

Average signals of shared PMDs/HMDs, EAC-only PMDs and ESCC-only PMDs in each 639 

H3K27ac or H3K36me2 ChIP-seq sample were extracted from bigwig files using deepTools 640 

computeMatrix function with ''scale-regions'' option. 641 

ATAC-seq data analysis 642 

For bulk pan-cancer ATAC-seq data obtained from the TCGA project, the average 643 

accessibility of regions/domains was extracted from the available bigwig files using deepTools 644 

computeMatrix function38. To avoid the influence of scaling factors across different samples and 645 

batches, the mean accessibility across the whole genome in each sample was calculated and 646 

used for normalization. For single cell ATAC-seq data, based on the clustering and annotation 647 

results from the publication54, only epithelial cell types were used for further analysis. Similarly, 648 

the average accessibility of regions/domains was derived for each cell in each sample and 649 

normalized by the mean signal across the whole genome. 650 

DMR motif enrichment analysis 651 

For each hypoDMR or ts-hypoDMR, we randomly sampled 10 regions with the same size 652 

and number of CpGs to define the background set. Then motif searching of both DMRs and 653 

background regions was performed using HOMER annotatePeaks.pl with ''-noann -m 654 

HOCOMOCOv11_core_HUMAN_mono_homer_format_0.0001.motif'' parameters44. The 655 

ELMER method was next applied to identify potential transcription-factor-binding sequences and 656 

the top 15 transcription factors with q-value < 0.05 and FPKM > 5 in the corresponding cancer 657 

subtype were reserved for further analysis74. 658 

Pathway enrichment analysis 659 

We performed the pathway (Biological Process) enrichment analysis by Cistrome-GO75 using 660 

candidate regions with methylation changes and differential expression analysis results. For 661 

hypoDMR analysis, subtype-specific DMRs and upregulated genes in the corresponding tumors 662 

were used as input data. For subtype-specific PMDs, the input data contained PMD regions and 663 

downregulated genes in the corresponding tumors. The top 15 enriched pathways with q value < 664 

0.05 were shown. 665 

Code Availability 666 
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Source code for MMSeekR is available at https://github.com/yuanzi2/MMSeekR. Source 667 

code for WGBS data analysis and figure reproduction is in 668 

https://github.com/yuanzi2/ESCA_WGBS_analysis. 669 

Data Availability 670 

WGBS data and ChIP-seq data for H3K36me2 in EAC and ESCC cell lines were available 671 

at GSE210220. 672 

 673 

Reference 674 

1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and 675 

Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71, 209–249 676 

(2021). 677 

2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. 678 

Clin. 71, 7–33 (2021). 679 

3. Cancer Genome Atlas Research Network et al. Integrated genomic characterization of 680 

oesophageal carcinoma. Nature 541, 169–175 (2017). 681 

4. Talukdar, F. R. et al. Genome-Wide DNA Methylation Profiling of Esophageal Squamous 682 

Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential 683 

Cancer Markers. Cancer Res. 81, 2612–2624 (2021). 684 

5. Teng, H. et al. Inter- and intratumor DNA methylation heterogeneity associated with lymph 685 

node metastasis and prognosis of esophageal squamous cell carcinoma. Theranostics 10, 686 

3035–3048 (2020). 687 

6. Cao, W. et al. Multi-faceted epigenetic dysregulation of gene expression promotes 688 

esophageal squamous cell carcinoma. Nat. Commun. 11, 3675 (2020). 689 

7. Krause, L. et al. Identification of the CIMP-like subtype and aberrant methylation of 690 

members of the chromosomal segregation and spindle assembly pathways in esophageal 691 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


adenocarcinoma. Carcinogenesis 37, 356–365 (2016). 692 

8. Yu, M. et al. Subtypes of Barrett’s oesophagus and oesophageal adenocarcinoma based 693 

on genome-wide methylation analysis. Gut 68, 389–399 (2019). 694 

9. Jammula, S. et al. Identification of Subtypes of Barrett’s Esophagus and Esophageal 695 

Adenocarcinoma Based on DNA Methylation Profiles and Integration of Transcriptome and 696 

Genome Data. Gastroenterology 158, 1682–1697.e1 (2020). 697 

10. Angeloni, A. & Bogdanovic, O. Enhancer DNA methylation: implications for gene regulation. 698 

Essays Biochem. 63, 707–715 (2019). 699 

11. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic 700 

differences. Nature 462, 315–322 (2009). 701 

12. Slotkin, R. K., Keith Slotkin, R. & Martienssen, R. Transposable elements and the 702 

epigenetic regulation of the genome. Nature Reviews Genetics vol. 8 272–285 (2007). 703 

13. Baylin, S. B. & Jones, P. A. Epigenetic Determinants of Cancer. Cold Spring Harb. 704 

Perspect. Biol. 8, (2016). 705 

14. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: In the right place at the right 706 

time. Science 361, 1336–1340 (2018). 707 

15. Karlow, J. A., Miao, B., Xing, X., Wang, T. & Zhang, B. Common DNA methylation 708 

dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic 709 

alterations in tumorigenesis. Commun Biol 4, 607 (2021). 710 

16. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer 711 

types. Nat. Genet. 43, 768–775 (2011). 712 

17. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range 713 

hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. 714 

Genet. 44, 40–46 (2011). 715 

18. Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain 716 

formation and gene silencing in breast cancer. Genome Res. 22, 246–258 (2012). 717 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell 718 

division. Nat. Genet. 50, 591–602 (2018). 719 

20. Duran-Ferrer, M. et al. The proliferative history shapes the DNA methylome of B-cell tumors 720 

and predicts clinical outcome. Nat Cancer 1, 1066–1081 (2020). 721 

21. Hur, K. et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to 722 

activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63, 635–646 723 

(2014). 724 

22. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA 725 

methylation sequencing. Nature 510, 537–541 (2014). 726 

23. Brinkman, A. B. et al. Partially methylated domains are hypervariable in breast cancer and 727 

fuel widespread CpG island hypermethylation. Nat. Commun. 10, 1749 (2019). 728 

24. Salhab, A. et al. A comprehensive analysis of 195 DNA methylomes reveals shared and 729 

cell-specific features of partially methylated domains. Genome Biol. 19, 150 (2018). 730 

25. Pan, F. et al. Characterization of epigenetic alterations in esophageal cancer by whole-731 

genome bisulfite sequencing. bioRxiv 2021.12.05.471340 (2021) 732 

doi:10.1101/2021.12.05.471340. 733 

26. Liu, Y. et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer 734 

Cell 33, 721–735.e8 (2018). 735 

27. Tao, Y. et al. Aging-like Spontaneous Epigenetic Silencing Facilitates Wnt Activation, 736 

Stemness, and Braf-Induced Tumorigenesis. Cancer Cell 35, 315–328.e6 (2019). 737 

28. Vaz, M. et al. Chronic Cigarette Smoke-Induced Epigenomic Changes Precede 738 

Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS 739 

Mutations. Cancer Cell 32, 360–376.e6 (2017). 740 

29. Ehrlich, M. & Lacey, M. DNA hypomethylation and hemimethylation in cancer. Adv. Exp. 741 

Med. Biol. 754, 31–56 (2013). 742 

30. Decato, B. E. et al. Characterization of universal features of partially methylated domains 743 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


across tissues and species. Epigenetics Chromatin 13, 39 (2020). 744 

31. Burger, L., Gaidatzis, D., Schübeler, D. & Stadler, M. B. Identification of active regulatory 745 

regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013). 746 

32. Bar, D. et al. A local sequence signature defines a subset of heterochromatin-associated 747 

CpGs with minimal loss of methylation in healthy tissues but extensive loss in cancer. 748 

bioRxiv 2022.08.16.504069 (2022) doi:10.1101/2022.08.16.504069. 749 

33. Fortin, J.-P. & Hansen, K. D. Reconstructing A/B compartments as revealed by Hi-C using 750 

long-range correlations in epigenetic data. Genome Biol. 16, 180 (2015). 751 

34. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional 752 

mutation rates in human cancer cells. Nature 488, 504–507 (2012). 753 

35. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-754 

associated genes. Nature 499, 214–218 (2013). 755 

36. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the 756 

intergenic DNA methylation landscape. Nature 573, 281–286 (2019). 757 

37. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 758 

543, 72–77 (2017). 759 

38. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. 760 

Science 362, (2018). 761 

39. Chen, L. et al. Master transcription factors form interconnected circuitry and orchestrate 762 

transcriptional networks in oesophageal adenocarcinoma. Gut 69, 630–640 (2020). 763 

40. Jiang, Y. et al. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 764 

promotes squamous cancer progression. Nat. Commun. 9, 3619 (2018). 765 

41. Jiang, Y.-Y. et al. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That 766 

Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma 767 

Cell Lines. Gastroenterology 159, 1311–1327.e19 (2020). 768 

42. Xie, J.-J. et al. Super-Enhancer-Driven Long Non-Coding RNA LINC01503, Regulated by 769 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


TP63, Is Over-Expressed and Oncogenic in Squamous Cell Carcinoma. Gastroenterology 770 

154, 2137–2151.e1 (2018). 771 

43. Espinet, E. et al. Aggressive PDACs Show Hypomethylation of Repetitive Elements and the 772 

Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discov. 11, 773 

638–659 (2021). 774 

44. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-775 

regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 776 

(2010). 777 

45. Aran, D., Sabato, S. & Hellman, A. DNA methylation of distal regulatory sites characterizes 778 

dysregulation of cancer genes. Genome Biol. 14, R21 (2013). 779 

46. Rogerson, C. et al. Identification of a primitive intestinal transcription factor network shared 780 

between esophageal adenocarcinoma and its precancerous precursor state. Genome Res. 781 

29, 723–736 (2019). 782 

47. Pan, J. et al. Lineage-Specific Epigenomic and Genomic Activation of Oncogene HNF4A 783 

Promotes Gastrointestinal Adenocarcinomas. Cancer Res. 80, 2722–2736 (2020). 784 

48. Lopez-Pajares, V. et al. A LncRNA-MAF:MAFB transcription factor network regulates 785 

epidermal differentiation. Dev. Cell 32, 693–706 (2015). 786 

49. Reddy, J. et al. Predicting master transcription factors from pan-cancer expression data. 787 

Sci Adv 7, eabf6123 (2021). 788 

50. Sanda, T. et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in 789 

human T cell acute lymphoblastic leukemia. Cancer Cell 22, 209–221 (2012). 790 

51. Walker, E. M., Thompson, C. A. & Battle, M. A. GATA4 and GATA6 regulate intestinal 791 

epithelial cytodifferentiation during development. Dev. Biol. 392, 283–294 (2014). 792 

52. Ye, D. Z. & Kaestner, K. H. Foxa1 and Foxa2 control the differentiation of goblet and 793 

enteroendocrine L- and D-cells in mice. Gastroenterology 137, 2052–2062 (2009). 794 

53. Britton, E. et al. Open chromatin profiling identifies AP1 as a transcriptional regulator in 795 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


oesophageal adenocarcinoma. PLoS Genet. 13, e1006879 (2017). 796 

54. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 797 

184, 5985–6001.e19 (2021). 798 

55. Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 799 

Tumors from 33 Types of Cancer. Cell 173, 291–304.e6 (2018). 800 

56. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments 801 

in cardiac myocytes. Nat. Commun. 8, 1667 (2017). 802 

57. Du, Q. et al. DNA methylation is required to maintain both DNA replication timing precision 803 

and 3D genome organization integrity. Cell Rep. 36, 109722 (2021). 804 

58. Johnstone, S. E. et al. Large-Scale Topological Changes Restrain Malignant Progression in 805 

Colorectal Cancer. Cell 182, 1474–1489.e23 (2020). 806 

59. Mounir, M. et al. New functionalities in the TCGAbiolinks package for the study and 807 

integration of cancer data from GDC and GTEx. PLoS Comput. Biol. 15, e1006701 (2019). 808 

60. Farhangdoost, N. et al. Chromatin dysregulation associated with NSD1 mutation in head 809 

and neck squamous cell carcinoma. Cell Rep. 34, 108769 (2021). 810 

61. Cui, Y. et al. Whole-genome sequencing of 508 patients identifies key molecular features 811 

associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 30, 812 

902–913 (2020). 813 

62. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 814 

21 and 22. Proc. Natl. Acad. Sci. U. S. A. 99, 3740–3745 (2002). 815 

63. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of 816 

Problematic Regions of the Genome. Sci. Rep. 9, 9354 (2019). 817 

64. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor 818 

binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids 819 

Res. 46, D252–D259 (2018). 820 

65. Zhou, W., Triche, T. J., Jr, Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection 821 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, 822 

e123 (2018). 823 

66. Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and 824 

innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45, e22 825 

(2017). 826 

67. Korthauer, K., Chakraborty, S., Benjamini, Y. & Irizarry, R. A. Detection and accurate false 827 

discovery rate control of differentially methylated regions from whole genome bisulfite 828 

sequencing. Biostatistics 20, 367–383 (2019). 829 

68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 830 

RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 831 

69. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory 832 

requirements. Nat. Methods 12, 357–360 (2015). 833 

70. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 834 

(2013). 835 

71. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–836 

2079 (2009). 837 

72. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). 838 

73. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data 839 

analysis. Nucleic Acids Res. 44, W160–5 (2016). 840 

74. Silva, T. C. et al. ELMER v.2: an R/Bioconductor package to reconstruct gene regulatory 841 

networks from DNA methylation and transcriptome profiles. Bioinformatics 35, 1974–1977 842 

(2019). 843 

75. Li, S. et al. Cistrome-GO: a web server for functional enrichment analysis of transcription 844 

factor ChIP-seq peaks. Nucleic Acids Res. 47, W206–W211 (2019). 845 

76. Irizarry, R. A. et al. Genome-wide methylation analysis of human colon cancer reveals 846 

similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. 847 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genet. 41, 178 (2009). 848 

77. Silva, T. C. et al. ELMER v.2: An R/Bioconductor package to reconstruct gene regulatory 849 

networks from DNA methylation and transcriptome profiles. doi:10.1101/148726. 850 

Acknowledgement 851 

We thank the OCCAMS Study for sharing DNA methylation and somatic mutation data of EAC 852 

samples. D-C.L. was supported by NIH/NCI under awards P30CA014089 and R37CA237022. 853 

Y.Y.Z. was partially supported by the Fundamental Research Funds For the Central Universities, 854 

Sun Yat-sen University (22qntd3701). This work is also partially funded by the institutional funds 855 

from the Herman Ostrow School of Dentistry of USC’s Center for Craniofacial Molecular Biology 856 

to B.Z and D-C.L, and a Project Grant (845755) from the Israel Cancer Research Fund Project 857 

Grant to B.P.B. 858 

Author contribution 859 

D.-C.L. and B.P.B. conceived and devised the study. D.-C.L., B.P.B., Y.Y.Z., and B.Z. designed 860 

experiments and analyses. Y.Y.Z and B.P.B. performed bioinformatics and statistical analysis. 861 

B.Z performed the experiments. Y.Y.Z., B.P.B., and D.-C.L. analyzed the data. B.P.B., D.-C.L. 862 

supervised the research. A.S.H, U.K.S, L.Y.X, E.M.L and H.P.K. contributed the data and 863 

materials. Y.Y.Z., and D.-C.L. wrote the manuscript with input from B.P.B. The last two authors 864 

(D.-C.L. and B.P.B.) are co-senior authors who jointly supervised the work, and they have the 865 

right to list their names last in their CV. 866 

Supplementary information 867 

Supplementary Figures.docx 868 

Supplementary Table 1. WGBS data sets used in the current study. 869 

Supplementary Table 2. The percent of PMDs identified by three different callers overlapping 870 

with common PMDs or HMDs in each tumor sample from the Blueprint consortium or esophageal 871 

tissue. 872 

 873 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 874 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Identification of PMDs in esophageal samples by a sequence-aware multi-model 875 

PMD caller (MMSeekR). (A) A graphic model of the present study design. (B) Dot plots showing 876 

average methylation levels for all CpGs across the whole genome, CpGs within CGI promoters, 877 

common PMDs, SINE, LINE and LTR in different samples. The annotations from Takai et al62. 878 

were used for CGI methylation quantification. (C) Development of a new PMD caller. The 879 

MethylSeekR α score measures the distribution of methylation levels in sliding windows with 201 880 

consecutive CpGs across the genome. α score < 1 corresponds to a polarized distribution towards 881 

a high or low methylation level (that is, HMDs), while α score >=1 corresponds to the distribution 882 

towards intermediate methylation levels (that is, PMDs). PCC shows the correlation between the 883 

predicted hypomethylation score based on a NN model, and the actual methylation level. A strong 884 

negative correlation indicates regions favoring PMDs, while weak/null correlation favors HMDs. 885 

(D) PCA analysis of 45 esophageal samples using the top 5,000 most variable 30-kb tiles for the 886 

three PMD callers. (E-F) Representative windows showing PMDs successfully identified by 887 

MMSeekR but failed to be detected by either MethPipe (E) or MethylSeekR (F). 888 

 889 
 890 
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 891 
Figure 2. Characterization of shared and subtype-specific PMDs. (A) A representative 892 

window of DNA methylation profiles from 45 esophageal samples. Average methylation values 893 

are shown in consecutive and non-overlapping 10-kb tiles. CGI regions were masked using the 894 

annotation from Irizarry et al76. (B) Different PMD categories were identified based on the 895 

frequency and overlap between the two esophageal cancer types. (C) Line plots showing average 896 

methylation levels for different PMD categories in esophageal tumors, where each line represents 897 

one sample. (D) Similar line plot patterns were observed using TCGA methylation datasets, 898 

showing the mean and standard deviation across samples. Each row in the heatmap below shows 899 
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an individual sample. (E) Bar plots showing the percentage of WGBS PMDs overlapping with 900 

chromatin B compartments, which were predicted using TCGA methylation datasets and analyzed 901 

by minfi package. (F) Somatic mutation rates based on WGS in the indicated studies, calculated 902 

separately for each of the WGBS PMD categories. 903 

 904 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 905 
Figure 3. Subtype-specific PMDs control cell-type-specific functions. (A-B) In both EAC (A) 906 

and ESCC (B), genes covered by PMDs are expressed at lower levels than those in non-PMDs 907 

in a cancer-specific manner. (C-D) Cistrome-GO enrichment analyses using either EAC-specific 908 

(C) or ESCC-specific (D) PMDs and the downregulated genes within them. The top 15 most 909 
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significant pathways are shown, and the number of genes enriched in each pathway is shown on 910 

the right. (E) Two representative genome windows showing the methylation profiles of EAC-911 

specific (left panel) and ESCC-specific PMDs (right panel). CGI regions were masked using the 912 

annotation from Irizarry et al76. (F) Volcano plots showing that genes residing within genome 913 

domains in (E) are downregulated in corresponding cancer subtypes. 914 

 915 
 916 

 917 

Figure 4. The H3K36me2 mark is inversely associated with PMDs in a cell-type-specific 918 

manner. (A) Aggregation plots of H3K36me2 ChIP-seq levels in esophageal cancer cell lines 919 
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across four different PMD categories: shared PMDs, EAC-specific PMDs, ESCC-specific PMDs, 920 

shared HMDs. (B) Representative genomic loci showing H3K36me2 signal from ChIP-seq, and 921 

subtype-specific PMDs from WGBS data. CGI regions were masked using the annotation from 922 

Irizarry et al76. (C) Aggregation plots of H3K36me2 ChIP-seq levels in HNSCC cell lines across 923 

four different PMD categories. Bigwig files of the H3K36me2 ChIP-seq signal were obtained from 924 

GSE149670. 925 
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 927 

Figure 5. Subtype-specific DMRs in esophageal cancer. (A) Cancer hypoDMRs were 928 
identified from the comparison between EAC and ESCC tumors. Regions with FDR < 0.05 and 929 

absolute delta methylation levels > 0.2 were identified as DMRs. (B) Density plots showing the 930 
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size distribution of hypoDMRs; stacked bar plots displaying fractions of hypoDMRs that overlap 931 

with different genomic features. (C-D) Aggregation plots of ATAC-seq signals from esophageal 932 

cancer samples within EAC (C) or ESCC (D) hypoDMRs or random genomic regions 933 

(background), which contained 10-times randomly selected regions with the same CpG density. 934 

ATAC-seq signals were obtained from the TCGA and normalized with the CPM method. (E-F) 935 

Cistrome-GO enrichment analyses using EAC (E) or ESCC (F) hypoDMRs and upregulated 936 

genes in the corresponding subtype. Top 15 most significant pathways are shown. The number 937 

of genes enriched in each pathway is shown on the right. (G-H) Transcription-factor-binding motif 938 

sequences were identified by the ELMER77 method using EAC (G) or ESCC (H) hypoDMRs as 939 

the foreground and random regions as the background. (I-J) The most strongly enriched TFs in 940 

EAC (GATA4) (I) and ESCC (TP63) (J) were chosen for the experimental validation, using TF 941 

ChIP-seq, H3K27ac ChIP-seq and WGBS in matched cell lines. Peaks overlapping with subtype 942 

hypoDMRs are shown on the left; the percentages of overlapped peaks are expressed in the 943 

column plots. 944 

 945 
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 946 

Figure 6. Identification of tumor-specific hypoDMRs. (A) Heatmaps showing DNA 947 

methylation levels for each EAC hypoDMR. Each column denotes one sample and the 948 

row was ordered by the delta mean methylation between EAC and NGEJ (left). EAC ts-949 

hypoDMRs were identified using a one-tailed t test between EAC tumor and NGEJ 950 

samples (right) with the FDR cutoff < 0.05. (B) Stacked bar plots showing fractions of ts-951 

hypoDMRs that overlap with different genomic features. (C-D) Cistrome-GO enrichment 952 

analyses using either EAC (C) or ESCC (D) ts-hypoDMRs and the upregulated genes in 953 

each subtype compared with corresponding nonmalignant samples. Top 15 most 954 

significant pathways are shown. (E) Scatter plots showing transcription-factor-binding 955 

sites that were enriched in EAC ts-hypoDMRs compared with cts-hypoDMRs. The X axis 956 

represents the expression fold change between EAC and matched nonmalignant GEJ 957 

samples. The Y axis shows the delta enrichment score of transcription-factor-binding sites 958 
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between EAC ts- and cts-hypoDMRs. Expression data were from the TCGA and motif 959 

enrichment analyses were performed by the ELMER method. (F) EAC ts-hypoDMRs 960 

contained significantly more HNF4A-recognition motifs compared with cts-hypoDMRs. 961 

(G) More HNF4A peaks overlapped with ts-hypoDMRs than cts-hypoDMRs. Peaks were 962 

called from HNF4A ChIP-seq in ESO26 and OE19 cell lines. (H) HNF4A was predicted 963 

to co-occupy with the AP-1 family in ts-hypoDMRs, while with FOXA1/2 in cts-hypoDMRs. 964 

Sequence motif analysis was performed using ts- vs. cts-hypoDMRs containing HNF4A 965 

motifs. Significant transcription factors with FDR < 0.05 are shown. OR value over 1 966 

represents higher enrichment in ts-hypoDMRs, while below 1 represents higher 967 

enrichment in cts-hypoDMRs. 968 

 969 
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 970 
Figure 7. PMDs and hypoDMRs exhibit strong cell-type-specific epigenomic 971 

features. (A) Line plots showing average methylation levels for different PMD or (C) 972 

hypoDMR categories comparing two types of nonmalignant esophageal samples; these 973 

changes in nonmalignant samples are similar to those seen in tumors (Fig. 2C, 974 

Supplementary Fig. 3D-E). (B) Volcano plots showing average methylation levels for 975 
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different PMD or (D) hypoDMR categories in nonmalignant esophageal samples. Regions 976 

with significant differences were determined by two-tailed t test with the FDR cutoff < 0.1. 977 

(E) UMAP plots showing cell clusters (left), ATAC-seq levels in ESCC- vs. EAC-specific 978 

PMDs (middle) or in ESCC- vs. EAC-specific hypoDMRs (right). Single-cell ATAC-seq 979 

values and the cluster scheme were from Zhang et al. Total cell number is 146,305.  (F-980 

G) Dot plots showing, at the sample level, delta ATAC-seq values in ESCC- vs. EAC-981 

specific PMDs (F) or in ESCC- vs. EAC-specific hypoDMRs (G). 982 

 983 
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 985 

Figure 8. Analyses of PMDs and hypoDMRs in pan-cancer datasets. (A-C) TCGA 986 

tumormap showing cancer type clusters (A), DNA methylation levels in ESCC- vs. EAC-987 
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specific PMDs (B), or in ESCC- vs. EAC-specific hypoDMRs (C). DNA methylation data 988 

were obtained from the TCGA project. The TCGA-based clustering scheme denotes Pan-989 

Gastrointestinal cancers (COAD, READ, STAD and EAC) and Pan-squamous cancers 990 

(ESCC, HNSC, LUSC and a subset of CESC and BLCA) are shown (A). The number of 991 

samples is 8,915. The detailed study name of TCGA Study Abbreviations are listed in 992 

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations  993 

(D) and (E) Dot plots quantification of the methylation differences in (B) and (C), 994 

respectively. (F) t-SNE plots showing cancer type clusters, (G) ATAC-seq levels in ESCC- 995 

vs. EAC-specific PMDs or in (H) ESCC- vs. EAC-specific hypoDMRs across tumor 996 

samples. ATAC-seq data were downloaded from the TCGA project. The number of 997 

samples is 362. (I) and (J) Dot plots quantification of the ATAC-seq values in (G) and (H), 998 

respectively.  (K-L) Line plots and heatmaps respectively showing average and individual 999 

methylation levels in BE and EAC samples from two different public datasets. 1000 
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