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Abstract 24 

Chia is an annual crop whose seeds have the highest content of α-linolenic acid (ALA) of any 25 

plant species. We generated a high-quality assembly of the chia genome using circular 26 

consensus sequencing of PacBio. The assembled six chromosomes are composed of 21 27 

contigs and have a total length of 361.7 Mb. Genome annotation revealed a 53.5% repeat 28 

content and 35,850 protein-coding genes. Chia shared a common ancestor with Salvia 29 

splendens ~6.1 million years ago. Utilizing the reference genome and two transcriptome 30 

datasets, we identified candidate fatty acid desaturases responsible for ALA biosynthesis 31 

during chia seed development. Because the seed of S. splendens contains significantly lower 32 

proportion of ALA but similar total contents of unsaturated fatty acids, we suggest that strong 33 

expression of two ShFAD3 genes are critical for the high ALA content of chia seeds. This 34 

genome assembly will serve as a valuable resource for breeding, comparative genomics, and 35 

functional genomics studies of chia. 36 

Keywords: chia, polyunsaturated fatty acids, transcriptome, FAD, HiFi 37 
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Introduction 39 

Chia (Salvia hispanica L.) is an annual herbaceous crop belonging to the family of 40 

Lamiaceae, also commonly known as the mint family. Chia is native to central America and 41 

is believed to serve as a staple crop of the Aztec in pre-Columbian times (Valdivia-López and 42 

Tecante, 2015). Chia is currently cultivated for its seeds in Central and South America. Chia 43 

produces oily seeds with an oval shape and a diameter of ~2 mm. Thanks to its superior 44 

nutrient compositions, the chia seed is a trending functional food ingredient (Muñoz et al., 45 

2013; Cassiday, 2017). Chia seeds contain 30-40% total lipids, of which α-linolenic acid 46 

(ALA; C18:3, n-3), linoleic acid (LA; C18:2, n-6), and oleic acid (C18:1, n-9) account for 47 

~60%, ~20%, and ~10% respectively (Ciftci et al., 2012; Kulczynski et al., 2019). ALA is an 48 

essential fatty acid (i.e., cannot be synthesized by human body) and up to 8-21% and 1-9% of 49 

ALA intake can be respectively converted to eicosapentaenoic acid (EPA; C20:5, n-3) and 50 

docosahexaenoic acid (DHA; C22:6, n-3) in the human body (Baker et al., 2016; Shahidi and 51 

Ambigaipalan, 2018). Studies indicate that these n-3 fatty acids are important for human 52 

development and growth (Li et al., 2019). The recommended Adequate Intake (AI) of ALA is 53 

1.6 g/day for men and 1.1 g/day for women (Burns-Whitmore et al., 2019). In addition, a low 54 

n-6:n-3 ratio, as in the case of chia seeds, in the diet helps reduce inflammation (Simopoulos, 55 

2002, 2002; Lands, 2014). Chia seeds also have high contents of dietary fiber (up to 34.4%), 56 

proteins (16.5-24.2%), vitamin B3, multiple minerals (such as calcium, phosphorus, 57 

potassium, and ion), and antioxidants (Kulczynski et al., 2019). Because of these properties, 58 

chia seeds are increasingly used as an ingredient in food industry and restaurants. 59 

In plants, fatty acid (FA) biosynthesis takes place within the plastid, where acetyl-coenzyme 60 

A (acetyl-CoA) is used as the main carbon donor for the initiation and elongation of acyl 61 

chains (Ohlrogge and Browse, 1995; Li-Beisson et al., 2013). During the elongation, fatty 62 
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acids remain covalently attached to acyl carrier proteins (ACPs), which serve as a cofactor 63 

for FA biosynthesis. The fatty acids biosynthesis cycle is usually terminated when the acyl 64 

chain reaches 16 or 18 carbons in length, and two principal types of acyl-ACP thioesterases, 65 

FatA and FatB, hydrolyze acyl-ACP and release the corresponding FAs. Desaturation of 66 

common fatty acids (C16 and C18) begins at the C-9 position (Δ9) and progresses in the 67 

direction of the methyl carbon of the acyl chain. Thus, the conversion of stearic acid (C18:0) 68 

to α-linoleic acid (C18:3Δ9,12,15) involves the sequential action of three desaturases, including 69 

the stearoyl-ACP desaturase, the oleate desaturase, and the linoleate desaturase. In the model 70 

plant Arabidopsis, genetic analyses have identified the main enzymes with specific FA 71 

desaturase activities. While all the other FA desaturases are membrane-bound enzymes, the 72 

family of acyl-ACP desaturases (AADs) are stromal soluble enzymes that use stearoyl-ACP 73 

(C18:0) or palmitoyl-ACP (C16:0) as the substrate. The Arabidopsis genome encodes 7 74 

AADs (Kachroo et al., 2007), named as FAB2 (FATTY ACID BIOSYNTHESIS 2) and 75 

AAD1-6. Genetic analyses indicate that FAB2, AAD1, ADD5, and AAD6 are redundant Δ9 76 

stearoyl-ACP desaturases (SADs) (Kazaz et al., 2020), while AAD2 and AAD3 function as 77 

Δ9 palmitoyl-ACP desaturases (PADs) (Troncoso-Ponce et al., 2016). Further desaturation of 78 

oleic acids (C18:1Δ9) may take place within the plastid or the endoplasmic reticulum (ER). In 79 

the plastid, the oleic acids are incorporated into multiple types of glycerophospholipids and 80 

converted to C18:3 by FAD6 (FATTY ACID DESATURASE 6) and FAD7/8. Alternatively, 81 

the oleic acid may be exported and enters the acyl-CoA pool in the cytosol. The C18:1-CoA 82 

can be imported into ER, where it is incorporated into phosphatidylcholine (PC) and becomes 83 

sequentially desaturated by FAD2 and FAD3, which respectively prefer PC with C18:1 and 84 

C18:2 as the substrate. During seed development, the desaturated PCs are further converted 85 

to diacylglycerol (DAG) and triacylglycerol (TAG), the latter of which is the main form of 86 

storage lipids in the oil body of seeds. 87 
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In this study, we assembled a high-quality chia genome using accurate consensus long reads 88 

(PacBio HiFi reads). The six chia chromosomes are composed of 21 main contigs, with 89 

telomere repeats at 8 ends of the chromosomes. Utilizing this highly accurate and complete 90 

genome and a published seed development transcriptome, we identified the main ER-91 

localized linoleate desaturases that underlie the extremely high ALA content in chia seeds.  92 

Results 93 

Genome assembly 94 

We selected a chia cultivar with a Mexico origin (Supplemental Figure 1) for the assembly 95 

of the genome. About 24.7 Gb of circular consensus sequencing reads with an average read 96 

length of 16.1 kbp were generated from a single sequencing cell (Supplemental Figure 2). 97 

K-mer-based analyses of the HiFi reads estimated the nuclear genome to be ~352.7 Mb in 98 

size (Supplemental Figure 3). 99 

We performed genome assembly using the hifiasm assembler (Cheng et al., 2021). The initial 100 

assembly was 388.0 Mb, consisting of 666 contigs with a N50 length of 21.8 Mb and an L50 101 

number of 7, indicating a high contiguity of the assembly. The longest 21 contigs have a total 102 

length of 361.7 Mb and a minimum length of 1.7 Mb, while other contigs are significantly 103 

shorter, 636 of which have lengths shorter than 150 kbp (Figure 1A). The average HiFi read 104 

depth on the 21 long contigs varies between 43 and 58, which are around the 54-fold 105 

coverage of the nuclear genome calculated from the k-mer distribution (Figure 1A; 106 

Supplemental Figure 3). In contrast, the rest 645 contigs have a read coverage varying from 107 

0 to 557, suggesting that they originate either from fragments of highly repetitive regions or 108 

from the high-copy organellar genomes.  109 
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We next analyzed the plastid and mitochondrion genomes. From the initial assembly, we 110 

identified a circular contig (ptg000033c) that has a length of 313,444 bp and an average read 111 

coverage of 557 folds. Genome annotation identified 151 mitochondrion-encoded genes, 112 

including 21 transfer RNAs, 6 ribosomal RNAs (rRNAs), and 124 protein-coding genes 113 

(Supplemental Figure 4), indicating that this contig is the complete mitochondrion genome. 114 

We also identified 4 other contigs that show high sequence identity (100%) to the 115 

mitochondrion genome (Supplemental Figure 5). We reason that these contigs may 116 

represent mitochondrial genome fragments recently transferred to the nuclear genome.  117 

We could not identify a single contig representing the plastid genome from the initial 118 

assembly. We thus assembled the plastid genome using Illumina short reads and the 119 

GetOrganelle software (Jin et al., 2020). The plastid genome has a length of 150,956 bp and 120 

132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes 121 

(Supplemental Figure 6). Surprisingly, we found that 538 out of the 666 initial contigs 122 

could be mapped to the plastid genome with high coverage (>99%) and high identity rate 123 

(>99%) (Figure 1B). These contigs are short in length (14.2 to 217.6 kb) and most of them 124 

have low HiFi read coverage (with 530 contigs below 19-fold coverage) (Figure 1A). These 125 

plastid-originated contigs likely represent misassembled plastid genome fragments and/or 126 

nuclear genome fragments with a plastid origin. The total length of these contigs was 20.7 127 

Mb, accounting for most of the excessive part of the assembly compared to the predicted 128 

genome size. 129 

Excluding the organellar-originated 543 contigs and the 21 high-confidence nuclear contigs, 130 

the rest 102 contigs have a total length of 5.2 Mb. Ribosomal RNA (rRNA) repeats were 131 

identified in 81 of these contigs, indicating they were originated from genomic regions with 132 

high copy number of rRNA genes. Except for one contig mainly composed of 73 repeats of 133 
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5S rRNA, other contigs had a basic repeat unit of a “18S-5.8S-28S” structure with the copy 134 

number varied from 2 to 17 (Figure 1C). Considering the nuclear origin of most sequences, 135 

the 102 contigs were concatenated as Chr0. 136 

We next used the 21 high-confidence nuclear contigs for Hi-C scaffolding. Based on ~180x 137 

(63.8 Gb) of Hi-C sequencing data, we clustered and ordered the 21 contigs into six 138 

pseudochromosomes, whose sizes ranged from 47.8 Mb to 69.1 Mb (Figure 1D; Figure 2; 139 

Table 1). Chr5 was composed of a single contig while Chr4 contained the largest number (6) 140 

of contigs. The total length of the six pseudochromosomes was 361.7 Mb. The final v1 141 

assembly (Shi_PSC_v1) of the chia genome composed of 9 sequences, seven of which (Chr0-142 

Chr6) represent the nuclear genome, one for the mitochondrion genome, and one for the 143 

plastid genome. 144 

Evaluation of genome assembly 145 

We next evaluated the quality of the genome assembly using LTR Assembly Index (LAI) 146 

(Ou et al., 2018), Benchmarking Universal Single-Copy Orthologs (BUSCO) (Manni et al., 147 

2021), Merqury (Rhie et al., 2020) and Illumina short reads. The whole genome had an LAI 148 

of 15.78, which was around the same level as the TAIR10 assembly of Arabidopsis thaliana, 149 

and could be considered as the reference level (Ou et al., 2018). The complete BUSCO of the 150 

chia genome assembly was 98.8%, indicating a high completeness of the gene space. 151 

Merqury compares k-mers from the assembly to those found in unassembled HiFi reads to 152 

estimate the completeness and accuracy. The completeness and quality value (QV) of 153 

Shi_PSC_v1 were 97.3 (out of 100) and 66.5 (>99.99% accuracy) respectively. Mapping of 154 

the Illumina short reads (Supplemental Table 1) against the chia genome assembly also 155 

revealed very high read mapping rate (99.9%) and a low apparent error rate (0.27%). 156 
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Genome annotation 157 

For genome annotation, we first identified repetitive sequences in the Shi_PSC_v1 assembly. 158 

The analysis revealed that chia nuclear genome had a repeat content of 53.5% (Table 1). 159 

Similar to most plant genomes, retrotransposons accounts for the majority of the repetitive 160 

sequences of the genome. About half of the repeats were characterized as long terminal 161 

repeats (LTRs), with Gypsy and Copia being the main types. Besides, 65,851 simple repeats, 162 

334 satellite sequences, 573 transfer RNAs (tRNAs) and 378 small nuclear RNAs (snRNAs) 163 

were also identified in the chia genome (Supplemental Table 2). 164 

The repeat-masked assembly was then used for gene model prediction. Based on evidence 165 

from ab initio prediction, expressed sequence tags (ESTs), and homologous protein 166 

sequences, a total of 35,850 protein-coding genes were annotated. Additionally, we also 167 

examined whether telomere signals were present at the end of each pseudochromosome. The 168 

results showed that all the six pseudochromosomes contain telomere repeats. Telomere 169 

repeats were detected at both ends of Chr3 and Chr4, and one end of Chr1, Chr2, Chr5, and 170 

Chr6 (Figure 2A). 171 

The complete BUSCO score of the protein sequences was 97.6%, close to the BUSCO score 172 

of the genome assembly (98.8%). Functional annotation showed that Gene Ontology (GO) 173 

terms (Gene Ontology, 2021), Pfam domains (Mistry et al., 2021), and InterPro families 174 

(Blum et al., 2021) were assigned to 58.9% (21,125), 72.0% (25,799), and 79.2% (28,405) of 175 

the protein-coding genes. In total, AHRD (Automated assignment of Human Readable 176 

Descriptions) function names were assigned to 89.5% (32,089) of the protein-coding genes 177 

(Boecker, 2021) (Supplemental Table 3). These metrics indicate high quality of the genome 178 

annotation. 179 
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Evolution of the chia genome 180 

To understand the evolution of the chia genome, we selected five other species from the 181 

family of Lamiaceae, including three from the genus of Salvia, together with three species of 182 

Asterids and Arabidopsis thaliana for the orthology analysis (Figure 3A). A species tree 183 

constructed using orthologs shared in all analyzed species by STAG (Emms and Kelly, 2018) 184 

confirmed a close relationship between chia and S. splendens, as well as S. bowleyana and S. 185 

miltiorrhiza (Figure 3A). After calibrating divergence time using data retrieved from the 186 

TimeTree database (Hedges et al., 2015), chia was estimated to diverge with S. splendens 187 

~6.2 million years ago (MYA) and the four Salvia species have a common ancestor ~21.8 188 

MYA. The protein-coding genes of chia were assigned to 17,158 families. Relative to the 189 

common ancestor of chia and S. splendens, expansion in 528 families and reduction in 2,344 190 

families were observed in chia (Figure 3A). In contrast, S. splendens had 8,777 expanded 191 

families and a large number of 2-copy gene families (Figure 3B). This is consistent with its 192 

recent tetraploidization event (Jia et al., 2021). Among the ten species analyzed, 8,812 193 

families were shared while between 265 and 1,147 families were unique for each species 194 

(Figure 3C). Among the 720 gene families (2,529 genes) unique to chia, 72.6% of them were 195 

comprised of 2 or 3 members (Supplemental Figure 7) and the largest one contained 36 196 

members. GO enrichment analysis was performed for genes in these chia-specific gene 197 

families. The results showed that the top enriched GO term in the category of biological 198 

process was “defense response” (GO:0006952) (Supplemental Figure 8), suggesting their 199 

potential roles in the environmental adaptation of chia. In addition, “acyl-[acyl-carrier-protein] 200 

desaturase activity” (GO:0045300) in the category of molecular function was enriched 201 

(Supplemental Figure 9). This expanded family mainly includes orthologs genes of AtFAB2 202 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.504044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.504044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 10

(Supplemental Table 3; Supplemental Figure 10), the stearoyl-ACP (C18:0) or palmitoyl-203 

ACP (C16:0) desaturases of Arabidopsis.  204 

To investigate the whole-genome duplication events of chia, we performed intra-genome 205 

synteny analysis. In total, 323 synteny blocks with an average of 20.5 homologous gene pairs 206 

per block were identified (Figure 2F). The distribution of synonymous substitution rates (Ks) 207 

of these gene pairs revealed a single Ks peak at ~0.26 (Supplemental Figure 11), which was 208 

consistent with the whole genome duplication (WGD) event prior to the tetraploidization 209 

event of S. splendens (Jia et al., 2021). This indicates that this WGD event occurred before 210 

the divergence of chia and S. splendens.  211 

Identification of genes involved in ALA biosynthesis 212 

We next sought to identify genes underlying the high ALA content in chia seeds. We used 213 

kofamKOALA (Aramaki et al., 2020) to identify homologous genes of the lipid biosynthesis 214 

pathway (ko01004 of KEGG) in the chia genome (Supplemental Figure 12; Supplemental 215 

Table 4). We focused on genes encoding fatty acid desaturases. The analysis revealed 2 216 

homologs of AtFatA (K10782), 6 homologs of AtFatB (K10781), 14 genes of the AAD family 217 

(K03921), 2 homologs of AtFAD2 (K10256), and 4 homologs of AtFAD3/7/8 (K10257), 218 

among others (Supplemental Figure 12). Further phylogenetic analyses separated 219 

AtFAD3/7/8 (K10257) into 2 branches, each containing 2 orthologs of AtFAD3, and 220 

AtFAD7/8 (Figure 4A; Supplemental Figure 13). Multiple sequence alignment 221 

(Supplemental Figure 14) indicated that AtFAD7/8 and their orthologs in chia contain extra 222 

N-terminal sequences (plastid transit peptides) compared to the AtFAD3 branch, consistent 223 

with their predicted localization in the plastid (Xue et al., 2018).  224 
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We utilized two published transcriptome dataset to help identify candidate ALA biosynthesis 225 

genes in the chia genome, one covering 13 different tissues or developmental stages of chia 226 

(Gupta et al., 2021) and one covering five different time points of chia seed development (3, 227 

7, 14, 21, and 28 days after flower opening (DAF)) (Sreedhar et al., 2015). We reason that the 228 

candidate genes should be expressed at significantly higher levels compared to their 229 

counterparts during seed development. Indeed, we found that Shi004382 (ShFatA), 230 

Shi017381, Shi000260, and Shi006361 (AtFAB2 orthologs), Shi027338 and Shi033531 231 

(AtFAD2 orthologs), and Shi018884 and Shi004328 (AtFAD3 orthologs) are highly expressed 232 

in developing chia seeds, and their expression levels are decreased in the 28 DAF sample 233 

(Figure 4B). These genes are also expressed at significantly higher levels in developing 234 

seeds compared to other chia tissues/organs (Supplemental Figure 12). Although FAB2 235 

homologs have either SAD or PAD activity, studies in Arabidopsis indicate that a single 236 

amino acid change (Tyr to Phe) is sufficient to confer PAD activity to AtFAB2 (SAD) 237 

(Troncoso-Ponce et al., 2016). The residue is predicted to locate at the bottom part of the 238 

substrate channel and the bulkier lateral chain of Phe may reduce the substrate binding pocket 239 

to better accommodate C16-ACP substrates. Multiple sequence alignment indicated that the 240 

highly expressed FAB2 homologs (Shi017381, Shi000260, and Shi006361) in chia seeds have 241 

a Tyr residue at the corresponding position, suggesting that they function as SADs 242 

(Supplemental Figure 15). In contrast, the two orthologs (Shi015154 and Shi026195) of 243 

AtFAD7/8, the plastid localized omega-3 desaturase of Arabidopsis, were expressed at low to 244 

medium levels (FPKM values between 1.7 – 18.6) in developing seeds (Figure 4B; 245 

Supplemental Figure 12). In fact, the most highly expressed genes in developing chia seeds 246 

also contain multiple FA biosynthesis-related genes, such as genes encoding acyl carrier 247 

proteins (Shi029800, Shi029801 and Shi008432), oil body-associated proteins (Shi002948 248 

and Shi002148), and lipid-transfer proteins (Shi014949 and Shi010250) (Supplemental 249 
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Table 5). These results suggest a biosynthetic pathway involving plastid and ER localized 250 

enzymes, including ShFAB2, ShFatA, ShFAD2 and ShFAD3, is responsible for the high ALA 251 

content in chia seeds (Figure 4C). Despite copy number variations were identified in some of 252 

these genes (Supplemental Table 4), we suggest that strong expression of fatty acid 253 

desaturase genes, particularly the ER localized FAD3s, are responsible for the high ALA 254 

content in chia seeds.  255 

Discussion 256 

De novo assembly of plant genomes has been greatly facilitated by the advancement of third-257 

generation sequencing technologies that produce single-molecule long reads without the need 258 

of polymerase chain reactions. Commercially available 3rd-generation sequencing platforms 259 

suffer from high error rate of the raw reads (usually between 10-15%). The circular 260 

consensus sequencing (CCS) mode of PacBio significantly reduced consensus error rate by 261 

sequencing the same DNA insert multiple times. With carefully selected sizes of the DNA 262 

insert, a balance of sequencing length and accuracy can be achieved. In the current study, we 263 

performed CCS sequencing of the chia genomic DNA with a single SMRT cell, which 264 

produces 24.7 Gb of CCS data with median quality value of 31. The initial assembly included 265 

666 contigs, while our analyses indicated that 623 of them originated from the organellar 266 

genomes or ribosome RNA repeats (Figure 1). The top 21 contigs have a total length of 267 

361.7 Mb, which is slightly larger than the estimated genome size of 352.7 Mb based on k-268 

mer analysis. Consistent with this high completeness of the nuclear genome, telomere repeats 269 

were identified at one or both ends of each of the six pseudochromosomes and rRNA repeats 270 

were identified in multiple chromosomes (Figure 2). Collapsing of repetitive regions was a 271 

common problem for de novo assembly of genomes with high repeat contents using longer 272 

but non-CCS PacBio reads. We did not observe similar phenomenon during the assembly of 273 
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the chia genome. We reason that improved accuracy of the CCS mode helps resolving highly 274 

complex regions of the genome unless the repeat unit exceeds the read length, or the repeat 275 

sequences are highly similar. 276 

Through phylogenetic and gene expression analyses, we identified candidate genes 277 

underlying high ALA contents of chia seeds. Two copies each of ShFAB2, ShFAD2, and 278 

ShFAD3 exhibit very similar expression patterns (Figure 4B), suggesting these enzymes act 279 

together to promote the ALA content in chia seeds. This is consistent with the reported 280 

substrate channeling between FAD2 and FAD3 (Lou et al., 2014). Mature chia seeds have a 281 

lipid content of ~35%, of which up to 64% are ALA, the highest among all plant species 282 

(Muñoz et al., 2013; Kulczynski et al., 2019). Compared to its close relative, S. splendens, 283 

whose seeds were reported to have a ALA content of 34.5% and a LA content of 31.3% (Joh 284 

et al., 1988), the total content of ALA and LA of chia seeds are similar, suggesting that the 285 

elevated conversion rate from LA to ALA is the main event that drives high ALA content in 286 

chia seeds. In support of the idea that FAD3 is a rate limiting step in ALA biosynthesis, it 287 

was shown that overexpression of the rice FAD3 gene is sufficient to increase the ALA 288 

content in seeds by ~28 fold (Liu et al., 2012). In addition to chia, seeds of flax (Linum 289 

usitatissimum) and perilla (Perilla frutescens) also have a relative ALA content around 60% 290 

(Ciftci et al., 2012). Although the genetic bases underlying their high ALA content remains to 291 

be determined, convergent high ALA contents in these species indicate that increasing 292 

omega-3 contents in seeds involve limited number of steps during evolution. This suggests a 293 

promising future for improving lipid composition in grains through transgenic or genome 294 

editing approaches. 295 

Materials and methods 296 
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Library preparation and sequencing 297 

Chia seeds were surface sterilized and grown in ½ MS medium supplemented with 0.7% 298 

agarose in a Percival growth chamber. Genomic DNA was extracted from two-week-old 299 

seedlings for genome survey sequencing and accurate consensus long-read sequencing (HiFi 300 

sequencing). The genome survey library was prepared and sequenced at the Genomics Core 301 

Facility of Shanghai Center for Plant Stress Biology following standard protocols. A 15-kb 302 

PacBio HiFi sequencing library were constructed and sequenced on a PacBio Sequel IIe 303 

platform at Berry Genomics (Beijing, China) following manufacturer's instructions. Etiolated 304 

2-week-old seedlings were collected and used for crosslinking, proximity ligation, and library 305 

construction. The Hi-C library prepared by Biozeron (Shanghai, China) and sequenced at the 306 

Illumina NovaSeq platform with paired-end 150 bp sequencing mode.  307 

Genome size estimation 308 

To estimate the genome size of chia, 21 bp k-mer frequency of the PacBio HiFi reads was 309 

firstly counted with jellyfish (version 2.3.0) (Marcais and Kingsford, 2011). The k-mer 310 

frequency table was then used as input for GenomeScope2 (version 2.0) (Ranallo-Benavidez 311 

et al., 2020) to fit a diploid mathematical model to estimate the genome size, heterozygosity, 312 

and repetitiveness (Supplemental Figure 3).  313 

Genome assembly 314 

To assemble the nuclear genome using HiFi reads, three state-of-the-art genome assemblers 315 

were tested, including Flye (version 2.9) (Kolmogorov et al., 2019), HiCanu (version 2.2) 316 

(Nurk et al., 2020), and hifiasm (version 0.16.1) (Cheng et al., 2021). Flye applied a data 317 
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structure of repeat graph (Kolmogorov et al., 2019). HiCanu was a modification of the Canu 318 

assembler (Koren et al., 2017) that designed for HiFi reads with homopolymer compression, 319 

overlap-based error correction, and aggressive false overlap filtering (Nurk et al., 2020). 320 

Hifiasm is a genome assembler specifically designed for HiFi reads (Cheng et al., 2021). The 321 

previous estimated genome size by GenomeScope2 was used as input parameter for Flye and 322 

HiCanu. While hifiasm do not require pre-estimated genome size. The results indicated that 323 

hifiasm with default parameters performed the best in terms of contiguity (Supplemental 324 

Table 6) and accuracy (Supplemental Figure 16).  325 

To assemble the chia plastid genome, the GetOrganelle software (version 1.6.2) (Jin et al., 326 

2020), which performs well in a systematic comparison of chloroplast genome assembly tools, 327 

(Freudenthal et al., 2020) was used. GetOrganelle firstly extracted Illumina short reads that 328 

could be mapped to the embryophyte plastomes (a library composed of 101 plastid genomes) 329 

by bowtie2 (version 2.3.4.1) (Langmead and Salzberg, 2012) and then assembled them using 330 

SPAdes (version 3.13.0) (Bankevich et al., 2012). GetOrganelle produced three contigs 331 

representing the large single copy (LSC), small single copy (SSC) and inverted region (IR) of 332 

the chia plastid genome. Such three contigs were then aligned against the plastid genome of 333 

Salvia miltiorrhiza (accession number: NC_020431.1) (Qian et al., 2013), a close relative of 334 

chia. The alignment was performed with minimap2 (version 2.11) (Li, 2018) and visualized 335 

with D-Genies (version 1.3.1) (Cabanettes and Klopp, 2018). The three contigs were then 336 

ordered into a complete plastid genome using a customized Perl (version 5.34.0) script based 337 

on the BioPerl toolkit (version 1.7.4) (Stajich et al., 2002). Next, CHLOË (version 7c33699, 338 

https://chloe.plastid.org/) was used for the annotation of protein-coding genes, transfer RNAs, 339 

and ribosomal RNAs in the plastid genome. 340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.504044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.504044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16

To obtain the chia mitochondrial genome, we inspected contigs produced by hifiasm and 341 

found contig ptg000033c (length: 313,444 bp, read depth: 557) was circular and had the 342 

highest average read depth. Then we submitted this contig to the AGORA web tool (Jung et 343 

al., 2018) for genome annotation with the protein-coding and rRNA genes of the Salvia 344 

miltiorrhiza mitochondrial genome (accession number: NC_023209.1) as reference. The 345 

results of AGORA were then manually corrected by 1) removing protein-coding genes less 346 

than 30 amino acids, 2) removing protein-coding genes with pre-stop codons, 3) correcting 347 

mislabeled positions of ribosomal RNA genes. The chia mitochondrial genome was then 348 

visualized using OrganellarGenomeDRAW (OGDraw, version 1.3.1) (Greiner et al., 2019).  349 

The “1-to-1” coverage and identity rate of contigs against the chia plastid and mitochondrial 350 

genomes were calculated using the dnadiff program of the MUMmer package (version 3.23) 351 

(Kurtz et al., 2004). 352 

To obtain chia pseudochromosome sequences, the top 21 contigs in length and the Hi-C data 353 

was used for scaffolding. Illumina sequencing adapters and low-quality sequences of Hi-C 354 

data were trimmed by trim_galore (version 0.6.7, 355 

https://github.com/FelixKrueger/TrimGalore) with default parameters (quality score: 20; 356 

minimum length: 20 bp), which is a wrapper of cutadapt (version 3.4) (Martin, 2011). The 357 

clean Hi-C data were analyzed by Juicer (version 1.6) (Durand et al., 2016), which produced 358 

high-quality DNA contact information. Then the 3D-DNA pipeline (version 180922) 359 

(Dudchenko et al., 2017) was used for ordering the contigs into pseudochromosomes. After 360 

visualizing the Hi-C contact map by Juicebox (version 1.9.1) (Durand et al., 2016), we 361 

manually connect the contigs using “run-asm-pipeline-post-review.sh” of the 3D-DNA 362 

pipeline to avoid splitting the contigs. 363 
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Identification of rRNA repeats and telomere signatures 364 

To predict the location of ribosomal RNA (rRNA) in the nuclear genome, Basic Rapid 365 

Ribosomal RNA Predictor (barrnap, version 0.9, https://github.com/tseemann/barrnap) was 366 

used, which using the nhmmer (version 3.1b1) (Wheeler and Eddy, 2013) to search the 367 

potential location of eukaryotes rRNA genes (5S, 5.8S, 28S, and 18S).  368 

The telomere signature was examined using the program FindTelomeres 369 

(https://github.com/JanaSperschneider/FindTelomeres), which was a Python script for finding 370 

telomeric repeats (TTTAGGG/CCCTAAA). The results were further confirmed by TRF 371 

(version 4.09.1) (Benson, 1999) with parameters of “2 7 7 80 10 50 500 -m -d -h”.  372 

Genome circular plots were created in Circos (version 0.69.6) (Krzywinski et al., 2009). 373 

Genome quality evaluation 374 

The quality of the genome assembly was evaluated using three methods, including 375 

Benchmarking Universal Single-Copy Orthologs (BUSCO) (version 5.0.0) (Manni et al., 376 

2021), LTR Assembly Index (LAI) (version 2.9.0) (Ou et al., 2018) and Merqury (version 1.3) 377 

(Rhie et al., 2020) . Merqury is a tool for reference-free assembly evaluation. Additionally, 378 

Illumina short reads were mapped to chia genome assembly using bwa-mem (version 0.7.17) 379 

(Li, 2013). The mapping rate and error rate of the Illumina short reads were estimated by 380 

SAMtools (version 1.15.1) (Li et al., 2009). 381 

Genome annotation 382 
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A combined method was used for chia gene prediction, including ab initio prediction, EST 383 

discovery and protein homology search. To predict gene models, we firstly masked the 384 

repeats using RepeatMasker (version 3.1.2-p1) (Tarailo-Graovac and Chen, 2009). A species-385 

specific repeat library was constructed for RepeatMasker using Repeatmodeler2 (version 386 

2.0.2) (Flynn et al., 2020) and LTR_retriever (version 2.9.0) (Ou and Jiang, 2018). The LTR 387 

candidates for LTR_retriever was identified by LTR_FINDER_parallel (version 1.1) (Ou and 388 

Jiang, 2019) and LTRharvest (version 1.6.0) (Ellinghaus et al., 2008). 389 

LTR_FINDER_parallel is a parallel wrapper of LTR_FINDER (version 1.07) (Xu and Wang, 390 

2007). The chia transcriptome of 13 tissue types (involved seeds, cotyledon, shoots, leaves, 391 

internodes, racemes, and flowers) (Gupta et al., 2021) were retrieved from the NCBI SRA 392 

database (accession number: PRJEB19614) and de novo assembled using Trinity (version 393 

2.11.0) (Grabherr et al., 2011). The assembled transcripts were used as expressed sequence 394 

tags (EST) evidence for further gene model prediction. Seven sets of protein sequences 395 

downloaded from public databases were used as protein homology evidences, including 396 

Arabidopsis thaliana (version Araport11) (Cheng et al., 2017), Antirrhinum majus (version 397 

IGDBV1) (Li et al., 2019), Callicarpa americana (Hamilton et al., 2020), Salvia miltiorrhiza 398 

(version 1.0) (Song et al., 2020), Salvia splendens (Dong et al., 2018), Tectona grandis (Zhao 399 

et al., 2019) and the UniprotKB/Swiss-Prot dataset (version release-2020_04) (Poux et al., 400 

2017).  401 

Maker (version 3.01.03) (Campbell et al., 2014) was run three rounds to train AUGUSTUS 402 

(version 3.4.0) (Stanke and Waack, 2003) and SNAP (version 2006-07-28) (Korf, 2004) gene 403 

prediction parameters. GeMoMa (version 1.8) (Keilwagen et al., 2019) and MetaEuk (release 404 

5) (Levy Karin et al., 2020) were used with the above mentioned protein homology datasets 405 

to discover gene models . Finally, EVidenceModeler (EVM, version 1.1.1) (Haas et al., 2008) 406 
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was used to combine all the above gene prediction evidences. The est2geome and 407 

protein2genome features produced by Maker were used as transcript and protein evidence for 408 

EVM. The AUGUSTUS and SNAP gene models were used as ab initio prediction evidence 409 

for EVM. The GeMoMa and EetaEuk produced gene models were used as 410 

OTHER_PREDICTION evidence, which means they do not provide an indication of 411 

intergenic regions (Haas et al., 2008). Gene function annotation was performed by 412 

InterProScan (version 5.52-86.0) (Jones et al., 2014) and AHRD (version 3.3.3) (Boecker, 413 

2021).  414 

Genome evolution 415 

Orthofinder (version 2.5.4) (Emms and Kelly, 2019) was used for the construction of 416 

orthologous groups. The STAG algorithm (Emms and Kelly, 2018) implemented in 417 

Orthofinder was used to estimate the species tree. Chia and other nine genomes were used for 418 

the construction of orthologous groups, including Arabidopsis thaliana (version Araport11) 419 

(Cheng et al., 2017), Solanum lycopersicum (version ITAG4.0) (Hosmani et al., 2019), 420 

Antirrhinum majus (version IGDBV1) (Li et al., 2019), Tectona grandis (Zhao et al., 2019), 421 

Callicarpa americana (Hamilton et al., 2020), Jacaranda mimosifolia (Wang et al., 2021), 422 

Salvia bowleyana (Zheng et al., 2021), Salvia miltiorrhiza (version 1.0) (Song et al., 2020), 423 

and Salvia splendens (version SspV2) (Jia et al., 2021). Gene family size expansion and 424 

contraction analysis was performed by CAFE5 (version 5.0.0) (Mendes et al., 2020). Synteny 425 

analysis was performed by the Python version of MCScan (version 1.1.17) (Tang et al., 2008). 426 

ParaAT (version 2.0) (Zhang et al., 2012) was used for prepare the alignment data for 427 

calculating Ks values, which was a wrapper of MUSCLE (version 3.8.1551) (Edgar, 2004) 428 

and PAL2NAL (version 13) (Suyama et al., 2006). KaKs_Calculator (version 2.0) (Wang et 429 
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al., 2010) was used for calculating the Ks values using the YN model (Yang and Nielsen, 430 

2000).  431 

Gene expression analysis 432 

Besides the chia transcriptome of 13 tissue types that retrieved from the NCBI SRA database 433 

(accession number: PRJEB19614) (Gupta et al., 2021), another set of transcriptome data for 434 

chia seed development was retrieved from the NCBI SRA database (accession number: 435 

PRJNA196477), which was sampled in 3, 7, 14, 21, and 28 DAF (Sreedhar et al., 2015). The 436 

raw RNA-seq data that downloaded from the NCBI SRA database were firstly converted to 437 

FASTQ format using the fastq-dump command from the SRA Toolkit package (version 2.9.3, 438 

https://github.com/ncbi/sra-tools). The data were then trimmed using trim_galore and then 439 

mapped to the chia reference genome by STAR (version 2.7.5c) (Dobin et al., 2013). Gene 440 

counts were summarized by featureCounts (version 2.0.1) (Liao et al., 2014). FPKM values 441 

were calculated using functions of the DESeq2 package (version 1.32.0) (Love et al., 2014) 442 

in the R platform (version 4.1.1) (R Core Team, 2021).    443 

Multiple sequence alignment and phylogenetic tree construction 444 

Visualization of multiple sequence alignment of the FAD2, FAD3, FAD7, and FAD8 genes 445 

was performed using the Clustal Omega web tool 446 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). Phylogenetic trees of the FAB2/AAD, FAD2, 447 

FAD3, FAD7 and FAD8 were constructed with the maximum likelihood method by IQ-448 

TREE2 (Minh et al., 2020). The best-fitting amino acid substitution model was determined 449 

by ModelFinder (Kalyaanamoorthy et al., 2017).  450 
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Data availability 451 

The genome assembly and corresponding sequencing data were deposited at NCBI under 452 

BioProject number PRJNA864090 and at NGDC under accession number PRJCA010915. 453 
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Table 1. Summary of chia genome assembly and annotation 737 
Salvia hispanica Number of contigs 

Assembly 

Contigs 

Estimated genome size 352,711,351 bp

Total length (number) of contigs 388,048,784 bp 666 

N50 (L50) of contigs  21,830,104 bp 7 

N90 (L90) of contigs 4,780,990 bp 18 

Longest contig 49,694,750 bp

Contigs used for Hi-C scaffolding 361,724,111 bp 21 
Contigs with high identity to  
       the plastid genome 20,671,896 bp 538 

Contigs with high identity to  
       the mitochondrial genome 458,295 bp 5 

Contigs with ribosomal DNA 
       repeats 3,787,617 bp 81 

Pseudomolecules 

Chr1 69,924,378 bp 5 

Chr2 66,361,501 bp 4 

Chr3 66,031,358 bp 3 

Chr4 61,126,009 bp 6 

Chr5 49,694,750 bp 1 

Chr6 48,593,615 bp 2 

Mitochondrial genome 313,444 bp

Plastid genome 150,956 bp

Annotation 

GC content 37.00%

Repeat sequences 53.5%
    LTR/Copia 7.4%
    LTR/Gypsy 12.0%
Number of protein-coding genes 35,850
Complete BUSCOs 
    Genome assembly 
    Proteome 

98.8%
97.6%  

Simple repeats 65,875  
Satellite 334  
tRNA 586  
snRNA 378  

  738 
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 739 

Figure 1 Assembly of the chia genome. A) Dotplot showing the contig length and the read 740 

depth of the initial assembly. Contigs were classified into five categories based on the length, 741 

the read depth and their origins, as indicated in the legend. B) Alignment of 538 initial 742 

contigs onto the chia plastid genome. C) Structure of the 81 contigs containing ribosomal 743 

RNA repeats. D) Hi-C contact map of the chia nuclear genome. Blue boxes indicate grouped 744 

pseudochromosomes, whereas green boxes indicate contigs. 745 

  746 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.504044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.504044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 35

 747 

Figure 2 The nuclear genome of Shi_PSC_v1. Each ring indicates specific features of the 748 

nuclear genome. Data from non-overlapping 1-Mb windows were graphed: A) Position of 749 

telomere repeats and ribosomal RNA genes; B) Average transcript abundance; C) Gene 750 

density; D) LTR density; E) GC content; F) Synteny blocks >1 Mb in length. 751 
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 753 

Figure 3 Evolution of the chia genome. A) Phylogenetic tree for chia and 9 other plant 754 

species. Numbers of expanded and contracted gene families were indicated by red and blue 755 

numbers at each branch point. Branch length indicate the estimated divergence time in 756 

million years ago. B) Numbers of gene families with different copy numbers in each plant 757 

species. C) Upset plot indicating the number of gene families shared by different species. 758 

Yellow bars indicate species-specific gene families. 759 
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 761 

Figure 4 Identification of critical genes involved in fatty acid biosynthesis of chia seeds. A) 762 

Phylogenetic tree of the FAD3 genes. Shi: Salvia hispanica; AT: Arabidopsis thaliana; XM: 763 

Salvia splendens; GWHTAOSJ: Salvia miltiorrhiza; GWHTASIU: Salvia bowleyana; Tg: 764 

Tectona grandis; Jmimo: Jacaranda mimosifolia; Calam: Callicarpa americana; Am: 765 

Antirrhinum majus; Solyc: Solanum lycopersicum. B) Expression pattern for FatA, FatB, 766 

FAB2, FAD2, FAD3, FAD7/8, and FAD6 genes in developing chia seeds. DAF: Days after 767 

flower opening; FPKM: Fragments Per Kilobase of transcript per Million mapped reads. 768 

Only genes with maximum FPKM > 1 in seed samples were included in the plot. C) A 769 
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model for the biosynthesis of ALA in the chia genome. PC: phosphatidylcholine; ER: 770 

endoplasmic reticulum. 771 

 772 
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