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Abstract 
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on 
tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. 
To address this, we investigated patterns of bacterial and viral communities across two field populations of western 
black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified 
taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. Our analysis revealed 
11 novel RNA viruses from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, 
Narnaviridae, and 2 highly divergent RNA viruses lacking sequence similarity to known viral families. The 
majority of these viruses were also detectable in lab-raised ticks at all developmental life stages, localize to tick 
salivary glands, and show evidence of circulation in mice fed on by ticks. These data suggest that viruses are stable, 
heritable, and transmissible members of the tick microbiota. We  also unexpectedly identified numerous virus-like 
transcripts that are associated with tick genomic DNA, most of which are distinct from known endogenous viral 
element-mediated immunity pathways in invertebrates. Together, our work reveals that in addition to potentially 
serving as vectors for potential viral pathogens, I. pacificus ticks may also have symbiotic partnerships with their 
own vertically-transmitted viruses or with ancient viruses through evolutionarily acquired virus-like transcripts. 
Our findings highlight how pervasive and intimate tick–virus interactions are, with major implications for both the 
fundamental physiology and vector biology of I. pacificus ticks. 

Introduction 
Ticks are increasingly important disease vectors for humans and livestock, particularly in the United States, where 
they account for more cases of vector-borne diseases than mosquitoes. Approximately fifty thousand confirmed 
cases of tick-borne diseases are reported annually1, which is likely an underestimate due to diagnostic challenges 
associated with Lyme disease and our poor understanding of rare tick-borne diseases or diseases of unknown 
etiology. Currently, the majority of field surveillance studies of tick-associated microbes focus on the causative 
agent of Lyme disease Borrelia burgdorferi and a select number of other known human pathogens, such as 
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Rickettsia (Rocky Mountain spotted fever and other Rickettsioses), Anaplasma phagocytophilium (Anaplasmosis), 
and Powassan virus. Although the full diversity of microbes carried by ticks is much greater than those definitively 
linked to human disease2–21, we know strikingly little about the ecology or disease implications of most tick-
associated microbes. 

Furthermore, we are only beginning to appreciate the broader role microbes play in tick biology. Like many other 
invertebrates, tick–microbe interactions go far beyond the transmission of human pathogens. Tick–microbe 
interactions can be antagonistic, neutral, or beneficial22–25. Some microbes, such as the bacterial endosymbiont 
Rickettsia, play fundamental roles in tick physiology through stable and symbiotic interactions25. It is not as well 
known whether ticks also form stable, symbiotic interactions with viruses and how such interactions may also 
influence tick biology. Some viruses have been identified not only in live ticks but also in many laboratory-passaged 
tick cell lines26. Microbes have also been implicated in shaping the evolution of ticks through horizontal transfer of 
bacterial genes27 and endogenization of viral sequences as an immune response28–31.  

Although the relationship between ticks and viruses is a subject of much interest and field microbiome studies have 
increased our catalog of tick-associated microbes32, there still remain several outstanding questions. A number of 
experimental strategies and technical hurdles have limited the scope and depth of microbiome analyses in ticks. 
First, field studies often sequence pooled tick samples, preventing quantitative examination of microbial prevalence, 
co-occurrence, and per-sample relative abundance. These metrics could greatly enable more sophisticated analyses 
of transmission dynamics and ecology. Furthermore, our ability to capture lower abundance microbes is hampered 
by the dominance of tick host sequences in genomic and metagenomic libraries. This limits our understanding to 
the most abundant microbes in ticks, which does not necessarily coincide with all microbes that have important 
roles in disease or tick physiology. 

Finally, our understanding of tick microbiota in North America is currently biased towards species historically 
associated with human diseases, such as Ixodes scapularis, the primary vector for Lyme disease in the Eastern 
United States. In recent years, there has been an expansion of tick-borne disease cases on the West coast of the U.S. 
that have been attributed to other less-studied tick vector species.  For example, Ixodes pacificus is a major tick 
species extending from Northern Mexico to British Columbia33. I. pacificus ticks are most abundant in California, 
where they cover 96% of all counties34 and are responsible for the majority of human tick bites35. They are vectors 
for a variety of well-characterized human pathogens such as B. burgdorferi, Borrelia miyamotoi, Babesia odocoilei, 
Bartonella spp, A. phagocytophilum, and Ehrlichia spp36. Despite this, I. pacificus is  substantially understudied 
compared to the eastern black-legged tick I. scapularis. For these reasons, we chose to focus this study on I. 
pacificus ticks. 

To provide much-needed insight into tick-borne microbes in the Western U.S., we examined the microbiomes of I. 
pacificus ticks collected from two coastal habitats in California where humans are likely to encounter them35,37,38. 
In order to capture lower-abundance microbes, we coupled an experimental microbial enrichment workflow with 
RNA sequencing to profile both bacteria and RNA viruses. Analysis of microbiomes at the level of individual ticks 
enabled us to also quantify patterns of microbial prevalence and abundance. We performed follow up laboratory-
controlled experiments examining microbial localization in both ticks and mouse bloodmeal hosts, which provided 
additional insights into potential transmission dynamics and the symbiotic nature of tick-virus relationships. 
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Results 
Establishment of an RNA-based approach to defining composition of field tick microbiomes 

We set out to define the metatranscriptome of I. pacificus ticks collected from coastal California, focusing on two 
sites associated with human exposure35–39. We examined the two most developmentally advanced life stages 
(nymphal and adult) that are more amenable to single-tick sequencing due to greater individual biomass. These 
sample sets included adult ticks from Garrapata State Park and nymphal ticks from China Camp State Park. Adults 
were collected in the Fall (2019) and nymphs were collected in the Spring (2020) so that we could investigate 
seasons and life stages enriched for human contact. In total, RNA libraries were sequenced for 100 individual ticks.  

 

The majority of whole-tick RNA libraries are composed of tick ribosomal RNA, which reduces the power to detect 
lower abundance bacterial and viral sequences. To address this challenge, we enriched microbial sequences by 
experimentally depleting abundant tick sequences through Depletion of Abundant Sequences by Hybridization 
(DASH) (Figure 1a)40. For adult tick libraries, DASH-based depletion enriched non-host reads by nearly ten-fold 
(Figure 1b). Sequencing libraries generated for smaller nymphal ticks were not of sufficient concentration to 
effectively perform DASH. After quality filtering and host subtraction, non-host reads were first classified using 
the metagenomic classifier kraken241 (Figure 1a). Samples varied substantially in the proportion of reads able to be 
classified, with anywhere from 0.2% to 83% of reads being classified by the tool (Figure 1c). All classified reads 
by kraken2 were bacterial; no known viruses were identified. Because of this, viruses were classified in a custom 
pipeline that enabled the detection of divergent viruses (Figure 3a, Methods).  
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Figure 1: Experimental approach a) 17 nymphs and 83 adults were collected from Garrapata 
State Park (purple) and China Camp State Park (red) respectively. RNA was extracted from whole 
bodies of individual ticks, mNGS librariers were prepared and DASH was performed to deplete 
abundant tick sequences. After sequencing, reads were quality filtered and tick-derived reads 
were removed using CZID. Remaining reads were classified by kraken2. b) The percent of 
non-host reads as classified by CZID for matched libraries before and after DASH, line connect 
individual libraries. c) Percentage of nonhost reads classifed per sample by kraken2.
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To assess the general validity of our approach to characterizing the microbiota of field ticks, we first quantified the 
bacterial component of tick metatranscriptomes. We identified 114 bacterial genera across the dataset with a median 
of 11 genera per tick (Figure S1a). Larger libraries had more classified genera, indicating that sequencing depth is 
a limiting factor in characterizing tick microbial diversity (Figure S1a, S2). We compared the taxonomic 
composition of our samples with previously reported tick-associated human pathogens, such as Rickettsia, 
Anaplasma, and Coxiella, which are most commonly linked to I. pacificus ticks3,6,15,36. Borrelia, Borreliella, 
Ehrlichia, and Bartonella are also human pathogens known to circulate in this species, although typically at lower 
frequencies.  Ehrlichia, Borrelia, and Borreliella were identified at rates of 2-3% across the full dataset but not in 
samples with a more stringent quality cut-off of at least 1 million non-host reads (Figure 2, Figure S2). We did not 
identify Coxiella, Bartonella, or Francisella in any ticks, indicating they are either absent in this population or 
present at levels too low to be detected. 

Of the samples with at least 1 million non-host reads, several genera we identified were found at frequencies similar 
to previous reports. We found the endosymbiont Rickettsia in 100% and Anaplasma in approximately 30% of ticks 
(Figure 2). We also observed several instances of coinfections between Ehrlichia, Borrelia, Borreliella, and 
Anaplasma (Figure S1b). In total, results from our bacterial analyses are largely consistent with previously reported 
analyses of bacterial constituents of tick microbiota, suggesting our RNA-based approach to characterizing tick-
associated microbes can indeed be applied to field studies. These results gave us confidence that our sequencing 
and analysis pipeline could reliably report on microbiomes of field I. pacificus ticks at nymphal and adult life stages.  

Optimized workflow enables detection of low-abundance bacteria and RNA viruses 

Our combined approach of host depletion and RNA-sequencing opened up several unique lines of inquiry. In 
addition to known tick-borne human pathogens, we identified several bacterial genera previously undetected in I. 

Figure 2: Bacterial genera detected in Ixodes pacificus. Heatmap displaying reads per million (rpm) of bacterial 
genera as classified by kraken2. Plot is limited to samples with at least 1 million nonhost reads and genera detected in at 
least 5 samples. Prevalence in the selected samples is shown next the genus name. Rows are ordered by decreasing 
prevalence and columns are heirarchically clustered by euclidean distance.
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pacificus. Although these genera had high prevalence across our samples, they were present at low relative 
abundances and likely escaped detection in previous studies in the absence of DASH-based microbial enrichment. 
Mycoplasma, a genus that has been linked to Lyme-like disease in patients with tick exposure42,43, was identified in 
all of the selected libraries (Figure 2). Blattabacterium, Buchnera, Spiroplasma, and Candidatus Midichloria were 
all present in at least 90% of samples, and Candidatus Carsonella was identified in 25% of samples (Figure 2). To 
our knowledge, none of these known endosymbionts have been commonly identified in I. pacificus, and 
Blattabacterium, Buchnera, and Candidatus Carsonella represent the first report of these genera in any tick44,45. 

Sequencing individual ticks also provided sufficient resolution for co-occurrence analyses. We assessed whether 
presence of one microbial genus increases the statistical likelihood that another microbial genus will be present in 
the same tick host46. This revealed 14 pairs of bacterial genera detected together in a statistically significant number 
of samples (Figure S3). Of note, there was a strong positive association between the endosymbiont Candidatus 
Carsonella and Chryseobacterium, a genus that has been shown to be pathogenic to soft ticks but tolerated by hard 
ticks47. The remaining statistically significant co-occurrence relationships did not include any microbial genera 
known to be tick-associated, and we hypothesized that they may be environmental contaminants, such as soil 
bacteria. Therefore, outside of the Candidatus–Chryseobacterium case, we did not find clear evidence that any 
microbes associated with I. pacificus actively promote the colonization or growth of other microbes.  

Our RNA-based sequencing approach also enabled identification of several previously unidentified RNA viruses 
in I. pacificus ticks. Ticks are known to carry a diversity of viruses, and the majority of known transmissible 
arboviruses have RNA genomes15,48–52. We sought evidence of these and any novel tick viruses in our 
metatranscriptomes. To do so, we first developed a bioinformatics strategy because standard tools for microbiome 
analysis (e.g., kraken2) did not detect any known tick viruses in our metatranscriptomic data41. This is a common 
phenomenon in RNA virus discovery, due to the fact that the diversity of RNA viruses are not well represented in 
reference databases. In keeping with other viral discovery efforts53–55, we searched for sequences containing an 
RNA-dependent RNA polymerase (RdRp) domain using HMMER56 (Figure 3a). Using this strategy, we detected a 
total of 13 new tick viruses in our I. pacificus field specimens and determined their prevalence across the dataset as 
well as their relative abundance within each sample (Figure 3b, Table 1). Underscoring the novelty of these viruses, 
all had less than 80% amino acid identity to their nearest relative in the NCBI non-redundant protein database 
(Figure 3c). While many of these viruses (10/13) could be defined as members of viral families previously identified 
in tick species, some had much less clear phylogenetic placements and no homology to known tick viruses. We 
named the viruses according to geographic features in the region in which the samples were collected.  

RNA viruses are important and stable constituents of tick microbiota 

Our RNA-based approach to tick microbiome characterization led to the discovery of several novel viruses and viral 
families in I. pacificus field ticks. To follow up on these results, we next asked if the viruses we detected were likely 
to represent the full virome of the sampled ticks or only the most abundantly transcribed viruses. To do so we 
performed rarefaction analysis, which shows the number of new taxa discovered as a function of the number of 
samples sequenced. Our rarefaction curve appears to be approaching an asymptote, and the estimated true number 
of viruses in this population using the Chao index is 14.2 (Figure 3e). These results indicate that we have likely 
discovered the majority of viruses in this population with a median of 1.7 million non-host reads after DASH host-
subtraction. This is equivalent to an overall sequencing depth of 106 million reads. We also observed that relatively 
few samples are needed to saturate viral discovery for a given population at this sequencing depth. Hence, we 
propose ~100 million RNA reads with DASH and rarefaction analysis as a standard for characterizing other 
arthropod viromes. 
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genomic structure

Figure 3: DIscovery of novel viruses in Ixodes pacificus a) Analysis pipeline for identification of viruses: reads were assembled into 
contigs and open reading frames were predicted. Resulting proteins were scanned for the presence of an RdRp using HMMER and 
classified by viral family using the closest hits by blast. Prevalence and abundace was determined by clustering contigs and mapping reads 
back to cluster representatives. b) Heat map of transcripts per million (tpm) of each identified RdRp containing viral contig across the 
dataset, open reading frames are displayed to the right and annotated with identified protein (RdRP=RNA-dependent RNA polymerase, 
G=Glycoprotein, N=Nucleoprotein, M=Matrix protein, VP=Viral Protein). Open reading frames with “X” contain homology to known viral 
proteins of unknown function and open reading frames with no annotation had no identfieid homology to known proteins . c) Percent amino 
acid identify of each virus to nearest hit in blast, viruses with no bar had no blast hits. d) Table summarizing detection of each viral contig in 
tick and mouse samples. e) Rarefaction plot showing increase in number of viral genomes for each sample analyzed, samples were 
randomly shuffled 50 times, median shown in dark blue
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We also performed co-occurrence analysis with our newly characterized tick viromes. Not only did we identify a 
broad diversity of viruses, but we also found evidence of co-occurring viral infections within individual ticks. Ticks 
had a median of two viruses present with a maximum of six in one individual (Figure S4a). We found a statistically 
significant positive relationship between Portuguese Ridge Virus (Narnaviridae), Wildcat Canyon Virus (family 
unknown), and Kasler Point Virus (family unknown). Notably, all three of these viruses contained only an RdRp; 
no additional segments or genes were identified. Since Narnaviruses are single-gene ribonucleoprotein complexes 
lacking structural proteins or capsids, it is possible that the two viruses of unknown origin replicate and transmit in 
a similar manner. Our findings reinforce the model that ticks can harbor multiple viruses per individual, suggesting 
that RNA viruses are an important and stable part of the tick microbiome.  

Tissue and life-stage tropism of viruses suggests horizontal and vertical transmissibility 

Arthropods are known to tolerate viral infection more easily than vertebrates, often maintaining infections for life 
with no apparent ill-effects57. Given that some of the viruses we identified are not only highly prevalent but also 
closely-related to viruses previously discovered in tick cell lines (Supplementary Note: Rhabdoviridae) 26, we next 
investigated how I. pacificus ticks may have acquired them. To explore whether any of the viruses we identified 
could represent viruses stably associated with I. pacificus ticks, we experimentally screened cDNA generated from 
pools of both wild and laboratory-reared I. pacificus larvae by polymerase chain reaction (PCR) using primer sets 
specific to all 13 of the identified viruses. Nine of the 13 viruses were present in either wild-collected or laboratory-
reared larvae that have not yet consumed a bloodmeal, suggesting a likely scenario of vertical transmission (Figure 
3d, Figure S4c). 

We next screened laboratory-reared nymphs and adults to determine whether these viruses remain associated with 
ticks throughout life stages. Eight of the 9 viruses identified in larvae were also identified in either laboratory-reared 
nymphs or adults, suggesting these viruses persist through life stages and that they can be maintained in the 
population in the absence of their natural bloodmeal hosts (Figure 3d). We therefore investigated whether I. 
pacificus ticks could transmit their associated viruses to bloodmeal hosts via feeding. Microbes can be transmitted 
from tick midguts or salivary glands to their hosts via saliva secreted into the host bloodstream. We reasoned that 
viral presence in salivary glands in particular may correlate with feeding-based (horizontal) transmission (Figure 
S4c). We used our PCR assay to screen salivary gland and midgut cDNA libraries from additional field-collected 
I. pacificus ticks. The majority of the viruses identified (10/13) were detectable by PCR in tick salivary glands 
(Figure 3d). While this does not definitively demonstrate that these viruses are transmissible by feeding, we 
hypothesized that it could potentiate such a model. 

To more directly probe whether the viruses we identified might be capable of infecting mammalian hosts, we tested 
for evidence of viral transmission to laboratory mice exposed to infected ticks. Because tick larvae must be ground 
up whole in order to extract RNA, the same tick cannot be tested at multiple time points. However, given that 6 of 
the viruses were identified in two pools of laboratory-reared larvae, we reasoned that additional pools from the same 
population were likely to contain the same viruses. We therefore fed two additional pools of laboratory-reared larvae 
on two mice to test whether any viruses present in the larval population were able to  be transmitted to the mice. 
We performed PCR for the 13 viruses on blood samples collected from the mice before and during feeding, as well 
as the larvae after feeding (Figure S4d). Five viruses were detected in one or both mice throughout the experiment, 
in some cases even prior to feeding (Figure 3d, Figure S4e). This suggests that in addition to their association with 
I. pacificus ticks, these viruses may be commonly circulating in small mammals.  In summary, our in vivo tick 
feeding experiments suggest that at least a subset of identified viruses are potential tick-borne viruses. Furthermore, 
our findings suggest that, contrary to our motivating assumptions, transmissibility is not strictly linked to stable 
salivary gland localization or vertical maintenance by I. pacificus. 
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Identification of novel mRNA-like virus-like transcripts   

In addition to the 13 viral RdRps, we identified 21 sequences with homology to an RdRp but with an open reading 
frame (ORF) structure inconsistent with known RNA viral genomes. Specifically, these RNA sequences encoded 
clusters of small ORFs with RdRp homology and large gaps (100s of bases) between their predicted ORFs (Figure 
4a). Many also contained multiple overlapping ORFs and/or small ORFs in opposite orientations. These unusual 
sequences were highly prevalent (Figure 4a) and were independently assembled from multiple different ticks. Our 
analysis of these sequences suggested that they originated from many of the same families as the viral genomes 
(Figure 4b), but with distinct sequences that encoded ORFs that were smaller and more numerous than would be 
expected for that family.  

We were intrigued by the observed irregular genomic organization of these 21 virus-like sequences; thus we next 
sought to better understand their possible origins and functions. We first conducted experiments to eliminate 
potential artifactual explanations for the irregular ORF structure. To test whether these sequences could be the result 
of a misassembly, we selected one of the longest and most highly prevalent sequences (vlt_111) for more in-depth 
evaluation. We applied RACE sequencing to examine the sequence in cDNA of a Garrapata tick. Our results 

Figure 4: Virus-like transcripts detected across Ixodes pacificus population a) Heatmap showing transcript per million value of 
virus-like transcripts (VLTs) across the dataset. Rows with an * were detected in DNA by PCR.  Each VLT is colored by the viral family of 
its closest hit in blast and predicted open-reading frames (ORFs) are shown to the right. All ORFs in pink have homology to a viral RdRP, 
ORFs with homology to tick sequences are shown in blue and labeled by name, TRAF=TNF receptor-associated factor 6-like, TE=piggy-
Bac transposable element-derived protein 4-like, X=protein of unknown function b) Viral family assignment of both exogenous viruses 
and virus-like sequences identified. c) Known functions of arthropod endogenous viral elements. d) Heatmap displaying length of 
longest perfectly matching sequence between each virus and each VLT. Rows and columns are colored by viral family.
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confirmed the accuracy of the vlt_111 sequence assembly and indicated that vlt_111 is expressed as a 3’ poly-
adenylated mRNA, ruling out the possibility that the non-canonical features of this RNA are due to misassembly of 
sequencing reads. 

We also considered whether the irregular ORF structures we observed could be resolved with alternative codons, 
such as non-standard stop and start codons. We tested whether ORF prediction with any alternative genetic codes 
would result in an organization more consistent with that of a viral genome. Of the 25 known genetic codes tested, 
none substantially changed the ORF structure of any of the sequences (Figure S7d), indicating that alternative 
genetic code alone cannot account for the observed genomic structure. Having eliminated possible artifactual 
explanations for how these sequences could originate from exogenous viral genomes, we termed these sequences 
of unknown origin and function “virus-like transcripts” (VLTs). 

VLTs likely serve a non-canonical function in I. pacificus ticks 

Arthropod genomes are known to contain numerous endogenous viral elements (EVEs), which result from 
horizontal integration of RNA viral sequences into tick genomes over the course of evolution28. The observed high 
prevalence of these VLTs lead us to hypothesize that these mysterious sequences could have likewise arisen from 
such genomic integration events. In the absence of a published genome assembly for I. pacificus, we could not 
check for corresponding sequences in a reference genome. Therefore, we developed PCR primers to screen I. 
pacificus DNA extracts isolated from the same wild-collected ticks used for metatranscriptomics for VLTs. We 
confirmed the presence of vlt_111 in wild-collected tick DNA (Figure S7b) as well as laboratory-reared tick DNA. 
To ensure this pattern was not specific to this particular VLT, we checked an additional 5 VLTs, all of which were 
present in lab-reared I. pacificus DNA (Figure S7c), suggesting a genomic origin for these VLTs. 

To confirm that the presence of DNA forms of transcripts is specific to the VLTs and not a general phenomenon, 
we additionally screened all of the presumed exogenous viral genomes for presence in genomic DNA.  Only one of 
the viral genomes was detected in DNA. A faint band corresponding to Rocky Ridge Virus was amplified from 
genomic DNA. This virus, a mivirus with a circular genome, could represent an intermediate between these two 
categories that is an exogenous RNA virus with a single or small number of recent genomic integrations into the I. 
pacificus genome. Alternatively, this could be caused by production of DNA forms of the viral genome by 
endogenous retrotranscriptases (either prior to genomic integration or in the absence of integration) as in Salvati et 
al58.  Given that its expression pattern mirrored that of the other exogenous viruses and its genome is both complete 
and contains the expected ORFs, we continued to classify this sequence as an exogenous virus and not a VLT. 

To explore the possibility that our VLTs could have EVE-like functions, we next considered canonical pathways 
by which EVEs contribute to arthropod immunity (Figure 4c). EVEs are most commonly known to function as non-
coding RNAs. Much more rarely, they are expressed and translated as proteins that can act as dominant negative 
viral inhibitors or serve a new function28,29. As the fragmented ORF structure of our VLTs is inconsistent with 
expression of full-length proteins, we focused on non-coding RNA functions. Typically, arthropod EVEs play 
antiviral roles by serving as a template for piwi RNAs (piRNAs), 24-31 nucleotide (nt) RNAs that target an 
exogenous viral RNA genome for degradation by binding to a complementary sequence within it.  

To test this model, we examined in silico whether our VLTs could give rise to small RNAs capable of binding the 
exogenous viral genomes in our dataset through a matching sequence at least 24 nt long. Only one VLT contained 
a sequence of at least this length (vlt_307) matching one of our viral genome assemblies. Two others contained 
stretches longer than 20 nucleotides (Figure 4e). The remaining 18 VLT sequences do not contain perfect matches 
longer than 17 nucleotides to any of the exogenous viruses. Of the three VLT-virus combinations with perfect 
matches of at least 20 nucleotides, none originated from the same tick sample (Figure S8). In total, we did not 
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uncover definitive evidence supporting inhibition of viral replication through a canonical piRNA pathway.  Our 
results strongly point to either a non-canonical immunity mechanism or a different functional role entirely for the 
VLTs we identified in I. pacificus.  

Discussion  
In this study, we show the power of combining experimental enrichment of microbial sequences with single-tick 
metatranscriptomics for identification of bacteria and viruses in field I. pacificus tick communities. The ability to 
deeply sequence the non-host fraction allowed us to identify several genera of bacteria in I. pacificus previously 
unidentified in any tick species. Further investigation is warranted into the consequences and mechanisms 
underlying these symbiotic tick–bacteria partnerships.  

Our approach also enabled us to uncover many novel viruses, which we further investigated in a series of laboratory 
experiments. We found that several of these viruses were not only highly prevalent but were also present in tick 
salivary glands. This has important implications for public health as bloodmeal hosts (including humans) are very 
likely to be exposed to viruses present in the salivary glands during feeding.  The detection of these viruses in mice 
further suggests they are circulating between ticks and mammals. Currently, tick-borne disease surveillance in 
California is focused on Lyme disease and a small number of other bacterial pathogens, but these results indicate 
patients should also be screened for viruses1. 

In addition to providing more comprehensive and quantitative insights into the I. pacificus microbiome, one of the 
most exciting and unexpected themes that emerged from our work relates to how viruses likely play fundamental 
and important roles in tick biology. We found evidence that several viruses persisted in ticks across multiple life 
stages, including juvenile naïve larvae, as well as across wild and laboratory-reared populations, suggesting they 
are stable constituents of the tick microbiome. Certain viruses in I. pacificus may be able to establish and maintain 
independent niches within their tick hosts. These findings lay the groundwork for future work aimed at 
understanding tick–virus dynamics and how such relationships may play fundamental roles in tick physiology.  

Further underscoring the critical importance of tick–virus interactions for I. pacificus biology was our discovery 
that numerous VLTs may be integrated in the tick genome as EVEs. EVEs may be an underexplored feature of tick 
genomes that can be identified in future studies through tick genome studies or an RNA sequencing-based approach 
such as ours that enriches for low abundance transcripts. Evidence for horizontally acquired EVEs in I. pacificus 
raises the possibility that ticks have hijacked viral sequences and functions for some adaptive benefit provided to 
the tick. Closer experimental evaluation of our VLTs pointed to a non-canonical mechanism that is distinct from 
known antiviral pathways. The VLTs we found may be unique to or enriched in ticks, providing a useful handle for 
interrogating a new mechanistic class of EVEs that may have important contributions to tick immunity and biology. 

The integration of RNA viral genomes into the tick genome as EVEs also provides a unique historical footprint for 
viruses that may have infected that tick host in the near or distant past. Interestingly, the VLTs identified in I. 
pacificus appear to derive from several viral families from which no exogenous viral genomes were found in this 
study, including the recently-discovered segmented flaviviruses that cause febrile illness59–61. Future field studies 
that expand on our I. pacificus virome analyses will help determine whether VLTs stem from ancient tick–virus 
interactions or contemporaneous interactions that were not captured in this study due to low abundance, our limited 
sample size, and our focus on two collection locations. Altogether, our results highlight the need for more studies 
such as this in order to capture the full range of tick–associated microbes that could represent critical components 
of tick physiology or poorly understood pathogenic threats to human health. Our work provides an improved 
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experimental and computational framework with increased sensitivity for low-abundance bacterial and viral taxa 
present in this increasingly important class of arthropod disease vectors. 

Methods 
Tick Source 

Ticks for the initial metagenomic sequencing were collected by dragging from Garrapata State Park (n=83) and 
China Camp State Park (n=17). Ticks for followup laboratory experiments were collected exclusively from 
Garrapata State Park. Adult ticks were separated by sex, surface sterilized in 1% bleach and frozen individually.  

Laboratory-reared I. pacificus were received from the tick lab at the Center for Disease Control tick lab (Atlanta, 
GA) and provided through BEI Resources (a service funded by the National Institute of Allergy and Infectious 
Diseases and managed by ATCC). Ticks were maintained in glass jars with a relative humidity of 95% (saturated 
solution of potassium nitrate) in a sealed incubator at 22°C with a light cycle of 16h/8h (light/dark). 

RNA Extraction/Library Prep 

Total RNA was extracted from the wild-caught I. pacificus adult and nymph ticks in 2 separate batches. On ice, 
individual ticks were transferred to separate wells of a 96 well deepwell plate that was pre-loaded with a single 
5mm steel ball bearing (OMNI International, GA, USA) and 400uL of 1X DNA/RNA shield (Zymo Research Corp., 
Irvine CA, USA) in each well. The plates were sealed and subjected to bead bashing (3 x  3 min, with 1 min rest on 
ice in between each round of bashing) on a TissueLyser II beadmill (Qiagen, Valencia, CA, USA), then clarified 
by centrifugation at 2000 rpm at 4°C for 5 min in a refrigerated tabletop centrifuge (Beckman Coulter, Indianapolis 
IN, USA) to remove large debris. 350uL of the supernatant was transferred to a fresh 96 deepwell plate and re-
centrifuged under the same conditions to further clarify the homogenate. 90uL of the resulting supernatant was used 
as input for total RNA extractions; 110uL of supernatant was transferred to a separate plate and archived at -80°C 
for potential follow-up analyses. 

For both the adult tich and nymph tick homogenate preps, automated RNA extraction was performed in 96 well 
format (Bravo automated liquid handler, Agilent Technologies, Santa Clara, CA, USA) using a modified version of 
the Quick DNA/RNA pathogen magbead 96 extraction kit (Zymo Research Corp., Irvine, CA, USA) to automate 
total nucleic acid extraction and DNase treatment. RNA extracted from 90 uL of tick homogenates was eluted in a 
final volume of 25uL into 96 well PCR plates. An aliquot of 3uL was used for quantitative and qualitative analysis 
of the total RNA for each sample via Qubit fluorometer assay (Thermo Fisher Scientific, Waltham MA, USA) and 
Agilent Bioanalyzer Pico 6000 total Eukaryotic RNA electrophoresis (Agilent Technologies, Santa Clara, CA, 
USA). A separate 5uL aliquot was used as input for RNAseq library prep, and 2 x 7uL aliquots were stamped into 
2 separate daughter plates that were immediately frozen and archived at -80°C for potential follow-up studies.  

RNAseq libraries preparation of the 5uL aliquots of adult tick and nymph tick total RNA preps was also 
performed in 96 well format on an automated liquid handler (Bravo automated liquid handler, Agilent 
Technologies, Santa Clara, CA, USA). Briefly, the NEBNext Ultra II Directional RNAseq library preparation kit 
(New England Biolabs, Ipswich, MA, USA) was applied with the following modifications incorporated into the 
manufacturer’s standard protocol: a 25pg aliquot of External RNA Controls Consortium RNA spike-in mix 
(“ERCC”, Thermo-Fisher, Waltham, MA, USA) was added to each sample prior to RNA fragmentation; the input 
RNA mixture was fragmented for 8 min at 94°C prior to reverse transcription; and a total of 12 cycles of PCR for 
amplification of resulting individual libraries. SPRIselect (Beckman Coulter, Indianapolis IN USA) beads were 
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used to size-select libraries with an average total length between 450-550 bp. Library size distributions were 
verified by Agilent Bioanalyzer High Sensitivity DNA electrophoresis (Agilent Technologies, Santa Clara, CA, 
USA) and quantified by Qubit fluorometer (Thermo Fisher Scientific, Waltham MA, USA). Paired-end 2 x 150bp 
sequencing runs were performed on equivolume pools of individual sequencing libraries of the adult and nymph 
ticks, respectively, on the Illumina MiSeq sequencing platform (Illumina, San Diego, CA, USA).  
 
The yield of reads/uL acquired from the small scale MiSeq run of the equivolume pools of individual libraries 
were used to generate approximately equimolar pools of the individual adult tick and nymph tick libraries. The 
pooled libraries were then depleted of highly abundant sequences40,62, using a previously described pool of tick 
gRNAs63 complexed with in-house prep of purified recombinant Cas9 protein. Resulting DASH’d libraries were 
qualitatively and quantitatively analyzed by Agilent Bioanalyzer High Sensitivity DNA electrophoresis (Agilent 
Technologies, Santa Clara, CA, USA) and Qubit fluorometer (Thermo Fisher Scientific, Waltham MA, USA). 
While the DASH’d adult tick libraries provided sufficient material for large scale metatranscriptomic sequencing, 
insufficient material remained in the tick nymph libraries that were DASH’d. Thus for large scale 
metatranscriptomic sequencing, the pool of DASH’d adult tick libraries was combined with a pool of un-DASH’d 
nymph tick libraries. This pooled prep was subjected to PE 2x150bp format on the NextSeq2000 Illumina 
sequencing platform (Illumina, San Diego, CA, USA). 

Host Subtraction/Pre-Processing 

Fastq reads from the run were pre-processed using the CZID pipeline. Libraries underwent quality filtering and 
adaptor trimming. Host reads were then removed by mapping to closely related genomes. Reads from each library 
were then assembled into contigs using SPADEs64 within the CZID pipeline65. Both the nonhost reads and 
resulting contigs were used for downstream analysis. 

Bacterial Classification 

Host-subtracted reads were classified using Kraken2 (version 2.1.1)41. The full kraken2 database was used for 
classification. Only libraries with at least 1000 classified reads were considered for analysis. Reads per taxon were 
converted to reads per million (rpm) using library size. To reduce false positives, the rpm value for each taxon was 
required to be at least 100 times the rpm in any of the control libraries (water and Hela cells) to be considered a 
positive. Additionally, at least 100 unique minimizers were required for each taxa. Taxa within each library not 
meeting these thresholds were excluded from analysis. Fewer genera were detected in smaller libraries, including 
the nymphal ticks from China Camp SP (Figure S1a), and samples clustered primarily by library size. We therefore 
focused subsequent analysis on libraries of at least one million non-host reads.  

Virus Identification 

We focused our analysis on RNA viruses, as these tend to dominate arthropod viromes32,66,67. Contigs were filtered 
to those of at least 1500 base pairs. Open reading frames were predicted for these contigs using prodigal68, and the 
resulting proteins were searched using HMMscan from HMMER3 (version 3.3.2)56 against a collection of HMMR 
profiles of viral RdRPs. The following RdRP HMMs were downloaded from the pfam database69 on March 4, 2021; 
RdRP_1, RdRP_2, RdRP_3, RdRP_4, RdRP_5, Viral, RdRp_C, Mitovir_RNA_pol. Mononeg_RNA_pol, 
Birna_RdRp, and Bunya_RdRp. Additionally, custom HMMs were constructed from RdRP sequences for 
narnaviridae and orthomyxoviridae (sequences and combined HMM available in supplement).  

Any sequences with a putative RdRP hit from HMMER were then queried against the full NCBI nonredundant 
protein database (as of January 24, 2021) using diamond blastp version 0.9.24 to identify their closest hit70. For 
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proteins with multiple hits, the hit with the highest bitscore was reported. Sequences covering less than 30% of their 
closest blast hit were initially classified as putative virus-like transcripts, and remaining sequences were classified 
as exogenous viral sequences. The open reading frame (ORF) structure of all sequences was then manually 
inspected to confirm this classification. Sequences containing significant gaps between ORFs, or multiple reading 
frames with RdRP homology (where one was expected) were further classified as virus-like transcripts (VLTs).  

Determination of Prevalence and Abundance 

Assembled contigs were clustered using cd-hit-est (CDHIT version 4.8.1) at a threshold of 85% nucleotide 
identity71. Circular chuvirus genomes were rotated to a common start position using a custom python script to ensure 
accurate clustering. 85% identify was chosen as a cutoff to minimize multi-mapping reads between closely related 
sequences. However, some clusters contain significant sequence diversity and could potentially be considered to 
contain multiple species. The representative sequences from this clustering were used for all downstream analysis. 

Reads from each library were mapped back to the collection of cluster representatives using bowtie2 version 2.4.172. 
Reads aligning to each contig were counted using samtools idxstats version 1.973. Aligned reads, contig length, and 
library size were used to calculate rpm and transcripts per million (tpm) values for each library. To consider a contig 
“present” in a given library, the rpm value was required to be greater than 10 times the value in any of the control 
libraries. This filter was designed to remove potential false positives caused by cross-contamination of high-titer 
species. 

Identification of Additional Genomic Segments 

To identify additional segments of multipartite viral genomes, we searched for contigs that were strongly co-
occurring with the RdRp containing contigs. Presence/absence of each contig cluster for each library was 
determined by reads mapped to each contig using the filters described above. Presence was coded as a 1 and absence 
as a 0 and the Jaccard distance was calculated for all pairs of contigs. We considered any sequence with Jaccard 
distance < 0.4 as a putative genomic segment and further considered homology of the sequence and whether 
additional segments are expected for the viral family in our determination of whether these sequences represent 
segments from the same genome (Figure S6).  

Rarefaction Analysis 

The viral genomes in each sample were determined by the presence of a contig of at least 1000 base pairs (bp) that 
clustered with one of the 13 representative genomes identified. The presence of a contig rather than read mapping 
was used to simulate viral discovery in each sample, under the assumption that new viruses discovered may be too 
divergent to detect by read mapping. The samples were ordered by the number of new genomes seen (not seen in 
any of the previous samples). The number of new genomes was counted for the addition of each sample. This was 
repeated for 50 iterations and the median number of new samples at each step was determined. The Chao index was 
calculated using the R library fossil version 0.4074,75 . 

Co-Occurrence of Taxa 

To determine whether any pairings of taxa (either bacterial or viral) occur more or less frequently than expected 
given their prevalence we utilized the recently developed metric 𝞪46. The presence of each taxon was considered at 
the genus level for bacteria and at the species level for viruses. The distance 𝞪 and associated p-value were 
determined for all pairs of taxa using the CooccurrenceAffinity R package (version 1.0)46. Pairs were filtered to 
those with a p-value ≤	0.005. These relationships were visualized as a network with edges corresponding to 𝞪 and 
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nodes corresponding to taxa using the R package igraph (version 1.3.0)76. Node size was scaled according to taxon 
prevalence in the dataset. 

Phylogenetic Trees 

Trees were constructed using the RdRP protein sequence of each virus identified. The top 100 closest blast hits 
were downloaded for each virus and clustered at 85% nucleotide identity. Sequences were aligned using MAFFT 
version 7.47577 and maximum likelihood trees were constructed using iqtree 2.0.378. Trees were visualized in iTOL 
version 579.  

Virus-like Sequence PCR 

To verify that virus-like transcripts were present in tick genomes and expressed in wild and lab-reared ticks, we 
extracted tick RNA and genomic DNA and confirmed the presence of virus-like transcripts with PCR. Adult male 
I. pacificus ticks (n=3) were pooled and homogenized by beating for 2 increments of 30 seconds at 4000 bpm in a 
bench homogenizer (Bead Bug, Benchmark Scientific) with 1.4mm zirconium oxide ceramic beads (Fisher 
Scientific) in ice-cold TRIzol reagent (Thermo Fisher Scientific). RNA extraction was performed using a Zymo 
Research Direct-zol RNA Microprep kit (Zymo Research), and RNA was converted to cDNA using Primescript RT 
reagent kit (Takara Bio) in 10 uL reactions following manufacturer protocols. Genomic DNA was extracted from 
adult male I. pacificus ticks (n=3, separate individuals from RNA), which were pooled, flash frozen, and ground to 
powder. A DNeasy Blood & Tissue Kit (Qiagen) was used to extract genomic DNA following manufacturer 
protocols.  

PCR experiments amplifying regions of VLTs from tick cDNA and genomic DNA were run using Platinum Superfi 
II Green PCR master mix (Thermo Fisher Scientific). We loaded 5uL of product onto 0.7% agarose gels and ran 
them at 160V for 2 hours before imaging. Primer sequences can be found in Table 2. 

Virus multiplex PCR  

Viral sequences were analyzed with Snapgene (Dotmatics) and PrimerPlex software (Premier Biosoft) to design 4 
sets of multiplex primers that amplify 100-550bp regions. Platinum™ SuperFi II Green PCR Master Mix 
(Thermo Scientific) was used for all PCR reactions. Mixed cDNA from the original sequenced field-collected 
ticks was used as a positive control. No-template (water only) reactions were also included as negative controls. 
Primer pair sequences are listed in Table 2. PCR reactions were analyzed by electrophoresis using a 2% agarose gel 
containing GelRed (Biotium) and visualized using an Azure c400 imager (Azure Biosystems). At least one band 
corresponding to each virus was cut out of the agarose gel, purified using the QIAquick Gel extraction kit (Qiagen), 
and sanger sequenced (GeneWiz) to confirm correct PCR amplification of the intended virus.  

Mouse Feeding Experiment  

Animal experiments were conducted in accordance with the approval of the Institutional Animal Care and Use 
Committee (IACUC) at UCSF. I. pacificus larvae (CDC/BEI) were fed on young female C3H/HeJ mice acquired 
from Jackson Laboratories. Mice were anesthetized with ketamine/xylazine before placing ~50 larvae. Ticks 
allowed to feed to repletion and collected from mouse cages. Whole blood was collected from mice before (pre), 
during (Day 2), and at the end (Day 4) of larvae feeding to access viral transmission by PCR (see above).  
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Tick Dissections/Extractions 

For tissue-tropism determination, wild-collected ticks (n=20) from Garrapata State Park were dissected using a 
micro scalpel cleaned with 70% isopropanol and a sterile needle. Ticks were dissected in batches of 3-5. The scalpel 
was cleaned and the needle was replaced between batches. The tick cuticle was excised and the midgut and salivary 
glands were removed using tweezers cleaned with 70% isopropanol. Tissues were pooled and rinsed in droplets of 
PBS then transferred by pipette into 300uL of Trizol. Males and females were processed separately and each pool 
of tissues contained material from 3-10 individuals.  

Whole adult ticks were added to 300uL of Trizol in pools of 4-5 individuals, grouped by species and sex. Nymphal 
ticks were added to Trizol in a pool of 3, and larval ticks were flash frozen and added to Trizol in pools of 10-15. 
All ticks and tick tissues were homogenized by bead-beating with ceramic beads in increments of 30 seconds. 
Samples were placed on ice between cycles and cycles continued until tissue was visually homogenized.   

RNA extraction was performed using Directzol RNA Extraction kits, with on-column DNAse1 treatment. RNA 
was converted to single stranded cDNA using Quantabio cDNA mastermix in 10uL reactions. 
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Supplementary Note 

Rhabdoviridae 

Rhabdoviridae was the most common family identified. We detected three new members of this family, each 
containing either four or five open reading frames. Lobos Virus and Doud Peak Virus both group phylogenetically 
near other rhabdoviruses identified in ticks (Figure S5), including two viruses identified in Australian ticks that 
were not previously assigned to a clade50. These two viruses rarely occur in the same samples. Although this co-
exclusion is not significant, it could indicate that these related viruses compete to occupy a similar niche in their 
host. Both of these viruses were confirmed by PCR in both salivary glands and midguts, as well as in wild-collected 
larvae and laboratory-reared adult females. 

North Fork Virus was identified in 15% of samples. Its phylogenetic location is on a branch containing other viruses 
identified in ticks (Figure S5). Its closest relative is an endogenous virus that was discovered in the I. scapularis 
cell line IDE8, which causes no apparent cytopathic effect, raising the possibility that North Fork Virus may be a 
related endogenous virus of I. pacificus59. In keeping with this hypothesis, North Fork Virus was identified in a pool 
of laboratory-reared I. pacificus larvae by PCR, suggesting that it is able to be transmitted directly to offspring (who 
have not yet been exposed to an animal host). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504163doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504163
http://creativecommons.org/licenses/by-nd/4.0/


 

Bunyavirales 

One phlebovirus was identified, which was named Shoal Cavern Virus. In addition to RdRP, a putative 
nucleoprotein segment was identified by co-occurrence. Phleboviruses are members of the Phenuviridae family and 
include tick-borne viruses known to cause human disease such as Severe Fever with Thrombocythemia Virus and 
Heartland Virus. Shoal Cavern Virus (Phenuiviridae) was not only highly prevalent (40%) but was also present in 
astonishingly high levels in some libraries, accounting for 38% of the total nonhost library in a single sample. This 
mirrors previous finding of a phlebovirus discovered in the hard tick  Dermacentor occidentalis in California, 
adding further evidence that such viruses may be common tick endosymbionts15. Shoal Cavern Virus was identified 
in both salivary gland and midgut tissue, and it may therefore be transmissible to bloodmeal hosts, although its 
presence in wild larvae suggest it may also be vertically transmitted. 

Two additional viruses were discovered that appear to group with other members of Bunyavirales but outside of 
known families. Phylogenetic analysis indicates they are most closely related to viruses of the Hantaviridae family 
(Figure S5). Soberanes Virus and Painter’s Point Virus each contain a single large, 9-kilobase (kb) open reading 
frame. A glycoprotein-encoding genomic segment was identified for each of these viruses, as well as one (Painter’s 
Point Virus) and two (Soberanes Virus) genomic segments of unknown function. Soberanes virus has no evidence 
of vertical transmission, as it was identified only in wild collected adult ticks (Figure 3d). It was furthermore 
detected in mice both before and during tick feeding, as well as in larvae fed on those mice, suggesting it could be 
transmitted horizontally between small mammals and ticks. Painter’s Point Virus was identified in wild samples as 
well as laboratory adults, nymphs, and larvae, suggesting the ability to be vertically transmitted. It was also detected 
in laboratory mice before and during tick feeding. 

Chuviridae 

Rocky Ridge Virus belongs to Chuviridae and is composed of a 10.8 kb circular genome with three open reading 
frames. Since the discovery of this family, a number of chuviruses have been identified across continents and several 
tick families and have also frequently been found as endogenous viral elements in mosquito genomes80. The 
chuvirus detected in our study groups most closely with Suffolk Virus, a virus identified in I. scapularis. Rocky 
Ridge Virus was both highly prevalent (39%) and the most abundant virus of any in the dataset; nine samples 
contained more than 100,000 reads per million mapping to it. Rocky Ridge Virus was identified in nearly all tick 
samples screened by PCR, and its presence in salivary glands, and mice during feeding is evidence it may be 
transmissible to hosts, while its presence in larvae suggests it can also be vertically transmitted. 

Narnaviridae 

Portuguese Ridge Virus is most closely related to viruses from the Narnaviridae family (Figure S5). Narnaviruses 
are unique in that they lack any structural proteins or capsids, existing instead as ribonucleoprotein complexes which 
are transmitted directly cell-to-cell either vertically or sexually. While first identified as viruses of fungi, they have 
since been identified in a variety of arthropods, sometimes with additional segments or ambigrammatic open reading 
frames81. Portuguese Ridge Virus was the only virus in the dataset to exhibit clear tissue tropism, identified only in 
midguts. It was additionally detected in mice both prior to and during tick feeding, which could explain its presence 
in the tick midgut (as a virus that can be acquired by but not transmitted by ticks). 

Reoviridae 

Calla Lily Valley Virus is a Coltivirus in the family Reoviridae (Figure S5). Reoviruses have double stranded RNA 
genomes composed of up to 12 segments, and they infect a broad range of hosts including fungi, invertebrates, 
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vertebrates, and plants. We identified an additional 8 segments by co-occurrence, four of which have homology to 
other Reoviridae proteins and four of which have no homology to known proteins (Figure 3a, Figure S6). Several 
members of this family have recently been identified in ticks and they are one of the most common families of 
endogenous tick viruses26,82,83 .  

Solemoviridae 

Notley’s Landing Virus groups closely with other viruses identified in ticks in the now defunct Luteoviridae family 
(Figure S5). Interestingly, despite the high read coverage of this genome, it is smaller than expected, with viruses 
of this family typically being 5-6 kb in length with six open reading frames. This could indicate that Notley’s 
Landing Virus represents a new related family with a segmented genome, however no additional segments were 
identified by co-occurrence. Notley’s Landing Virus was not detected by PCR in either midguts or salivary glands 
but it was detected in laboratory-reared larvae, indicating it could be vertically transmitted. 

Picornaviridae 

Cabrillo Virus is a member of Picornaviridae, a family of monopartite ssRNA viruses of genome size 7-9 kb 
encoding a single polyprotein. It is most closely related to Falcovirus A1, a virus identified in the common kestrel84. 
It is possible that Cabrillo Virus may be an avian-infecting virus as I. pacificus are known to feed on birds85. It was 
identified in nearly all tick samples tested by PCR, as well as a mouse during tick feeding, indicating both horizontal 
and vertical transmission. 

Unknown Family 

Two additional genomes containing an RdRp were identified which do not have any homology to known sequences. 
Due to their small size, Wildcat Canyon Virus and Kasler Point Virus likely represent either segmented viruses or 
partial genomes. Although they could not be assigned to any known viral clade, they have 80% amino acid identity 
to each other and therefore likely belong to the same as yet unknown family. While Kasler Point Virus was identified 
by PCR in both wild-collected and laboratory ticks (including larvae) and mouse samples,  Wildcat Canyon Virus 
was only identified in wild ticks, indicating potentially different modes of transmission. Interestingly, despite its 
presence in mice several contigs that co-occurred with Kasler Point Virus had homology to plant sequences, 
suggesting that it could be a plant virus that was sequenced on the outside of the tick. 

Supplementary Materials 
Sequencing data is in submission process to the NCBI Sequence Read Archives and will be registered under project 
PRJNA870442 

Intermediate files, including assembled contigs and read coverage can be found on figshare at 
https://figshare.com/projects/I_pacifics_mNGS/144081  

Viral genomes are in submission process to NCBI genbank, they can currently be accessed under the above figshare 
using DOI 10.6084/m9.figshare.20497227  

Analysis notebooks and scripts can be found on github at https://github.com/callamartyn/ipac_virus 
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CZID pipeline results, including intermediate host subtracted reads, assemblies, and other intermediate files can be 
found at https://czid.org/pub/uuFkacq3hT (Garrapata adults) , https://czid.org/pub/EEJfJPNhYP (Garrapata adults, 
resequencing of low-coverage samples), and https://czid.org/pub/ss3AnxpDbU (China Camp nymphs) 
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Figure S1: Pathogens and commensals of I. pacificus a) Scatterplot displaying number of nonhost reads and number 
bacterial genera detected per sample. Horizontal line shows median number of genera across all samples. Histograms on 
each axisrepresentdistribution of axis values. b)Upset plot displaying number of coinfections of known bacterial pathogens. 
Numbers represent number of samples with the included set of genera. c) Upset plot displaying number of coinfections of 
newly identified endosymbionts. d) Strip plot displaying the propotion of reads assigned to each bacterial class by sample.
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Figure S2: Bacterial genera of I. pacificus Heatmap showing reads per million (rpm) of bacterial genera as classified by 
kraken2. Rows are ordered in decreasing prevalence (shown next to genus name) and columns are heirarchically 
clustered by euclidean distance.
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Figure S3: Co-occurence of tick microbes Co-occurrence of bacterial 
and viral taxa network representation of significant co-occurring relation-
ships amongst all identified viruses and bacterial genera. Sizes of nodes 
are scaled to the prevalence in the dataset. All edges represent a positive 
co-occurence of alpha value greater than or equal to 5 with a p-value less 
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a b

c d

Figure S4: Discovered viruses in I. pacificus a) Scatterplot of nonhost library size and number of viruses detected per sample. b) 
Prevalence of each viruse across the dataset. c) Schematic of I pacificus three stage life cycle. Viruses can be transmitted horizontally 
between hosts and ticks (1 and 2) or vertically from adult female to offspring (3). d) Schematic of mouse transmission experiment. A 
sample of larvae were screened for viruses as a pool prior to infestation. Remaining larave were used to infest two mice. Mouse blood 
was collected and screened prior to infestation, as well as on days 2 and 4 of feeding. On day 4 ticks were removed and screened as a 
pool. e) Summary of PCR results from experiment descrived in d. Unfed larvae pools are the same as in Figure 3d. f) Representative gel 
image of viruses tested in midguts and salivary glands and lab-reared larvae. Virus abbreviations are aligned to their expected band 
size. Bands beginning with “vlt” represent virus-like transcripts (see Figure 4). 
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Figure S6: Identification of additional viral genomic segments Heatmap of Jaccard distance of rdrp-containing contigs 
(rows) and other contigs in the dataset (columns). Columns are annotated with the closest blastx hit or nan if no hits were 
found. 
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Figure S7: Confirmation of VLT sequence and presence in DNA a)Visual representation of c111 identified 
from RNA seq, including predicted open reading frames (yellow) and primer pairs b) PCR reactions amplify-
ing the regions indicated in a, nucleic acid type indicated on lane. Expected band size in base pairs indicat-
ed in parentheses. c) PCR reactions from an additional 5 virus-like sequences amplified from gDNA, expect-
ed band size indicated in parentheses. d) Open reading frames predicted for c111 using alternative codon 
tables e) Table summarizing expected pattern of exogenous viruses, endogenous viral elements (EVEs) and 
observed pattern of  VLTs
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Figure S8: Comparision of individual VLT to virus sequences a) Clustermap displaying the 
length of the longest perfectly matching sequence between each sequence assigned to the Doud 
Peak Virus cluster and each sequence assigned to the vlt_307 cluster. Rows and columns are 
labeled with the tick sample from which the sequence originated b-c) As in a but for Lobos 
Virus:vlt_41 and Shoal Cavern Virus:vlt_3571 respectively
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