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ABSTRACT16

The increasing knowledge of microbial ecology in food products relating to quality17

and safety and the established usefulness ofmachine learning algorithms for anomaly18

detection in multiple scenarios suggests that the application of microbiome data in19

food production systems for anomaly detection could be a valuable approach to be20

used in food systems. These methods could be used to identify ingredients that devi-21

ate from their typical microbial composition, which could indicate food fraud or safety22

issues. The objective of this study was to assess the feasibility of using shotgun se-23

quencing data as input into anomaly detection algorithms using fluid milk as a model24

system. Contrastive PCA, cluster-based methods, and explainable AI were evaluated25

for the detection of two anomalous sample classes using longitudinal metagenomic26

profiling of fluid milk compared to baseline samples collected under comparable cir-27

cumstances. Traditionalmethods (alpha andbetadiversity, clustering-based contrastive28

PCA, MDS, and dendrograms) failed to differentiate anomalous sample classes; how-29

ever, explainable AI was able to classify anomalous vs. baseline samples and indicate30

microbial drivers in association with antibiotic use. We validated the potential for ex-31

plainable AI to classify different milk sources using larger publicly available fluid milk32

16s rDNA sequencing datasets and demonstrated that explainable AI is able to dif-33

ferentiate between milk storage methods, processing stage, and season. Our results34

indicate the application of artificial intelligence continues to hold promise in the realm35

of microbiome data analysis and could present further opportunities for downstream36

analytic automation to aid in food safety and quality.37

IMPORTANCE We evaluated the feasibility of using untargeted metagenomic se-38

quencing of raw milk for detecting anomalous food ingredient content with artificial39

intelligence methods in a study specifically designed to test this hypothesis. We also40

show through analysis of publicly available fluid milk microbial data that our artificial41

intelligence approach is able to successfully predict milk in different stages of process-42
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ing. The approach could potentially be applied in the food industry for safety and43

quality control.44

KEYWORDS: Metagenome, Microbiome, Food, Milk, Anomaly Detection, Machine45

Learning, Explainable Artificial Intelligence46

INTRODUCTION47

Issues in food quality and safety can have rippling effects through the supply chain,48

causing substantial health and economic damage. With this, there is substantial in-49

terest in applying targeted and untargeted methods to identify ingredients or food50

products that show an increased risk of food fraud, food quality, and food safety is-51

sues (1, 2, 3). While targeted methods, such as the detection of toxins, pathogens, or52

inappropriate ingredients (e.g., horse meat in a product labeled as beef) (3), play an53

important role in assuring food safety and quality and preventing food fraud, they,54

by definition, have a set of pre-defined targets, even if (extreme) multiplexing is ap-55

plied. By contrast, untargetedmethods characterize allmolecules that can bedetected56

by specific method (e.g., chemical spectra, DNA sequences) to identify ingredients or57

products that deviate from a "baseline state" (that would be considered normal or58

under control) and hence would be labeled as "anomalous". Importantly, these untar-59

geted methods are screening methods that do not define an ingredient or product as60

unsafe or adulterated, rather they suggest an aberration from the normal state that61

should trigger follow-up actions or investigations (e.g., targeted tests, inspection of62

the source facility, etc.) to identify whether there are justified concerns or whether63

the "abnormality" detected represents natural variation that was not covered in the64

baseline state. While these methods can be extremely powerful to detect potential65

issues, they require sophisticated data analysis approaches to characterize baseline66

conditions and to allow for anomaly detection. In this work, bovine raw milk was se-67

lected as a model ingredient to develop improved statistical methods that can use68

shotgun metagenomics data as a screen to identify raw milk that shows evidence of69

product anomalies and deviations from baseline conditions. Milk was selected as a70

model as it is the sole ingredient used for the production of fluid milk— a high-volume71

food with considerable concern for fraud, particularly in developing countries (4). Be-72

yond this, milk is used as an ingredient to make a variety of products and other foods,73

with raw milk quality having considerable impacts on finished product quality, safety,74

and production efficiency. Other studies have aimed to characterize the microbiome75

of food ingredients in production settings, for example, in high protein powders (5, 6),76

produce (7, 8), and fermented foods (9, 10, 11, 12). These studies are useful in demon-77

strating the potential that metagenomics and metatranscriptomics have in advancing78

food safety and quality for targeted assessments aswell as for improving sensitivity for79

regular surveillance. Metagenomic and metatranscriptomic studies have been able to80

describe the microbial components of food samples with observable shifts that can81

be related back to key attributes of metadata, e.g., ingredient contamination (5). How-82

ever, it should be noted that when studies rely on amplicon sequencing (often due83

to cost and resource limitations), there can be important reductions in sensitivity and84

taxonomic resolution (13).85

The food supply chain is highly complex, with a multitude of touch points (e.g.86

farmers, suppliers, transportation, storage, etc.) existing prior to reaching a finished87

product, where issues occurring at each step have the potential to cause quality and88

safety issues. Therefore, while these early studies have set a foundation for the use of89
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the microbiome in food production, the expansion of these analyses and applications90

into additional food ingredients and for different supply chain challenges will only con-91

tinue to refine and increase the robustness of analysis similar to how much work has92

been done to build microbiome standards across human-associated (14, 15, 16, 17)93

and environmental niches (18).94

Our objective was to expand on the growing evidence that themicrobiome can be95

used as a relevant indicator through an application in fluid milk with the hypothesis96

that it could be used to identify (i) raw milk that represented a farm different from a97

given, predefined source farm (simulating introduction of an unknown or unapproved98

supplier into an ingredient stream - "outside farm", abbreviated as OF) or (ii) raw milk99

that contains some milk from mastitis-affected cows treated with antibiotics (repre-100

senting a regulatory violation - "antibiotic treated" abbreviated as ABX). Importantly,101

these scenarios were simulated by using commercially produced milk without apply-102

ing any additional a priori targeted testing to assure that these "anomalous samples"103

show easily identifiable differences from the baseline samples. This approach was104

used to provide a real-world and realistic dataset for the proof-of-concept study de-105

scribed here.106

Milk was used as a model system for examining the application of metagenomic107

sequencing of microbial communities for food safety and quality, building on our ear-108

lier work evaluating associated DNA extraction and host depletion methods (19). Raw109

milk microbiomes have been found to be diverse (20, 21, 22, 23) and potentially have110

an influence on the quality of downstream processed dairy products (24, 25). These111

and other published works support utilizing milk microbiomes as a potential source112

of information for quality assurance and risk assessment in the food industry.113

We evaluated different anomaly detection methods beginning with the classical114

microbiology ecological metrics of alpha and beta diversity, differential abundance,115

clustering, as well as ordination through contrastive PCA and MDS. However, these116

classical methods were limited in their ability to differentiate sample classes. In turn,117

a growing number of studies have demonstrated the benefit of leveraging machine118

learning to differentiate sample classes in microbiome studies. These include predict-119

ing the risk of type 2 diabetes (26), diarrhea associated with cancer treatment (27),120

and liver disease (28) from the gut microbiome. Additionally, when sampling the mi-121

crobiome from human skin, explainable AI was able to identify microbial drivers asso-122

ciated with skin hydration, age, and pre/post-menopausal status from the skin micro-123

biome (29).124

For this work, we collected 58 bulk tank milk samples in a block-randomized time-125

constrained design to assess the ability of the microbiome to indicate deviations from126

a baseline (BL) community related to anomalies (outside farm and antibiotic use) that127

could be present in the food supply chain and be related to food quality issues. A set of128

33 consensusmicrobes were found to be stable elements in baseline shotgunmetage-129

nomics samples with Pseudomonas, Serratia, Cutibacterium, and Staphylococcus to be130

the most abundant. Traditional methods of ordination (cPCA and MDS), as well as al-131

pha and beta diversity, were limited in their ability to fully separate sample classes and132

microbial differences associated with anomalies. However, explainable AI was able133

to differentiate sample classes while also identifying three key microbial drivers that134

separated sample classes with significance even in this dataset, which would be con-135

sidered small in the realm of machine learning techniques studies. Given that whole136

genome shotgun sequencing is still prohibitively costly for wide application, we next137

investigated if other datatypes could be used. We applied explainable AI to 16S rRNA138

data from two publicly available milk microbiome datasets to confirm that this ap-139
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FIG 1 Overall analysis pipeline.

proach could distinguish between milk from different categories. We demonstrate140

that our explainable AI approach is able to successfully predict the processing stage141

and the transport stage a milk sample comes from. This study provides advances in142

the application of machine learning that can be expanded across the food industry.143

RESULTS144

Collection and shotgunmetagenome sequencing of baseline and anomalous145

raw milk samples For whole metagenome shotgun sequencing, in total 65 samples146

were collected: 33 baseline (BL), 13 outside farm (OF), 12 antibiotic treated (ABX), 6147

negative DNA extraction controls, and 1 sequencing blank. Anomalies were chosen148

to represent potential sources of concern in a dairy processing plant (milk from an149

unknown source ormilk contaminated with antibiotic residues). The sampling scheme150

is shown in Supplemental Figure S1.151

Sampling dates were block-randomized to ensure even distribution across the152

sampling period for each anomaly type. A short time frame of five weeks was cho-153

sen to control for seasonality.154

Metadata including milk components (e.g., lactose, fat, milk urea nitrogen), so-155

matic cell count, and standard plate count were also collected and provided as Supple-156

mental File S1. No strong correlations were observed between the metadata features157

and individual microbe reads per million (RPM) values or the summed microbe RPM158

values per sample ( |Spearman corr.| < 0.7).159

Shotgun whole metagenome sequencing (Methods Section 3.2) with Illumina No-160

vaSeq 6000 at 2 × 150bp resulted in 39.6-79.2 million read pairs per raw milk sample.161

Figure 1 details the overall bioinformatics pipeline that was applied to this data.162

During quality control of the reads with FastQC (30) and manual inspection, full-163

length junction adapters and trailing G’s were observed, indicating that the DNA was164

likely fragmented prior to sequencing. Theseartifacts were removed (Methods Section165

3.3), and resulting reads were trimmed for low quality bases using TrimGalore (31). A166

median of 59.3M read pairs per sample were retained as high quality with a median167

of 0.5% read pairs needing removal due to quality issues (see Supplemental Figure S2168

and Supplemental Table S2).169

To remove bovine and potential contaminant sequence content, we employedma-170

trix filtering as reported in a recent publication on food microbiome sequencing (5).171

Kraken (32) was utilized with a custom-built reference database of 31 common food172

ingredients and contaminant genomes (5) including Bos taurus (assembly Btau_5.0.1)173

and Homo sapiens (assembly GRCh38.p10). A large fraction, 91.3–98.7%, of reads were174

discarded from subsequent microbial analysis as matrix-classified (see Supplemental175
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Figure S2(a) and Supplemental Table S2). Negative sequencing controls were utilized176

to quantify the presence of typical laboratory contaminants that can be expected in177

shotgun sequencing as it has been previously reported (33), particularly in studies us-178

ing low biomass samples (34, 35, 36). With this, the background microbial contamina-179

tion was identified bioinformatically using the decontam (37) R package on the genus-180

annotated reads. The analysis identified 14 genera which were removed from subse-181

quent analysis: Histophilus, Rahnella, Raoultella, T4virus, Pragia, C2virus, Methylophilus,182

Oceanobacillus, Streptosporangium, Fluviicola, Oenococcus, Alkalilimnicola, Geminocystis,183

and Brevibacillus.184

Microbiome characterization of raw bulk tank milk We utilized Kraken (32)185

with the NCBI RefSeq (38) whole genome collection to annotate the high quality non-186

matrix read pairs and summarized the classified reads at genus level (Supplemental187

Table S3). Each genus observed was defined based on a minimum abundance of 0.1188

Reads per Million (RPM) as indicated in (5), resulting in 572 observed genera.189

Alpha diversity was determined using the Shannon index calculated based on the190

genus level table. Four baseline and two outside farm samples (BL-04, BL-08, BL-13,191

BL-16, OF-09, and OF-13) were observed to have very low diversity (Shannon index192

<0.4, Figure 2a), with a high relative proportion of reads assigned to specific microbes193

(Supplemental Figure S2(b)), indicating a potential ‘bloom’ of specific milk microbes in194

those samples, which drove diversity indexes to extremely low levels. This was fur-195

ther confirmed by the observation that these samples were dominated by a single196

organism where 94–95% of annotated reads were classified as either Pseudomonas197

or Staphylococcus (in the case of OF-13). While Pseudomonas and Staphylococcus have198

been previously detected in milk, the observation of a single organism accounting for199

the vast majority of the microbial profile of a sample would most likely be due to a200

random sample-specific event, and not milk microbiome signatures associated with a201

given farm. While these six samples were therefore removed from further analyses,202

once larger datasets are available for analyses, samples with these types of sporadic203

‘blooms’ would not need to be removed, as they could be identified algorithmically as204

outliers.205

The remaining samples had an average of 27K microbial classified reads at genus206

taxonomic rank ormore specific. The alpha diversitywithin each sample class was rela-207

tively consistent (Figure 2). The average Shannon index per sample class was 1.84–1.95208

with an average number of genera observed per sample class to be 143–162 with no209

major differences due to sampling date. Between sample classes, the alpha diversity210

shows a similar distribution (Figure 2b) with a Wilcoxon rank sum test for BL vs OF p =211

0.7654 and BL vs ABX p = 0.1194.212

Classified reads per million quality-controlled sequenced reads (RPM) were com-213

puted for each genus, and a threshold of 0.1 RPMwas applied to define supported gen-214

era, as described in Beck et al. (5). The supported genera RPM values are provided as215

Supplemental Table S4. Figure 3 highlights the most abundant microbes observed in216

themilkmicrobiomes. Generawith RPMgreater than 5%of the supportedgenera RPM217

total in at least one sample are shown (with remaining genera summed as "Other"). In218

total, there were 12 such genera, and combined they account for 73.5–97.3%of the to-219

tal supported genera RPM sumper sample. Only Pseudomonas, Serratia, Cutibacterium,220

and Staphylococcuswere observed to account for more than 5% of the total supported221

genera RPM in every sample.222

Additionally, a date-localized increase in abundance of Cutibacterium from 03-Oct.223

to 07-Oct. was observed in baseline, outside farm, and antibiotic treated samples.224

The anomalous samples were from sub-sampled dates based on our block random-225
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(a)

(b)

FIG 2 Alpha diversity (Shannon index) of all raw milk samples where presence is indicated

as genus RPM > 0.1. (a) Shannon index is shown for all 58 samples and (b) summarized by

sample class with the six low-diversity outlier samples removed here and in all subsequent

figures ("Baseline_04", "Baseline_08", "Baseline_13", "Baseline_16", "OutsideFarm_09", "Out-

sideFarm_13").
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ized sampling selection (in comparison to continuous date sampling for the baseline).226

Additionally, there were also a select number of microbes observed in only a few sam-227

ples within one class. For example, Klebsiella was only observed in BL-01, BL-17, and228

BL-33 as highabundance, and Enterobacterwas uniquely observed in antibiotic treated229

samples (ABX-01) as was Elizabethkingia (ABX-10, ABX-11).230

Contrasting baseline and anomalous community profiles using traditional231

methods To contrast sample classes and better understand microbial drivers asso-232

ciated with anomalous sample classes, we began by exploring traditional microbial233

ecology and ordination methods.234

Beta diversity was calculated by abiding by principles of compositional data analy-235

sis and computing an Aitchison distance as described in Beck et al. (5) and in Methods236

Section 3.5. This distance was used to cluster samples as shown in Figure 4a. The sam-237

ples clustered into three main clades with intermixed sample classes and sampling238

dates. The first clade (furthest left, OF-11, BL-29, BL-32, BL-30, ABX-12) was driven by239

the presence of Propionibacterium, but not with the co-occurrence with Klebsiella as in240

BL-33. The remaining two larger clades intermixed all sample types and dates without241

notable microbial differences defining their structure and separations.242

Contrastive PCA (cPCA) (39) was applied to themicrobial community relative abun-243

dance data. However, it was not able to successfully separate the outside farm, an-244

tibiotic, and baseline samples when baseline samples were used as the background245

dataset (Supplemental Figure S3). The difference between PCA and cPCA is that cPCA246

aims to identify enriched patterns in a target dataset (foreground dataset) by contrast-247

ing it with another dataset (background dataset). This is an unsupervised technique248

that uses a hyperparameter named alpha to adjust the trade off between high target249

variance and low background variance. At alpha = 0, cPCA collapses to PCA on the250

target dataset. At alpha = inf, it puts an infinite penalty on any direction which is not251

in the null space of the background dataset.252

In contrast to cPCA which operates on the microbial RPM count table, multidi-253

mensional scaling ingests a pairwise distance matrix and aims to project the samples254

onto a lower dimensional space while retaining their distances. Multidimensional scal-255

ing (MDS) based on the Aitchison distance indicated some separation between the256

anomalous sample types ABX and OF in the two-dimensional projection (Figure 4b),257

although the baseline samples appear intermixed with the anomalous samples. The258

three classes are significantly separated according to PERMANOVA (p = 0.0064).259

Differentially abundant genera Two-sample Kolmogorov-Smirnov testswere per-260

formed independently for each genus to determine statistically significant differen-261

tially abundant features. After Bonferroni correction for multiple testing, the adjusted262

p-values were significant (p < 0.01) for Coxiella for BL vs. OF and Enterobacter, Mor-263

ganella for BL vs. ABX. Their RPM distributions are visualized in Figure 5. Coxiella was264

observed to be increased in outside farm samples and Enterobacter and Morganella265

in antibiotic treated samples. Most notably, the median RPM value of Enterobacter in266

ABX samples was nearly 12 times that of the baseline samples (28.0 vs. 2.4 RPM).267

Sample class prediction with explainable AI We employed an explainable AI268

workflow (’AutoXAI4Omics’ (https://github.com/IBM/AutoXAI4Omics)), as described in269

a recent study on the skin microbiome (29), to perform two separate classification270

tasks: BL vs. OF and BL vs. ABX. The genus-level RPM data after removing low-diversity271

outlier samples and contaminant genera was used as input (52 samples, 572 features).272

For each classification task, the samples were split into training (70%) and test (30%)273

sets uniformly at random, whilemaintaining the class size distribution in each set. Five274

randomized iterations of the train/test split were performed to obtain robust results.275
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(a)

(b)

FIG 3 Microbial community membership is shown per sample for genera with RPM abun-

dance greater than 5% in any sample in (a) standard stacked barplot

and (b) with values scaled to 100% by sample. Genera observed in less than 5% of

the summed per sample abundance are aggregated into the "Other" class.
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FIG 4 Beta diversity using Aitchison distance of raw milk samples with six outlier samples

removed is shown here in (a) hierarchical clustering and (b)multidimensional scaling.
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FIG 5 Distribution of RPM values for each group, for the differentially abundant genera. (a)

Outside farm vs. baseline samples. (b) Antibiotic treated vs. baseline samples. Unadjusted

and adjusted p-values from the two-sample KS-test are shown within each plot. White circles

indicate median values.
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To evaluate and compare the predictive performance of our machine learning model,276

we used a state-of-the-art measure of accuracy, the F1-score. The F1-score is the har-277

monic mean between precision and recall. It is a metric of accuracy that takes into278

account the imbalance of the classes when the average parameter is set to "weighted".279

The AutoXAI4Omics workflow included training and tuning of several machine280

learning algorithms (XGboost, RandomForest (RF), Support VectorMachines, Adaboost,281

K-Nearest Neighbors (KNN), LightGBM, Decision Trees, Extra Trees, Gradient Boosting,282

Stochastic Gradient Descent) followed by selection of the best model based on the283

predictive performance represented by the F1-score. The three best machine learn-284

ing models were tree-based models (XGBoost, Random Forest, LightGBM). XGBoost285

however, a gradient-boosted decision tree ensemble method, consistently reported286

a higher F1-score on the test data and during cross validation. XGBoost has also per-287

formed well in recent comparative studies on microbiome data (40, 29, 41).288

Generating explanations for the ML models’ predictions is an important active289

field of research. Understanding and explaining the mechanisms underlying the pre-290

dictions can help validate the predictive models and reveal powerful and novel in-291

sights about the connections between the samples and phenotype under investiga-292

tion. Therefore, for each classification task, we used AutoXAI4Omics to generate ex-293

planations of the predictions for XGBoost using an explainable AI algorithm called294

SHapley Additive exPlanations (SHAP) (42). The SHAP algorithm assigns a SHAP value295

to each genus (i.e., feature) that represents the impact, negative or positive, that the296

genus has in predicting a class for a given sample. The genera are then ranked based297

on their average absolute SHAP impact value across all the samples in the training298

dataset to obtain a ranked list of impactful genera (see Methods Section 3.7 for more299

details).300

Given the number of samples per class, the random variability in the splitting of301

samples into training and test sets has an effect on the predictive performance and the302

ranked list of the most impactful genera (i.e., when running multiple iterations while303

changing the global random seed). As such, the predictive performance and the stabil-304

ity (43) of the top impactful genera from SHAP were examined across five randomized305

iterations. We observed overall high variation in the order of the impactful genera306

across the five randomized iterations with different random seeds. Stable predictive307

features were defined as those being among the top three most impactful features in308

at least two out of five randomized iterations.309

Despite the observed variation, three stable impactful features were identified:310

Coxiella for the BL vs. OF comparison as well as Enterobacter andMorganella for the BL311

vs. ABX comparison. These stable features that are impactful for the prediction are312

the same as the differentially abundant genera identified above with the KS-test.313

In addition to confirming the predictive impact of the three statistically significant314

genera, one advantage of the explainable AI algorithm, SHAP, over other feature im-315

portance methods, is that it also explains how each of these impactful features is con-316

tributing, positively or negatively, to the prediction of a particular class (e.g., BL) for317

each sample or across a set of samples.318

In Figure 6(a) for one of the five runs, Coxiella is shown as positively contributing319

to the prediction of the class OF for those samples that have a higher abundance of320

Coxiella. Similarly, in Figure 6(b) Enterobacter andMorganella are driving the prediction321

of ABX for those samples with higher abundances of the genera. The SHAP plots for322

the remaining four iterations are shown in Supplemental Figure S4.323

For the BL vs. OF prediction, in 4/5 runs Coxiellawas the most impactful and in 1/5324

runs it was the second most impactful. The F1-score of BL vs. OF prediction ranged325
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FIG 6 Explainable AI results, SHAP summary dot plots in one exemplar iteration of each

anomaly type comparison against baseline (see Supplemental Figure S4 for the other four it-

erations). SHAP values indicate the importance of that feature on the prediction of the sample

class (see further explanation in Section 3.7). (a) The most impactful features predicting out-

side farmanomaly class. (b) Themost impactful features predicting antibiotic treated anomaly

class.

from 0.833 to 0.917 (mean 0.87). For the BL vs. ABX prediction, in 4/5 runsMorganella326

was the most impactful. In 1/5 runs Enterobacter was the most impactful and in 2/5327

runs the second most impactful. The F1-score of BL vs. OF prediction ranged from328

0.692 to 0.923 (mean 0.83).329

Validation of explainable AI approach using alternate datatype To validate330

the ability of using an explainable AI approach to detect anomalous milk samples331

based on microbiome composition, next we applied this technique to an alternative332

datatype. We selected 16S rRNA data, an affordable and accessible proxy for whole333

genome shotgun sequencing metagenomics. We selected two publicly available fluid-334

milkmicrobiome datasets (ERP015209, ERP114733), containing 1,507 and 626 samples335

with 16S rRNA data, respectively (23, 20). We then used the AutoXAI4Omics tool to in-336

vestigatewhether 16s rRNA data could also distinguishmilk from a range of categories,337

including season, transport stage, silo ID, and processing stage. For processing stage338

comparisons, classes included raw milk stored in silos "Raw Milk" class, milk stream339

entering the pasteurizer "HTST feed" class, and post-pasteurization milk "HTST Milk"340

class. For transport stage comparisons, classes included milk that was collected with341

a stainless steel dipper from the inlet at the top of individual tanker trucks "Tanker"342

class, raw milk sampled from five large-volume-capacity silos "Raw Milk" class, and343

"Blended Silo" class.344

Of the six ML models tuned, trained, and cross-validated by AutoXAI4Omics (RF,345
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TABLE 1 Explainable AI performance on alternative datasets. The average F1 score

and standard deviation of the best performing model after 5-fold cross-validation on

each of the alternative datasets are indicated with the number of training and test

samples.

Target Variable Best Model Train:Test F1-Score Train F1-Score Test Study ID

Processing Stage Random Forest 311:78 0.997 ± 0.028 0.734 ± 0.040 ERP114733 (23)

Transport Stage Random Forest 303:76 0.998 ± 0.021 0.885 ± 0.013 ERP015209 (20)

Season XGBoost 986:298 0.998 ± 0.002 0.849 ± 0.023 ERP015209 (20)
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FIG 7 Explainable AI results on validation with alternative datatype, evaluating the ability to

predict the processing stage (n samples train:test were 311:78). SHAP summary dot plots in

one exemplar iteration of each anomaly type comparison. SHAP values indicate the impor-

tance of that feature on the prediction of the sample class (see further explanation in Sec-

tion 3.7). (a) The most impactful features predicting raw milk class. (b) The most impactful

features predicting pre-pasteurization class. (c) The most impactful features predicting post-

pasteurization class.

KNN, AutoKeras, LightGBM, Autosklearn and XGBoost), RF performed the best, pre-346

dicting processing stage with 0.734 F1 score (Table 1). SHAP analysis revealed that347

the most impactful genera influencing prediction of raw milk samples included lower348

abundances of the genus Bacillus and the thermophilic genus Thermus, and higher349

abundances of genera Pseudomonas and Acinetobacter (Figure 7). After the pasteuriza-350

tion process (high-temperature short-time processing (HTST)), the genera listed above351

appeared to have an opposing influence upon the model’s prediction. We observed352

that in pasteurized samples, higher abundances of Bacillus and Thermus, and lower353

abundances of Pseudomonas and Acinetobacter influenced the prediction of this class354

(Figure 7).355

Another category for which AutoXAI4Omics produced highly accurate models was356

milk storage stage, which represented different locations within the milk transport357

pipeline, raw milk, tanker milk, or silo milk. The best performing model predicting358
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FIG 8 Explainable AI results on validation with alternative datatype, evaluating the ability to

predict milk storage stage during transport (n samples train:test were 303:76). SHAP summary

dot plots in one exemplar iteration of each anomaly type comparison. SHAP values indicate

the importance of that feature on the prediction of the sample class (see further explanation

in Section 3.7). (a) The most impactful features predicting tanker milk class. (b) The most im-

pactful features predicting raw milk class. (c) The most impactful features predicting blended

silo class.

milk transport stage was Random Forest, with an average F1-score of 0.885 across the359

three classes (Table 1). For tanker milk and silo milk, Bacillus, Mycoplasma, and Lac-360

tococcus were highly influential in the model’s prediction, but they showed opposing361

influences for each of the two classes. Lower abundances of Bacillus,Mycoplasma, and362

Lactococcus were associated with tanker milk prediction, whilst higher abundances of363

these two genera influenced silo milk prediction (Figure 8).364

AutoXAI4Omics was also able to successfully predict the season in which a milk365

sample was collected, using categories Fall, late Summer, Summer and Spring (Table366

1). XGBoost predicted season with the highest accuracy of all models, with an average367

F1-score across the four classes of 0.849 (Table 1) Mycoplasma most strongly influ-368

enced prediction of both late Summer and Fall classes; however, a higher abundance369

increased the likelihood of a late-Summer prediction, whilst a lower abundance influ-370

enced classification as a Fall sample (Figure 9). Mycoplasma was also the second most371

influential genera in the prediction of a Spring sample, suggesting this genus is heavily372

influenced by season.373

Milk samples collected from different silos could not be accurately predicted using374

our explainable AI approach (F1-score 0.25), indicating limited differences in 16S rRNA375

microbial composition between milk stored in different silos. This finding is commen-376

suratewith findingsby Kable et al., (20) observing no clear difference usinghierarchical377

clustering of beta diversity of samples.378
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FIG 9 Explainable AI results on validation with alternative datatype, evaluating the ability to

predict milk collected in different seasons (n samples train:test were 986:298). SHAP summary

dot plots in one exemplar iteration of each anomaly type comparison. SHAP values indicate

the importance of that feature on the prediction of the sample class (see further explanation

in Section 3.7). (a) Themost impactful features predicting spring class. (b) Themost impactful

features predicting summer class (c) The most impactful features predicting fall class.

DISCUSSION379

We have applied various traditional and artificial intelligence methods to test the hy-380

pothesis that themicrobial community of rawmilk, as characterized by shotgunmetage-381

nomics, could be used for anomaly detection based on the intuition that the micro-382

biome would differ in relation to two anomalous states: (i) treatment with antibiotics383

and (ii) the presence of milk from a differing farm. The rationale for testing such384

anomalous states was to attempt to detect anomalies that would bemeaningful to the385

industry (e.g., regulatory violation or unknown ingredient source) (44, 45). The micro-386

biome has been shown to be a highly dynamic ecosystemwheremicrobial community387

membership and relative abundances can shift in response to a variety of perturba-388

tions (46). This has been demonstrated in health (47), the environment (48), andmore389

recently in food systems (5, 49, 50), further substantiating our motivation.390

While our study was deliberately designed to control for seasonality and thus rep-391

resents a worst-case, but most realistic, scenario in terms of what would be useful for392

application in anomaly detection in the industry, our results indicate that under such393

circumstances, explainable AI applied to microbiome data might become a valuable394

tool for monitoring and anomaly detection in food systems in the future.395

Rawmilkmicrobial composition is dominated by few typicalmilk genera and396

overall uniform across sample types To the best of our knowledge, this study char-397

acterized rawmilk metagenomes in more sequencing depth than any other published398

work to date and demonstrates that there is a set of consensus microbes that were399

found to be stable elements across samples. We observed 32 microbial genera as400

present (RPM > 0.1) in all samples (excluding low-diversity outliers), see Supplemen-401
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tal Table S5. Pseudomonas, Serratia, Cutibacterium, and Staphylococcus were the most402

abundant on average. This is in agreement with most of the literature, with Pseu-403

domonas and Staphylococcus being reported in many studies that characterized the404

raw milk microbiome (51, 21, 52, 53). Mastitis causing bacteria, including Streptococ-405

cus sp., Staphylococcus sp., and coliforms such as E. coli and Klebsiella have been re-406

ported in milk microbiome studies (54, 55, 56), — all of which were detected in our407

dataset. Consequently, our data along with previously published data indicate that408

bacteria such as Pseudomonas, and Staphylococcus, among others, represent the core409

bulk tank milk microbiome.410

In our studyCutibacteriumwas oneof themost prevalent genera. Cutibacteriumbe-411

longs to the family Propionibacteriaceae, which have been reported in the teat apexmi-412

crobiota (51). A few skin-associated Propionibacteria have been reclassified as Cutibac-413

terium (57), indicating that the teat skin microbiota might contribute to the bulk tank414

milk microbiota.415

Traditionalmicrobial diversitymetrics, clustering, andMDSandmethods fail416

to differentiate sample classes For the detection of anomalous samples, we evalu-417

ated several traditional methods for comparative analysis of the microbiome commu-418

nity. In this study clustering, cPCA, and MDS analyses did not indicate a strong separa-419

tion of the three different classes of samples (baseline, outside farm, and antibiotics).420

This is in contrast with recently published studies (21, 22), in which milk samples were421

significantly different based on origin as identified by PERMANOVA and visualizedwith422

Principal Component Analysis. One explanation for the disparity is that in those stud-423

ies, sampling was performed across seasons, thus increasing the variability between424

sample sites. In this study, we purposely sampled within a short time frame to con-425

trol for seasonal variability, and thus avoid that confounder in our analyses. While our426

PERMANOVA results indicate that therewas a significant difference in beta diversity be-427

tween the three classes withmultidimensional scaling (p = 0.0064), no clear separation428

could be observed between sample classes when the first two MDS are plotted. One429

might argue that most antibiotic samples are closer to one another than the other two430

classes, and thus that might explain our significant results within PERMANOVA. The431

high degree of uniformity observed here might be explained by our sampling strategy432

which was to constrain sampling to a short period of time to control for seasonality. It433

is also possible that management practices may explain differences between baseline434

and outside farm samples in our study.435

Bacterial taxa can be used as biomarkers for anomaly detection Despite the436

overall uniformity in our data, three genera were identified to be differentially abun-437

dant between baseline and anomalous samples. Enterobacter have been reported to438

be present in milk microbiomes in many studies (51, 21, 52, 53), and Coxiella and Mor-439

ganellawere identified in this study but not in many others, perhaps because of to the440

large sequencing depth applied here. Nevertheless, these are environmental organ-441

isms that could be found in any farm, and their relative abundances could be informa-442

tive when attempting to identify anomalies in milk.443

In the case of milk received from an outside farm, we aimed to identify if the mi-444

crobiome could signalmore subtle differences sincemajor influences, e.g. seasonality,445

region, and temperature, were all constant. Here while the cows and bulk tanks may446

be similar across farms, there were differences in farm management, diet, and milk-447

ing protocols that one would expect to impart differences in the bulk tank milk micro-448

biome. While baseline samples and outside farm samples were similar in their diver-449

sity and overall community membership, Coxiella was observed to have a significant450

increase in the outside farm samples. Coxiella is a known foodborne pathogen and451
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a target organism for defining time and temperature combinations for milk pasteur-452

ization (58, 59). Thus it is not an unusual finding in raw milk microbiome, reiterating453

the fact that when using microbiome data for anomaly detection, one should not rely454

only on finding which features are unique to a sample class, but also how the relative455

abundances of features observed across classes might be associated with a particular456

class.457

Inmilk samples spikedwithmilk from cows treated with antibiotics to control mas-458

titis, the overall diversity does not differ from baseline diversity in a significantmanner.459

Previous studies investigating bovine mastitis and antibiotic treatment have indicated460

that alpha diversity is significantly lower in mastitic milk when compared to healthy461

milk (60, 61). The lack of difference in diversity in our antibiotic anomalous samples462

is in accordance with the design of this study, in which antibiotic anomalies were not463

milk from an individual cow, but bulk tank milk spiked with 10% v/v of milk from an an-464

imal whosemilk should not be entering the food supply chain. This represents a trace465

amount of contamination that although more difficult to detect, would represent a466

more realistic scenario. Even in such circumstances, we identified genera e.g. Enter-467

obacter and Morganella that are observed with increased abundance in the antibiotic468

sample class. Enterobacter spp. are environmental mastitis-causing pathogens (54),469

hence expected in the mastitic milk from cows treated with antibiotics. Morganella is470

an environmental organism and part of the intestinal tract of mammals, and has been471

isolated from cheese(62). It can be an opportunistic pathogen and has been reported472

to infect calves (63).473

ExplainableAI outperforms traditionalmethods inmicrobiome-based anomaly474

detection and can predict baseline vs. anomalous sample class using combined475

signal from all genera For the detection of anomalous samples, we evaluated sev-476

eral traditional methods for comparative analysis of the microbiome community. Al-477

though clustering, cPCA, and MDS analyses did not indicate a strong separation of the478

three different classes of samples, predicting each type of anomaly versus the base-479

line could be done fairly accurately with both anomaly types using explainable AI even480

in our relatively small dataset. We observed that XGBoost was able to differentiate481

anomalous samples from baseline and were able to quantify the impact of the dif-482

ferentiating features with SHAP. Likewise, XGBoost, a gradient-boosted decision tree483

ensemble method, has also performed well in recent comparative studies on micro-484

biome data (40, 29, 41).485

While most machine learning algorithms function in a black-box manner, the ex-486

plainability algorithmweused in thiswork—SHAP—assigns a value to each sample for487

each feature that describes the impact of that feature for predicting a specific sample488

class. One could speculate that this capability will be very useful for the food industry489

as evidence is amounting indicating that certain pathogens tend to co-occur with cer-490

tain environmental microbes (64, 65). Thus, having the ability to "flag” microbes that491

predict a specific problematic sample class and might prove useful to inform sanita-492

tion and foodborne pathogen control practices. For example, Listeria has been shown493

to co-occur with certain taxa and thus observing those taxa as impactful genera in pre-494

dicting a specific location might raise awareness about potential future problems with495

Listeria (64, 65).496

The three genera observed to be most impactful by explainable AI were the same497

as those identified with the KS-test after Bonferroni correction; however by leveraging498

explainable AI, we were able to use the combined signal from all genera to assess the499

impact of the differing abundance of these microbes.500

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2022.08.16.504221doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504221
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beck et al.

Explainable AI can predict several fluidmilk sample classes using an alterna-501

tive datatype Despite the high metagenomics sequencing depth, we recognize the502

small nature of the sample size (58 samples) when it pertains to testingmachine learn-503

ing algorithms (66, 67, 68), and that it may impart limitations on the quantitative and504

comparative assessments in characterizing the microbiomes of the multiple sample505

classes. We thus further validated our analysis approaches with publicly available506

bovine bulk tank milk data. The few publicly available bulk tank milk shotgun sequenc-507

ing datasets had too low coverage (22, 69) to be appropriate for the application of our508

methodology. Thus, we performed our validation analysis based on publicly available509

fluid milk 16S amplicon sequencing (21, 70).510

The results from our validation demonstrated a strong correlation with biologi-511

cal factors. Here, we observed that higher abundances of Bacillus and Thermus, and512

lower abundances of Pseudomonas and Acinetobacter influenced the prediction of post-513

pasteurization (Figure 7). These findings are consistent with the characteristics of the514

organisms that were found to have the most substantial impact on predicting post-515

pasteurization. Specifically, greater abundances of thermotolerant organisms such516

as Bacillus and Thermus were impactful for predicting post-pasteurization, as well as517

reduced abundances of typically thermosensitive Pseudomonas, were associated with518

prediction of post-pasteurization. Notably, these findings align with other analyses519

performed in the source study, including qPCR-based determination of cell numbers520

(23).521

The milk microbiota has been reported to vary with season and stage of process-522

ing in several studies. Our validation analysis was also able to successfully predict milk523

samples by key attributes such as the season or the transport stage amilk sample was524

collected with high accuracy. Taken together, our results provide evidence for the fea-525

sibility of this approach and indicate that explainable AI has the potential to become526

a useful tool for microbiome-based quality monitoring for the food industry.527

Conclusion and future directions In raw milk and other food systems, microbes528

can present important challenges to food safety in the case of pathogenic organisms529

and affect food quality such as flavor and storage attributes. Characterizing the mi-530

crobial composition in a diverse set of food ingredients and products is of the utmost531

importance to better understand and improve the safety and quality of food. Since532

the microbiome is sensitive to changes in temperature, salinity, pH, and the composi-533

tion of the material that it resides on among other things, it can also be utilized as an534

indicator for when food items deviate from a baseline of normality. For this study, our535

goal was to infer insights about each anomaly type compared to the baseline. As the536

number of samples collected was limited from a machine learning perspective, our537

intent was not to build a general machine learning model. Our intent was, instead, to538

investigate the potential use of an interpretable machine learningmethod (e.g., SHAP)539

to infer associations between microbial abundance and different sample types (base-540

line vs outside farm, baseline vs antibiotic-treated) and compare the ability of inter-541

pretable machine learning and traditional standard microbiome community analyses542

techniques to identify different sample types (and hence different sources of raw ma-543

terials that could be used in food production). We therefore focus on the explanations544

provided by SHAP rather than the accuracy, the stability, or the generalizability of our545

machine learning model. Our overall aim is to provide a ‘proof-of-concept’ for this546

type of data and application. However, for results to be applicable for industry the547

sampling needs to be larger, therefore we envision to extend the approach to larger548

datasets as they become available. We demonstrate here that application of explain-549

able AI applied to microbiome sequencing data could become a useful approach for550
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anomaly detection in the food industry, particularly as sequencing technologies be-551

come more cost effective, laboratory processes are streamlined, and larger datasets552

are produced. Future challenges will include the need to define the appropriate speci-553

ficity and sensitivity for models that can identify abnormalities in products or ingredi-554

ents. Importantly, acceptable specificity and sensitivity will differ by the actual supply555

chains, and by factors such as the cost of false positive and false negatives, including556

the ease and cost of follow-up actions, e.g. follow up facility inspections or tests to de-557

termine whether detection of a microbiome abnormality represents an actual fraud558

or food safety incident.559

MATERIALS AND METHODS560

Milk sampling Baseline raw bulk tank milk samples were collected daily from the561

Cornell University Ruminant Center (CURC; Hartford, NY) between September 5th and562

October 7th, 2018 and are referred to by the abbreviation BL. Anomalous samples563

from an outside farm (abbreviated as OF) were collected from a collaborating com-564

mercial dairy farm located in the same region (< 30 miles) and over the same time pe-565

riod as the Cornell Dairy. Bulk tank milk samples were collected aseptically into sterile566

10 oz. vials (Capitol Plastics, Amsterdam, NY) and transported on ice to the Milk Qual-567

ity Improvement Laboratory (Ithaca, NY). Anomalous samples from antibiotic-treated568

cows (abbreviated as ABX) were prepared at the laboratory by spiking the baseline569

sample of that day with 10% v/v with milk from an animal currently being treated with570

antibiotics, which was collected through a milking system collection device into a 10571

oz vial.572

Milk sampleswere aliquotedat the laboratory and frozen at -80°Cuntil DNAextrac-573

tion. A volume of 200 µL of milk samples were used as starting material for magnetic-574

based DNA extraction using a 96-well plate and CORE kit in a KingFisher instrument575

(Thermo Fisher Scientific, San Jose, CA, United States). Negative DNA extraction con-576

trols (reagents only) were carried out within the same plate for quality control. Ex-577

tracted DNA was frozen at -80°C until library preparation and sequencing.578

Shotgunmetagenome sequencing Sampleswere quantifiedwith aQubit (Thermo579

Fisher Scientific, San Jose, CA, United States) before library preparation. Ten nanograms580

of each Qubit quantified genomic DNA was sheared with a Covaris E220 instrument581

operating SonoLab v6.2.6 generating approximately 300 bp DNA fragments according582

to the manufacturer’s protocol. Between 10 and 100 ng of fragmented DNA was pro-583

cessed into Illumina compatible sequencing libraries using sparQ DNA Library Prep584

Kit (Quantabio, Beverly, MA, United States). Each library was barcoded with unique585

dual index sequences (NEXTFLEX® Unique Dual Index Barcodes, BioO Scientific). Li-586

brary size and amount were confirmed with a Bioanalyzer High Sensitivity DNA chip.587

Polymerase chain reaction primers and reagents included in the sparQ kit were used588

to perform PCR, and products were purified with AMPure XP beads. Equimolar li-589

braries were pooled and subjected to Illumina NovaSeq 6000 sequencing at 2 × 150590

bp (Illumina, San Diego, CA, United States). Shotgun whole metagenome sequencing591

was performed at the Genome Sciences and Bioinformatics Core at the Pennsylvania592

State University College of Medicine, Hershey, PA, United States. Illumina bcl2fastq593

(released version 2.20.0.422) was used to extract de-multiplexed sequencing reads.594

Read quality control and host filtering Reads that included full length auxil-595

iary sequences (junction adapter) P5 or P7 ("CTGTCTCTTATACACATCTCCGAGCCCAC-596

GAGAC" or "CTGTCTCTTATACACATCTGACGCTGCCGACGA") were removed with a cus-597

tom script (as were their read pairs), since their presence indicates issues with se-598

quencing those particular reads (see Figure 2(b-d) in Illumina’s Sequencing Technical599
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Note (71)). Trailing stretches of "G", prevalent in Nextera sequences due to the two600

color channel technology, were removed with a custom script. If the length of the "G"601

tail was 30 ormore, the read and its pair were discarded as low quality. The sequenced602

reads were then processed with TrimGalore (31) for adapter and quality trimming (pa-603

rameters: –trim-n –paired –length 50 –phred33). The reads were handled as pairs604

through all the quality control and filtering steps.605

Read filtering against the internal control PhiX and common host and contaminant606

genomes was performed with Kraken (32) as in Beck et al (5). PhiX reads were filtered607

against the NCBI Reference Sequence: NC_001422.1. Host reads were filtered against608

a database of plant and animal sequences introduced previously for metagenomic609

studies of food (5), which has been open-sourced and is available via PrecisionFDA610

https://precision.fda.gov/home/assets/file-GFfjPQj0ZqJV93P00bJ3vFgG-1. Additionally,611

kraken-filter with score threshold 0.1 was applied to avoid removing microbial reads.612

Microbial genus profiling The reads passing quality control were classified as in613

Beck et al (5), against the NCBI’s RefSeq Complete (38) genome collection and corre-614

sponding taxonomy of bacterial, archaeal, viral, and eukaryotic microorganisms (ap-615

prox. 7,800 genomes retrieved April 2017). Kraken (32) was used with a minimum616

score threshold of 0.05. Classified read counts per genus were collected as the sum617

of the read counts assigned to a genus or a taxonomic level below it. Sequencing618

blanks were used as negative controls to remove contaminating genera with the de-619

contam R package (37) with the following parameters: threshold = 0.5 and normalize620

= TRUE. From this analysis, there were 14 genera which were removed from subse-621

quent analysis: Histophilus, Rahnella, Raoultella, T4virus, Pragia, C2virus, Methylophilus,622

Oceanobacillus, Streptosporangium, Fluviicola, Oenococcus, Alkalilimnicola, Geminocys-623

tis, and Brevibacillus. Finally, classified reads per million quality-controlled sequenced624

reads (RPM) were computed for each genus and a threshold of 0.1 RPM applied to de-625

fine supported genera, as described in Beck et al. (5). While the sequenced read depth626

was sufficient for genus-level taxonomic classification, it did not permit thorough gene627

or functional analysis.628

Community diversity Shannon diversity was calculated from the supported mi-629

crobial genera table using the diversity function in the vegan R package (72) with de-630

fault parameters. Beta diversity was calculated using principles of compositional data631

analysis (73, 74). Therefore, read counts assigned to each genuswere pseudo-counted632

by adding one in advance of computation of RPM prior to calculating the Aitchison dis-633

tance from the microbial table. Beta diversity was calculated using the R package rob-634

Compositions (75) and hierarchical clustering was performed using base R function635

hclust using the “ward.D2” method.636

Contrastive PCA (39) Python implementation was run with the aim of identifying637

enriched patterns in outside farm and antibiotic treated samples by contrasting them638

with baseline samples, on the supported microbial genera (Supplemental Table S4).639

In our target (foreground) data we kept OF, ABX and BL samples. In our background640

dataset, we only kept the baseline samples. We removed the 6 low diversity outliers641

from both target and background dataset. This was in an effort to uncover compo-642

nents which have high variance in the target dataset but low variance in the back-643

ground dataset. We tried automatic assignment of alpha values where the algorithm644

generates and evaluates different alpha values andwealso experimentedwith increas-645

ing alpha values systematically.646

Multidimensional scaling (MDS,Matlab function cmdscale, p=2) andpermutational647

multivariate analysis of variance (PERMANOVA, function f_permanova, iter=10,000, from648

the Fathom toolbox (76) for MATLAB) were applied on the pairwise Aitchison distances649
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of all samples excluding the four baseline and two outside farm samples identified as650

low-diversity outliers, on the supported microbial genera table.651

Differences between baseline and outside farm, antibiotic treated samples652

Two-sample statistical tests of individual features and corresponding visualizations on653

labeled data can be valuable as additional information to further support the results654

from explainable AI analysis, as done here. However, using two sample statistical tests655

alone only identifies significant differences for one single taxon, between two samples656

at a time and does not allow for assignment of a new sample to a class, as the RPM dis-657

tributions per class are overlapping. Two-sample Kolmogorov-Smirnov tests (MATLAB658

function kstest2) were performed for each genus to determine microbes with signifi-659

cant differential abundance (p < 0.001) between baseline and each type of anomaly.660

Bonferroni multiple-comparison correction was applied, p′ = pm, where m is the num-661

ber of genera, to obtain adjusted p-values p′ . The differentially abundant genera were662

visualized using Violin Plot (77) in MATLAB.663

Explainable AI To perform our explainable AI analysis weutilized the open source664

software ’AutoXAI4Omics’, an automated explainable end-to-end ML tool developed665

for ’omics datatypes (https://github.com/IBM/AutoXAI4Omics) (29).666

For all datasets and classification tasks, we used AutoXAI4Omics to train and tune667

a series of ML models (XGBoost, Random Forest (RF), Support Vector Machines, Ad-668

aboost, K-Nearest Neighbors (KNN), LightGBM, Decision Trees, Extra Trees, Gradient669

Boosting, Stochastic Gradient Descent) using a train-test split ratio of 80:20. Hyper-670

tuning was performed on the training data using five-fold cross validation. For each671

classification task, predictive performance of all hyper-tuned models was assessed672

automatically by AutoXAI4Omics using the F1-score metric, and the top performing673

model was selected. Labels for Season and Processing Stage experiments were used674

that met the quality control and filtering criteria, with the exception of the Transport675

experiment. For the Transport experiment, sub-sampling was employed to randomly676

select samples, ensuring the class labels were more evenly balanced.677

We used AutoXAI4Omics to apply an explainable AI algorithm called SHapley Ad-678

ditive exPlanations (SHAP), due to its ability to work with any machine learning model:679

tree-based models, such as XGBoost and LightGBM, as well as kernel-based and deep680

learning models. The explainability algorithm, SHAP, provides local explanations, i.e.,681

interpretations of how the model predicts a particular value for a given sample. The682

local explanations show how each feature is contributing, either positively or nega-683

tively, to the prediction of a particular instance, for example of a particular class in684

case of classification task. After eachmodels performance was evaluated, as described685

above, the top performingmodel cross-validation results were interpreted using SHAP686

to identify features which contribute most to the prediction.687

We used the tuned top performing model coupled up with SHAP to explain the688

predictions (e.g., baseline vs anomalous) for each sample across the entire dataset. In689

addition to providing the ranked list of important features for a ML model, an advan-690

tage of SHAP over other feature importance methods is that it also explains how each691

of these impactful features is contributing (positively or negatively) to the prediction692

of specific phenotypic values. If we consider a binary classification task, the SHAP ex-693

plainer returns two Shapley values tables of the same dimension of the input table694

(number of samples x number of genera/features), respectively for the class 0 (base-695

line) and the class 1 (anomalous). If we examine the table for class-0 baseline, each696

entry in the table is the SHAP impact (positive or negative) that a given genus has for697

the prediction of class baseline for a given sample. The absolute SHAP impact values698

for each feature are then averaged out across the entire set of samples to get an in-699
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dication of the overall impact of a feature for the prediction, which results in a ranked700

list of the most impactful features.701

We used AutoXAI4Omics to produce several plots providing visualisations of local702

explanations as well as a global view of local explanations that allow for interpretation703

of the entiremodel. The SHAP beeswarmplot, in particular, is a visualisation of the Shap-704

ley values matrix for a particular class (e.g., baseline). The plot shows the impact that705

each feature has on the prediction of the class for samples that share similar feature706

values. The y-axis is the ordered list (descending order of importance) of impactful fea-707

tures in predicting the class using a specific ML model (e.g., XGBoost). Therefore each708

row is a feature. The dots in each row are the data points, or samples, and are colored709

by the original feature value, that in this case is the genus abundance. The x-axis is710

the SHAP value or impact. A positive SHAP value/impact of a feature for a sample (the711

dot is on the right side of the x-axis) indicates that the feature (e.g., genus) has a pos-712

itive impact in predicting the class (e.g., baseline), while a negative SHAP impact (the713

dot is on the left side of the x-axis) indicated that the feature has a negative impact714

on the prediction of the class. For each row (feature) the yellow and green dots can715

form separate clusters that are positioned towards the right or left side of the x-axis.716

This indicates that overall the feature (e.g., genus) tend to have a similar impact (pos-717

itive or negative) for samples in which it has similar feature values (e.g., high or low718

abundance).719

Validation of anomaly detection in amplicon metagenomic samples We fur-720

ther validated our findings by applying our explainable AI approach to publicly avail-721

able datasets relevant to the dairy industry. Specifically, we selected two publicly avail-722

able datasets from studies investigating the microbial profile of fluid milk using 16S723

rRNA amplicon sequencing for three comparisons. The data were retrieved from the724

European Nucleotide Archive (ERP015209, ERP114733) and contained 1,507 and 626725

16S rRNA samples respectively (20, 23). Data were retrieved as .fasta files and sub-726

jected to a uniform pipeline using the DADA2 algorithm (78) in R and taxonomy was727

assigned using the SILVA (79) database. A count table was generated and was used728

to investigate the suitability of our explainable AI approach to distinguish between729

sample classes using amplicon-based data.730

Data availability The sequencing data generated in this study are available at the731

NCBI BioProject PRJNA726965 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA726965.732

The codeused to generate analyses in this study is available at https://github.com/gandalab/milk-anomaly-detection.733
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