

The genome of a vestimentiferan tubeworm (*Ridgeia piscesae*) provides insights into its adaptation to a deep-sea environment

1 **Muhua Wang^{1†}, Lingwei Ruan^{2†}, Meng Liu^{3†}, Zixuan Liu¹, Jian He¹, Long Zhang¹,**
2 **Yuanyuan Wang¹, Hong Shi², Mingliang Chen², Feng Yang², Runying Zeng², Jianguo**
3 **He^{1,4,5*}, Changjun Guo^{1,4*}, Jianming Chen^{2,6*}**

4 ¹State Key Laboratory for Biocontrol, Southern Marine Science and Engineering
5 Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on
6 Mariculture Technology, School of Marine Sciences, Sun Yat-sen University, Zhuhai
7 519000, China.

8 ²State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of
9 Marine Genetic Resources of Ministry of Natural Resources, Third Institute of
10 Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic
11 Resources, Xiamen 361005, China.

12 ³Novogene Bioinformatics Institute, Beijing 100083, China.

13 ⁴Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life
14 Sciences, Sun Yat-sen University, Guangzhou 510275, China.

15 ⁵Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and
16 Technology, Maoming 525435, China.

17 ⁶Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine
18 Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108,
19 China.

20 **† These authors contributed equally to this work.**

21 *** Correspondence:**
22 Jianming Chen
23 chenjm@mju.edu.cn

24 Changjun Guo
25 gchangj@mail.sysu.edu.cn

26 Jianguo He (ORCID: 0000-0003-2460-7061)
27 lsshjg@mail.sysu.edu.cn
28

29 **Abstract**

30 Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living
31 in the deep-sea hydrothermal vent and cold seep areas. The morphology and lifespan of
32 *Ridgeia piscesae*, which is the only vestimentiferan tubeworm species found in the
33 hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to the endemic
34 environments. Recent analyses have revealed the genomic basis of adaptation in three vent-
35 and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and
36 mechanism of adaptation in *R. piscesae*, a unique species in the family *Siboglinidae*, is
37 remained to be investigated. Here we report a high-quality genome of *R. piscesae* collected
38 at Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis revealed that
39 that the high growth rates of vent-dwelling tubeworms might derive from small genome
40 size. The small genome sizes of these tubeworms are attributed to the repeat content but
41 not the number of genes and intron sizes. Additionally, four genes involved in cell
42 proliferation were subject to positive selection in the genome of *R. piscesae*, suggesting
43 that, besides apoptosis, cell proliferation is important for regulating growth rate in this
44 species.

45

46 **Keywords**

47 vestimentiferan tubeworm, *Ridgeia piscesae*, genome, deep-sea adaptation, lifespan,

48

49 **Introduction**

50 The discovery of deep-sea hydrothermal vents and cold seeps, as well as their
51 associated ecosystems have revolutionized our view of biology and understanding of the
52 energy sources that fuel primary productivity on Earth (Corliss et al., 1979; Paull et al.,
53 1984; Petersen et al., 2011). Hydrothermal vents are areas on the ocean floor where hot,
54 anoxic, chemical-rich water is expelled into the cold, oxygen-rich deep ocean (Von Damm,
55 1995). Cold seeps are areas where methane, hydrogen sulfide, and other hydrocarbons seep
56 or emanate as gas from deep geologic sources (Suess, 2014). Both hydrothermal vents and
57 cold seeps are characterized by high hydrostatic pressure, darkness, lack of oxygen and
58 photosynthesis-derived nutrients, and high concentrations of toxic chemicals (Levin, 2005).
59 Organisms inhabiting around hydrothermal vents and cold seeps develop unique characters
60 to adapt to the adverse conditions (Grassle, 1985; Childress and Fisher, 1992). Due to the
61 complete absence of light, hydrothermal vent and cold seep ecosystems are driven by the
62 chemosynthesis instead of photosynthesis (Stewart et al., 2005; Vanreusel et al., 2009).
63 The process is completed by the chemosynthetic microorganisms, which cooperate with a
64 variety of macrobenthos to form chemosynthetic symbioses and contribute to the primary
65 production supporting the ecosystem (Dick, 2019).

66 Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals
67 living in the deep-sea hydrothermal vent and cold seep areas (Bright and Lallier, 2010).
68 The body of adult vestimentiferan tubeworm is enclosed in a chitinous tube that is closed
69 at the posterior end. Vestimentiferan tubeworms lack a digestive tract and rely on
70 symbiosis with chemoautotrophic microorganisms, which inhabit in an specialized internal
71 organ, to derive their metabolic needs (Vrijenhoek, 2010). The first discovery of

72 chemoautotrophic symbiont in *Riftia pachyptila*, a vestimentiferan tubeworm inhabiting
73 around hydrothermal vents on the East Pacific Rise (EPR), initiated the intensive study of
74 these deep-sea tubeworms (Corliss et al., 1979). The body of adult tubeworm is comprised
75 of four main parts. The anteriorly located branchial plume is the primary site of gas
76 exchange with the environment. Below the plume is the vestimentum, where heart,
77 gonopores and a simplified brain are located. The trophosome, which is primarily
78 composed of symbiont-containing bacteriocytes and blood vessels, is located below
79 vestimentum. And the segmented opisthosoma is located below vestimentum (Jones, 1981;
80 Hand, 1987; Schulze, 2001).

81 Lifespan varies greatly between the vent- and seep-dwelling tubeworms (Lutz and
82 Kennish, 1993). The lifespan of *R. pachyptila*, which thrives in relatively strong and
83 continuous diffuse hydrothermal flow, was estimated to be less than 10 years (Urcuyo et
84 al., 2007). In contrast, *Lamellibrachia luymesi*, which live around cold seeps in the Gulf of
85 Mexico, can live up to 250 years (Bergquist et al., 2000). In general, vent-dwelling
86 tubeworms grow faster than seep-dwelling tubeworms. The growth rate of *R. pachyptila*
87 can reach up to about 160 cm yr⁻¹, while the growth rate of *L. luymesi* is only about 3 cm
88 yr⁻¹ (Shank et al., 1998; Thiebaut et al., 2002; Fisher et al., 2008). Previous analysis
89 revealed that both vent- and seep-dwelling tubeworms have high rates of cell proliferation.
90 Recent analysis suggested that the variation of growth rates is attributed to the variation of
91 apoptosis between vent- and seep-dwelling tubeworms, where apoptosis is substantially
92 downregulated in vent-dwelling species (Pflugfelder et al., 2009).

93 The Juan de Fuca Ridge in the northeast Pacific Ocean is characterized by a broad
94 heterogeneity of chemical environments, ranging from vigorous, high-temperature vents to

95 diffuse flow (Tivey et al., 1999). The hydrothermal vents on the Juan de Fuca Ridge
96 provide numerous biotic habitats, which support the growth of a large quantity of endemic
97 organisms (Tsurumi and Tunnicliffe, 2003). Although the biomass of endemic
98 hydrothermal vent fauna is high, there is only a few macrofauna species dominating a
99 particular vent community (Lutz et al., 1998; Tunnicliffe et al., 1998). *Ridgeia piscesae*
100 Jones (1985) is the only vestimentiferan tubeworm species in the hydrothermal vents on
101 the Juan de Fuca Ridge. The tubeworm occurs at high density in most of the vents, acts as
102 an ecosystem-structuring species by providing habitats for several other organisms and
103 serving as a primary producer through chemosynthetic endosymbiosis (Childress and
104 Fisher, 1992; Urcuyo et al., 2003).

105 *Ridgeia piscesae* adopts different strategies to adapt to diverse environments in the
106 vents on Juan de Fuca Ridge. First, a strong phenotypic plasticity, where a given genotype
107 expresses different phenotypes in different ecological setting, was identified in *R. piscesae*
108 (Carney et al., 2007). Two extreme growth forms (morphotypes) of *R. piscesae*, “short-fat”
109 and “long-skinny”, were discovered in the geologically and chemically diverse vent fields
110 (Southward et al., 1995). “Short-fat” *R. piscesae* prefers relatively high flow vent fluid of
111 high temperature (up to 30 °C) and high concentrations of sulfide, while “long-skinny”
112 morphotype adapts to ambient temperature (2 °C) and low concentrations of sulfide at areas
113 of diffuse hydrothermal fluids (Carney et al., 2007). These two morphotypes diverge in
114 several morphological characters (Jones, 1987). The tube of “short-fat” morphotype has a
115 generally constant diameter of 2-3 centimeters, while the tube diameter of “long-skinny”
116 morphotype reduces from the anterior to posterior. This morphotype acquires sulfide by
117 their buried posterior tube sections in areas where sulfide is generally not detectable around

118 their plumes (Urcuyo et al., 2003). Thus, unlike other vent-dwelling vestimentiferan
119 species, *R. piscesae* can thrive in the areas of diffuse vent fluids. Second, lifespan of *R.*
120 *piscesae* vary greatly according to the endemic environments (Urcuyo et al., 2007). The
121 species can grow with high growth rates ranging from 6 to 95 cm yr⁻¹ under favorable
122 condition, and can grow very slowly when exposed to low levels of vent flow and sulfide
123 (Tunnicliffe et al., 1997; Sarrazin et al., 1998). Strong phenotypic plasticity and flexible
124 lifespan allows *R. piscesae* to adapt to diverse habitats and makes it a unique species in the
125 family *Siboglinidae*. Recent genomic analyses have revealed the genetic basis of adaptation
126 in three vent- and seep-dwelling vestimentiferan tubeworms (Li et al., 2019; Sun et al.,
127 2021; de Oliveira et al., 2022). Although its critical role in supporting the vent ecosystem,
128 the evolutionary history and mechanism of adaptation in *R. piscesae*, a unique deep-sea
129 tubeworm, is remained to be investigated.

130 Here, we assembled and annotated a high-quality genome of *R. piscesae* collected at
131 Cathedral vent of the Juan de Fuca Ridge. Evolutionary analysis inferred that two vent-
132 dwelling species (*R. piscesae* and *R. pachyptila*) started to diverge due to the separation of
133 the Gorda/Juan de Fuca/Explorer (GFE) ridge systems and the East Pacific Rise (EPR).
134 Comparative genomic analysis revealed that the high growth rates of vent-dwelling
135 tubeworms might derive from small genome size. The small genome sizes of these
136 tubeworms are attributed to the repeat content but not the number of genes and intron sizes.
137 Additionally, four genes involved in cell proliferation were subject to positive selection in
138 the genome of *R. piscesae*, suggesting that, besides apoptosis, cell proliferation is important
139 for regulating growth rate in this species.

140

141 **Results**

142 **Genome assembly and annotation**

143 The samples of *R. piscesae* were collected from the deep-sea hydrothermal vent at
144 Cathedral vent, Main Endeavor Field of the Juan de Fuca Ridge (47° 56' N, 129° 05' W,
145 2,181 m depth). Short-insert paired-end (180 bp, 300 bp and 500 bp) and long-insert mate-
146 pair (2 kb, 5 kb, 10 kb and 15 kb) sequencing libraries were constructed and sequenced on
147 the Illumina HiSeq 2000 platform. A total of 247.74 Gb sequencing data was generated
148 (**Supplementary Table 1**). Based on the *k*-mer distribution of 180 bp paired-end Illumina
149 read, the genome size of was estimated to be 694.79 Mb with a heterozygosity of 1.2%
150 (**Supplementary Fig. S1**). The final assembly of *R. piscesae* genome was 574.96 Mb with
151 a contig N50 size of 10.42 kb and a scaffold N50 size of 230.23 kb (**Supplementary Table**
152 **S2**).

153 A total of 87.4% sequencing reads can be aligned unambiguously to the assembled *R.*
154 *piscesae* genome sequence, covering 99.74% of the assembly (**Supplementary Table S3**).
155 In addition, 99.63% of Trinity assembled sequences (Unigenes) could be aligned to the
156 assembly (**Supplementary Table S4**). The integrity of genome assembly was further
157 assessed using benchmarking universal single-copy orthologs (BUSCO) tools. The result
158 showed that 897 of 978 (92.6%) single-copy metazoan genes (obd10) were captured in the
159 assembly (**Supplementary Table S5**). These results demonstrated that the *R. piscesae*
160 genome is of high quality, and comparable to the previously published tubeworm genomes
161 (**Table 1**) (Li et al., 2019; Sun et al., 2021; de Oliveira et al., 2022).

162 Transposable elements (TEs) accounted for 30.17% in the *R. piscesae* genome
163 assembly, with long interspersed elements (LINEs, 8.08%) as the most abundant class of
164 TEs (**Supplementary Table S6**). The *R. piscesae* genome encodes 24,096 protein-coding
165 genes, of which 95.54% are annotated based on known proteins in diverse public protein
166 databases (**Supplementary Table S7**).

167

168 **Phylogenomic analyses**

169 To infer the evolutionary history of *R. piscesae*, a maximum-likelihood (ML)
170 phylogenetic tree was constructed using single-copy orthologs of *R. piscesae* and 14
171 metazoans with *Adineta vaga* as an outgroup (**Fig. 1, Supplementary Fig. S2,**
172 **Supplementary Table S8**). Two vent-dwelling tubeworms (*R. piscesae* and *R. pachyptila*)
173 formed a clade. *Paraescarpia echinospica* and *L. luymesi* from cold seeps are basal to the
174 vent clade. These results corroborate the view that vent-dwelling tubeworms might derived
175 from their seep-dwelling relatives (Black et al., 1997; Halanych, 2005).

176 *Ridgeia piscesae* is endemic to the Gorda/Juan de Fuca/Explorer (GFE) ridge
177 systems, and *R. pachyptila* is discovered on the East Pacific Rise (EPR). The subduction
178 of the Farallon-Pacific Ridge separated GFE and EPR between 28.5-35 Ma. Molecular
179 clock analysis revealed that *R. pachyptila* diverged from *R. piscesae* approximately 33.7
180 million years (Ma). This result suggests these two vent-dwelling species started to diverge
181 due to adaptation to the newly formed ridge systems. The divergence time of *L. luymesi*
182 and other three tubeworms was estimated to be approximately 65.1 Ma, corroborating the

183 view that modern vestimentiferan tubeworms started to diverge during the early Cenozoic
184 Era (Little and Vrijenhoek, 2003; Li et al., 2019; Sun et al., 2021).

185

186 **3.3 Genome evolution of vestimentiferan tubeworms**

187 It has been demonstrated that several factors, including repeat content, number of
188 genes, and the intron sizes, contributed to the variation of genome sizes among different
189 organisms (Lynch, 2007; Niu et al., 2022). In addition, previous reports proposed that the
190 differences of genome sizes among deep-sea tubeworms might be attributed to the numbers
191 of repetitive elements and genes (Sun et al., 2021; de Oliveira et al., 2022). The assembled
192 size of *R. piscesae* genome is closed to the size of *R. pachyptila*, but smaller than the sizes
193 of two seep-dwelling tubeworms (*L. luymesi* and *P. echinospica*) (**Table 1**). The genomes
194 of cold seep dwelling tubeworms have more transposable elements (TE), especially DNA
195 transposons, LINEs and LTR retrotransposons, than hydrothermal vent dwelling
196 tubeworms (**Fig. 2A**). TEs accounted for 38.2% and 55.1% of *L. luymesi* and *P.*
197 *echinospica* genomes, and they constituted 30.2% and 29.9% of the genomes of *R. piscesae*
198 and *R. pachyptila*. A strong positive correlation ($R^2 = 0.98$, $P = 0.0052$) was identified
199 between genome size and repeat content in these four species (**Fig. 2B**), suggesting that
200 TEs are a major contributor to the genome size evolution in vestimentiferans. Repeat
201 landscape plots indicate that TE activity is different between *R. pachyptila* and three other
202 tubeworm species (**Fig. 3**). There are recent expansions of TEs in the genomes of *L. luymesi*,
203 *P. echinospica*, and *R. piscesae*, but not in *R. pachyptila*. The main contributor to recent
204 TE expansions in *L. luymesi*, *P. echinospica*, and *R. piscesae* appear to have been LINEs

205 and DNA transposons. Nonetheless, only LINEs were expanded recently in the genome of
206 *R. pachyptila* (**Fig. 3D**).

207 The number of annotated gene models in *R. piscesae* genome (24,096) is closed to
208 the ones in the genomes of *R. pachyptila* (25,984) and *P. echinospica* (22,642) but less than
209 the ones in *L. luymesi* genome (38,998). Introns account for 220.1 Mb and 204.7 Mb in the
210 genomes of two seep-dwelling tubeworms (*L. luymesi* and *P. echinospica*), as well as 264.8
211 Mb and 234.5 Mb in the genomes of two vent-dwelling tubeworms (*R. pachyptila* and *R.*
212 *piscesae*) (**Supplementary Table S9**). Average length of introns in the genome of *R.*
213 *piscesae* is longer than introns of other three species. Additionally, two vent-dwelling
214 tubeworms with smaller genome sizes have higher ratios of intron / exon length than the
215 seep-dwelling tubeworms. Thus, gene number and intron size do not contribute to the
216 differences of genome sizes between seep- and vent-dwelling tubeworms.

217 Previous study revealed that *R. pachyptila* experienced reductive evolution with
218 more contracted than expanded gene families in the genome (de Oliveira et al., 2022).
219 Gene-family analysis of four tubeworm species identified a core set of 10,225 gene families
220 (**Fig. 4A**). In total, 601 and 279 lineage-specific gene families were identified in *R. piscesae*
221 and *R. pachyptila*, respectively, which are much less than the ones in *L. luymesi* (1181) and
222 *P. echinospica* (1045). Additionally, gene-family analysis of 12 lophotrochozoans revealed
223 that the numbers of expanded gene families were substantially less than contracted gene
224 families in the two vent-dwelling tubeworms, while more gene families were expanded
225 than contracted in their seep-dwelling counterparts (**Fig. 4B**). These results indicate that
226 the genomes of vent-dwelling tubeworms were characterized by gene loss.

227 *Hox* genes are a set of conserved regulators that specify regions of the body plan of
228 an embryo along anterior-posterior axis in metazoans (Pearson et al., 2005). One of the
229 *Hox* genes (*Antp*) plays a role in the development of posterior segment of several marine
230 annelids (Bakalenko et al., 2013). Loss of *Antp* was apparent across all four tubeworm
231 genomes (**Supplementary Fig. S3**), corroborating the view that the loss of *Antp*
232 contributes to the reduced segmentation of the posterior region of juvenile worms in
233 vestimentiferans (Sun et al., 2021). *Lox2* gene is missing in the genome of *L. luymesi* but
234 presented in the genomes of three other tubeworms, suggesting the loss of this gene might
235 be a lineage-specific event.

236

237 **3.4 Genomic basis of deep-sea adaptation**

238 Hemoglobins (Hbs) in vestimentiferan tubeworms, which bind oxygen and sulfide
239 simultaneously and provide substrate for chemosynthesis by the symbionts, facilitate the
240 adaptation of these species to deep-sea reducing environments. Four heme-containing
241 chains were identified (A1, A2, B1, B2) in hemoglobins of vestimentiferans (Zal et al.,
242 1997). To elucidate the evolution of Hbs in vestimentiferans, we identified Hb genes in the
243 genomes of four tubeworms species. A single copy of A2 and B2 Hb genes, as well as two
244 copies of A1 genes were identified in each of the tubeworm genomes (**Fig. 5**). Previous
245 studies found that the group of B1 Hbs were significantly expanded in *L. luymesi*, *P.*
246 *echinospica*, and *R. pachyptila* (Li et al., 2019; Sun et al., 2021; de Oliveira et al., 2022).
247 With 17 identified genes, the group of B1 Hbs was also expanded in the genome of *R.*
248 *piscesae*. The free cysteine residues in A2 and B2 chains contribute to the sulfide-binding

249 ability of the vestimentiferan Hbs (Bailly et al., 2002). Additionally, the free cysteine was
250 identified at the same position in B1 Hb genes as in A2 Hb genes of *R. piscesae*
251 (**Supplementary Fig. S4**), corroborating the view that the free cysteines might also
252 contribute to sulfide binding in B1 hemoglobin chain of deep-sea tubeworms (Li et al.,
253 2019).

254 Recent reports revealed that most enzymes related to amino acid biosynthesis were
255 lost in *L. luymesi* and *R. pachyptila* (Li et al., 2019; de Oliveira et al., 2022). To gain better
256 insight into nutrient dependence of endosymbionts in vestimentiferans, we identified key
257 enzymes involved in amino acid biosynthesis in the genomes of tubeworms (**Fig. 6**). All
258 four tubeworms (*L. luymesi* and *R. pachyptila*, *R. piscesae* and *P. echinospica*) lack most
259 key enzymes related to amino acid biosynthesis, corroborating the view that
260 vestimentiferan tubeworms mainly relied on endosymbionts for synthesizing amino acids
261 (Li et al., 2019).

262 The expansion of gene families is considered as a major driver of adaptation and
263 speciation (Sharpton et al., 2009). Thus, we performed gene family expansion and
264 contraction analysis with 4 vestimentiferan tubeworms and 8 other lophotrochozoans (**Fig.**
265 **4B**). In total, 10 gene families were significantly expanded in the genomes of all four
266 tubeworms compared to other 8 lophotrochozoans ($P < 0.05$) (**Supplementary Table S10**).
267 Gene ontology analysis revealed the expanded gene families were involved in the process
268 of chitin binding and innate immunity. Furthermore, 18 gene families were significantly
269 expanded in the genomes of two cold-seep tubeworms. The expanded gene families were
270 involved in the process of DNA repair, innate immunity, and protein stability
271 (**Supplementary Table S11**).

272 In addition to expanded and contracted gene families, we identified positively
273 selected genes (PSGs) in the genome of *R. piscesae*. Compared with other 11
274 lophotrochozoan species, 9 PSGs were identified in *R. piscesae* (**Supplementary Table**
275 **S12**). Interestingly, four genes (alkB homolog 2, alpha-ketoglutarate-dependent
276 dioxygenase, *ALKBH2*; Derlin-1, *DERL1*; Ras-related and estrogen-regulated growth
277 inhibitor, *RERG*; AN1-type zinc finger protein 2B, *ZFAND2B*) involved in cell
278 proliferation were subjected to positive selection in *R. piscesae*. Two of these genes
279 (*ALKBH2* and *DERL1*) promote cell proliferation. *ALKBH2* is responsible for protecting
280 the genome from 1-meA damage by repairing the damage in double-stranded DNA(Aas et
281 al., 2003). *ALKBH2* promotes cell proliferation and is overexpressed in several types of
282 tumor cells (Wilson et al., 2018). *DERL1* participates in endoplasmic reticulum (ER)-
283 associated degradation response and unfolded protein response (UPR) (Eshraghi et al.,
284 2014). *DERL1* is responsible for cell proliferation and promotes the progression of several
285 types of cancers (Dong et al., 2013). Interestingly, two other genes (*RERG* and *ZFAND2B*)
286 inhibit cell proliferation. Overexpression of *RERG*, a member of the RAS superfamily of
287 GTPase, inhibits cell proliferation and tumor formation (Finlin et al., 2001; Ho et al., 2017).
288 *ZFAND2B* reduces the abundance of IGF1R, a kinase that activates cell proliferation, in a
289 proteasome-dependent manner (Osorio et al., 2016). These results suggest that, besides
290 apoptosis, the regulation of cell proliferation also contributes to the variation of growth
291 rates in *R. piscesae*.

292

293 Discussion

294 In many hydrothermal vent and cold seep ecosystems, vestimentiferan tubeworms
295 are among the dominant megafauna at habitats where hydrogen sulfide is present
296 (Cavanaugh et al., 1981; Tunnicliffe, 1992). These deep-sea tubeworms occupy a broad
297 environmental gradient from areas where sulfide-rich fluids emanate as relatively vigorous
298 and continuous diffuse vent flow to areas where vent fluids seep slowly from the seafloor
299 (Urcuyo et al., 2007). Seep-dwelling tubeworms grow slowly as they live in environments
300 where exposure to seep fluid is very low (Julian et al., 1999; Fisher et al., 2008). The
301 lifespan of most vent-dwelling tubeworms is relatively short due to the habitats are short-
302 lived. They thrive in strong and continuous diffuse hydrothermal flow and dies when vent
303 flow subsides or sulfide levels decrease due to biotic or abiotic factors (Fisher et al., 1988;
304 Shank et al., 1998). Great variations in lifespan and morphology were found among
305 different morphotypes of *R. piscesae*, which is endemic to the highly heterogeneous
306 chemical environments of hydrothermal vents on the Juan de Fuca Ridge. The “Short-fat”
307 morphotype of *R. piscesae* that live around vigorous vents with high concentrations of
308 sulfide grow rapidly, while the “long-skinny” morphotype inhabit around diffuse flow with
309 low concentrations of sulfide have much slower growth rates (Southward et al., 1995;
310 Carney et al., 2007). Unlike the “short-fat” morphotype, the tube diameter of “long-skinny”
311 morphotype reduces from the anterior to posterior. As the concentration of sulfide is low
312 in the diffuse vent flow, thin and transparent end facilitates the “long-skinny” morphotype
313 to acquire sulfide by the posterior tube (Urcuyo et al., 2003). Thus, *R. piscesae* exhibit a
314 greater tolerance to varying physicochemical conditions than any other known
315 vestimentiferans (Tivey et al., 1999; Bright and Lallier, 2010). However, the evolutionary

316 history and underlying genetic mechanisms of adaptation in *R. piscesae* are remained to be
317 investigated.

318 Here we assembled and annotated a high-quality reference sequence of *R. piscesae*.
319 Phylogenomic analysis was performed among 4 vestimentiferan tubeworms and 11
320 metazoans using single-copy orthologs (**Fig. 1, Supplementary Fig. S2**). *Ridgeia*
321 *pachyptila* and *R. piscesae*, the two tubeworm species that are endemic to hydrothermal
322 vents of the eastern Pacific, formed a clade in the phylogenetic tree. Additionally,
323 *Lamellibrachia luymesi* from cold seep appeared sister to three other deep-sea tubeworms,
324 corroborating the view that this species derived early from other tubeworm (Black et al.,
325 1997). *Ridgeia piscesae* and *R. pachyptila* are endemic to the GFE ridge systems and the
326 EPR, respectively. The divergence time between these two vent-dwelling species was
327 estimated to be approximately 33.7 Ma. This result suggests that *R. piscesae* and *R.*
328 *pachyptila* started to diverge after the formation of GFE and EPR between 28.5-35 Ma.

329 It was proposed that natural selection and adaptive process shaped genome size
330 evolution (Gregory, 2001). Previous analyses revealed that genome sizes are correlated
331 with several phenotypic traits, including cell size, rates of metabolism and growth
332 (Cavalier-Smith, 1982; Vinogradov, 1995; Wyngaard et al., 2005; Wright et al., 2014). A
333 negative correlation between genome size and growth rate was identified in several species,
334 as organisms with smaller genomes might undergo more rapid replication time of their
335 genome (Wyngaard et al., 2005; Tenaillon et al., 2016). To investigate the genomic basis
336 of their high growth rates, we studied the factors which might contribute to the evolution
337 of genome sizes in four vestimentiferan tubeworms. Firstly, we studied the relationship
338 between repeat content and genome size. A strong positive correlation ($R^2 = 0.98$, $P =$

339 0.0052) between repeat content and genome size was identified in these tubeworm species
340 (**Fig. 2B**), corroborating the view that repeat content contributes to the variation of genome
341 sizes in tubeworm species (Sun et al., 2021). Secondly, we evaluated the number and size
342 of genes in tubeworm genomes. *Lamellibrachia luymesi* genome has the most annotated
343 gene models (38,998), following by *R. pachyptila* (25,984), *R. piscesae* (24,096), and *P.*
344 *echinospica* (22,642). Average length of introns in the genome of *R. piscesae* is longer than
345 introns of other three species. In addition, two vent-dwelling tubeworms with smaller
346 genome sizes have higher ratios of intron / exon length than the seep-dwelling tubeworms.
347 These results suggest that the variation of genome sizes in tubeworms is not attributed to
348 gene number and intron length. Lastly, we performed gene family expansion and
349 contraction analysis. Lineage-specific gene families of *R. piscesae* (601) and *R. pachyptila*
350 (279) are much less than the ones of *L. luymesi* (1181) and *P. echinospica* (1045) (**Fig. 4A**).
351 In addition, gene-family expansion and contraction analysis revealed that the numbers of
352 expanded gene families were substantially less than contracted gene families in the two
353 vent-dwelling tubeworms (**Fig. 4B**). These results indicate that, besides *R. pachyptila*, *R.*
354 *piscesae* experienced reductive evolution. Taken together, these results indicate that the
355 high growth rates of vent-dwelling tubeworms might derive from small genome size and
356 protein family. The small genome sizes of these tubeworms are attributed to the repeat
357 content but not the number of genes and intron sizes.

358 Previous immunohistochemical and ultrastructural cell cycle analyses revealed that
359 cell proliferation activities of *L. luymesi* and *R. pachyptila* are as high as in tumor. The
360 balanced activities of proliferation and apoptosis in the epidermis lead to the slow growth
361 in *L. luymesi* from cold seeps, while apoptosis is substantially downregulated in this tissue

362 of *R. pachyptila* that maintains a high growth rate (Pflugfelder et al., 2009). Unlike other
363 vestimentiferan tubeworms, growth rates vary greatly among different individuals of *R.*
364 *piscesae* (Tunnicliffe et al., 1997; Sarrazin et al., 1998). Four genes involved in the
365 regulation of cell proliferation were identified to be positively selected in *R. piscesae*.
366 Interestingly, two of these genes promote cell proliferation, whereas two other genes inhibit
367 cell proliferation. This result indicates that both cell proliferation and apoptosis involve in
368 the regulation of growth in *R. piscesae*. Furthermore, up-regulation and downregulation of
369 cell proliferation might play important role in the variation of growth rate in this species.

370

371 **Materials and Methods**

372 **Sampling and sequencing**

373 The samples of *R. piscesae* were obtained during *Alvin* dive 4243 from the deep-sea
374 hydrothermal vent at Cathedral vent, Main Endeavor Field of the Juan de Fuca Ridge (47°
375 56' N, 129° 05' W, 2,181 m depth) on August 9, 2006. Genomic DNA (gDNA) was
376 extracted from muscle of the specimen using a standard phenol/chloroform extraction
377 protocol and broken into random fragments for whole-genome shotgun (WGS) sequencing.
378 Agarose gel electrophoresis was used to check the quality of the gDNA, and Qubit system
379 was used to quantify the gDNA. Short-insert paired-end libraries (180 bp, 300 bp and 500
380 bp) were prepared using the NEBNext Ultra DNA Library Prep Kit for Illumina (NEB)
381 according to the standard protocol, respectively. Large-insert mate-pair libraries (2 kb, 5
382 kb, 10 kb and 15 kb) were prepared following the Cre-lox recombination-based protocol
383 (Van Nieuwerburgh et al., 2012). All DNA libraries were subjected to paired-end
384 sequencing on the Illumina Hiseq 2000 platform (Illumina). Muscle samples were also
385 collected for constructing RNA sequencing (RNA-seq) library. Total RNA was extracted
386 with TRIzol reagent (Molecular Research Center). Paired-end library for RNA-seq was
387 constructed using the Paired-End Sample Preparation Kit (Illumina) and sequenced on the
388 Illumina Hiseq 2000 platform (Illumina).

389

390 **Genome assembly**

391 NGS QC toolkit (v2.1) (Patel and Jain, 2012) was used to evaluate the quality of raw
392 sequencing reads and filter high-quality reads. High-quality reads were obtained by
393 filtering out the following types of reads: (1) reads with $\geq 10\%$ unidentified nucleotides
394 (N); (2) reads with adaptor contamination; (3) reads with $\geq 20\%$ bases having Phred
395 quality score ≤ 5 ; (4) duplicated reads generated by PCR amplification during the library
396 construction process.

397 The size and heterozygosity of *R. piscesae* genome were estimated using the high-
398 quality short-insert paired-end reads (180 bp) by *k*-mer frequency-distribution method. The

399 number of k -mers and the peak depth of k -mer sizes at 19 was obtained using
400 GenomeScope2 (v1.0.0) (Ranallo-Benavidez et al., 2020). Due to the high heterozygosity
401 of *R. piscesae* genome, a modified version of SOAPdenovo (Wang et al., 2017) was
402 implemented for genome assembly. In brief, all short-insert paired-end reads were applied
403 for contig assembly. Depth of coverage was obtained for each contig using SOAPdenovo
404 with the parameters ‘-e 1 -M 0 -R’, and the contigs with depth less than 60 were identified
405 as heterozygous contigs. All WGS reads were aligned to the heterozygous contigs using
406 SOAPdenovo. And links were generated between heterozygous contigs when supported by
407 a minimum of three read pairs. Heterozygous contigs were clustered into bubble clusters
408 based on the orientation and distance between heterozygous contigs. If two contigs
409 represented two potential haplotypes in a bubble structure, the longer one was retained to
410 ensure the integrity of contig assembly.

411 To scaffolding the contigs, all short-insert paired-end and long-insert mate-pair reads
412 were realigned onto the contig sequences using SOAPdenovo. Duplicated contigs that had
413 high depth of coverage and conflicting connections to the unique contigs were masked
414 during scaffolding. A hierarchical assembly strategy was used to construct contigs into
415 primary scaffolds by adding the ascending insert size reads gradually. Finally, all short-
416 insert reads were realigned onto the scaffold sequences to fill the gaps with the GapCloser
417 program implemented in SOAPdenovo (Luo et al., 2012).

418

419 **Genome quality assessment**

420 To assess the completeness of the *R. piscesae* genome, high-quality short-insert
421 paired-end reads were mapped to the genome assembly using Burrows-Wheeler Aligner
422 (BWA) (v0.7.17) (Li and Durbin, 2009) with parameters of ‘-o 1 -e 5 -t 8 -n 15’. In addition,
423 all RNA-seq reads were *de novo* assembled using Trinity (v2.9) (Grabherr et al., 2011).
424 The Trinity assembled sequences (Unigenes) with length ≥ 500 bp were mapped to the *R.*
425 *piscesae* genome using BLAT (v35.1) (Kent, 2002) with default parameters and an identify
426 cutoff of 90%. The completeness of the assembly was also evaluated using benchmarking

427 universal single-copy orthologs (BUSCO) (v3.1.0) (Simao et al., 2015) with 978 metazoa
428 single-copy orthologous genes (obd10).

429 **Genome annotation**

430 Tandem repeats in the genome were predicted using the program Tandem Repeats
431 Finder (TRF) (v4.09) (Benson, 1999) with default parameters. Transposable elements (TEs)
432 were identified using the homology-based and *de novo* prediction approaches. For
433 homology-based prediction, RepeatMasker (v4.1.0) (<http://www.repeatmasker.org/>) were
434 conducted to identify repeat sequences against the Repbase library. For *de novo* prediction,
435 RepeatModeler (v2.0.1) (<http://repeatmasker.org/RepeatModeler.html>), LTR-Finder
436 (v1.0.7) (Xu and Wang, 2007), RepeatScout (v1.0.5) (Price et al., 2005) and Piler (v1.0)
437 (Edgar and Myers, 2005) were used to construct *de novo* repeat libraries. RepeatMasker
438 (v4.1.0) was run against these libraries to search repeat elements.

439 Protein-coding genes in *R. piscesae* genome were predicted with three approaches:
440 homology-based prediction, *ab initio* prediction and RNA-seq-based prediction. Protein-
441 coding sequences of *Lottia gigantea*, *Helobdella robusta*, *Capitella teleta*, *Schistosoma*
442 *mansi*, *Caenorhabditis elegans*, *Anopheles gambiae*, *Drosophila melanogaster* and
443 *Homo sapiens* were aligned to the *R. piscesae* genome using tblastn with a cut off E-value
444 of 1e-5. GeneWise (v2.4) (Birney et al., 2004) was employed to predict gene models. For
445 *ab initio* prediction, Augustus (v3.3.2) (Stanke and Morgenstern, 2005), Genscan
446 (Aggarwal and Ramaswamy, 2002), Geneid (v1.3) (Parra et al., 2000), GlimmerHMM
447 (v3.0.4) (Majoros et al., 2004) and SNAP (Korf, 2004) were used to predict genes on the
448 repeat-masked genome. For RNA-seq-based prediction, Trinity (v2.9) generated sequences
449 (Unigenes) were aligned against the genome assembly with BLAT (v35.1) (identify \geq
450 0.95 and align rate \geq 0.95) (Kent, 2002). In addition, the RNA-seq reads from were
451 aligned to the *R. piscesae* genome using Tophat (v2.1.1) (Trapnell et al., 2009). And gene
452 structures were predicted using Cufflinks (v2.2.1) (Trapnell et al., 2010). EvidenceModeler
453 (EVM) (v1.1.1) (Haas et al., 2008) was used to integrate all gene models derived from
454 these three approaches into a non-redundant gene set.

455 Functional annotation was performed using BLASTP searches against SwissProt and
456 TrEMBL databases (Bairoch and Apweiler, 2000) with a E-value cut-off of 1e-5. In
457 addition, InterProScan (v5.4.0) (Mulder and Apweiler, 2007) was used to screen proteins
458 against five databases (Pfam, PRINTS, PROSITE, ProDom and SMART) to determine
459 protein domains and motifs. Gene Ontology (GO) annotation of each gene was retrieved
460 from the corresponding InterPro entry. In addition, KEGG annotation was performed using
461 GhostKOALA (Kanehisa et al., 2016).

462 **Phylogenomic analysis**

463 Protein sequences of 14 metazoan species (*Adineta vaga*, *Echinococcus multilocularis*,
464 *Aplysia californica*, *Lottia gigantea*, *Octopus bimaculoide*, *Phoronis australis*, *Lingula*
465 *anatina*, *Notospermus geniculatus*, *Capitella teleta*, *Helobdella robusta*, *Eisenia Andrei*,
466 *Riftia pachyptila*, *Paraescarpia echinospica*, *Lamellibrachia lumysi*) were downloaded for
467 gene family cluster analysis (**Supplementary Table S8**). The longest transcripts of each
468 gene (more than 30 amino acids) were retained. All-to-all BLASTP was used to identify
469 the similarities between retained protein sequences of these 14 metazoan species and *R.*
470 *piscesae* (E-value threshold: 1e-7). OrthoFinder (v2.2.7) (Emms and Kelly, 2019) was used
471 to identify and cluster gene families among 15 species with default parameters. Gene
472 clusters with >100 gene copies in one or more species were removed. Protein sequences of
473 all single-copy gene families were retrieved and aligned using MAFFT (v7.271) (Katoh et
474 al., 2002). The alignments were trimmed using TrimAI (v1.2) (Capella-Gutierrez et al.,
475 2009). The phylogenetic tree was reconstructed with the trimmed alignments using
476 FastTree2 (v2.1.11) (Price et al., 2010) with *Adineta vaga* as outgroup.

477 To estimate the divergent time, the trimmed alignments of single-copy orthologs
478 among the 15 metazoan species were concatenated using PhyloSuite (v1.2.2) (Zhang et al.,
479 2020). MCMCTree module of the PAML package (v4.9) (Yang, 2007) was used to estimate
480 the divergent time with the concatenated alignment. The species tree of the 15 metazoan
481 species was used as a guide tree, and the analysis was calibrated with the divergent time
482 obtained from TimeTree database (minimum = 470.2 million years and soft maximum =
483 531.5 million years between *P. australis* and *L. anatina*) (Kumar et al., 2017) and previous
484 analyses (minimum = 470.2 million years and soft maximum = 531.5 million years

485 between *A. californica* and *L. gigantea*; minimum = 532 million years and soft maximum
486 = 549 million years for the first appearance of Mollusca; minimum = 476.3 million years
487 and soft maximum = 550.9 million years for the appearance of capitellid-leech clade;
488 minimum = 550.25 million years and soft maximum = 636.1 million years for the first
489 appearance of Lophotrochozoa and Ecdysoa) (Donoghue et al., 2009; Benton et al., 2015;
490 dos Reis et al., 2015).

491

492 **Gene family expansion and contraction analysis**

493 r8s (v1.7) was applied to obtain the ultrametric tree of 12 lophotrochozoan species
494 (*C. teleta*, *H. robusta*, *E. andrei*, *L. gigantea*, *A. californica*, *N. geniculatus*, *A. californica*,
495 *P. australis*, *R. pachyptila*, *P. echinospica*, *L. lumysi*, *R. piscesae*), which is calibrated with
496 the divergent time between *C. teleta* and *L. gigantea* (688 mya) obtained from TimeTree
497 database. CAFÉ (v5) (De Bie et al., 2006) was applied to determine the significance of
498 gene-family expansion and contraction among 12 lophotrochozoan species based on the
499 ultrametric tree and the gene clusters determined by OrthoFinder (v2.2.7). Gene families
500 that were significantly expanded in each of four tubeworm species (*R. pachyptila*, *P.*
501 *echinospica*, *L. lumysi*, *R. piscesae*) ($P < 0.05$) were annotated using PANTHER (v16.0)
502 with the PANTHER HMM scoring tool (pantherScore2.pl) (Mi et al., 2017).

503

504 **Homeobox gene analysis**

505 Homeodomain sequences, which were retrieved from HomeoDB database (Zhong
506 and Holland, 2011), were aligned to *R. piscesae* genome assembly using tbalstn. Sequences
507 of the candidate homeobox genes were extracted based on the alignment results. The
508 extracted sequences were aligned against NCBI NR and HomeoDB database to classify the
509 homeobox genes.

510

511

512 **Hemoglobin gene family analysis**

513 Protein sequences of hemoglobin A1, A2, B1, B2 chains of four tubeworm species
514 were obtained with reference references using DIAMOND BLASTP (Buchfink et al., 2021)
515 with a E-value cut-off of 1e-5. The sequences were annotated in NCBI NR database using
516 BLASTP. And protein domains in these sequences were annotated by Pfamscan against
517 Pfam-A.hmm database (Finn et al., 2014). Sequences that have almost full length protein
518 domains were aligned using MAFFT (v7.271) (Katoh and Standley, 2013). The alignments
519 were trimmed using TrimAI (v1.2) (Capella-Gutierrez et al., 2009). The phylogenetic tree
520 was reconstructed with the trimmed alignments using a maximum-likelihood method
521 implemented in IQ-TREE2 (v2.1.2) (Minh et al., 2020). The best-fit substitution model
522 was selected by using ModelFinder algorithm (Kalyaanamoorthy et al., 2017). Branch
523 supports were assessed using the ultrafast bootstrap (UFBoot) approach with 1,000
524 replicates (Hoang et al., 2018).

525

526 **Identification of positively selected genes (PSGs)**

527 We identified PSGs in the *R. piscesae* genome within single-copy orthologs among
528 12 lophotrochozoan species that were identified in gene-family expansion and contraction
529 analysis. Protein sequences of all single-copy gene families were retrieved and aligned
530 using MAFFT (v7.271) (Katoh et al., 2002). Phylogenetic tree of each family was
531 reconstructed using IQ-TREE2 (v2.1.2) (Minh et al., 2020). PSGs were identified based on
532 the phylogenetic trees using HyPhy (v2.5.30) with the adaptive Branch-Site Random
533 Effects Likelihood (aBSREL) model (Pond et al., 2020).

534

535 **Data Availability**

536 Raw reads and genome assembly are accessible in NCBI under BioProject number
537 PRJNA826206. Assembled genome sequences are accessible under Whole Genome
538 Shotgun project number JALOCR000000000. Raw reads and genome assembly are also
539 available at the CNGB Sequence Archive (CNSA) of China National GeneBank DataBase
540 (CNGBdb) with accession number CNP0002911.

541

542 Reference

543 Aas, P.A., Otterlei, M., Falnes, P.O., Vagbo, C.B., Skorpen, F., Akbari, M., et al. (2003).
544 Human and bacterial oxidative demethylases repair alkylation damage in both RNA
545 and DNA. *Nature* 421(6925), 859-863. doi: 10.1038/nature01363.

546 Aggarwal, G., and Ramaswamy, R. (2002). Ab initio gene identification: prokaryote
547 genome annotation with GeneScan and GLIMMER. *J Biosci* 27(1 Suppl 1), 7-14.
548 doi: 10.1007/BF02703679.

549 Bailly, X., Jollivet, D., Vanin, S., Deutsch, J., Zal, F., Lallier, F., et al. (2002). Evolution
550 of the sulfide-binding function within the globin multigenic family of the deep-sea
551 hydrothermal vent tubeworm *Riftia pachyptila*. *Mol Biol Evol* 19(9), 1421-1433.
552 doi: 10.1093/oxfordjournals.molbev.a004205.

553 Bairoch, A., and Apweiler, R. (2000). The SWISS-PROT protein sequence database and
554 its supplement TrEMBL in 2000. *Nucleic Acids Res* 28(1), 45-48. doi:
555 10.1093/nar/28.1.45.

556 Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y., and Kulakova, M.A. (2013). Hox gene
557 expression during postlarval development of the polychaete *Alitta virens*. *Evodevo*
558 4(1), 13. doi: 10.1186/2041-9139-4-13.

559 Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. *Nucleic
560 Acids Res* 27(2), 573-580. doi: 10.1093/nar/27.2.573.

561 Benton, M.J., Donoghue, P.C.J., Asher, R.J., Friedman, M., Near, T.J., and Vinther, J.
562 (2015). Constraints on the timescale of animal evolutionary history. *Palaeontol
563 Electron* 18(1).

564 Bergquist, D.C., Williams, F.M., and Fisher, C.R. (2000). Longevity record for deep-sea
565 invertebrate. *Nature* 403(6769), 499-500. doi: 10.1038/35000647.

566 Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and Genomewise. *Genome Res*
567 14(5), 988-995. doi: 10.1101/gr.1865504.

568 Black, M.B., Halanych, K.M., Maas, P.A.Y., Hoeh, J., Hashimoto, D., Desbruyeres, D., et
569 al. (1997). Molecular systematics of vestimentiferan tubeworms from hydrothermal
570 vents and cold-water seeps. *Mar. Biol.* 130, 141-149.

571 Bright, M., and Lallier, F.H. (2010). The Biology of Vestimentiferan Tubeworms.
572 *Oceanogr Mar Biol* 48, 213-265. doi: Book_Doi 10.1201/Ebk1439821169.

573 Buchfink, B., Reuter, K., and Drost, H.G. (2021). Sensitive protein alignments at tree-of-
574 life scale using DIAMOND. *Nat Methods* 18(4), 366-368. doi: 10.1038/s41592-
575 021-01101-x.

576 Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009). trimAl: a tool for
577 automated alignment trimming in large-scale phylogenetic analyses.
578 *Bioinformatics* 25(15), 1972-1973. doi: 10.1093/bioinformatics/btp348.

579 Carney, S.L., Flores, J.F., Orobona, K.M., Butterfield, D.A., Fisher, C.R., and Schaeffer,
580 S.W. (2007). Environmental differences in hemoglobin gene expression in the

581 hydrothermal vent tubeworm, *Ridgeia piscesae*. *Comp Biochem Physiol B Biochem*
582 *Mol Biol* 146(3), 326-337. doi: 10.1016/j.cbpb.2006.11.002.

583 Cavalier-Smith, T. (1982). Skeletal DNA and the evolution of genome size. *Annu Rev*
584 *Biophys Bioeng* 11, 273-302. doi: 10.1146/annurev.bb.11.060182.001421.

585 Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W., and Waterbury, J.B.
586 (1981). Prokaryotic Cells in the Hydrothermal Vent Tube Worm *Riftia pachyptila*
587 Jones: Possible Chemoautotrophic Symbionts. *Science* 213(4505), 340-342. doi:
588 10.1126/science.213.4505.340.

589 Childress, J.J., and Fisher, C.R. (1992). The biology of hydrothermal vent animals:
590 physiology, biochemistry, and autotrophic symbioses. *Oceanogr Mar Biol* 30, 337-
591 441.

592 Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., et
593 al. (1979). Submarine Thermal Springs on the Galapagos Rift. *Science* 203(16),
594 1073-1083. doi: 10.1126/science.203.4385.107.

595 De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational
596 tool for the study of gene family evolution. *Bioinformatics* 22(10), 1269-1271. doi:
597 10.1093/bioinformatics/btl097.

598 de Oliveira, A.L., Mitchell, J., Girguis, P., and Bright, M. (2022). Novel Insights on
599 Obligate Symbiont Lifestyle and Adaptation to Chemosynthetic Environment as
600 Revealed by the Giant Tubeworm Genome. *Mol Biol Evol* 39(1). doi:
601 10.1093/molbev/msab347.

602 Dick, G.J. (2019). The microbiomes of deep-sea hydrothermal vents: distributed globally,
603 shaped locally. *Nat Rev Microbiol* 17(5), 271-283. doi: 10.1038/s41579-019-0160-
604 2.

605 Dong, Q.Z., Wang, Y., Tang, Z.P., Fu, L., Li, Q.C., Wang, E.D., et al. (2013). Derlin-1 Is
606 Overexpressed in Non-Small Cell Lung Cancer and Promotes Cancer Cell Invasion
607 via EGFR-ERK-Mediated Up-Regulation of MMP-2 and MMP-9. *Am J Pathol*
608 182(3), 954-964. doi: 10.1016/j.ajpath.2012.11.019.

609 Donoghue, P., Benton, M., Yang, Z.H., and Inoue, J. (2009). Calibrating and Constraining
610 the Molecular Clock. *J Vertebr Paleontol* 29, 89a-89a.

611 dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M.J., Donoghue, P.C., and Yang,
612 Z. (2015). Uncertainty in the Timing of Origin of Animals and the Limits of
613 Precision in Molecular Timescales. *Curr Biol* 25(22), 2939-2950. doi:
614 10.1016/j.cub.2015.09.066.

615 Edgar, R.C., and Myers, E.W. (2005). PILER: identification and classification of genomic
616 repeats. *Bioinformatics* 21 Suppl 1, i152-158. doi: 10.1093/bioinformatics/bti1003.

617 Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
618 comparative genomics. *Genome Biol* 20(1), 238. doi: 10.1186/s13059-019-1832-y.

619 Eshraghi, A., Dixon, S.D., Tamilselvam, B., Kim, E.J., Gargi, A., Kulik, J.C., et al. (2014).
620 Cytolethal distending toxins require components of the ER-associated degradation

621 pathway for host cell entry. *PLoS Pathog* 10(7), e1004295. doi:
622 10.1371/journal.ppat.1004295.

623 Finlin, B.S., Gau, C.L., Murphy, G.A., Shao, H., Kimel, T., Seitz, R.S., et al. (2001). RERG
624 is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast
625 cancer. *J Biol Chem* 276(45), 42259-42267. doi: 10.1074/jbc.M105888200.

626 Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., et al.
627 (2014). Pfam: the protein families database. *Nucleic Acids Res* 42(Database issue),
628 D222-230. doi: 10.1093/nar/gkt1223.

629 Fisher, C.R., Childress, J.J., Arp, A.J., Brooks, J.M., Distel, D., Favuzzi, J.A., et al. (1988).
630 Physiology, morphology, and biochemical composition of *Riftia pachyptila* at Rose
631 Garden in 1985. *Deep Sea Res. Part I Oceanogr. Res. Pap.* 35(10-11), 1745-1758.

632 Fisher, C.R., Urcuyo, I.A., Simpkins, M.A., and Nlx, E. (2008). Life in the Slow Lane:
633 Growth and Longevity of Cold-seep Vestimentiferans. *Mar Ecol* 18(1), 83-94.

634 Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., et al.
635 (2011). Full-length transcriptome assembly from RNA-Seq data without a
636 reference genome. *Nat Biotechnol* 29(7), 644-U130. doi: 10.1038/nbt.1883.

637 Grassle, J.F. (1985). Hydrothermal vent animals: distribution and biology. *Science*
638 229(4715), 713-717. doi: 10.1126/science.229.4715.713.

639 Gregory, T.R. (2001). Coincidence, coevolution, or causation? DNA content, cell size, and
640 the C-value enigma. *Biol Rev Camb Philos Soc* 76(1), 65-101. doi:
641 10.1017/s1464793100005595.

642 Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., et al. (2008).
643 Automated eukaryotic gene structure annotation using EvidenceModeler and the
644 program to assemble spliced alignments. *Genome Biol* 9(1). doi: 10.1186/gb-2008-
645 9-1-r7.

646 Halanych, K.M. (2005). Molecular phylogeny of siboglinid annelids (a.k.a.
647 pogonophorans): a review. *Hydrobiologia* 535, 297-307. doi: DOI 10.1007/s10750-
648 004-1437-6.

649 Hand, S.C. (1987). Trophosome Ultrastructure and the Characterization of Isolated
650 Bacteriocytes from Invertebrate-Sulfur Bacteria Symbioses. *Biol Bull* 173(1), 260-
651 276. doi: 10.2307/1541878.

652 Ho, J.Y., Hsu, R.J., Liu, J.M., Chen, S.C., Liao, G.S., Gao, H.W., et al. (2017). MicroRNA-
653 382-5p aggravates breast cancer progression by regulating the RERG/Ras/ERK
654 signaling axis. *Oncotarget* 8(14), 22443-22459. doi: 10.18632/oncotarget.12338.

655 Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., and Vinh, L.S. (2018).
656 UFBoot2: Improving the Ultrafast Bootstrap Approximation. *Mol Biol Evol* 35(2),
657 518-522. doi: 10.1093/molbev/msx281.

658 Jones, M. (1987). On the status of the phylum-name, and other names, of the
659 vestimentiferan tube worms. *Proc. Biol. Soc. Wash.* 100, 1049-1050.

660 Jones, M.L. (1981). *Riftia pachyptila* Jones: Observations on the Vestimentiferan Worm
661 from the Galapagos Rift. *Science* 213(4505), 333-336. doi:
662 10.1126/science.213.4505.333.

663 Julian, D., Gaill, F., Wood, E., Arp, A.J., and Fisher, C.R. (1999). Roots as a site of
664 hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia
665 sp. *J Exp Biol* 202(17), 2245-2257.

666 Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S.
667 (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat
668 Methods* 14(6), 587-589. doi: 10.1038/nmeth.4285.

669 Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA:
670 KEGG Tools for Functional Characterization of Genome and Metagenome
671 Sequences. *J Mol Biol* 428(4), 726-731. doi: 10.1016/j.jmb.2015.11.006.

672 Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for
673 rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids
674 Res* 30(14), 3059-3066. doi: 10.1093/nar/gkf436.

675 Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software
676 version 7: improvements in performance and usability. *Mol Biol Evol* 30(4), 772-
677 780. doi: 10.1093/molbev/mst010.

678 Kent, W.J. (2002). BLAT--the BLAST-like alignment tool. *Genome Res* 12(4), 656-664.
679 doi: 10.1101/gr.229202.

680 Korf, I. (2004). Gene finding in novel genomes. *BMC Bioinform* 5, 59. doi: 10.1186/1471-
681 2105-5-59.

682 Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: A Resource for
683 Timelines, Timetrees, and Divergence Times. *Mol Biol Evol* 34(7), 1812-1819. doi:
684 10.1093/molbev/msx116.

685 Levin, L.A. (2005). Ecology of cold seep sediments: Interactions of fauna with flow,
686 chemistry and microbes. *Oceanogr Mar Biol* 43, 1-46. doi: DOI
687 10.1201/9781420037449.ch1.

688 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
689 Wheeler transform. *Bioinformatics* 25(14), 1754-1760. doi:
690 10.1093/bioinformatics/btp324.

691 Li, Y., Tassia, M.G., Waits, D.S., Bogantes, V.E., David, K.T., and Halanych, K.M. (2019).
692 Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm
693 *Lamellibrachia luymesii*. *BMC Biol* 17(1), 91. doi: 10.1186/s12915-019-0713-x.

694 Little, C.T.S., and Vrijenhoek, R.C. (2003). Are hydrothermal vent animals living fossils?
695 *Trends Ecol Evol* 18(11), 582-588. doi: 10.1016/j.tree.2003.08.009.

696 Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., et al. (2012). SOAPdenovo2: an
697 empirically improved memory-efficient short-read de novo assembler. *Gigascience*
698 1(1), 18. doi: 10.1186/2047-217X-1-18.

699 Lutz, R.A., Desbruyeres, D., Shank, T.M., and Vrijenhoek, R.C. (1998). A deep-sea
700 hydrothermal vent community dominated by Stauromedusae. *Deep Sea Res. Part*
701 *II Top. Stud. Oceanogr.* 45, 329-334.

702 Lutz, R.A., and Kennish, M.J. (1993). Ecology of deep - sea hydrothermal vent
703 communities: A review. *Rev. Geophys.* 31(3), 211-242.

704 Lynch, M. (2007). *The Origins of Genome Architecture*. Sunderland, MA: Sinauer
705 Associates.

706 Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: two
707 open source ab initio eukaryotic gene-finders. *Bioinformatics* 20(16), 2878-2879.
708 doi: 10.1093/bioinformatics/bth315.

709 Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., et al. (2017).
710 PANTHER version 11: expanded annotation data from Gene Ontology and
711 Reactome pathways, and data analysis tool enhancements. *Nucleic Acids Res*
712 45(D1), D183-D189. doi: 10.1093/nar/gkw1138.

713 Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler,
714 A., et al. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
715 Inference in the Genomic Era. *Mol Biol Evol* 37(5), 1530-1534. doi:
716 10.1093/molbev/msaa015.

717 Mulder, N., and Apweiler, R. (2007). InterPro and InterProScan: tools for protein sequence
718 classification and comparison. *Methods Mol Biol* 396, 59-70. doi: 10.1007/978-1-
719 59745-515-2_5.

720 Niu, S., Li, J., Bo, W., Yang, W., Zuccolo, A., Giacomello, S., et al. (2022). The Chinese
721 pine genome and methylome unveil key features of conifer evolution. *Cell* 185(1),
722 204-217 e214. doi: 10.1016/j.cell.2021.12.006.

723 Osorio, F.G., Soria-Valles, C., Santiago-Fernandez, O., Bernal, T., Mittelbrunn, M.,
724 Colado, E., et al. (2016). Loss of the proteostasis factor AIRAPL causes myeloid
725 transformation by deregulating IGF-1 signaling. *Nat Med* 22(1), 91-96. doi:
726 10.1038/nm.4013.

727 Parra, G., Blanco, E., and Guigo, R. (2000). GeneID in Drosophila. *Genome Res* 10(4),
728 511-515. doi: 10.1101/gr.10.4.511.

729 Patel, R.K., and Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next
730 generation sequencing data. *PLoS One* 7(2), e30619. doi:
731 10.1371/journal.pone.0030619.

732 Paull, C.K., Hecker, B., Commeau, R., Freeman-Lynde, R.P., Neumann, C., Corso, W.P.,
733 et al. (1984). Biological communities at the Florida escarpment resemble
734 hydrothermal vent taxa. *Science* 226(4677), 965-967. doi:
735 10.1126/science.226.4677.965.

736 Pearson, J.C., Lemons, D., and McGinnis, W. (2005). Modulating Hox gene functions
737 during animal body patterning. *Nat Rev Genet* 6(12), 893-904. doi:
738 10.1038/nrg1726.

739 Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011).
740 Hydrogen is an energy source for hydrothermal vent symbioses. *Nature* 476(7359),
741 176-180. doi: 10.1038/nature10325.

742 Pflugfelder, B., Cary, S.C., and Bright, M. (2009). Dynamics of cell proliferation and
743 apoptosis reflect different life strategies in hydrothermal vent and cold seep
744 vestimentiferan tubeworms. *Cell Tissue Res* 337(1), 149-165. doi: 10.1007/s00441-
745 009-0811-0.

746 Pond, S.L.K., Poon, A.F.Y., Velazquez, R., Weaver, S., Hepler, N.L., Murrell, B., et al.
747 (2020). HyPhy 2.5-A Customizable Platform for Evolutionary Hypothesis Testing
748 Using Phylogenies. *Mol Biol Evol* 37(1), 295-299. doi: 10.1093/molbev/msz197.

749 Price, A.L., Jones, N.C., and Pevzner, P.A. (2005). De novo identification of repeat
750 families in large genomes. *Bioinformatics* 21 Suppl 1, i351-358. doi:
751 10.1093/bioinformatics/bti1018.

752 Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2--approximately maximum-
753 likelihood trees for large alignments. *PLoS One* 5(3), e9490. doi:
754 10.1371/journal.pone.0009490.

755 Ranallo-Benavidez, T.R., Jaron, K.S., and Schatz, M.C. (2020). GenomeScope 2.0 and
756 Smudgeplot for reference-free profiling of polyploid genomes. *Nat Commun* 11(1),
757 1432. doi: 10.1038/s41467-020-14998-3.

758 Sarrazin, J., Robigou, V., Juniper, S.K., and Delaney, J.R. (1998). Biological and
759 geological dynamics over four years on a high-temperature sulfide structure at the
760 Juan de Fuca Ridge hydrothermal observatory. *Mar Ecol Prog Ser* 153(1), 5-24.
761 doi: 10.3354/meps153005.

762 Schulze, A. (2001). Comparative anatomy of excretory organs in vestimentiferan tube
763 worms (Pogonophora, Obturata). *J Morphol* 250(1), 1-11. doi: DOI
764 10.1002/jmor.1054.

765 Shank, T.M., Fornari, D.J., Von Damm, K.L., Lilley, M.D., Haymon, R.M., and Lutz, R.A.
766 (1998). Temporal and spatial patterns of biological community development at
767 nascent deep-sea hydrothermal vents ($9^{\circ} 50'$ N, East Pacific Rise). *Deep Sea Res.*
768 *Part II Top. Stud. Oceanogr.* 45(1-3), 465-515.

769 Sharpton, T.J., Stajich, J.E., Rounsley, S.D., Gardner, M.J., Wortman, J.R., Jordar, V.S., et
770 al. (2009). Comparative genomic analyses of the human fungal pathogens
771 Coccidioides and their relatives. *Genome Res* 19(10), 1722-1731. doi:
772 10.1101/gr.087551.108.

773 Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M.
774 (2015). BUSCO: assessing genome assembly and annotation completeness with
775 single-copy orthologs. *Bioinformatics* 31(19), 3210-3212. doi:
776 10.1093/bioinformatics/btv351.

777 Southward, E.C., Tunnacliffe, V., and Black, M. (1995). Revision of the species of Ridgeia
778 from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae
779 Jones (Pogonophora: Obturata=Vestimentifera). *Can. J. Zool.* 73, 282-295. doi:
780 10.1139/z95-033.

781 Stanke, M., and Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in
782 eukaryotes that allows user-defined constraints. *Nucleic Acids Res* 33, W465-W467.
783 doi: 10.1093/nar/gki458.

784 Stewart, F.J., Newton, I.L., and Cavanaugh, C.M. (2005). Chemosynthetic endosymbioses:
785 adaptations to oxic-anoxic interfaces. *Trends Microbiol* 13(9), 439-448. doi:
786 10.1016/j.tim.2005.07.007.

787 Suess, E. (2014). Marine cold seeps and their manifestations: geological control,
788 biogeochemical criteria and environmental conditions. *Int J Earth Sci* 103(7), 1889-
789 1916. doi: 10.1007/s00531-014-1010-0.

790 Sun, Y., Sun, J., Yang, Y., Lan, Y., Ip, J.C., Wong, W.C., et al. (2021). Genomic signatures
791 supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm
792 *Paraescarpia echinospica*. *Mol Biol Evol*. doi: 10.1093/molbev/msab203.

793 Tenaillon, M.I., Manicacci, D., Nicolas, S.D., Tardieu, F., and Welcker, C. (2016). Testing
794 the link between genome size and growth rate in maize. *PeerJ* 4, e2408. doi:
795 10.7717/peerj.2408.

796 Thiebaut, E., Huther, X., Shillito, B., Jollivet, D., and Gaill, F. (2002). Spatial and temporal
797 variations of recruitment in the tube worm *Riftia pachyptila* on the East Pacific Rise
798 (9 degrees 50 ' N and 13 degrees N). *Mar Ecol Prog Ser* 234, 147-157. doi: DOI
799 10.3354/meps234147.

800 Tivey, M.K., Stakes, D.S., Cook, T.L., Hannington, M.D., and Petersen, S. (1999). A
801 model for growth of steep-sided vent structures on the Endeavour Segment of the
802 Juan de Fuca Ridge: Results of a petrologic and geochemical study. *J Geophys Res-
803 Sol Ea* 104(B10), 22859-22883. doi: Doi 10.1029/1999jb900107.

804 Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions
805 with RNA-Seq. *Bioinformatics* 25(9), 1105-1111. doi:
806 10.1093/bioinformatics/btp120.

807 Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., et al.
808 (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated
809 transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 28(5),
810 511-515. doi: 10.1038/nbt.1621.

811 Tsurumi, M., and Tunnicliffe, V. (2003). Tubeworm-associated communities at
812 hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. *Deep Sea Res.
813 Part I Oceanogr. Res. Pap.* 50(5), 611-629. doi: 10.1016/S0967-0637(03)00039-6.

814 Tunnicliffe, V. (1992). The nature and origin of the modern hydrothermal vent fauna.
815 *Palaios* 7(4), 338-350. doi: 10.2307/3514820.

816 Tunnicliffe, V., Embley, R.W., Holden, J.F., Butterfield, D.A., Massoth, G., and Juniper,
817 S.K. (1997). Biological colonization of new hydrothermal vents following an
818 eruption on Juan de Fuca Ridge. *Deep Sea Res. Part I Oceanogr. Res. Pap.* 44(9-
819 10), 1627-1644.

820 Tunnicliffe, V., McArthur, A.G., and McHugh, D. (1998). A Biogeographical Perspective
821 of the Deep-sea Hydrothermal Vent Fauna. *Adv. Mar. Biol.* 34, 353-442.

822 Urcuyo, I.A., Bergquist, D.C., MacDonald, I.R., VanHorn, M., and Fisher, C.R. (2007).
823 Growth and longevity of the tubeworm *Ridgeia piscesae* in the variable diffuse flow
824 habitats of the Juan de Fuca Ridge. *Mar Ecol Prog Ser* 344, 143-157. doi:
825 10.3354/meps06710.

826 Urcuyo, I.A., Massoth, G.J., Julian, D., and Fisher, C.R. (2003). Habitat, growth and
827 physiological ecology of a basaltic community of *Ridgeia piscesae* from the Juan
828 de Fuca Ridge. *Deep Sea Res. Part I Oceanogr. Res. Pap.* 50(6), 763-780. doi:
829 10.1016/S0967-0637(03)00061-X.

830 Van Nieuwerburgh, F., Thompson, R.C., Ledesma, J., Deforce, D., Gaasterland, T.,
831 Ordoukhalian, P., et al. (2012). Illumina mate-paired DNA sequencing-library
832 preparation using Cre-Lox recombination. *Nucleic Acids Res* 40(3). doi:
833 10.1093/nar/gkr1000.

834 Vanreusel, A., Andersen, A.C., Boetius, A., Connelly, D., Cunha, M.R., Decker, C., et al.
835 (2009). Biodiversity of cold seep ecosystems along the European margins.
836 *Oceanography* 22(1), 110-127. doi: 10.5670/oceanog.2009.12.

837 Vinogradov, A.E. (1995). Nucleotypic Effect in Homeotherms: Body-Mass-Corrected
838 Basal Metabolic Rate of Mammals Is Related to Genome Size. *Evolution* 49(6),
839 1249-1259. doi: 10.1111/j.1558-5646.1995.tb04451.x.

840 Von Damm, K.L. (1995). "Controls on the Chemistry and Temporal Variability of Seafloor
841 Hydrothermal Fluids.," in *Seafloor Hydrothermal System: Physical, Chemical,
842 Biological, and Geological Interactions*, eds. R.A. Humphris, L.S. Zierenberg &
843 R.E. Thomson.), 222-247.

844 Vrijenhoek, R.C. (2010). Genetic diversity and connectivity of deep-sea hydrothermal vent
845 metapopulations. *Mol Ecol* 19(20), 4391-4411. doi: 10.1111/j.1365-
846 294X.2010.04789.x.

847 Wang, S., Zhang, J., Jiao, W., Li, J., Xun, X., Sun, Y., et al. (2017). Scallop genome
848 provides insights into evolution of bilaterian karyotype and development. *Nat Ecol
849 Evol* 1(5), 120. doi: 10.1038/s41559-017-0120.

850 Wilson, D.L., Beharry, A.A., Srivastava, A., O'Connor, T.R., and Kool, E.T. (2018).
851 Fluorescence Probes for ALKBH2 Allow the Measurement of DNA Alkylation
852 Repair and Drug Resistance Responses. *Angew Chem Int Ed Engl* 57(39), 12896-
853 12900. doi: 10.1002/anie.201807593.

854 Wright, N.A., Gregory, T.R., and Witt, C.C. (2014). Metabolic 'engines' of flight drive
855 genome size reduction in birds. *Proc Biol Sci* 281(1779), 20132780. doi:
856 10.1098/rspb.2013.2780.

857 Wyngaard, G.A., Rasch, E.M., Manning, N.M., Gasser, K., and Domangue, R. (2005). The
858 relationship between genome size, development rate, and body size in copepods.
859 *Hydrobiologia* 532, 123-137. doi: 10.1007/s10750-004-9521-5.

860 Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-
861 length LTR retrotransposons. *Nucleic Acids Res* 35, W265-W268. doi:
862 10.1093/nar/gkm286.

863 Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol*
864 24(8), 1586-1591. doi: 10.1093/molbev/msm088.

865 Zal, F., Suzuki, T., Kawasaki, Y., Childress, J.J., Lallier, F.H., and Toulmond, A. (1997).
866 Primary structure of the common polypeptide chain b from the multi-hemoglobin
867 system of the hydrothermal vent tube worm *Riftia pachyptila*: an insight on the
868 sulfide binding-site. *Proteins* 29(4), 562-574. doi: 10.1002/(SICI)1097-
869 0134(199712)29:4<562::AID-PROT15>3.0.CO;2-K.

870 Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W.X., et al. (2020). PhyloSuite: An
871 integrated and scalable desktop platform for streamlined molecular sequence data
872 management and evolutionary phylogenetics studies. *Mol Ecol Resour* 20(1), 348-
873 355. doi: 10.1111/1755-0998.13096.

874 Zhong, Y.F., and Holland, P.W. (2011). HomeoDB2: functional expansion of a
875 comparative homeobox gene database for evolutionary developmental biology.
876 *Evol Dev* 13(6), 567-568. doi: 10.1111/j.1525-142X.2011.00513.x.

877

878 **Acknowledgements**

879 This work was supported by National Key R&D Program of China (2018YFC0310702),
880 the Projects under Major State Basic Research Development Program of China (973
881 Program) (2015CB755906), National Natural Science Foundation of China (No.
882 31900309), GuangDong Basic and Applied Basic Research Foundation (No.
883 2019A1515011644), Innovation Group Project of Southern Marine Science and
884 Engineering Guangdong Laboratory (Zhuhai) (No. 311021006), and Project 2018N2001
885 from Department of Fujian Science and Technology and Program for Innovative Research
886 Team in Science and Technology in Fujian Province University. The funders had no role
887 in study design, data collection and analysis, decision to publish, or preparation of the paper.
888 We gratefully acknowledge the National Supercomputing Center in Guangzhou for
889 provision of computational resources.

890

891 **Author contributions**

892 J.M.C, C.J.G and J.G.H. conceived of the project and designed research; L.R., M.L., Z.L.,
893 Y.W. assembled and annotated the genome; M.W, J.H., L.Z., H.S., M.C., Y.J., F.Y., and
894 R.Z. performed the evolutionary analyses; M.W., J.M.C., C.J.G, and J.G.H. wrote the paper
895 with contribution from all authors.

896

897 **Ethics declarations**

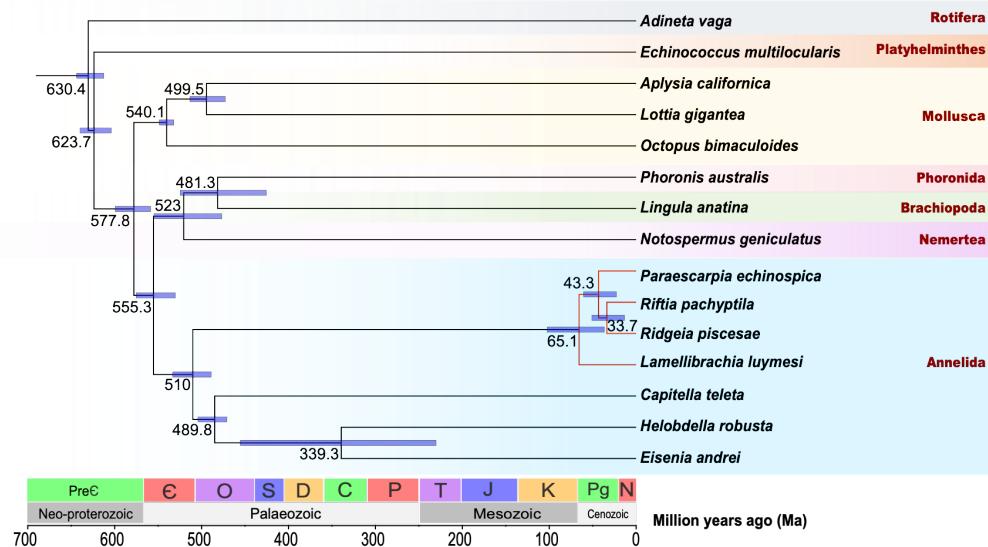
898 **Conflict of interest**

899 The authors declare that they have no conflict of interest or competing interests.

900

901 **Animal and human rights statement**

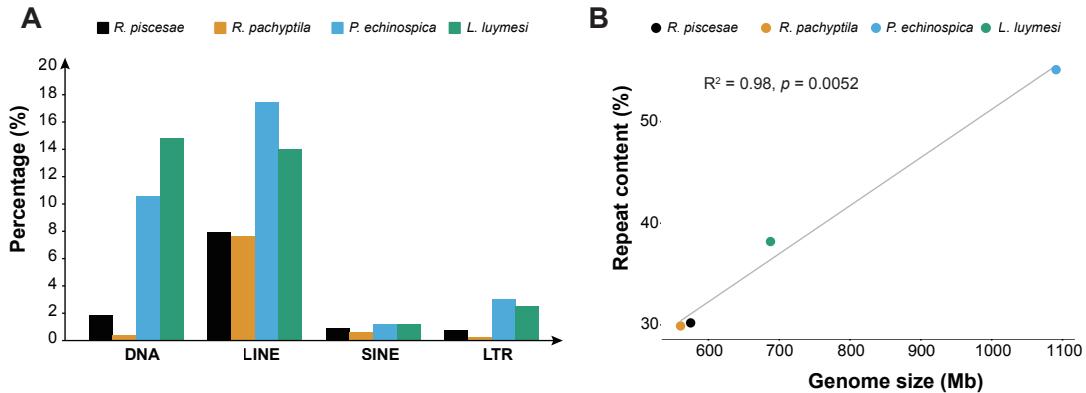
902 The tubeworm used in our study is an invertebrate, so the approval according to the
903 regulations on the use of tubeworm is unnecessary.


904

905 **Table 1** Genome assembly statistics of four deep-sea vestimentiferan tubeworms

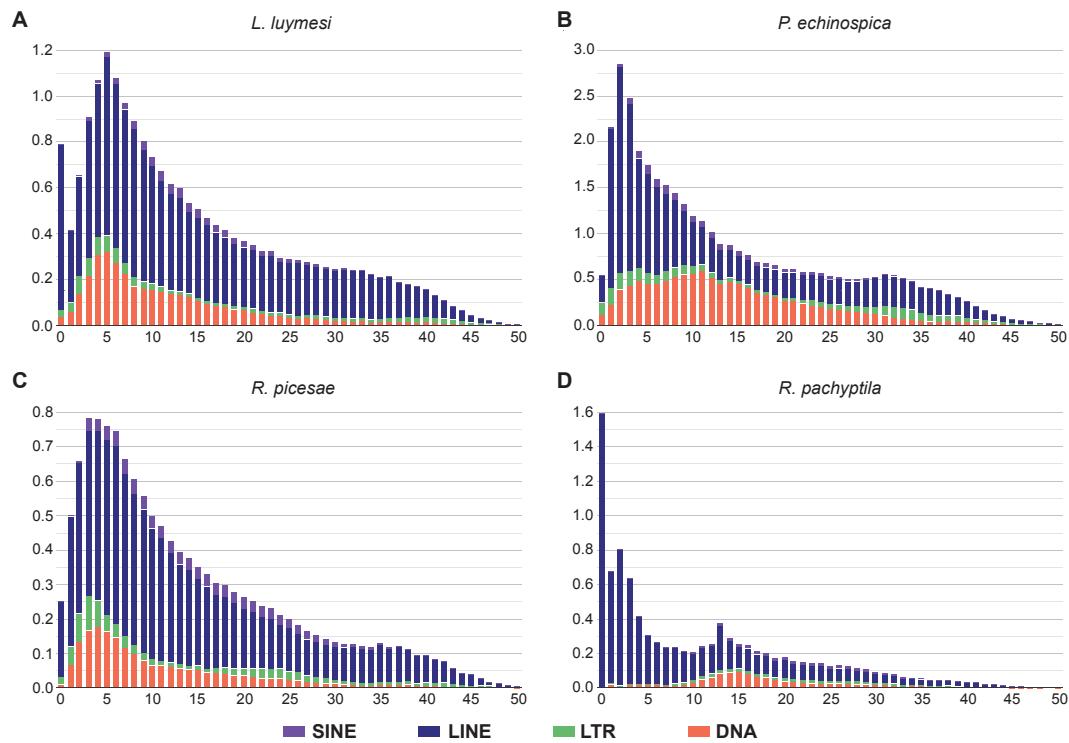
	<i>Ridgeia piscesae</i>	<i>Riftia pachyptila</i> (de Oliveira et al., 2022)	<i>Paraescarpia echinospica</i> (Sun et al., 2021)	<i>Lamellibrachia luymesi</i> (Li et al., 2019)
Assembled genome size (Mb)	574.9	560.7	1090.9	687.7
Contig N50 (kb)	10.4	2870.3	253.6	24
Scaffold N50 (kb)	230.2	-	67,235.3	372.9
BUSCO (%)	92.6	99.4	95.1	95.8
Repeat content (%)	30.2	29.9	55.1	38.2

906


907 **Figures**

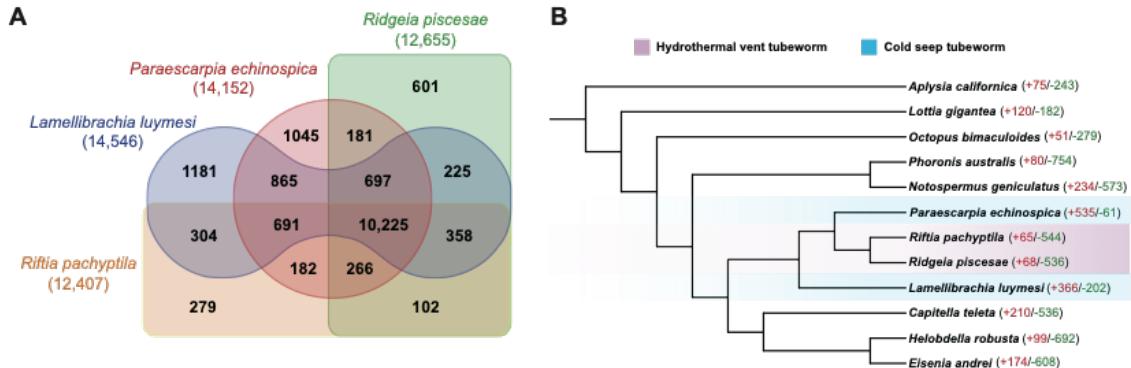
908

909 **Figure 1** A species tree of *R. piscesae* and 14 metazoans. Single-copy orthologs were
910 used to reconstruct the phylogenetic tree. The divergence time between species pairs was
911 listed above each node, and 95% confidence interval of the estimated divergence time was
912 denoted as blue bar. *R. piscesae* diverged from *R. pachyptila* approximately 33.7 million
913 years ago.


914

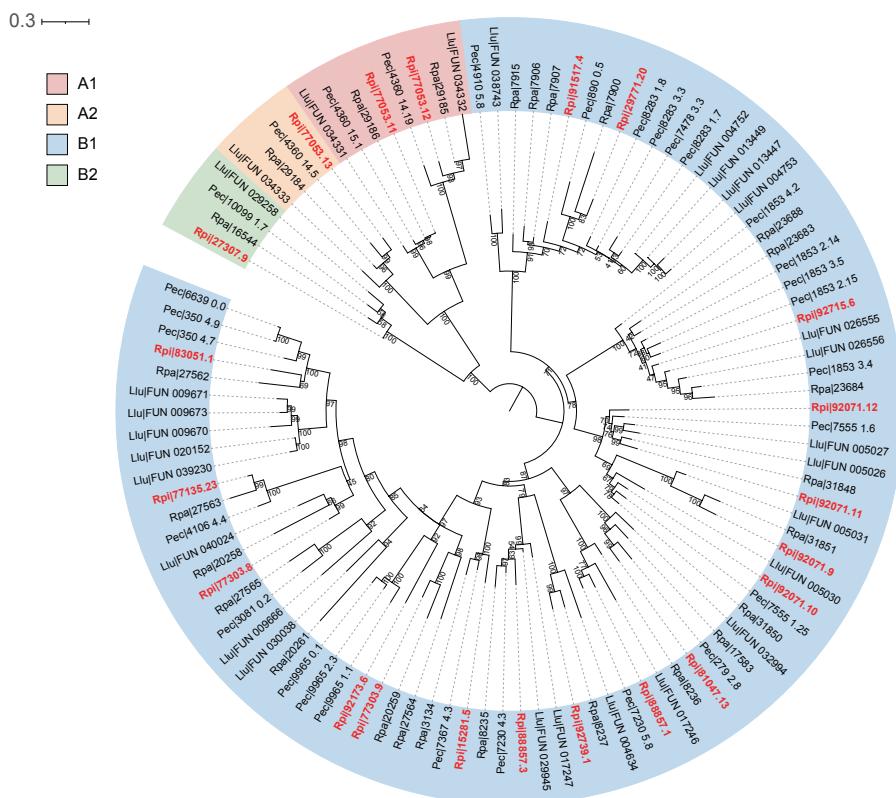
915

916 **Figure 2 Genome size evolution in four vestimentiferan tubeworms.** (A) Comparison
917 of the occurrence and composition of repetitive elements in the genomes of 4
918 vestimentiferan tubeworm. (B) The relationship between repeat content and genome size
919 in 4 vestimentiferan tubeworm. A strong positive correlation ($R^2 = 0.98, P = 0.0052$) was
920 identified between genome size and repeat content in these four species.


921

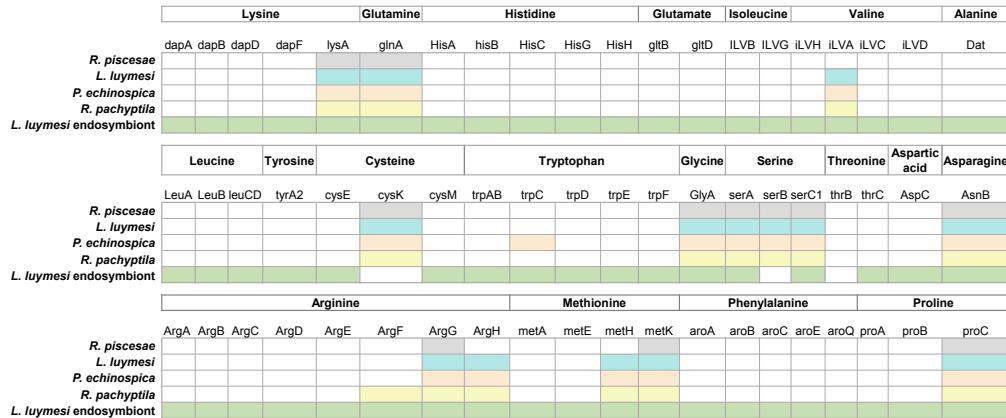
922

923 **Figure 3 Transposable element-accumulation profile in the genomes of four**
924 **vestimentiferan tubeworms.** There are recent expansions of TEs in the genomes of *L.*
925 *luymesii*, *P. echinospica*, and *R. piscesae*, but not in *R. pachyptila*.


926

927

928 **Figure 4 Protein family evolution in four vestimentiferan tubeworms.** (A) Venn
929 diagram of shared and unique gene families in four vestimentiferan tubeworm species.
930 Lineage-specific gene families of *R. piscesae* and *R. pachyptila* are much less than the ones
931 of *L. luymesi* and *P. echinospica*. (B) Gene family expansion/contraction analysis of 4
932 vestimentiferan tubeworms and 8 other lophotrochozoans.


933

934

935 **Figure 5 Gene tree of Hb subunits A1, A2, B1, and B2 from four vestimentiferan**
936 **tubeworms.** The values near the nodes are ultrafast bootstrap (UFBoot) values. *R. piscesae*
937 sequences are labeled red.

938

939

940 **Figure 6 Amino acid biosynthesis genes.** Most key genes associated with amino acid
941 biosynthesis are missing in the genomes of *L. luymesi*, *P. echinospica*, *R. pachyptila*, and
942 *R. piscesae*. These genes are presented in the genome of *L. luymesi* symbionts.