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32 Abstract 
33 ______________________________________________________________________________

34 Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent 

35 neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity.  

36 Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research 

37 has suggested a role played by the gut microbiome.   The gut microbiome is a complex 

38 ecosystem of interdependent taxa with an exponentially complex web of interactions 

39 involving these taxa, plus host gene and reaction pathways, some of which involve 

40 neurotransmitters with roles in ADHD neurocircuitry.  Studies have analyzed the 

41 ADHD gut microbiome using macroscale metrics such as diversity and composition, 

42 and have proposed several biomarkers.  Few studies have delved into the complex 

43 underlying dynamics ultimately responsible for the emergence of such metrics, leaving 

44 a largely incomplete, sometimes contradictory, and ultimately inconclusive picture.  

45

46 We aim to help complete this picture by venturing beyond taxa abundances and into taxa 

47 relationships (i.e. cooperation and competition), using a publicly available gut 

48 microbiome dataset from 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 

49 male) undergraduate students.  We conduct our study in two parts.  We first perform 

50 the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, 

51 differential, biomarker, and composition) to observe the degree of correspondence, or 

52 any new trends. We then estimate two-way ecological relationships by producing 

53 Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC 

54 correlations (p < 0.01).  We perform community detection to find clusters of taxa 

55 estimated to mutually cooperate along with their centroids, and centrality calculations 

56 to estimate taxa most vital to overall gut ecology.  We conclude by summarizing our 

57 results, and provide conjectures on how they can guide future experiments, some 

58 methods for improving our experiments, and general implications for the field. 

59
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60 Introduction
61 ______________________________________________________________________________

62 Attention Deficit Hyperactivity Disorder (ADHD) is a significant mental health problem 

63 with a current 3.4% prevalence worldwide (1). In the United States, ADHD affects one 

64 in 10 children (a 43% increase over the last 15 years) (2), and 3 -16% of adults (3) with 

65 that percentage increasing over the past 20 years. Individuals with ADHD face many 

66 practical challenges, including risk for low academic achievement, lower employment 

67 status, and incarceration (4).  Symptoms of hyperactivity, impulsivity, and inattention 

68 characterize ADHD (5).  Underlying ADHD behavioral symptoms are deficits in the 

69 neurocognitive mechanisms of both executive function (EF) and emotional regulation 

70 (ER) (6), including and extending beyond prefrontal-striatal networks (7).  EF refers to a 

71 set of cognitive control processes, includes one's ability to focus on relevant information 

72 while suppressing irrelevant distractors. ER generally ascribes to one's ability to 

73 effectively cope with emotionally charged circumstances (both negative and positive). 

74 Many medications have been developed to combat the disorder by influencing the 

75 underlying neurocircuitry (8).  

76

77 The pathogenesis of ADHD is thought to be multifactorial, with heritability estimates at 

78 roughly 70-90% (9). These genetic connections suggest some dependency on underlying 

79 metabolic reactions, directly or indirectly involving gene products. In the meantime, the 

80 new and exciting field of microbiome research has made its way into the mental health 

81 domain. Our gut is home to a plethora of bacteria, fungi, and other microbial 

82 organisms, whose collective genomes comprise our gut microbiome. Studies estimate 

83 that the average number of bacterial cells in humans matches or exceeds that of host 

84 cells (10,11).  Each bacterium has unique genetic material that produces different sets of 

85 metabolites, which interact with each other and host metabolites downstream (12), 

86 creating a complex host-microbiome web of interactions. It has become increasingly 

87 important to pay attention to the symbiotic relationship between the gut microbiome 
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88 and brain development and function, often referred to as the gut-brain-microbiome axis 

89 (13). This axis is a bidirectional communication network, providing gut microbiota and 

90 metabolites an avenue for influencing brain development and function (14–18). One 

91 proposed mechanism through which gut microbiota may affect our neurobiology is by 

92 altering the levels of neurotransmitters, including dopamine and serotonin (5-HT) (19), 

93 which fuel brain regions that mediate cognition and emotion. Although serotonin is 

94 also produced in the brain, up to 90% of serotonin is synthesized in the gut (20). 

95 Connections between the gut microbiome and neurotransmitters, EF/ER, and 

96 neuropsychiatric disorders (NPDs) characterized by EF/ER disorders are already well-

97 established.  In rodents, anxiety and social behavior have been linked to the gut 

98 microbiome that can be attributed to altered neurotransmission in the hippocampus 

99 and amygdala (21).  In humans, associations between microbiome composition and ER 

100 have been shown (18).  It has also been established that the gut microbiome can release 

101 dopamine and 5-HT, impacting ER  (22,23).   Connections on the cognitive axis related 

102 to EF are less well-established in humans, though some theories are beginning to 

103 emerge (24). In humans, dopamine influences EF (25). In rodents, the gut microbiome is 

104 linked to dopamine (26), and EF-like behavior (27).  The Autism Spectrum Disorder 

105 (ASD) (28), which is associated with impaired EF (29), has been linked to the gut 

106 microbiome (30).  In animal studies, the gut microbiome has been associated with 

107 anxiety-related disorders such as depression (31–36).  People with stress-related 

108 diseases have responded positively to probiotics (37,38).  Connections between the gut 

109 microbiome and another neuropsychiatric disorder (NPD) characterized by EF/ER 

110 dysfunction such as ADHD would further support the impact of the gut microbiome on 

111 EF/ER.  It could also help to explain the large amount of symptomatic overlap that 

112 exists between ADHD with other NPDs, particularly ASD (39–41), and could even 

113 provide differentiating factors (42) to help address the current diagnosis challenges due 

114 to this overlap (43), and new potential options for treatment (44).   The fact that 

115 individuals with ADHD suffer from gastrointestinal (GI) dysfunction, including 
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116 childhood digestive difficulties and low-grade inflammation (45) as well as constipation 

117 (46,47), only further suggests a potential role of the gut microbiome in this disorder.  

118 There are limited studies that implicate the gut microbiome on clinically diagnosed 

119 ADHD, and recent efforts have been made to survey and summarize their results (48–

120 51).  Two in particular published this year (49,50) contained findings from every 

121 published study involving ADHD and the gut microbiome.  Based on this, we make the 

122 following observations about the current state of ADHD and gut microbiome research:

123 1. Diversity results are contradictory and inconclusive.  Even with closely age-matched 

124 gut microbiome studies using the same Shannon index (52) to measure alpha-diversity, 

125 one set (mean age 11.9 years) revealed a lower level of alpha-diversity in ADHD 

126 patients (53), another (mean age 9.3 years) revealed higher alpha-diversity (54), a third 

127 (ages 6-10) reported no difference at all (55), and a fourth (10- and 15-year-olds) (56) 

128 reported higher alpha-diversity in ADHD 15-year-olds, but no difference in ADHD 10-

129 year-olds.   Within these same four studies, the first (53) reported a beta-diversity 

130 difference between ADHD and Control, while the other three reported no difference  

131 (54–56).  With a mean age only slightly higher (20.2), a fifth study found no alpha-

132 diversity difference, but a beta-diversity difference (57).   

133 2. Many biomarkers have been proposed, some contradictory, others mixed depending 

134 on taxonomic level, and others inconclusive.  Proposed ADHD biomarkers include: 

135 increased Collinsella (58) (phylum Actinobacteria), increased Fusobacterium (54) 

136 (Fusobacteria), decreased Lachnospiraceae (59), Lactobacillus (54,60), and Ruminococcus 

137 gnavus (59) (all Firmicutes), decreased Prevotella/Porphyromonadaceae (53) and increased 

138 Paraprevotella xylaniphila, Odoribacteriaceae and member species Odoribacter splanchicus 

139 (59) (all Bacteroidetes),   decreased Haemophilius (57)  and increased Neisseria (53), 

140 Sutterella stercoricanis (54), and Desulfovibrio (61) (all Proteobacteria).  

141 More mixed results have been reported with respect to the following taxa:
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142 Clostridiales  (Firmicutes).  This order (57) was reported as increased in studies 

143 involving ADHD children and adolescents, but another study involving 18-24 month-

144 olds (60) found members of this order as lower.

145 Ruminococcaceae (Firmicutes).  This family was reported as elevated in ADHD by one 

146 study (57) along with member genus Ruminococcus, but member genus Faecalibacterium 

147 was reported as reduced in two others (55,59).

148 Veillonellaceae (Firmicutes).  Within the same study (59), family Veillonellaceae and 

149 genus Veillonella were reduced in ADHD, but member species V. parvula was elevated.    

150 Bacteroidaceae (Bacteroidetes).  Bacteroidaceae was found as elevated in ADHD by one 

151 study (53), member genus Bacteroides was reduced in another among 18-month-olds 

152 (60), member species B. uniformis (54), B. ovatus (54) and B. coccae (59) were all reported 

153 as elevated, and member species B. coprocola was reported as reduced (54).   

154 For one particular taxon, results have been contradictory:

155 Bifidobacterium (Actinobacteria).  Perhaps no greater mystery currently exists than the 

156 role of genus Bifidobacterium.  One Dutch study found a nominal increase in 

157 Bifidobacterium with average ADHD and Control subject ages of 19.5 and 27.1 years, 

158 respectively (62). A longitudinal study (3 months, six months and 13 years) made a 

159 somewhat contradictory observation of reduced Bifidobacterium during infancy, but not 

160 at age 13 (60).  A third study (58) reported reduced Bifidobacterium (specifically B. 

161 longum and B. adolescentis) in ADHD children (mean age: 9.3) that actually reversed 

162 after micro-nutrient treatment, where elevated Bifidobacterium was observed at high 

163 ADHD-Rating Scale IV (ADHD-RS-IV, (63)) scores.

164 The current picture of the role played by the gut microbiome in ADHD is therefore still 

165 unclear.  Most of the effort to connect ADHD to the gut microbiome has involved (1) 

166 macroscale population metrics such as diversity, and/or (2) taxa abundances.  These 

167 properties are in reality emergent from a complex and interdependent interaction web 

168 inolving taxa, their gene products, and those of the host (64).  Diversity and abundance 
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169 therefore ignore many underlying details behind their measurements, helping to 

170 explain the current incomplete picture.  Venturing deeper into this web is critical to 

171 completing more of this picture.  Two studies have attempted this task, both using 

172 multi-omics.  One (59) reported differences ADHD neurotransmitter pathways.  A 

173 second (62) uncovered a connection between Bifidobacterium and cyclohexadienyl 

174 dehydratase (CDT) abundances.    

175 We have thus far only scratched the surface of this large and exponentially complex 

176 interaction web, and every completed piece has value.  Multi-omics will continue to be 

177 critical, bridging an important gap between taxa, products, and metabolic reactions. We 

178 aim to complete another piece, that involves ecological relationships between taxa.  

179 Microbial taxa have been shown to demonstrate a wide variety of ecological 

180 relationships, including cooperation (65,66) and competition (67), that ultimately impact 

181 collective functionality of the ecosystem and macroscale properties (64).   We estimate 

182 these relationships for Control and ADHD datasets and report  results; including 

183 relationships, communities, driver taxa (or ‘centroids’) of these communities, and taxa 

184 central to overall gut ecology. Results can offer guidance on potential taxa to target for 

185 further multi-omics or laboratory experiments.    The ultimate goal is to increase depth 

186 of knowledge about connections between the influence of the gut microbiome on an 

187 NPD that impacts millions of individuals worldwide.

188 This work involves two parts, conducted on a publicly available, gender-matched 

189 dataset of 16S gut microbiome sequences.  The first involves performing the same 

190 macroscale analyses currently prevalent in ADHD gut microbiome literature, to note 

191 how this dataset compares, as well as any new and interesting trends.  Metrics will 

192 include alpha- and beta-diversity, Sparse Partial Least Squares Discriminant Analysis 

193 (sPLS-DA, (68)) to estimate Control and ADHD differentiation degree, biomarker 

194 analysis using Linear discriminant analysis Effect Size (LEfSe, (69)), and QIIME (70) 

195 normalized abundance compositional profiles.
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196 In the second part we estimate ecological relationships (71) within Control and ADHD 

197 gut microbiomes.  We first use Microbial Co-occurrence Networks (MCNs, (72)) to 

198 estimate these relationships (73), and then perform cluster analysis using the Affinity 

199 Propagation (AP, (74)) algorithm to discover communities of mutually supporting taxa, 

200 as well as driver or ‘centroid’ nodes of these communities.  Finally we perform 

201 centrality analysis using the Ablatio Triadum (ATria, (75)) algorithm, to estimate taxa 

202 most significant to the overall ecosystem.  

203

204 Materials and Methods
205 ______________________________________________________________________________

206 We provide more details on the methods we use for analysis.  Our entire downstream 

207 analysis pipeline has been built using Plugin-Based Microbiome Analysis (PluMA, (76)) 

208 and is available for download within its publicly available pipeline pool.

209

210 Cohort 

211 We start from a publicly available dataset (Accession Number: PRJNA656791) of gut 

212 microbiome samples from an undergraduate student population.  Full sequencing 

213 details are provided in the BioProject description;  16S rRNA (V3-V4 region) sequencing 

214 was used, following steps corresponding to standard Illumina protocols (77).  Each 

215 deidentified sample provides gender and ADHD assessment based on Adult ADHD 

216 Self Report Scale (ASRS) score (Control, ADHD Combined, ADHD Inattentive, or 

217 ADHD Hyperactivity) in its title.  For both subscales they used an ASRS score of 17 as 

218 an ADHD threshold, which also follows published practices (78).    The project released 

219 58 samples: 30 Control and 28 ADHD, with 15 females in both groups.  We summarize 

220 statistics in Table 1.   Of the ADHD cohort, 17 were ADHD-combined (inattentive and 

221 hyperactive), five ADHD-hyperactive, and six ADHD-inattentive (Table 1).  Analyzed 

222 with a t-distribution, we found no significant impact of gender (p > .2).
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223

Table 1.   Cohort analyses

Inattentiveness Hyperactivity Combined
Groups Total 

No Gender Total 
No ASRS Scores + SD*

Control 30 Female 15 11.2 + 4.3 9.6 + 4.9 20.8 + 7.2

Male 15 9.8 + 3.4 9.9 + 4.4 19.7 + 6.8

ADHD 28 Female 15 22.6 + 6.8 19.5 + 5.3 42.1 + 10.1
Male 13 18.2 + 3.8 17.3 + 4.7 35.5 + 6.1

* t-test revealed no significant impact of gender (p > .2).

To establish an initial set of taxa we took these sequences and compiled, clustered, and 

analyzed them using QIIME 1.9.1 (70), (similarity threshold of 97%, GreenGenes 

reference database (79)).  We removed all singletons and scarce taxa (present in less 

than 50% of the samples) for both groups to produce our final set for analysis.

224

225 Part I: Traditional Macroscale Analyses

226 We first perform macroscale analyses on this ADHD dataset that have been performed 

227 on other ADHD datasets, compare and contrast our results with those in the literature, 

228 and take note of any new and interesting observations.  

229 Diversity analysis.  Alpha- and beta-diversity plots were constructed using 

230 QIIME (version 1.9.1), with default metrics: observed_species (unique taxa count), 

231 Chao1 (80), and PD_whole_tree (phylogenetic diversity), and default parameters.

232 Discriminant analysis.  Our study uses Sparse Partial Least Squares 

233 Discriminant Analysis (sPLS-DA, (68)), a sparse version of the Partial Least Squares 

234 (PLS, (81)) method, as a supervised method for determining differentiation degree with 

235 respect to taxa relative abundance (82). 
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236 Biomarker analysis.  Our biomarker analysis used the Linear discriminant 

237 analysis Effect Size (LEfSe,(69)) algorithm (p < 0.05, LDA effect size > 2).

238 Compositional analysis.  We use QIIME 1.9.1 (70) to generate compositional bar 

239 graphs, producing one bar per sample broken down by taxa percentages.

240

241 Part II: Ecological Relationships

242 Co-occurrence network analysis.  We computed correlations based on taxa 

243 relative abundances using SparCC (83) (p < 0.01), and built Microbial Co-occurrence 

244 Networks (MCNs, (72)) using taxa as nodes and correlations as edges. MCNs were 

245 visualized using Cytoscape (84) with layout produced by Fruchterman-Reingold (85). 

246 Clustering.  MCNs were clustered using Affinity Propagation (AP, (86)).   AP has 

247 been shown to operate efficiently and successfully on signed and weighted biological 

248 networks without requiring an initial cluster count estimate, and additionally computes 

249 the most representative or centroid node for each cluster.  

250 Centrality analysis.  We use Ablatio Triadium (ATria, (75)) for evaluating the 

251 importance, or centrality, of taxa in our MCNs.  ATria computes centrality for signed 

252 and weighted networks through a modified economic payment model (87) that 

253 calculates the influence of a node on all other nodes.  ATria provides an alternative 

254 perspective by considering relationships (not relative abundance) when computing 

255 centrality, and unlike biomarker analysis does not compare sample sets.    ATria 

256 produces a ranked list of important taxa and runs iteratively; once a taxon is found as 

257 central, ATria removes this taxon and its dependencies using social network theory (88).  

258 Then it runs again to produce the next most important taxon, repeating until no edges 

259 are left.  Taxa not found as important are simply not ranked.   

260

261 We analyze these ecological relationship at all taxonomic levels starting from phylum.  

262 We first observe the upper three levels (phylum, class, and order) for an overview of 

263 relationships between consistently abundant taxa.  We then move to the lower three 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


11

264 levels (family, genus and species) which provide a finer level of granularity and enough 

265 taxa to perform meaningful community analyses. 

266

267

268 Results
269 ______________________________________________________________________________

270 Part I. Traditional Macroscale Analyses

271

272 Diversity.  QIIME (70) alpha- and beta-diversity results produced no conclusive 

273 differences between ADHD and Control (Fig. 1).  Although Fig. 1A shows a marginal 

274 Alpha diversity increase for ADHD using all three metrics: observed_species (count of 

275 unique taxa), Chao1 (80), and PD_whole_tree (phylogenetic diversity), error bars clearly 

276 indicate inconclusive results.   Beta-diversity with unweighted and weighted Unifrac 

277 (89) distance also shows no separation (Fig. 1B). This lack of alpha- and beta- diversity 

278 differences matches several results from other datasets (55,56,62).  

279

280 Fig. 1. Alpha- and Beta- Diversity. (a) Alpha-diversity of Control and ADHD samples 
281 using (in order) the count of unique taxa, Chao1 richness (80),   and phylogenetic 
282 diversity.  (b) Beta-diversity of Control and ADHD samples computed using 
283 unweighted and weighted Unifrac (89) distance.
284

285

286 Discriminant.  Discriminant analysis determines differentiation degree between 

287 datasets, accounting for all variables in each set (90). Unsupervised and supervised 

288 approaches can be used, with supervised having prior sample classification knowledge 

289 (i.e., Control or ADHD).  One ADHD gut microbiome study (53) attempted the 

290 unsupervised method non-parametric multi-dimensional scaling (NMDS, (91)), but 

291 could not differentiate the two groups.  Limited studies have further decomposed 

292 ADHD samples by subscale but these focus on diversity and composition, noting 
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293 inattention (elevated Dialister and reduced Phascolarctobacterium (57)) and hyperactivity 

294 (lower alpha-diversity and elevated Parabacteroides (53)) properties.

295

296 We attempt the supervised Sparse Partial Least Square Differential Analysis (sPLS-DA, 

297 (68)), with taxa relative abundances as variables.  Fig. 2(a)-(b) (ellipse confidence 

298 level=95%) shows even a supervised method cannot differentiate the groups, in general 

299 or by subscale.  This is significant, as supervised approaches like sPLS-DA have a priori 

300 sample category knowledge and can sometimes differentiate completely random data 

301 (82).  sPLS-DA did differentiate the two sets with scarce taxa present, showing some 

302 separation between Control, ADHD samples high on one subscale, and ADHD samples 

303 high on both (Fig. S1).   However, a supervised method differentiating the sets only 

304 when scarce taxa (present less than half of the time) are counted shows very little.

305

306 Fig. 2. Discriminant Analysis.  Results of running sPLS-DA (68) on microbiome 
307 abundance data (ellipse confidence level 95%).  The figures show the analyses  (a) 
308 comparing Control (orange) and ADHD (blue) groups and (b) further separating the 
309 ADHD group into inattention (green), hyperactive (grey), and combined (blue).
310

311

312 Biomarker.  When performing LEfSe (69), we returned to a single ADHD set (no 

313 subscale split) to ensure roughly level sample counts with Control.  Results are shown 

314 both as a cladogram (Fig. 3A) and a bar graph (Fig. 3B). LEfSe has identified orange taxa 

315 as Control biomarkers, and purple taxa as ADHD biomarkers. 

316

317 Fig. 3.   Differential Abundance. Distinguishing taxa for Control (orange) and ADHD 
318 (purple) groups, produced by LEfSe (69).  Corresponding phyla for each taxon are 
319 indicated in parentheses, with B=Bacteroidetes, F=Firmicutes, and P=Proteobacteria (no 
320 distinguishing Actinobacteria were found). (a) Distinguishing taxa plotted on a 
321 cladogram, with each concentric circle representing a phylogenetic classification level 
322 (innermost=phylum).  Shared areas represent distinctive regions of the phylogenetic 
323 tree.  (b) Distinguishing taxa ordered by Linear Discriminant Analysis (LDA, (92)).  A 
324 higher magnitude indicates more reliable differentiation. 
325

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


13

326

327 The cladogram (Fig. 3A) shows proposed biomarkers on the phylogenetic tree, 

328 highlighting those closely related.  Fig. 3A shows one Bacteroidetes family 

329 (Odoribacteriaceae) distinguishing ADHD, while Firmicutes (Turicibacteriaceae and its 

330 order Turicibacterales) and Proteobacteria (Pasteurellaceae and its order Pasteurellales) 

331 distinguished Control.  The bar graph (Fig. 3B) uses Linear Discriminant Analysis 

332 (LDA, (92)) to order by differentiation degree, expanding to include genera and species. 

333 ADHD continues to be predominated by Bacteroidetes and includes the only two 

334 Odoribacteriaceae genera in our samples, Odoribacter and Butyricimonas, supporting 

335 earlier claims of Odoribacteriaceae as an ADHD biomarker (59).  Control continues to be 

336 predominated by Firmicutes (now including Turicibacter) and Proteobacteria (now 

337 including Haemophilus and H. parainfluenzae).   

338

339 Haemophilus was found as a Control biomarker by another study (57).   H. parainfluenzae, 

340 the only Haemophilus species present, is a well-known lung pathogen (93), though its 

341 gut functionality remains largely unknown.  Its elevated Control abundance relative to 

342 ADHD is indeed mysterious, though upon further inspection is still very low (< 0.1%). 

343

344 Turicibacter, although never previously reported as a biomarker in an ADHD gut 

345 microbiome study, has been reported in one involving depression in mice (33).  

346 Metabolically in mice, Turicibacter signals the gut to produce serotonin (5-HT) (94), 

347 which influences ER  (95).  Both ADHD and depression are characterized by ER 

348 neurocircuitry deficiencies.  LEfSe did not report any EF-associated biomarkers.  This 

349 may be largely because EF is more strongly regulated by dopamine (95), for which the 

350 gut only produces roughly 50% (96), compared to 90% of 5-HT (20).  

351

352 Compositional.  Compositional analyses compare taxa relative abundances (97).  We 

353 generated compositional bar charts at all phylogenetic tree levels beginning with 
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354 phylum (Fig. 4A).  Samples on the x-axis are ordered by increasing ASRS score, and the 

355 y-axis represents relative abundance.

356

357 Fig. 4. Compositional Analysis, Phylum and Genus Levels. Microbial compositional 
358 bar graph for each subject, generated using QIIME (70), conducted at (a) the phylum 
359 level and (b) the genus level.  Subjects are ordered by increasing Adult ADHD Self 
360 Report Scale (ASRS) score, with the y-axis representing relative abundance.  
361

362

363 A typical gut microbiome profile (98) is observed, dominated by Firmicutes and 

364 Bacteroidetes, followed by Actinobacteria and Proteobacteria.  Control has slightly 

365 elevated Firmicutes (70-66%), mirroring an earlier study (62) that importantly (99) also 

366 sequenced the same 16S V3-V4 region.  Slightly contrary to this same study, which 

367 reported this difference to be largely occupied by an ADHD Actinobacteria increase, 

368 ours was mostly occupied by an ADHD Bacteroidetes increase (from 22% to 25%).  Yet 

369 Actinobacteria remains mysterious in Fig. 4A, elevated at very high ASRS scores, but 

370 also at very low scores.  Bacteroidetes and Proteobacteria also appear reduced at these 

371 same extremes.  These seemingly contradictory results create challenges in drawing 

372 meaningful conclusions with respect to role(s) played by these phyla.  Yet they capture 

373 our interest, especially given the earlier reported anomalous behavior of an 

374 Actinobacteria genus, Bifidobacterium, at high and low ASRS-IV scores (58).  

375

376 Class and order levels produced bar charts similar to Fig. 4A; we include these as 

377 Supplemental Fig. S2 and S3.  Levels below order often had too many taxa to clearly 

378 view dynamics.  We include the genus level (Fig. 4B), family and species as 

379 supplemental Fig. S4 and S5), as the genus level includes Bifidobacterium.  And indeed, it 

380 turns out, Bifidobacterium (blue, bottom) has elevated abundances high and low ASRS 

381 scores, appearing most responsible for this same behavior in its phylum Actinobacteria 

382 (Fig. 4A).   Bacteroides (orange, middle) is a highly abundant taxon that also mirrors the 

383 behavior of its phylum (Bacteroidetes, Fig. 4A), increasing in the middle and decreasing 
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384 at extremes.  Proteobacteria is more difficult to observe given its low relative abundance 

385 (1-2%), though Sutterella (lilac, top) also appears to follow this trend.  All three 

386 observations are verified in supplementary Fig. S6.  

387

388 This is not the first time these taxa have generated interest.  Many Actinobacteria, and 

389 especially Bifidobacterium, have been used as probiotics and are considered elements of a 

390 health gut (100–105).  As discussed, Bacteroides and its family Bacteroidaceae, as well as 

391 several member species, have been reported differentially abundant in ADHD 

392 (53,54,59,60); some elevated, others reduced.  Some have argued Bacteroides to be the 

393 most important "window" to understanding the human gut (106). Sutterella stercoricanis 

394 was also reported as an ADHD biomarker (54).   These same taxa make multiple 

395 appearances in studies involving other NPDs as well.  Bacteoridaceae was the top LEfSe 

396 Major Depressive Disorder (MDD) biomarker in one study (36).  Another reported 

397 elevated Bacteroides and reduced Bifidobacterium in anxiety (107).  Sutterella is elevated in 

398 Autism Spectrum Disorder (ASD) (108), a condition with so much symptomatic overlap 

399 with ADHD that an ASD+ADHD phenotype has been established (109).

400

401 Discussion.  These analyses produced a few interesting preliminary observations, but 

402 their birds-eye view limited the depth we could pursue.  Compositional analysis was a 

403 perfect example: even though there was a visible trend between ASRS score and 

404 Bifidobacterium, Bacteroides, and Sutterella abundances, no definitive conclusions could be 

405 produced.  Fundamentally macroscale behaviors emerge from microscale interactions.  

406 We attempt to unlock some of these mysteries by now exploring ecological relationships.

407

408 Microbial ecological relationships take many forms.  They can be positive or negative, 

409 mutual (cooperation (65,66) or competition (67)) or one-way (commensalism (110) or 

410 amensalism (111)).  In particular, two-way relationships (cooperation and competition) 

411 can be approximated using correlations (73).  We use SparCC (83) compute correlations, 

412 which has advantages in reducing compositional effects within relative abundances.  
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413 We also use a p-value threshold of 0.01 to only count correlations with the highest 

414 confidence, as the historically accepted threshold of 0.05 has come under recent 

415 question (112,113).  We build Microbial Co-occurrence Networks (MCNs, (72)) using 

416 taxa as nodes and SparCC correlations as edges, and perform community detection on 

417 these networks using the clustering algorithm Affinity Propagation (AP, (74)).  Finally, 

418 we use Ablatio Triadium (ATria, (75)) as a centrality algorithm to produce a ranked list 

419 of important taxa in each MCN.  ATria is specifically designed for signed and weighted 

420 networks, incorporating both social network (88) and economic theory (87) in its 

421 calculations.  It is also iterative, removing dependencies of a central node before 

422 computing the next most central.

423

424 During our analyses we sometimes use “cooperation” to refer to a positive SparCC 

425 correlation and “competition” when referring to a negative.   We emphasize, however, 

426 that correlations are an estimate of ecological relationships, that ultimately require 

427 further downstream analysis (multi-omics and experimental verification) before 

428 establishing official conclusions.  With the underlying web of interactions being 

429 exponentially complex and large-scale laboratory experiments potentially costly, our 

430 results can provide guidance regarding target taxa and avenues to pursue.

431

432 Part II.  Ecological Relationships 
433

434 Upper Levels: Phylum, Class, and Order.  Fig. 5 shows MCNs at the phylum (Fig. 5A-B), 

435 class (Fig. 5C-D), and order (Fig. 5E-F) levels.  Taxa (nodes) in all MCNs are colored by 

436 phylum (legend at the bottom of Fig. 5).  Node size is proportional to relative 

437 abundance (larger=higher).  Correlation (edge) color represents sign; green indicates 

438 positive (est. cooperation) and red indicates negative (est. competition).  Edge thickness 

439 is proportional to correlation magnitude (thicker=stronger).  Networks are visualized 

440 using the Fruchterman-Reingold algorithm (85), which spatially orients nodes based on 

441 edge weight (closer=more positive).  Nodes are labeled with their taxon and provided 
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442 with ATria centrality ranking if found important (format: #rank, T=Tie).  At the phylum 

443 level only (Fig. 5A-B), we label each edge with its correlation value.  Phylum-level 

444 MCNs (Fig. 5A-B) show SparCC appears to handle compositional effects well, as 

445 despite collectively encompassing about 95% of both populations, Firmicutes and 

446 Bacteroidetes are only weakly negatively correlated.

447

448 Fig. 5.  Upper-Level Microbial Co-occurrence Networks (MCNs).   MCNs at the 
449 phylum (A), class (B), and order (C) taxonomic levels, visualized using Cytoscape [57], 
450 and oriented by Fruchterman-Reingold [58].  Nodes represent taxa, colored by phylum 
451 with size directionally proportional to abundance. The co-occurrences are distinguished 
452 by those that co-habit (green edges) and co-avoid (red edges).  SparCC (83) correlation 
453 (p=0.01) was used as edge weight and also the parameter for Fruchterman-Reingold 
454 when determining edge length (larger=closer).  SparCC correlations are shown at the 
455 phylum level.  All taxa found as important by ATria are denoted by a pound sign (#) 
456 followed by its rank (ties indicated).
457

458

459 Table 2 shows every correlation in all three MCNs, and its sign, + (green) or – (red).  

460 Correlations that appear only in Control are highlighted orange, only in ADHD 

461 highlighted purple, and in both highlighted grey.  Correlations at each taxonomic level 

462 are grouped by their next highest level classification; for example in row 1: phyla 

463 Actinobacteria and Bacteroidetes were negatively correlated in both phylum-level 

464 MCNs (Fig. 5A-B), member classes Actinobacteria and Bacteroidia were negatively 

465 correlated only in Control (Fig. 5C), as were member orders Bifidobacteriales and 

466 Bacteroidales (Fig. 5E).  White, italicized correlations were not present in either MCN, 

467 but a correlation among descendants was; for example in row 3: phyla Actinobacteria 

468 and Firmicutes were not correlated in either MCN, nor were member classes 

469 Actinobacteria and Clostridia, but member orders Bifidobacteriales and Clostridiales 

470 were positively correlated in Control (Fig. 5E).  

471
Phylum Class Order

Actinobacteria-Bacteroidia - Bifdobacteriales-Bacteroidales -Actinobacteria-Bacteroidetes -
Coriobacteria-Bacteroidia - Coriobacteriales-Bacteroidales -
Actinobacteria-Betaproteobacteria -Actinobacteria-Proteobacteria -
Coriobacteria-Deltaproteobacteria -
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Actinobacteria-Firmicutes Actinobacteria-Clostridia Bifidobacteriales-Clostridales +
Gammaproteobacteria-Bacilli Enterobacteriales-Turicibacteriales -
Gammaproteobacteria-Clostridia -

Proteobacteria-Firmicutes -

Deltaproteobacteria-Clostridia - Desulfovibrionales-Clostridiales -
Proteobacteria-Bacteroidetes + Betaproteobacteria-Bacteroidia + Burkholderiales-Bacteroidales +
Bacteroidetes-Firmicutes - Bacteroida-Clostridia Bacteroidales-Clostridiales -

472 Table 2.  Upper-level taxa correlations, grouped by taxonomic classification.

473  

474 Table 3 shows collective ATria results, similarly grouped. At each level, taxa found 

475 equally important in both MCNs are highlighted grey; taxa found more important in 

476 Control light orange, and only important in Control dark orange (analogous case for 

477 ADHD and purple).  Taxa ranked as first or tied for first in either MCN are bold.  

478
Phylum Class Order

Actinobacteria (#2/NR) Bifidobacteriales (#T2/T5)Actinobacteria (#1/#1)
Coriobacteria (#1/NR) Coriobacteriales (NR/#T5)

Bacteroidetes (NR/#T2) Bacteroidia (NR/#T1) Bacteroidales (#1/#1)
Bacilli (NR/NR) Turicibacteriales (#T3/NR)
Clostridia (#T3/#T3) Clostridiales (#T2/#T3)

Firmicutes (#2/#T2)

Erysipelotrichia (NR/NR) Erysipelotrichiales (NR/#T3)
Betaproteobacteria (NR/#T1)
Deltaproteobacteria (NR/#T3) Desulfovibrionales (NR/#2)

Proteobacteria (NR/NR)

Gammaproteobacteria (#T3/NR) Enterobacteriales (#T3/NR)

479 Table 3.  Upper-level ATria results, grouped by taxonomic classification. 

480

481 Compositional results are mirrored here: ADHD showed elevated Bacteroidetes at the 

482 expense of Firmicutes, and these taxa are negatively correlated in both MCNs (Fig. 5A-

483 B).  But while Firmicutes and Bacteroidetes dominate both populations (largest nodes, 

484 Fig. 5A-B) as is typical in the gut microbiome (98), SparCC and ATria estimate a far less 

485 abundant phylum, Actinobacteria (roughly 4% of both populations), as most important 

486 to their overall gut ecology.    In both MCNs (Fig. 5A-B), phylum Actinobacteria has the 

487 strongest negative correlations and ATria ranks it first (Table 2).

488

489 We make three more observations at these upper taxonomic levels, that we keep in 

490 mind when moving to the lower:

491

492  (A) A core Proteobacteria-Bacteroidetes positive correlation (est. cooperation) forms.  

493 Table 1 shows this, with Proteobacteria and Bacteroidetes (the only positive correlation 
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494 in either phylum-level MCN), member classes Betaproteobacteria and Bacteroidia, and 

495 member orders Burkholderiales and Bacteroidiales.  

496

497 (B) In Control, taxa in (A) have more negative edges with Actinobacteria (est. 

498 competition), especially Bifidobacteriales.  The highest magnitude negative edges in 

499 both phylum-level MCNs (Fig. 5A and 5B) involve Actinobacteria with Proteobacteria 

500 and Bacteroidetes.  Yet while the two consistently dependent Actinobacteria classes 

501 (Actinobacteria and Coriobacteria) continue this same dynamic with Bacteroidia 

502 (Bacteroidetes) and Betaproteobacteria (Proteobacteria) in Control (Fig. 5C and Table 1), 

503 they are completely disconnected in ADHD (Fig. 5D).  Worth noting, this is despite 

504 their relative abundance being nearly the same in Control/ADHD: Coriobacteria 

505 1.5/1.1%, and Actinobacteria 3.2/3.7%.  Further, ATria ranks Actinobacteria and 

506 Coriobacteria as the top two Control taxa (Table 2).  In ADHD, Bacteroidia and 

507 Betaproteobacteria are the top two (Table 2), and the MCN shows no negative edges 

508 (est. competition) at all involving these taxa (Fig. 5D).

509

510 The order level reveals Bifidobacteriales (Actinobacteria) may be more responsible for 

511 this difference than Coriobacteriales (Coriobacteria). While Bifidobacteriales and 

512 Coriobacteriales both continue their negative correlations with Bacteroidales 

513 (Bacteroidia) in Control, only Coriobacteriales does in ADHD.   Table 1 actually shows 

514 all edges involving Bifidobacteriales to be exclusive to Control, now including a 

515 positive correlation with Clostridia (the most abundant Firmicute).  An increased 

516 participation of order Bifidobacteriales thus emerges as a distinguishing feature of 

517 Control, which is further supported by ATria (Table 2), which ranks Bifidobacteriales 

518 higher (tied for second) in Control, and Coriobacteriales only in ADHD. 

519

520 (C) A shift in Firmicutes-Proteobacteria dynamics.  This begins immediately at the 

521 phylum level (Fig. 5A) with Control having a negative correlation (-0.65) that is absent 

522 in ADHD (Fig. 5B).  The most abundant Firmicute class (Clostridia) isnegatively 
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523 correlated with different Proteobacteria classes; Gammaproteobacteria in Control (Fig. 

524 5C), Deltaproteobacteria in ADHD (Fig. 5D), and the latter continues at the order level 

525 (Fig. 5F) with Clostridiales (Clostridia) and Desulfovibrionales (Deltaproteobacteria).  In 

526 Control (Fig. 5E), a negative correlation emerges between Enterobacteriales 

527 (Gammaproteobacteria) and LEfSe Control biomarker Turicibacteriales (Bacilli). 

528

529 Summary.  Upper-level analysis revealed increased Actinobacteria participation in 

530 Control gut ecology, especially order Bifidobacteriales.  Much of this involved negative 

531 correlations with a core of positively correlated Bacteroidetes (Bacteroidales) and 

532 Proteobacteria (Burkholderiales).   Recalling our compositional analyses and anomalous 

533 behavior involving Bifidobacterium (Bifidobacteriales), Bacteroides (Bacteroidales), and 

534 Sutterella (Burkholderiales), we are now interested in exploring these dynamics at lower 

535 taxonomic levels.  We will continue to observe Firmicutes-Proteobacteria dynamics, as 

536 despite a still unclear picture, a clear distinction is shown between Control and ADHD. 

537

538 Lower Levels: Family, Genus, and Lowest Possible.  Fig. 6 shows Control and ADHD 

539 MCNs at family (Fig. 6A-B), genus (Fig. 6C-D), and lowest possible taxonomic 

540 classification levels (Fig. 6E-F).  In this latter MCN each taxon is classified at the species 

541 level if possible (rare with 16S), otherwise more commonly the genus level is used. 

542 Schemes regarding color, node size, and edge thickness are the same as Fig. 5.   Since 

543 the MCNs are now larger we do not label every node, only those that we reference in 

544 our analyses.  We also extend Table 1 to include correlations from every taxonomic 

545 level, but as this is also very large we include it as Supplemental Table S1 and extract 

546 only relevant portions to our discussion.  We perform a similar task with ATria, and 

547 Supplemental Table S2.

548

549 Fig. 6.  Lower-Level MCNs.   MCNs at the family (A), genus (B), and species (C) 
550 taxonomic levels.  Network visual properties, including node and edge size, color, and 
551 orientation, are the same as Fig. 5.  Taxa noted throughout our analyses are labeled.  
552

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


21

553

554 Fig. 6 shows taxa separating into a group of primarily Bacteroidetes (dark purple, lower 

555 left), and another of primarily Firmicutes (yellow, upper right).  Enough taxa are also 

556 now present to perform meaningful community analysis.  Fig. 7 shows the same MCNs 

557 as Fig. 6, after running Affinity Propagation (AP, (83)) and coloring by cluster.  At the 

558 family level (Fig. 7A-B) four clusters form.   One is dominated by Bacteroidetes, family 

559 Bacteroidaceae (BB, magenta).  Two are dominated by Firmicutes, one family 

560 Lachnospiraceae (FL, gold), and the other family Ruminococcaceae (FR, green).  In Control 

561 (Fig. 7A) the fourth cluster consists of three mixed-family Firmicutes (FM, dark teal). In 

562 ADHD (Fig. 7B) two of these are absent and the Proteobacteria Enterobacteriaceae is 

563 present, leaving it no longer Firmicutes-dominant (M, grey).

564

565 Fig. 7.  Clusters.  Same MCNs as Fig. 6, after clustering with the affinity propagation 
566 (AP) algorithm (86).  Family-level clusters are each given a unique color, and labeled 
567 with their dominant phylum and member family.   New clusters that form at each lower 
568 taxonomic level are labeled, colored with shades corresponding to their dominant 
569 phylum/family when applicable - i.e. at the genus level FL1-FL3 are different shades of 
570 gold (family-level FL).  Taxa noted throughout our analyses are labeled.
571

572

573 Clusters BB and FR remain at the genus level (Fig. 7C-D).  Several Firmicutes, 

574 Lachnospiraceae-dominant clusters emerge, referred to as FL1, FL2, etc. (gold shades).  A 

575 mixed-family Actinobacteria cluster of Bifidobacterium and Collinsella forms in both 

576 MCNs (AM, brown), and an Actinobacteria, Coriobacteriaceae-dominated cluster forms in 

577 ADHD (Fig. 7D, AC, burnt sienna).     A small group of two Clostridiaceae composes 

578 cluster FC in Control (Fig. 7C, aqua).  In ADHD (Fig. 7D), a cluster (orange) emerges as 

579 the only Firmicutes-dominant cluster with positive correlations to cluster BB.  This 

580 eventually becomes present in both lowest-level MCNs (Fig. 7E-F) with core member 

581 Control LEfSe biomarker Turicibacter, so we call this cluster FT.

582
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583 At the lowest level we kept cluster names as consistent as possible with genus-level 

584 membership (for example, a cluster mostly comprised of FL2 genus-level taxa would 

585 also be named FL2 at the lowest level). Both MCNs (Fig. 7E-F) now include a mixed-

586 family, Bacteroidetes-dominant cluster BM1 (pink), and Control includes a second 

587 (BM2, orchid).  Supplemental Tables S3-S5 list all clusters, members, and centroids at all 

588 levels.  As with earlier tables, we will extract portions relevant to our discussion.

589

590 Finally, to measure cluster size, tightness, and interactions, we produce a heatmap of 

591 taxa correlations (Fig. 8) with taxa ordered on the x- and y-axes by Fig. 7 cluster.  

592 Green/red intensity at each point (x, y) denotes the degree of positive/negative 

593 correlation between taxa x and y (symmetric, by definition).    Clusters appear as rough 

594 squares of positive (green) correlations on the diagonal.  We outline each box with the 

595 same color as its corresponding Fig. 7 cluster.

596

597 Fig. 8.  Heatmaps.  Heatmap representation of taxa correlations (green=positive, 
598 red=negative), with taxa organized on each axis by cluster (symmetric matrix).  The 
599 area corresponding to the intersection of each cluster with itself is outlined with a box 
600 using the corresponding cluster color in Fig. 7.  Taxa and clusters noted throughout our 
601 analyses are labeled on the axes.
602

603

604 We first continue to pursue observations (A)-(C) from the upper taxonomic levels.  

605 Afterwards, we discuss any new and interesting trends.  

606

607 (A) A core Proteobacteria-Bacteroidetes positive correlation (est. cooperation) forms. 

608 Recall the orders involved in this correlation were Burkholderiales (Proteobacteria) and 

609 Bacteroidales (Bacteroidetes).  This corresponds to cluster BB, with genus Sutterella 

610 and multiple Bacteroidales taxa.  In ADHD this cluster is larger and includes more 

611 Bacteroidales plus some Firmicutes, and nearly all members are positively correlated 

612 with its centroid Bacteroides.  Additionally it has fewer negative correlations (est. 

613 competition) with other clusters. 
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614

615 Cluster BB is the only cluster with Burkholderiales and Bacteroidales descendants.  

616 Table 4 shows all correlations involving Burkholderiales and Bacteroidales lineages, 

617 organized and shaded using the same scheme as Table 1.  One core positive correlation 

618 survives all six taxonomic levels in Control and ADHD (12 MCNs total, the only 

619 correlation in our entire dataset with this property).  This occurs between genera 

620 Sutterella and Bacteroides.  Several others involving Sutterella and its family Alcaligenaceae 

621 with cluster BB members are present only in ADHD – support for a larger cluster BB in 

622 ADHD.  Alcaligenaceae/Sutterella are immediately visible in Fig. 6, as the only 

623 Proteobacteria (royal blue) among a slew of Bacteroidetes (dark purple).

624
Phylum Class Order Family Genus Species

Sutterella-
Bacteroides

+Alcaligenaceae-
Bacteroidaceae

+ Sutterella-Bacteroides +

Sutterella- 
B.uniformis

+

Alcaligenaceae-
Porphyromonadaceae

+ Sutterella-Parabacteroides Sutterella-P. 
distasonis

+

Alcaligenaceae-
Odoribacteriaceae

+ Sutterella-
Butyricimonas

+ Sutterella-
Butyricimonas

+

Proteobacteria-
Bacteroidetes 

+ Betaproteobacteria-
Bacteroidia 

+ Burkholderiales-
Bacteroidales 

+

Alcaligenaceae-
Rikenellaceae

Sutterella-
Rikenellaceae

+

625 Table 4.  Correlations between Burkholderiales-Bacteroidales lineages, shaded using 
626 the same scheme as Table 1 (grey present in both MCNs, purple only ADHD). 
627

628 Fig. 7 also illustrates the increase in ADHD cluster BB size, as do the heatmaps (Fig. 8, 

629 magenta square).  Table 5 quantifies differences in node and edge count.

630
Taxonomic Level Family Genus Lowest
MCN Control ADHD Control ADHD Control ADHD
Cluster BB size: Taxa (+ Edges) 4 (3) 6 (7) 6 (7) 7 (9) 3 (2) 7 (11)

631 Table 5.  Control and ADHD cluster BB size.  Notation: Taxa (edges).
632

633 Table 5 shows cluster BB size to mysteriously drop in Control from the genus to the 

634 lowest level, from six taxa down to three.   A closer look at Fig. 7C and 7E shows several 

635 genus-level BB members may be joining a mixed-family, Bacteroidetes-dominant cluster 

636 (BM1, pink) at the lowest level.  Table 6, which shows BB and Control BM1 members, 

637 confirms this.  Core BB members are shown in bold, while italicized members are 

638 unique to Control or ADHD.   Taxa of genus-level Control cluster BB members 
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639 Odoribacter, Adlercruetzia, Parabacteroides (P. distasonis) and Bacteroides (B. ovatus) 

640 compose Control cluster BM1 at the lowest level.

641
Control ADHD

Level Community Cluster Type Taxon Phylum Taxon Phylum
Bacteroidaceae Bacteroidaceae*
Porphyromonadaceae* Porphyromonadaceae
Alcaligenaceae Alcaligenaceae
Rikenellaceae Rikenellaceae

Odoribacteraceae

Family Bacteroidetes-
dominant (B)

Bacteroidaceae-
dominant (BB)

Streptococcaceae
Level Community Cluster Type Taxon Phylum Taxon Phylum

Bacteroides Bacteroides*
Parabacteroides* Parabacteroides
Sutterella Sutterella
Rikenellaceae Rikenellaceae
Odoribacter Butyricimonas
Adlercruetzia Streptococcus

Genus Bacteroidetes-
dominant (B)

Bacteroidaceae-
dominant (BB)

Clostridium
Level Community Cluster Type Taxon Phylum Taxon Phylum

Bacteroides* Bacteroides*
Bacteroides uniformis Bacteroides uniformis
Sutterella Sutterella

Parabacteroides distasonis
Rikenellaceae
Butyricimonas

Bacteroidaceae-
dominant (BB)

Bifidobacterium longum
Odoribacter
Bacteroides ovatus
Parabacteroides distasonis*

Species Bacteroidetes-
dominant (B)

Bacteroidetes, 
Mixed (BM1)

Adlercruetzia

642 Table 6.  Bacteroides, Bacteroidaceae dominant clusters (BB) and Bacteroidetes, Mixed 
643 family (BM1) cluster in Control.  Core taxa are bold, taxa exclusive to one MCN 
644 (Control or ADHD) are italicized, and centroids are marked with an asterisk (*).
645

646 Table 7 supports weakened connections between BB and BM1 taxa in Control, showing 

647 higher intra-correlation values (0.61 and 0.62) relative to inter-correlation (0.44).

648
Control BB (Intra) Control BM1 (Intra) Control BB-BM1 (Inter) ADHD BB (Intra)
Taxa Edges Mean 

Correlation
Taxa Edges Mean 

Correlation
Taxa Edges Mean 

Correlation
Taxa Edges Mean 

Correlation 
3 2 0.61 ± 0.15 4 4 0.62 ± 0.1 4 3 0.44 ± 0.02 7 11 0.56 ± 0.12

649 Table 7.  Cluster BB and Control BM1 intra- and inter-correlations.

650

651 Table 6 also shows cluster BB members that differ between the MCNs.  Cluster BB gains 

652 a different Actinobacteria – B. longum (ADHD) and Adlercruetzia (Control, eventually 

653 joining BM1).   The presence of Firmicutes (yellow) is exclusive to ADHD, including 

654 Streptococcaceae and member genus Streptococcus, plus Clostridium.  ADHD LEfSe 

655 biomarkers Odoribacteriaceae and Butyricimonas join cluster BB only in ADHD, and the 

656 sole Clostridium connection to cluster BB is with Butyricimonas (Fig. 6D).
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657

658 Table 6 also indicates BB/BM1 centroids, which we see across the board for ADHD are 

659 Bacteroides and its family Bacteroidaceae. In Control this belongs to Porphyromonadaceae 

660 (family) and descendant Parabacteroides (genus), until the BB-BM1 “split” where 

661 Bacteroides becomes centroid of BB and P. distasonis of BM1.  Table 8 shows connectivity 

662 of each of these taxa within their corresponding cluster.  Percentagewise, in ADHD 

663 Bacteroidaceae/Bacteroides is a much stronger centroid; in fact over all levels only one 

664 cluster BB taxon was not positively correlated (Clostridium, genus level).  Particularly 

665 given the ADHD cluster BB size increase, this could imply a significant role of 

666 Bacteroidaceae/Bacteroides in stabilizing a large ADHD Bacteroidetes-dominant 

667 community (would require additional experiments to verify).

668
Level Family Genus Lowest
MCN Control ADHD Control ADHD Control ADHD
Bacteroidaceae/Bacteroides 2/3 (66%) 5/5 (100%) 3/5 (60%) 5/6 (84%) 2/2 (100%) 6/6 

(100%)
Porphyromonadaceae/Parabacteroides/P. distasonis* 2/3 (66%) 2/5 (40%) 4/5 (80%) 3/6 (50%) 3/3* (100%) 3/6 (50%)

669 Table 8.  Cluster BB (* = BM1) connectivity with centroid taxa.

670

671 Interestingly ATria (Table 9) shows Bacteroidaceae/Bacteroides and lineages to nearly 

672 always have higher importance in Control, supporting a more “global” importance to 

673 overall gut ecology as opposed to a more local importance (cluster BB) in ADHD.  

674 MCNs agree, as in ADHD Bacteroidaceae/Bacteroides have few connections outside 

675 cluster BB (Fig. 7B, D, F).  In Control (Fig. 7A, C, E) Bacteroidaceae/Bacteroides have many 

676 external connections, mostly negative (est. competition).  

677
Phylum Class Order Family Genus Lowest Possible

B. uniformis (#12/#7)
B. ovatus (#2/#T20)

Bacteroidaceae 
(#T9/#T12)

Bacteroides (#10/#T23)

Bacteroides 
(#T23/#T28)

Odoribacter (#9/#T21) Odoribacter (#3/#T20)Odoribacteriaceae 
(NR/#2) Butyricimonas (NR/#4) Butyricimonas (NR/#17)

Parabacteroides 
(#T19/#T24)

Porphyromonadaceae 
(#T7/#1)

Parabacteroides 
(#T12/NR)

P. distasonis (NR/#T24)
Prevotellaceae (NR/#5) Prevotella (NR/#18)

Bacteroidetes (NR/#T2) Bacteroidia (NR/#1) Bacteroidales (#1/#1)

Rikenellaceae (#T7/#3) Rikenellaceae (#T12/#8) Rikenellaceae (#T19/#8)

678 Table 9. ATria rankings of Bacteroidetes taxa.  

679
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680 Control MCNs (Fig. 7A, C, E) and heatmaps (Fig. 8A, C, E, magenta rectangle) show 

681 negative correlations (red) to be fairly evenly distributed among cluster BB taxa.  By 

682 contrast in ADHD (Fig. 7B, 8B), nearly all cluster BB negative correlations are localized 

683 to Porphyromonadaceae (ranked #1 by ATria).  Fig. 6B shows Porphyromonadaceae to be the 

684 sole cluster BB member negatively correlated with the Firmicutes-dominant portion 

685 (Fig. 6B, upper right, collectively more than 70% of the population).  

686

687 Table 10 shows that for all MCNs, in Control more than two-thirds of cluster BB had 

688 negative correlations with members of other clusters, compared to less than half in 

689 ADHD.  Negative edge count was also almost always higher for Control, despite a 

690 smaller cluster BB.  Collectively these results show that in Control cluster BB is smaller, 

691 and more connected to other clusters, primarily through negative correlations (est. 

692 competition).  In ADHD cluster BB is larger, and more isolated.   

693
Level Family Genus Lowest

MCN Control ADHD Control ADHD Control ADHD

Cluster BB (-) Edges with Other Clusters (Participation Rate) 7 (100%) 5 (33%) 10 (88%) 4 (43%) 5 (67%) 5 (43%)

694 Table 10.  Negative correlations between cluster BB and other clusters.  Number 
695 (participation rate). 
696

697 Table 11 provides a few final interesting observations for various Bacteroidetes taxa.
Taxa Observation
Odoribacteriaceae and member genus Butyricimonas ADHD LEfSe biomarkers, ADHD cluster BB members, only ranked in ADHD.
Prevotellaceae and member genus Prevotella ADHD negative correlation with Bacteroidaceae/Bacteroides is the only negative correlation 

between two Bacteroidetes taxa in any MCN.  Only ranked in ADHD,
Rikenellaceae Ranked in every MCN at every level, and always higher for ADHD.

698  Table 11.  Additional observations for some Bacteroidetes taxa.

699

700 (B) In Control, taxa in (A) have more negative edges with Actinobacteria (est. 

701 competition), especially Bifidobacteriales.  We now know taxa from (A) to correspond 

702 to cluster BB, which in both MCNs contained one core Proteobacteria 

703 (Alcaligenaceae/Sutterella) and otherwise primarily Bacteroidetes.  We also observed 

704 cluster BB taxa to have far more negative correlations 

705 (est. competition) with other clusters in Control.  We now see if this is also true with 
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706 Bifidobacteriales lineages, including Bifidobacterium. Our analysis in fact reveals that 

707 negative correlations between  Bifidobacterium or any parent/descendant with any 

708 Bacteroidetes or Proteobacteria are exclusive to Control and absent in ADHD.

709

710 Table 12 shows all correlations involving Bifidobacterium and its lineages, grouped and 

711 colored as in previous tables.  Not only are negative Bacteroidetes correlations exclusive 

712 to Control (orange), but these taxa include the most abundant Bacteroidetes 

713 Bacteroidaceae/Bacteroides (ADHD cluster BB centroid), as well as 

714 Porphyromonadaceae/Parabacteroides (Control cluster BB centroid).  Another appears at 

715 the lowest level between B. adolescentis and B. ovatus.  With Proteobacteria, negative 

716 Bifidobacterium correlations are also observed with Sutterella (core cluster BB member) 

717 and Enterobacteriaceae, also only in Control.  Heatmaps confirm 

718 Bifidobacteriaceae/Bifidobacterium to be negatively correlated with cluster BB taxa only in 

719 Control (Fig. 8A-D, intersection of brown and magenta rectangles).  By contrast, the 

720 only ADHD correlation is positive and within cluster BB (B. longum with B. uniformis).  
Phylum Class Order Family Genus Lowest Possible

B. adolescentis – B. 
ovatus

-Bifidobacteriaceae -
Bacteroidaceae

- Bifidobactrium -
Bacteroides

-

B. longum – 
B.uniformis 

+

Actinobacteria-
Bacteroidetes

- Actinobacteria- 
Bacteroidia

- Bifidobacteriales-
Bacteroidales

-

Bifidobacteriaceae -
Porphyromonadaceae

- Bifidobacterium - 
Parabacteroides

-

Actinobacteria -
Betaproteobacteria 

- Bifidobacteriales-
Burkholderiales

Bifidobacteriaceae-
Alcaligenaceae

Bifidobacterium –
Sutterella

-Actinobacteria 
Proteobacteria

-

Actinobacteria-
Gammaproteobacteria

Bifidobacteriales- 
Enterobacteriales

Bifidobacteriaceae-
Enterobacteriaceae

Bifidobacterium-
Enterobacteriaceae

Bifidobacterium 2 – 
Enterobacteriaceae 

-

Actinobacteria- Bacilli Bifidobacteriales-
Turicibacteriales

Bifidobacteriaceae-
Turicibacteriaceae

Bifidobacterium-Turicibacter Bifidobacterium 1 – 
Turicibacter

+

Bifidobacterium 1 – 
Blautia 2

-

Bifidobacterium 1 – 
Ruminococcus [L]

+

Bifidobacteriaceae- 
Lachnospiraceae 

+ Bifidobacterium -
Lachnospiraceae 2

+

B. longum – Blautia 
1

+

Bifidobacterium-
Clostridiales

B. adolescentis – 
Clostridiales  1

+

Bifidobacterium 2 – 
Ruminococcaceae 

-

Bifidobacteriales – 
Clostridiales 

Bifidobacterium-
Ruminococcaceae 

B. longum – 
Oscillospira

-

Actinobacteria- 
Firmicutes 

Actinobacteria-Clostridia Bifidobacteriales -
Clostridiales 

+

Bifidobacteriaceae – 
Veillonellaceae

Bifidobacterium-Veillonella Bifidobacterium 2 – 
Dialister

-

Actinobacteria-
Actinobacteria

Bifidobacteriales - 
Bifidobacteriales

Bifidobacteriaceae - 
Bifidobacteriaceae

Bifidobacterium-
Bifidobacterium

Bifidobacterium 2 – 
B. adolescentis

-

Bifidobacterium-
Adlercruetzia

Bifidobacterium 1 -
Adlercruetzia

+

Bifidobacterium-
Collinsella

+

Actinobacteria-
Actinobacteria

Actinobacteria-
Coriobacteria

Bifidobacteriales-
Coriobacteriales +

Bifidobacteriaceae-
Coriobacteriaceae

+

Bifidobacterium-Eggerthella B. longum – E.lenta -

721 Table 12.  Correlations involving Bifidobacterium and its lineages.
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722 Table 12 also shows Bifidobacterium to even have far more Firmicutes connections 

723 (positive and negative) in Control.  Collectively 24 correlations were observed in 

724 Control, compared to 9 in ADHD, supporting an overall increase in Bifidobacterium 

725 participation in Control.  ATria (Table 13) also almost uniformly ranks Bifidobacterium 

726 and its lineages higher in Control.  Again, this is despite Bifidobacterium abundances 

727 being relatively the same (slightly higher in ADHD in fact, 3.6% to 3.2%).     
Phylum Class Order Family Genus Lowest Possible

Bifidobacterium 1 (#10/NR)
Bifidobacterium 2 (#1/11)

Actinobacteria 
(#1/#1)

Actinobacteria 
(#2/NR)

Bifidobacteriales 
(#T2/ #T5)

Bifidobacteriaceae 
(#5/NR)

Bifidobacterium 
(NR/#T19)

B. longum (#15/NR)

728 Table 13. ATria rankings of Bifidobacterium and lineages.

729

730 (C) A  Shift in Firmicutes-Proteobacteria dynamics.  Only two Proteobacteria 

731 families/genera were consistently present.  One was Sutterella (family Alcaligenaceae), 

732 already noted as a core cluster BB member.  The other is Enterobacteriaceae, which our 

733 analysis supports being mostly responsible for this shift.  

734

735 Table 14 shows all Proteobacteria-Firmicutes correlations.  A couple of negative 

736 correlations can be seen involving Alcaligenaceae/Sutterella, with Firmicutes 

737 Ruminococcaceae (Control) and Clostridiaceae (both).  Far more significant are the 

738 differences involving Enterobacteriaceae.  One is its negative correlation with genus 

739 Oscillospira in ADHD (genus level), that becomes a positive correlation with Oscillospira 

740 in Control (lowest level).  This is the only time, over all twelve MCNs, where a 

741 correlation sign changed between the same two taxa in Control vs. ADHD.  

742
Phylum Class Order Family Genus Lowest Possible

Alcaligenaceae – 
Ruminococcaceae

-Betaproteobacteria - 
Clostridia

Burkholderiales-
Clostridiales

Alcaligenaceae - 
Clostridiaceae- 

- Sutterella –
Clostridiaceae 2

- Sutterella – 
Clostridiaceae 2

-

Gammaproteobacteria - 
Bacilli

Enterobacteriales 
- Turicibacteriales 

-

Enterobacteriaceae 
– Mogibacteriaceae

+

Enterobacteriaceae-
Lachnospiraceae

Enterobacteriaceae - 
Anaerostipes

Enterobacteriaceae-
Anaerostipes

+

Gammaproteobacteria – 
Clostridia 

- Enterobacteriales-
Clostridiales

Ruminococcaceae-
Enterobacteriaceae

Enterobacteriaceae – 
Oscillospira

- Enterobacteriaceae 
– Oscillospira

+

Gammaproteobacteria - 
Erysipelotrichi

Enterobacteriales-
Erysipelotrichiales

Enterobacteriaceae-
Erysipelotrichiaceae

Enterobacteriaceae – 
Erysipelotrichiaceae 2

+ Enterobacteriaceae – 
Erysipelotrichiaceae 2

+

Proteobacteria- 
Firmicutes 

-

Deltaproteobacteria - 
Clostridia

- Desulfovibrionales – 
Clostridiales 

-

743 Table 14.  Proteobacteria-Firmicutes correlations.
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744
745 Interesting shifts involving Enterobacteriaceae and various Firmicutes occur even at the 

746 family level, however.  A small mixed-family, Firmicutes-dominant cluster FM forms 

747 (Fig. 7A, upper left), consisting of Mogibacteriaceae, Christensenellaceae, and 

748 Erysipelotrichiaceae (Table 15).  In ADHD, Enterobacteriaceae instead joins Mogibacteriaceae 

749 to form a small two-taxon mixed cluster M (Fig. 7B, upper left, and Table 15).  
Control ADHD

Community Cluster Type Cluster Taxon Phy Cluster Taxon Phy
FM Mogibacteriaceae
FM Christensellaceae*

Firmicutes-
dominant (F)

Mixed (FM)

FM Erysipelotrichiaceae
M MogibacteriaceaeMixed

(M)
N/A

M Enterobacteriaceae

750 Table 15.  Mixed-family Control and ADHD clusters.
751

752 Dynamics of FM and M taxa change between the MCNs.  Fig. 7A-B shows a 

753 distinguishing core FM/M feature is the negative correlation with Rikenellaceae of 

754 cluster BB, but the taxon involved changes from Erysipelotrichiaceae in Control to 

755 Mogibacteriaceae in ADHD.   Table 16 (ATria) shows the two taxa from Control cluster 

756 FM “replaced” by Enterobacteriaceae in ADHD cluster M, Christensenellaceae and 

757 Erysipelotrichiaceae, are only ranked in Control, and Mogibacteriaceae only ranked in 

758 ADHD.  This applied across all descendants, with the one notable exception being 

759 Coprobacillus (Erysipelotrichiaceae), ranked #1 for ADHD at the genus and lowest levels 

760 (the only taxon to be ranked #1 in two MCNs).  We label it in Fig. 7D, F, noting its 

761 negative correlations with multiple Firmicutes-dominant clusters.
Phylum Class Order Family Genus Lowest Possible

Christensenellaceae 
(#2/NR)

Christensenellaceae 
(NR/NR)

Christensenellaceae 
(#18/NR)

Clostridia (#T3/#T3) Clostridiales (#T2/#3)

Mogibacteriaceae 
(NR/#T6)

Mogibacteriaceae 
(NR/#6)
Coprobacillus (NR/#1) Coprobacillus 

(#T31/#1)
Erysipelotrichaceae  1  
(#6/NR)

Erysipelotrichaceae 1 
(#16/NR)

Erysipelotrichaceae  2 
(#11/NR)

Firmicutes (#2/#T2)

Erysipelotrichia (NR/NR) Erysipelotrichales 
(NR/#T3)

Erysipelotrichaceae 
(#3/NR)

Eubacterium (#T14/NR) E. dolicum (#T29/NR)

Proteobacteria (NR/NR) Gammaproteobacteria 
(#T3/NR)

Enterobacteriales 
(#T3/NR)

Enterobacteriaceae 
(NR/#T6)

Enterobacteriaceae 
(NR/#7)

Enterobacteriaceae 
(NR/#T26)

762 Table 16.  Mixed-family cluster member ATria rankings.

763

764 Enterobacteriaceae was also only ranked in ADHD, across all three lower levels.  Its 

765 Oscillospira positive correlation (Table 14) is the only Control correlation involving 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


30

766 Enterobacteriaceae, and Enterobacteriaceae actually joins Oscillospira’s cluster (FR, Fig. 7E) 

767 in Control.   The sign change takes place at the genus level in ADHD (Fig. 6D), where 

768 Oscillospira and Enterobacteriaceae are negatively correlated.  Although this correlation 

769 did not persist to the lowest level (Fig. 6F), Enterobacteriaceae is still positively correlated 

770 with Anaerostipes, a taxon negatively correlated with Oscillospira across the board.  We 

771 therefore observe Enterobacteriaceae dynamics to shift from a state that favors Oscillospira 

772 cooperation in Control, to Oscillospira competition in ADHD.   The role of 

773 Enterobaceriaceae in gut ecology has historically been controversial (114), with both 

774 beneficial (115) and pathogenic (116) properties emerging.  Gut dysbiosis has actually 

775 been shown to trigger horizontal gene transfer between the two types (117).

776

777 New Observations.  We make the following new observations at the lower levels.

778

779 (D) LEfSe Biomarkers: Turicibacter and Odoribacter.  Earlier we noted ADHD LEfSe 

780 biomarkers Odoribacteriaceae and Butyricimonas as ADHD cluster BB members (Table 

781 11).  Biomarker H. influenzae and its lineages were never connected to any of our MCNs.  

782 We now observe remaining biomarkers Turicibacter (Control) and Odoribacter (ADHD).   

783

784 Cluster FT (Fig. 7, orange) was the only Firmicutes-dominant cluster with members 

785 positively correlated with any Bacteroidetes-dominant cluster (BB in ADHD, BM1 in 

786 Control).  We named this cluster FT because of core member Turicibacter. Turicibacter 

787 (Firmicutes, LEfSe Control biomarker), which joins Phascolarctobacterium (Firmicutes, 

788 reduced in inattention, (57)) to form FT at the genus level in ADHD (Fig. 7D), where it is 

789 not present in Control.  At the lowest level, FT is slightly larger (by one taxon) in 

790 ADHD.  Supplementing the earlier trend of less cluster BB negative correlations (est. 

791 competition) in ADHD, this also supports the presence of a larger cluster with positive 

792 correlations (est. cooperation) as well, with Turicibacter as its centroid (Table 17).

793
Control ADHD

Level Community Cluster Type Taxon Phy Taxon Phy
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Family TuricibacterFirmicutes-
dominant (F)

Turicibacter-
core (FT)

Not present.
Phascolarctobacterium

Level Community Sub-Community Taxon Phy Taxon Phy
Genus Turicibacter Turicibacter*

Ruminococcus [L] Phascolarctobacterium
Bifidobacterium 2* Clostridiales 2

Firmicutes-
dominant (F)

Turicibacter-
core (FT)

Parabacteroides

794 Table 17.  Cluster FT (Firmicutes-dominant, Turicibacter-core) members.

795 In ADHD Turicibacter provides the sole genus-level (Fig. 7D) FT-BB positive correlation, 

796 with Parabacteroides (Bacteroidetes, reported elevated in hyperactivity, (53)).  At the 

797 lowest level (Fig. 7F) Parabacteroides joins FT, and along with Turicibacter forms FT-BB 

798 positive correlations, with member species P. distasonis.  Interestingly in Control (Fig. 

799 7E), the FT-BB positive correlation does not involve Firmicutes or Bacteroidetes taxa at 

800 all, but rather two Actinobacteria –Bifidobacterium 1 (FT centroid), and Adlercruetzia (BB).  

801 This continues our observed increases in Actinobacteria and particularly Bifidobacterium 

802 involvement in Control gut ecology.

803

804 Cluster FC forms in Control (Fig. 7C,E, aqua) and contains two Clostridiaceae taxa.  In 

805 both MCNs these taxa negatively correlate with multiple cluster BB members, and in 

806 ADHD (Fig. 7F) Clostridiaceae 1 has negative correlations with BB centroid Bacteroides 

807 plus taxa involved in FT-BB cooperation: P. distasonis, and FT centroid Turicibacter.   In 

808 both MCNs, they participate in correlations that favor cluster BB competition (especially 

809 the more abundant Clostridiaceae 1).

810

811 Exclusive to ADHD is a negative correlation (est. competition) between these 

812 Clostridiaceae taxa and ADHD biomarker Odoribacter – both at the genus level (Fig. 7D), 

813 and Clostridiaceae 1 at the lowest level (Fig. 7F).  Odoribacter was reported by LEfSe as 

814 elevated in ADHD, and this negative correlation implies that an increase in Odoribacter 

815 abundance will decrease Clostridiaceae 1.  Upon further inspection Clostridiaceae 1 

816 relative abundance is indeed reduced by a factor of two in ADHD vs. Control.   

817 Clostridiaceae 1 and 2 cooperation in Control (forming FC) is also absent in ADHD.

818
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819 (E) Changes in the role of Adlercruetzia (Actinobacteria).   In contrast to Bifidobacterium 

820 (Bifidobacteriaceae), Adlercruetzia is a member of the other consistently present 

821 Actinobacteria family, Coriobacteriaceae.  While the distinguishing feature of 

822 Bifidobacteriaceae/Bifidobacterium was increased Control participation, the distinguishing 

823 feature of Coriobacteriaceae appears to be changes in cluster membership.  In fact over all 

824 Coriobacteriaceae descendants, only once (Collinsella, genus level, cluster AM, Fig. 7C-D) 

825 were any in the same Control and ADHD cluster.  Table 18 also shows ATria results to 

826 be more mixed for Coriobacteriaceae, compared to Bifidobacteriaceae (Table 13).

827
Phylum Class Order Family Genus Lowest Possible

Adlercruetzia (NR/#17) Adlercruetzia (#14/NR)
Collinsella (NR/#T19) C. aerofaciens (NR/#15)
Coriobacteriaceae 
(#18/NR)

Actinobacteria (#1/#1) Coriobacteria (#1/NR) Coriobacteriales 
(NR/#T5)

Coriobacteriaceae 
(NR/#4)

Eggerthella (#4/NR) E. lenta (#T25/NR)

828 Table 18.  ATria rankings of Coriobacteriaceae and its lineages.

829

830 We earlier noted Adlercruetzia as the Actinobacteria member of cluster BB/BM1 in 

831 Control, and (along with Bifidobacterium 1) connecting clusters FT and BB.  Table 19 

832 shows that outside of Bifidobacterium 1, its positive correlations in Control were entirely 

833 with Bacteroidetes taxa (all BB/BM1 members).  By contrast in ADHD, Adlercruetzia 

834 relationships mostly occur with Firmicutes, including a cluster membership with 

835 Eubacterium/E. dolicum.  Several negative correlations are seen between Adlercruetzia and 

836 different Firmicutes, with no overlap between Control and ADHD. This suggests 

837 Adlercruetzia may play a significantly different role in Control and ADHD gut ecologies.

838
Phylum Class Order Family Genus Lowest Possible

Adlercreutzia- 
Bacteroides

+ Adlercreutzia- 
B.uniformis 

+

Adlercreutiza-
Parabacteroides

+ Adlercreutzia- 
P.distasonis 

+

Actinobacteria-
Bacteroidetes

- Coriobacteria-
Bacteroidia

- Coriobacteriales -
Bacteroidales

- Coriobacteriaceae -
Bacteroidaceae

-

Adlercreutzia- 
Odoribacter

+

Coriobacteriaceae- 
Erysipelotrichaceae-

Adlercreutzia- 
Eubacterium

+ Adlercreutzia- E. 
dolicum

+

Adlercreutzia -Blautia -
Adlercreutzia – 
Lachnospira

- Adlercreutzia - 
Lachnospira 

-

Adlercreutzia - 
Lachnospiraceae  1 

-

Coriobacteriaceae- 
Lachnospiraceae

Adlercreutzia - 
Lachnospiraceae  2

Adlercreutzia - 
Lachnospiraceae 2

-

Actinobacteria-
Firmicutes

Actinobacteria-Clostridia Coriobacteriales- 
Costridiales

Coriobacteriaceae- 
Ruminococcaceae

Adlercreutzia – 
Ruminococcus

- Adlercreutzia – 
Ruminococcus

-
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Actinobacteria-
Coriobacteria

Bifidobacteriales-
Coriobacteriales

+ Bifidobacteriaceae-
Coriobacteriaceae

+ Bifidobacterium-
Adlercruetzia

Bifidobacterium 1 -
Adlercruetzia

+Actinobacteria-
Actinobacteria

Coriobacteria - 
Coriobacteria

Coriobacteriales - 
Coriobacteriales

Coriobacteriaceae-
Coriobacteriaceae

Adlercruetzia-
Coriobacteriaceae

+

839 Table 19.  Adlercruetzia correlations.

840  

841 (F) Bacteroidetes-Firmicutes positive correlations (est. cooperation) are entirely 

842 exclusive to ADHD, and absent in Control.   Table 20 shows all Bacteroidetes-

843 Firmicutes positive correlations.  They are entirely limited to ADHD, and with one 

844 exception (Clostridium) involve Bacilli taxa. 
Phylum Class Order Family Genus Lowest Possible

Bacteroidaceae 
Streptococcaceae

+ Bacteroides -
Streptococcus

+

Parabacteroides -
Turicibacter

+ Parabacteroides-
Turicibacter 

+

Bacteroidales 
Lactobacillales

Porphyromonadaceae 
Turicibacteriaceae- 

Parabacteroides -
Turicibacter

+ P.distasonis -
Turicibacter

+

Bacteroidetes-
Firmicutes

- Bacteroidia -Bacilli

Bacteroidales - 
Clostridiales

- Odoribacteriaceae -
Clostridiaceae

Butyricimonas -
Clostridium

+

845 Table 20.  Bacteroidetes-Firmicutes positive correlations, over all MCNs.

846  

847 We have already seen most of these, including Clostridium and ADHD LEfSe biomarker 

848 Butyricimonas, and the ADHD FT-BB connections involving Turicibacter, Parabacteroides, 

849 and P.distasonis.  We now analyze the remaining top row, between Bacteroides 

850 (Bacteroidaceae) and Streptococcus (Streptococcaceae).

851

852 Firmicutes taxa were only ever present in cluster BB in ADHD, and we earlier noted 

853 Streptococcaceae and its genus Streptococcus as two of those taxa.   Their cluster BB 

854 positive correlation was with centroid Bacteroidaceae/Bacteroides.   Additionally cluster 

855 BB had almost no negative correlations (est. competition) with FL/FR (collectively 70% 

856 of the population) in ADHD, compared to a significant amount in Control.  

857

858 What makes Streptococcus interesting for ADHD is that across all MCNs, it forms the 

859 only positive correlation between cluster BB and FL/FR (Fig. 7D).  In other words, in 

860 addition to estimating significantly less BB-(FL/FR) competition in ADHD, our MCNs 

861 also estimate cooperation only in ADHD, between Streptococcus (BB) and Blautia (FL1). 
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862

863 Fig. 7D and 7F also show Streptococcus to be negatively correlated with Oscillospira in 

864 ADHD, a taxon we noted earlier its correlation sign change with Enterobacteriaceae.  

865 ATria (Table 21) also only ranks Streptococcaceae/Streptococcus as important in ADHD.
Phylum Class Order Family Genus Lowest Possible
Firmicutes (#2/#T2) Bacilli (NR/NR) Lactobacillales (NR/NR) Streptococcaceae 

(NR/#T12)
Streptococcus 
(NR/#T23)

866 Table 21.  ATria rankings of Streptococcaceae/Streptococcus.

867

868 (G) A shift in Blautia-Oscillospira dynamics, and their respective clusters.  Thus far 

869 Oscillospira has been noted for two ADHD-exclusive negative correlations, with taxa 

870 only ranked in ADHD: Enterobacteriaceae and Streptococcus.  Enterobacteriaceae-

871 Oscillospira was the only correlation to ever change sign from Control (positive) to 

872 ADHD (negative).  Streptococcus was noted for its correlation with Blautia, the sole 

873 positive correlation between the largest Bacteroidetes-dominant cluster (BB) and 

874 Firmicutes-dominant clusters (FL/FR) in any MCN.

875

876 Previous studies have indicated butyrate-producing Oscillospira as a healthy gut taxon 

877 (118), specifically associated with leanness (119).  Blautia is actually a taxon that has 

878 been associated with obesity (120).  And interestingly in the Control MCN (Fig. 7C and 

879 7E) Blautia and Oscillospira are negatively correlated, but not in ADHD (Fig. 7D and 7F).

880

881 Since obesity has been associated with ADHD (121), the shift in Enterobacteriaceae 

882 (Oscillospira cooperation in Control, competition in ADHD) and Streptococcus (Blautia 

883 cooperation and Oscillospira competition in ADHD) correlations become interesting, 

884 favoring Blautia cooperation and Oscillospira competition.   Indeed correlation can never 

885 imply causation and further experimental verification is required.  But ATria results 

886 (Table 22) also support this, ranking Blautia higher in ADHD and Oscillospira in Control.
Phylum Class Order Family Genus Lowest Possible

Lachnospiraceae (NR/NR) Blautia (#T16/#13) Blautia 1* (NR/#19)Firmicutes (#T2/#2) Clostridia (#T3/#T3) Clostridiales (#T2/#3)
Ruminococcaceae 
(#4/#T8)

Oscillospira (#3/#10) Oscillospira (#5/#9)
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887 Table 22.  Blautia and Oscillospira ATria rankings (plus lineages).  *=The lowest level 
888 had two Blautia taxa; we assumed the more abundant (Blautia 1, overall 9.3% relative 
889 abundance vs 0.6%, composing 93% of the Blautia population).
890
891 In fact our heatmap (Fig. 8C-8F) shows by intersecting Oscillospira’s row (small green 

892 rectangle) with the columns of Blautia’s cluster (gold rectangles, Control FL3, ADHD 

893 FL1) that Oscillospira is negatively correlated with Blautia’s entire cluster in Control, 

894 and these correlations are completely absent in ADHD.  

895

896 The lowest level MCNs (Fig. 7E-F) also show Blautia’s cluster as larger in ADHD, and 

897 Oscillospira’s cluster as larger in Control.  Table 23 contains members of these clusters.  

898 Blautia and Oscillospira each belong to a cluster dominated by its respective family: 

899 Lachnospiraceae (FL), and Ruminococcaceae (FR).   Oscillospira is a core FR member and at 

900 the lowest level, we see the Control FR cluster (with Enterobacteriaceae now a member).  

901 Blautia is consistently a member of the same cluster as both Lachnospiraceae taxa in 

902 ADHD, comparably larger than its FL3 Control cluster.

903
Control ADHD

Level Community Cluster Type Cluster Taxon Phy Cluster Taxon Phy
Lowest FL3 Blautia 1* FL1 Lachnospiraceae 1

FL3 Dorea 2 FL1 Lachnospiraceae 2*
FL3 Bifidobacterium 

longum
FL1 Coprococcus

FL1 Ruminococcus [L]
FL1 Blautia 1
FL1 Dorea 2

Lachnospiraceae-
dominant (FL)

FL1 Faecalibacterium 
prausnitzii

FR Ruminococcaceae* FR Ruminococcaceae
FR Ruminococcus [R] FR Ruminococcus [R]
FR Oscillospira FR Oscillospira
FR Clostridiales 1 FR Clostridiales 1*
FR Coprobacillus FR Bifidobacterium 

adolescentis
FR Enterobacteriaceae

Firmicutes-
dominant, 

Ruminococcaceae-
dominant (FR)

FR Lachnospira

904 Table 23.  Blautia and Oscillospira clusters.

905

906 Heatmaps also indicate increased participation of Oscillospira’s cluster (FR) in Control 

907 (large green rectangle, Fig. 8C-F), including negative correlations with cluster BB that 

908 are absent in ADHD, yet another example of reduced ADHD cluster BB competition.  In 

909 the MCNs, Fruchterman-Reingold places cluster FR (green) in a much more central 
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910 position in Control (Fig. 7C vs. 7D, and 7E vs. 7F).   The negative correlations between 

911 Oscillospira and Blautia’s entire cluster FL3 (Fig. 7C and 7E) are also evident, almost 

912 separating FL3 from the MCN.  In ADHD Blautia’s cluster FL1 (gold) occupies a much 

913 more central position (Fig. 7D and 7F), with increased ADHD size particularly 

914 noticeable at the lowest level (Fig. 7F). 

915  

916 ATria (Table 24) indicates a general increased importance of Blautia’s family 

917 (Lachnospiraceae) in ADHD, and Oscillospira’s family (Ruminococcaceae) in Control.  A 

918 couple of noteworthy taxa follow this trend.  Faecalibacterium prausnitzii 

919 (Ruminococcaceae), an anti-inflammatory bacterium (122) touted as a next-generation 

920 probiotic (123), is only ranked in Control.  Ruminococcus gnavis (Lachnospiraceae), known 

921 to produce an inflammatory polysaccharide (124), is only ranked in ADHD.  
Phylum Class Order Family Genus Lowest Possible

Anaerostipes (#T19/NR) Anaerostipes (#6/#T26)
Blautia 1 (NR/#19)Blautia (#T16/#13)
Blautia 2 (#9/#T22)

Coprococcus (NR/#5) Coprococcus (#T21/#6)
Dorea (#T14/#12) Dorea 2 (#13/NR)
Lachnospira (NR/#16) Lachnospira (#T27/#5)
Lachnospiraceae 1 
(#19/#15)

Lachnospiraceae 1  
(#17/#2)

Lachnospiraceae 2  
(#7/NR)

Lachnospiraceae 2 
(#8/#14)
Roseburia 1 (NR/#T28)Roseburia (NR/NR)
Roseburia 2(#T25/#T22)

Lachnospiraceae (NR/NR)

Ruminococcus  
(#1/#11)

R. gnavis (NR/#12)

Faecalibacterium 
(#T16/#2)

F. prausnitzii (#11/NR)

Oscillospira (#3/#10) Oscillospira (#5/#9)
Ruminococcaceae 
(#8/#9)

Ruminococcaceae 
(#4/#18)

Firmicutes (#2/#T2) Clostridia (#T3/#T3) Clostridales (#T2/#3)

Ruminococcaceae 
(#4/#T8)

Ruminococcus  (#2/NR) Ruminococcus 
(#T21/NR)

922 Table 24.  ATria rankings of Lachnospiraceae and Ruminococcaceae taxa.

923

924 Summary.  Four clusters were consistently present in both Control and ADHD MCNs.  

925 Three are Firmicutes-dominant (FL, FR, FT) and one is Bacteroidetes-dominant (BB).  

926 Table 25 shows their attributes, and summarizes observations we made about each.   

Cluster Attribute Observation
BB Largest Bacteroidetes-dominant cluster Larger in ADHD, with more internal 

cooperation and less external competition.
FL(1,2,…) Multiple Firmicutes, family Lachnospiraceae-

dominant clusters
One large, centrally located cluster emerges 
in ADHD (FL1).  Others are small, about the 
same size, and more disconnected (all are 
this way in Control).

FR Firmicutes, family Ruminococcaceae-dominant Smaller and less centrally located in ADHD.
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FT Firmicutes, core member Turicibacter Slightly larger in ADHD.
927 Table 25.  Largest, consistently present clusters.

928

929 Table 26 summarizes correlations between members of these clusters.  Other than the 

930 one exception in ADHD involving Streptococcus and Blautia:  FT is the only Firmicutes-

931 dominant cluster with taxa positively correlated with Bacteroidetes-dominant cluster 

932 (BB) members, and all correlations involving FL/FR (largest Firmicute-dominant 

933 clusters) and BB taxa are negative.   FT is completely disconnected from FL/FR except 

934 some ADHD competition.  FL-FR competition only happens in Control.

Cluster 1 Cluster 2 Observation
BB FL Always (-), with one exception in ADHD (Streptococcus-Blautia)
BB FR Always (-)
BB* FT Always (+)
FL FR Generally (+). Some (-) in Control (all involve either Ruminococcus (FL) or 

Oscillospira (FR))
FL FT Generally disconnected. Some (-) in ADHD (all involve Phascolarcobacterium (FT))
FR FT Always disconnected.

935 Table 26.  Interactions between taxa from Table 25 clusters (*=In Control, this took place 
936 with BM1 after the BB “split”).
937

938 Finally, we summarize taxa (Table 27) and relationships (Table 28) that we noted 

939 throughout our analyses.  

940

Taxon Observation
Adlercruetzia Role change from Control (Bacteroidetes cooperation) to ADHD (E. dolichum 

cooperation).  Competition with different Firmicutes.
Bacteroides Centroid (with nearly 100% connectivity) of cluster BB in ADHD.
Bifidobacterium Higher participation in Control (mostly competition).  Competition with all 

Bacteroidetes or Proteobacteria taxa is entirely exclusive to Control, including 
multiple members and centroid of cluster BB.  Cooperation (small amount) is 
entirely exclusive to ADHD.  Ranked higher in Control than ADHD nearly 100% 
of the time, including a #1 ranking at the lowest taxonomic level.

Coprobacillus Ranked #1 for ADHD in two MCNs (genus and lowest possible).  Competes 
with multiple Lachnospiraceae taxa, including the most abundant.

Enterobacteriaceae Involved with Firmicutes-Proteobacteria shifts.  Only ranked in ADHD.
F. prausnitzii Probiotic species only ranked in Control
Lachnospiraceae Most abundant family, generally ranked higher in ADHD
Phascolarctobacterium Only FT member connected to another Firmicute-dominant cluster 

(competition), in ADHD.  Only ranked in ADHD.
Porphyromonadaceae #1 ADHD family, only cluster BB member to compete with FL/FR
Rikenellaceae Ranked important in all six lower level MCNs, always higher in ADHD
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Ruminococcus [L] #1 Control genus, involved in FL-FR competition (only observed in Control).
R. gnavis Produces inflammatory biosaccharide, only ranked in ADHD
Ruminococcaceae Second-most abundant family, generally ranked higher in Control
Turicibacter Control LEfSe biomarker, core member (centroid in ADHD) of FT.

941 Table 27.  Taxa we noted throughout our analyses.
942
943
944
945

Relationship(s) Reason
Bacteroides-Sutterella (+, both) Only core correlation consistent across both sample sets at all 

levels (12 MCNs).
Bacteroides-Prevotella (-, ADHD) Only competition involving two Bacteroidetes taxa.
Bacteroides-Streptococcus (+, ADHD) Streptococcus is one of only two Firmicutes genera to join 

cluster BB, through this connection.
Butyricimonas-Clostridium (+, ADHD) Butyricimonas is an ADHD LEfSe biomarker, and only ranked 

by ATria in ADHD. Clostridium is one of only two Firmicutes 
to join cluster BB, through this connection.

Clostridiaceae-Odoricibacter (-, ADHD) Odoribacter is an ADHD LEfSe biomarker.  In ADHD competes 
with Clostridiaceae taxa that compete with multiple cluster BB 
members (including its centroid). 

Enterobacteriaceae-Oscillospira 
(+, Control; -, ADHD)

Only correlation ever to change sign from Control to ADHD.  
Taxa involved are in the same cluster in Control.

Blautia-Oscillospira (-, Control)
Streptococcus-Blauta (+, ADHD)
Streptococcus-Oscillospira (-, ADHD)

Blautia is associated with obesity and Oscillospira with 
leanness.  Oscillospira (FR) competes with every member of 
Blautia’s cluster (FL3) in Control.  FL-FR competition only 
happens in Control.

In ADHD Streptococcus cooperates with Blautia (obesity) and 
competes with Oscillospira (leanness).  Streptococcus-Blautia is 
the only time a cluster BB member (largest Bacteroidetes-
dominant) ever cooperates with taxa from FL or FR (largest 
Firmicutes-dominant, collectively over 70% of the population).
 
Streptococcus is only ranked in ADHD, Blautia is ranked higher 
in ADHD, Oscillospira is ranked higher in Control.

Blautia’s cluster (FL1) is larger and more central in ADHD.  
Oscillospira’s  (FR) is larger and more central in Control.

946 Table 28.  Relationships noted throughout our analyses.
947
948

949

950 Discussion
951 ______________________________________________________________________________

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


39

952 Traditional analysis methods (i.e. diversity and composition) prevalent in current 

953 ADHD gut microbiome literature provide a macroscale representation of a complex 

954 ecosystem.  Conducting some of these approaches on equal-sized, gender-balanced 

955 undergraduate Control and ADHD gut microbiome datasets produced many results 

956 that corresponded with this literature, plus a potentially new Control biomarker 

957 Turicibacter.  Current literature, as well as our results, suggest this macroscale 

958 perspective leaves a largely incomplete picture due to its neglect of underlying 

959 complexity.   Our goal was to complete more of this picture by venturing deeper, by 

960 analyzing two-way ecological relationships (cooperation and competition), plus 

961 community detection, and centrality.   

962

963 Our results provide a deeper meaning to those from the macroscale.  Anomalous results 

964 involving elevated Bifidobacterium and reduced Bacteroides and Sutterella at ASRS 

965 extremes imposed significant challenges when interpreting results (with Bifidobacterium, 

966 we were not the first to observe this (58)). Our MCNs estimate that a Bacteroidetes-

967 dominant community (cluster BB) forms in both microbiomes, with Bacteroides and 

968 Sutterella both core members, that in ADHD is larger, more centered around Bacteroides, 

969 residing in conditions that favor its cooperation, as opposed to competition in Control.  

970 And our MCNs estimate Bifidobacterium to be involved in these conditions, shifting from 

971 exclusively competitive relationships with cluster BB members (including its most 

972 abundant and centroid) in Control, to exclusively a cooperative relationship in ADHD.  

973

974 Potential roles played by LEfSe biomarkers also became observable.  Our MCNs 

975 estimated Odoribacter, reported by our LEfSe analysis and another (59) as ADHD-

976 elevated, to also compete with two Clostridiaceae taxa that competed with cluster BB 

977 taxa.   Another one of our ADHD biomarkers, Butyricimonas, joined cluster BB in ADHD 

978 and formed cooperative relationships with many members.  New interesting taxa and 

979 communities also emerged.  Cluster FT (cooperative with cluster BB) was larger in 

980 ADHD.  Cluster FR (Ruminococcaceae-dominant, competitive with cluster BB) was 
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981 smaller in ADHD, with Ruminococcaceae taxa almost universally less central.  

982 Ruminococcaceae member genus Oscillospira was estimated to have ADHD-exclusive 

983 competition, with Enterobacteriaceae (cooperative and fellow FR member in Control), 

984 and cluster BB member Streptococcus.  The shift in dynamics from Control to ADHD 

985 involving Streptococcus, Blautia, and Oscillospira in ADHD was particularly interesting 

986 (Table 28, last row).

987

988 Deeper meaning can be added through additional studies targeting some of these taxa 

989 and relationships, including multi-omics (125) and/or physical laboratory experiments.   

990 Fundamentally, ecological relationships manifest through internal interplay within the 

991 underlying web of interactions (126).  Cooperation could take place for example if two 

992 taxa produce a nutrient that the other consumes; competition could take place if two 

993 taxa consume a nutrient that neither produces.  Coupling taxa to metabolites they 

994 produce and consume and analyzing pathways can help elucidate underlying 

995 mechanisms behind these ecological relationships.  These pathways can then be 

996 searched for neurotransmitters to establish ADHD connections.   With very few studies 

997 even attempting this level of analysis (62), an enormous breadth of knowledge remains.

998

999 Many future improvements to our analyses are possible.  Future studies involving 

1000 ADHD and the gut microbiome should account for factors such as ethnicity (127), use of 

1001 medication/probiotics (55), use of antibiotics (128), diet (129), and gastrointestinal 

1002 issues (130).  More meaning to relationships in our MCNs can also be uncovered, 

1003 through causality studies.  Causality would give direction to edges, enabling detection 

1004 of both two- and one-way (i.e. commensalism (110), amensalism (111)) relationships.  

1005 This can be achieved through for example Bayesian Networks (131), which detect 

1006 relationships where a taxon is conditionally dependent on another. Conditional 

1007 dependence also eliminates spurious edges that can occur with correlations; for 

1008 example, two entities that co-occur with a mutual entity will naturally tend to co-occur 

1009 (88) (this was also a dependency removed by ATria after finding a central node).  Sazal 
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1010 et al. (132) have already verified such networks as a predictor for oral microbiome 

1011 colonization order. Time can also factor into ecological relationships because while 

1012 sometimes these relationships are constant in microbiomes (133), they can also be 

1013 transitive (134) or even time-varying (135). DBNs that account for time have already 

1014 been used to predict long-term infant gut behavior (136).  Higher-level network metrics 

1015 such as modularity (137) and vulnerability (138) would provide another potential 

1016 avenue for comparing and contrasting Control and ADHD MCNs. Amplicon Sequence 

1017 Variants (ASVs, (139)) can be used in place of the current Operational Taxonomic Units 

1018 (OTUs) that are generated by similarity-based clustering.  ASVs exhibit more reliability 

1019 at lower levels of the taxonomic tree and can improve the granularity of our MCNs, 

1020 achieving more species- and sometimes even strain-level classifications.  

1021

1022 A more complete understanding of ADHD and the gut microbiome will best equip the 

1023 community to make the right decisions when administering treatment(s).  Our results, 

1024 coupled with those in the literature, suggest that the gut microbiota cannot afford to be 

1025 ignored when it comes to ADHD, and treatments directly targeting the gut microbiome 

1026 have potential.  Encouraging results have been uncovered for gluten and casein-free 

1027 diets (44), Microbiota Transfer Therapy (MTT, (140,141)), and probiotics (142) with ASD.  

1028 Our results also indicate that the gut microbiome is an ecosystem, and any changes to 

1029 one single element will likely impact other members.  Additionally since the human gut 

1030 microbiome is widely varied across individuals (143), personalized medicine should be 

1031 used when developing such treatments.  
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1433 Fig. S1. Discriminant Analysis, Scarce Taxa Included.  Results of running sPLS-DA 
1434 (68) on microbiome abundance data (ellipse confidence level 95%) without removing 
1435 scarce taxa.  The figures show the analyses (a) comparing Control (orange) and ADHD 
1436 (blue) groups and (b) further separating the ADHD group into inattention (green), 
1437 hyperactive (grey), and combined (blue).
1438
1439
1440 Fig. S2. Compositional Analysis, Class Level. Microbial compositional bar graph for 
1441 each subject, generated using QIIME (70), conducted at the class level.  Subjects are 
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1442 ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with the y-axis 
1443 representing relative abundance.  
1444

1445 Fig. S3. Compositional Analysis, Order Level. Microbial compositional bar graph for 
1446 each subject, generated using QIIME (70), conducted at the order level.  Subjects are 
1447 ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with the y-axis 
1448 representing relative abundance.  
1449

1450 Fig. S4. Compositional Analysis, Family Level. Microbial compositional bar graph for 
1451 each subject, generated using QIIME (70), conducted at the family level.  Subjects are 
1452 ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with the y-axis 
1453 representing relative abundance.  
1454

1455 Fig. S5. Compositional Analysis, Order Level. Microbial compositional bar graph for 
1456 each subject, generated using QIIME (70), conducted at the species level.  Subjects are 
1457 ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with the y-axis 
1458 representing relative abundance.  
1459

1460 Fig. S6. Relative Abundance, Three Observed Taxa. Relative abundance of genera (a) 
1461 Bifidobacterium, (b) Bacteroides and (c) Sutterella.  Subjects are ordered by increasing 
1462 Adult ADHD Self Report Scale (ASRS) score, with the y-axis representing relative 
1463 abundance.  
1464

1465 Table S1.  Correlations in all MCNs, over all taxonomic levels, organized by taxonomic 
1466 classification.  Each box indicates the two taxa involved in each correlation, along with 
1467 the sign (+ or -).  Boxes colored orange correspond to correlations on present in Control, 
1468 and purple only present in ADHD.  Grey boxes are present in both MCNs.  White boxes 
1469 correspond to correlations that were not observed, but one was present among its 
1470 descendants  (i.e. genera Collinsella and Butyricimonas were not correlated in either 
1471 MCN, but member taxa C. aerofaciens and Butyricimonas were for ADHD).  For 
1472 polyphetic genus Ruminococcus, [L]=Lachnospiraceae family, [R]=Ruminococcaceae family.
1473
1474 Table S2.  ATria rankings of all taxa found as important in all MCNs, grouped by 
1475 taxonomic classification.  NR=Not Ranked, T=Tied.  Taxa ranked only in Control are 
1476 colored dark orange, higher in Control light orange, higher in ADHD light purple, and 
1477 only in ADHD dark purple.  Bold taxa are ranked #1 in their corresponding MCN.  
1478 White, italicized taxa correspond to unranked taxa with a ranked descendant.  
1479
1480 Table S3.  Family-level MCN clusters, reported by Affinity Propagation (AP, [CITE]). 
1481 Core taxa (shared by both MCNs) are bold, and centroids are marked with an asterisk 
1482 (*, requires at least three taxa).  Italicized taxa are exclusive to their MCN (Control or 
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1483 ADHD).  Phylum colors match those in Fig. 5 (Actinobacteria brown, Firmicutes yellow, 
1484 Proteobacteria blue, Bacteroidetes dark purple).  Cluster colors match those in Fig. 6.
1485
1486 Table S4.  Genus-level clusters, reported by AP.  Color and labelling is the same as 
1487 Table S3.  [L]=Lachnospiraceae family, [R]=Ruminococcaceae family.
1488
1489 Table S5.  Lowest-level clusters, reported by AP.  Color and labelling is the same as 
1490 Tables S3 and S4.
1491

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504352
http://creativecommons.org/licenses/by/4.0/

