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ABSTRACT

The increasing knowledge of microbial ecology in food products relating to quality
and safety and the established usefulness of machine learning algorithms for anomaly
detection in multiple scenarios suggests that the application of microbiome data in
food production systems for anomaly detection could be a valuable approach to be
used in food systems. These methods could be used to identify ingredients that devi-
ate from their typical microbial composition, which could indicate food fraud or safety
issues. The objective of this study was to assess the feasibility of using shotgun se-
guencing data as input into anomaly detection algorithms using fluid milk as a model
system. Contrastive PCA, cluster-based methods, and explainable Al were evaluated
for the detection of two anomalous sample classes using longitudinal metagenomic
profiling of fluid milk compared to baseline samples collected under comparable cir-

cumstances. Traditional methods (alpha and beta diversity, clustering-based contrastive

PCA, MDS, and dendrograms) failed to differentiate anomalous sample classes; how-
ever, explainable Al was able to classify anomalous vs. baseline samples and indicate
microbial drivers in association with antibiotic use. We validated the potential for ex-
plainable Al to classify different milk sources using larger publicly available fluid milk
16s rDNA sequencing datasets and demonstrated that explainable Al is able to dif-
ferentiate between milk storage methods, processing stage, and season. Our results
indicate the application of artificial intelligence continues to hold promise in the realm
of microbiome data analysis and could present further opportunities for downstream
analytic automation to aid in food safety and quality.

IMPORTANCE We evaluated the feasibility of using untargeted metagenomic se-
quencing of raw milk for detecting anomalous food ingredient content with artificial
intelligence methods in a study specifically designed to test this hypothesis. We also
show through analysis of publicly available fluid milk microbial data that our artificial
intelligence approach is able to successfully predict milk in different stages of process-
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ing. The approach could potentially be applied in the food industry for safety and
quality control.

KEYWORDS: Metagenome, Microbiome, Food, Milk, Anomaly Detection, Machine
Learning, Explainable Artificial Intelligence

INTRODUCTION

Issues in food quality and safety can have rippling effects through the supply chain,
causing substantial health and economic damage. With this, there is substantial in-
terest in applying targeted and untargeted methods to identify ingredients or food
products that show an increased risk of food fraud, food quality, and food safety is-
sues (1, 2, 3). While targeted methods, such as the detection of toxins, pathogens, or
inappropriate ingredients (e.g., horse meat in a product labeled as beef) (3), play an
important role in assuring food safety and quality and preventing food fraud, they,
by definition, have a set of pre-defined targets, even if (extreme) multiplexing is ap-
plied. By contrast, untargeted methods characterize all molecules that can be detected
by specific method (e.g., chemical spectra, DNA sequences) to identify ingredients or
products that deviate from a "baseline state" (that would be considered normal or
under control) and hence would be labeled as "anomalous". Importantly, these untar-
geted methods are screening methods that do not define an ingredient or product as
unsafe or adulterated, rather they suggest an aberration from the normal state that
should trigger follow-up actions or investigations (e.g., targeted tests, inspection of
the source facility, etc.) to identify whether there are justified concerns or whether
the "abnormality" detected represents natural variation that was not covered in the
baseline state. While these methods can be extremely powerful to detect potential
issues, they require sophisticated data analysis approaches to characterize baseline
conditions and to allow for anomaly detection. In this work, bovine raw milk was se-
lected as a model ingredient to develop improved statistical methods that can use
shotgun metagenomics data as a screen to identify raw milk that shows evidence of
product anomalies and deviations from baseline conditions. Milk was selected as a
model as it is the sole ingredient used for the production of fluid milk— a high-volume
food with considerable concern for fraud, particularly in developing countries (4). Be-
yond this, milk is used as an ingredient to make a variety of products and other foods,
with raw milk quality having considerable impacts on finished product quality, safety,
and production efficiency. Other studies have aimed to characterize the microbiome
of food ingredients in production settings, for example, in high protein powders (5, 6),
produce (7, 8), and fermented foods (9, 10, 11, 12). These studies are useful in demon-
strating the potential that metagenomics and metatranscriptomics have in advancing
food safety and quality for targeted assessments as well as for improving sensitivity for
regular surveillance. Metagenomic and metatranscriptomic studies have been able to
describe the microbial components of food samples with observable shifts that can
be related back to key attributes of metadata, e.g., ingredient contamination (5). How-
ever, it should be noted that when studies rely on amplicon sequencing (often due
to cost and resource limitations), there can be important reductions in sensitivity and
taxonomic resolution (13).

The food supply chain is highly complex, with a multitude of touch points (e.g.
farmers, suppliers, transportation, storage, etc.) existing prior to reaching a finished
product, where issues occurring at each step have the potential to cause quality and
safety issues. Therefore, while these early studies have set a foundation for the use of
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90 the microbiome in food production, the expansion of these analyses and applications
o1 into additional food ingredients and for different supply chain challenges will only con-
92 tinue to refine and increase the robustness of analysis similar to how much work has
93 been done to build microbiome standards across human-associated (14, 15, 16, 17)
94 and environmental niches (18).

95 Our objective was to expand on the growing evidence that the microbiome can be
96 Used as a relevant indicator through an application in fluid milk with the hypothesis
o7 that it could be used to identify (i) raw milk that represented a farm different from a
98 given, predefined source farm (simulating introduction of an unknown or unapproved
99 supplier into an ingredient stream - "outside farm", abbreviated as OF) or (ii) raw milk
100 that contains some milk from mastitis-affected cows treated with antibiotics (repre-
101 senting a regulatory violation - "antibiotic treated" abbreviated as ABX). Importantly,
102 these scenarios were simulated by using commercially produced milk without apply-
103 ing any additional a priori targeted testing to assure that these "anomalous samples"
104 show easily identifiable differences from the baseline samples. This approach was
105 used to provide a real-world and realistic dataset for the proof-of-concept study de-
106 scribed here.

107 Milk was used as a model system for examining the application of metagenomic
108 sequencing of microbial communities for food safety and quality, building on our ear-
100 lier work evaluating associated DNA extraction and host depletion methods (19). Raw
110 milk microbiomes have been found to be diverse (20, 21, 22, 23) and potentially have
111 an influence on the quality of downstream processed dairy products (24, 25). These
112 and other published works support utilizing milk microbiomes as a potential source
113 of information for quality assurance and risk assessment in the food industry.

114 We evaluated different anomaly detection methods beginning with the classical
115 microbiology ecological metrics of alpha and beta diversity, differential abundance,
116 Clustering, as well as ordination through contrastive PCA and MDS. However, these
117 classical methods were limited in their ability to differentiate sample classes. In turn,
118 a growing number of studies have demonstrated the benefit of leveraging machine
110 learning to differentiate sample classes in microbiome studies. These include predict-
120 ing the risk of type 2 diabetes (26), diarrhea associated with cancer treatment (27),
121 and liver disease (28) from the gut microbiome. Additionally, when sampling the mi-
122 crobiome from human skin, explainable Al was able to identify microbial drivers asso-
123 Ciated with skin hydration, age, and pre/post-menopausal status from the skin micro-
124 biome (29).

125 For this work, we collected 58 bulk tank milk samples in a block-randomized time-
126 constrained design to assess the ability of the microbiome to indicate deviations from
127 a baseline (BL) community related to anomalies (outside farm and antibiotic use) that
128 could be presentin the food supply chain and be related to food quality issues. A set of
120 33 consensus microbes were found to be stable elements in baseline shotgun metage-
130 nomics samples with Pseudomonas, Serratia, Cutibacterium, and Staphylococcus to be
131 the most abundant. Traditional methods of ordination (cPCA and MDS), as well as al-
132 phaand beta diversity, were limited in their ability to fully separate sample classes and
133 microbial differences associated with anomalies. However, explainable Al was able
134 to differentiate sample classes while also identifying three key microbial drivers that
135 separated sample classes with significance even in this dataset, which would be con-
136 sidered small in the realm of machine learning techniques studies. Given that whole
137 genome shotgun sequencing is still prohibitively costly for wide application, we next
138 investigated if other datatypes could be used. We applied explainable Al to 16S rRNA
130 data from two publicly available milk microbiome datasets to confirm that this ap-
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FIG1 Overall analysis pipeline.

140 proach could distinguish between milk from different categories. We demonstrate
141 that our explainable Al approach is able to successfully predict the processing stage
142 and the transport stage a milk sample comes from. This study provides advances in
143 the application of machine learning that can be expanded across the food industry.

144 RESULTS

145 Collection and shotgun metagenome sequencing of baseline and anomalous
146 raw milk samples For whole metagenome shotgun sequencing, in total 65 samples
147 were collected: 33 baseline (BL), 13 outside farm (OF), 12 antibiotic treated (ABX), 6
148 negative DNA extraction controls, and 1 sequencing blank. Anomalies were chosen
140 to represent potential sources of concern in a dairy processing plant (milk from an
150 unknown source or milk contaminated with antibiotic residues). The sampling scheme
151 is shown in Supplemental Figure S1.

152 Sampling dates were block-randomized to ensure even distribution across the
153 sampling period for each anomaly type. A short time frame of five weeks was cho-
154 sen to control for seasonality.

155 Metadata including milk components (e.g., lactose, fat, milk urea nitrogen), so-
156 matic cell count, and standard plate count were also collected and provided as Supple-
157 mental File S1. No strong correlations were observed between the metadata features
158 and individual microbe reads per million (RPM) values or the summed microbe RPM
150 values per sample ( |Spearman corr.| <0.7).

160 Shotgun whole metagenome sequencing (Methods Section 3.2) with lllumina No-
161 vaSeq 6000 at 2 x 150bp resulted in 39.6-79.2 million read pairs per raw milk sample.
162 Figure 1 details the overall bioinformatics pipeline that was applied to this data.

163 During quality control of the reads with FastQC (30) and manual inspection, full-
164 length junction adapters and trailing G's were observed, indicating that the DNA was
165 likely fragmented prior to sequencing. These artifacts were removed (Methods Section
166 3.3), and resulting reads were trimmed for low quality bases using TrimGalore (31). A
167 median of 59.3M read pairs per sample were retained as high quality with a median
168 0f 0.5% read pairs needing removal due to quality issues (see Supplemental Figure S2
160 and Supplemental Table S2).

170 To remove bovine and potential contaminant sequence content, we employed ma-
1711 trix filtering as reported in a recent publication on food microbiome sequencing (5).
172 Kraken (32) was utilized with a custom-built reference database of 31 common food
173 ingredients and contaminant genomes (5) including Bos taurus (assembly Btau_5.0.1)
174 and Homo sapiens (assembly GRCh38.p10). A large fraction, 91.3-98.7%, of reads were
175 discarded from subsequent microbial analysis as matrix-classified (see Supplemental
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176 Figure S2(a) and Supplemental Table S2). Negative sequencing controls were utilized
177 to quantify the presence of typical laboratory contaminants that can be expected in
178 shotgun sequencing as it has been previously reported (33), particularly in studies us-
179 ing low biomass samples (34, 35, 36). With this, the background microbial contamina-
180 tion was identified bioinformatically using the decontam (37) R package on the genus-
181 annotated reads. The analysis identified 14 genera which were removed from subse-
182 quent analysis: Histophilus, Rahnella, Raoultella, T4virus, Pragia, C2virus, Methylophilus,
183 Oceanobacillus, Streptosporangium, Fluviicola, Oenococcus, Alkalilimnicola, Geminocystis,
184 and Brevibacillus.

185 Microbiome characterization of raw bulk tank milk We utilized Kraken (32)
186 with the NCBI RefSeq (38) whole genome collection to annotate the high quality non-
187 matrix read pairs and summarized the classified reads at genus level (Supplemental
188 Table S3). Each genus observed was defined based on a minimum abundance of 0.1
180 Reads per Million (RPM) as indicated in (5), resulting in 572 observed genera.

190 Alpha diversity was determined using the Shannon index calculated based on the
101 genus level table. Four baseline and two outside farm samples (BL-04, BL-08, BL-13,
192 BL-16, OF-09, and OF-13) were observed to have very low diversity (Shannon index
103 <0.4, Figure 2a), with a high relative proportion of reads assigned to specific microbes
104 (Supplemental Figure S2(b)), indicating a potential ‘bloom’ of specific milk microbes in
105 those samples, which drove diversity indexes to extremely low levels. This was fur-
196 ther confirmed by the observation that these samples were dominated by a single
197 organism where 94-95% of annotated reads were classified as either Pseudomonas
198 Or Staphylococcus (in the case of OF-13). While Pseudomonas and Staphylococcus have
190 been previously detected in milk, the observation of a single organism accounting for
200 the vast majority of the microbial profile of a sample would most likely be due to a
200 random sample-specific event, and not milk microbiome signatures associated with a
202 given farm. While these six samples were therefore removed from further analyses,
203 once larger datasets are available for analyses, samples with these types of sporadic
204 ‘blooms’ would not need to be removed, as they could be identified algorithmically as
205 outliers.

206 The remaining samples had an average of 27K microbial classified reads at genus
207 taxonomic rank or more specific. The alpha diversity within each sample class was rela-
208 tively consistent(Figure 2). The average Shannon index per sample class was 1.84-1.95
200 with an average number of genera observed per sample class to be 143-162 with no
210 major differences due to sampling date. Between sample classes, the alpha diversity
211 shows a similar distribution (Figure 2b) with a Wilcoxon rank sum test for BL vs OF p =
212 0.7654 and BL vs ABX p = 0.1194.

213 Classified reads per million quality-controlled sequenced reads (RPM) were com-
214 puted for each genus, and a threshold of 0.1 RPM was applied to define supported gen-
215 era, as described in Beck et al. (5). The supported genera RPM values are provided as
216 Supplemental Table S4. Figure 3 highlights the most abundant microbes observed in
217 the milk microbiomes. Genera with RPM greater than 5% of the supported genera RPM
218 total in at least one sample are shown (with remaining genera summed as "Other"). In
210 total, there were 12 such genera, and combined they account for 73.5-97.3% of the to-
220 tal supported genera RPM sum per sample. Only Pseudomonas, Serratia, Cutibacterium,
221 and Staphylococcus were observed to account for more than 5% of the total supported
222 genera RPM in every sample.

223 Additionally, a date-localized increase in abundance of Cutibacterium from 03-Oct.
224 to 07-Oct. was observed in baseline, outside farm, and antibiotic treated samples.
225 The anomalous samples were from sub-sampled dates based on our block random-
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FIG 2 Alpha diversity (Shannon index) of all raw milk samples where presence is indicated
as genus RPM > 0.1. (a) Shannon index is shown for all 58 samples and (b) summarized by
sample class with the six low-diversity outlier samples removed here and in all subsequent
figures ("Baseline_04", "Baseline_08", "Baseline_13", "Baseline_16", "OutsideFarm_09", "Out-
sideFarm_13").
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ized sampling selection (in comparison to continuous date sampling for the baseline).
Additionally, there were also a select number of microbes observed in only a few sam-
ples within one class. For example, Klebsiella was only observed in BL-01, BL-17, and
BL-33 as high abundance, and Enterobacter was uniquely observed in antibiotic treated
samples (ABX-01) as was Elizabethkingia (ABX-10, ABX-11).

Contrasting baseline and anomalous community profiles using traditional
methods To contrast sample classes and better understand microbial drivers asso-
ciated with anomalous sample classes, we began by exploring traditional microbial
ecology and ordination methods.

Beta diversity was calculated by abiding by principles of compositional data analy-
sis and computing an Aitchison distance as described in Beck et al. (5) and in Methods
Section 3.5. This distance was used to cluster samples as shown in Figure 4a. The sam-
ples clustered into three main clades with intermixed sample classes and sampling
dates. The first clade (furthest left, OF-11, BL-29, BL-32, BL-30, ABX-12) was driven by
the presence of Propionibacterium, but not with the co-occurrence with Klebsiella as in
BL-33. The remaining two larger clades intermixed all sample types and dates without
notable microbial differences defining their structure and separations.

Contrastive PCA (cPCA) (39) was applied to the microbial community relative abun-
dance data. However, it was not able to successfully separate the outside farm, an-
tibiotic, and baseline samples when baseline samples were used as the background
dataset (Supplemental Figure S3). The difference between PCA and cPCA is that cPCA
aims to identify enriched patterns in a target dataset (foreground dataset) by contrast-
ing it with another dataset (background dataset). This is an unsupervised technique
that uses a hyperparameter named alpha to adjust the trade off between high target
variance and low background variance. At alpha = 0, cPCA collapses to PCA on the
target dataset. At alpha = inf, it puts an infinite penalty on any direction which is not
in the null space of the background dataset.

In contrast to cPCA which operates on the microbial RPM count table, multidi-
mensional scaling ingests a pairwise distance matrix and aims to project the samples
onto a lower dimensional space while retaining their distances. Multidimensional scal-
ing (MDS) based on the Aitchison distance indicated some separation between the
anomalous sample types ABX and OF in the two-dimensional projection (Figure 4b),
although the baseline samples appear intermixed with the anomalous samples. The
three classes are significantly separated according to PERMANOVA (p = 0.0064).

Differentially abundant genera Two-sample Kolmogorov-Smirnov tests were per-
formed independently for each genus to determine statistically significant differen-
tially abundant features. After Bonferroni correction for multiple testing, the adjusted
p-values were significant (p < 0.01) for Coxiella for BL vs. OF and Enterobacter, Mor-
ganella for BL vs. ABX. Their RPM distributions are visualized in Figure 5. Coxiella was
observed to be increased in outside farm samples and Enterobacter and Morganella
in antibiotic treated samples. Most notably, the median RPM value of Enterobacter in
ABX samples was nearly 12 times that of the baseline samples (28.0 vs. 2.4 RPM).

Sample class prediction with explainable Al We employed an explainable Al
workflow ('AutoXAl40mics’ (https://github.com/IBM/AutoXAl40mics)), as described in
a recent study on the skin microbiome (29), to perform two separate classification
tasks: BLvs. OF and BL vs. ABX. The genus-level RPM data after removing low-diversity
outlier samples and contaminant genera was used as input (52 samples, 572 features).
For each classification task, the samples were split into training (70%) and test (30%)
sets uniformly at random, while maintaining the class size distribution in each set. Five
randomized iterations of the train/test split were performed to obtain robust results.
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FIG 3 Microbial community membership is shown per sample for genera with RPM abun-

dance greater than 5% in any sample in (a) standard stacked barplot
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and (b) with values scaled to 100% by sample. Genera observed in less than 5% of

the summed per sample abundance are aggregated into the "Other" class.
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FIG 4 Beta diversity using Aitchison distance of raw milk samples with six outlier samples
removed is shown here in (a) hierarchical clustering and (b) multidimensional scaling.


https://doi.org/10.1101/2022.08.16.504221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504221; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Beck et al.

available under aCC-BY-NC-ND 4.0 International license.

(a) Outside farm vs. baseline Antibiotictreated vs. baseline
5 Coxiella Enterobacter
p =7.01e-06 p = 4.90e-06
25 p_adj = 0.0040 p_adj = 0.0028
2 Y 100 W
= =
& 15 . 0
'] b o
1 ' g 50
| \ af l Y
051 ,’d i (fl [ Y
0 - A L e, = 0 _‘L = gt v
Baseline Qutside Antibiotic Baseline Qutside Antibiotic
i Morganella
p = 1.18e-05
8 p_adj = 0.0068
= 6
o
o
4
A
2
b
0 — O —> (B e
Baseline Qutside Antibiotic

FIG5 Distribution of RPM values for each group, for the differentially abundant genera. (a)
Outside farm vs. baseline samples. (b) Antibiotic treated vs. baseline samples. Unadjusted
and adjusted p-values from the two-sample KS-test are shown within each plot. White circles
indicate median values.
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276 To evaluate and compare the predictive performance of our machine learning model,
277 we used a state-of-the-art measure of accuracy, the F1-score. The F1-score is the har-
278 monic mean between precision and recall. It is a metric of accuracy that takes into

279 account the imbalance of the classes when the average parameter is set to "weighted".
280 The AutoXAl4Omics workflow included training and tuning of several machine

281 learning algorithms (XGboost, Random Forest (RF), Support Vector Machines, Adaboost,
282 K-Nearest Neighbors (KNN), LightGBM, Decision Trees, Extra Trees, Gradient Boosting,
283 Stochastic Gradient Descent) followed by selection of the best model based on the

284 predictive performance represented by the F1-score. The three best machine learn-
285 ing models were tree-based models (XGBoost, Random Forest, LightGBM). XGBoost

286 however, a gradient-boosted decision tree ensemble method, consistently reported

287 a higher F1-score on the test data and during cross validation. XGBoost has also per-
288 formed well in recent comparative studies on microbiome data (40, 29, 41).

289 Generating explanations for the ML models’ predictions is an important active

200 field of research. Understanding and explaining the mechanisms underlying the pre-
201 dictions can help validate the predictive models and reveal powerful and novel in-
202 sights about the connections between the samples and phenotype under investiga-
203 tion. Therefore, for each classification task, we used AutoXAl4Omics to generate ex-
204 planations of the predictions for XGBoost using an explainable Al algorithm called

205 SHapley Additive exPlanations (SHAP) (42). The SHAP algorithm assigns a SHAP value

206 to each genus (i.e., feature) that represents the impact, negative or positive, that the

207 genus has in predicting a class for a given sample. The genera are then ranked based

208 on their average absolute SHAP impact value across all the samples in the training

299 dataset to obtain a ranked list of impactful genera (see Methods Section 3.7 for more

300 details).

301 Given the number of samples per class, the random variability in the splitting of
302 samplesinto training and test sets has an effect on the predictive performance and the

303 ranked list of the most impactful genera (i.e., when running multiple iterations while

304 changing the global random seed). As such, the predictive performance and the stabil-
305 ity (43) of the top impactful genera from SHAP were examined across five randomized

306 iterations. We observed overall high variation in the order of the impactful genera

307 across the five randomized iterations with different random seeds. Stable predictive

308 features were defined as those being among the top three most impactful features in

300 at least two out of five randomized iterations.

310 Despite the observed variation, three stable impactful features were identified:
311 Coxiella for the BL vs. OF comparison as well as Enterobacter and Morganella for the BL

312 vs. ABX comparison. These stable features that are impactful for the prediction are

313 the same as the differentially abundant genera identified above with the KS-test.

314 In addition to confirming the predictive impact of the three statistically significant

315 genera, one advantage of the explainable Al algorithm, SHAP, over other feature im-
316 portance methods, is that it also explains how each of these impactful features is con-
317 tributing, positively or negatively, to the prediction of a particular class (e.g., BL) for

318 each sample or across a set of samples.

319 In Figure 6(a) for one of the five runs, Coxiella is shown as positively contributing

320 to the prediction of the class OF for those samples that have a higher abundance of
321 Coxiella. Similarly, in Figure 6(b) Enterobacter and Morganella are driving the prediction

322 of ABX for those samples with higher abundances of the genera. The SHAP plots for

323 the remaining four iterations are shown in Supplemental Figure S4.

324 For the BL vs. OF prediction, in 4/5 runs Coxiella was the most impactful and in 1/5

325 runs it was the second most impactful. The F1-score of BL vs. OF prediction ranged
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FIG 6 Explainable Al results, SHAP summary dot plots in one exemplar iteration of each
anomaly type comparison against baseline (see Supplemental Figure S4 for the other four it-
erations). SHAP values indicate the importance of that feature on the prediction of the sample
class (see further explanation in Section 3.7). (a) The most impactful features predicting out-
side farm anomaly class. (b) The most impactful features predicting antibiotic treated anomaly
class.

326 from 0.833t0 0.917 (mean 0.87). For the BL vs. ABX prediction, in 4/5 runs Morganella
327 was the most impactful. In 1/5 runs Enterobacter was the most impactful and in 2/5
328 runs the second most impactful. The F1-score of BL vs. OF prediction ranged from
320 0.692to 0.923 (mean 0.83).

330 Validation of explainable Al approach using alternate datatype To validate
331 the ability of using an explainable Al approach to detect anomalous milk samples
332 based on microbiome composition, next we applied this technique to an alternative
333 datatype. We selected 16S rRNA data, an affordable and accessible proxy for whole
332 genome shotgun sequencing metagenomics. We selected two publicly available fluid-
335 milk microbiome datasets (ERP015209, ERP114733), containing 1,507 and 626 samples
336 with 16S rRNA data, respectively (23, 20). We then used the AutoXAl4Omics tool to in-
337 vestigate whether 16s rRNA data could also distinguish milk from a range of categories,
338 including season, transport stage, silo ID, and processing stage. For processing stage
339 comparisons, classes included raw milk stored in silos "Raw Milk" class, milk stream
340 entering the pasteurizer "HTST feed" class, and post-pasteurization milk "HTST Milk"
341 class. For transport stage comparisons, classes included milk that was collected with
342 a stainless steel dipper from the inlet at the top of individual tanker trucks "Tanker"
343 class, raw milk sampled from five large-volume-capacity silos "Raw Milk" class, and
3a4 "Blended Silo" class.

345 Of the six ML models tuned, trained, and cross-validated by AutoXAl4Omics (RF,
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TABLE 1 Explainable Al performance on alternative datasets. The average F1 score
and standard deviation of the best performing model after 5-fold cross-validation on
each of the alternative datasets are indicated with the number of training and test

samples.
Target Variable Best Model Train:Test F1-Score Train F1-Score Test Study ID
Processing Stage Random Forest 311:78 0.997 +0.028 0.734 + 0.040 ERP114733 (23)
Transport Stage Random Forest 303:76 0.998 + 0.021 0.885+0.013 ERP015209 (20)
Season XGBoost 986:298 0.998 + 0.002 0.849 +0.023 ERP015209 (20)
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FIG 7 Explainable Al results on validation with alternative datatype, evaluating the ability to
predict the processing stage (n samples train:test were 311:78). SHAP summary dot plots in
one exemplar iteration of each anomaly type comparison. SHAP values indicate the impor-
tance of that feature on the prediction of the sample class (see further explanation in Sec-
tion 3.7). (a) The most impactful features predicting raw milk class. (b) The most impactful
features predicting pre-pasteurization class. (c) The most impactful features predicting post-
pasteurization class.

KNN, AutoKeras, LightGBM, Autosklearn and XGBoost), RF performed the best, pre-
dicting processing stage with 0.734 F1 score (Table 1). SHAP analysis revealed that
the most impactful genera influencing prediction of raw milk samples included lower
abundances of the genus Bacillus and the thermophilic genus Thermus, and higher
abundances of genera Pseudomonas and Acinetobacter (Figure 7). After the pasteuriza-
tion process (high-temperature short-time processing (HTST)), the genera listed above
appeared to have an opposing influence upon the model's prediction. We observed
that in pasteurized samples, higher abundances of Bacillus and Thermus, and lower
abundances of Pseudomonas and Acinetobacter influenced the prediction of this class
(Figure 7).

Another category for which AutoXAl4Omics produced highly accurate models was
milk storage stage, which represented different locations within the milk transport
pipeline, raw milk, tanker milk, or silo milk. The best performing model predicting

13


https://doi.org/10.1101/2022.08.16.504221
http://creativecommons.org/licenses/by-nc-nd/4.0/

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504221; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Beck et al.

(a)

available under aCC-BY-NC-ND 4.0 International license.

(b) (c)

Tanker

Raw Milk

Lactococcus Acinetobacter

Mycoplasma Lactococeus
Bacillus -

Bacillus

Lachnospiraceae Mycoplasma

Clostridia UCG-014 Clostridia UCG-014

Feature value
Feature value

[Eubacterium] coprostanoligenes group Rikenellaceae RC9 gut group - g

Acinetobacter

[Eubacterium] coprostanoligenes group

Rikenellaceae RC9 gut group Lachnospiraceae -

3

UCG-005 Corynebacterium e

Corynebacterium UCG-005

0.2 00 02 04 0.2
SHAP value (impact on model output) SHAP value (impact on model output)

FIG 8 Explainable Al results on validation with alternative datatype, evaluating the ability to
predict milk storage stage during transport (n samples train:test were 303:76). SHAP summary
dot plots in one exemplar iteration of each anomaly type comparison. SHAP values indicate
the importance of that feature on the prediction of the sample class (see further explanation
in Section 3.7). (a) The most impactful features predicting tanker milk class. (b) The most im-
pactful features predicting raw milk class. (c) The most impactful features predicting blended
silo class.

milk transport stage was Random Forest, with an average F1-score of 0.885 across the
three classes (Table 1). For tanker milk and silo milk, Bacillus, Mycoplasma, and Lac-
tococcus were highly influential in the model’s prediction, but they showed opposing
influences for each of the two classes. Lower abundances of Bacillus, Mycoplasma, and
Lactococcus were associated with tanker milk prediction, whilst higher abundances of
these two genera influenced silo milk prediction (Figure 8).

AutoXAl40Omics was also able to successfully predict the season in which a milk
sample was collected, using categories Fall, late Summer, Summer and Spring (Table
1). XGBoost predicted season with the highest accuracy of all models, with an average
F1-score across the four classes of 0.849 (Table 1) Mycoplasma most strongly influ-
enced prediction of both late Summer and Fall classes; however, a higher abundance
increased the likelihood of a late-Summer prediction, whilst a lower abundance influ-
enced classification as a Fall sample (Figure 9). Mycoplasma was also the second most
influential genera in the prediction of a Spring sample, suggesting this genus is heavily
influenced by season.

Milk samples collected from different silos could not be accurately predicted using
our explainable Al approach (F1-score 0.25), indicating limited differences in 16S rRNA
microbial composition between milk stored in different silos. This finding is commen-
surate with findings by Kable et al., (20) observing no clear difference using hierarchical
clustering of beta diversity of samples.
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FIG9 Explainable Al results on validation with alternative datatype, evaluating the ability to
predict milk collected in different seasons (n samples train:test were 986:298). SHAP summary
dot plots in one exemplar iteration of each anomaly type comparison. SHAP values indicate
the importance of that feature on the prediction of the sample class (see further explanation
in Section 3.7). (a) The most impactful features predicting spring class. (b) The most impactful

features predicting summer class (c) The most impactful features predicting fall class.

DISCUSSION

We have applied various traditional and artificial intelligence methods to test the hy-
pothesis that the microbial community of raw milk, as characterized by shotgun metage-
nomics, could be used for anomaly detection based on the intuition that the micro-
biome would differ in relation to two anomalous states: (i) treatment with antibiotics
and (ii) the presence of milk from a differing farm. The rationale for testing such

anomalous states was to attempt to detect anomalies that would be meaningful to the
industry (e.g., regulatory violation or unknown ingredient source) (44, 45). The micro-
biome has been shown to be a highly dynamic ecosystem where microbial community
membership and relative abundances can shift in response to a variety of perturba-
tions (46). This has been demonstrated in health (47), the environment (48), and more
recently in food systems (5, 49, 50), further substantiating our motivation.

While our study was deliberately designed to control for seasonality and thus rep-
resents a worst-case, but most realistic, scenario in terms of what would be useful for
application in anomaly detection in the industry, our results indicate that under such
circumstances, explainable Al applied to microbiome data might become a valuable
tool for monitoring and anomaly detection in food systems in the future.

Raw milk microbial composition is dominated by few typical milk genera and
overall uniform across sample types To the best of our knowledge, this study char-
acterized raw milk metagenomes in more sequencing depth than any other published
work to date and demonstrates that there is a set of consensus microbes that were
found to be stable elements across samples. We observed 32 microbial genera as
present (RPM > 0.1) in all samples (excluding low-diversity outliers), see Supplemen-

Feature value
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402 tal Table S5. Pseudomonas, Serratia, Cutibacterium, and Staphylococcus were the most
403 abundant on average. This is in agreement with most of the literature, with Pseu-
404 domonas and Staphylococcus being reported in many studies that characterized the
405 raw milk microbiome (51, 21, 52, 53). Mastitis causing bacteria, including Streptococ-
406 cus sp., Staphylococcus sp., and coliforms such as E. coli and Klebsiella have been re-
407 ported in milk microbiome studies (54, 55, 56), — all of which were detected in our
408 dataset. Consequently, our data along with previously published data indicate that
400 bacteria such as Pseudomonas, and Staphylococcus, among others, represent the core
410 bulk tank milk microbiome.

411 In our study Cutibacterium was one of the most prevalent genera. Cutibacterium be-
412 longs to the family Propionibacteriaceae, which have been reported in the teat apex mi-
413 crobiota (51). A few skin-associated Propionibacteria have been reclassified as Cutibac-
a14  terium (57), indicating that the teat skin microbiota might contribute to the bulk tank
415 milk microbiota.

416 Traditional microbial diversity metrics, clustering, and MDS and methods fail
417 to differentiate sample classes For the detection of anomalous samples, we evalu-
418 ated several traditional methods for comparative analysis of the microbiome commu-
419 nity. In this study clustering, cPCA, and MDS analyses did not indicate a strong separa-
420 tion of the three different classes of samples (baseline, outside farm, and antibiotics).
421 Thisis in contrast with recently published studies (21, 22), in which milk samples were
422 significantly different based on origin as identified by PERMANOVA and visualized with
423 Principal Component Analysis. One explanation for the disparity is that in those stud-
424 ies, sampling was performed across seasons, thus increasing the variability between
425 sample sites. In this study, we purposely sampled within a short time frame to con-
426 trol for seasonal variability, and thus avoid that confounder in our analyses. While our
427 PERMANOVA results indicate that there was a significant difference in beta diversity be-
428 tween the three classes with multidimensional scaling (p = 0.0064), no clear separation
429 could be observed between sample classes when the first two MDS are plotted. One
430 might argue that most antibiotic samples are closer to one another than the other two
431 classes, and thus that might explain our significant results within PERMANOVA. The
432 high degree of uniformity observed here might be explained by our sampling strategy
433 which was to constrain sampling to a short period of time to control for seasonality. It
434 s also possible that management practices may explain differences between baseline
435 and outside farm samples in our study.

436 Bacterial taxa can be used as biomarkers for anomaly detection Despite the
437 overall uniformity in our data, three genera were identified to be differentially abun-
438 dant between baseline and anomalous samples. Enterobacter have been reported to
430 be presentin milk microbiomes in many studies (51, 21, 52, 53), and Coxiella and Mor-
440 ganella were identified in this study but not in many others, perhaps because of to the
441 large sequencing depth applied here. Nevertheless, these are environmental organ-
442 isms that could be found in any farm, and their relative abundances could be informa-
443 tive when attempting to identify anomalies in milk.

444 In the case of milk received from an outside farm, we aimed to identify if the mi-
4a5  crobiome could signal more subtle differences since major influences, e.g. seasonality,
446 region, and temperature, were all constant. Here while the cows and bulk tanks may
447 be similar across farms, there were differences in farm management, diet, and milk-
448 ing protocols that one would expect to impart differences in the bulk tank milk micro-
4a9  biome. While baseline samples and outside farm samples were similar in their diver-
450  sity and overall community membership, Coxiella was observed to have a significant
451 increase in the outside farm samples. Coxiella is a known foodborne pathogen and
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452 a target organism for defining time and temperature combinations for milk pasteur-
453 ization (58, 59). Thus it is not an unusual finding in raw milk microbiome, reiterating
454 the fact that when using microbiome data for anomaly detection, one should not rely
455 only on finding which features are unique to a sample class, but also how the relative
456 abundances of features observed across classes might be associated with a particular
457 class.

458 In milk samples spiked with milk from cows treated with antibiotics to control mas-
450 titis, the overall diversity does not differ from baseline diversity in a significant manner.
460 Previous studies investigating bovine mastitis and antibiotic treatment have indicated
461 that alpha diversity is significantly lower in mastitic milk when compared to healthy
462 milk (60, 61). The lack of difference in diversity in our antibiotic anomalous samples
463 is in accordance with the design of this study, in which antibiotic anomalies were not
464 milk from an individual cow, but bulk tank milk spiked with 10% v/v of milk from an an-
465 imal whose milk should not be entering the food supply chain. This represents a trace
466 amount of contamination that although more difficult to detect, would represent a
467 more realistic scenario. Even in such circumstances, we identified genera e.g. Enter-
468 obacter and Morganella that are observed with increased abundance in the antibiotic
460 sample class. Enterobacter spp. are environmental mastitis-causing pathogens (54),
470 hence expected in the mastitic milk from cows treated with antibiotics. Morganella is
471 an environmental organism and part of the intestinal tract of mammals, and has been
472 isolated from cheese(62). It can be an opportunistic pathogen and has been reported
473 to infect calves (63).

474 Explainable Al outperforms traditional methods in microbiome-based anomaly
475 detection and can predict baseline vs. anomalous sample class using combined
476 signal from all genera For the detection of anomalous samples, we evaluated sev-
477 eral traditional methods for comparative analysis of the microbiome community. Al-
478 though clustering, cPCA, and MDS analyses did not indicate a strong separation of the
479 three different classes of samples, predicting each type of anomaly versus the base-
480 line could be done fairly accurately with both anomaly types using explainable Al even
481 in our relatively small dataset. We observed that XGBoost was able to differentiate
482 anomalous samples from baseline and were able to quantify the impact of the dif-
483 ferentiating features with SHAP. Likewise, XGBoost, a gradient-boosted decision tree
484 ensemble method, has also performed well in recent comparative studies on micro-
485 biome data (40, 29, 41).

486 While most machine learning algorithms function in a black-box manner, the ex-
487 plainability algorithm we used in this work— SHAP— assigns a value to each sample for
ass  each feature that describes the impact of that feature for predicting a specific sample
480 class. One could speculate that this capability will be very useful for the food industry
400 as evidence is amounting indicating that certain pathogens tend to co-occur with cer-
491 tain environmental microbes (64, 65). Thus, having the ability to "flag” microbes that
492 predict a specific problematic sample class and might prove useful to inform sanita-
493 tion and foodborne pathogen control practices. For example, Listeria has been shown
494 to co-occur with certain taxa and thus observing those taxa as impactful genera in pre-
495 dicting a specific location might raise awareness about potential future problems with
a96 Listeria (64, 65).

497 The three genera observed to be most impactful by explainable Al were the same
498 as those identified with the KS-test after Bonferroni correction; however by leveraging
499 explainable Al, we were able to use the combined signal from all genera to assess the
so0 impact of the differing abundance of these microbes.
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501 Explainable Al can predict several fluid milk sample classes using an alterna-
so2 tive datatype Despite the high metagenomics sequencing depth, we recognize the
s03 small nature of the sample size (58 samples) when it pertains to testing machine learn-
s04 ing algorithms (66, 67, 68), and that it may impart limitations on the quantitative and
s0s comparative assessments in characterizing the microbiomes of the multiple sample
so6 classes. We thus further validated our analysis approaches with publicly available
so7  bovine bulk tank milk data. The few publicly available bulk tank milk shotgun sequenc-
sos ing datasets had too low coverage (22, 69) to be appropriate for the application of our
soo methodology. Thus, we performed our validation analysis based on publicly available
s10  fluid milk 16S amplicon sequencing (21, 70).

511 The results from our validation demonstrated a strong correlation with biologi-
s12  cal factors. Here, we observed that higher abundances of Bacillus and Thermus, and
513 lower abundances of Pseudomonas and Acinetobacter influenced the prediction of post-
s14 pasteurization (Figure 7). These findings are consistent with the characteristics of the
s15  organisms that were found to have the most substantial impact on predicting post-
s16 pasteurization. Specifically, greater abundances of thermotolerant organisms such
s17  as Bacillus and Thermus were impactful for predicting post-pasteurization, as well as
s18  reduced abundances of typically thermosensitive Pseudomonas, were associated with
s10  prediction of post-pasteurization. Notably, these findings align with other analyses
s20 performed in the source study, including qPCR-based determination of cell numbers
521 (23).

522 The milk microbiota has been reported to vary with season and stage of process-
523 ingin several studies. Our validation analysis was also able to successfully predict milk
s24 samples by key attributes such as the season or the transport stage a milk sample was
s25  collected with high accuracy. Taken together, our results provide evidence for the fea-
s26  sibility of this approach and indicate that explainable Al has the potential to become
s27  a useful tool for microbiome-based quality monitoring for the food industry.

528 Conclusion and future directions In raw milk and other food systems, microbes
520 can present important challenges to food safety in the case of pathogenic organisms
s30 and affect food quality such as flavor and storage attributes. Characterizing the mi-
531 crobial composition in a diverse set of food ingredients and products is of the utmost
532 importance to better understand and improve the safety and quality of food. Since
533 the microbiome is sensitive to changes in temperature, salinity, pH, and the composi-
s34 tion of the material that it resides on among other things, it can also be utilized as an
s35 indicator for when food items deviate from a baseline of normality. For this study, our
536 goal was to infer insights about each anomaly type compared to the baseline. As the
537 number of samples collected was limited from a machine learning perspective, our
538 intent was not to build a general machine learning model. Our intent was, instead, to
530 investigate the potential use of an interpretable machine learning method (e.g., SHAP)
sa0 to infer associations between microbial abundance and different sample types (base-
sa1  line vs outside farm, baseline vs antibiotic-treated) and compare the ability of inter-
s42 pretable machine learning and traditional standard microbiome community analyses
543 techniques to identify different sample types (and hence different sources of raw ma-
s44  terials that could be used in food production). We therefore focus on the explanations
s45 provided by SHAP rather than the accuracy, the stability, or the generalizability of our
sa6 machine learning model. Our overall aim is to provide a ‘proof-of-concept’ for this
sa7 type of data and application. However, for results to be applicable for industry the
sas  sampling needs to be larger, therefore we envision to extend the approach to larger
s40 datasets as they become available. We demonstrate here that application of explain-
sso  able Al applied to microbiome sequencing data could become a useful approach for
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anomaly detection in the food industry, particularly as sequencing technologies be-
come more cost effective, laboratory processes are streamlined, and larger datasets
are produced. Future challenges will include the need to define the appropriate speci-
ficity and sensitivity for models that can identify abnormalities in products or ingredi-
ents. Importantly, acceptable specificity and sensitivity will differ by the actual supply
chains, and by factors such as the cost of false positive and false negatives, including
the ease and cost of follow-up actions, e.g. follow up facility inspections or tests to de-
termine whether detection of a microbiome abnormality represents an actual fraud
or food safety incident.

MATERIALS AND METHODS

Milk sampling Baseline raw bulk tank milk samples were collected daily from the
Cornell University Ruminant Center (CURC; Hartford, NY) between September 5th and
October 7th, 2018 and are referred to by the abbreviation BL. Anomalous samples
from an outside farm (abbreviated as OF) were collected from a collaborating com-
mercial dairy farm located in the same region (< 30 miles) and over the same time pe-
riod as the Cornell Dairy. Bulk tank milk samples were collected aseptically into sterile
10 oz. vials (Capitol Plastics, Amsterdam, NY) and transported on ice to the Milk Qual-
ity Improvement Laboratory (Ithaca, NY). Anomalous samples from antibiotic-treated
cows (abbreviated as ABX) were prepared at the laboratory by spiking the baseline
sample of that day with 10% v/v with milk from an animal currently being treated with
antibiotics, which was collected through a milking system collection device into a 10
oz vial.

Milk samples were aliquoted at the laboratory and frozen at -80°C until DNA extrac-
tion. A volume of 200 pL of milk samples were used as starting material for magnetic-
based DNA extraction using a 96-well plate and CORE kit in a KingFisher instrument
(Thermo Fisher Scientific, San Jose, CA, United States). Negative DNA extraction con-
trols (reagents only) were carried out within the same plate for quality control. Ex-
tracted DNA was frozen at -80°C until library preparation and sequencing.

Shotgun metagenome sequencing Samples were quantified with a Qubit (Thermo
Fisher Scientific, San Jose, CA, United States) before library preparation. Ten nanograms
of each Qubit quantified genomic DNA was sheared with a Covaris E220 instrument
operating SonolLab v6.2.6 generating approximately 300 bp DNA fragments according
to the manufacturer’s protocol. Between 10 and 100 ng of fragmented DNA was pro-
cessed into Illumina compatible sequencing libraries using sparQ DNA Library Prep
Kit (Quantabio, Beverly, MA, United States). Each library was barcoded with unique
dual index sequences (NEXTFLEX® Unique Dual Index Barcodes, BioO Scientific). Li-
brary size and amount were confirmed with a Bioanalyzer High Sensitivity DNA chip.
Polymerase chain reaction primers and reagents included in the sparQ kit were used
to perform PCR, and products were purified with AMPure XP beads. Equimolar li-
braries were pooled and subjected to lllumina NovaSeq 6000 sequencing at 2 x 150
bp (lllumina, San Diego, CA, United States). Shotgun whole metagenome sequencing
was performed at the Genome Sciences and Bioinformatics Core at the Pennsylvania
State University College of Medicine, Hershey, PA, United States. lllumina bcl2fastq
(released version 2.20.0.422) was used to extract de-multiplexed sequencing reads.

Read quality control and host filtering Reads that included full length auxil-
iary sequences (junction adapter) P5 or P7 ("CTGTCTCTTATACACATCTCCGAGCCCAC-
GAGAC" or "CTGTCTCTTATACACATCTGACGCTGCCGACGA") were removed with a cus-
tom script (as were their read pairs), since their presence indicates issues with se-
quencing those particular reads (see Figure 2(b-d) in Illumina’s Sequencing Technical
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600 Note (71)). Trailing stretches of "G", prevalent in Nextera sequences due to the two
601 color channel technology, were removed with a custom script. If the length of the "G"
602 tail was 30 or more, the read and its pair were discarded as low quality. The sequenced
603 reads were then processed with TrimGalore (31) for adapter and quality trimming (pa-
604 rameters: —trim-n —paired —length 50 —phred33). The reads were handled as pairs
605 through all the quality control and filtering steps.

606 Read filtering against the internal control PhiXand common host and contaminant
607 genomes was performed with Kraken (32) as in Beck et al (5). PhiX reads were filtered
e0s against the NCBI Reference Sequence: NC_001422.1. Host reads were filtered against
600 a database of plant and animal sequences introduced previously for metagenomic
610 studies of food (5), which has been open-sourced and is available via PrecisionFDA
611 https://precision.fda.gov/home/assets/file-GFfjPQj0ZqJV93P00b)3vFgG-1. Additionally,
612 kraken-filter with score threshold 0.1 was applied to avoid removing microbial reads.
613 Microbial genus profiling The reads passing quality control were classified as in
614 Beck et al (5), against the NCBI's RefSeq Complete (38) genome collection and corre-
615 sponding taxonomy of bacterial, archaeal, viral, and eukaryotic microorganisms (ap-
616 prox. 7,800 genomes retrieved April 2017). Kraken (32) was used with a minimum
617 score threshold of 0.05. Classified read counts per genus were collected as the sum
618 Of the read counts assigned to a genus or a taxonomic level below it. Sequencing
610 blanks were used as negative controls to remove contaminating genera with the de-
620 contam R package (37) with the following parameters: threshold = 0.5 and normalize
621 = TRUE. From this analysis, there were 14 genera which were removed from subse-
622 quent analysis: Histophilus, Rahnella, Raoultella, T4virus, Pragia, C2virus, Methylophilus,
623 Oceanobacillus, Streptosporangium, Fluviicola, Oenococcus, Alkalilimnicola, Geminocys-
624 tis, and Brevibacillus. Finally, classified reads per million quality-controlled sequenced
625 reads (RPM)were computed for each genus and a threshold of 0.1 RPM applied to de-
626 fine supported genera, as described in Beck et al. (5). While the sequenced read depth
627 was sufficient for genus-level taxonomic classification, it did not permit thorough gene
628 or functional analysis.

629 Community diversity Shannon diversity was calculated from the supported mi-
630 crobial genera table using the diversity function in the vegan R package (72) with de-
631 fault parameters. Beta diversity was calculated using principles of compositional data
632 analysis (73, 74). Therefore, read counts assigned to each genus were pseudo-counted
633 by adding one in advance of computation of RPM prior to calculating the Aitchison dis-
634 tance from the microbial table. Beta diversity was calculated using the R package rob-
635 Compositions (75) and hierarchical clustering was performed using base R function
636 hclust using the “ward.D2” method.

637 Contrastive PCA (39) Python implementation was run with the aim of identifying
638 enriched patterns in outside farm and antibiotic treated samples by contrasting them
630 With baseline samples, on the supported microbial genera (Supplemental Table S4).
640 In our target (foreground) data we kept OF, ABX and BL samples. In our background
641 dataset, we only kept the baseline samples. We removed the 6 low diversity outliers
ea2 from both target and background dataset. This was in an effort to uncover compo-
643 nents which have high variance in the target dataset but low variance in the back-
644 ground dataset. We tried automatic assignment of alpha values where the algorithm
645 generates and evaluates differentalpha values and we also experimented with increas-
646 ing alpha values systematically.

647 Multidimensional scaling (MDS, Matlab function cmdscale, p=2) and permutational
648 multivariate analysis of variance (PERMANOVA, function f_permanova, iter=10,000, from
640 the Fathom toolbox (76) for MATLAB) were applied on the pairwise Aitchison distances
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of all samples excluding the four baseline and two outside farm samples identified as
low-diversity outliers, on the supported microbial genera table.

Differences between baseline and outside farm, antibiotic treated samples
Two-sample statistical tests of individual features and corresponding visualizations on
labeled data can be valuable as additional information to further support the results
from explainable Al analysis, as done here. However, using two sample statistical tests
alone only identifies significant differences for one single taxon, between two samples
atatime and does not allow for assignment of a new sample to a class, as the RPM dis-
tributions per class are overlapping. Two-sample Kolmogorov-Smirnov tests (MATLAB
function kstest2) were performed for each genus to determine microbes with signifi-
cant differential abundance (p < 0.001) between baseline and each type of anomaly.
Bonferroni multiple-comparison correction was applied, p’ = pm, where m is the num-
ber of genera, to obtain adjusted p-values p’. The differentially abundant genera were
visualized using Violin Plot (77) in MATLAB.

Explainable Al To perform our explainable Al analysis we utilized the open source
software 'AutoXAl40mics’, an automated explainable end-to-end ML tool developed
for 'omics datatypes (https://github.com/IBM/AutoXAl40mics) (29).

For all datasets and classification tasks, we used AutoXAl4Omics to train and tune
a series of ML models (XGBoost, Random Forest (RF), Support Vector Machines, Ad-
aboost, K-Nearest Neighbors (KNN), LightGBM, Decision Trees, Extra Trees, Gradient
Boosting, Stochastic Gradient Descent) using a train-test split ratio of 80:20. Hyper-
tuning was performed on the training data using five-fold cross validation. For each
classification task, predictive performance of all hyper-tuned models was assessed
automatically by AutoXAl4Omics using the F1-score metric, and the top performing
model was selected. Labels for Season and Processing Stage experiments were used
that met the quality control and filtering criteria, with the exception of the Transport
experiment. For the Transport experiment, sub-sampling was employed to randomly
select samples, ensuring the class labels were more evenly balanced.

We used AutoXAl40mics to apply an explainable Al algorithm called SHapley Ad-
ditive exPlanations (SHAP), due to its ability to work with any machine learning model:
tree-based models, such as XGBoost and LightGBM, as well as kernel-based and deep
learning models. The explainability algorithm, SHAP, provides local explanations, i.e.,
interpretations of how the model predicts a particular value for a given sample. The
local explanations show how each feature is contributing, either positively or nega-
tively, to the prediction of a particular instance, for example of a particular class in
case of classification task. After each models performance was evaluated, as described
above, the top performing model cross-validation results were interpreted using SHAP
to identify features which contribute most to the prediction.

We used the tuned top performing model coupled up with SHAP to explain the
predictions (e.g., baseline vs anomalous) for each sample across the entire dataset. In
addition to providing the ranked list of important features for a ML model, an advan-
tage of SHAP over other feature importance methods is that it also explains how each
of these impactful features is contributing (positively or negatively) to the prediction
of specific phenotypic values. If we consider a binary classification task, the SHAP ex-
plainer returns two Shapley values tables of the same dimension of the input table
(number of samples x number of genera/features), respectively for the class 0 (base-
line) and the class 1 (anomalous). If we examine the table for class-0 baseline, each
entry in the table is the SHAP impact (positive or negative) that a given genus has for
the prediction of class baseline for a given sample. The absolute SHAP impact values
for each feature are then averaged out across the entire set of samples to get an in-
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7oo dication of the overall impact of a feature for the prediction, which results in a ranked
701 list of the most impactful features.

702 We used AutoXAl40mics to produce several plots providing visualisations of local
703 explanations as well as a global view of local explanations that allow for interpretation
704 of the entire model. The SHAP beeswarm plot, in particular, is a visualisation of the Shap-
705 ley values matrix for a particular class (e.g., baseline). The plot shows the impact that
706 each feature has on the prediction of the class for samples that share similar feature
707 values. The y-axis is the ordered list (descending order of importance) of impactful fea-
7os tures in predicting the class using a specific ML model (e.g., XGBoost). Therefore each
700 row is a feature. The dots in each row are the data points, or samples, and are colored
710 by the original feature value, that in this case is the genus abundance. The x-axis is
711 the SHAP value or impact. A positive SHAP value/impact of a feature for a sample (the
712 dot is on the right side of the x-axis) indicates that the feature (e.g., genus) has a pos-
713 itive impact in predicting the class (e.g., baseline), while a negative SHAP impact (the
714 dot is on the left side of the x-axis) indicated that the feature has a negative impact
715 on the prediction of the class. For each row (feature) the yellow and green dots can
716 form separate clusters that are positioned towards the right or left side of the x-axis.
717 This indicates that overall the feature (e.g., genus) tend to have a similar impact (pos-
718 itive or negative) for samples in which it has similar feature values (e.g., high or low
719 abundance).

720 Validation of anomaly detection in amplicon metagenomic samples We fur-
721 ther validated our findings by applying our explainable Al approach to publicly avail-
722 able datasets relevant to the dairy industry. Specifically, we selected two publicly avail-
723 able datasets from studies investigating the microbial profile of fluid milk using 16S
724 rRNA amplicon sequencing for three comparisons. The data were retrieved from the
725 European Nucleotide Archive (ERP015209, ERP114733) and contained 1,507 and 626
726 16S rRNA samples respectively (20, 23). Data were retrieved as .fasta files and sub-
727 jected to a uniform pipeline using the DADA2 algorithm (78) in R and taxonomy was
728 assigned using the SILVA (79) database. A count table was generated and was used
720 to investigate the suitability of our explainable Al approach to distinguish between
730 sample classes using amplicon-based data.

731 Data availability The sequencing data generated in this study are available at the
732 NCBI BioProject PRJINA726965 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA726965.
733 The code usedto generate analysesin this study is available at https://github.com/gandalab/milk-anomaly-detection.
734 CRediT author statement Conceptualization (MW, KLB, NH, BK, EG), Methodol-
735 ogy (EG, MW, KLB, NH), Resources (MW, NH, KLB, BK, MM, JK), Formal analysis (KLB,
736 NH, BK, AA, APC), Data curation (VP), Validation (MM, JK), Visualization (KLB, NH, BK,
737 AA, APC, MM, JK), Writing - Original Draft (KLB, NH), Writing - Review and Editing (KLB,
73s  NH, EG, MW).

730 SUPPLEMENTAL MATERIAL

740 FIG S1. Sampling scheme.

7a1 FIG S2. Read counts per sample.

742 FIG S3. Contrastive PCA results.

743 FIG S4. Explainable Al results.

742 TABLE S1. Metadata on the raw milk samples.

745 TABLE S2. Summary of read counts.

746 TABLE S3. Read counts per genus.

747 TABLE S4. Supported genera RPM with contaminants removed.

748 TABLE S5. Core genera RPM with contaminants and outliers removed.
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