
Insane in the vembrane: filtering and
transforming VCF/BCF files

Till Hartmann1, Christopher Schröder2, Elias Kuthe3, David Lähnemann1,4,
Johannes Köster1,5

1Algorithms for reproducible bioinformatics, Genome Informatics, Institute of Human Genetics,
University Hospital Essen, University of Duisburg-Essen, Essen, Germany

2Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital
Essen, Essen, Germany

3Computer Science XI, TU Dortmund University, Dortmund, Germany
4Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University

Duisburg-Essen, Germany
5Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston,

USA

Summary: Data from sequencing of DNA or RNA samples is routinely
scanned for variation. Such variation data is stored in the standardized
VCF/BCF format with additional annotations. Analyses of variants usually
involve steps where filters are applied to narrow down the list of candidates
for further analysis. A number of tools for this task exist, differing in func-
tionality, speed, syntax and supported annotations. Thus, users have to
switch between tools depending on the filtering task, and have to adapt to
the respective filtering syntax. We present vembrane as a command line
VCF/BCF filtering tool that consolidates and extends the filtering function-
ality of previous software to meet any imaginable filtering use case. To this
end, vembrane exposes the VCF/BCF file type specification and its inof-
ficial extensions by the annotation tools VEP and SnpEff as Python data
structures. vembrane filter enables filtration by arbitrary Python expres-
sions over (combinations of) annotations, requiring only basic knowledge of
the Python programming language. vembrane table allows users to gen-
erate tables from subsets of annotations or functions thereof. Finally, it is
fast, thanks to pysam, a Python wrapper around htslib, and by relying on
Python’s lazy evaluation.
Availability and Implementation: Source code and installation instruc-
tions are available at github.com/vembrane/vembrane, DOI: 10.5281/zen-
odo.7003981.

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504106doi: bioRxiv preprint 

https://github.com/vembrane/vembrane
https://zenodo.org/record/7003981
https://zenodo.org/record/7003981
https://doi.org/10.1101/2022.08.17.504106
http://creativecommons.org/licenses/by/4.0/


vembrane filter \

'CHROM == "chr2" and (QUAL >= 30 or ID in AUX["known"]) and \

not {"pathogenic", "drug_response"}.isdisjoint(ANN["CLIN_SIG"]) and \

sum(without_na(FORMAT["DP"][s] for s in SAMPLES if is_hom(s))) > 10' \

input.bcf --aux known ids.txt > output.bcf

Figure 1: Example invocation of vembrane filter. The auxiliary file ids.txt contains
one ID per line and is parsed as a set. In plain english, the filter expression
translates to “keep all records from chromosome 2 where the quality is at least
30 or the ID is in the set of known IDs, and where at least ’pathogenic’ or
’drug_response’ is part of the clinical significance annotations, and where the
sum of read depths across all samples that report a homozygous genotype is
at least 10”.

1 Introduction
Identifying variation from DNA or RNA sequencing data and determining its effect on
phenotypes is at the heart of a wide range of biological and medical research efforts.
Initial bioinformatics processing of such sequencing data routinely records thousands
to millions of individual differences between one or more biological samples and their
reference genome. These variants are annotated with data properties and known or
predicted phenotypic effects and are usually stored in the Variant Call Format (VCF)
or its binary equivalent (BCF) [Danecek et al., 2011]. This annotation information can
then be used to filter down to a set of interesting candidate variants, for example those
known to be drug targets in a specific disease.

Here, we present vembrane, a new filtering tool for all versions of the VCF and BCF
formats. vembrane consolidates and extends the functionality of previously available
tools and uses standard Python syntax, while achieving very good processing speed.
The direct use of Python syntax enables flexible and powerful expressions (Fig. 1) and
obviates the need to adapt to a new syntax for users already familiar with Python. It
supports both SnpEff [Cingolani et al., 2012, Ruden et al., 2012] and VEP [McLaren
et al., 2016] annotations out of the box and has an extensible design which allows easy
integration of new annotation sources. To our knowledge, it is the only variant filtering
tool that can handle groups of breakend events that represent structural variants. It
consists of three subcommands for processing VCF records: filter for filtering, table
for converting into a tabular format, and annotate for adding additional annotations
based on genomic ranges.

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504106doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504106
http://creativecommons.org/licenses/by/4.0/


2 Methods
2.1 Implementation
vembrane uses ordinary Python expressions with lazy evaluation. It provides all fields
defined in the VCF specification as local variables, namely CHROM, POS, ID, REF, ALT,
QUAL, FILTER, INFO and FORMAT. The entries in the INFO dictionary are typed according
to the VCF file’s header. For annotated files, the annotation is (by default) available via
the ANN dictionary. Annotations from SnpEff and VEP have custom parsers in vembrane,
making them easier and safer to use in filter expressions. An overview of types used for
these annotations is given at https://github.com/vembrane/vembrane/blob/main/docs/
ann_types.md. When filtering a VCF record’s ANN annotation fields, vembrane by default
discards ANN entries that do not match the expression and only discards the whole record
if there are no ANN entries left.

For input and output, vembrane uses pysam as an interface to htslib [Bonfield et al.,
2021]. This means vembrane can handle any type of VCF or BCF file, but comes with
any limitation that pysam might have.

Records with multiple alternative alleles may have completely unrelated annotations.
This both complicates filter expressions and interpretation of variants. Thus, vembrane
only accepts files whose records have been split such that each alternative allele has its
own record. This can for example be achieved by normalising the input with bcftools
norm -N -m-any; for consistent results this is best done before annotation.

To our knowledge, vembrane is the first tool to explicitly handle breakend variants
(BNDs): Breakends are a way of expressing strand breaks and their rejoining to other
positions on the same reference genome. They can be used to encode structural variants
by grouping two or more breakend records into a joint structural variant event. As
variant files are usually sorted by chromosomal position, breakend records from the
same event can occur in distant parts of the file. Thus, even if the event it belongs to
is known for each breakend at the time of reading it, the total number of breakends
(and all associated annotations) for a specific event remains unknown until reaching
the end of the file. As we always want to generate valid VCF files, we need to ensure
that each event is removed or kept as a whole, which requires an additional step for
handling BNDs. For performance reasons, we yield non-BND variants instantly during
iteration and defer processing of BND events until sufficient information is available –
this is the case as soon as at least one BND of an event passes the filter expression.
Since this behavior does not preserve the order of input variants, it can be disabled with
--preserve-order. This option enforces a 2-pass approach: a first pass which collects
all BNDs (and skips all non-BND records), so that all groups of BNDs are known in
advance for the second pass which then handles all records in order.

2.2 Comparison to other tools
There are a number of tools available for filtering VCF records based on conditional
expressions on one or multiple fields of the VCF format. However, they vary greatly in
the scope of their functionality (Table 1). For example, SnpEff and VEP annotation

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504106doi: bioRxiv preprint 

https://github.com/vembrane/vembrane/blob/main/docs/ann_types.md
https://github.com/vembrane/vembrane/blob/main/docs/ann_types.md
https://github.com/pysam-developers/pysam
https://github.com/samtools/htslib
https://doi.org/10.1101/2022.08.17.504106
http://creativecommons.org/licenses/by/4.0/


tool syntax annotation I/O formats breakends speed
bcftools custom VEPa VCF, BCF no +++
bio-vcf custom/rubyb - VCF no -
filter_vep custom VEP VCF no ---
slivar js/customb customc VCF, BCF no -
SnpSift custom SnpEff VCF no +
VcfFilterJdk Java VEP, SnpEff d VCF, BCFe no ◦f

vembrane Python VEP, SnpEff VCF, BCF yes ++

Table 1: Overview of different tools and their properties. See supplement for detailed
benchmarking.
avia +split-vep plugin, badditionally “custom” because some scenarios require
complex CLI option combinations, cspecial handling of impact annotations from
bcftools, VEP or SnpEff , dEFF only, eVCF < v4.3 only, fmanually estimated
performance, since it is not included in the benchmark due to incompatible
VCF version support and lack of conda packages.

suites have their own filtering tools, SnpSift and filter_vep, which are tailored towards
the respective annotations. Both use custom syntax, special handling of their respective
annotations, and neither supports the BCF format. Additionally, filter_vep is several
orders of magnitude slower than the other tools (suppl. Fig. S.1). The bcftools suite
also developed its own expression syntax and supports VEP annotations by explicitly
activating a dedicated plugin. bio-vcf [Garrison et al., 2021] defines its own domain
specific language for processing VCF files, is multi-threaded by default, but has neither
BCF support nor built-in support for annotations. slivar [Pedersen et al., 2021] is geared
more towards trio/pedigree filter scenarios, but has some support for specific parts of
SnpEff , VEP and bcftools annotations such as Consequence. The only other tool that
does not define its own syntax is VcfFilterJdk [Lindenbaum and Redon, 2018], which
uses Java expressions for filtering and in principle supports both VEP and SnpEff (EFF
only) annotations. However, at the time of writing, it did not support VCF v4.3. A
detailed comparison of specific syntactic capabilities of the different tools, as well as a
performance benchmark, can be found in the supplement.

3 Summary
vembrane is a new software for efficient filtering of variation data in the standardized
VCF and BCF formats. It combines the capabilities of existing tools and should work
as a replacement to any of them. Thus, users will not have to remember which tool
can achieve what, but should be able to perform any filtering task with vembrane.
Further, vembrane allows for filtering via arbitrary Python expressions, meaning that
Python users can compose filtering expressions without having to learn custom syntax.
In addition, it extends beyond existing functionality in other tools by providing support

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504106doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504106
http://creativecommons.org/licenses/by/4.0/


for breakends. Finally, it also allows formatting VCF files into tables and has basic
support for annotating records itself.

4 Acknowledgements
We sincerely thank Marcel Bargull, Jan Forster, Felix Mölder and Sven Rahmann for
their contributions.

5 Funding
This work was funded by the German Research Foundation collaborative research center
876 (SFB 876), subproject C1 (C1).

References
James K Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, Andrew Whitwham, Thomas Keane, and

Robert M Davies. Htslib: C library for reading/writing high-throughput sequencing data. Gigascience, 10(2):
giab007, 2021.

Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan Wang, Susan J Land, Xiangyi Lu, and
Douglas M Ruden. A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff:
Snps in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2):80–92, 2012.

Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks, Mark A DePristo, Robert E Handsaker,
Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al. The variant call format and vcftools. Bioinformatics, 27
(15):2156–2158, 2011.

Erik Garrison, Zev N. Kronenberg, Eric T. Dawson, Brent S. Pedersen, and Pjotr Prins. Vcflib and tools for processing
the vcf variant call format. bioRxiv, 2021. doi: 10.1101/2021.05.21.445151. URL https://www.biorxiv.org/content/
early/2021/05/23/2021.05.21.445151.

Pierre Lindenbaum and Richard Redon. bioalcidae, samjs and vcffilterjs: object-oriented formatters and filters for
bioinformatics files. Bioinformatics, 34(7):1224–1225, 2018.

William McLaren, Laurent Gil, Sarah E Hunt, Harpreet Singh Riat, Graham RS Ritchie, Anja Thormann, Paul Flicek,
and Fiona Cunningham. The ensembl variant effect predictor. Genome biology, 17(1):1–14, 2016.

Brent S Pedersen, Joe M Brown, Harriet Dashnow, Amelia D Wallace, Matt Velinder, Martin Tristani-Firouzi, Joshua D
Schiffman, Tatiana Tvrdik, Rong Mao, D Hunter Best, et al. Effective variant filtering and expected candidate variant
yield in studies of rare human disease. NPJ Genomic Medicine, 6(1):1–8, 2021.

Douglas Mark Ruden, Pablo Cingolani, Viral M Patel, Melissa Coon, Tung Nguyen, Susan J Land, and Xiangyi Lu.
Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, snpsift.
Frontiers in genetics, 3:35, 2012.

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504106doi: bioRxiv preprint 

https://www.biorxiv.org/content/early/2021/05/23/2021.05.21.445151
https://www.biorxiv.org/content/early/2021/05/23/2021.05.21.445151
https://doi.org/10.1101/2022.08.17.504106
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Implementation
	Comparison to other tools

	Summary
	Acknowledgements
	Funding

