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2 

Abstract 53 

 54 

Despite a million infections every year and an estimated one billion people at risk, scrub typhus 55 

is regarded as a neglected tropical disease. The causative bacterium Orientia tsutsugamushi, a 56 

member of rickettsiae, seems to be intrinsically resistant to several classes of antibiotics. The 57 

emergence of antibiotic-resistant scrub typhus is likely to become a global public health concern. 58 

Yet, it is unknown as to how common antibiotic-resistant genes are in O. tsutsugamushi, and 59 

how variable these loci are among the genomes of rickettsiae. By using the comprehensive 60 

antibiotic resistance database, we explored 79 complete genomes from 24 species of rickettsiae 61 

for putative antibiotic-resistant loci. There were 244 unique antibiotic-resistant genes in 62 

rickettsiae. Both the total and unique antibiotic-resistant genes in O. tsutsugamushi were 63 

significantly less compared to other members of rickettsiae. However, antibiotic-resistant genes 64 

in O. tsutsugamushi genomes were more unique and highly variable. Many genes such as 65 

resistant versions of evgS, and vanS A/G were present in numerous copies. These results will 66 

have important implications in the context of antibiotic-resistant scrub typhus. 67 

 68 

 69 

Keywords: Antibiotic resistome, Infectious disease, Microbial genome surveillance, Molecular 70 
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Introduction 105 

 106 

The rapid emergence of antibiotic-resistant bacteria is becoming a global public health crisis 107 

(Murray et al., 2022; Ventola, 2015). In 2019, there were an estimated 4.95 million deaths 108 

associated with antibiotic resistance worldwide with Escherichia coli, Staphylococcus aureus, 109 

Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas 110 

aeruginosa as the leading/top-six resistant pathogens (Murray et al., 2022). 111 

 112 

Scrub typhus – a neglected tropical vector borne zoonotic infectious disease which although is 113 

prevalent in “Tsutsugamushi Triangle” of south-east Asian countries, is also increasingly being 114 

reported from African and south American countries (Bonell et al., 2017; Chakraborty and 115 

Sarma, 2017; Jiang and Richards, 2018; Walker, 2016; Xu et al., 2017). Further, the occurrences 116 

of scrub typhus cases are also increasing. For example, in China, the overall incidence has 117 

increased sharply from 0.09/100,000 population in 2006 to 1.6/100,000 population in 2016 (Li et 118 

al., 2020). In particular, there was a 20-fold increase in infections (n = 27,838) in Yunnan 119 

Province between 2006-2017 (Peng et al., 2022). A four-fold increase in infection was seen in 120 

South Korea between 2001-2013 with disproportionately more infections in women and older 121 

people, and infections mostly occurring during October and November (Lee et al., 2015). 122 

Mortality varies widely with a median of 1.4% for treated and 6% for untreated scrub typhus 123 

(Bonell et al., 2017; Taylor et al., 2015). Nonetheless, scrub typhus has a high disease burden. It 124 

threatens an estimated one billion people globally, and causes illness in one million people each 125 

year (Chakraborty and Sarma, 2017; Jiang and Richards, 2018; Xu et al., 2017). The 126 

urbanization of scrub typhus has also been described (Li et al., 2020; Park et al., 2015). In south-127 

east Asia, scrub typhus is the leading cause of febrile disease after malaria (Yang et al., 2020). 128 

 129 

Scrub typhus is caused by Orientia tsutsugamushi (formerly Rickettsia) – a gram-negative, 130 

obligate intracellular bacillus in the family Rickettsiaceae, and is transmitted to humans by larval 131 

form (called chiggers) of arthropod vectors (such as Leptotrombidium akamushi and L. deliense) 132 

in the mite family Trombiculidae. While O. tsutsugamushi is the most common re-emerging 133 

rickettsial infection in India and many other Southeast Asian countries (Chakraborty and Sarma, 134 

2017; Tilak and Kunte, 2019), members of rickettsiae also cause illnesses such as epidemic 135 

typhus by Rickettsia prowazekii, murine typhus by R. typhi, and spotted fevers by other 136 

Rickettsia spp. (Rolain et al., 1998) Thus, members of rickettsiae are a persistent threat to public 137 

health, and therefore command surveillance (Biggs et al., 2016). 138 

 139 

Even though nearly a million infections occur every year, scrub typhus is regarded as a neglected 140 

tropical disease (Trent et al., 2019), and WHO has labelled it as one of the most 141 

underdiagnosed/underreported diseases (Luce-Fedrow et al., 2018). The symptoms include fever 142 

with chills, headache, backache, myalgia, rashes, profuse sweating, vomiting, and enlarged 143 

lymph nodes (Lu et al., 2021), and in the absence of early and effective treatment, scrub typhus 144 

might lead to interstitial pneumonia, acute respiratory distress syndrome, meningoencephalitis, 145 

acute kidney injury, disseminated intravascular coagulation, and death (Walker, 2016). With no 146 

vaccine available, antibiotics such as chloramphenicol, doxycycline, macrolides (such as 147 

azithromycin), quinolones, rifampicin, and tetracyclines are used to treat scrub typhus (Kelly et 148 

al., 2017; Lu et al., 2021; Sayed et al., 2018; Trent et al., 2019). While, treatment with antibiotics 149 

is effective for most patients (Kelly et al., 2017; Paris and Wangrangsimakul, 2022; 150 

Wangrangsimakul et al., 2020), they might have no significant advantage or disadvantage to 151 

others with regard to efficacy or safety (Parola et al., 2017; Yang et al., 2020). 152 

 153 

However, O. tsutsugamushi has been shown to be intrinsically resistant to several classes of 154 

antibiotics including the cephalosporins, gentamicin, penicillins, and possibly the 155 

fluoroquinolones (Kelly et al., 2017; Tantibhedhyangkul et al., 2010). Further, resistance to 156 
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doxycycline and tetracycline has also been suggested (Kim et al., 2008; Lu et al., 2021). Thus, 157 

antibiotic resistance in O. tsutsugamushi is of great concern, and therefore many studies have 158 

been exploring the same (Phuklia et al., 2019; Sayed et al., 2018 and the references therein), 159 

including the scrub typhus antibiotic resistance trial – START (Paris and Wangrangsimakul, 160 

2022). 161 

 162 

The availability of whole genome sequences is greatly enabling the exploration of antibiotic 163 

resistance. Based on the search of loci that might contribute to antibiotic resistance, at least 18 164 

such loci have been shown to occur in the genome of O. tsutsugamushi. One gene – gyrA, for 165 

example, was present as a quinolone-resistant form in the genome of all isolates of O. 166 

tsutsugamushi. Further, it was also shown that at least 13 other genes that were present in the 167 

genus Rickettsia did not occur in O. tsutsugamushi (Kelly et al., 2017). While these are useful 168 

revelations, there remain many open questions. For example, (1) How common antibiotic-169 

resistant genes are in O. tsutsugamushi and members of rickettsiae? (2) How variable are these 170 

loci among the genomes of a species? 171 

 172 

Based on 79 complete genomes from 24 species of rickettsiae and by using the comprehensive 173 

antibiotic resistance database of antibiotic-resistant loci, we show the patterns of antibiotic-174 

resistant loci in rickettsiae and reveal their great heterogeneity in the genomes of O. 175 

tsutsugamushi. 176 

 177 

 178 

 179 

Materials and Methods 180 

 181 

Acquisition of sequences 182 

The genome sequences were downloaded from the NCBI website 183 

(https://www.ncbi.nlm.nih.gov/, last accessed on 07-05-2022). Only the complete genome 184 

sequences were used. There were 79 complete genomes from 24 species of rickettsiae, including 185 

eight sequences from O. tsutsugamushi (Table 1). 186 

 187 

Identification of antibiotic-resistant genes 188 

The comprehensive antibiotic resistance database (CARD) was used for the identification of 189 

antibiotic-resistant genes. While numerous databases for resistance determinants exist (Doster et 190 

al., 2019; Feldgarden et al., 2021; Hendriksen et al., 2019), CARD is perhaps the most 191 

comprehensive one. The CARD is a curated resource of over 4336 antibiotic resistance ontology 192 

(ARO) terms covering resistance mechanisms from over 2923 known antimicrobial resistance 193 

(AMR) determinants/genes and additional 1304 resistance variant mutations (Alcock et al., 194 

2020). The CARD web interface (https://card.mcmaster.ca/analyze/rgi) can quickly identify 195 

putative antibiotic-resistant genes based on numerous approaches such as BLAST, sequence 196 

alignment, regular expressions (RegEx), hidden Markov models (HMMs), and/or position-197 

specific SNPs (Hendriksen et al., 2019). Each rickettsiae genome sequence was submitted to 198 

CARD’s resistance gene identifier (RGI) tool to generate annotation based on perfect, strict, and 199 

loose paradigm, and complete gene match criteria for the identification of putative antibiotic-200 

resistant genes (Her et al., 2021; Kent et al., 2020; Zhang et al., 2022). 201 

 202 

Data/statistical analyses 203 

The average and unique number of antibiotic-resistant genes were enumerated for each species. 204 

The extent of overlap of genes among different species/groups were represented using a Venn 205 

diagram, and visualized using heat map and clustering. The ggvenn() and heatmap.2() functions 206 

were used in R, and Bray–Curtis dissimilarity and Ward’s method were used for clustering. A 207 

Fisher’s test was used, for example, to check whether the difference in the proportions of genes 208 
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in two species/groups was significantly different (Agresti, 2018). An unpaired t-test (two-tailed, 209 

unequal variance) was used where relevant. The extent of overlap, for example, of genes 210 

between two sets, was quantified using overlap coefficient (Vijaymeena and Kavitha, 2016). The 211 

data handling/analyses were done in Python and Microsoft Excel. 212 

 213 

 214 

 215 

Results 216 

 217 

Antibiotic-resistant genes in O. tsutsugamushi and rickettsiae 218 

There were a total of 7291 putative antibiotic-resistant genes in 79 complete genomes of 219 

rickettsiae (Table 1 and S1). Altogether, there were 244 unique antibiotic-resistant genes (Table 220 

S2). The average number of antibiotic-resistant genes per species ranged from a minimum of 221 

72.9 (SD ±7.7, range 65-86) in O. tsutsugamushi to a maximum of 112 in R. tillamookensis 222 

(Table 1). Compared to rickettsiae at 94.5 (±7.7, 74-112), the average number of antibiotic-223 

resistant genes in O. tsutsugamushi was significantly less (p = 2.1E-05, t-test). The number of 224 

unique antibiotic-resistant genes within a species ranged from a minimum of 59 in R. typhi to a 225 

maximum of 93 in R. conorii. However, the sets of unique antibiotic-resistant genes were 226 

variable among the genomes of a species. In R. conorii, for instance, they ranged from 75 to 78 227 

in any one genome, indicating a clear non-overlap of a number of genes. In fact, compared to 228 

rickettsiae at 71.6 (±7.7, 58-80), the average number of unique antibiotic-resistant genes per 229 

genome in O. tsutsugamushi at 49.0 (±2.1, 47-53) was significantly less (p = 6.6E-21). However, 230 

as a species, O. tsutsugamushi had 72 unique antibiotic-resistant genes. 231 

 232 

Comparison of antibiotic-resistant genes among rickettsiae 233 

A heat map and clustering of 244 antibiotic-resistant genes present among rickettsiae showed 234 

that only 23 (9.4%) were common to all 24 species (Fig. 1A and B). The three species namely O. 235 

tsutsugamushi, Ca. Phycorickettsia trachydisci, and R. belli formed a close cluster, the typhus 236 

fever causing species R. typhi and R. prowazekii, and a few others formed another sub-cluster, 237 

while the spotted fever causing species R. rickettsii and R. conorii, and the rest formed a lager 238 

outer cluster. It may be noted that some 20 antibiotic-resistant genes in O. tsutsugamushi (Fig. 239 

1A, and Table 1 and S2) were unique as they were not present in any other rickettsial species. 240 

The Ca. Phycorickettsia trachydisci had the next highest number of 14 unique antibiotic-resistant 241 

genes. Amongst O. tsutsugamushi and R. rickettsii, R. typhi, and R. prowazekii, there were 28 242 

common genes (average overlap coefficient of 41.4%), whereas a large set of 17 genes such as 243 

adeS and C. difficile gyrA seemed to be specific to Rickettsia (Fig. 1C and Table S2). It may be 244 

noted that the version of gyrA gene that confers resistance to fluoroquinolones was present in O. 245 

tsutsugamushi as A. baumannii gyrA, whereas all other species had C. difficile gyrA (Table S2). 246 

The percentages of antibiotic-resistant genes based on the mechanism of resistance are shown in 247 

Fig. 1D. While the proportion is higher in efflux category and lower in antibiotic inactivation 248 

category for O. tsutsugamushi compared to rickettsiae, the difference was not statistically 249 

significant (p = 0.29, Fisher’s test). 250 

 251 

Heterogeneity of antibiotic-resistant genes in O. tsutsugamushi 252 

Where multiple (four or more) genome sequences available, we looked at the variability of 253 

antibiotic-resistant genes among the genomes in five species – O. tsutsugamushi, R. japonica, R. 254 

prowazekii, R. rickettsii, and R. typhi (R. conorii was ignored due to some plausible annotation 255 

issue in one of the sequences). Of the 147 antibiotic-resistant genes amongst these five species, 256 

62 (42.2%) genes were variable in the genomes of any one of the species (Fig. 2A). For instance, 257 

the E. coli ampH gene, while present/absent in all genomes of other species, was present only in 258 

one out of eight genome sequences of O. tsutsugamushi. In fact, of the 72 antibiotic-resistant 259 

genes in O. tsutsugamushi, 38 (52.8%) were variable, and that percentage was significantly 260 
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higher (p = 4.9E-05) than the next highest of 19.4% in R. prowazekii (Fig. 2B). There was no 261 

variability of antibiotic-resistant genes in R. typhi genome sequences. 262 

 263 

Further, of the 244 antibiotic-resistant genes amongst rickettsiae, 53 (21.7%) genes were present 264 

in multiple (two or more) copies in any one of the species/genomes (Fig. 3A). Of these, 32, 14, 265 

and three genes were present up to a maximum of two, three, or four copies, respectively; 266 

whereas remaining four genes namely A. baumannii AbaF, evgS, vanS A, and vanS G were 267 

present in 10 or more copies in some genomes (Fig. 3B and C). For example, there were two 268 

copies of A. baumannii AbaF in O. tsutsugamushi, but 16 copies in R. tillamookensis. Further, O. 269 

tsutsugamushi had, on average, three copies of vanS A; however, it varied from one to 10 copies 270 

in individual genome sequences (Fig. 3C). 271 

 272 

 273 

 274 

Discussion 275 

 276 

The emergence of resistance to antibiotics is the most challenging issue in the treatment of 277 

bacterial infections (Uddin et al., 2021). Antibiotic-resistant infections are widespread across the 278 

globe (Ventola, 2015; Zhang et al., 2022). Most bacteria might contain some form of antibiotic-279 

resistant genes such as resistance plasmids or efflux pumps that might remain functionally silent 280 

until sufficiently challenged with selection pressure (Nikaido, 2009). Given the growing number 281 

of cases, scrub typhus is emerging as a global public health threat (Devasagayam et al., 2021). 282 

As the scrub typhus is intrinsically resistant to many antibiotics (Tantibhedhyangkul et al., 283 

2010), it might pose even a greater danger. 284 

 285 

In this work, we showed that all rickettsial species contain numerous putative antibiotic-resistant 286 

loci. For instance, there were numerous variants of rpoB which confers resistance to rifampicin. 287 

Similarly, there were many other putative loci such as ampC1, ampH, and PBP2 which confer 288 

resistance to beta-lactam, and pbp1/2/3 which confer resistance to amoxicillin. Numerous 289 

rickettsial species were experimentally shown to be resistant to rifampicin. Likewise, it was also 290 

known that beta-lactams and aminoglycosides are not effective, and amoxicillin, gentamicin, and 291 

co-trimoxazole have poor sensitivity in treating rickettsial diseases (Rolain et al., 1998). 292 

 293 

Although the number of antibiotic-resistant loci were significantly less compared to other 294 

rickettsiae, they were more unique and highly variable in O. tsutsugamushi genomes. In 295 

comparison, there was no inter-genome variability of antibiotic-resistant loci in R. typhi. The O. 296 

tsutsugamushi is known to have one of the most highly repeated bacterial genomes sequenced 297 

(Cho et al., 2007). As against 2,179 potential protein-coding loci, the number of putative 298 

antibiotic-resistant loci is very small in O. tsutsugamushi. However, given that the genome 299 

contains CRISPR-like elements including more than 400 transposases, 60 phage integrases, and 300 

70 reverse transcriptases (Cho et al., 2007), the O. tsutsugamushi has enough gears to tinker its 301 

genome under selection. The O. tsutsugamushi was known to have high antigenic diversity. In 302 

India, for instance, Kato-like (NZ_LS398550.1) strains predominate (61.5%), followed by Karp-303 

like (NZ_LS398548.1) strains (27.7%), and Gilliam and Ikeda strains (Varghese et al., 2015). 304 

Further, O. tsutsugamushi was also known to undergo genetic recombination among diverse 305 

genotypes (Kelly et al., 2017; Kim et al., 2017). The extent of diversity and heterogeneity of 306 

putative antibiotic-resistant loci in O. tsutsugamushi gives a hint that there is potential to gain 307 

antibiotic resistance under selection. 308 

 309 

Microbes are said to harbour a ‘silent reservoir’ of antibiotic-resistant genes that is thought to 310 

contribute to the emergence of multidrug-resistant “superbugs” through horizontal gene transfer 311 

(Kent et al., 2020). While horizontally acquired antibiotic-resistant genes via plasmids are 312 
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common (Bennett, 2008; van Hoek et al., 2011), this may not be common in rickettsiae as it is 313 

said that intracellular lifestyle restricts the opportunity for lateral gene transfer (Vanrompay et 314 

al., 2017). However, it should be noted that O. tsutsugamushi genome has 359 tra genes for 315 

components of conjugative type IV secretion systems which play important role in horizontal 316 

gene transfer, and other rickettsiae too, such as Rickettsia felis, have numerous plasmid-encoded 317 

tra genes (Cho et al., 2007). 318 

 319 

It is important to note that many genes such as resistant versions of AbaF, evgS, and vanS A/G 320 

are present in multiple copies in rickettsiae. The AbaF, for instance, is a well-known efflux pump 321 

that is involved in antibiotic resistance (Abdi et al., 2020). Any perturbations under antibiotics 322 

such as mutations leading to increased expression of efflux pumps may impart antibiotic 323 

resistance (Nikaido, 2009; Salini et al., 2022). 324 

 325 

To mention the limitations of this study, we used only the complete genomes, and not more 326 

numerous partial/incomplete genome sequences. More importantly, the antibiotic-resistant loci 327 

were loose hits in the CARD database. Finally, as this is a bioinformatic analysis, like others 328 

(Her et al., 2021), we do not make any experimental validations. 329 

 330 

In conclusion, we showed that there is a wide diversity of putative antibiotic-resistant genes in 331 

rickettsiae. Further, they were more unique and highly variable in O. tsutsugamushi genomes. 332 

Given sufficient selection pressure/challenge, O. tsutsugamushi and other rickettsiae have plenty 333 

of potential loci, such as resistant versions of gyrA and efflux pump AbaF, to develop antibiotic 334 

resistance. Thus, surveillance of antibiotic resistance should be a priority to avoid a global public 335 

health crisis. 336 

 337 

 338 
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Figure legends 624 

 625 

 626 

Fig. 1. Antibiotic-resistant genes among rickettsiae. (A) Of the 244 potential antibiotic-resistant 627 

genes, just 23 (9.4%) are present in all rickettsial species. O. tsutsugamushi has a large number 628 

of unique antibiotic-resistant genes. Panel (B) shows frequency (max 24 species) for each gene. 629 

(C) Overlap of antibiotic-resistant genes among O. tsutsugamushi and three key Rickettsia 630 

species. (D) Percentage of antibiotic-resistant genes based on mechanism of resistance. See 631 

Table S1 for the complete list of antibiotic-resistant genes. 632 

 633 

Fig. 2. (A) Heterogeneity of antibiotic-resistant genes among genomes of five species of 634 

rickettsiae. The antibiotic-resistant genes that are not present in all genomes within a species are 635 

shown in red. (B) A large proportion (≈0.53) of O. tsutsugamushi antibiotic-resistant genes are 636 

heterogeneous. 637 

 638 

Fig. 3. Heterogeneity of antibiotic-resistant genes among species of rickettsiae. (A) The 639 

antibiotic-resistant genes that are present in multiple (two or more) copies within a species are 640 

shown in red. The number of copies for top four antibiotic-resistant genes (which are present in 641 

10 or more copies in any one genome) are shown for (B) different species of rickettsiae and (C) 642 

different genomes of O. tsutsugamushi. 643 
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Table 1. Antibiotic-resistant genes in O. tsutsugamushi and other rickettsial genomes. 676 

 677 

# Species # of genomes # of unique ARO^ # of ARO& # of unique ARO+ 

1 Ca. P. trachydisci 1 65 90 14 

2 O. tsutsugamushi 8 72 (47-53) 72.9 (65-86) 20 

3 R. africae 1 77 102 0 

4 R. akari 1 68 88 6 

5 R. amblyommatis 3 83 (79-80) 107 (107-107) 3 

6 R. asiatica 1 80 107 6 

7 R. australis 1 74 98 5 

8 R. bellii 3 82 (69-74) 100 (99-101) 5 

9 R. canadensis  2 60 (59-59) 78 (77-79) 3 

10 R. conorii 6 93 (75-78) 99 (99-99) 0 

11 R. japonica 14 81 (79-80) 104.1 (104-105) 0 

12 R. massiliae 1 77 101 1 

13 R. monacensis 1 64 87 3 

14 R. montanensis 1 76 102 2 

15 R. parkeri 2 80 (74-75) 102 (101-103) 0 

16 R. peacockii  1 74 96 1 

17 R. philipii 1 75 99 2 

18 R. prowazekii 10 67 (58-62) 75.3 (74-79) 4 

19 R. rhipicephali 2 78 (71-72) 96.5 (96-97) 4 

20 R. rickettsii 11 80 (72-73) 96.5 (96-98) 2 

21 R. slovaca 2 77 (76-76) 101 (100-102) 0 

22 R. sp. MEAM1 1 62 85 1 

23 R. tillamookensis 1 78 112 6 

24 R. typhi 4 59 (59-59) 75 (75-75) 4 

 All 79 244 7291 92 

^Within species (min-max per genome), &Average per genome (min-max), +Among all, ARO – Antibiotic resistance ontology. 678 
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