

Asymmetric Ion Mobility and Interface

2 Displacement Drive the Signal Enhancement in a

3 polymer-electrolyte nanopore

4 *Fabio Marcuccio^{1,2,†}, Dimitrios Soulias^{1,2,†}, Chalmers C. Chau^{1,2,3}, Sheena E. Radford³, Eric*
5 *W. Hewitt³, Paolo Actis^{1,2}, Martin A. Edwards⁴*

6

⁷ ¹School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

⁸ ²Bragg Centre for Materials Research, University of Leeds, Leeds, UK

³School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.

11 ⁴Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
12 72701, USA

13

14 [‡] These authors contributed equally to this work.

15

16 KEYWORDS

17 Nanopipette, nanopore, finite-element modelling, nanofluidic diode, ion-current rectification,
18 DNA, polyethylene-glycol, PEG

19

20 ABSTRACT

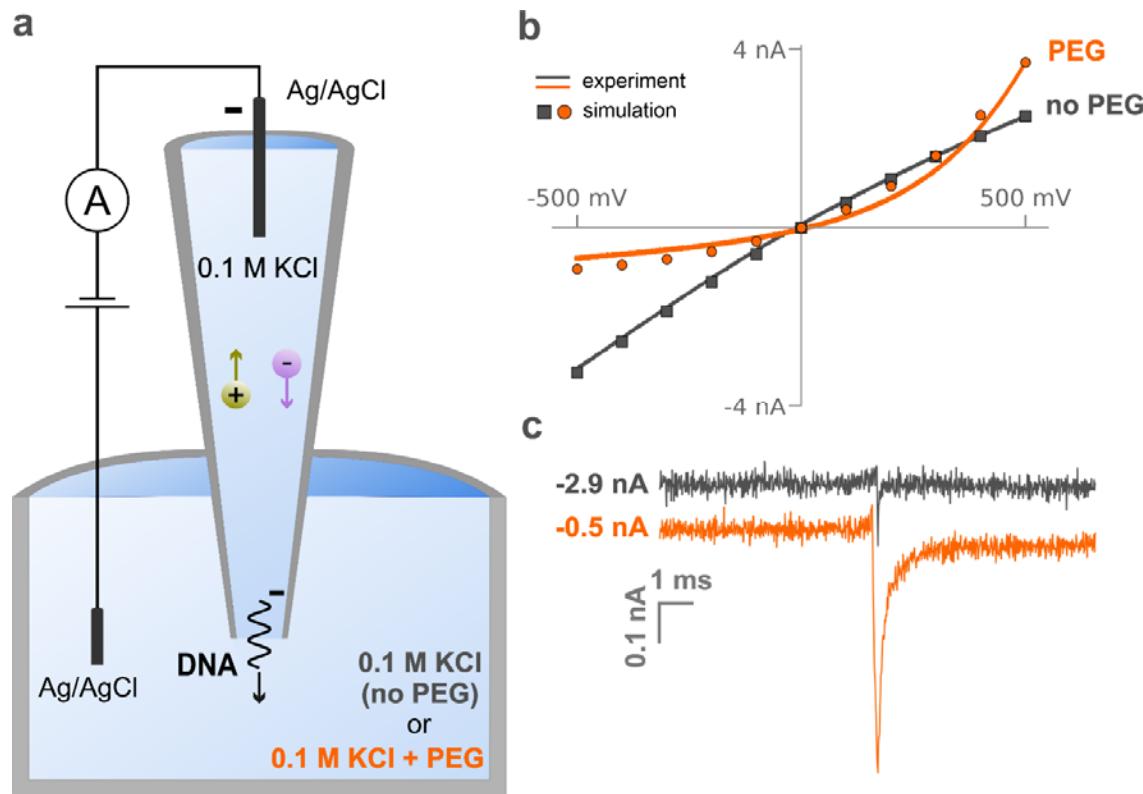
21 Solid-state nanopores have been widely employed in the detection of biomolecules, but low
22 signal-to-noise ratios still represent a major obstacle to enable the discrimination of short
23 nucleic acid and protein sequences. The addition of 50% polyethylene glycol (PEG) to the
24 bath solution was recently demonstrated as a simple way to enhance the detection of such
25 biomolecules translocating through a model solid-state nanopore. Here, we provide a
26 comprehensive description of the physics describing a nanopore measurement carried out in
27 50% PEG that is supported by finite-element modelling and experiments. We demonstrate
28 that the addition of PEG to the external solution introduces a strong imbalance in the
29 transport properties of cations and anions, drastically affecting the characteristic current
30 response of the nanopore. We further show that the strong asymmetric current response is due
31 to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to
32 either ion depletion or enrichment for few tens of nanometers across the aperture. Under
33 negative potential, when double-stranded DNA molecules translocate, the depleted region
34 (sensing region) significantly improves the sensitivity compared to systems without PEG. We
35 then introduce a displacement of the interface between pore and external solution to simulate
36 the mechanical interactions between analyte and PEG molecules. We found that this
37 displacement affects the ion distribution in the sensing region, enhancing the detection
38 current during the translocation of biomolecules.

39 INTRODUCTION

40 Nanopore sensing is one of the leading label-free techniques for the analysis and
41 manipulation of single molecules due to its high throughput and sensitivity^{1–3}. In nanopore
42 measurements, an ionic current is generated by applying a potential between two electrodes
43 situated in two reservoirs separated by a small orifice. In general, the translocation of an
44 analyte through a nanopore causes a decrease in magnitude of the ionic current due to
45 temporary restricted transport of ions across the orifice. However, under low electrolyte
46 concentrations, charged molecules, such as double-stranded DNA (dsDNA), carry a
47 counterion cloud which leads to a local ion enrichment, inducing a current enhancement^{1,4,5}.
48 The amplitude, duration and shape of the translocation event provide important information
49 about the physicochemical properties of the molecule, such as size, charge, and shape^{1,6}.
50 Despite the developments in the field over the past decades⁷, using solid-state nanopores to
51 detect proteins and short nucleic acids still remains challenging, requiring nanopores of
52 comparable size to the molecules (< 10 nm diameter), which are difficult to fabricate
53 reproducibly⁸. Furthermore, the nanopore system need to have higher signal-to-noise ratio⁹ to
54 detect small perturbations to the ion current caused by the translocation of molecules, and
55 high bandwidth electronics to characterize rapid translocations with sufficient temporal
56 resolution¹⁰. Finite element modelling has been extensively used to examine electrokinetic
57 phenomena in nanopores^{5,11–14}. In such systems, the ion current is due to the transport of ionic
58 species under the influence of an electric field and its physics can be considerably more
59 complex than that in simple ohmic conductors¹⁵. For example, the charge on the nanopore
60 wall induces an electric double layer leading to non-uniform ion concentration distributions
61 and the interacting physics of ion transport, electric fields and fluid flows result in a wide
62 range of non-linear behaviour^{12,16,17}.

63 We have recently reported the enhanced single molecule detection of a nanopore when 50%
64 polyethylene glycol (PEG) is added to the bath solution leading to a 6X increase of the
65 amplitude of the translocation signal¹⁸.

66 Here, we describe a mechanism explaining this enhancement by using a combination of
67 experiments and multi-physics modelling¹⁸. We developed a finite element model by
68 coupling Nernst-Planck, Poisson and Navier-Stokes equations to describe the physics of ion
69 transport under an applied electric field when a nanopore sensing experiment is carried out in
70 presence of 50% PEG. Based on the cation-binding properties of PEG that have been largely
71 discussed in the literature, our model assumes an imbalance between the diffusion
72 coefficients of cations and anions in the bath solution¹⁹⁻²³. The model reproduces the
73 experimental current-voltage responses in the presence and absence of PEG and provides
74 insight into the ion concentrations and transport rates responsible for the observed behavior.
75 We then provide evidence that a combination of the asymmetric ion mobility at the nanopore
76 and the mechanical interaction between a translocating molecule and the nanopore-bath
77 interface is responsible for the increase in the translocation signals. This new mechanism may
78 inform further developments in nanopore sensing by suggesting that chemical approaches
79 that affect ion mobilities could be used to enhance the sensitivity of the system.


80 **RESULTS AND DISCUSSION**

81 Figure 1a shows the experimental setup used throughout this work in which a model solid-
82 state nanopore based on a quartz nanopipette (25 nm in diameter) filled with a 0.1 M KCl
83 solution is immersed into a bath containing 0.1 M KCl with or without 50% (w/v) PEG. In
84 nanopore measurements, the current-voltage response characterizes the ion transport,
85 indirectly providing information about the physical properties of the nanopore (size, shape,
86 surface charge). The grey line in Figure 1b shows the current-voltage response of a

87 nanopipette filled with a 0.1M KCl solution and immersed in a bath containing 0.1 M KCl
88 (no PEG). The slightly higher conductivity observed at a positive bias applied vs a negative
89 bias is termed ion-current rectification (ICR) and arises from the negative charge on the glass
90 wall of the nanopipette, which makes the aperture region permselective to cations and this
91 effect has been extensively described in the literature^{17,24–26}.

92 When the same nanopipette is immersed in a bath of 0.1 M KCl with 50% PEG, a dramatic
93 reversal in the rectification is observed in the *i*-*V* curve (orange line). The PEG solution is ~9
94 times less conductive than 0.1 M KCl (Table S1.2, SI1) and, counterintuitively, the ion
95 current observed at +500 mV is greater than the one measured in a PEG-free bath. Also,
96 under negative bias, the ion current is ~4 times lower than observed without PEG in the bath
97 solution. This response cannot be explained only considering the difference in conductivity
98 between the two solutions, or as a rectification effect induced by surface-charge on the
99 nanopore wall, indicating that a fundamentally different nanopore physics is responsible for
100 the observed *i*-*V* response. We have investigated if the difference in viscosity between the
101 two solution is responsible for the observed experimental difference, but the *i*-*V* response
102 observed in PEG cannot be reproduced other viscous solutions such as 50% glycerol (S1.6,
103 Supporting Information 1), indicating that viscosity alone cannot be the responsible for such
104 behavior. In the following section, we describe a numerical model of ion transport, from
105 which the calculated ion current (points in Figure 1b) is derived, that explains the anomalous
106 current-voltage response.

107 As we have previously reported¹⁸, the presence PEG in the bath solution leads to a 4 fold
108 enhancement of the ion current observed when a single molecule translocates through the
109 nanopore (Figure 1c).

Figure 1. Schematic and representative data for conductive-pulse measurements of double-stranded DNA translocation through a nanopipette. (a) A nanopipette (12.5 nm pore radius), filled with a 10 nM solution of 4.8kbp dsDNA in 0.1 M KCl, is immersed in a solution of the same electrolyte with and without the presence of 50% (w/v) PEG 35K. The application of a negative potential to an Ag/AgCl quasi-reference electrode inside the nanopipette with respect to a ground electrode in the bath solution causes outbound migration of DNA molecules, initially present in the nanopipette solution. (b) Experimental (curves) and simulated (points) voltammograms of the nanopipette in the presence (orange) and absence (black) of PEG in the outside solution. Current trace recorded upon translocation of a dsDNA molecule through the nanopipette aperture with (orange trace) and without (black trace) the presence of PEG in the bath solution.

110 It is worth noting that as the two current traces displayed in Figure 1c were both recorded
111 using the same nanopipette ($r = 12.5$ nm), applied voltage (-500 mV), and composition of the
112 inner solution (0.1 M KCl and 0.1 ng/ μ l 4.8 kbp dsDNA) and the observed enhancement is
113 only driven by the presence of PEG in the bath solution. In a conventional nanopore
114 measurements where the solution is identical in both reservoirs, the current increase is
115 attributed to the presence of the counter-ion cloud carried by the dsDNA molecule, which
116 results in a temporary increase in the ion concentration in this region, and this effect has been
117 extensively described in the literature^{4,5,27,28}. The next section describes a new nanopore

118 physics that not only explains the anomalous *i*-*V* response, but also the enhanced single
119 molecule sensitivity.

120 **Finite Element Simulations**

121 We developed a finite element model that coupled ion transport (diffusion, electromigration)
122 and electric fields at different applied potentials. A detailed description of the model is given
123 in the Supporting Information 1 (Section S1) and 2 (COMSOL report). Briefly, a 2D
124 axisymmetric model simulates the geometry of a nanopipette as a simplified truncated hollow
125 cone immersed in a circular bath (Figure S1.1). The model was informed by experimental
126 measurements (scanning electron microscopy micrographs of the nanopipette tip geometry,
127 bulk conductivities and viscosities of the solutions), and only the inner half-cone angle (θ),
128 the surface charge of the quartz glass (σ) and the diffusion coefficients of the solution in the
129 bath containing 50% PEG 35K (D_{K^+} , D_{Cl^-}) could not be experimentally measured. The inner-
130 half cone angle ($\theta = 7^\circ$) was determined parametrically as by solving analytically the
131 resistance of the nanopipette immersed in a 0.1 M KCl solution(S1.2, SI1 for more details).
132 Similarly, the surface charge at the nanopipette quartz wall ($\sigma = -12 \frac{mC}{m^2}$) was estimated
133 using the closest fit to the experimental data (Section S1.3, SI1).

134 In our system, charge is carried by ions migration due to the presence of an electric field
135 (electromigration), concentration gradient (diffusion) and fluid flow (convection)¹⁶. In 0.1 M
136 KCl, the ion flux generated by electromigration (\vec{J}_i^m) depends on the sum of the diffusion
137 coefficients of ions in solution (S1.4, SI1) which defines the solution conductivity according
138 to the following equation:

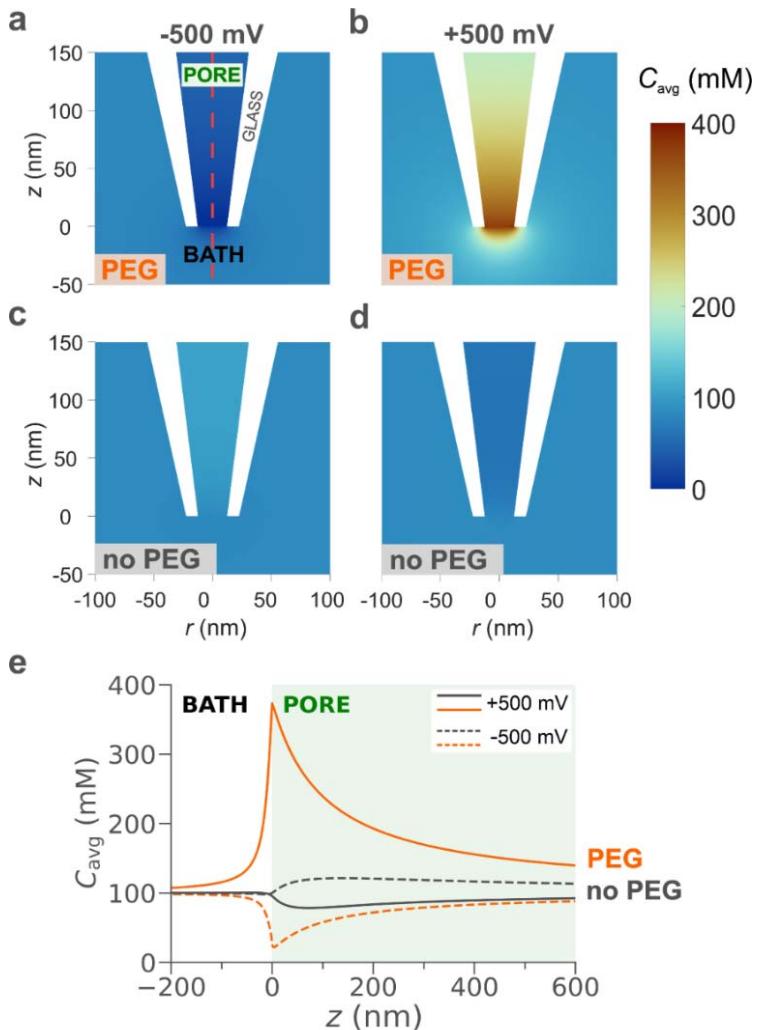
$$\vec{J}_i^m = \vec{J}_{K^+}^m + \vec{J}_{Cl^-}^m = \frac{(D_{K^+} + D_{Cl^-})}{RT} F^2 c_b \vec{E} = \kappa \vec{E} \quad (1),$$

139 where D_{K^+} and D_{Cl^-} are the diffusion coefficients of potassium and chloride, respectively, c_b
140 the bulk concentration, F the Faraday constant, R the natural gas constant, T the temperature,
141 κ the solution conductivity, and \vec{E} the electric field. In normal conditions (no PEG), the ratio
142 between the diffusion coefficients of the two species is very close to unity $\left(\frac{D_{K^+}}{D_{Cl^-}} \sim 1\right)$,
143 meaning that the contribution of potassium and chloride to the total conductivity κ is
144 approximately the same.

145 Evidence in literature has shown that polyethylene glycol associates with cations in
146 solution^{20–23,29}. Zhang et al.¹⁹ proved experimentally the interaction between cations and
147 PEG, finding that the trapping time of the ion in the polymer chain is highly dependent on the
148 ion radius with longer trapping time for larger radii. These findings are a clear indication that
149 the diffusion properties of cations in solution are affected in the presence of PEG. In the
150 simulations, we considered this effect by assuming an imbalance between the diffusion
151 coefficients of the two ion species in the bath solution. The properties of the 0.1 M KCl
152 electrolyte inside the nanopipette were kept constant as described above.

153 We performed a parametric study to determine the ratio of the diffusion coefficients by
154 decreasing the contribution of the potassium ion and increasing the one of chloride $\left(\frac{D_{K^+}}{D_{Cl^-}} <$
155 1 $\right)$ to the total conductivity κ_{PEG} (Section S1.4, Supporting Information 1) to describe the
156 experimental i - V of the nanopipette in the presence of PEG shown in Figure 1b (orange
157 curve). This study revealed that the higher the ratio of diffusion coefficients, the more
158 asymmetric the i - V response will be (Figure S1.4, SI1), which supports our hypothesis that
159 the polymer-cation interactions are responsible for the distinctive current response in
160 presence of PEG^{18,30}. We obtained the closest fit to the experimental data (orange square
161 points, Figure 1b) by selecting a diffusion coefficient ratio of $\frac{D_{K^+}}{D_{Cl^-}} = 0.54$, meaning a 35%

162 contribution from the cations and 65% from the anions to the total conductivity of the PEG
163 solution. The simulated currents shown in Figure 1b (orange data points) quantitatively
164 reproduce the experimentally observed *i*-*V* response (orange curve).


165 It is worth clarifying that all inputted parameters, with or without PEG in the outer solution,
166 were either measured experimentally (electrical conductivity, fluid viscosity and electrolyte
167 concentration) or found in literature (electric permittivity, fluid viscosity) (Table S1.2, SI1).
168 In addition, the nanopipette surface charge and any fluid flow in the system minimally
169 influence the simulated *i*-*V* response in the presence of PEG in the bath solution (Section 1.5
170 and table S1.3 of Supporting Information 1), thus all modelling results related to PEG
171 presented below were obtained without considering these factors.

172 **Ion concentrations at the tip region**

173 We then investigated the distribution of ions near the tip of the nanopipette to better
174 understand the effect of PEG in the most sensitive region of our system.

175 Figure 2 shows the average ion concentration $c_{avg} = \frac{[K^+]+[Cl^-]}{2}$ obtained with finite element
176 modelling under two opposite voltages applied ($V = \pm 500$ mV) in presence (Figure 2a, 2b)
177 and absence (Figure 2c, 2d) of PEG in the external solution (Section S2, SI 1). In the
178 presence of PEG, a pronounced ion depletion is observed for $V = -500$ mV (Figure 2a)
179 while ion enrichment is noticeable when $V = +500$ mV (Figure 2b) with a 20-fold increase
180 in ion concentration compared to when a negative bias is applied. This observation is the
181 origin of the asymmetric current response observed in presence of PEG (Figure 1b). In
182 absence of PEG in the external solution, a slightly higher ion concentration can be observed
183 within the pore region under $V = -500$ mV (Figure 2c) compared to the case with $V =$
184 +500 mV (Figure 2d).

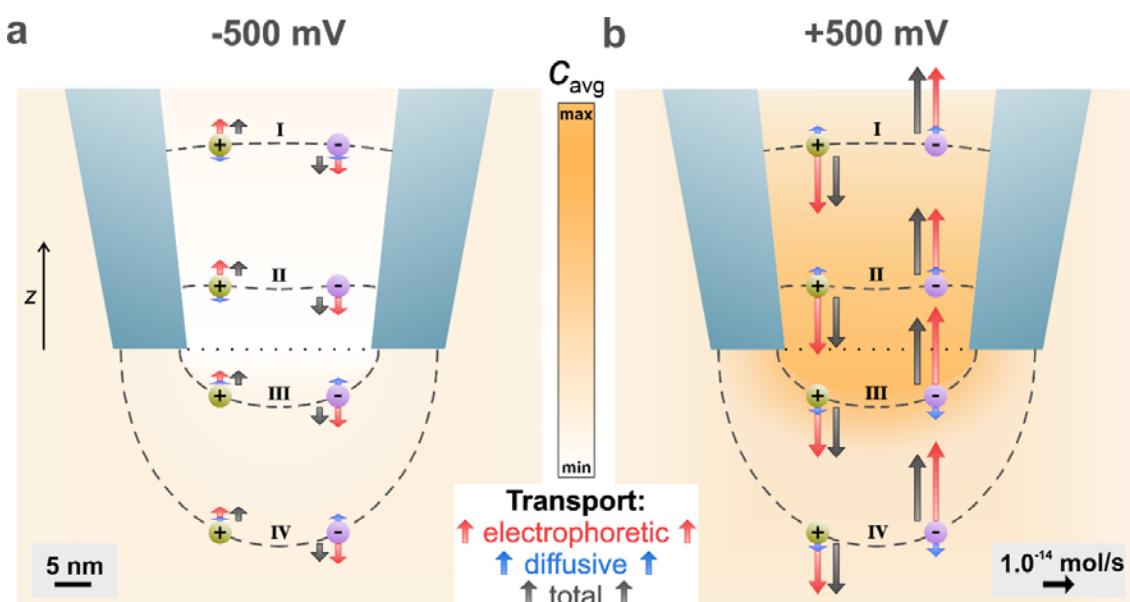
185 This observation explains the slightly asymmetric curve (ion-current rectification) for the no
 186 PEG case (gray curve) shown in Figure 1b¹⁷.

Figure 2. Simulated ion distributions close to the nanopipette tip at ± 500 mV in the presence and absence of PEG in the bath solution. Average concentration ($C_{avg} = \frac{1}{2}([K^+] + [Cl^-])$) with (a, b) and without (c, d) PEG in the bath solution for an applied voltage of (a, c) -500 mV and (b, d) 500 mV. (e) Average ion concentrations along the nanopipette axis of symmetry (red dashed line in a) in presence (orange) and absence (black) of PEG for negative (dashed curves) and positive (solid curves) bias applied. The diameter of the nanopipette is 25 nm and the internal and external solution is 0.1 M KCl for both PEG and no PEG but in the PEG case, the external solution also contains PEG 35K.

187

188 Figure 2e plots the average ion concentration along the symmetry axis of the pipette (dashed
 189 red line, Figure 2a), allowing for quantitative comparison of the simulations. The average

190 concentration for the PEG (orange curve) and no PEG (gray curve) case is plotted for
191 $V = -500$ mV (dashed line) and $V = +500$ mV (solid line). In our reference system, the
192 interface between nanopipette and external solution is positioned at $z = 0$ nm, while
193 $z > 0$ nm correspond to the axis of symmetry inside the nanopipette and $z < 0$ nm to the
194 external solution (Figure S1.1). Interestingly, the maximum ion concentration for $V =$
195 $+500$ mV in the presence of PEG (orange solid line) is approximately 4 times higher than the
196 corresponding case with no PEG (gray solid line). This observation indicates that the above-
197 bulk conductivity arises from a dramatic increase in the ion concentration in the sensing
198 region of the nanopipette, despite the external solution in the presence of PEG being 9 times
199 less conductive.


200 Experimentally, a similar increase in conductivity is observed upon the translocation of a
201 single dsDNA molecule in presence of PEG in the bath solution, as shown in Figure 1c,
202 suggesting that the signal amplification is related to the number of ions in the sensing region
203 of the nanopipette. The vast difference in ion concentration between positive and negative
204 bias is similar to the behavior of nanofluidic diodes³¹⁻³⁵ for ultrashort conical nanopores. In
205 these studies, nanofluidic diodes were developed by introducing a surface charge
206 discontinuity on a nanochannel which forms a junction similar to bipolar semiconductors. In
207 our case, we achieve a similar behavior by introducing an interface where the value for the
208 diffusion coefficient for cations and anions is approximately the same to a region where the
209 diffusion coefficient for the cations is much smaller than the one for anions due to the
210 presence of PEG. This discontinuity not only affects ions distribution but also ion transport,
211 as we describe in the next section.

212 **Ions transport at the tip region**

213 The origin of the significant differences in ion concentration (c_{avg}) in the presence of PEG can
214 be understood by a careful analysis of the ion transport (N_{K^+}, N_{Cl^-}) across the interface close
215 to the nanopipette tip aperture, which represents the most sensitive region of our system³⁶
216 (Section S3, Supporting Information 1).

217

218 We define “sensing region” as the region between two equipotential lines where a 50% drop
219 of the applied voltage is observed. In case of -500 mV applied, the voltage drop across the
220 sensing region is equal to 250 mV. In presence of PEG and under -500 mV, we found that
221 this region is about 40 nm in length along the z-axis (from $z = -20$ nm to $z = 20$ nm with
222 interface between inner solution and bath solution set at $z = 0$) (Figures S3.3 and S3.4, SI1).
223 This clearly indicates a highly resistive region positioned at the nanopipette tip which leads to
224 a significant drop in the measured current magnitude, as shown in Figure 1b (orange curves

Figure 3. Visualization of the relative contributions of different physical processes to the transport rates of K^+ and Cl^- at ± 500 mV with PEG in the outer solution. The lengths of the arrows represent the magnitude of the total transport rate (gray) across the respective equipotential line (dashed black), which is the sum of electrophoretic (red) and diffusive (blue) contributions. In addition, the arrows being parallel to the z-axis and the ions positions were selected for illustration purposes only. Arrows for negligible diffusive contributions are not shown in the plot for ease of representation. The colour map in the background represents the average ion concentration and the dotted line at the nanopipette aperture the interface between the inner and outer solution.

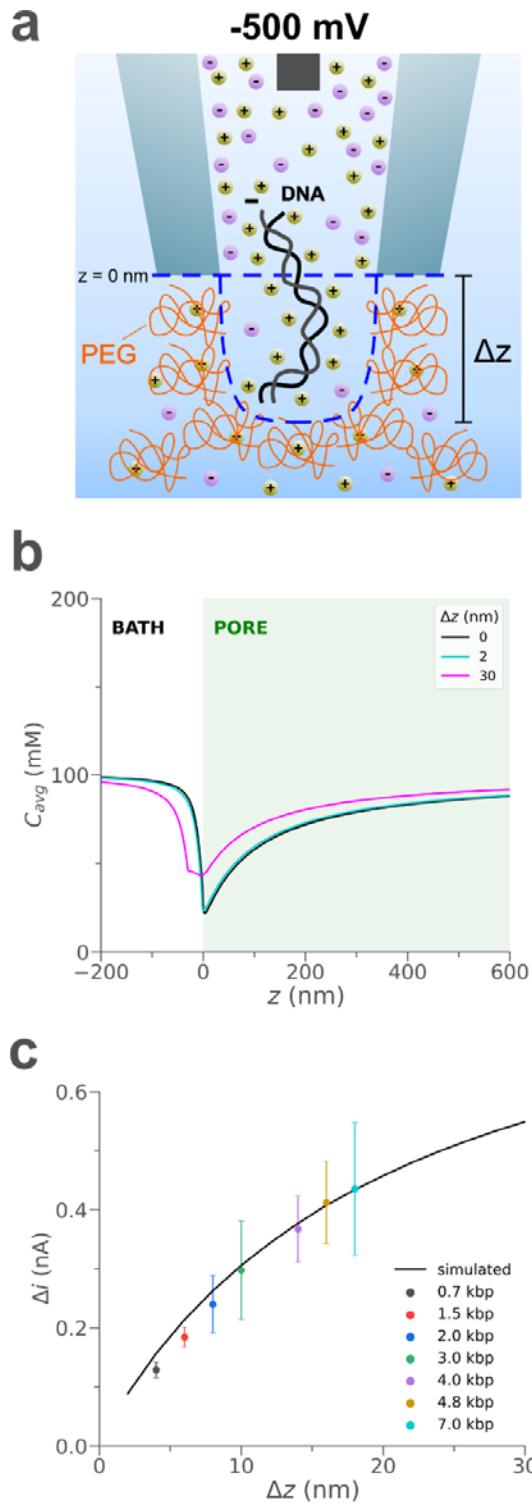
225 and square points).

226 In any enclosed volume, the flux of ions through the surface surrounding the volume is equal
227 to the rate of change in the ions number (mass and charge conservation)³⁷. The transport rate
228 for each ion species (N_i) was calculated by integrating the total flux of K^+ and Cl^- separately,
229 along the equipotential lines (dashed lines, Figure 3) selected around the nanopipette tip. An
230 extensive description of these calculations is provided in section 3.2 of the Supporting
231 Information. In a nutshell, for 0.1 M KCl, where both ion species have a valence of $z_i = 1$,
232 the difference between the number of charges (ions) entering and exiting each dashed line
233 over time is proportional to the current.

234 Since no convection was considered for this simulation, the total ion transport rate (black
235 arrow, Figure 3) can be broken down to two components, the electrophoretic (N_i^m) and
236 diffusive (N_i^d) (red and blue arrow, respectively, Figure 3). Figure 3 illustrates all these three
237 components, for both cations (green sphere) and anions (purple sphere), at 4 equipotential
238 lines to highlight the marked difference in ion transport between the inner and outer solution
239 for $V = \pm 500$ mV. The total ion transport rate (black arrows) of each ion species for each
240 applied potential remains constant across the designed dashed lines, verifying that mass and
241 charge is conserved in the system and that the sum of the electrophoretic and diffusive
242 components will always be the same. Based on the polarity of the applied voltage,
243 cations/anions will get attracted/repelled resulting in electrophoretic ion transport either in or
244 out the nanopipette tip (dotted black line, Figure 3). Additionally, any gradients in the ion
245 concentration (color map in background of Figure 3) give rise to diffusive ion transport with
246 both species moving towards (with $V = -500$ mV) or away the tip interface (with $V = 500$
247 mV).

248 Figure 3 shows that the total ion transport rate at -500 mV is lower than the rate at 500 mV by
249 75% which is in agreement with the experimental and simulated *i*-*V* responses presented in
250 Figure 1b. It is important to note that the electrophoretic transport dominates diffusion in all
251 cases. In Figure 3a, chloride anions move towards the outer solution, while potassium cations
252 flow towards inside the pore opening. The directionality of transport is exactly opposite in
253 Figure 3b with Cl^- moving inside the nanopipette tip and K^+ travelling outwards. To
254 summarize, when $V = 500$ mV, there is a larger number of ions flowing across the
255 nanopipette tip aperture over time which results in a higher current magnitude (Table S4.1,
256 SI1) demonstrating that an asymmetric ion mobility is responsible for the observed above-
257 bulk conductivity. In contrast, when $V = -500$ mV, there is a low number of ions flowing
258 across the nanopipette tip aperture over time resulting in a much lower current magnitude
259 (Table S4.2, SI1) which again is consistent with the experimental data.

260 **Mechanism of current enhancement upon dsDNA translocation**


261 DNA molecules carry a negative surface charge and form counter-ion clouds when immersed
262 in electrolyte solutions (0.1 M KCl). In standard conditions (no PEG) and under negative
263 potentials (-500 mV), the temporary increase in the current magnitude recorded during
264 dsDNA translocation is due to the additional ions carried by the molecule to the sensing
265 region of the nanopipette which results in a temporary higher ion concentration⁴.

266 In the presence of PEG, the physics related to the generated current upon dsDNA
267 translocation through the nanopipette aperture is considerably more complex. As previously
268 explained, the nanopipette shows a remarkable ion depletion at the tip region with very few
269 ions transporting through the interface when -500 mV are applied (see ion concentrations in
270 Figure 2a and transport in Figure 3a), while the bath solution is mainly populated by anions
271 with cations transport hindered by intercalation in the PEG molecules. In these conditions,

272 the counter-ion cloud carried by the dsDNA molecule certainly contributes to the temporal
273 increase of the ion concentration, thus the conductivity, of the system. However, this is not
274 sufficient to explain the drastic current enhancement recorded experimentally. In fact, the
275 charge carried by the translocating dsDNA molecule is the same regardless the presence or
276 absence of PEG in the bath solution, thus the increased conductivity should be approximately
277 equal in both cases (see Section S4.1, SI1).

278

279

Figure 4. Proposed mechanism of current enhancement upon a dsDNA molecule translocation. (a) The translocation of a dsDNA molecule through the nanopipette causes a temporary displacement of the interface between the pore and bath solution which results in a temporary ion enrichment in the nanopipette tip region (note: the illustrations are not in scale and geometries were chosen for illustration purposes only). (b) Simulated average ion concentration along the axis of symmetry ($r = 0$ nm) for 0 nm (black), 2 nm (cyan) and 30 nm (magenta) interface displacement. (c) Simulated (black curve) and experimental (coloured points) current peak maxima (Δi) for different interface displacements towards the bath solution and sizes of dsDNA molecules translocating through the nanopipette tip aperture towards the bath, respectively. The error bars represent the standard deviation of the experimental current peak maxima values.

281 We explored if the mechanical interactions between a dsDNA molecule and the interface
282 between pore could temporarily alter the ion concentrations at the tip region. Briefly, we
283 considered a rectangular protrusion of the domain inside the nanopipette (pore solution)
284 towards the bath domain to get a simplistic model of the interface shift caused by the arrival
285 of DNA, as shown in Figure 4a. We performed a parametric study by varying the size of this
286 protrusion (Δz) from $z = 0$ nm to $z = -30$ nm with 2 nm steps. Figure 4b presents the
287 simulated average ion concentration along the symmetry axis ($r = 0$ nm) for three different
288 interface displacements (0, 2 and 30 nm). As the interface moves further away from the
289 nanopipette tip opening ($z = 0$ nm), the number of ions in the nanopipette's sensing region
290 increases resulting in an enhanced current value. We found that an interface displacement of
291 16 nm towards is sufficient to cause an increase in the ion current the match the current peak
292 maxima measured experimentally for the translocation of a single 4.8 kbp dsDNA molecule
293 (Section S4.2, SI1). This current enhancement is due to a 33% increase in ion concentration
294 in the nanopipette sensing region ($0 < z < 20$ nm) caused by this shift in the interface.

295 To summarize, we found that the translocation of dsDNA molecules through the pore causes
296 a temporary displacement of the interface, which results in a shift of the ion depleted region
297 towards the bath. The consequence is ion enrichment in the sensing region inside the
298 nanopipette, which results in higher conductivity, thus higher measured currents (Figure 4a).
299 Note that in our simulations, we simplistically assume that the interface between pore and
300 bath solution without DNA is a straight line at $z = 0$ nm (no mixing, blue dashed line in
301 Figure 4). Using a more sophisticated model for the interface would certainly improve the
302 accuracy of our calculations, but not the level of our understanding of the system.

303 Based on this mechanism, we expect various dsDNA molecule sizes to have different effects
304 on the translocation current. For instance, longer dsDNA molecules would displace the
305 interface further towards the external solution. To prove this hypothesis, we repeated the same

306 experiment as the one illustrated in Figure 1 using a range of sizes for the analyte (0.7 – 7
307 kbp) with and without PEG in the outside bath (Figure 4c and Section 4.3, SI1). In PEG,
308 experimental current peak maxima for the translocation of dsDNA molecules with sizes from
309 0.7 kbp up to 4.8 kbp are in close agreement with the trend obtained from the simulated
310 current values due to interface displacements, as shown in Figure 4c and Table S4.1 in
311 Supporting Information 1. In the no PEG case, not only there is no evident correlation, but
312 the detection is limited to molecules with a minimum size of 4.8 kbp (Figure S4.2c, SI1).
313 These findings confirm our initial hypothesis that the current enhancement in the presence of
314 PEG 35K upon dsDNA translocation cannot be explained only in terms of additional ions
315 carried by the analyte, as recently reported by Lastra et al.¹⁵ for a system based on a pore's
316 flux imbalance, but a mechanical interaction between the analyte and PEG molecules at the
317 nanopipette tip opening must be taken into account.

318 To further support this, we experimentally verify that the voltametric responses and current
319 enhancement caused by PEG disappear when a positive pressure is applied at the back of the
320 nanopipette to push PEG molecules away from the tip opening (Section S4.4, SI1). This
321 result shows that the PEG effect is completely cancelled by disrupting the interface,
322 underpinning the importance of the latter to the experienced current enhancement.

323 CONCLUSION

324 To summarize, we developed a finite element model to improve our understanding of the
325 dramatic current enhancement upon dsDNA molecule translocation through a nanopipette to
326 an external solution containing 50% (w/v) PEG 35K. This system was successfully simulated
327 by assuming asymmetric diffusion coefficients between cations and anions due to the cation
328 binding properties of PEG. We observed that the characteristic *i*-V response in the presence
329 of PEG is due to voltage-dependent ion concentrations at the tip region with ion enrichment

330 at positive and ion depletion at negative potentials. A similar behavior was noticed in the
331 asymmetric transport rates for each ion species across the tip orifice, resulting in higher
332 currents at positive applied bias compared to negative. Furthermore, we demonstrated that
333 conventional mechanisms of current enhancement based on additional ions carried by the
334 analyte cannot be fully applied to our system. Hence, we proposed a novel mechanism
335 supported by experimental evidence which relies on mechanical interaction between the
336 translocating analyte and the solutions interface. We proved that such interactions could lead
337 to alteration of the ion distribution at the tip orifice which can result into temporary current
338 increases. We expect that this work can provide a new paradigm in nanopore sensing, where
339 the alteration of the ion transport properties of the solution can be harnessed to provide
340 enhanced signal to noise allowing for the biochemical and structural analysis of proteins and
341 other biomolecules.

342 **MATERIALS AND METHODS**

343 **Nanopipette fabrication**

344 Quartz capillaries of 1.0 mm outer diameter and 0.5 mm inner diameter (QF100-50-7.5;
345 Sutter Instrument) were used to fabricate the nanopipette using the SU-P2000 laser puller
346 (World Precision Instruments). A two-line protocol was used, line 1: HEAT 750/FIL 4/VEL
347 30/DEL 150/PUL 80, followed by line 2: HEAT 625/FIL 3/VEL 40/DEL 135/PUL 150. The
348 pulling protocol is instrument specific and there is variation between different SU-P2000
349 pullers.

350 **Electrolyte bath preparation**

351 To generate 10 ml of the 50% (w/v) poly(ethylene) glycol (PEG 35K) (Sigma Aldrich
352 94646), 1 ml of 1 M KCl solution, 4 ml of ddH₂O and 5 g of PEG 35K were mixed inside a
353 tube. The tube was then left inside a 70°C incubator for 2 hours followed by overnight

354 incubation at 37°C. The tubes were then left on bench for 4 hours to reach the room
355 temperature prior to use. All electrolytes were stored at room temperature.

356 **Ion current trace recording**

357 The nanopipettes were all filled with 0.1 ng/μl dsDNA diluted in 0.1 M KCl (P/4240/60;
358 Fisher Scientific) and fitted with a Ag/AgCl working electrode. The nanopipettes were
359 immersed into the electrolyte bath with a Ag/AgCl reference electrode containing or not
360 containing Polyethylene Glycol 35K. The ionic current trace was recorded using a
361 MultiClamp 700B patch-clamp amplifier (Molecular Devices) in voltage-clamp mode. The
362 signal was filtered using low-pass filter at 10 kHz and digitized with a Digidata 1550B at a
363 100 kHz (10 μs bandwidth) sampling rate and recorded using the software pClamp 10
364 (Molecular Devices).

365 **Finite Element Modelling**

366 Finite element simulations were performed with COMSOL Multiphysics 5.6 (COMSOL
367 Inc.). Details for the boundary conditions and meshing are provided in Supporting
368 Information 1 and 2.

369 **FUNDING SOURCES**

370 F.M. and P.A. acknowledges funding from the European Union's Horizon 2020 research and
371 innovation program under the Marie Skłodowska-Curie MSCA-ITN grant agreement no.
372 812398, through the single entity nanoelectrochemistry, SENTINEL, project. D.S.
373 acknowledges funding from the University of Leeds. S.E.R. holds a Royal Society
374 Professorial Fellowship (RSRP\R1\211057). P.A and C.C. acknowledge funding from the
375 Engineering and Physical Science Research Council UK (EPSRC) Healthcare Technologies
376 for the grant EP/W004933/1. For the purpose of Open Access, the authors have applied a CC

377 BY public copyright license to any Author Accepted Manuscript version arising from this
378 submission.

379

380

381 **ACKNOWLEDGEMENTS**

382 We thank Prof Joshua B. Edel (Imperial College London) for generously providing the
383 MATLAB script used for event analysis in this study. We thank Prof Aleksei Aksimentiev
384 (University of Illinois, Urbana Champaign) for illuminating discussions. We thank Dr
385 Nataricha Phisarnchananan (University of Leeds) for performing the viscosity measurement
386 of the electrolyte.

387 **REFERENCES**

388 (1) Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A. P.; Edel, J. B. Solid-State
389 Nanopore Sensors. *Nat. Rev. Mater.* **2020**, *5* (12), 931–951.
390 <https://doi.org/10.1038/s41578-020-0229-6>.

391 (2) Hu, Z.-L.; Huo, M.-Z.; Ying, Y.-L.; Long, Y.-T. Biological Nanopore Approach for
392 Single-Molecule Protein Sequencing. *Angew. Chem.* **2021**, *133* (27), 14862–14873.
393 <https://doi.org/10.1002/ange.202013462>.

394 (3) Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K. F. Nanopore Sequencing Technology,
395 Bioinformatics and Applications. *Nat. Biotechnol.* **2021**, *39* (11), 1348–1365.
396 <https://doi.org/10.1038/s41587-021-01108-x>.

397 (4) Wang, V.; Ermann, N.; Keyser, U. F. Current Enhancement in Solid-State Nanopores
398 Depends on Three-Dimensional DNA Structure. *Nano Lett.* **2019**, *19* (8), 5661–5666.
399 <https://doi.org/10.1021/acs.nanolett.9b02219>.

400 (5) Zhang, Y.; Wu, G.; Si, W.; Ma, J.; Yuan, Z.; Xie, X.; Liu, L.; Sha, J.; Li, D.; Chen, Y.
401 Ionic Current Modulation from DNA Translocation through Nanopores under High Ionic
402 Strength and Concentration Gradients. *Nanoscale* **2017**, *9* (2), 930–939.
403 <https://doi.org/10.1039/C6NR08123A>.

404 (6) Houghtaling, J.; Ying, C.; Eggenberger, O. M.; Fennouri, A.; Nandivada, S.; Acharjee,
405 M.; Li, J.; Hall, A. R.; Mayer, M. Estimation of Shape, Volume, and Dipole Moment of
406 Individual Proteins Freely Transiting a Synthetic Nanopore. *ACS Nano* **2019**, *13* (5),
407 5231–5242. <https://doi.org/10.1021/acsnano.8b09555>.

408 (7) Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the Way to Single-Molecule Protein
409 Sequencing. *Nat. Nanotechnol.* **2018**, *13* (9), 786–796. <https://doi.org/10.1038/s41565-018-0236-6>.

411 (8) Thiruraman, J. P.; Masih Das, P.; Drndić, M. Stochastic Ionic Transport in Single Atomic
412 Zero-Dimensional Pores. *ACS Nano* **2020**, *14* (9), 11831–11845.
413 <https://doi.org/10.1021/acsnano.0c04716>.

414 (9) Fragasso, A.; Schmid, S.; Dekker, C. Comparing Current Noise in Biological and Solid-
415 State Nanopores. *ACS Nano* **2020**, *14* (2), 1338–1349.
416 <https://doi.org/10.1021/acsnano.9b09353>.

417 (10) Rosenstein, J. K.; Wanunu, M.; Merchant, C. A.; Drndic, M.; Shepard, K. L.
418 Integrated Nanopore Sensing Platform with Sub-Microsecond Temporal Resolution. *Nat.
419 Methods* **2012**, *9* (5), 487–492. <https://doi.org/10.1038/nmeth.1932>.

420 (11) Rabinowitz, J.; Edwards, M. A.; Whittier, E.; Jayant, K.; Shepard, K. L. Nanoscale
421 Fluid Vortices and Nonlinear Electroosmotic Flow Drive Ion Current Rectification in the
422 Presence of Concentration Gradients. *J. Phys. Chem. A* **2019**, *123* (38), 8285–8293.
423 <https://doi.org/10.1021/acs.jpca.9b04075>.

424 (12) Lan, W. J.; Edwards, M. A.; Luo, L.; Perera, R. T.; Wu, X.; Martin, C. R.; White, H.
425 S. Voltage-Rectified Current and Fluid Flow in Conical Nanopores. *Acc. Chem. Res.*
426 **2016**, *49* (11), 2605–2613. <https://doi.org/10.1021/acs.accounts.6b00395>.

427 (13) Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S. Effect of the Electric
428 Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. *J. Phys.
429 Chem. C* **2015**, *119* (43), 24299–24306. <https://doi.org/10.1021/acs.jpcc.5b08194>.

430 (14) Luo, L.; Holden, D. A.; Lan, W.-J.; White, H. S. Tunable Negative Differential
431 Electrolyte Resistance in a Conical Nanopore in Glass. *ACS Nano* **2012**, *6* (7), 6507–
432 6514. <https://doi.org/10.1021/nn3023409>.

433 (15) Lastra, L. S.; Bandara, Y. M. N. D. Y.; Nguyen, M.; Farajpour, N.; Freedman, K. J.
434 On the Origins of Conductive Pulse Sensing inside a Nanopore. *Nat. Commun.* **2022**, *13*
435 (1), 2186. <https://doi.org/10.1038/s41467-022-29758-8>.

436 (16) White, H. S.; Bund, A. Ion Current Rectification at Nanopores in Glass Membranes.
437 *Langmuir* **2008**, *24* (5), 2212–2218. <https://doi.org/10.1021/la702955k>.

438 (17) Wei, C.; Bard, A. J.; Feldberg, S. W. Current Rectification at Quartz Nanopipet
439 Electrodes. *Anal. Chem.* **1997**, *69* (22), 4627–4633. <https://doi.org/10.1021/ac970551g>.

440 (18) Chau, C. C.; Radford, S. E.; Hewitt, E. W.; Actis, P. Macromolecular Crowding
441 Enhances the Detection of DNA and Proteins by a Solid-State Nanopore. *Nano Lett.*
442 **2020**, *20* (7), 5553–5561. <https://doi.org/10.1021/acs.nanolett.0c02246>.

443 (19) Zhang, Z.; Ohl, M.; Diallo, S. O.; Jalarvo, N. H.; Hong, K.; Han, Y.; Smith, G. S.; Do,
444 C. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.
445 *Phys. Rev. Lett.* **2015**, *115* (19), 198301.
446 <https://doi.org/10.1103/PhysRevLett.115.198301>.

447 (20) Ren, C.; Tian, W.; Szleifer, I.; Ma, Y. Specific Salt Effects on Poly(Ethylene Oxide)
448 Electrolyte Solutions. *Macromolecules* **2011**, *44* (6), 1719–1727.
449 <https://doi.org/10.1021/ma1027752>.

450 (21) Poudel, L.; Podgornik, R.; Ching, W.-Y. The Hydration Effect and Selectivity of
451 Alkali Metal Ions on Poly(Ethylene Glycol) Models in Cyclic and Linear Topology. *J.
452 Phys. Chem. A* **2017**, *121* (24), 4721–4731. <https://doi.org/10.1021/acs.jpca.7b04061>.

453 (22) Tao, Z.; Cummings, P. T. Molecular Dynamics Simulation of Inorganic Ions in PEO
454 Aqueous Solution. *Mol. Simul.* **2007**, *33* (15), 1255–1260.
455 <https://doi.org/10.1080/08927020701697691>.

456 (23) Giesecke, M.; Hallberg, F.; Fang, Y.; Stilbs, P.; Furó, I. Binding of Monovalent and
457 Multivalent Metal Cations to Polyethylene Oxide in Methanol Probed by Electrophoretic
458 and Diffusion NMR. *J. Phys. Chem. B* **2016**, *120* (39), 10358–10366.
459 <https://doi.org/10.1021/acs.jpcb.6b08923>.

460 (24) Siwy, Z. S. Ion-Current Rectification in Nanopores and Nanotubes with Broken
461 Symmetry. *Adv. Funct. Mater.* **2006**, *16* (6), 735–746.
462 <https://doi.org/10.1002/adfm.200500471>.

463 (25) Momotenko, D.; Cortés-Salazar, F.; Josserand, J.; Liu, S.; Shao, Y.; Girault, H. H. Ion
464 Current Rectification and Rectification Inversion in Conical Nanopores: A Perm-
465 Selective View. *Phys. Chem. Chem. Phys.* **2011**, *13* (12), 5430–5440.
466 <https://doi.org/10.1039/C0CP02595J>.

467 (26) Wen, C.; Zeng, S.; Li, S.; Zhang, Z.; Zhang, S.-L. On Rectification of Ionic Current in
468 Nanopores. *Anal. Chem.* **2019**, *91* (22), 14597–14604.
469 <https://doi.org/10.1021/acs.analchem.9b03685>.

470 (27) Ivanov, A. P.; Actis, P.; Jönsson, P.; Klenerman, D.; Korchev, Y.; Edel, J. B. On-
471 Demand Delivery of Single DNA Molecules Using Nanopipets. *ACS Nano* **2015**, *9* (4),
472 3587–3595. <https://doi.org/10.1021/acsnano.5b00911>.

473 (28) Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F. Voltage-Driven Transport of Ions
474 and DNA through Nanocapillaries. *ELECTROPHORESIS* **2012**, *33* (23), 3480–3487.
475 <https://doi.org/10.1002/elps.201100663>.

476 (29) Reiner, J. E.; Kasianowicz, J. J.; Nablo, B. J.; Robertson, J. W. F. Theory for Polymer
477 Analysis Using Nanopore-Based Single-Molecule Mass Spectrometry. *Proc. Natl. Acad.*
478 *Sci.* **2010**, *107* (27), 12080–12085. <https://doi.org/10.1073/pnas.1002194107>.

479 (30) Chau, C. C.; Marcuccio, F.; Soulias, D.; Edwards, M. A.; Radford, S. E.; Hewitt, E.
480 W.; Actis, P. Cooperative Electrolyte-PEG Interactions Drive the Signal Amplification in
481 a Solid-State Nanopore. *bioRxiv* November 3, 2021, p 2021.11.01.466478.
482 <https://doi.org/10.1101/2021.11.01.466478>.

483 (31) Karnik, R.; Duan, C.; Castelino, K.; Daiguji, H.; Majumdar, A. Rectification of Ionic
484 Current in a Nanofluidic Diode. *Nano Lett.* **2007**, *7* (3), 547–551.
485 <https://doi.org/10.1021/nl062806o>.

486 (32) Vlassiouk, I.; Smimov, S.; Siwy, Z. Nanofluidic Ionic Diodes. Comparison of
487 Analytical and Numerical Solutions. *ACS Nano* **2008**, *2* (8), 1589–1602.
488 <https://doi.org/10.1021/nn800306u>.

489 (33) Vilozny, B.; L. Wollenberg, A.; Actis, P.; Hwang, D.; Singaram, B.; Pourmand, N.
490 Carbohydrate -Actuated Nanofluidic Diode: Switchable Current Rectification in a
491 Nanopipette. *Nanoscale* **2013**, *5* (19), 9214–9221. <https://doi.org/10.1039/C3NR02105J>.

492 (34) Plett, T. S.; Cai, W.; Le Thai, M.; Vlassiouk, I. V.; Penner, R. M.; Siwy, Z. S. Solid-
493 State Ionic Diodes Demonstrated in Conical Nanopores. *J. Phys. Chem. C* **2017**, *121*
494 (11), 6170–6176. <https://doi.org/10.1021/acs.jpcc.7b00258>.

495 (35) Ma, L.; Li, Z.; Yuan, Z.; Huang, C.; Siwy, Z. S.; Qiu, Y. Modulation of Ionic Current
496 Rectification in Ultrashort Conical Nanopores. *Anal. Chem.* **2020**, *92* (24), 16188–16196.
497 <https://doi.org/10.1021/acs.analchem.0c03989>.

498 (36) Scott, E. R.; White, H. S.; Phipps, J. Bradley. Iontophoretic Transport through Porous
499 Membranes Using Scanning Electrochemical Microscopy: Application to in Vitro Studies
500 of Ion Fluxes through Skin. *Anal. Chem.* **1993**, *65* (11), 1537–1545.
501 <https://doi.org/10.1021/ac00059a010>.

502 (37) Morgan, H.; Green, N. G. *AC Electrokinetics: Colloids and Nanoparticles*; Research
503 Studies Press, 2003.

504