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Abstract:

Induced pluripotent stem cells (iPSCs) hold great promise in regenerative medicine; however, few
algorithms of quality control at the earliest stages of differentiation have been established. Despite
lipids having known functions in cell signaling, their role in pluripotency maintenance and lineage
specification is underexplored. We investigated changes in iPSC lipid profiles during initial loss
of pluripotency over the course of spontaneous differentiation using co-registration of confocal
microscopy and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging.
We identified lipids that are highly informative of the temporal stage of the differentiation and can
reveal lineage bifurcation occurring metabolically. Several phosphatidylinositol species emerged
from machine learning analysis as early metabolic markers of pluripotency loss, preceding changes
in Oct4. Manipulation of phospholipids via PI 3-kinase inhibition during differentiation manifested
in spatial reorganization of the colony and elevated expression of NCAM-1. In addition,
continuous inhibition of phosphatidylethanolamine N-methyltransferase during differentiation
resulted in increased pluripotency maintenance. Our machine learning analysis highlights the
predictive power of metabolic metrics for evaluating lineage specification in the initial stages of
spontaneous iPSC differentiation.
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Introduction

Induced Pluripotent Stem Cells (iPSCs) can be reprogrammed from a patient’s own adult cells [1]
and differentiated into any cell type with many potential clinical uses ([2], [3], [4], [5]). Numerous
in vitro studies have explored various differentiation protocols, resulting in tissues of interest (e.g.
[6], [7], [8], [9]). Spontaneous, or undirected, differentiation allows production of all three germ
lineages and can be used as a model of initial loss of pluripotency that is applicable to a wide range
of protocols. Human iPSC colonies are disordered, unlike embryos, yet take on a degree of self-
assembly and organization over time; however, the mechanisms of cellular reprogramming and
colony self-organization are still understudied. When iPSCs are used for regenerative medicine,
quality control and a thorough understanding of the occurring intracellular processes are essential
to prevent carcinogenesis and contamination by unwanted cells.

In a cell manufacturing setting, typical quality control includes initial confirmation of cellular
pluripotency by confirming sufficient Oct4 expression in the colony sample [10]. After a
differentiation protocol is completed, quality control can include quantifying expression levels of
phenotype marker genes by flow cytometry as well as tissue functional tests (e.g. contractility in
cardiomyocytes, production of collagen in fibroblasts, etc.). More extensive quality control of a
finalized clinical treatment can include whole genome sequencing and whole exome sequencing

[5].

Most of the described approaches are destructive, with only several known glycoprotein surface
markers allowing real-time quality control. To date, quality control has rarely been performed by
assessing cellular lipids, and the importance of lipidome remodeling has generally been
overlooked. Recently, expression of plasmalogens and sphingomyelins was shown to increase
during the process of iPSC differentiation into vascular endothelial cells [11], suggesting that
phospholipid metabolism plays an important role. In addition to their well-known contribution to
structure in membranes, polyunsaturated phospholipids are precursors of important signaling
molecules [12], and lipid supplementation was previously shown to influence general iPSC
phenotype [13]. Here, we focus on glycerophospholipids such as phosphatidic acids (PA),
phosphatidylethanolamines (PE), phosphatidylcholines (PC), phosphatidylserines (PS), and
phosphatidylinositols (PI). In addition to functioning as negatively charged building blocks of
membranes, phosphatidylinositols and related phosphates have crucial roles in the interfacial
binding of proteins and in the regulation of protein activity at the cell interface. A well-known
example is the Akt/PKB signaling pathway, which is activated by PI 3-kinase phosphorylation of
phosphatidylinositols, followed by the recruitment of Akt to the membrane due to the interaction
with the resulting phosphoinositide docking sites. Activated Akt then controls many key cellular
functions, including  differentiation,  proliferation, = metabolism and  apoptosis.

In this work, we assess changes in phospholipid abundances in iPSCs over the course of the
spontaneous differentiation protocol as well as their spatial distribution inside a colony using both
high and ultrahigh resolution matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry (MS) imaging co-registered with confocal microscopy. MALDI MS imaging has
been successfully used before to show that the distribution of phosphatidylcholines differs between
the differentiated and undifferentiated parts of iPSC colonies [14]. We developed a variety of
machine learning models that indicate dynamic and spatial trends at the single-cell lipidome level
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robustly predict pluripotency loss; furthermore, these modeling tools capture bifurcation in lineage
specification between SSEA 1+ and NCAM 1+ phenotypes.

Results

Dynamic changes in phospholipid abundance reveal early metabolic markers of differentiation.
To determine the dynamic changes in lipids during loss of pluripotency in iPSCs, we analyzed
iPSC colony samples undergoing 0 to 7 days of the spontaneous differentiation protocol using a
multi-modal image co-registration pipeline merging immunofluorescence and MALDI MS data to
yield high-dimensional metabolic imaging with near-single cell resolution (Methods S2, S5).
Briefly, colonies were stained with 3 fluorophore-conjugated antibodies: TRA-1-81 pluripotency
marker, SSEA-1 loss of pluripotency marker, and NCAM-1 neural lineage marker; the nuclei were
labeled with Hoechst stain. For each of 8 consecutive days of spontaneous differentiation, confocal
microscopy and MS images of the same ROI were acquired (Fig. 1a). Next, the two imaging
modalities were aligned for each of 8 pairs of colony images, the nuclei in each confocal image
were segmented and their contours overlaid on the MS images: the average signal for each selected
m/z value was then calculated for each nucleus. This protocol yielded 8 datasets with about 10
thousand cells each and 70 m/z peak-picked features each. To assess temporal changes in
phospholipid abundance occurring during pluripotency loss, we calculated the average signal per
day of differentiation for each of the m/z features. Nine representative trajectories of interest are
shown in Fig. 1b: the abundances of m/z 528.3, 722.5 and 748.5 exhibited stable growth with
differentiation time, while the abundances of m/z 742.55, 778.53, 861.5 and 863.5 showed some
initial growth but declined for the remaining differentiation time. The abundance of m/z 885.6 was
stable for the first 4 days after which it exhibited rapid growth, making it anticorrelated (R = -0.85)
with Oct4 expression levels measured via flow cytometry (Fig. 1d). The abundance of m/z 940.6
rapidly decreased to near-zero values in the first 4 days of differentiation, preceding the reduction
in Oct4 expression, suggesting that this species could be an early marker of pluripotency loss. To
emphasize the scale of phospholipid abundance changes during spontaneous differentiation, we
trained a decision tree classifier (Fig. 1¢) using cell-by-cell lipid abundances as features and the
day of differentiation as a class label. We used a biological replica of the same experiment as a
validation dataset, which yielded 67% validation accuracy when classified into 8 days of
spontaneous differentiation. However, the structure of the fitted tree suggested three main
branches: days 0-2, 3-5 and 6-7. We labeled these branches as “pluripotent”, “undergoing
differentiation” and “differentiated”. With these 3 classes the simplified decision tree yielded 87%
validation accuracy in prediction of iPSC state from 7 metabolic features.
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Figure 1. Degree of spontaneous differentiation of iPSC colonies can be predicted through a subset of
metabolic features. A. Top row - confocal images of iPSC colonies undergoing differentiation for 7 days,
bottom row — corresponding MALDI TOF ion images for m/z 748.5. Scalebars are 1 mm. B. Nine examples
of temporal changes in mean phospholipid abundance during the differentiation. Error bars show 25 and 75
percentiles. C. Decision tree trained to predict the day of differentiation based on phospholipid abundance
with validation accuracy of 67% for classification into 8 days and 87% for classification into 3 major classes:
pluripotent, undergoing differentiation and differentiated. For sample sizes refer to Table 1. D. Changes in
percent of Oct4 positive cells over 7 days of spontaneous differentiation measured by flowcytometry. Each
day had three biological replicates.

PLS discriminant analysis reveals spatial correlation of phospholipid abundance and
pluripotency markers.

To associate pluripotency status of an iPSC with its metabolic signature, we analyzed the spatial
correlation of m/z features with fluorescent pluripotency labels in the imaged colonies. We selected
day 6 of spontaneous differentiation for analysis because the cell colony was exhibiting significant
expression of both TRA-181 and SSEA-1 pluripotency markers. None of the days showed
expression of NCAM-1. Cells in the training sample (Fig. 2a, left side) were labelled as TRA-181
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positive or SSEA-1 positive based on k-means clustering (K=2) of the respective fluorescent
intensities. We used an experimental replicate of day 6 as the validation dataset (Fig. 2a, right
side). We trained a PLS-DA classifier (Fig. 2c¢) and, after variable trimming, the validation
accuracy was 90%. The predicted cell labels are plotted in Fig. 2a alongside the original confocal
images. The spatial distribution of m/z 742.5 abundance closely correlated with TRA-181
expression (Fig. 2b, left side), in agreement with its decline with differentiation time shown in Fig.
la. The spatial distribution of m/z 885.6 abundance (Fig. 2b, right side) reflected an anticorrelation
to SSEA-1 expression in the colony center changing to correlation closer to the edge.
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Figure 2. PLS discriminant analysis reveals spatial correlation between phospholipid abundances and
pluripotency markers. A. Training and validation confocal images of day 6 of spontaneous differentiation
and their predicted pluripotency labels. Green color labels pluripotent cells, red color labels differentiated
cells. Scalebars are 1 mm. B. Examples of m/z features correlating with cell pluripotency labels. C. Biplot of
PLS-DA model used to discriminate between SSEA-1+ and TRA-181+ populations based on cells’
phospholipid abundance with 90% validation accuracy. For sample sizes refer to Table 1.

Inhibition of phosphatidylethanolamine N-methyltransferase prolonged pluripotency during
spontaneous differentiation.

We annotated as many detected lipids as possible through MS/MS experiments and accurate mass
measurements (Table 2) to relate the metabolic features with biological function. Several
phospholipids with abundance changes associated with the differentiation process were annotated
as phosphatidylethanolamines (PEs). With previous studies suggesting that phosphatidylcholines
(PCs) are involved in differentiation [14] we disrupted the PE to PC conversion pathway by
inhibiting PEMT by addition of 50 uM of 3-Deazaadenosine (DZA) to the differentiation media
throughout all 7 days of differentiation. We observed via flow cytometry (Fig. 3) that continuous
DZA exposure prevents Oct4 expression loss with differentiation. To reveal changes in
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Figure 3. Continuous exposure to 3-Deazaadenosine (DZA) promotes pluripotency maintenance
through perturbation of phospholipid levels. More than 50% of population maintained Oct4 expression
in the DZA-exposed sample in 3 independent experiments (top left). MALDI FTICR MS analysis of control
and DZA-exposed samples revealed that several phospholipids that decline with differentiation time in the
control experiment maintain their levels in the DZA experiment, correlating with the Oct4 expression. Data
points represent average m/z abundances per image, error bars show 25" and 75" percentiles.

phospholipid abundances following this perturbation, we grew an additional 8 iPSC colony
samples, one for each day of spontaneous differentiation with constant DZA exposure. Since we
did not observe any changes in spatial organization of pluripotency markers expression, we
conducted mass spectrometry analysis using MALDI FTICR imaging, with a pixel size of 25 um
and ultrahigh mass resolution to better track individual lipid species. We did not detect in these
experiments changes in PC abundances. However, we observed a slight increase in m/z 940.5678
compared to the control, and an increase in m/z 742.5385 (PE 36:2) in days 5, 6, and 7, correlating
with the changes in Oct4 expression in control versus the DZA-exposed sample. The most dramatic
ion abundance increases compared to the control were for m/z 835.5346 (PI 34:1), 861.5499 (PI
36:2) and 863.5649 (P136:1) (Fig. 3).

Inhibition of phosphatidylinositol 3-kinase results in increased NCAM-1 expression and
changes in colony spatial organization

The m/z 835.5346, 861.5499 and 863.5649 species detected by MALDI FTICR MS belong to the
phosphatidylinositol (PI) family (Table 2). To further clarify the importance of PI cycling in the
differentiation process, we conducted a series of experiments in which we initiated differentiation
while inhibiting phosphatidylinositol 3-kinase with LY294002. We grew 8 iPSC colony samples,
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one for each day of spontaneous differentiation, with a low inhibitor concentration of 35 uM (Fig.
4a) and another 8 samples with a high inhibitor concentration of 100 uM (Fig. 4b). While
performing confocal microscopy imaging on these samples, we observed a dose-dependent
increase in NCAM-1 expression compared to controls, as well as changes in spatial organization
of NCAM-1 and SSEA-1 positive cells (Fig. 4a, b, Fig. 5). When comparing phospholipid
abundance trajectories between the 3 conditions (control, 35 uM and 100 uM inhibition, Fig. 4c),
we observed the absolute value of trajectories slopes increase in a dose-dependent manner for
several PI family members (m/z 859.5, 863.5, 883.6 and 911.5). The representative m/z 748.5 ion
showed consistent growth in all three conditions as well as a spatial correlation with SSEA-1
expression and a strong anti-correlation with NCAM-1 expression (Fig. 4a, b). The distinctive
trajectories of m/z 778.5 and 940.6 were conserved with PI 3-kinase inhibition. We observed that
cells remained more pluripotent on the edge of the colony over the course of differentiation from
immunocytochemistry performed on iPSC colonies stained with Oct4 for pluripotency, Otx2 for
ectoderm differentiation, and Pax6 for neural lineage (Fig. 6 supp. 1a). To compare phospholipid
abundances in the center and on the edge of the colony, we divided cells into 7 groups based on
their location in the colony and calculated average m/z ion abundances for 7 different distances
from the edge. Some phospholipids (e.g. m/z 722.5 and 748.5) gradually increased in abundance
with distance from the edge and some gradually decreased (e.g. m/z 778.5 and 940.6), mostly
consistent with their previously shown pluripotency correlation. Examples of such trends for day
3 in the control experiment are shown in Fig. 6a. Immunocytochemistry images (Fig. 6 supp. 1a)
suggested that the difference between the edge and the center of the colony became more
prominent with overall colony differentiation, consistent with some phospholipids showing a
higher correlation with edge distance in later days of differentiation and little correlation on day 0
(Fig. 6b). We also observed a correlation “flip” for some lipids (e.g., m/z 940.6) in the PI 3-kinase
inhibited experiment (Fig. 6b). While this trend is not reflected in immunocytochemistry images
of days 0-3 of the PI 3-kinase inhibited differentiation, day 4 starts to reveal a mixed Oct4/Otx2
pattern, with days 5 and 6 in the 100 uM LY294002 experiment showing a reversed spatial pattern
of pluripotency, with increased Otx2 expression on the edge of the colony and Oct4 expression in
the center (Fig. 6 supp. 1b).
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Figure 4. Spontaneous differentiation with phosphatidylinositol 3-kinase inhibition as observed by
phospholipid levels via MALDI imaging. A, B. Top row — confocal images of iPSC colonies undergoing
differentiation for 7 days with addition of LY294002 on day 0, blue is Hoechst staining, green is TRA-181, red
is SSEA-1, yellow is NCAM-1. Bottom row shows corresponding MALDI ion images for m/z 748.5 with blue
colors representing low peak abundance and red representing high abundance. C. Temporal changes in mean

phospholipid abundance during spontaneous differentiation based on the LY294002 dose. Error bars show 25
and 75" percentiles.
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Figure 5. Ncam1 and Oct4 spatial expression in iPSC colonies are altered with LY294002. Edge-
independent patterns of Ncam1/Oct4 expression from immunoflourescence imaging are observed as

early as day 2 and 3 of PI 3-kinase inhibited differentiation with 35 uM or 100 uM LY294002, in contrast
to the control differentiation with vehicle. Scalebars are 1 mm.
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Figure 6. Phospholipid abundances change with colony and cell morphology. A. Mean phospholipid
abundances in day 3 of control spontancous differentiation change with the distance from the edge of the
colony. Points represent mean values within the 100 um edge distance range, error bars show 25 and 75
percentiles. B. Correlation of phospholipid abundances with edge distance changes with days of
differentiation and with LY294002 addition. For illustration of edge dependent expression of Oct4 and
Otx2 refer to Figure 6 — figure supplement 1. C. Spatial distribution of m/z 940.6 abundance in day 3 of the
control experiment shows increased signal on the edge of the colony in contrast with high LY294002 dose
experiment, which shows decreased signal on the edge of the colony. D. Differences in neighbor-relative
lipid abundances in dividing versus non-dividing cells. For of manually annotated validation dataset refer
to Figure 6 — figure supplement 2. Top: presented lipids are significantly more abundant in dividing cells
in day 0. Bottom: by day 7 control samples stop exhibiting significant differences in lipid abundances,
while differences in PI 3-kinase inhibited samples are still significant. Shaded boxes represent non dividing
cells. Box boundaries show 25" and 75" percentiles, middle line shows median, whiskers show minimum
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and maximum values. Asterisks shows statistical significance in median differences (p-value < 0.05), for
exact p-values refer to Figure 6 — Source data 1.

Phospholipid abundances vary based on cell’s proliferative status.

Because PI 3-kinase signaling is strongly related to cell proliferation, we hypothesized that cells
undergoing mitosis would reflect differences in PI signatures. To find metabolic signatures
corresponding to mitotic cells, we developed a k-means clustering algorithm to distinguish cells
undergoing mitosis by their nuclear morphology and the brightness of Hoechst stain. To test the
algorithm, we manually annotated dividing nuclei in a small ROI; the algorithm yielded 98.8%
prediction accuracy. Next, using overlaid and aligned MALDI MS images, we associated the cell’s
proliferative status to its metabolic signature. Since this task required precise single-cell
comparison, we used a neighbor-relative abundance metric to account for potential unevenness of
the background. Finally, we compared the ion abundances between dividing and non-dividing cells
on day 0 of differentiation (Fig. 6d, top). We observed higher neighbor-relative abundances from
m/z 835.5, 861.5, 863.5 and 940.6 in dividing cells, which is consistent with these ions’ previous
correlations with pluripotency. By day 7 of the control differentiation these differences disappear;
however, they are maintained in the PI 3-kinase inhibited differentiation (Fig. 6d, bottom).
Statistical significance was determined by the two-tailed Mann-Whitney U test with significance
threshold of p-value < 0.05. All resulting statistics are summarized in Figure 6 — Source data 1.

Phospholipid profiles reveal a bifurcation in cell lineage specification upon PI 3-kinase
inhibition.

The mixed phenotypes that emerged from LY294002 treatment (Fig. 7a) suggested a potential
progression between multiple cell populations that could be spatiotemporally investigated further.
To quantify spatial correlation of lipid abundances and fluorescent labels in PI 3-kinase inhibited
experiments and identify metabolic signatures corresponding to newly emerging cell populations,
we trained two PLS-DA classifiers, one for each dose of inhibitor, using the last three days of
differentiation. With 35 uM of LY294002 we observed 3 distinct cell populations: SSEA-1
positive (SSEA-1+), NCAM-1 positive/TRA-181 positive (NCAM-1+), and NCAM-1
negative/TRA-181 positive (TRA-181+). Since day 6 prominently exhibits all 3 populations, we
trained a model on the day 6 image, and withheld data from day 5 and day 7 to use as validation
sets. After variable trimming training set yielded 82% accuracy, day 5 and day 7 yielded 66% and
71% accuracy respectively (Fig. 7 — supp. 1a). The PLS-DA biplot (Fig. 7 — supp. 1b) shows
distinct SSEA-1+ and NCAM-1+ correlated clusters of both observations (scores) and variables
(loadings). These clusters of variables represent distinct lipid signatures of the two populations:
the SSEA-1+ population had increased levels of m/z 722.5, 748.5, 819.5, and m/z 821.5 while the
NCAM-1+ population had increased levels of PI lipids (m/z 859.5, 861.5, 863.5, 883.5, 885.6),
along with m/z 778.5 and 940.6. We also observed that the TRA-181+ cluster is an intermediate
between two other clusters, possibly indicating these cells as not yet committed to a particular
lineage. When this analysis was repeated with only SSEA-1+ and NCAM-1+ cells, the training
accuracy improved to 95%; day 5 and day 7 yielded 85% and 97% accuracy respectively. With
100 uM of LY294002 we only observed 2 distinct cell populations: SSEA-1+ and NCAM-1+, and
no TRA-181 positive cells, suggesting that higher concentration of inhibitor pushes cells towards
commitment to a particular lineage. Since day 7 has equal representation of both populations, we
used it as a training set and withheld day 5 and day 6 as validation sets. After variable trimming
the training set yielded 95% accuracy, day 5 and day 6 yielded 80% and 90% accuracy respectively
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(Fig. 7b). Finally, PLS-DA biplot for the 100 uM condition (Fig. 7c) revealed similar metabolic
signatures of the two populations as in the 35 uM condition, showing that the selected lipids and
pluripotency markers correlate consistently between days and inhibitor concentrations.
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Figure 7. Changes in spatial organization of pluripotency markers and phospholipids with PI 3-
kinase inhibition are predictable by multivariate analysis. A. Examples of ionic species correlating with
cell lineage markers. Colors in confocal images are as follows: blue is Hoechst, green is TRA-181, red is
SSEA-1, yellow is NCAM-1. MALDI ion images are pseudo colored with blue showing low abundances
and red showing high abundances. Scalebar is 0.5 mm. B. Confocal images of days 5-7 of spontancous
differentiation with 100 uM of LY294002 and their predicted lineage labels. Red color labels SSEA-1+
cells, yellow colors NCAM-1+ cells. Day 7 was used as a training set, days 5 and 6 as validation sets (80%
and 90% accuracies). Scalebar is 1 mm. The data for the 35 pM experiment can be found in Figure 7 —
figure supplement 1. C. Biplot of the PLS-DA model used to discriminate between the cell populations in
Fig. 7b. D. A principal component space created by training a PLS-DA model with 3 main populations:
pluripotent cells (day 0), NCAM-1+ and SSEA-1+ cells of day 7 (100 uM of LY294002). The rest of the
data from all 3 experiments was projected into this principal component space. Red colors indicate later
days of the differentiation, blue colors indicate early days.
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To summarize the relationships between all 3 experiments, we selected 3 main observed
phenotypes as a training set for a PLS-DA model: the SSEA-1+ and NCAM-1+ populations from
day 7 of the 100 uM condition and cells from day 0 as a pluripotent population. Next, we projected
all the data into that principal component space (Fig. 7d). We observed a correlation of day of
differentiation and PC1, indicating that PC1 represents time in principal component space. We
also observed the divergence of NCAM-1+ and SSEA-1+ populations for days 5-7 of the 100 uM
condition, with the 35 uM and control trajectories corresponding to the SSEA-1+ branch,
suggesting that PC2 is representative of cell fate. A compilation of our findings is provided for
phospholipid species consistently connected to cell fate throughout our analysis (Fig. 7 — supp Ic¢).

Discussion

Induced pluripotent stem cells are emerging as a powerful regenerative medicine tool for the
creation of patient-specific tissues for autologous transplantation [15]. Investigating mechanisms
underlying an initial loss of pluripotency in iPSCs is desirable for revealing early quality control
targets, preventing the wasting of time and resources on a batch bound to fail ([16], [17]). We
exploited and enhanced a previously developed multimodal image analysis approach [18] to
establish the temporal sequence of metabolic changes associated with differentiation and relate
these changes to pluripotency surface markers and the spatial distribution of phospholipid
abundances within the cell colony. This approach allowed us to establish robust and predictable
early metabolic markers of pluripotency loss during spontaneous differentiation that provide
insight into the heterogeneity of iPSC populations; because these changes occur earlier than
decline in Oct4 expression, these phospholipids hold potential as quality control targets in cell
manufacturing. Our co-registration image analysis on iPSC spontaneous differentiation revealed
that m/z 742.5 (PE 36:2), 778.5 (PE 22:4), 835.5 (PI 34:1), 859.5 (P136:3), 861.5 (P136:2), 863.5
(PI36:1) and 940.6 spatially correlated to the TRA-181 surface pluripotency marker and decreased
with differentiation time, consistent with the decrease in Oct4 expression. This provided evidence
that these phospholipids could be used as early metabolic markers of differentiation.

Informed by MALDI MS experiments and literature searches, we inhibited PEMT activity during
spontaneous differentiation by continuous cell exposure to DZA, which resulted in sustained
maintenance of pluripotency as confirmed by elevated Oct4 expression. We consistently observed
PI lipids (m/z 835.5, 861.5, 863.5) preceding changes in Oct4 expression which, once again,
suggests that metabolic changes may occur earlier than changes in transcription factors.
MicroRNAs have been reported as master metabolic controllers of naive to primed ESC state and
reprogramming to iPSCs, and potentially are altering lipid enzyme expression levels in advance of
differentiation in iPSCs ([19], [20]). While the unknown species at m/z 940.6 did not match
changes in Oct4 expression that occur with DZA inhibition, it could reflect an underlying spectrum
of cell pluripotency status — including epigenetic changes - that precede the drop in Oct4
expression. This lipid species resisted all attempts of structural annotation due to its comparatively
lower signal-to-noise ratio, even with some of the most modern MALDI imaging MS
instrumentation available and extensive MS/MS analysis attempts.

Since several of these discovered lipid markers belong to the PI family, we hypothesized that PI
cycling regulates the differentiation process. Supporting this hypothesis, we report that PI 3-kinase
inhibition during spontaneous differentiation results in increased neural lineage specification and
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distinct spatial clustering of cells with similar cell fate marker expression. Such clustering further
highlighted the spatial correlation of certain phospholipids and cell lineage markers. The ion at m/z
748.5 (PE 0O-38:6) was strongly anti-correlated with NCAM-1 expression and correlated with
SSEA-1 expression, as well as consistently increasing with differentiation time in all 3
experiments. The unknown lipid species at m/z 940.6 strongly correlated with NCAM-1
expression, along with other metabolic markers that correlated with pluripotency in previous
experiments. These findings suggest that observed NCAM-1 positive cell population is
metabolically closer to the pluripotent state than the rest of the colony, which we confirmed by
immunocytochemistry images showing co-expression of NCAM-1 and Oct4 in PI 3-kinase
inhibited experiments (Fig. 5).

Our metabolic imaging enabled new insights in the role subpopulations of cells are playing within
a cell colony. Cells remained more pluripotent on the edge of the colony compared to the colony
center throughout the spontaneous differentiation; however, in certain cases this pattern was
disrupted with PI 3-kinase inhibitor treatment due to spatial reorganization of the distinct cell
lineages. MS and confocal imaging co-registration allowed us to compare metabolic states of cells
on the edge of the colony with cells in the colony center. Under control conditions, we consistently
observed phospholipids correlating with differentiation to be more abundant in the colony center,
and species corresponding to pluripotent cells to have higher levels on the edge of the colony.
However, in the experiments treated with a high dose of PI 3-kinase inhibitor, we observed these
correlations to be disrupted, and for some species (e.g., m/z 940.6) we observed a reversed trend.
PI 3-kinase activates Akt which is involved in cell migration and mTOR pathways, perhaps
explaining formation of spatial clusters of lineage markers in an edge-independent way in PI 3-
kinase inhibited colonies — possibly, the spontaneous centers of differentiation do not migrate out
into the colony, creating a more localized progeny.

Finally, the high resolution of confocal images allowed not only segmentation of individual nuclei
but also identification of their mitosis stage; in combination with MALDI MS images, it facilitated
a connection with each cell’s metabolic profile. This analysis highlighted phospholipids shown to
correlate with pluripotency to be significantly more abundant in dividing cells on day 0, consistent
with the faster cell cycle of pluripotent cells. Interestingly, by day 7 this difference disappears in
the control experiment; however, it is maintained in PI 3-kinase inhibited samples. Akt is also
involved in cell proliferation - possibly, cells that continue to divide despite PI 3-kinase inhibition
have a more contrasting phenotype compared to dividing cells in the control condition.

Our multi-modal imaging co-registration pipeline produced robust datasets that tied together cells’
location, morphology, cell fate surface markers and metabolic profile. Multivariate analysis
performed on these datasets consistently illustrated the predictive power of metabolic data,
allowing for accurate prediction of priming for differentiation or a cell’s surface marker
expression. Our analysis also informed multivariate trajectories revealing divergent metabolic cell
fate, which could be useful in a manufacturing setting by identifying key windows of
differentiation in which lineage specification can be manipulated and/or corrected. Future work
includes further investigation of the role of phosphatidylinositols in self-organization of 3D iPSC
organoids and elucidation of additional label-free morphological features that reflect the lipid
signatures discovered here for cell manufacturing applications.
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Methods

S1. Materials.

Acetonitrile (LC-MS grade), ammonium formate, and norharmane (98%) were purchased from
Fisher Chemical (Pittsburgh, PA, USA). Laboratory grade Triton™ X-100, 3-Deazaadenosine,
acetone and red phosphorus (>99.99% purity) were purchased from Sigma Aldrich (Sigma-Aldrich
Corporation, St. Louis, MO, USA). Ultrapure water with 18.2 MQ-cm resistivity (Barnstead
Nanopure UV ultrapure water system, USA) was used to prepare the ammonium formate buffer
wash solution. Conductive ITO glass slides were purchased from Bruker Daltonics (Billerica, MA,
USA). Dow SYLGARD™ 184 Silicone Encapsulant Clear Kit was purchased from Ellsworth
Adhesives (Loganville, GA, USA). Anhydrous DMSO, Corning® Matrigel® Growth Factor
Reduced (GFR) Basement Membrane Matrix (Phenol Red-Free, *LDEV-Free), KnockOut™
DMEM, Dulbecco's Phosphate-Buffered Saline, 10X with calcium and magnesium (DPBS), B-
27™ Supplement (50X), Molecular Probes Hoechst 33342, and Donkey anti-Mouse IgG (H+L)
Highly Cross-Adsorbed Alexa Fluor Plus 488 Secondary Antibody were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). MTeSR™ Plus (Basal Medium and 5X Supplement), Y-
27632 RHO/ROCK pathway inhibitor, and accutase were purchased from Stemcell Technologies
(Cambridge, MA, USA). RPMI 1640 was purchased from Caisson Labs (Smithfield, UT, USA).
GloLIVE Human Pluripotent Stem Cell Live Cell Imaging Kit (catalog #NLLC2155R) including
positive marker TRA-1-81 and negative marker SSEA-1 (301021), and Alexa Fluor 647-
conjugated Human NCAM-1/CD56 (MC-480) live stain (catalog #FAB24081R-100UG) were
purchased from R&D Systems (Minneapolis, MN, USA) as well as Human Three Germ Layer 3-
Color Immunocytochemistry Kit (catalog #SC022) including Anti-Human Otx2 NL557-
Conjugated Goat IgG. 6-Well Tissue Culture Plates were purchased from Celltreat (Pepperell, MA,
USA). Paraformaldehyde Aqueous Solution was purchased from Electron Microscopy Sciences
(Hatfield, PA, USA). Odyssey® PBS Blocking Buffer was purchased from LI-COR Biosciences
(Linkoln, NE, USA). Mouse Anti-human Oct-3/4 (C-10) primary antibody (catalog #sc-5279) was
purchased from Santa Cruz Biotechnology (Dallas, TX, USA). LY294002 was purchased from
Cell Signaling Technology (Danvers, MA, USA). Mouse anti-Human Alexa Fluor 647-conjugated
Pax6 antibody (O18 1330) was purchased from BD Biosciences (San Jose, CA, USA, catalog
#562249).

S2. Cell culture.

HiPSC WTCI1 cells (Coriell Institute, catalog ID GM25256, sex: male) were grown in 6-well
plates. Wells were coated with 1mL Matrigel (GFR in Knockout D-MEM, 1:100) per well and
incubated overnight. Cells were fed 2 mL media per well daily (basal MTeSR Plus media +
supplement, 4:1). During passage, 0.5 mL accutase was added to each well and incubated for 3
min. Cells were lifted and collected into a 15 mL tube with excess DPBS (~3x times accutase
used). Cells were centrifuged at 1000 rpm for 5 minutes, supernatant was removed, and the pellet
was lifted in 2 mL media with 2 uLL Rock inhibitor. Cells were seeded at 100-200 K density in 2
mL media and 2 uL Rock inhibitor was added for the first day after passage, then cells were fed
as usual. To start spontaneous differentiation media was switched to RPMI plus B-27 Supplement
(49:1) the next day after seeding. In experiments with PI 3-kinase inhibition LY294002 powder
was reconstituted at 25 mM in DMSO and added to the RPMI/B-27 media at 35 or 100 uM during
the first 24 hours of spontaneous differentiation, after which cells were fed fresh RPMI/B-27
media. Equal amount of pure DMSO was added to a corresponding control experiment. In
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experiments with PEMT inhibition 3-Deazaadenozine powder was reconstituted at 50 mM in
DMSO and added daily to fresh RPMI/B-27 media during feeds at 50 uM. Equal amount of pure
DMSO was added daily to a corresponding control experiment.

S3. Flow cytometry

Eight control wells and 8 DZA-exposed wells underwent 0 to 7 days of spontaneous differentiation
in 6-well plates, each well was reproduced 3 times. Cells were lifted with 0.5 mL accutase per a
well of a 6-well plate, centrifuged at 1000 rpm for 5 minutes, supernatant was removed, and the
pellet was lifted in 1 mL of 4% paraformaldehyde solution in PBS for cell fixation. After 10 min
at room temperature cells were centrifuged again and resuspended in 1 mL of 0.3% Triton™ X-
100 solution in PBS for permeabilization. After 15 min at room temperature cells were centrifuged
and resuspended in 1 mL Odyssey Blocking Buffer for 1 hour at room temperature. Next, cells
were centrifuged and resuspended in 1 mL Odyssey Blocking Buffer with 5 uL. mouse anti-human
Oct4 primary antibody and were left at 4C overnight. After that, cells were centrifuged and
resuspended in 1 mL PBS as a wash step. At this point, 0.5 puL of cells from Day 0 sample were
set aside as a negative control. Next, cells were centrifuged and resuspended in 1 mL Odyssey
Blocking Buffer with 1 pL anti-mouse Alexa Fluor Plus 488 secondary antibody for 30 minutes
in the dark. Finally, after another wash step, cells were centrifuged and resuspended in 1 mL PBS
and transferred to a FACS tube through the strainer cap. Samples were analyzed on BD
FACSMelody™ Cell Sorter (BD Biosciences, San Jose, CA, USA) with excitation wavelength of
488 nm, detection in 515 nm-545 nm range. Data acquisition was performed with BD
FACSChorus™ Software (BD Biosciences), data processing was performed with FlowJo™ (BD
Biosciences). Oct4 gate was created so 99.9% of negative control fall into Oct4-negative category.
Percentage of cells registered as Oct4-positive according to the gating was recorded for each
sample.

S4. Immunocytochemistry

Eight control wells and 8 wells exposed to 100 uM LY294002 underwent 0 to 7 days of
spontaneous differentiation on ITO-covered glass slides with a glued PDMS 8-well wall. Wells
were washed with 100 uL of PBS each (wash step) and then fixed with 100 pL of 4%
paraformaldehyde solution in PBS for 10 minutes. After 3 wash steps cells were permeabilized for
15 minutes with 100 pL of 0.3% Triton™ X-100 solution in PBS. After a wash step, cells were
blocked with 100 puL of Odyssey Blocking Buffer for 1 hour at room temperature. Next, we diluted
mouse anti-human Oct4 primary antibody at 1:200 ratio in Odyssey Blocking Buffer, added anti-
human NL557-Conjugated Otx2 antibody at 1:100 ratio as well as anti-human Alexa Fluor 647-
conjugated Pax6 antibody at 1:50 ratio. Cells were treated with 100 uL of antibody mixture for 1
hour in the dark. Next, after 3 wash steps cells were treated with 100 uL of Odyssey Blocking
Buffer with Hoechst (1:1000) and anti-mouse Alexa Fluor Plus 488 secondary antibody (1:1000)
for 30 minutes in the dark. Finally, after 3 wash steps 100 pL of PBS was added to each well and
cells were imaged with Nikon UltraVIEW VoX W1 Spinning Disk Confocal with sCMOS camera
at 10x magnification (0.65 mm/px), 100 ms exposure and 100% laser power for all wavelengths.

S5. Co-registration Sample Preparation

SYLGARD™ was poured in a custom-made 3D-printed molds and placed in the 70°C oven for 3
hours. The resulting 8-well silicone wall was adhered to an Indium-Tin-Oxide (ITO)-coated slide
with SYLGARD™ and was placed in the oven for 30 min. Next, for 8 consecutive days cells were
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seeded in the corresponding wells: 1 well per day was coated with 100 uL of Matrigel and
incubated for 1 hour, then hiPSC WTC11 cells were seeded onto it at 2000 cells/mm? density. On
the second day after seeding in each well the spontaneous differentiation was initiated. By day 9
of repeating these steps the slide contained samples of 8 consecutive days of spontaneous
differentiation: the well that was seeded first had been undergoing the differentiation protocol for
7 days, and for the well that was seeded last the differentiation protocol was never initiated, making
it undergo 0 days of differentiation. Next, cells were incubated with Hoechst (1:1000), NL493-
conjugated Mouse Anti-Human TRA-1-81, NL557-conjugated Mouse Anti-Human SSEA-1 and
Alexa Fluor 647-conjugated Mouse Anti-Human NCAM-1/CD56 live stains diluted in media
(1:50) for 30 minutes. Confocal images of live colonies were acquired on a Nikon UltraVIEW
VoX W1 Spinning Disk Confocal with sCMOS camera at 10x magnification (0.65 mm/px), 100
ms exposure and 100% laser power for all wavelengths. Next, cell culture media and silicone well
were removed, and samples were washed by submerging the plate into 5 mM ammonium formate
buffer for 3s to enhance spectral abundances. Norharmane was used as MALDI matrix and
deposited via sublimation. A slide containing cell colonies was taped to the bottom of the
condenser in a simple sublimation apparatus. Solid norharmane was placed at the bottom of such
sublimation apparatus. Sublimation was performed at 250 C under vacuum for 6 min.

S6. MALDI TOF MS imaging.

Matrix-deposited samples were analyzed in reflectron mode using a RapifleX Tissuetyper time of-
flight (TOF) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with a
Smartbeam3D 10 kHz Nd:YAG (355 nm) laser. Imaging experiments were controlled by the
FlexImaging 4.0 software (Bruker Daltonics, Billerica, MA, USA) using the single smartbeam
laser setting (~5 um in both x and y dimensions) with a laser raster size of 10 um in both x and y
dimensions. Data were collected in negative ion mode in the m/z 200-1600 range with 200 laser
shots averaged at each pixel. Mass calibration was performed using red phosphorus as a standard
prior to data acquisition.

S7. MALDI FTICR MS experiments.

Ultra-high mass resolution data was collected on a Bruker solariX 12-Tesla Fourier-transform ion
cyclotron resonance (FTICR) mass spectrometer equipped with a MALDI ion source. Data was
acquired in negative mode from m/z 300-1200 at 1M transient size with 25 um raster width. Laser
was set to minimum focus at 25% power. Real time calibration was employed with lock masses
333.11457 (deprotonated norharmane dimer) and 885.54986 (deprotonated PI 38:4). Data pre-
processing was done in SCiLS Lab (SCiLS GmbH, Bremen, Germany) software. Mass spectra
were preprocessed during import into SCiLS Lab by converting to spectra to centroid. MS/MS
data was collected using quadrupole precursor mass selection. Collision energies ranged from 15-
35 eV for selected peaks.

S8. Co-registration and segmentation.

All MALDI-MS data preprocessing was performed using the SCiLS Lab (SCiLS GmbH,
Bremen, Germany) software. Mass spectra were preprocessed during import into SCiLS Lab
using baseline removal by iterative convolution. A minimum interval width of 20 mDa around the
average peak center was used to account for peak shifts throughout the experiment. Automated
pick peaking was first performed using SCiLS Lab, followed with manually peak screening to
select the m/z features that were associated with the cell colony distribution. A custom Python
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script using imzmlparser library (https://github.com/alexandrovteam/pyimzML) was used to
extract m/z spectra for each pixel from imzML and .bd files generated by the RapifleX instrument.
Each peak at m/z value of interest was integrated at +0.4 Da to receive the final ion abundance
value. Next, we used the co-registration GUI created in our lab to align confocal and MALDI
imaging data and extract cell by cell m/z spectra. We used a confocal image stained with Hoechst
nuclei live dye and a MALDI ion image averaged over the m/z spectrum as reference images for
alignment. The algorithm rotates, shifts, and scales reference images in a given range of parameters
until the global maximum of mutual information of the images is found. The confocal image
stained with Hoechst was also used to segment nuclei to extract the abundance data at each m/z
value of interest on a cell-by-cell basis along with the corresponding fluorescence intensities from
the confocal image. First, a local threshold was applied on the image at window sizes ranging from
a fourth of the image to twice the size of the largest cell (parameter provided by user); this was
done to obtain the most comprehensive binary mask of the nuclei. Next, the segmentation
algorithm utilizes a multiscale Laplacian of Gaussian (LoG) blob detection algorithm [21]
implemented using OpenCV [22] for Python to find nuclei seeding points. The LoG of the image
is computed for each radius in a user-provided range of nuclear radii. The LoG is found by applying
a Gaussian filter with a standard deviation of ¢ = r/ NG where r is the radius in pixels, and

subsequently finding the second spatial derivative of the image. This results in a range of images
containing several local minima at the center of each blob; the intensity of the minimum at each
blob corresponds with how closely the actual radius of the blob matches the o parameter of the
Gaussian filter. Following normalization of each image by multiplying it by 62, the minimum at
each pixel across the stack of all calculated LoGs is taken. The center of each nucleus, or seed, can
be found at the local minima of this resultant image, and applying the watershed transformation at
these points on the binary mask yields the nuclear labels.

S9. Metrics.

Cell-to-cell connection distance is calculated by first finding a closest neighbor distance for each
cell. Next, we clean these distances from outliers — remove all values that are higher than mean
plus three standard deviations. Finally, the cell-to-cell connection distance value is assigned the
maximum of the cleaned distances array. This approach guarantees that every non-outlier cell will
have at least one cell within the cell-to-cell connection radius. The cells within that radius are
called neighbors.

Neighbor-relative abundance was measured by first finding all neighbors for a cell of interest.
Next, average abundance is calculated among the neighboring cells, and the self-value is divided
by the average neighbor value.

To identify dividing cells, we segmented the nuclei images and calculated the following metrics
for each cell: neighbor-relative Hoechst intensity, the area of the nucleus, and the distance to the
nearest neighbor. A K-Means (K = 2) clustering algorithm from the scikit-learn library was then
trained to classify the cells as either ‘dividing’ or ‘not dividing’ using those metrics. Out of the
two resulting class centers, we designated a center with higher neighbor-relative Hoechst intensity,
smaller area, and larger nearest neighbor distance to represent the dividing cells class. To estimate
the classification accuracy, we manually annotated 3 1000x1000-pixel patches of Hoechst-stained
colony image (Fig. 6 — supp. 2) and used the algorithm to predict cell labels, yielding an accuracy
of 98.8%. Sensitivity of 72.5% and a positive predictive value of 96.3% showed that this method
is much more prone to false negatives than false positives, which is preferrable when data has a
disproportionately high number of negative datapoints.
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To detect the edge of the colony we multiplied cell-to-cell connection distance by the user-provided
value (default is 3) to expand the cell’s neighborhood. Cells that are on the edge of a colony can
be distinguished by having at least one side with no neighbors in its network. To determine if the
cell is on the edge, a cell’s personal neighborhood is represented as a series of vectors connecting
the center node cell and each of its neighbors. Next, we sort these vectors by their angles, and if
any difference between two consecutive angles is greater than 7T/Z radians, the cell is labelled as

an “edge” cell. Next, the edge distance metric can be derived by finding the distance between a
given cell and the edge cells and taking the minimum value.

S10. Classification tree.

Out of each day of differentiation we randomly selected 8000 cells and merged it into a training
dataset of 64000 data points, with differentiation day number as a label and m/z values as features.
We repeated this with a replica experiment obtaining a validation dataset of 64000 data points.
Classification tree for the day of differentiation prediction was built using MATLAB built-in
function fitctree with the number of tree splits limited by MaxNumSplits parameter set to 20. We
used variable appending method for variable selection, iteratively adding those variables that
increased the prediction accuracy on a validation dataset the most after being included into the
analysis. After introducing first 5 variables this way the accuracy has stopped increasing, this
indicated that these variables are the most predictive of the differentiation time point.

S11. Partial least squares discriminant analysis.

To determine which cells are TRA-1-81, SSEA-1 or NCAM-1 positive we first applied k-means
clustering analysis to the corresponding extracted fluorescence intensities using MATLAB built-
in function kmeans with number of clusters equal 2 for each live stain individually. NCAM-1
signal was spatially clustered and had high contrast between positive and negative population, thus
all NCAM-1 positive cells were marked as negative in other stains for the purpose of PLS-DA. All
NCAM-1 negative cells were assigned 2 different labels: positive or negative in TRA-1-81 and
positive or negative in SSEA-1. Next, we excluded double negative and double positive cells from
the analysis as potential artifacts of staining and assigned all the remaining cells a pluripotent
versus differentiated label, where pluripotent cells are positive in TRA-1-81 and negative in SSEA-
1 and vice versa for the differentiated cells. After all cells received their lineage label, we used
SIMCA® software (Sartorius AG, Gottingen, Germany) for PLS-DA to predict the labels using
m/z values as features. To select the best predictors, we used variable trimming: iteratively
removing every variable that reduced prediction accuracy on a validation dataset.

S12. Image processing.

All microscopy images were acquired with NIS-Elements Viewer software (Nikon Instruments
Inc., Melville, NY, USA). Channels were independently exported as grayscale TIFF files, then
uploaded to ImageJ [23], merged with consistent contrast settings for each antibody, and saved as
RGB JPEG files. Data processing for MS image creation is described in Methods S8. MS images
were saved by OpenCV’s imwrite command as grayscale PNG files, then uploaded to ImageJ with
contrast adjusted consistently for every m/z value and saved using “jet” colormap. Both
microscopy and MS images were cropped to the overlapping region after alignment.
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Figure 6 — figure supplement 1. Immunocytochemistry images of the 8-day spontaneous differentiation
for control and PI 3-kinase inhibited conditions. Cells were fixed and stained for Oct4 (green), Otx2 (red),
and Pax6 (pink) in an independent set of experiments.
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Figure 6 — figure supplement 2. Dividing cells manual annotation and validation results. Circled nuclei
were manually annotated as dividing (109 cells total). Segmentation algorithm detected a total of 2846
cells and neighbor-relative Hoechst intensity, area, and nearest neighbor distance were calculated for each
cell. Using those metrics, K-means clustering predicted the dividing cells with accuracy of 98.8%,
sensitivity of 72.5% and a positive predictive value of 96.3%.

True positive O False negative (O False positive

Figure 7 — figure supplement 1. Confocal images of days 5-7 of spontanecous differentiation with 35 uM
of LY294002 and their predicted lineage labels. Green color labels TRA-181+ cells, red color labels
SSEA-1+ cells, yellow colors NCAM-1+ cells. Day 6 was used as a training set, days 5 and 7 as
validation sets (66% and 71% accuracies). Scalebar is 1 mm. B. Biplot of the PLS-DA model used to
discriminate between the cell populations above. C. Summary table of lipid ions consistently correlating
with cell fate. See Table 2 for expanded annotation.
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Table 1. Sample sizes for analysis of temporal (A) and spatial (B) changes in phospholipid abundance.

A
number of cells detected number of dividing cells detected  number of edge cells detected
day  control 35 uM 100 uM control 35 uM control 35 uM 100 uM
0 8679 9571 9536 58 263 1481 864 2197
1 10587 19473 9681 223 458 1558 341 131
2 8129 11618 3190 66 102 1487 278 660
3 12483 14123 13321 119 299 1150 119 636
4 9156 12942 8214 48 365 485 322 1895
5 12295 18602 16051 151 292 466 621 101
6 9762 11655 9654 59 125 155 701 763
7 8105 16239 13800 112 373 477 407 613
B
Cell control training control validation
count TRA-181+ SSEA-1+ TRA-181+ SSEA-1+
day 6 1181 1252 4066 7286
Cell count 35 uM 100 uM
day  TRA-181+ SSEA-1+ NCAM-1+ SSEA-1+ NCAM-1+
5 1122 607 999 5226 6355
6 1470 3329 917 395 999

7 109 2537 2327 2525 4497



https://doi.org/10.1101/2022.08.16.504020
http://creativecommons.org/licenses/by-nc/4.0/

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504020; this version posted August 16, 2022. The copyright holder for this preprint

available under aCC-BY-NC 4.0 International license.

Table 2. Lipid annotations for 16 selected features found in all 3 spontaneous differentiation experiments.
The table shows MALDI FTICR m/z values for the species of interest, proposed annotation, main adduct
type detected, experimental monoisotopic m/z value, elemental formula, mass error (ppm), annotation
confidence level, MS/MS collision energies, and fragment ions used to determine lipid annotation. The
confidence level for lipid annotation was assigned as (1) exact mass, isotopic pattern, and MS/MS spectrum
of a chemical standard matched to the feature. (2) exact mass, isotopic pattern, retention time, and MS/MS
spectrum matched to an in-house spectral database or literature spectra (3) putative ID assignment based
only on elemental formula match. (4) unknown compound. Asterisks (*) designate compounds for which
fatty acid annotation was obstructed by contamination with fragments from a co-selected precursor ion. No
matches for the head group of m/z 940.5678 species were found in METASPACE and LIPID MAPS

databases.
Precursor Proposed Adduct | Monoisoto Elemental Mass |Confide| Fragment Ion§ Used | Collision
m/z Annotation Type | pic Mass Ion Mass Formula Error | nce to Detgrmme Energy
(FTICR) (ppm) | Level | Annotation (m/z) (eV)
orsizn| | mdba || 70252 |7015127| Corsome | 08| 2 |25 s
(20:1)/(16:0) ’
722.5129 | PE (P-16:0)/(20:4)| [M-H] | 723.5203 | 722.513 |CaHNO-P| 016 | 2 | 7% 25%33603’419’ 15
742.5385| PE (18:1)/(18:1) |[M-H] | 743.5465 |742.5392|C41H7sNOsP| -0.98 2 281 15
748.5281 PE O-38:6* [M-H] | 749.5359 |748.5287|C43H76NO7P| -0.76 3 N/A 15
778.5754 | PE (22:4)/(P-18:0) | [M-H]" | 779.5829 |778.5756|C4sHs2NO7P| -0.28 2 155,331 20
819.5177| PG (20:3)/(20:4) |[M-H] | 820.5254 (819.5182| C46H77010P | -0.56 2 227,303, 305 20
821.5331| PG (18:1)/(22:5) |[M-H] | 822.5411 |821.5338| C46H79010P | -0.87 2 227,281, 329 20
833.5181| PI(18:1)/(16:1) |[M-H] | 834.5258 [833.5186| C43H79013P | -0.55 2 223,241, 253, 281 25
835.5346 | PI(16:0)/(18:1) |[M-H] | 836.5415 835.5342| C43Hs1013P | 0.47 2 223,241, 255, 281 25
859.5342 | PI(16:0)/(20:3) |[M-H] | 860.5415 [859.5342|C4sHs1013P| 0 2 223,241, 255, 305 20
861.5499 | PI(18:1)/(18:1) |[M-H] | 862.5571 [861.5499|C4sHs3013P | 0.05 2 223,241, 281 25
863.5649 | PI(18:1)/(18:0) |[M-H] | 864.5728 [863.5655| C4sHssO13P| -0.7 2 223,241, 281, 283 25
883.5336| PI(18:1)/(20:4) |[M-H] | 884.5415 |883.5342|C47Hs1015P | -0.68 2 223,241, 281, 303 25
885.5494| PI(18:0/20:4) |[M-H] | 886.5571 |885.5499|C47Hs3013P | -0.51 2 223, 241, 283, 303 25
911.5661 PI140:5* [M-H] | 912.5728 |911.5655| C49Hs5013P | 0.65 3 N/A 20
940.5678 Unknown [M-HJ N/A N/A N/A N/A 4 N/A 35
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Figure 6 — Source data 1. Due to non-normal distribution of data Mann-Whitney U test was used for
comparison of neighbor-relative abundance of phospholipids in dividing versus non-dividing cells. The
table summarizes resulting statistics. Effect sizes are calculated as a difference between median value for
dividing cells and median value for non-dividing cells.

m/z
833.5185
835.5346
859.5342
861.5499
863.5649
940.5678

day 0 day 7 control day 7 35 uM
p-value effect size U statistic  p-value effect size U statistic p-value  effect size
3.33E-15 0.048  1571957.5 0.30975443 0.0161703 420889  5.25E-13 0.03016108
1.65E-14 0.053  1562989.5 0.31545212 -0.0027913 420624  7.16E-11 0.03005649
1.10E-09 0.036  1493107.5 0.24007736 0.00615452 424434  1.31E-07 0.01909335
9.01E-12 0.048  1525275.5 0.18759005 0.00867458 427620 1.65E-07 0.02031396
9.00E-09 0.043  1477871.5 0.23116553 0.01906354 424937  3.93E-05 0.01524889

0.01313977  0.034  1333446.5 0.86220286 -0.0019846 402119 0.16372907 0.0016957

U statistic
3605030
3542254
3431239
3427484
3326983
3083640
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