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Summary 30 

Predicting future events based on internal models is essential for animal survival. Predictive coding 31 

postulates that errors between prediction and observation in lower-order areas update predictions in 32 

higher-order areas through the hierarchy. However, it is unclear how predictive coding is implemented 33 

in the hierarchy of the brain. Herein, we report the neural mechanism of the hierarchical processing and 34 

transmission of bottom-up prediction error signals in the mouse cortex. Ca2+ imaging and 35 

electrophysiological recording in virtual reality revealed responses to visuomotor mismatches in the 36 

retrosplenial, dorsal visual, and anterior cingulate cortex. These mismatch responses were attenuated 37 

when mismatches became predictable through experience. Optogenetic inhibition of bottom-up signals 38 

reduced a behavioral indicator for prediction errors. Moreover, cellular-level mismatch responses were 39 

modeled by Bayesian inference using a state-space model. This study demonstrates hierarchical circuit 40 

organization underlying prediction error propagation, advancing the understanding of predictive coding 41 

in sensory perception and learning in the brain. 42 
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Introduction 45 

Animals can flexibly adapt to dynamic environments. The brain detects unexpected changes in sensory 46 

input, identifies them as prediction errors by comparing predicted sensory inputs to real-world 47 

observations, and updates an internal model of the environment1–3. According to the predictive coding 48 

hypothesis, top-down signals from higher-order brain areas convey sensory input predictions, whereas 49 

bottom-up signals from lower areas transmit prediction errors — the deviations between expected and 50 

observed sensory inputs4,5. In turn, the internal model encoded by higher-order circuits generates updated 51 

predictions to minimize future prediction errors. However, there is limited experimental evidence on how 52 

predictive coding is implemented within hierarchical neural circuits in the cerebral cortex. 53 

Previous studies have demonstrated that top-down signals transmitted from movement-related areas 54 

are integrated with sensory inputs in lower-level sensory areas3,6–10. Among the higher-order areas in the 55 

brain, the anterior cingulate cortex (ACC) is a candidate for the areas that provide top-down, movement-56 

related predictive signals to sensory areas7,11. The ACC is reciprocally connected with multiple sensory 57 

systems, such as higher-order visual and auditory cortex, and transforms sensory signals into goal-58 

directed action signals to downstream areas12–14. Inactivation of the ACC impaired the error signal in the 59 

primary visual cortex (V1), suggesting that neurons in the V1 are capable of computing visuomotor 60 

prediction errors by utilizing top-down, movement-related signals provided by ACC7. However, little is 61 

known about how prediction error signals computed in lower-order areas propagate along the cortical 62 

hierarchy to the higher-order area and update the internal model. For instance, it is still uncertain how 63 

visuomotor prediction errors are processed at different levels of the cortical hierarchy and which regions 64 

outside V1 mediate prediction error propagation. 65 

In this study, we aimed to determine how prediction error signals are hierarchically computed in the 66 

cerebral cortex, focusing on the visuomotor system. We utilized a virtual reality (VR) system to induce 67 

visuomotor prediction errors in animals by producing deviation between visual inputs and self-movement 68 
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of animals15. Macroscopic Ca2+ imaging revealed that prediction error signals are processed by medial 69 

higher-order visual-related areas in retrosplenial (RSP), posteromedial (PM), and anteromedial (AM) 70 

visual cortex. Granger causality analysis results, prior neuroanatomical findings16–18, and theoretical 71 

considerations4,5,19 further suggested that prediction error signals are processed in hierarchical circuits 72 

along the dorso-dorsal cortical stream. Indeed, circuit-specific imaging and targeted optogenetic 73 

inhibition provided direct evidence for the flow of prediction error signals along the dorso-dorsal cortical 74 

stream. Prediction error responses in areas along this stream were hierarchical even at the cellular level, 75 

and the diverse neural response patterns were explained by a dynamic Bayesian inference computational 76 

model. Thus, we demonstrate that hierarchical circuits along the dorsal cortical stream process prediction 77 

errors, thereby revealing the neural implementation of predictive coding in the cerebral cortex. 78 

 79 

Results 80 

Regional encoding of prediction error signals in the medial cortex 81 

To study prediction error signals in the cerebral cortex, we labeled neurons across cortical areas with the 82 

genetically encoded Ca2+ indicator jGCaMP7f and performed wide-field Ca2+ imaging in head-fixed mice 83 

running on a treadmill under a VR environment. An intravenous injection of a blood–brain barrier-84 

permeable adeno-associated virus vector (AAV-PHP.eB) expressing jGCaMP7f under control of the 85 

neuron-specific human synapsin promoter into the mouse retro-orbital sinus introduced jGCaMP7f into 86 

neurons throughout the brain, including cortex, striatum, hippocampus, and cerebellum (Fig. 1A, B, Fig. 87 

S1). Histological analysis showed that only a small proportion of the jGCaMP7f-expressing cells in V1 88 

and PM were immunopositive for the inhibitory neuron subtype markers parvalbumin (5.9% in V1, 8.1% 89 

in PM), somatostatin (1.1% in V1, 0.8% in PM), or vasoactive intestinal peptide (0.0% in V1, 0.5% in 90 

PM), indicating biased labeling of excitatory neurons, consistent with the previous report20. 91 
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The VR system allows for precise manipulation of the relationship between locomotion and resulting 92 

visual feedback for selective delivery of sensorimotor mismatches (prediction errors) after habituation 93 

of mice in VR (Fig. 1C).  To determine how mice respond to visuomotor prediction errors, we presented 94 

unexpected visual feedback perturbations of the closed-loop relationship between visual flow and 95 

locomotion by randomly stopping the visual flow for 1.5 s while mice running on the treadmill (referred 96 

to as mismatches)15. During the mismatch event, pupil dilation occurred reliably in response to these 97 

mismatches (Fig. 1C-D), consistent with previous studies showing that pupil dilation responses reflect 98 

arousal or surprise due to visuomotor mismatches15,21,22. To filter the calcium-independent signal from 99 

neural activity, we performed wide-field Ca2+ imaging with a fluorescence normalization scheme on the 100 

basis of wavelength multiplexing (Fig. S2, See methods)23,24. We computed a visual field sign map, 101 

resting-state connectivity map, and principal component analysis map as references for registering the 102 

brain activity map of individual animals to that in the Allen Common Coordinate Frameworks (ACCF, 103 

Fig. 1E and S3, Supplementary Videos 1 and 2)25. We defined 10 regions of interest (ROIs) based on the 104 

ACCF (Fig. 1F). Of these, RSP was subdivided into anterior and posterior portions (RSPa and RSPp) 105 

based on anatomical differences in neural circuit inputs and outputs, as determined by tracer injection 106 

(Fig. S4)26.  107 

Wide-field Ca2+ imaging revealed that visuomotor mismatches evoked widespread and sequential 108 

cortical activities (Fig. 1G, Supplementary Video 3). Distinct changes in the jGCaMP7f signal were 109 

detected in medial visual areas, including V1, PM, AM, and RSPp. In contrast, the rostrolateral (RL) and 110 

lateral visual areas did not exhibit distinct positive peak Ca2+ responses (Fig. 1H, I). As a negative control, 111 

fluorescent signals of green fluorescent protein (GFP)-expressing neurons were also measured, and no 112 

such changes in fluorescence during mismatch were detected (Fig. S5). We then investigated whether 113 

these signals encode the magnitude of prediction errors by calculating the correlation between mismatch 114 

response magnitude and prediction error magnitude15 .  For this analysis, the magnitude of the prediction 115 
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error was measured as the locomotion speed at mismatch onset (mean speed from −250 to 250 ms, 116 

threshold = 0.02 cm/s). The mismatch response magnitudes in medial higher-order visual areas, such as 117 

PM and AM, were significantly correlated with locomotion speed (Fig. 1J, K). Notably, the RSPp also 118 

exhibited a larger correlation between mismatch response magnitude and locomotion speed than RSPa 119 

(Fig. 1K, RSPp: r = 0.219, RSPa: r = 0.103). In contrast, such correlations were not observed in parietal 120 

association areas, such as the RL and anterior visual area. Furthermore, correlations with movement-121 

related variables during the mismatch event, such as changes in locomotor speed and facial motion24,27, 122 

were much weaker and could not account for the variability in mismatch responses compared to 123 

locomotor speed at mismatch onset (Fig. S6). From these results, we conclude that medial higher-order 124 

areas, such as PM, AM, and RSPp, encode the occurrence and magnitude of visuomotor prediction errors. 125 

The mismatch event not only includes a prediction error (difference between expected and actual 126 

sensory input based on locomotion) but also a visual flow speed change. Prior studies have highlighted 127 

both the slower speed preference of visual flow in PM and the amplification effect of locomotion on 128 

sensory responses in visual areas9,28,29. In addition, we observed that dorsal cortex activity increased at 129 

the onset of running, in the absence of visual feedback (Fig. S7). Therefore, the mismatch responses may 130 

be explained by amplification of responses to the visual flow velocity change due to animal locomotion 131 

rather than the prediction error per se9,30. To rule out this possibility, we conducted wide-field Ca2+ 132 

imaging on mice under both the closed-loop mismatch condition and an open-loop condition in which 133 

mice were presented with playback-mismatch visual stimuli that were not coupled to locomotion speed 134 

(Fig. 1L). Consistent with previous reports in V1 neurons15, all mismatch-responding areas showed 135 

smaller response magnitudes to playback-halt (playback of mismatch event) stimuli than mismatch 136 

stimuli, regardless of the locomotion speed (Fig. 1L–N). The difference in playback responses between 137 

running and stationary conditions was relatively small (p > 0.05 in all ROIs). Thus, it is unlikely that the 138 
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visual flow alone or modulation by locomotion accounts for the mismatch response under the closed-139 

loop condition. 140 

 141 

Neural and behavioral mismatch responses are experience-dependent 142 

To examine whether pupil and neural mismatch responses are modulated by prediction formed by prior 143 

experience, we compared neural responses to “predictable” and “unpredictable” visuomotor mismatches 144 

while maintaining identical locomotion speeds. If neural activity associated with the mismatch response 145 

reflects prediction error, then this response should be attenuated when the mismatch event is highly 146 

predictable. To test this notion, we established a semi-closed-loop VR (SCL-VR) condition in which the 147 

perturbation of visual flow feedback occurred only when the locomotion speed exceeded a threshold of 148 

12.0 cm/s, thereby triggering a self-induced mismatch (Fig. 2A). In contrast to the random timing of 149 

mismatches in our initial experiments (Fig. 1), the timing of these self-induced mismatches is predictable 150 

for a mismatch-experienced (ME) group trained in the SCL-VR. However, for the normal VR-151 

experienced (NE) group trained in the regular closed-loop VR (the control group in this experiment), the 152 

timing of the self-induced mismatch in the SCL-VR is unpredictable (Fig. 2B). In both groups, the 153 

visuomotor mismatch responses were mainly attributed to predictions based on prior experience during 154 

five habituation sessions, and consequently the mismatch response magnitude was expected to be smaller 155 

in the ME group than the NE group (Fig. 2C). 156 

During recording sessions, the average locomotion speed in the early phase of the mismatch period 157 

(0.0 to 1.2 s) did not differ significantly between NE and ME groups (Fig. 2D). In the late phase of the 158 

mismatch periods (>1.2 s), however, the NE group exhibited significantly slower locomotion speed and 159 

larger pupil dilation than the ME group (Fig. 2D, E and S8A). These results suggest that the ME group 160 

acquired prior information based on experience in the SCL-VR, resulting in reduced prediction errors to 161 

self-induced mismatch events compared to the inexperienced NE group. 162 
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To examine if these effects are associated with neural response magnitude in specific cortical regions, 163 

we compared the neural responses to the self-induced mismatches between the NE and ME groups using 164 

wide-field Ca2+ imaging (Fig. 2F). While positive mismatch responses were observed in both groups 165 

across wide regions of dorsal cortex, such as medial secondary motor cortex (M2m), RSPp, AM, and PM 166 

(Fig. 2F, G), response magnitudes were uniformly significantly smaller in the ME group during the early 167 

period of the mismatch (0.0 to 0.75 s) (Fig. 2H, S8B and C). To further examine the effect of experience 168 

on mismatch responses, we performed additional recordings in NE mice following each of four additional 169 

training sessions in the SCL-VR. In the recording second session, NE mice showed reduced behavioral 170 

responses in locomotion speed and pupil dilation compared to the first session (Fig. S9A–C) as well as 171 

reduced neural activity in the V1, PM, AM, and RSPp (Fig. S9), indicating that mismatch responses 172 

observed in the medial higher-order cortical areas are contingent on the predictability of mismatch events. 173 

 174 

Mismatch responses of individual neurons are explained by the visuomotor prediction 175 

model. 176 

Our wide-field Ca2+ imaging results (Fig. 1 and 2) and previous anatomical and physiological findings 177 

on the cortical visual system16–18,31 led us to reason that visuomotor prediction errors are hierarchically 178 

processed in a dorsal cortical pathway (Fig. 3A and B). To assess regional differences in mismatch 179 

responses at the single-neuron level, we performed extracellular recordings from cortical areas exhibiting 180 

robust mismatch responses by wide-field imaging (V1, PM, RSPp, and ACC, including 338 single units 181 

in total from n = 9 mice, Fig. 3A, B and Fig. S10) as well as from potentially relevant subcortical areas 182 

dorsal lateral geniculate nucleus (dLGN) and dorsal or ventral hippocampal region (dHIP, vHIP), 501 183 

single units in total from n = 4 mice, Fig. S10). These recordings were performed from mice in two or 184 

three types of VR tracks after the session for area identification with intrinsic signal optical imaging32,33 185 

(Fig. 3C). Track 1 presented a corridor with landmarks, Track 2 a corridor without landmarks, and Track 186 
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3 a dark environment. Remarkably, recorded neurons showed highly stable mismatch responses across 187 

trials, and there were no significant magnitude differences in V1, PM, RSPp, and ACC between Track 1 188 

and Track2 conditions (all p > 0.05 by two-sided Sign-rank test), indicating that the mismatch responses 189 

are not largely affected by spatial prediction. Next, we examined whether mismatch response patterns 190 

change along the dorsal visual pathway. In the dLGN, the earliest visual processing stage in the brain, 191 

15.5% of units showed a significant positive response to mismatch; in V1, 30.0 % of units showed a 192 

significant positive response to mismatch (Fig. 3I). Further, the proportion of responsive neurons 193 

gradually increased along the cortical hierarchy, as mean responses were greatest in PM and RSPp, 194 

lowest for dLGN, and of intermediate magnitude in V1 and ACC (Fig. 3J). The response magnitudes in 195 

V1, PM, and RSPp were also significantly larger than that in dLGN (p < 0.01, Dunnett’s test). These 196 

results suggest that areas at the higher level of the hierarchy may be more engaged in predictive 197 

processing. 198 

Notably, the pattern of neuronal mismatch responses was more diverse than presented in previous 199 

studies15,34. We next classified the mismatch response patterns of individual units using an unsupervised 200 

learning scheme (time series K-means clustering). This analysis revealed eight distinct clusters (Fig. 4A 201 

and B). Moreover, mismatch responses of individual neurons were not solely limited to simple increases 202 

and decreases in neural activity. This response complexity suggests that the neural circuits encoding of 203 

prediction errors do not merely perform simple arithmetic operations. 204 

To test further examine if response patterns of individual neurons are consistent with predictive 205 

coding scheme, we compared neural mismatch response to visuomotor prediction errors estimated by a 206 

state-space model (SSM)1 that predicts visual flow speed from locomotion speed and visual flow histories 207 

of mice (Fig. 4C). During closed-loop periods, this SSM model accurately predicted the incoming visual 208 

flow speed, while during the mismatch periods, the model detected the visuomotor prediction errors and 209 

updated its state accordingly. Visual flow speed prediction in the SSM involves estimating the latent state 210 
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variable 𝑔𝑡  parameterized by the state noise covariance (𝑄) . In this model, the value 𝑄  acts as a 211 

hyperparameter that determines the sensitivity of the prediction error in the SSM, with larger values 212 

indicating that the model can quickly adapt to large variations in the state transition (Fig. 4C, see Methods 213 

for details). This model successfully computed the visuomotor prediction error as the mismatch between 214 

the observed and the expected visual flow based on the locomotion speed during the recording session 215 

(Fig. S11). The error between predicted and actual visual flows varied depending on 𝑄; that is, various 216 

patterns of visuomotor prediction errors in SSM can be produced by this hyperparameter. This finding 217 

further implies that the variable Q in SSM can be considered a control parameter that determines how 218 

much the state is updated using the received information. Notably, the model generated not only simple 219 

positive and negative response patterns, but also transient and persistent response patterns to mismatches 220 

depending on different hyperparameters (Fig. 4C). Furthermore, these model-generated patterns 221 

recapitulated the distinct spiking response patterns in neural activity of individual neurons to mismatch 222 

(Fig. 4A and B). 223 

To test whether the visuomotor prediction errors estimated by the SSM can explain neuronal 224 

responses, we employed a generalized linear model (GLM) designed to evaluate the contribution of SSM-225 

generated prediction error information to actual neural responses of individual cells. The GLM used 226 

variables associated with mouse behaviors and sensory inputs such as visual flow and landmarks in the 227 

VR, in addition to the prediction error information generated by the SSM (Fig. 4D). To assess relative 228 

contribution of each behavioral variable to the GLM performance for individual neurons in V1, PM, 229 

RSPp, and ACC, we evaluated the effects of omitting a single feature (SSM-generated errors) from the 230 

full model and evaluated the GLM performance by comparing the partial model with the full model (Fig. 231 

4E–G). The omission of SSM-generated prediction errors decreased GLM performance across all four 232 

brain regions (Fig. 4 F and G), indicating that prediction errors are crucial for explaining neural activities 233 

in V1 and higher-order areas PM, RSPp, and ACC. This finding suggests that the neural mismatch 234 
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response does not merely represent sensory inputs, self-movements, or the difference between the 235 

efference copy and the observation, but rather the difference between prediction and observation, with 236 

the prediction being dynamically updated based on past errors. Notably, while the contribution of SSM 237 

errors to neuronal responses was significant in V1, it was even more pronounced in higher-order areas 238 

(PM, RSPp, and ACC, Fig. 4G), supporting our hypothesis that prediction errors are hierarchically 239 

processed along the cortical hierarchy. 240 

 241 

Hierarchical propagation of bottom-up error signals along the dorso-dorsal visual stream 242 

We then investigated the transmission route of error signals among across dorsal cortical areas by 243 

applying correlation analysis between cortical areas where neural activity was simultaneously measured 244 

with wide-field Ca2+ imaging. There were significant differences in large-scale correlations between 245 

cortical areas under conditions with distinct behavioral states and sensory inputs (Fig. 5A). While the 246 

overall magnitudes of the correlations decreased when mice were running in the VR environment and 247 

the pattern was roughly preserved between during the closed-loop and mismatch periods, individual areal 248 

correlation coefficients increased across visual cortical areas during mismatches (Fig. 5A, B). To 249 

quantify the direction and degree of information flow between areas, we computed Granger causality 250 

during mismatch and closed-loop periods35,36. Despite dynamic changes in visual flow speed during 251 

closed-loop periods, Granger causality from V1 to PM remained lower than during mismatch periods 252 

(Fig. 5C and Fig. S12A). We also applied Granger causality analysis to the self-induced mismatch 253 

responses of NE and ME group mice in the SCL-VR under similar locomotion speeds and visual flow 254 

feedback conditions (Fig. 2) and found reduced Granger causality from V1 to higher-order visual areas 255 

in ME mice (Fig. S12B). These results suggest the existence of bottom-up error signal flow from V1 to 256 

higher areas during the mismatch periods.  257 
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To directly examine this functional connectivity at the circuit level, we performed two-photon Ca2+ 258 

imaging of axonal boutons from V1 neurons in the RSP and PM following antero-grade labeling with 259 

axon-GCaMP6s (Fig. 5D and E). Injection sites and recording sites were identified by intrinsic signal 260 

optical imaging and post-hoc anatomical validation. Figure 5F–G shows examples of mismatch response 261 

time courses. The Ca2+ signal time courses of representative boutons clearly revealed positive and 262 

negative responses to mismatch events (Fig. 5G). ROIs were then defined to quantify mismatch response 263 

of axons in RSP and PM (n = 1158 and 1324 ROIs from n = 3 and 3 mice, respectively, Fig. 5H). A 264 

significant proportion of axonal boutons in PM and RSP responded to mismatch events (Fig. 5H; 34.5% 265 

in RSP, 43.7% in PM, p < 0.05). To investigate the relationship between mismatch responses and visual 266 

response properties, we additionally measured the visual responses to drifting grating stimuli in a subset 267 

of recording sessions (Fig. 5I, n = 1174, 1121 ROIs, respectively). Notably, the distribution of neuronal 268 

response properties projected onto grating and mismatch response axes were nearly orthogonal (Fig. 5J). 269 

Furthermore, we examined whether the population neuronal dynamics for mismatch responses were 270 

separable from those for visual responses to various grating stimuli, using a principal component analysis 271 

(PCA) to decompose the high-dimensional neural dynamics, and demonstrated that the neuronal 272 

population dynamics of mismatch responses were clearly separable from those of visual responses to 273 

grating stimuli (Fig. 5K). These axon imaging analyses, together with the macroscopic level results, 274 

indicate that these error-responsive V1 neurons transmit prediction error signals to higher-order areas, 275 

and are distinguishable from neurons sending bottom-up visual information. 276 

Finally, we examined the feedforward propagation of visuomotor prediction error signals from PM 277 

and RSP to motor-related areas, as such signals are considered necessary for updating the internal model 278 

and refining future predictions4. For this purpose, we retrogradely labeled ACC-projecting neurons with 279 

AAV2retro-tdTomato in Thy-1-GCaMP6f transgenic mice37 and then performed two-photon Ca2+ 280 

imaging from the RSP and medial higher visual areas (PM and AM). Recording sites were determined 281 
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by retinotopic mapping (Fig. 6B)32. A considerable number of ACC-projecting RSP and PM/AM neurons 282 

(tdTomato+) in layer 2/3 exhibited a significant positive response (24.2% and 31.1%, respectively) to 283 

mismatch events (Fig. 6D-F). Further, the mismatch response magnitude of the tdTomato+ neurons was 284 

positively correlated with locomotion speed (Fig. 6G), and the spatial tuning profile and playback-halt 285 

response of these neurons did not account for the mismatch response magnitudes (Fig. S13 and S14). 286 

These results indicate that ACC-projection neurons in RSP and PM/AM directly transmit the prediction 287 

error signals to ACC. 288 

Next, to investigate whether these bottom-up circuits mediate the perception of prediction error, we 289 

performed loss-of-function analysis on pathways from posteromedial cortical areas, including the PM, 290 

AM, and RSP, to the ACC by optogenetic inactivation. We expressed the light-gated chloride channel 291 

GtACR2 in ACC-projecting neurons of the PM/AM and RSP by injecting retrograde Cre-expressing 292 

AAV (AAV2retro-hSyn-iCre) into the ACC and Cre-dependent AAV expressing GtACR2 (AAV9-293 

CAG-DIO-GtACR2-FusionRed-Kv2.1) into the PM/AM and RSP (Fig. 6H and S15). Optogenetic 294 

inactivation of the ACC-projecting neurons in posteromedial cortical areas (PM, AM, and RSP) during 295 

mismatch periods significantly reduced the pupil dilation response to mismatch events in trials with large 296 

prediction errors (Fig. 6I, J). As a control, optical stimulation alone without visuomotor mismatch elicited 297 

only a slight and insignificant pupil dilation (Fig. 6I). These effects were consistent across individual 298 

animals (Fig. S16). Taken together, our results indicate that dorsal posterior-frontal cortical circuits 299 

propagate visuomotor prediction errors, supporting the theory of hierarchical predictive coding in the 300 

brain (Fig. 6K). 301 

  302 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.08.16.504075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

                                                                                                                                         

 

 

16 

Discussion 303 

In this study, we elucidated the functional dynamics and neural circuit structure of prediction error 304 

encoding and propagation from lower- to higher-order areas through a cortical hierarchy. Multiscale 305 

recording and neural manipulation approaches combined with the visuomotor mismatch paradigm using 306 

VR revealed hierarchical encoding of experience-dependent visuomotor error signals along the dorso-307 

dorsal visual pathway to the frontal cortex. Prediction error responses at the cellular level varied 308 

markedly among neurons and their statistical modeling further suggests that the mismatch response 309 

diversity results from prediction error computations according to complex probabilistic neural processing 310 

rather than simple arithmetic comparisons between sensory and internal model prediction signals. 311 

Inhibition of bottom-up signals from the medial higher-order regions RSP, PM, and AM to the ACC 312 

reduced the mismatch-induced pupil dilation response, a possible behavioral indicator of large prediction 313 

errors, suggesting that bottom-up signals within the cortical hierarchy are required for error detection. 314 

We conclude that the hierarchical processing of prediction error signals from V1 through medial higher-315 

order posterior areas to the frontal motor area, a primary source of predictions, is critical for updating 316 

internal models and generating future predictions in the brain. 317 

 318 

Hierarchical propagation of bottom-up prediction error signals 319 

Our results are consistent with the principles of both hierarchical predictive coding and the well-320 

established hierarchical properties of visual processing16,18,38–40. Axonal imaging demonstrated that the 321 

population representations of basic visual inputs and prediction error information are nearly orthogonal 322 

in low-dimensional space, suggesting that the neurons conveying these two types of information are 323 

segregated, allowing downstream neurons to distinguish between visual feature information and 324 

prediction error signals (Fig.5).  Future investigations are warranted to link mismatch-responsive neurons 325 

(function) to molecularly defined cell types (molecular profiles) and projection targets (connectivity) to 326 
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understand circuit interactions of functionally distinct pathways34,41,42. Further, elucidating the 327 

interactions among parallel and hierarchical pathways is essential for a general understanding of 328 

predictive processing in the brain. 329 

Detecting unexpected visual input during movement is crucial for visually guided motor control, 330 

perception, navigation, and learning. Studies in primates and rodents have indicated that visuomotor error 331 

signals in motor cortices play a pivotal role in driving adaptive motor learning43,44. Clinical and disease 332 

model studies have shown that impairments in medial higher cortical areas, including the dorsal higher-333 

order visual areas and RSP, can lead to deficits in sensory-guided actions, such as reaching, eye 334 

movements for object tracking, and spatial navigation45–48. These findings further suggest the existence 335 

of neural circuits dedicated to transmitting sensorimotor error signals to the motor system. Although 336 

previous research has in fact identified circuits for computing prediction errors in the early sensory 337 

cortex7,8,49, understanding how error signals from V1 update predictions in frontal motor areas has been 338 

challenging due to the sparse axonal outputs from V1 to the frontal cortex (Fig. S17). By analyzing large-339 

scale connectome data50,51, we found that axonal projections to the ACC from posterior higher-order 340 

areas (PM, AM, and RSP)  were denser than projection from V1 and from both lateromedial (LM) and 341 

anterolateral (AL) visual areas to the ACC (Fig. S17). Our results from the electrophysiological and 342 

anatomical analyses suggest that these cortical circuits underlie the hierarchical transmission of 343 

prediction error signals from the PM, AM, and RSP to the ACC. Furthermore, axonal projections from 344 

the ACC to the posterior medial areas (PM, AM, and RSP) were also denser than those from the ACC to 345 

V1 and lateral higher-order visual areas (LM and AL) (Fig. S18). Notably, we also observed that 346 

visuomotor mismatch responses in PM and AM differed substantially from those in RL and AL, 347 

suggesting that anatomical pathway(s) from the ACC to PM, AM, and RSP convey top-down prediction 348 

signals, consistent with functional and anatomical investigations indicating the presence of two 349 

substreams in the dorsal visual pathway: a dorso–dorsal stream and a ventro–dorsal stream17. Collectively, 350 
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these observed patterns of bidirectional anatomical connections provide additional support for the 351 

validity of hierarchical predictive coding in the cortex2,5,19,52. 352 

 353 

Dynamic Bayesian inference by prediction error signal 354 

In sensory processing, it is essential to identify the source of sensory inputs. However, sensory signals 355 

processed in cortical circuits inherently contain noise introduced by transduction in the sensory organs 356 

and subsequent processing by neural circuits. In addition, the same physical information at the level of 357 

the sensory organs can convey different meanings depending on the context of the self and the 358 

environment. Consequently, the ability of the brain to “filter” and interpret sensory signals using dynamic, 359 

internally generated models is essential for producing a stable representation of the external environment3.  360 

In this study, we describe a SSM that generates error signals closely resembling those measured in 361 

mouse cortical neurons. Single-unit recordings revealed that the mismatch response patterns of individual 362 

neurons are more diverse than previously reported using Ca2+ imaging, in part due to greater temporal 363 

resolution. To characterize neuronal responses to mismatches, we focused on a parameter denoted Q 364 

representing state noise that provides a measure of adaptability to prediction errors in individual neurons. 365 

Previous models have included arithmetic subtraction scheme in which the observed visual flow is 366 

subtracted from the efference copy of locomotion-related signals to encode visuomotor prediction 367 

errors19,34. However, our analysis, which adapted the SSM to spiking activity, suggests that the neural 368 

response patterns to sensorimotor mismatch events may be better explained by a sequential probabilistic 369 

inference framework, such as the dynamic Bayesian inference framework1,53,54, where perception 370 

(defined as a posterior probability) is formed by updating predictions (defined as a prior probability) with 371 

observations. These findings highlight the possibility that flexible computation based on Bayesian 372 

inference allows animals to respond rapidly and precisely to dynamic environments by processing 373 

prediction errors. 374 
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 375 

Evaluation of prediction error signals by response to mismatch events 376 

Neural responses to visuomotor mismatch can be influenced by numerous factors, including visual 377 

features, concomitant motor activity, and prediction errors. Previous studies have shown that mismatch 378 

responses cannot be explained by motor or visual components alone, by using visual stimuli with 379 

matched visual input components (open-loop playback halt) to assess response properties, or by 380 

restricting postnatal visual experience to prevent the formation of visuomotor predictions in mice49. The 381 

present study was also designed to exclude potential confounding factors associated with visuomotor 382 

mismatch stimuli. Like previous studies, open-loop playback of visual flow cessation did not evoke large 383 

mismatch responses in the cortex (Fig. 1)31,49. However, while the playback paradigm can reproduce the 384 

visual inputs in closed-loop mismatch events, possible effects caused by differences in locomotion-385 

dependent signals remain. The semi-closed-loop paradigm (SCL-VR) developed in the present study 386 

allowed us to assess the predictability dependence of mismatch responses under nearly identical visual 387 

inputs and locomotion states (Fig. 2). Notably, predictability established by prior experience to self-388 

induced mismatch events affected both neural and pupil responses (Fig. 2). Pupil dilation, which 389 

regulates light input to the retina, occurred ~0.25 s after the neural population mismatch response. Thus, 390 

it is plausible that the pupil dilation reflects the mouse's perception or surprise to prediction errors rather 391 

than the cause of the mismatch responses. Other factors, such as locomotion, facial movements, eye 392 

movements, blinking, and the position and scene of the mouse in the VR, are ineffective explanatory 393 

variables for predicting the mismatch response. Rather, visuomotor prediction errors computed by our 394 

proposed SSM were a more plausible variable for explaining the neuronal responses (Fig. 4). These 395 

results support the notion that mismatch responses are caused by prediction errors55. 396 

 397 
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Limitations of this study 398 

The present study reveals a hierarchical processing stream of visuomotor prediction errors in the dorsal 399 

visual stream. Despite the use of wide-field imaging, however, these findings do not exclude the 400 

existence of other pathways transmitting sensory prediction errors, including subcortical streams. 401 

Neurons in dorso-dorsal visual areas, such as the PM, project axons not only to the ACC but also to the 402 

secondary motor cortex, RSP, lateral posterior nucleus, and striatum18. These regions are involved in 403 

visual information processing, motor execution, and learning, suggesting that prediction errors may also 404 

be transmitted to these regions. Moreover, previous studies have indicated that subcortical areas, such as 405 

the lateral posterior nucleus and superior colliculus, modulate sensory processing in the visual cortex 406 

during movement and thus likely receive error signals56,57. Depending on the nature of the internal or 407 

environmental context, error signals can be routed to brain regions that generate prediction signals. 408 

Elucidating the interaction between these cortico-subcortical and cortico-cortical circuit mechanisms will 409 

provide deeper insights into the neural basis of integrating sensory inputs with motor outputs for adaptive 410 

sensory perception and actions. 411 

 412 

Conclusion 413 

This study provides experimental evidence for hierarchical cortico–cortical interactions underlying 414 

predictive coding. We demonstrated hierarchical propagation of bottom-up visuomotor prediction error 415 

signals from V1 to medial higher-order cortical areas, and to the frontal cortex, a potential source of 416 

predictions. This sensorimotor prediction error circuit can serve as a mechanism for updating the internal 417 

model for sensory perception and sensorimotor integration. Predictive coding is a computational 418 

framework that explains sensory perception and sensorimotor integration but is also applicable to 419 

understanding psychiatric and neurological disorders as an imbalance between predictions and actual 420 
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inputs58. Understanding predictive processing at the cellular and circuit levels, in addition to the 421 

theoretical level, could contribute to the development of diagnostics and treatments for such disorders.  422 

423 
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Figure Legends 424 

 425 
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Figure 1. Visuomotor mismatch responses in dorsal cortical areas. 426 

(A). Sagittal section of mouse brain showing widespread cortical and subcortical expression of the 427 

genetically encoded Ca2+ indicator jGCaMP7f in the AAV-PHP.eB-infected brain. Inset: Magnified 428 

view of jGCaMP7f-expressing neurons in primary visual cortex (V1). Arrows indicate anterior (A) 429 

and dorsal (D) axes.  430 

(B). Coronal section from the jGCaMP7f-expressing brain. Arrows indicate dorsal (D) and lateral (L) axes. 431 

(C). Left: Schematic of the virtual reality (VR)-based visuomotor mismatch paradigm. Right: Example 432 

time series of mismatch and extracted behavioral parameters. Arrowheads indicate the timing of 433 

mismatch onset. 434 

(D). Time course of the pupil dilation response: Solid line represents the trial-averaged response to 435 

mismatch events, and dashed line illustrates the trial-averaged response when mice exhibited minimal 436 

locomotion (<6.0 cm/s) at the mismatch onset. Shaded areas: SEM. 437 

(E). Left: Averaged visual field sign map. Right: A signal-to-noise ratio (S/N) map (n = 6 mice) during 438 

visual stimulation with a moving and flickering checkerboard pattern. 439 

(F). Locations of 10 region of interest (ROIs) on the top view of the ACCF atlas. 440 

(G). The trial-averaged response to visuomotor mismatch events (326 trials from nine mice). 441 

(H). Response magnitude map during the mismatch period (0.0−1.5 s). 442 

(I). Averaged response traces from the 10 identified cortical areas. Shaded region indicates the mismatch 443 

periods (0.0−1.5 s). Line traces represent means ± standard error of the mean (SEM). 444 

(J). Top: Pseudocolor map of Pearson’s correlation coefficient between locomotion speed at the mismatch 445 

onset (mean of −0.25−0.25 s) and the neural response magnitude at all pixels in the ACCF. Bottom: 446 

Grayscale map of corresponding p-values. 447 

(K). Scatter plot of locomotion speed and mismatch responses in the 10 cortical areas. 448 

(L). Schematic of open-loop stimulus presentation. 449 
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(M). Peak response map to playback-mismatch events (n = 4 mice, locomotion speed > 6.0 cm/s). 450 

(N). Left: Averaged response traces from the 10 cortical ROIs. The shaded region indicates the mismatch 451 

period (0.0−1.5 s). Line traces represent means ± SEM. Right: Comparison of responses to closed-452 

loop mismatch, playback-halt during locomotion, and stationary state conditions. Asterisks show 453 

statistical significance in each area (p < 0.01, by Mann–Whitney U test). 454 

  455 
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 456 
Figure 2. Experience-dependent changes in self-induced visuomotor mismatch 457 

responses 458 

(A). Schematic of semi-closed-loop virtual reality (SCL-VR), with inset showing the logic flow of visual 459 

feedback. 460 

(B). Habituation history of two groups of mice differing in mismatch experience, the normal experienced 461 

(NE) group and mismatch experienced (ME) group.  462 

(C). Hypothetical neural responses to mismatch events by NE and ME mice. 463 

(D). Locomotion speed of mice during self-induced mismatch events. Shaded region indicates the 464 

mismatch period (0.0−1.5 s). Line traces represent means ± SEM. Dots show time bins with statistical 465 

significance (p < 0.01, by one-tailed unpaired t-test).  466 

(E). Distribution of pupil response magnitudes on each trial (p < 0.01, by Mann–Whitney U test). 467 

(F). Response peak magnitude maps during the mismatch period (0.0−1.5 s). 468 
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(G). Statistical significance of self-induced mismatch response between NE and ME group mice (average 469 

of 0.0–0.5 s vs. −0.5–0.0 s, p < 0.05, by one-tailed Signed–Rank test). 470 

(H). Trial-averaged response traces from 10 ROIs. Shaded region indicates the mismatch period (0.0−1.5 471 

s). Blue plots show the data from NE mice and red plots the data from ME mice. Each plot is shown 472 

as a mean ± 95% confidence interval. Dots indicate time bins with significant difference (p < 0.05, by 473 

bootstrap test). Dot color indicates the alternative conditions (blue: NE > ME; red: ME > NE). 474 

  475 
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 476 

Figure 3. Mismatch responses measured by extracellular recording 477 

(A). Hypothetical visuomotor error processing along the hierarchical structure in the dorsal cortex. 478 

(B). Schematic illustration of single-unit electrophysiological recording from mice under VR. 479 

(C). Visual field map for identification of recording sites.  480 

(D). VR tracks presented during recordings. 481 

(E). Top left: Trial-averaged mismatch response of a representative V1 neuron. Bottom left: Mismatch 482 

response on each trial, sorted by VR track and locomotion speed. Top right: Firing rate traces across 483 
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positions in the virtual track. Bottom right: Lap-by-lap firing rate. The dashed line in the matrix 484 

indicates the switching of VR track (Track 1, Track 2, Track 3, respectively). 485 

(F). Same as in (E) for a representative PM neuron. 486 

(G). Same as in (E) for a representative RSP neuron. 487 

(H). Same as in (E) for a representative ACC neuron. 488 

(I). Mismatch responses of neurons in the dLGN, V1, PM, RSPp, and ACC (in Track 1 and Track 2). Top: 489 

Population average of mismatch response. Shaded region indicates the SEM. Bottom: Mismatch 490 

response of individual neurons in each area. Neurons were sorted by mismatch response magnitude. 491 

(J). Bar charts of mismatch responsive neurons in the dLGN, V1, PM, RSPp, ACC, dorsal hippocampus 492 

(dHIP), and ventral hippocampus (vHIP). Cells were classified according to one-sided sign rank test 493 

(p < 0.05). The red area indicates positive responsive cells. The blue area indicates negative responsive 494 

cells. 495 

(K). Mismatch response magnitudes across the dLGN, V1, PM, RSPp, ACC, dHIP, and vHIP. Each dot 496 

indicates an individual neuron. Asterisks indicate statistically significant differences (** p < 0.01, vs 497 

dLGN, by Dunnett’s test). 498 
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 500 

 501 
Figure 4. Errors by the visuomotor prediction model explain neural mismatch responses 502 

(A). Variable mismatch response patterns in the dLGN, V1, PM, RSP, ACC, dHIP, and vHIP. Left: 503 

Response patterns of mismatch-responsive cells (sorted by time-series K-means clustering). Right: 504 

Mean mismatch response of each cluster. Shaded areas indicate SEM. Gray bar indicates the mismatch 505 

periods. 506 

(B). UMAP projection embedding the mismatch response pattern of individual neurons. Cluster labels (0-507 

7) correspond to those in (A). 508 

(C). Schematic of the visuomotor predictive state-space model (SSM). Gray bar indicates the mismatch 509 

period.  510 

(D). Schematic of Poisson generalized linear model (GLM) analysis. 511 
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(E). Model fitting results for an example PM neuron. Top left: Averaged mismatch response of the PM 512 

neuron (gray line), Full model prediction (blue line), and prediction of the model without visuomotor 513 

prediction errors calculated by the SSM (red line). Gray shaded region indicates the mismatch periods. 514 

Top Right: example time course of actual firing and fitting result. Bottom: Mismatch response pattern 515 

matrix of neural responses and the predictions of each model. 516 

(F). Comparison of fits for the full model and the partial model without SSM variables. Dots indicate 517 

individual cells in V1, PM, RSPp, and ACC. 518 

(G). Left: GLM fit quality, measured as the R-squared value (R2). Right: Distribution of ΔR2 (R2 Full model - 519 

R2 w/o SSM model) for each recording site. 520 

  521 
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 522 
Figure 5. Error signal flow across dorsal cortical areas 523 

(A). Schematic of five distinct behavioral and environmental contexts. Corresponding matrices show pairwise 524 

linear correlation coefficients of activity among the 10 defined ROIs.  525 

(B). Seed-based correlation maps of V1, PM, AM, RSPp, RSPa, and S1ll activity in the closed-loop and 526 

mismatch periods, and the differences in correlation coefficient between conditions. 527 
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(C). Granger causality between posterior cortical areas during closed-loop and mismatch periods. Closed-528 

loop results are visualized in the left hemisphere and mismatch results in the right hemisphere. 529 

Statistically significant flow edges are shown (p < 0.01). Open circle indicates seed-ROI. 530 

(D). Schematic of labeling and imaging of V1 axons. 531 

(E). Example in vivo two-photon image of GCaMP6s-labeled V1 axons in PM 532 

(F). Example time course of locomotion speed, mismatch events and dF/F of ROIs in PM. 533 

(G). Pixel-based trial-averaged mismatch responses of V1 axonal boutons in example recording sites in RSP 534 

and PM 535 

(H). Trial-averaged mismatch responses from ROIs in RSP and PM. ROIs were sorted by mismatch response 536 

magnitudes. 537 

(I). Schematic of visual stimulation (drifting rectangular grating).  538 

(J). Relationship between grating response (preferred direction) and mismatch response amplitude visualized 539 

by density plot. Colors indicate the counts of ROIs in each bin. 540 

(K).  Projection of the population responses to visual stimuli and mismatch events into 3-dimensional PCA 541 

space. Trajectories indicate population dynamics during stimulus presentation (0.0-1.5 s). Circles 542 

indicate offset of stimulus. 543 
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 544 
Figure 6. Propagation of prediction error signals to the anterior cingulate cortex (ACC) 545 

(A). Labeling of ACC-projecting neurons by AAV into the ACC of Thy1-GCaMP6f transgenic mice (left) 546 

and a confocal image of the injection site (right). The circle represents a typical glass window position 547 

for in vivo two-photon imaging. 548 

(B). Fluorescent images of recording sites (left) overlaid with the retinotopic mapping result (right). The 549 

real boundary of the dorsal visual areas is outlined. Boxes indicate the example imaging site in (A). 550 

(C). In vivo two-photon images of the RSP and PM/AM. 551 

(D). Trial-averaged mismatch response from the RSP. Left: Averaged response of all recorded neurons in 552 

the RSP (n = 1092 tdTomato- cells, n = 265 tdTomato+ cells from 4 mice). Right: Averaged response 553 

in ACC-projecting RSP neurons. 554 

(E). As in (D) for PM/AM neurons (n = 361 tdTomato- cells, n = 193 tdTomato+ cells from 4 mice). 555 

(F). Mismatch response magnitude (mean of 0.0-1.5 s) distribution of ACC-projecting neurons. 556 

(G). Correlation coefficient between locomotion speed and neural activity of ACC-projecting neurons 557 

under the darkness. 558 

(H). Optogenetic silencing of ACC-projection feedforward circuits. Inset shows laser-illuminated area. 559 
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(I). Time course of pupil dilation response to mismatch events for relatively slower trials (left) and faster 560 

trials (right). Shaded regions indicate the SEM. 561 

(J). Distribution of pupil response magnitude (Ctrl. vs. Stim.: p = 0.227 in <25cm/s trials; p = 0.010 in 562 

>25cm/s trials, by Mann–Whitney U-test). 563 

(K). Schematic of the hierarchical predictive coding process of visuomotor signals. 564 

  565 
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Methods 729 

Animals 730 

All animal procedures were conducted according to institutional and national guidelines, and were 731 

approved by the Animal Care and Use Committee of Nagoya University. All efforts were made to reduce 732 

the number of mice used and minimize their suffering and pain. C57BL/6J mice were purchased from 733 

Nihon SLC. Thy1-GCaMP6f (GP5.17) mice were purchased from the Jackson Laboratory 734 

(JAX025393)37. Mice were maintained in a temperature-controlled room (24 °C ± 1 °C) under a 12 h 735 

light/dark cycle with ad libitum access to food and water. Mice aged 11−28 weeks were used for the 736 

virtual reality (VR) experiments because of the body size needed for adaptation to head-fixed VR. All 737 

mice were reared under the normal light/dark cycle to evaluate the effect of their experiences in the VR. 738 

 739 

AAV production 740 

All plasmids were constructed as previously described59–61, sequence-verified, and tested by transient 741 

expression in HEK293T cells before virus production. The AAVs were generated in HEK293T cells and 742 

purified by density gradient centrifugation, as previously described60,61. Genome titers of the AAVs were 743 

quantified by qPCR for the WPRE sequence. The titers of AAV-PHP.eB-hSyn-jGCaMP7f and AAV-744 

PHP.eB-hSyn-GFP were 3.25 × 1013 and 2.96 × 1013 vg/mL, respectively. The AAV9-CAG-DIO-745 

GtACR2-FusionRed-Kv2.1, AAV2retro-ESyn-iCre, and AAV2retro-hSyn-tdTomato were 1.10 × 1013, 746 

1.42 × 1013, and 1.02 × 1010 vg/mL, respectively. Virus aliquots were stored at −80 °C until use. 747 

 748 

G-deleted rabies virus production 749 

A G-deleted rabies viral vector encoding green fluorescent protein (RVΔG-GFP) was produced as 750 

previously described59–62. In brief, RVΔG-GFP was recovered by transfection of B7GG cells with the 751 

rabies viral genome vector pSAD-B19ΔG-GFP, pcDNA-SAD-B19N, pcDNA-SAD-B19P, pcDNA-752 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.08.16.504075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

                                                                                                                                         

 

 

43 

SAD-B19L, and pcDNA-SAD-B19G. For in vivo injection, RVΔG-GFP was amplified in ten 15-cm 753 

dishes in 3% CO2 at 35 °C, filtered using a 0.45-μm filter, concentrated by two rounds of 754 

ultracentrifugation, and titrated with HEK-293T cells. The titer of RVΔG-GFP was 1.0 − 1.2 × 109 755 

infectious units/mL. Virus aliquots were stored at −80 °C until use. 756 

 757 

Retro-orbital virus injection and surgery 758 

The AAV-PHP.eB-hSyn-jGCaMP7f was injected at 100 µL into the retro-orbital sinus of mice using a 759 

30-gauge needle under deep anesthesia with a mixture of medetomidine hydrochloride (0.75 mg/kg; 760 

Nihon Zenyaku), midazolam (4 mg/kg; Sandoz), and butorphanol tartrate (5 mg/kg; Meiji Seika). Skull 761 

skin and membrane tissue on the skull were carefully removed, and the skull surface was covered with 762 

clear dental cement (204610402CL, Sun Medical) 14−20 days after virus injection. A custom-made metal 763 

head-plate was implanted onto the skull for stable head fixation. The visibility of GCaMP- or GFP-764 

derived green fluorescence was verified under a fluorescent macroscope (M165FC, Leica). During 765 

surgery, the eyes were covered with ofloxacin ointment (0.3%) to prevent dry eye and unexpected injuries, 766 

and body temperature was maintained with a heating pad. After surgery, mice were injected with 767 

atipamezole hydrochloride solution (0.75 mg/kg; Meiji Seika) for rapid recovery from the effect of 768 

medetomidine hydrochloride. 769 

 770 

Virus injection for retrograde or anterograde labelling 771 

Viral solution was injected stereotaxically into the mouse brain, as described previously62. Briefly, 8-772 

week-old mice were anesthetized using the same procedure as that for retro-orbital injection. Mice were 773 

head-fixed on a stereotaxic apparatus (David Kopf Instruments). RVΔG-GFP (400 nL for each location) 774 

was injected into RSPa (AP: −1.5 mm, ML: 0.2–0.3 mm, depth: 0.3 and 0.6 mm from bregma) or RSPp 775 

(AP: −3.0 mm, ML: −0.5 mm, depth: 0.5 and 1.0 mm from bregma) at 100 nL/min with pulsed air 776 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.08.16.504075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

                                                                                                                                         

 

 

44 

pressure. AAV2retro-hSyn-tdTomato (400 nL) was injected into the ACC region (AP: -0.4 mm, ML: 0.5 777 

mm, depth: 1.0 mm) according to the same surgical procedure of RVΔG injection. Injection sites of 778 

AAV9-CAG-axonGCaMP6s (200−300 nL) were determined by with intrinsic signal optical imaging in 779 

two of the four mice per treatment group, while injection sites in the other two mice per group were 780 

defined by distance from their bregma. 781 

 782 

Immunostaining 783 

Mice were anesthetized and transcardially perfused with 50 mL of phosphate buffered saline (PBS) 784 

followed by 50 mL of 4% paraformaldehyde (PFA, Nacalai) in PBS. Brains were post-fixed with 4% 785 

PFA in PBS, 15% sucrose in PBS overnight, and then with 30% sucrose in PBS. The brains were 786 

subjected to histological analysis as described previously60,62. Cryoprotected samples were sectioned at 787 

a thickness of 40 µm on a freezing microtome (REM-710, Yamato Kohki). The sections were rinsed with 788 

PBS, blocked for 1−2 h in blocking solution (50% Blocking One (Nacalai, 03953-95) in 0.1% Triton X-789 

100/PBS (PBST)), and then incubated overnight at 4℃ with primary antibodies: rabbit anti-GFP (1:3000, 790 

Abcam, ab6556), rat anti-GFP (1:1000, Nacalai, 04404-84), chicken anti-GFP (1:2000, Abcam, 791 

ab13970), rabbit anti-DsRed (1:1000, Clontech, 632496), goat anti-parvalbumin(1:500, Swant, PVG-792 

213), rat anti-somatostatin (1:500, Millipore, MAB354), and rabbit anti- vasoactive intestinal peptide 793 

(1:400, ImmunoStar, 20077) in 5% Blocking One/0.1% PBST. After three washes with 0.01% PBST, 794 

the sections were incubated with Alexa Fluor 488-, 594-, 647-labelled donkey anti-rabbit IgG, anti-rat 795 

IgG, anti-goat (all 1:1000, Jackson, 711-545-152, 711-585-152, 711-605-152, 712-585-153, 712-605-796 

153, 705-605-147) and DAPI (1:800, 1.25 μg/mll; Wako). 797 

Images of immunofluorescence staining were acquired using a laser scanning confocal microscope 798 

(Zeiss, LSM800) with a Plan Apo 10× (Zeiss, NA 0.45) or Plan Apo 20× (Zeiss, NA 0.75) objective. 799 

The specificity of the primary antibodies was confirmed by typical staining patterns. None of the 800 
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observed labeling was owing to nonspecific binding of secondary antibodies or autofluorescence in the 801 

fixed tissue because sections treated with secondary antibodies alone had no detectable signals. The 802 

acquired data were processed using ImageJ/Fiji for visualization. 803 

 804 

VR environment 805 

Mice were head-fixed but free to run forward or backward on a treadmill. Three frameless 3/4-inch 806 

monitors (LP097QX1, LG) covered with antireflective film (TB-A18MFLKB, ELECOM) were used for 807 

visual stimulation. A 120-mm diameter urethane sponge was used as a treadmill stage. For two-photon 808 

Ca2+ imaging, backlight flickering was synchronized to the X-axis scan of the microscope to reduce light 809 

contamination. The renderings displayed on these monitors were precisely synchronized to a “Mosaic” 810 

function provided by the graphics card (Quadro P4000 or RTX-A2000, NVIDIA). Speed of the subject's 811 

locomotion was monitored at the rotary encoder (360 pulses/cycle) connected to a microcontroller 812 

(Arduino Uno or Nano every, Arduino CC). The time series data of running speed were smoothed offline 813 

using a Savitzky−Golay filter (order = 3, frame length = 21). Visual feedback was provided by custom-814 

written software using Open-GL API in MATLAB (MATLAB 2020a, MathWorks) or Python. 815 

MATLAB-based software was used in the wide-field imaging experiments. Python-based software was 816 

used in the two-photon imaging, optogenetic, and electrophysiological recording experiments. The 817 

latency of visual feedback was typically <50 ms (corresponding to <3 frames). The timing trigger for 818 

mismatch events was sent by the data acquisition board on the master PC (USB-6343, National 819 

Instruments) and received by the data acquisition board on the stimulus PC (USB-6002, National 820 

Instruments). For two-photon imaging experiments, the backlight LED of the monitors were 821 

synchronized to the resonant scanner turnaround points to prevent light contamination from fluorescence 822 

and visual feedback monitors. The TTL pulse for synchronization was generated by FPGA-based board 823 

(Analog discovery 2, Digilent) 824 
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For wide-field imaging data (Figs. 1, 2 and 5), the virtual environment simulated an infinite corridor 825 

with blurred random dot patterns. The patterns on the left and right walls were symmetrical, with no 826 

distinct landmarks. For cellular or axonal imaging, extracellular recording, and optogenetic experiments, 827 

mice were located on a virtual linear track with landmarks (200 cm/lap, four landmarks, Fig. 3). Visual 828 

flow stimuli were presented within the same VR environment. The flow speed corresponded to 31 cm/s 829 

locomotion for the 1.5 sec/trial. The rotary encoder speed, LED power, exposure timing, and mismatch 830 

or forced visual flow timing were recorded by the data acquisition interface of the master PC using a 831 

custom-written MATLAB application at a 20-kHz sampling rate. Mouse eye position, pupil size, and 832 

face were monitored by a machine vision camera equipped with an array of 940 nm IR-LEDs (AE-833 

LED56V2, Akizuki-denshi), and a triacetate long-pass filter (cutoff wavelength = 820 nm, IR-82, 834 

Fujifilm). Room lights were off during the training and imaging sessions.  835 

In the closed-loop VR condition, mismatches were triggered by a random timing generator program. 836 

Mice were habituated under the head-fixed VR condition for 1−2 h sessions for 3−5 days (Fig. 1) or 5–837 

9 days (Fig. 3–7) until they showed regular locomotion in the VR setup. Each imaging session under 838 

closed-loop VR also began with a habituation period of 15−30 min. For smooth head fixation, light 839 

anesthetization with (1.0%−1.5% isoflurane) was used at the beginning of the first habituation session.  840 

In the semi-closed-loop VR (SCL-VR) condition, mismatch events were triggered by the stimulus 841 

PC in real-time when mouse locomotion speed exceeded a defined threshold (>12.0 cm/s, refractory 842 

period = 4.0 s). The logic flow of visual feedback in the SCL-VR is represented in Figure 2A. Six mice 843 

were habituated for 5 consecutive days (Fig. 2), and three of these were subsequently trained under the 844 

SCL-VR condition to experience predictable visuomotor mismatches (ME group), while the remaining 845 

three were trained under the regular closed-loop VR condition as predictable mismatch-inexperienced 846 

mice (NE group). The NE group mice were also habituated under the SCL-VR for an additional four 847 

days before the second imaging session (Fig. S9). The duration of habituation was 0.5 h for the first day 848 
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and 1.5 h for days 2−5. On the first day of the habituation session, mice were habituated to darkness and 849 

treadmill running with head fixation.  850 

Drifting grating stimuli and open-loop playback stimuli were presented on the same monitor as the 851 

VR using psychopy. Eight-direction rectangular gratings were presented 10 times for each direction 852 

(duration = 1.5 s, intertrial interval = 2.0 s). For open loop playback (playback-halt stimuli), screen 853 

captured video (captured in closed-loop mismatch imaging block) were presented using the “Movie stim” 854 

method of psychopy.  855 

 856 

Wide-field Ca2+ imaging  857 

Calcium-dependent fluorescent signals from jGCaMP7f were acquired using a customized macroscope 858 

(THT, Brainvision) with a tandem lens design (a pair of Plan Apo 1×, WD = 61.5 mm, Leica) and epi-859 

illumination system (see Fig. S2). An alternating excitation method was used to filter the calcium-860 

independent fluctuation from the Ca2+ signal. Alternating blue (M470L4, Thorlabs) and violet (M405L3, 861 

Thorlabs) LEDs provided the excitation, which was filtered by additional band-pass filters (blue: #86-862 

352, Edmund; violet: FBH400-40, Thorlabs). The excitation light was spatially equalized in the imaging 863 

area by a glass diffusion filter (DGUV10-600, Thorlabs). The average excitation LED power delivered 864 

to the surface was <5.0 mW. Fluorescent emission was passed through a dichroic mirror (FF495-Di03, 865 

Semrock) and a combination of long- and short-pass filters (FEL0500 and FESH0650, Thorlabs) to an 866 

sCMOS camera (ORCA-Fusion, Hamamatsu Photonics). The timing of the excitation light was 867 

controlled by a global exposure timing signal from the camera. The timing signal to switch the LED was 868 

processed with an FPGA-based logic circuit (Analog Discovery 2) and binary-counter IC (TC4520BP, 869 

Toshiba) in real time. In addition, the timing and power of the light source were monitored by a high-870 

sensitivity photodetector (PDA10A2, Thorlabs). 871 
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All fluorescent emission images were recorded using HCImage Live software (Hamamatsu 872 

Photonics). Time-lapse images were acquired at 576 × 576 pixels (4 × 4 pixels binning). Single-shot 873 

high-resolution images (2304 × 2304 pixels) were also acquired to identify anatomical landmarks at the 874 

end of the imaging session. The sampling rate of each wavelength image was 20.0 Hz, and the practical 875 

exposure time (the duration of LED illumination per single frame) was 13.5 ms. The field of view was 876 

blocked from the light of the VR monitor by custom 3D-printed poly-lactic acid parts painted with matt 877 

black lacquer composition to prevent the contamination of the fluorescent signal and visual stimuli. All 878 

imaging sessions were shorter than 2.5 h. The surface of the coated skull was covered with a silicone 879 

material after the imaging session to maintain the visibility of the fluorescence. Only mice that showed 880 

regular locomotion on the treadmill were tested in further experiments. 881 

 882 

Extracellular recording 883 

All extracellular recordings were performed with 32-channel silicon probes (A1x32-Poly2-10mm-50s-884 

177 or A1x32-Poly3-5mm-25s-177, NeuroNexus) and an Open-Ephys Acquisition Board or a 384-885 

channel Neuropixels 1.0 probe connected to a PXI-based system. Open-Ephys GUI was used for 886 

acquisition software63. Recorded signals were further processed using a spike-interface package (filtered 887 

at 600−6000 Hz for NeuroNexus data or 300−10000 Hz for Neuropixels data), and a common median 888 

reference was used for removing artifacts. The Neuropixels probe was inserted 3.2–3.85 mm beneath the 889 

cortical surface to measure responses in the LGN and V1 (Fig. S10); the hippocampus traversed by the 890 

probe were likewise recorded. Spike sorting was performed using Kilosort (version 2.0 for 32-channel 891 

NeuroNexus probe, version 2.5 for the Neuropixels probe)64. Intrinsic signal optical imaging was 892 

performed for all subjects to identify insertion points for V1 and PM. Insertion trajectory planning for 893 

the Neuropixels probe was based on Allen CCFv3. Accurate targeting was confirmed by post-hoc 894 

validation with DiI staining all mice. Detected clusters were manually inspected and curated using the 895 
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Phy package. Mice were trained for at least one session in the dark in a head-fixed position (Track 3, Fig. 896 

3), and five sessions in the closed-loop VR (Track1, Fig. 3). Two to four recordings were performed per 897 

mouse. Mice were settled in at least two re-habituation sessions (at Track 1) after each recording session. 898 

Five mice (recorded by the NeuroNexus probe) were recorded in Track 1−3. Four mice (recorded by the 899 

Neuropixels 1.0 probe) were recorded in Track 1 and 3. 900 

 901 

Two-photon Ca2+ imaging 902 

Two-photon Ca2+ imaging experiments were performed as previously described65 with modifications 903 

using a dual-plane imaging microscope. The water-immersion objective lens (CFI75 LWD 16× W, Nikon, 904 

NA0.8) and femtosecond laser (Insight DeepSee+, Spectra-Physics) were equipped for two-photon 905 

imaging. To monitor the neural activity without animal tilting, the objective was mounted on a custom-906 

built extension and rotation adapter. A spatial light modulator and electrically tunable lens were used to 907 

image two planes at 30.1 Hz total frame rate (~15.05 Hz per plane) using 920 nm excitation. A head plate 908 

was implanted on Thy-1 GCaMP6f mice in the same manner as for the wide-field imaging. AAV2retro-909 

hSyn-tdTomato was injected into the ACC to label ACC-projecting neurons. A layered glass imaging 910 

window was implanted after virus injection surgery. One to three recording sessions were performed per 911 

mouse (at Track-1 in Fig. 3). At least two re-habituation sessions in the complete closed-loop VR 912 

environment were performed between each recording session.  913 

Axon bouton imaging was performed by single plane with faster frame rate (~30.14 Hz). Non-rigid 914 

image registration and preprocessing were performed using suite2p66. Detected ROIs were manually 915 

selected to reject false positive ROIs. ROIs that have highly correlated activity during an imaging session 916 

(Pearson’s r > 0.85) were merged to prevent overcounting of boutons from the same neurons. 917 

 918 
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Pathway-specific inhibition 919 

Pathway-specific inhibition during mismatch periods was performed by optogenetics using GtACR2 920 

with 488-nm stimulation (Coherent, OBIS 488). The total stimulation laser power was set at 40 mW 921 

(~1.45 mW/mm2). Following training in the VR, AAV2retro-ESyn-iCre (300 nL) was injected into the 922 

bilateral ACC (0.3–0.5 mm lateral and 0.4-0.5 mm posterior from bregma), and AAV9-CAG-DIO-923 

GtACR2-FusionRed (500 nL) was injected into the anteromedial part of the bilateral PM (1.8 mm lateral 924 

and 3.0 mm posterior from bregma). Behavioral tests were conducted 3–4 weeks post-injection, followed 925 

by two recording sessions. In the first session, visuomotor mismatches were presented at random timing 926 

(10% probability per second) with laser stimulation on 50% of mismatch trials). In the second session, 927 

no visuomotor mismatch events were presented, but laser stimulation was delivered with random timing. 928 

 929 

Processing of wide-field imaging data 930 

Acquired images were compressed to 288 × 288 pixels, and then motion correction was performed with 931 

the 405-nm excited images using efficient subpixel image registration algorithms. A single template 932 

image for registration was used for the motion correction procedure in each imaging session. Each pixel 933 

signal was processed by the linear regression method. The 405-nm channel was resampled at 40.0 Hz 934 

using the interpolation method, and then interpolated values were used for signal correction of the 470-935 

nm channel. The processed signal was smoothed using a moving average filter (width: 50 ms). Thereafter, 936 

all frames were registered to the top-view image of ACCF (330 × 285 pixels, corresponding to 13.2 × 937 

11.4 mm in the ACCF) using two anatomical landmarks along the midline (the center of the olfactory 938 

bulb and base of the RSP) according to a previous study with modifications (Fig. S3)65. The scale bar is 939 

absent in the registered images because of image transformation from the raw recorded image. 940 

Registration to the ACCF was confirmed for every mouse using both resting-state connectivity and 941 
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retinotopic maps (Fig.1 and S3). A two-dimensional Gaussian filter was applied for pixel-based 942 

presentation of results (sigma = 2 pixels). 943 

To quantify the change in dF/F of the mismatch, visual feedback, and locomotion onset events, we 944 

defined the baseline frame for each event trial. The baseline frame of each trial was the average of the 945 

frames during 0.50 s for random mismatch (Fig. 1 and 2), and 0.25 s for semi-closed-loop VR before 946 

event onset. Since visual flow speed and wall texture were symmetric, the images or dF/Fs of the left and 947 

right hemispheres were computed independently, then data from the same trials were averaged (the image 948 

of the left hemisphere was mirrored) in all experiments except for the pixel-based correlation analysis. 949 

For the ROI-based analysis, the size of the ROI was 4 × 4 pixels. Maps of p-values were calculated from 950 

one-sided Mann–Whitney U tests. 951 

A bootstrap test was used to compare results from different groups or sessions. For the NE vs. ME 952 

group comparison (Fig. 2 and S8), the trial data from each group were resampled with a bootstrap 953 

procedure and two pseudo-distributions produced from trial-averaged responses. The p-value was then 954 

calculated by computing the X/N overlap ratio, where X indicates the overlapping samples between the 955 

two distributions, and N indicates the number of iterations (1000 times resampling performed). For the 956 

comparison across sessions with same mouse, a pseudo-distribution was produced by subtracting the data 957 

recorded from Rec.1 and Rec. 2, and then the ratio of trials in the distribution was used to calculate p-958 

values. Results of the one-sided test for each timepoint and ROI are presented in Figure S9. 959 

 960 

Visuomotor state-space model 961 

To investigate neural encoding of prediction error, we conducted the following two-step analysis: (1) 962 

model-based estimation of the visuomotor prediction error based on the observed behavioral data, and 963 

(2) encoding model-based identification of the relationship between the estimated prediction error signal 964 

and neural activities. 965 
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In the first step, we formulated the following state-space model (SSM) to reconstruct the 966 

unobservable prediction error from observed behavioral data.  967 

State equation:  968 

𝑔!"# = 𝑔! + 𝜉!		𝑤𝑖𝑡ℎ	𝑔!	~	𝒩(𝑔! , 𝑃!)	𝑎𝑛𝑑	𝜉!	~	𝒩(0, 𝑄)	 (1) 969 

observation equation: 970 

𝑓! = 𝑔! ⋅ 𝑣! +𝑤!		𝑤𝑖𝑡ℎ			𝑓!	~	𝒩(𝑔! ⋅ 𝑣! , 𝑅)			𝑎𝑛𝑑	𝑤!	~	𝒩(0, 𝑅)	 (2) 971 

where, 𝑓!, 𝑣!, and 𝑔! stand for the observed visual flow speed, observed locomotion speed, and latent 972 

gain factor at time 𝑡, respectively. In this model, the state (i.e., latent gain factor) 𝑔! and the observation 973 

𝑓! follow the Gaussian distribution 𝒩(𝑔! , 𝑃!)	and 	𝒩(𝑔! ⋅ 𝑣! , 𝑅). Note that 𝑃! is the covariance matrix 974 

of the state value’s distribution. The 𝜉!	 and 𝑤! indicate the state and observation noise parameters, that 975 

follow the Gaussian distributions 𝒩(0, 𝑄)  and 𝒩(0, 𝑅) , respectively. The 𝑄  and 𝑅  are the fixed 976 

covariance parameters for the state and observation noise, respectively. As described in the experimental 977 

settings, we used mice that had learned that their locomotion speed on the treadmill is coupled to the 978 

speed of visual feedback flow in the VR environment. Therefore, we can assume that mice perform the 979 

locomotion task in the VR environment to satisfy that the visual flow 𝑓! matches the intended locomotion 980 

speed 𝑣!  by adjusting the latent gain parameter 𝑔! generated as a motor command signal. Based on this 981 

assumption, we can predict the visual feedback speed 𝑓! based on the observed behavioral data (i.e., 982 

locomotion speed 𝑣!) by applying the above SSM. Thus, the extent of visuomotor mismatches caused by 983 

sudden changes in the actual visual feedback 𝑓%&',! can be quantified by calculating the prediction error  984 

𝑒!	between the exact and model-predicted speed of the visual flow feedback (i.e., 𝑒! = 𝑓%&',! − 𝑓!). To 985 

calculate such a prediction error, the unknown value of latent gain parameter 𝑔! should be estimated. 986 

Therefore, the following recursive Bayesian theorem was used to estimate the parameter	𝑔! based on 987 

given observational data 𝑓! and	𝑣!.  988 
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𝑝(𝑔!|	𝑓#:*) =
𝑝(𝑓!|𝑔! , 𝑣!) ⋅ 𝑝(𝑔!|𝑓#:!+#)

𝑝(𝑓!|𝑓#:!+#)
	 (3) 989 

where, 𝑓#:* stands for the observation set 𝑓#:* = {𝑓#, 𝑓,, … , 𝑓*}.. The 𝑣! indicates the observed value of 990 

the locomotion speed at time t, which is given as a known parameter in our proposed SSM. As mentioned 991 

above, because variables  𝑔! and 𝑓! both explain as a linear model following the Gaussian distributions 992 

𝑔!	~	𝒩(𝑔! , 𝑃!) and 𝑓!	~	𝒩(𝑔! ⋅ 𝑣! , 𝑅), the above recursive Bayesian theorem can be solved by a linear 993 

Gaussian Filtering scheme (i.e., Kalman Filter; KF). By applying the KF, the recursive estimation rule 994 

of the parameter 𝑔! ~	𝒩(𝑔! , 𝑃!), where the 𝑔!	and	𝑃! stand for the mean and covariance of the Gaussian 995 

distribution, is given as the following two calculation steps: 996 

[Prediction step]: 997 

𝑔! = 𝑔!+#	 (4) 998 

𝑃! = 𝑃!+# + 𝑄	 (5) 999 

[Update step]: 1000 

𝑓! = 𝑔! ⋅ 𝑣!	 (6) 1001 

𝐾 = 𝑃!𝑣!*(𝑣!	𝑃!	𝑣!* + 𝑅)+# (7) 1002 

𝑔!"# = 𝑔! + 𝐾I𝑓%&',! − 𝑓!J	 (8) 1003 

𝑃!"# = 𝑃! − 𝐾𝑣!𝑃! (9) 1004 

where, 𝑓%&',!	and	𝑓! indicate the exact observation and model predicted value of visual flow speed at time 1005 

𝑡, respectively. The 𝑣! is locomotion speed that is given observed value. The 𝑔! is the latent gain factor 1006 

at time 𝑡, which follows the Gaussian distributions 𝒩(𝑔! , 𝑃!). 𝑃!  is covariance of the variable 𝑔! . 𝐾 1007 

stands for the Kalman gain.   1008 

Using the SSM and the KF-based estimation scheme, temporal changes in the visuomotor prediction 1009 

error signal can be estimated from observations (in both 𝑓%&',!  and 𝑣!). Here, the visuomotor prediction 1010 

error is evaluated as: 𝑒! = 𝑓%&',! − 𝑓!. According to equation (8), the prediction accuracy of visual flow 1011 
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𝑓!  and resulting prediction error 𝑒!	would be affected by the estimation of latent gain 𝑔!  , which is 1012 

parameterized by the extent of the state covariance 𝑄 . Therefore, when computing the visuomotor 1013 

prediction error  𝑒! , the various predictions of 𝑓%&',!  were evaluated under consideration with some 1014 

different parameter settings for 𝑄. In the following neural encoding model analysis, the neural response 1015 

obtained from in vivo mouse brains was compared to the estimated prediction error 𝑒!	with each condition 1016 

of 𝑄. 1017 

 1018 

Generalized linear model analysis 1019 

A generalized linear model (GLM) was used to estimate the time-dependent effects of experimentally 1020 

measured variables. This GLM analysis was performed on data from mice that experienced all VR 1021 

condition (Tracks 1–3). As explanatory variables, we used the mouse motion values (running speed, 1022 

acceleration, facial movements, blinks, eye movements, and pupil diameter), VR-related values (position, 1023 

visual flow speed, mismatch event timing, and track), and the SSM value described below. Data were 1024 

further split by VR-laps, with odd laps forming the training set and even laps the test set. We used the 1025 

“TweedieRegressor” class from the scikit-learn library for model fitting. The target distribution was set 1026 

to “Poisson”, and the GLM link function was configured as "log". To avoid overfitting, a weight vector 1027 

was estimated by solving the penalized residual sum of squares using L2 regularization. Regression 1028 

model hyperparameters were estimated through a grid-search of the training dataset. 1029 

Using the GLM, we evaluated the relationship between neural activities and the prediction error (𝑒!) 1030 

estimated by the above-mentioned SSM modelling scheme. For quantification of the individual neuronal 1031 

sensitivity to prediction error information, two models for individual neurons were constructed: one fitted 1032 

by a predictor matrix with full kernels (full model) and the other fitted by a matrix without a prediction 1033 

error kernel (w/o SSM model).  We then fit the models with each design matrix to predict the firing rates 1034 

of individual neurons and calculated the explained variance (R2Full, R2 w/o SSM) of the full and partial 1035 
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models (Fig. 4). Finally, the neural encoding weight for prediction error was calculated as the difference 1036 

in explained variance (ΔR2= R2Full-R2w/o SSM). 1037 

 1038 

Correlation map and GC analysis 1039 

To examine the information flow of the mismatch responses among cortical areas, pairwise correlations 1040 

and Granger causality (GC) were computed between the activities of each ROI. GC analysis was 1041 

conducted using the multivariate GC toolbox (pairwise conditional GC is termed “GC”). Neural signals 1042 

before the mismatch onset (−1.5-0.0 s) were used to calculate the correlation map and GC magnitudes 1043 

for closed-loop periods. The hyperparameter of GC estimation (autoregressive model order) was selected 1044 

by AIC. Similarly, neural signals acquired during mismatch (0.0-1.5 s) were used to compute the 1045 

correlation maps and the GC magnitudes for mismatch periods. The correlation coefficient was computed 1046 

from the z-scored signal for each animal and the statistical significance of the correlation map was 1047 

derived using the z-statistic value per pixel. Locomotion speed was used as a threshold to distinguish the 1048 

time windows during which the subject was stationary or running in the dark (running, >6.0 cm/s; 1049 

stationary, < 0.02 cm/s), while the speed range between these two thresholds was excluded. 1050 

 1051 

Face video analysis 1052 

A single CMOS camera (DMK33UX174 or DMK33UX273, The Imaging Source) affixed to the 1053 

basement of VR system (MB3030D/M, Thorlabs) by a flexible arm to monitor facial and eye movements 1054 

during experiments. The sampling rate of the video was approximately 20 Hz. All acquired frames were 1055 

cropped to a resolution of 640 × 480 or 720 × 480 pixels to reduce post-processing. To evaluate the 1056 

effects of face and eye movement, the positions of facial landmarks were extracted using DeepLabCut67. 1057 

We defined the position of the eyelid (edges of the dorsal and ventral margins), pupil edge (dorsal, ventral, 1058 

anterior, and posterior margins), and nose. The “resnet_50” configuration was used for the training of 1059 
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the pose estimation model. The error of extracting position was within ~3 pixels. Blinking was detected 1060 

by the rate of change in the distance between the upper and lower eyelids. Changes of > 25% of the 1061 

distance during the mismatch period was defined as a blinking trial. Grooming and irregular behaviors 1062 

were manually detected by the experimenter (R.F.T.). To extract the time series of motion energy in the 1063 

face, pymoten68 was employed for the aforementioned movie data. Ten principal components calculated 1064 

by PCA were used to reduce the dimensionality of the extracted signal. 1065 

 1066 

Dorsal cortex-wide imaging under the anesthetized condition 1067 

Functional mapping of cortical areas was performed after the recovery period (4−7 days) from head-plate 1068 

implantation (see resting-state connectivity mapping and retinotopic mapping, below) and following the 1069 

training and wide-field imaging sessions under VR. Briefly, mice were lightly anesthetized by isoflurane 1070 

inhalation (1.0%–1.5%) during imaging. Body temperature was maintained with a heating pad. During 1071 

the VR-imaging session, the face was recorded with a CMOS camera under infrared illumination to 1072 

monitor mouse arousal. Sessions where the mouse showed distinct body movements were manually 1073 

identified and excluded from the analysis. The isoflurane concentration was manually controlled based 1074 

on body and facial movements as monitored by the facial camera. Visual stimuli were presented on the 1075 

same display used for VR, and the treadmill setup was replaced by a stage with a heating pad and 1076 

laboratory scissor jack. 1077 

 1078 

Resting-state connectivity mapping 1079 

Resting-state cortical Ca2+ dynamics were recorded from mice under light isoflurane inhalation (1.0%–1080 

1.5%) without artificial sensory stimulation. Mice received retro-orbital injections of AAV-PHP.eB-1081 

hSyn-jGCaMP7f. The seed-based Pearson’s correlation map for each ROI was then calculated. R-1082 

squared values are used for visualization. 1083 
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 1084 

Retinotopic mapping 1085 

Retinotopic mapping was performed to identify visual areas. Fluorescent signals were measured using 1086 

macroscopic imaging through the skull or two-photon imaging through a glass-implanted window (Fig.  1087 

5 and 6). Drifting checkerboard stimuli flickering at 6 Hz were presented in four directions (0, 90, 180, 1088 

and 270 degrees, T = 5 or 15 s). Typically, 30 cycles (for T = 5 s) or 19 cycles (for T = 15 s) of the stimuli 1089 

were presented to mice. Acquired images were processed by phase-encoding methods to visualize the 1090 

retinotopic map of the cortex. 1091 

Intrinsic signal optical imaging was also performed for retinotopic mapping. Injection sites for axon 1092 

imaging or recording sites for extracellular electrophysiology were determined based on the identified 1093 

visual areas. Imaging experiments were performed as previously described62,69. Mice were lightly 1094 

anesthetized with isoflurane inhalation (0.8%−1.2%) in pure oxygen. Intrinsic signals from the cortex 1095 

were acquired through the resin-coated skull using a CMOS camera under 625-nm LED illumination 1096 

(M625L3, Thorlabs). The 5-Hz flickering and moving checkerboard horizontal or vertical stimuli were 1097 

presented to mice. Phase-encoding analysis was performed for acquired images, and the visual field sign 1098 

map was calculated. 1099 

 1100 

Connectivity analysis of the anatomical database 1101 

The Allen Mouse Brain Connectivity Atlas was used to quantify the anatomical connectivity among 1102 

the dorsal cortex. The atlas consists of high-resolution images of axonal projections labelled with AAV 1103 

injections into various locations. The normalized projection volume from 36 pooled experiments (RSPa-1104 

IDs: 100140949, 166458363, 516838033, 292172100, 272735744, 267661018, 177907082, 159097209, 1105 

526502961, 166271142, 182338356, 288264753, 100148142, 166269090, 159832064, 292124058, 1106 

267658040, 308721884, 184168193, 278179794, 591535205, 287601100, 166325321, 308027576; 1107 
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RSPp-IDs: 157711043, 298720191, 181860879, 538078619, 584895127, 298275548, 521264566, 1108 

592540591, 166054929, 272916915, 112424813, and 182467736) was used to quantify RSPa and RSPp 1109 

output. For ease of interpretation, experiments using a combination of the Ai75 line and the CAV2-Cre 1110 

virus vector were excluded from the analysis. Multiple experimental datasets were also aggregated for 1111 

analysis of ACC input. The experiments considered relevant were identified based on their horizontal 1112 

(AP and ML axis) distance from the defined ROI in macroscopic imaging data, specifically within a 1113 

range of less than 500 µm from the center of the ROI (Fig. S17). For ACC output analysis, all experiments 1114 

where the primary injection sites were identified as ACCd/ACCv were included (Fig. S18). These 1115 

analyses were conducted using the Allen Software Development Kit within the Google Colaboratory 1116 

environment. 1117 
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Extended data figures: 1147 

 1148 

Figure S1. Excitatory neuron-biased expression of GCaMP, related to Figure 1 1149 

Confocal images of brain sections from AAV-PHP.eB-hSyn-jGCaMP7f-infected mice immunostained for 1150 

the inhibitory neuron subtype markers parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal 1151 

peptide (VIP). Most jGCaMP7f-expressing neurons in the cortex showed typical morphological features 1152 

of pyramidal cells and were distributed from superficial to deep layers. Only a few cells were positive for 1153 

both jGCaMP7f and an inhibitory neuron marker. 1154 
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Figure S2. Signal-correction using near ultra-violet light, related to Figure 1 1157 

(A) Schematic of the optical fluorescent imaging system. 1158 

(B) Latency of the global exposure strobe signal from the camera to the LED illumination at 405 nm and 1159 

470 nm. 1160 

(C) Signal correction of neural response maps at 405 nm and 470 nm. Maps were generated by averaging 1161 

the flow onset periods (0.0−1.0 s). 1162 

(D) Neural responses of eight ROIs. Shaded regions represent the SEM. Gray shaded lines indicate visual 1163 

flow periods. 1164 
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 1166 

Figure S3. Registration of an individual brain image to the Allen common coordinate 1167 

framework (ACCF), related to Figure 1 1168 

(A) Registration process from the acquired brain image to ACCF space. Left: Manually mapped 1169 

landmarks on the preregistration fluorescence image of the living mouse brain (illuminated by 470 1170 

nm) and the areal boundary of the ACCF space.  Right: Post-registration image overlaid with an area 1171 

boundary. Gray outlines area parcellation from the ACCF. Yellow dots indicate two control points, 1172 

the center of the olfactory bulb and the base of the retrosplenial cortex (RSP). Magenta crosses 1173 

indicate the bregma. 1174 

(B) Principal component analysis (PCA) of resting-state cortical activity. Weight maps of PCA 1175 

(Component 1−5) derived from six mice. Right bottom: Cumulative explained variance by PCs. 1176 

(C) Functional connectivity maps of the animals shown in Figure 1. Magenta dots indicate the center of 1177 

the ROI for the seed-based correlation map. Maps are the average of the right and left hemispheres. 1178 

V1, primary visual area; LM, lateromedial visual area; AL, anterolateral visual area; PM, 1179 
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posteromedial visual area; AM, anteromedial visual area; RL, rostrolateral visual area; S1ll, primary 1180 

somatosensory area, lower limb; RSPp, posterior part of RSP; RSPa, anterior part of RSP; M2m, 1181 

medial part of secondary motor area. 1182 

(D) Seed-based (PM) correlation maps from mice used in Figure 1 and 2. 1183 
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 1185 

Figure S4. Anatomical differences in RSP inputs and outputs across the anterior-posterior 1186 

axis, related to Figure 1 1187 

(A) Schematic of retrograde tracing from RSPa or RSPp. 1188 

(B) Example images of cells retrogradely labelled with RVΔGFP. 1189 

(C) Summary of inputs to RSPa or RSPp neurons. Asterisks show significant differences (p <0.05, by 1190 

Mann–Whitney U-test). 1191 

(D) Anterograde injection sites from the Allen mouse brain connectivity atlas. 1192 

(E) Top view of axonal cortical output for example injection experiments (adapted from the Allen mouse 1193 

brain connectivity atlas). Experiment IDs are indicated on the top. 1194 

(F) Summary of inputs to RSPa or RSPp neurons. Normalized projection volume was used for the 1195 

quantification (mean ± SEM). Asterisks show significant differences (p <0.05 by Mann–Whitney U-1196 

test). 1197 
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 1199 

Figure S5. Ca2+ dependency of macroscopic mismatch responses, related to Figure 1 1200 

Left: Peak response amplitude map during mismatch periods (0.0−1.5 s from mismatch onset); Middle: 1201 

Peak response time map during mismatch periods (0.0−1.5 s from mismatch onset); Right: Time course 1202 

of mismatch responses in each ROI. 1203 
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 1205 
Figure S6. Explained trial variance of mismatch responses, related to Figure 1 1206 

Left: Pseudocolor map of Pearson’s linear correlation coefficient between locomotion speed at mismatch 1207 

onset and neural response magnitude. Pearson’s correlation coefficient value (top) and p-value (bottom). 1208 

Middle: Pseudocolor map of Pearson’s linear correlation coefficient between change in locomotion between 1209 

pre- and post-mismatch onset and neural response magnitude. Pearson’s correlation coefficient value (top) 1210 

and p-value (bottom). 1211 

Right: Pseudocolor map of Pearson’s linear correlation coefficient between change in the first principal 1212 

component (PC1) of the motion energy between pre- and post-mismatch onset and neural response 1213 

magnitude. Pearson’s correlation coefficient value (top) and p-value (bottom). All results were computed 1214 

from pooled data from nine mice. 1215 
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 1217 

 1218 

Figure S7. Macroscopic cortical activity evoked by locomotion, related to Figure 1 1219 

(A). Schematic of the experiments. 1220 

(B). Locomotion onset response map. Left: Locomotion onset responses across the dorsal cortex (n = 5 1221 

mice).  Right: Peak responses during the time window 0.0−1.0 s after the onset were quantified. 1222 

(C). Quantification of locomotion onset responses in 10 cortical areas. Left: Locomotion onset responses 1223 

in 10 cortical areas (n = 5 mice). Inset: Running speed of each trial. Right: Peak responses during the 1224 

0.0−1.0 s time window in each area. 1225 
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 1227 

 1228 

Figure S8. Time series of self-induced mismatch responses, related to Figure 2 1229 

(A). Time courses of pupil response and horizontal eye movements to mismatch events. 1230 

(B). Trial-averaged neural responses to mismatch events (NE group: n = 268 trials from 3 mice; ME group: 1231 

n = 156 trials from 3 mice). 1232 

(C). Top: Difference in self-induced mismatch responses (NE minus ME). Bottom: Significant difference 1233 

between NE and ME groups by one-sided Mann−Whitney U test. 1234 
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 1236 

Figure S9. Reduction of mismatch responses by repeated exposure to self-induced 1237 

mismatch, related to Figure 2 1238 

(A). Habituation history of NE mice (as in Fig. 2).  1239 

(B). Locomotion speed of NE mice during self-induced mismatch events. The shaded region indicates the 1240 

mismatch period (0.0−1.5 s). Line traces represent means ± SEM (blue: first recording session, 1241 

magenta: second recording session). Dots show time bins with significant differences (p <0.01 by 1242 

one-tailed unpaired t-test). 1243 
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(C). Cumulative distribution plot of pupil dilation responses during mismatch onset trials (0.0−1.0 s 1244 

average).  Dashed line indicates the median value for each group.  The asterisk indicates a significant 1245 

difference (p <0.05 by Mann–Whitney U-test). 1246 

(D). Trial-averaged response traces from 10 cortical areas (ROIs). The shaded region indicates the 1247 

mismatch period (0.0−1.5 s). Blue plots area results from the first recording session. Magenta plots 1248 

are from the second recording session.  Each plot is shown as a mean ± 95% confidence interval. 1249 

(E). Difference in mismatch responses between recordings Rec. 1 and Rec. 2 for the same animal 1250 

(subtraction was applied between the same animal’s data). Each plot is shown as a mean ± 95% 1251 

confidence interval. Dots indicate time bins with statistical significance (p <0.05 by one-tailed 1252 

bootstrap test). Dot color indicates the alternative hypothesis (blue: Rec. 1 > Rec. 2; magenta: Rec. 2 1253 

> Rec. 1). 1254 

  1255 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.08.16.504075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

                                                                                                                                         

 

 

73 

 1256 
Figure S10. Recording site identification of extracellular recording, related to Figure 3 1257 

(A). Sagittal image of a mouse brain stained with DAPI (blue). The probe track was visualized with DiI 1258 

(red). Areal boundaries estimated from the Allen brain atlas are overlaid. 1259 

(B). Inferred probe track in the Allen CCFv3 atlas. 1260 

(C). Distribution of isolated single units from the brain surface (pooled from 20 recordings). 1261 
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 1263 

Figure S11. Visuomotor prediction error computed by state-space model (SSM) variation, 1264 

related to Figure 4 1265 

(A) The SSM calculated the positive visuomotor prediction errors using actual experimental data obtained 1266 

from an example session for input signals (locomotion speed and visual flow). Each column shows 1267 

the distinct patterns of prediction errors generated by the SSM using distinct Q values. Bold line 1268 

represents the trial-averaged calculated visuomotor prediction errors, while the thin red lines show the 1269 

errors from each individual trial. The dashed blue line indicates negative error outputs from the 1270 

corresponding Q models. 1271 

(B) Same as in (a) but for negative error cases.  1272 

  1273 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2022.08.16.504075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

                                                                                                                                         

 

 

75 

 1274 

Figure S12. Granger causality results across dorsal cortical areas, related to Figure 5 1275 

(A). Granger causality between dorsal cortical areas during closed-loop and mismatch periods. Magenta 1276 

dots represent statistical significance (p < 0.01 by permutation test).  1277 

(B). Granger causality between dorsal cortical areas during semi-closed-loop mismatch periods for NE 1278 

and ME groups.  1279 
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 1281 

 1282 

Figure S13. Tuning profiles of tdTomato+/- neurons in RSP and PM/AM , related to Figure 1283 

6. 1284 

(A) Sorted, trial-averaged position activity maps for all RSP and PM/AM cells. 1285 

(B) Distributions of mismatch response magnitude (left) and spatial tuning (right). Error bars represent 1286 

SEM. 1287 

(C) Relationship between spatial tuning strength and mismatch response magnitude in tdTomato- cells 1288 

and tdTomato+ cells. Pearson’s correlation coefficients are all insignificant (p > 0.05). 1289 
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 1291 

Figure S14. Mismatch responses of RSP and PM/AM neurons were not explained by visual 1292 

flow halt responses, related to Figure 6. 1293 

(A) Relationship between playback-halt responses and mismatch responses of individual neurons (a 1294 

subset of neurons from Fig. 4). Solid lines and shaded regions represent linear regression lines and 1295 

95% CI. The magnitude of the playback-halt responses was not significantly correlated with mismatch 1296 

response in any case (Pearson’s correlation coefficient: tdTomato- RSP neurons, p = 0.625; tdTomato- 1297 

PM/AM neurons, p = 0.976; tdTomato+ RSP neurons, p = 0.702; tdTomato+ PM/AM neurons, p = 1298 

0.515). 1299 

(B) Distributions of playback-halt and the mismatch response magnitudes.  1300 
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 1302 

Figure S15. Cre-dependent expression of GtACR2 in the posterior cortex, related to Figure 1303 

6 1304 

Left: Fluorescence image of FusionRed (magenta) overlaid on a bright-field image (grayscale) with the 1305 

ACCF; Right: Confocal image of FusionRed expression in the posterior medial cortex 1306 
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 1308 
Figure S16. Effect of optogenetic manipulation in individual mice, related to Figure 6. 1309 

(A). Effect of optogenetic silencing of ACC-projecting neurons in PM/AM and RSP on pupil responses in 1310 

individual animals. Black lines indicate control trials. Blue lines indicate suppression trials. Shaded 1311 

areas indicate SEM. 1312 

(B). Effect of optogenetic silencing of ACC-projecting neurons in PM/AM and RSP on running speed in 1313 

individual animals. Black lines indicate control trials. Blue lines indicate suppression trials. Shaded 1314 

areas indicate SEM. 1315 
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 1316 

Figure S17. Axonal projections from posterior cortical areas to the ACC, related to Figure 1317 

6. 1318 

(A). Top views of the ROI-seed axonal projection map in the Allen CCF. Green dots represent injection 1319 

sites included in the analysis. 1320 

(B). Coronal views of the ROI-seed axonal projection map. The inset shows the top view of the coronal 1321 

coordinate (blue dashed line). 1322 

(C). Axonal density in dorsal or ventral portions of ACC (ACCd or ACCv) for each experimental set. The 1323 

error bar shows the SEM. 1324 

(D). Summary of axonal projection from visual cortex and RSP to ACC. 1325 
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 1327 

Figure S18. Axonal projections from ACC to posterior cortical areas, related to Figure 6. 1328 

(A) Projection density from dorsal or ventral portions of ACC (ACCd/ACCv) to each cortical area. 1329 

(B) Same as (A) but specifically for layer 1, layer 2/3, and layer 5 of each area. 1330 
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Supplementary Video 1. Resting-state activity across the cortex, related to Figure 1 1332 

Wide-field imaging of a resting-state mouse. Top left: Timelapse of ΔF/F processed from raw 1333 

fluorescence signals. Gaussian filtering was not performed. Top right: Face movie of an anesthetized 1334 

mouse. Bottom left: Raw fluorescence movie acquired at 470-nm excitation. Bottom right: Raw 1335 

fluorescence movie acquired at 405-nm excitation. 1336 

 1337 

Supplementary Video 2. Cortex-wide activity under closed-loop conditions, related to 1338 

Figure 1  1339 

Mouse running under the closed-loop condition. Brain activity, facial image, eye cropped image, pupil 1340 

size, eye position, and running speed were displayed. Magenta arrows indicate the mismatch onset. 1341 

 1342 

Supplementary Video 3. Visuomotor mismatch responses across the cortex, related to 1343 

Figure 1  1344 

Trial-averaged movie of mismatch activities across cortical areas. 1345 
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