

1 **PHFinder: Assisted detection of point heteroplasmy in Sanger sequencing**
2 **chromatograms.**

3 Marcos Suarez-Menendez¹, Vania Rivera-Leon¹, Jooke Robbins², Martine Bérubé^{1,2} & Per J.

4 Palsbøll^{1,2}

5 1. Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen,
6 Nijenborgh 7, 9747 AG, Groningen, The Netherlands.

7 2. Center for Coastal Studies, 5 Holway Avenue, Provincetown, Massachusetts, 02657, United States of America.

8

9 **Corresponding authors:**

10 **Marcos Suárez Menéndez**

11 Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen,
12 Nijenborgh 7, 9747 AG, Groningen, The Netherlands.

13 Email: m.suarez.menendez@rug.nl

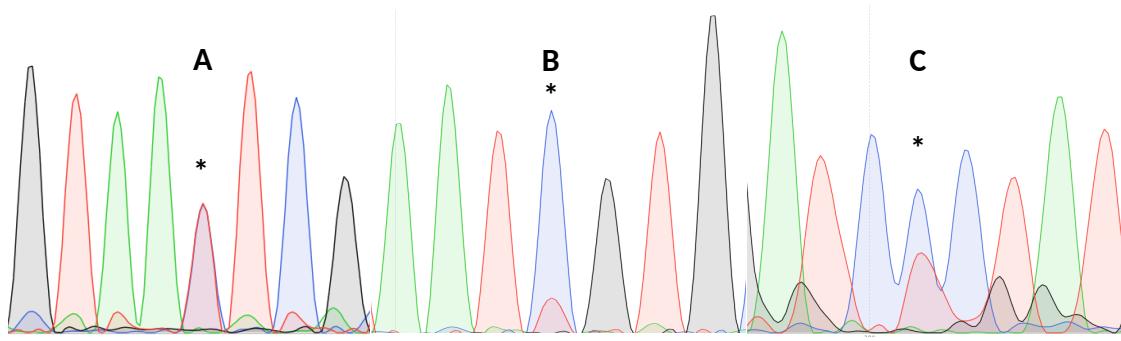
14 Abstract

15 1. Heteroplasmy is the presence of two or more organellar genomes (mitochondrial or plastid DNA)
16 in an organism, tissue, cell or organelle. Heteroplasmy can be detected by visual inspection of
17 Sanger sequencing chromatograms, where it appears as multiple peaks of fluorescence at a single
18 nucleotide position. Visual inspection of chromatograms is both consuming and highly subjective,
19 as heteroplasmy is difficult to differentiate from background noise. Few software solutions are
20 available to automate the detection of point heteroplasmies, and those that are available are
21 typically proprietary, lack customization or are unsuitable for automated heteroplasmy assessment
22 in large datasets.

23 2. Here, we present PHFinder, a Python-based, open source tool to assist in the detection of point
24 heteroplasmies in large numbers of Sanger chromatograms. PHFinder automatically identifies point
25 heteroplasmies directly from the chromatogram trace data. The program was tested with Sanger
26 sequencing data from 100 humpback whale (*Megaptera novaeangliae*) tissue samples with known
27 heteroplasmies.

28 3. PHFinder detected most (90%) of the known heteroplasmies thereby greatly reducing the amount
29 of visual inspection required. PHFinder is flexible, enabling explicit specification of key parameters
30 to infer double peaks (i.e., heteroplasmies).

31


32 Keywords: AB1, chromatograms, detection, heteroplasmy, Sanger, software,.

33 **Introduction**

34 Heteroplasmy is the presence of multiple organellar (mitochondrial or plastid) genomes in an
35 organism, tissue or cell. Despite advances in so-called next-generation sequencing, Sanger
36 sequencing (Sanger et al., 1977) is still widely employed in studies targeting specific highly-
37 variable organellar DNA regions, such as the mitochondrial control region. The DNA sequence is
38 inferred from the resulting chromatogram, where the base at each nucleotide position is represented
39 by a fluorescent signal of base-specific colour (each representing a different deoxynucleotides).
40 Heteroplasmy, due to point mutations, is apparent as two fluorescent peaks in the same nucleotide
41 position. All other factors being equal, the relative height of each fluorescent peak reflects the
42 relative abundance of each deoxynucleotide, and, by extension, the two mtDNA haplotypes (Irwin
43 et al., 2009). Heteroplasmy due to insertions or deletions results in multiple fluorescent peaks at
44 multiple, consecutive nucleotide positions (length heteroplasmy).

45 Detecting heteroplasmy is necessary when studying certain mitochondrial diseases (Stewart &
46 Chinnery, 2015), conducting forensic work (Salsa et al., 2001) or estimating mitochondrial mutation
47 rates (Millar et al., 2008). Failing to take heteroplasmy into consideration can also cause difficulty
48 in other studies. For example, in relatedness studies, maternal relatives might appear to have
49 different mitochondrial haplotypes due to a shift in heteroplasmic proportions (Klütsch et al., 2011).
50 Visual inspection of all chromatograms for detection of putative double fluorescent peaks is
51 impractical in large datasets, and is prone to inconsistencies given the subjective nature of the
52 assessment (Fig. 1).

53 **Figure 1.** Three examples of point heteroplasmy.

54 Notes: *Putative heteroplasmies. ^ACompletely overlapping fluorescent peaks (likely heteroplasm).

55 ^BSignificantly lower secondary fluorescent peak (likely background noise). ^CHeteroplasm with background
56 noise, making it more difficult to detect.

57 Previous studies have applied different criteria to infer heteroplasmies from the ratio of the two
58 fluorescent peaks in a putative heteroplasmic nucleotide position (e.g., > 10%, Brandstätter et al.,
59 2004; Irwin et al., 2009, or > 30%, Baker et al., 2013) or failed to make any objective specification
60 (e.g., Vollmer et al., 2011).

61 Existing software can facilitate the automatic detection of double fluorescent peaks in
62 chromatograms. These are either proprietary (e.g., SEQUENCER, GeneCodes Inc., Ann Arbor,
63 MI) or lack customization and tend to disregard some double fluorescent peaks as background
64 noise, or are unable to process large datasets (e.g., SNAPGENE® VIEWER v4.3.7, GSL Biotech
65 LLC). We developed a bioinformatic pipeline (point heteroplasm finder, PHFinder) as a means to
66 screen DNA chromatograms in the commonly employed AB1 format (Applied Biosystems Inc.
67 2006); generated by DNA sequencers, such as the Applied BiosystemsTM Genetic Analyzer series
68 (Thermos Scientific Inc.) to detect the double fluorescent peaks in an automated manner. PHFinder
69 facilitates the detection of point heteroplasmies by applying filters using average base call quality
70 scores and the level of background noise in a user-specified target region of the relevant DNA
71 sequence.

72

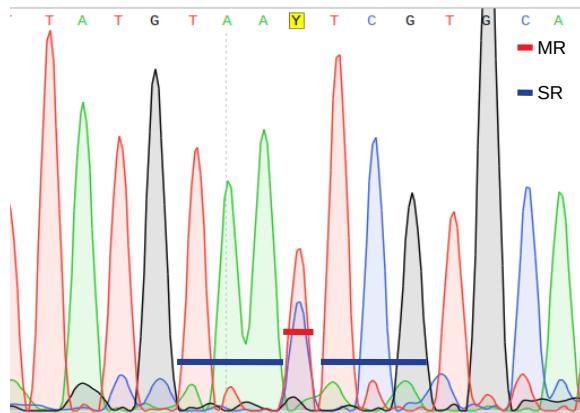
73 **Implementation**

74 PHFinder was written in Python v3.6.8 (Van Rossum & Drake Jr, 1995) and BASH (Ramey & Fox,
75 2016). PHFinder dependencies include; Biopython v1.73 (Cock et al., 2009) and BOWTIE2
76 (Langmead & Salzberg, 2012).

77 First, a FASTQ file (sequence of nucleotides and the associated Phred quality scores (Ewing et al.,
78 1998)) is extracted from each AB1 file. FASTQ files are aligned against a reference sequence with
79 BOWTIE2 (Langmead & Salzberg, 2012) and the result is saved in a single Sequence Alignment
80 Map (SAM) format file per alignment. The orientation of the chromatogram (forward or reverse)
81 and starting point of the reference sequence is subsequently extracted from each SAM file in order
82 to position the trace information to the correct region in each chromatogram.

83 The data elements stored with AB1 files are associated with specific tags. PHFinder uses the
84 information contained in the AB1 tags; DATA9 to DATA12 (trace information for guanine, adenine,
85 thymine and cytosine); PBAS2 (the sequence of base calls); PLOC2 (location of base calls) and
86 PCON2 (per-base call quality score) as specified in the original file fomat (Applied Biosystems Inc.
87 2006).

88 The presence of a double fluorescent peak (i.e., a potential heteroplasmy) was inferred from the
89 values of three *ad hoc* indexes calculated from the above data:


90 I. Average base call quality (AQ) of the bases in the targeted DNA sequence region (measured
91 as Phred quality scores, ranging from 0 to 93).

92 II. Main ratio (MR) of a double fluorescent peak, i.e., the height of the second highest peak as a
93 fraction of the highest peak (Fig.2).

94 III. Secondary ratios (SR) of the three down- and upstream nucleotide positions flanking the
95 putative heteroplasmic position; estimated as the height of the second highest peak as a
96 fraction of the highest peak (Fig. 2).

97 A position is inferred to be heteroplasmic by PHFinder if the three indexes described above exceeds
98 user determined threshold values (Fig. 2).

99 **Figure 2.** Main ratio (MR) and secondary ratio (SR) indexes.

100 **Material and methods**

101 A test set of mitochondrial control region DNA sequences were extracted from 100 skin samples
102 collected from a long-term study of individual humpback whales (*Megaptera novaeangliae*) in the
103 Gulf of Maine (North Atlantic). DNA sequence data were randomly selected from 30 samples with
104 known heteroplasmies as well as from 70 samples that appeared homoplasmic. Heteroplasmies
105 were identified based on comparison to samples from close maternal relatives (known through
106 longitudinal studies of individuals or microsatellite markers) or experimental confirmation using the
107 dCAPS technique (Neff et al., 1998) (data not shown).

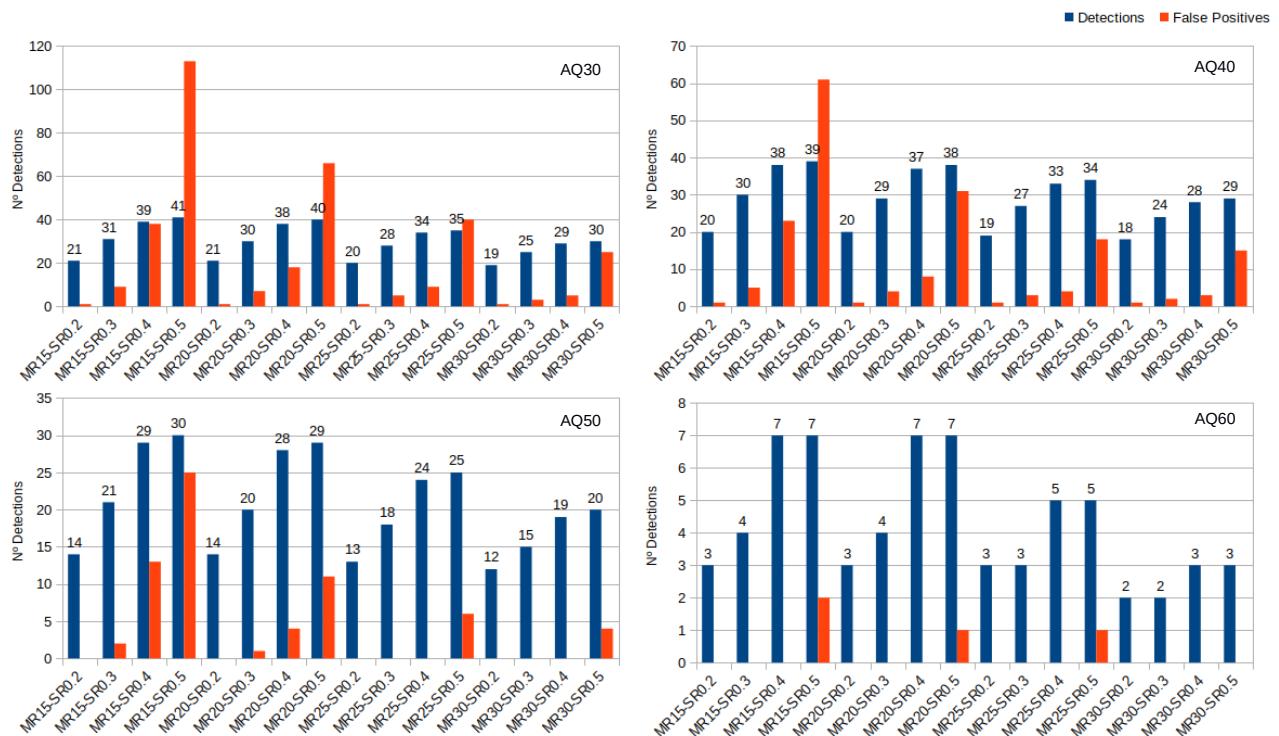
108 The presence of heteroplasmy in a sample was assumed to be true if either one of two conditions
109 was met; if another directly related whale, i.e., mother or sibling, (confirmed by long-term
110 population studies and microsatellite markers) was heteroplasmic in that nucleotide position, or if
111 the heteroplasmy was subsequently experimentally confirmed using the dCAPS technique (Neff et
112 al., 1998) (data not shown).

113 Skin samples were collected by biopsy techniques (Palsbøll et al., 1991) and stored in 5 M NaCl
114 with 25% DMSO (dimethyl sulfoxide, Amos & Hoelzel, 1991) at -20/-80 degrees Celsius (°C) prior

115 to DNA extraction. Total-cell DNA was extracted by standard phenol/chloroform extractions as
116 described by Russel and Sambrook (2001) or using QIAGEN DNEasyTM Blood and Tissue Kit
117 (QIAGEN Inc.) following the manufacturer's instructions. Extracted DNA was stored in 1xTE
118 buffer (10 mM Tris–HCl, 1mM EDTA, pH 8.0) at -20°C.

119 The sequence of the first 500 base pairs (bps) of the 5' end of the mitochondrial control region was
120 determined as described previously by Palsbøll et al. (1995) using the oligo-nucleotide primers
121 BP16071R (Drouot et al., 2004) and MT4F (Arnason et al., 1993). Unincorporated nucleotides and
122 primers were removed from the Polymerase Chain Reactions (PCR, Mullis & Faloona, 1987) with
123 Shrimp Alkaline Phosphatase and Exonuclease I, as described by Werle et al. (1994). Subsequent
124 cycle sequencing conducted with the above-mentioned nucleotide primers and the BigDye®
125 Terminator v3.1 Cycle Sequencing kit (Applied BiosystemsTM Inc.) following the manufacturer's
126 protocol. The cycle sequencing products were precipitated with by ethanol and sodium (Russel and
127 Sambrook, 2001). The order of sequencing fragments was resolved by electrophoresis on an ABI
128 3730 DNA AnalyzerTM or and ABI PRISM® 377 DNA Sequencer (Applied Biosystems Inc.).

129 All chromatograms were visually inspected for point heteroplasmies using SNAPGENE® VIEWER
130 (v4.3.7, GSL Biotech LLC). PHFinder was tested and validated (on GNU/Linux systems) by
131 analysing the dataset with different threshold values for each index (MR: 15, 25, 35, 45; SR: 0.2,
132 0.3, 0.4, 0.5; and AQ: 30, 40, 50, 60) resulting in 64 different combinations of index threshold
133 values. The results of each index threshold combination were visualized to assess which
134 combination was most efficient in detecting the known heteroplasmies; specifically, the number of
135 detected heteroplasmic AB1 files versus the number of false positives (nucleotide positions that
136 were incorrectly deemed as heteroplasmic).


137 **Results**

138 The data from the 100 samples comprised 189 AB1 files (tissue samples were sequenced between 1
139 -6 times). The first 500 bps of the mitochondrial control region of *M. novaeangliae*, started at

140 position 15,490 and end at position 15,970 according to the reference mitochondrial genome
141 sequence NC_006927.1 (NCBI Reference Sequence) published by Sasaki et al. (2005), which was
142 also used as reference for the alignment. The analyses conducted here targeted the region from
143 position 15,540 to position 15,815 (275 bps).

144 Among of the 188 AB1 files, PHFinder was unable to process five and another 19 files contained no
145 data. Among the 30 samples (42 AB1 files) with known heteroplasmies included a point
146 heteroplasmy at seven different nucleotide positions with MRs ranging from 18 to 88 (Table S1).
147 Fig. 3 shows the fraction of these known heteroplasmies detected by PHFinder for each
148 combination of index threshold values as well as the number of false positives.

149 **Figure 3.** Number of detected heteroplasmic AB1 files vs. false positives for each combination of
150 index threshold values divided according to AQ indexes.

152 The number of samples and AB1 files included in each analysis varied with the AQ index: AQ 30,
153 100 samples and 143 AB1 files. AQ 40, 88 samples and 115 AB1 files. AQ50, 68 samples and 79
154 AB1 files. AQ60, 37 samples and 15 AB1 files. Detailed results for each combination of index
155 threshold values are shown in Table S2.

156 **Discussion**

157 PHFinder was developed to assist the detection of point heteroplasmies in large data sets. The
158 program automates a first pass of the data, reducing the number of AB1 files that need to be visually
159 inspected. Although PHFinder detected most of the point heteroplasmies present in the dataset
160 (95.3%), the present analysis revealed some limitations.

161 The samples were randomly extracted from a large dataset in order to include a wide range of DNA
162 and DNA sequences in terms of overall DNA sequence quality, length, DNA strand sequenced, as
163 well as corrupted or older AB1 files and different MR values in order to test PHFinder under
164 realistic conditions. The samples were represented by different numbers of AB1 files as some
165 samples were re-sequenced several times (i.e. because of bad quality or to sequence both DNA
166 strands). Among the 100 samples, 30 samples contained a known heteroplasmic nucleotide position
167 to ensure sufficient data for testing PHFinder.

168 PHFinder was unable to process five AB1 files due to Biopython's v1.73 (Cock et al., 2009)
169 inability to access AB1 files generated by older DNA sequencers (ABI PRISM® 377 DNA
170 Sequencer in this instance). Potential compatibility issues could be due to differences in the tags in
171 AB1 files, and hence resolved by modifying the tag names in the PHFinder main script.

172 The PHFinder assessment targeted the region from position 15,540 to position 15,815 (275 bps) in
173 order to avoid regions of chromatograms with elevated background noise (i.e., the 5' and 3' end).
174 This strategy reduced the proportion of false positives of heteroplasmies and increased the average
175 quality of chromatograms.

176 Unsurprisingly, the main limiting factor was the average base call quality of the AB1 files. Low
177 average base call quality is mainly due to elevated background noise which, in turn, may be
178 erroneously inferred as putative heteroplasmies. These kinds of false positives were easily
179 recognised as artefacts during subsequent visual inspection of the chromatograms. Since all putative
180 heteroplasmies highlighted by PHFinder should be visually confirmed, the most efficient approach
181 is to employ a combination of index threshold values that yields the highest number of
182 heteroplasmies and lowest number of false positives (in this case; MR: 20, SR: 0.4 and AQ: 40, Fig.
183 3). In this study the aforementioned combination of index threshold values identified 27 (out of 30
184 known heteroplasmies in 37 AB1 files) and only eight false positives.

185 Employing low AQ index threshold values increased the number of AB1 files (and the
186 corresponding samples) in an assessment, without a similar increase in heteroplasmy detection, i.e.,
187 the overall frequency of heteroplasmy detections was reduced (e.g., Fig. 3, AQ30 vs AQ40). We
188 observed a clear trade-off between the detected heteroplasmies and the number of false positives.
189 Low PHFinder index threshold values (i.e., low MR, SR, and AQ) improved the identification of
190 heteroplasmies but also the number of false positives. Since all samples with putative
191 heteroplasmies require visual inspection, lowering the threshold index values led to increasing
192 amounts of visual inspection. Applying higher index threshold values (i.e., a high MR, SR and AQ)
193 had the opposite effect, i.e., fewer false positives and less visual inspection accompanied with a
194 lower detection rate of heteroplasmies.

195 Heteroplasmies with a MR as low as 15% could be potentially detected, based on the detection limit
196 of Sanger sequencing (Tsiatis et al., 2010). Although the lowest MR in this study was inferred at
197 18%, (Table S1), the lowest MR index threshold applied was 15% in order to assess the effect on
198 the rate of false positives.

199 The optimal index threshold value combination will likely depend upon the aim of a study and the
200 overall quality of the DNA sequence chromatograms. If the goal is to compare heteroplasmy

201 frequencies, then a fairly strict index threshold value combination can be employed to reduce the
202 number of false positives. In more detailed assessments that are aimed at identifying as many
203 heteroplasmies as possible (e.g., to detect, novel deleterious mutations), a lower index threshold
204 value combination will facilitate a higher heteroplasmy detection rate, but require elevated levels of
205 post-analysis visual inspection. If the targets are specific known heteroplasmies (i.e., in a known
206 nucleotide position), a lowered index threshold value combination can be employed as only putative
207 heteroplasmies in the targeted positions would require post-analysis visual inspection.

208 The main advantage of PHFinder is the ability to customize assessments on a case-by-case basis.
209 Written in Python, the source code can easily be changed and improved to fit specific research
210 needs. PHFinder provides the ability to implement and apply explicit assessment criteria (in terms
211 of base quality and fluorescent peak ratios), thereby facilitating direct objective comparisons among
212 different data sets. Although a final visual inspection of chromatograms with putative heteroplasmic
213 sites will always be required, PHFinder greatly reduces the number of chromatograms requiring
214 visual inspection which is especially valuable in large datasets.

215 **Author contributions**

216 The research project was conceived and designed by M.S., V.R., M.B. and P.J.P. M.S. performed the
217 data analyses, developed the software and wrote the manuscript with V. R., M.B. and P.J.P. Tissue
218 samples and pedigree data were provided by J.R. The laboratory work was performed by M.B. All
219 authors reviewed and partook in manuscript revisions. The authors have no competing interests.

220 **Data accessibility**

221 PHFinder scripts and all data used in this paper are available online from
222 <https://github.com/MSuarezMenendez/PHFinder>, as well as instructions of how to use PHFinder on
223 the command line.

224 References

225 Amos, B., & Hoelzel, A. . (1991). Long-term skin preservation of whale skin for DNA analysis.
226 *Rep Int Whaling Comm Spec. Issue*, 13, 99–103.

227 Applied Biosystems *Genetic Analysis Data File Format SUBJECT: ABIF File Format Specification*
228 and *Sample File Schema*. (2006). Retrieved from
229 https://projects.nfstc.org/workshops/resources/articles/ABIF_File_Format.pdf

230 Arnason, U., Gullberg, A., & Widegren, B. (1993). Cetacean mitochondrial DNA control region:
231 sequences of all extant baleen whales and two sperm whale species. *Molecular Biology and*
232 *Evolution*, 10(5), 960–970. <https://doi.org/10.1093/oxfordjournals.molbev.a040061>

233 Baker, S. ., Steel, D., Calambokidis, J., Falcone, E., González-Peral, U., Barlow, J., ... Yamaguchi,
234 M. (2013). Strong maternal fidelity and natal philopatry shape genetic structure in North
235 Pacific humpback whales. *Marine Ecology Progress Series*, 494, 291–306.
236 <https://doi.org/10.3354/meps10508>

237 Brandstätter, A., Niederstätter, H., & Parson, W. (2004). Monitoring the inheritance of heteroplasmy
238 by computer-assisted detection of mixed basecalls in the entire human mitochondrial DNA
239 control region. *International Journal of Legal Medicine*, 118(1), 47–54.
240 <https://doi.org/10.1007/s00414-003-0418-z>

241 Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., ... de Hoon, M. J. L.
242 (2009). Biopython: freely available Python tools for computational molecular biology and
243 bioinformatics. *Bioinformatics*, 25(11), 1422–1423.
244 <https://doi.org/10.1093/bioinformatics/btp163>

245 Drouot, V., Bérubé, M., Gannier, A., Goold, J. C., Reid, R. J., & Palsbøll, P. J. (2004). A note on
246 genetic isolation of Mediterranean sperm whales (*Physeter macrocephalus*) suggested by
247 mitochondrial DNA. *Journal of Cetacean Research and Management*, 6(1), 29–32.

248 Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of automated sequencer
249 traces usingPhred. I. Accuracy assessment. *Genome research*, 8(3), 175-185.
250 <https://doi.org/10.1101%2Fgr.8.3.175>

251 Irwin, J. A., Saunier, J. L., Niederstätter, H., Strouss, K. M., Sturk, K. A., Diegoli, T. M., ...
252 Parsons, T. J. (2009). Investigation of Heteroplasmy in the Human Mitochondrial DNA
253 Control Region: A Synthesis of Observations from More Than 5000 Global Population
254 Samples. *Journal of Molecular Evolution*, 68(5), 516–527. <https://doi.org/10.1007/s00239-009-9227-4>

255 Klütsch, C. F. C., Seppälä, E. H., Uhlén, M., Lohi, H., & Savolainen, P. (2011). Segregation of point
256 mutation heteroplasmy in the control region of dog mtDNA studied systematically in deep
257 generation pedigrees. *International Journal of Legal Medicine*, 125(4), 527–535.
258 <https://doi.org/10.1007/s00414-010-0524-7>

259 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9(4), 357–359. <https://doi.org/10.1038/nmeth.1923>

260 Millar, C. D., Dodd, A., Anderson, J., Gibb, G. C., Ritchie, P. A., Baroni, C., ... Lambert, D. M.
261 (2008). Mutation and evolutionary rates in adélie penguins from the antarctic. *PLoS Genetics*,
262 4(10). <https://doi.org/10.1371/journal.pgen.1000209>

263 Mullis, K. B., & Faloona, F. A. (1987). [21] Specific synthesis of DNA in vitro via a polymerase-
264 catalyzed chain reaction. *Methods in Enzymology*, 155, 335–350. [https://doi.org/10.1016/0076-6879\(87\)55023-6](https://doi.org/10.1016/0076-6879(87)55023-6)

265 Neff, M., Neff, J., Chory, J., & Pepper, A. (1998). dCAPS, a simple technique for the genetic
266 analysis of single nucleotide polymorphisms: experimental applications in *Arabidopsis thaliana*
267 genetics. In *The Plant Journal* (Vol. 14). <https://doi.org/https://doi.org/10.1046/j.1365-313X.1998.00124.x>

272 Palsbøll, P. J., Clapham, P. J., Mattila, D. K., Larsen, F., Sears, R., Siegismund, H. R., ... Arctander,
273 P. (1995). Distribution of mtDNA haplotypes in North Atlantic humpback whales: the
274 influence of behaviour on population structure. *Marine Ecology Progress Series*, 116, 1–10.
275 <https://doi.org/10.2307/44634989>

276 Palsbøll, P. J., Larsen, F., & Hansen, E. S. (1991). Sampling of skin biopsies from free-ranging large
277 cetaceans at West Greenland: development of new designs. *IWC Workshop Paper*, (13), 1–8.

278 Ramey, C., & Fox, B. (2016). Reference Manual: Reference Documentation for Bash Edition 4.4.
279 *Free Software Foundation*.

280 Russel, D. W., & Sambrook, J. (2001). *Molecular cloning: a laboratory manual*. Cold Spring
281 Harbor, NY: Cold Spring Harbor Laboratory.

282 Salas, A., Lareu, M. V., & Carracedo, A. (2001). Heteroplasmy in mtDNA and the weight of
283 evidence in forensic mtDNA analysis: A case report. *International Journal of Legal Medicine*,
284 114(3), 186–190. <https://doi.org/10.1007/s004140000164>

285 Sanger, F., Nicklen, S., & Coulson, A. R. (1977). *DNA sequencing with chain-terminating
286 inhibitors*. 74(12), 5463–5467. <https://doi.org/https://doi.org/10.1073/pnas.74.12.5463>

287 Sasaki, T., Nikaido, M., Hamilton, H., Goto, M., Kato, H., Kanda, N., ... Okada, N. (2005).
288 Mitochondrial Phylogenetics and Evolution of Mysticete Whales. *Systematic Biology*, 54(1),
289 77–90. <https://doi.org/10.1080/10635150590905939>

290 Stewart, J. B., & Chinnery, P. F. (2015). The dynamics of mitochondrial DNA heteroplasmy:
291 implications for human health and disease. *Nature Reviews Genetics*, 16(9), 530–542.
292 <https://doi.org/10.1038/nrg3966>

293 Tsiatis, A. C., Norris-Kirby, A., Rich, R. G., Hafez, M. J., Gocke, C. D., Eshleman, J. R., & Murphy,
294 K. M. (2010). Comparison of Sanger Sequencing, Pyrosequencing, and Melting Curve
295 Analysis for the Detection of KRAS Mutations: Diagnostic and Clinical Implications. *The*

296 *Journal of Molecular Diagnostics*, 12(4), 425–432.

297 <https://doi.org/10.2353/JMOLDX.2010.090188>

298 Van Rossum, G., & Drake Jr, F. L. (1995). *Python reference manual*. Amsterdam: Centrum voor
299 Wiskunde en Informatica.

300 Werle, E., Schneider, C., Renner, M., Völker, M., & Fiehn, W. (1994). Convenient single-step, one
301 tube purification of PCR products for direct sequencing. *Nucleic Acids Research*, 22(20), 4354–
302 4355. <https://doi.org/https://doi.org/10.1093/nar/22.20.4354>

303

304

305

306

307

308

309