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Abstract

An important problem in systems neuroscience is to characterize how a neuron integrates
sensory inputs across space and time. The linear receptive field provides a mathemat-
ical characterization of this weighting function, and is commonly used to quantify neural
response properties and classify cell types. However, estimating receptive fields is difficult
in settings with limited data and correlated or high-dimensional stimuli. To overcome these
difficulties, we propose a hierarchical model designed to flexibly parameterize low-rank
receptive fields. The model includes Gaussian process priors over spatial and temporal
components of the receptive field, encouraging smoothness in space and time. We also
propose a new temporal prior called temporal relevance determination (TRD), which im-
poses a variable degree of smoothness as a function of time lag. We derive a scalable
algorithm for variational Bayesian inference for both spatial and temporal receptive field
components and hyperparameters. The resulting estimator scales to high-dimensional
settings in which full-rank maximum likelihood or a posteriori estimates are intractable.
We evaluate our approach on neural data from rat retina and primate cortex, and show
that it substantially out-performs a variety of existing estimators. Our modeling approach
will have useful extensions to a variety of other high-dimensional inference problems with
smooth or low-rank structure.

1 Introduction

A key problem in computational and systems neuroscience is to understand the information
carried by neurons in the sensory pathways [1, 2]. A common approach to this problem is to
estimate the linear receptive field (RF), which provides a simple characterization of a neuron’s
stimulus-response properties. The RF consists of a set of linear weights that describe how
a neuron integrates a sensory stimulus over space and time [1, 3—11]. Estimating the RF
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from imaging or electrophysiological recordings can thus be seen as a straightforward regres-
sion problem. However, characterizing RFs in realistic settings poses a number of important
challenges.

One major challenge for RF estimation is the high dimensionality of the inference problem. The
number of RF coefficients is equal to the product of the number of spatial stimulus elements
(e.g. pixels in an image) and number of time lags in the temporal filter. In realistic settings this
can easily surpass thousands of coefficients. Classic RF estimators such as the least-squares
regression suffer from high computational cost and low statistical power in high-dimensional
settings. The computational cost of the regression estimate scales cubically with the number
of RF coefficients, while memory cost scales quadratically. Moreover, the standard regression
estimate does not exist unless there are more samples than dimensions, and typically requires
large amounts of data to achieve a high level of accuracy. High dimensionality is thus a limiting
factor in terms of both computational resources and statistical power.

Past efforts to improve statistical power, and thereby reduce data requirements, have relied on
various forms of regularization. Regularization reduces the number of degrees of freedom in
the RF by biasing the estimator towards solutions that are more likely a priori, and can thus
provide for better estimates from less data. Common forms of regularizaton involve smooth-
ness or sparsity assumptions, and have been shown to outperform maximum likelihood (ML)
estimation in settings of limited data or correlated stimuli [12—18]. However, the computational
cost of such estimators is generally no better than that of classical estimators, and may be
worse due to the need to optimize hyperparameters governing the strength of regularization.
These poor scaling properties make it difficult to apply such estimators to settings involving
high-dimensional stimulus ensembles.

In this paper, we propose to overcome these difficulties using a model that parametrizes the
RF as smooth and low rank. A low rank receptive field can be described as a sum of a small
number of space-time separable filters [13, 19-22]. This choice of parametrization significantly
reduces the number of parameters in the model and is the key to scalability of our method. To
achieve smoothness, we use Gaussian process (GP) priors over both the spatial and temporal
filters composing the low-rank RF. For the temporal filters, we introduce the temporal relevance
determination (TRD) prior, which uses a novel covariance function that allows for increasing
smoothness as a function of time lag. To fit the model, we develop a scalable algorithm
for variational Bayesian inference for both receptive field components and hyperparameters
governing shrinkage and smoothness. The resulting estimator achieves excellent performance
in settings with correlated stimuli, and scales to high-dimensional settings in which full-rank
estimators are intractable.

The paper is organized as follows. Sections 2-3 provide a review of relevant background
and existing literature: Section 2 introduces the linear encoding model and low rank linear
receptive fields; Section 3 reviews previously proposed priors for receptive fields. In Section
4, we introduce temporal relevance determination (TDR), a new prior for temporal receptive
fields, while in section 5 we introduce our variational low-rank (VLR) receptive field estimator.
Section 6 shows applications to simulated as well as real neural datasets, and, at last, Section
7 provides discussion of our results and suggests directions for future work.
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2 The Linear-Gaussian encoding model

A classic approach to neural encoding is to formulate a parametric statistical model that de-
scribes the mapping from stimulus input to neural response [1, 2, 17, 23, 24]. Here we focus
on linear models, where the neural response is described as a linear or affine function of the
stimulus plus Gaussian noise [17, 25] (see Fig. 1). Formally, the model can be written:

yt:kTXt+b+€t, EtNN(O,U2), (1)

where vy, is the neuron’s scalar response at the t’th time bin, k is the vector receptive field, x;
is the vectorized stimulus at the t’th time bin, b is an additive constant or bias, and ¢, denotes
zero-mean Gaussian noise with variance o?2.

2.1 The receptive field tensor

The model description above neglects the fact that the stimulus and receptive field are often
more naturally described as multi-dimensional tensors. In vision experiments, for example, the
stimulus and receptive field are typically third order tensors, with two dimensions of space and
one dimension of time. In this case, the full stimulus movie shown during an entire experiment
can be represented by a tensor of size n,, x n,, x T, consisting of n,, x n,, pixel images over
T total time bins or frames. In this case, a given element X ;; in the stimulus tensor could
represent the light intensity in a grayscale image at time ¢ at spatial location (i, j) in the image.

In such settings, the spatio-temporal receptive field is also naturally defined as a tensor, K €
R"=1 22Xt “with weights that determine how the neuron integrates light over the n,, x n,,
spatial pixels and the n; preceding time bins (Figure 1C). Thus, the dot product between
the receptive field k and vector stimulus x; in (eqg. 1) is equal to the following linear function
defined by summing over the product of all corresponding elements of the RF tensor K and
corresponding portion of the stimulus tensor X at time ¢:

Nxy NMag ng—1

kTXt = Z Z Z Ki,j,TXi,j,t—T (2)

i=1 j=1 7=0

where K and X, are both tensors of size n,, x n,, x n;. The vectorized RF and stimulus are
thus given by k = vec(K), and x; = vec(X, ;) fori € {1,...,n,}, j € {1,...,n,,} and
Te{l,...,n}.

2.2 Low rank receptive fields

A key feature of neural receptive fields is that they can typically be described by a relatively
small number of spatial and temporal components [13, 19-22, 26]. This means that we do not
need to use a full set of n,, x n,, X n; independent parameters to represent the coefficients
in K. Instead, we can accurately describe K with a small number of spatial components,
each corresponding to an image with n,, x n,, coefficients, and a corresponding number of
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Figure 1: A: The linear-Gaussian encoding model is a 2-stage model, consisting of a linear
stage followed by a noise stage. First, the high-dimensional spatio-temporal stimulus is filtered
with the linear receptive field, which describes how the neuron integrates the stimulus values
over space and time. The output of this filter is a scalar that gives the expected response at
a single time bin. We then add noise to obtain the neural response for the given time bin.
B: A low-rank spatio-temporal receptive field can be described as a sum of two space-time-
separable (rank 1) filters. C-D: lllustration of different STRF representations as a third order
tensor (C), matrix (D) or in terms of low-rank factors (E).

temporal components, each with n, coefficients. The number of paired spatial and temporal
components needed to represent K is known as the rank of the tensor, which we denote r.

Figure 1B illustrates a scenario with » = 2, in which the tensor K is the sum of two rank-1
components, each defined as a single spatial and temporal weighting function. These rank-1
components are commonly referred to as "space-time separable” filters. Note that a rank r ten-
sor has only r(n,, n,, + n;) parameters, which generally represents a significant savings over
the (n,,n,,n,) parameters needed to parametrize the full-rank tensor. Furthermore, having an
explicit description of the temporal and spatial filters composing K increases interpretability of
the RF.

For the purposes of modeling low-rank filters of this form, it is convenient to unfold the 3rd order
receptive field tensor K into a matrix. Let K € R"*(1"22) denote the matrix unfolding of
the receptive field, where the two spatial dimensions have been concatenated (see Fig. 1C,D).
This representation makes it possible to represent low-rank receptive fields with a product of
matrices:

K=KK," (3)

where K; € R™*" is a matrix whose columns are temporal filters, and K, € RMa175) %7 g g
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matrix whose columns are (reshaped) spatial filters (see Fig. 1E). In section 5 we will develop
a Bayesian hierarchical model for efficient estimation of low-rank receptive fields using this
parametrization.

3 Existing receptive field priors

In high-dimensional settings, or settings with highly correlated stimuli, receptive field estimation
can be substantially improved by regularization. Here we review previously proposed prior
distributions for regularizing receptive field estimates. The general family of priors that we
consider takes the form of a zero-mean multivariate Gaussian distribution:

k ~N(0,Cp), (4)

where Cy denotes a covariance matrix that depends on a set of hyperparameters 6. Different
choices of prior arise by selecting different functional forms for the covariance matrix Cy. We
will review several popular choices of covariance below (see Fig. 2), before introducing a novel
prior covariance in section 4.

3.1 Ridge prior

Ridge regression [27] is classically viewed as an added L, norm penalty on the receptive
field weights in the context of least-squares regression. However, it also has a Bayesian
interpretation as resulting from a zero-mean Gaussian prior with covariance given by

- 1

Crldge i 5

0 )\ ? ( )
where the hyperparameter # = {A} is known as the ridge parameter, and / denotes the
identity matrix. This prior has the effect of biasing the estimate towards zero, a phenomenon
also known as “L, shrinkage”.

3.2 Automatic Smoothness Determination (ASD)

The Automatic Smoothness Determination (ASD) prior [25] goes beyond shrinkage to incor-
porate the assumption that the receptive field changes smoothly in time and/or space. The
ASD prior covariance matrix relies on the radial basis function (RBF) or “Gaussian” covari-
ance function that is well-known in the Gaussian process literature [28]. The ¢, j’th element of
this covariance matrix is given by:

1
[C53P],; = pexp (_§(Xi —x;) @ (i — Xj)) : (6)

where {x;} is a 3D vector containing the locations of RF pixels in space-time, thus indicating
both the 2D spatial locations of the RF coefficients and the 1D temporal locations (or lags). And

5


https://doi.org/10.1101/2022.08.12.503812
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.12.503812; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

automatic automatic temporal
smoothness locality relevance
determination determination determination
ridge (ASD) (ALD) (TRD)

covariance
matrix

LE

0 50 100 0 50 100 0 50 100 0 50 100
coeffient #

samples

Figure 2: lllustration of different priors for use in receptive field estimation. Top row: prior
covariance matrices Cy under different choices of covariance function. Under the ridge prior,
all off-diagonal elements of the covariance matrix are zero and receptive field coefficient are
independent. In the ASD prior covariance, neighboring coefficients are highly correlated and
the correlation decreases with increasing distance between coefficient locations in the RF. The
ALD prior covariance contains high correlations for neighboring coefficients within a local re-
gion, and additionally sets the prior covariance of the RF coefficient to zero outside of this local
region — a form of structured sparsity. Finally, in the TRD covariance matrix, the correlation of
neighboring RF coefficients increases as a function of the coefficient location. Bottom row:
Four samples from a multivariate Gaussian distribution with zero mean and covariance matrix
shown above, illustrating the kinds of receptive fields that are typical under each choice of
prior.

o = diag(¢;, (5, (") is a diagonal matrix containing “lengthscale" parameters. The covariance
matrix is thus controlled by four hyperparameters, 6 = {p, (5, (5, ¢'}. p is the marginal variance
(and equivalent to 1/ in the ridge prior above), and the lengthscale parameters /3 , and ¢t de-
termine the degree of smoothness in space and time, respectively. Recent work has exploited
the Kronecker and Toeplitz structure of the ASD covariance matrix to show that it has an ex-
act diagonal representation in the Fourier domain, which allows for dramatic improvements in
computational efficiency [18].

3.3 Automatic Locality Determination (ALD)

The automatic Locality Determination (ALD) prior [17] goes beyond smoothness of the ASD
prior by encouraging RF coefficients to be localized in space, time, and in spatio-temporal
frequency.

It relies on a covariance function that encourages both the space-time coefficients and the
spatio-temporal frequency components of the RF to be zero outside of some localized region,
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resulting in a form of “structured sparsity” [29]. This prior includes the ASD smoothness prior
as a special case, namely when the region of non-zero spatio-temporal frequency components
is centered at zero, and there is no locality in space or time. However, the ALD prior also allows
for band-pass filters, in which the RF is composed primarily of intermediate frequencies.

The ALD covariance matrix can be written in terms of a pair of diagonal matrices a discrete
Fourier transform matrix: . )
Cypt? = pC32 BTCyBC;z, (7)

where Cjj and Cg and are diagonal matrices that specify a region of nonzero coefficients in
space-time and the Fourier domain, respectively, and B is the discrete-time Fourier transform
matrix.

The space-time locality matrix is a diagonal matrix with diagonal elements given by
s 1 T,—-1
[C5lii = exp _§<Xi —m) U (x; —m) |, (8)

where {x;} are the locations of RF pixels in space-time, and m and ¥ denote the mean and
covariance of the region where the RF coefficients are non-zero. The Fourier-domain locality
matrix takes a similar form:

(64l = exp (508~ )" - ) ) ©)

where {{;} are the spatio-temporal frequencies for each Fourier coefficient, and m and ¥
denote the mean and covariance of the region in Fourier space where RF Fourier coefficients
are non-zero. The hyperparameters governing the ALD prior are thus 6 = {p, m, m, ¥, \if}.
As before, p governs the marginal variance of the RF coefficients, analogous to the ridge
parameter. For a 3D tensor receptive field, m and m are both 3-vectors, and ¥ and U are
both 3 x 3 positive semi-definite covariance matrices.

The full ALD covariance matrix (eq. 7), which multiplies together the diagonal matrices Cj;
and (Jg with a discrete Fourier domain operator in between, has the effect of simultaneously
imposing locality in both space-time and frequency. It is identical to ASD under the setting that
Cs =1, m=0, and ¥ is diagonal [18]. Empirically, ALD has been shown to outperform both
the ridge and ASD priors, as well as other sparsity-inducing priors, in applications to neural
data in the early visual system [17].

4 A new prior for temporal Receptive Fields

Our first contribution is to propose a new prior for temporal receptive fields. The priors in ASD
and ALD both assume a constant degree of smoothness across the receptive field. However,
an assumption of stationary smoothness is less appropriate for temporal receptive fields, which
are typically sharper at short time lags and smoother at longer time lags. In order to incorporate
this variable form of smoothness, we introduce the Temporal Recency Determination (TRD)


https://doi.org/10.1101/2022.08.12.503812
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.12.503812; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

prior. This prior uses a smoothing covariance function that is stationary in log-scaled time, and
which is therefore non-stationary in linear time.

The TRD covariance function can be described as a time-warped version of the ASD covari-
ance. Specifically, the ¢, j°th element of the prior covariance is given by:

1
6 = pesp (~5lma(t) — ralt)I). (10)

where 7,(t) is a nonlinear warping function:

T

Talt) = log(1 + exp(a) * T)

log(1 + exp(a)t), (11)

where T is the length of the temporal RF (in seconds), ¢; is the time lag for temporal RF
coefficient 7, and « is a parameter determining how quickly the RF smoothness increases with
time. Figure 2 shows an illustration of the TRD prior, alongside the other RF priors discussed
in Sec. 3.

5 A probabilistic model for low-rank receptive fields

Our second contribution is a model and inference method for smooth, low-rank receptive field
fields. As noted in Section 2.2, a low-rank parametrization for spatio-temporal receptive fields
can offer a dramatic reduction in dimensionality without loss of accuracy. In particular, a rank
r spatio-temporal filter requires only r - (n,, - n., + n:) coefficients, versus N = n,, - ng, - n;
for a full-rank filter.

To place our model on a solid probabilistic footing, we place independent zero-mean Gaussian
priors over the r temporal (1D) and r spatial (2D) components of the receptive field (see
Fig. 3A). If we use a TRD prior for the temporal components and an ALD prior for the spatial
components, then the prior over the 7’th spatial and temporal receptive field components can
be written:

ky; ~ N(0,C4R°) (12)
kmi NN(()?C;:LD>7 (13)

where CjRP denotes the TRD covariance (eq. 10), C4'" is the ALD covariance (eq. 7), which
we apply here to a 2D spatial receptive field. Although we selected these covariance functions
because of their suitability for the structure of neural receptive fields, our modeling framework
is general and could easily accommodate other choices.

Under this modeling choice, the full receptive field K = K; K] = kyky ' + -+ + ki kg, "
represents the product of two Gaussian random variables. This effective prior over K is thus
non-Gaussian. This entails that posterior inference is not analytically tractable, due to the fact
that the prior is not conjugate to the Gaussian likelihood of the encoding model (Eq. 1). We
therefore develop a scalable variational inference algorithm for setting the hyperparameters 6
governing the prior covariance matrices and inferring the receptive field coefficients K, and
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K, which we describe in sections 5.1-5.2. We introduce additional modelling choices that
facilitate scalable estimation through a further reduction in the total number of receptive field
coefficients in section 5.1, and describe the resulting algorithm in detail in section 5.2.

5.1 Scalability via sparse spectral representations of covariance matri-
ces

Performing inference in the model we introduced in Section 5 still requires building and in-
verting large covariance matrices. To reduce the dimensionality of the spatial and temporal
receptive field inference further and to achieve scalability to high-dimensional settings, we
make use of sparse spectral representations of the prior covariance matrices.

This sparse spectral representation involves expressing the prior covariance of k as Cy ~
ByB,;. When B, contains the eigenvectors of Cy, scaled by their square-rooted associated
eigenvalues, then this approximation is exact. However, we might be able to incur only a small
approximation error by retaining only the leading eigenvectors of Cy in By. For example, for
larger lengthscale parameters (high degree of smoothness) the covariance matrix associated
with the ASD covariance function has eigenvalues that quickly decay towards zero [28]. By
truncating its eigenvalues near zero, it is possible to find a low-rank approximation to the
covariance matrix Cjy that is exact to machine precision. For all choices of prior covariance
matrices we discussed in section 3, it is possible to obtain an analytic expression for By [18].

Given By, we can express the prior distribution over the receptive field in terms of a linear
transformation of a multivariate standard Normal, or “whitened" random variable: k = Byw,
with w ~ AN(0,1). The resulting prior covariance of k is equal to Cy = ByB,. and thus
unchanged from before. However, performing inference over w instead of k allows us to
circumvent costly inversions of Cy. Furthermore, if Cy is represented to a sufficient accuracy
using fewer dimensions in By, then w will contain fewer dimensions than k, thus leading to
additional improvements in scalability.

To incorporate low-rank receptive field structure into this approach, we define our model in
the transformed, “whitened” space. The receptive field priors are described by multivariate
standard Normal distributions over the whitened temporal receptive field w; and whitened
spatial receptive field w,:

w; ~ N(0,1,,.,) (14)
w, ~ N(0,I,,..) (15)

w,; and w,, are vectors containing the concatenated temporal and spatial components, respec-
tively, and are of dimensions p; -  and p,, - r, where p, ; depend on the number of dimensions
needed to approximate the respective covariance matrices to sufficient accuracy and r corre-
sponds to the STRF rank. We define the matrix reshaping of these vectors as

w, = vec(W,), w, = vec(W,") (16)
where W, € RP**" and W, € RP=*". The full STRF can then be represented as
k = vec(Bj,W,W, "B} ) (17)
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Figure 3: Graphical model representation of the low-rank STRF model. (A) We combine a
multivariate normal ‘temporal relevance determination’ (TRD) prior over temporal components
(above) and a matrix normal prior over spatial components (below), where row and column
covariances have an ‘automatic locality determination’ (ALD) parametrization, to obtain a prior
over each rank-1 component or space-time separable filter making up a low-rank filter. (B) The
graphical model for the full model can be represented in terms of linear transformations By,
and By , which parametrize the transformation from whitened temporal and spatial receptive
fields w; and w,, which are combined to form the STRF k. The linear transformations depend
on hyperparameters 6, and 6,. The spatial and temporal components are combined to form
a low-rank STRF k, which acts to integrate a stimulus x, over space and time to generate a
neural response ., with constant offset 0.

where the analytic decompositions of the prior covariances are denoted as C = B}, Bj, T and
Cy = BgIB;;T for the temporal and the spatial receptive field prior covariances, respectively.

Given this representation of the STRF, the rest of the model remains unchanged. This model
description is illustrated as a graphical model in Figure 3B.

5.2 Variational inference and hyperparameter learning for low-rank STRFs
(VLR)

Fitting our low-rank model to data involves performing posterior inference over the receptive
field components w, and w,, and learning the hyperparameters ¢ that determine the shape of
the basis functions in By. To do this, we derive a variational optimization framework, similar
to the classic Empricial Bayes approach reviewed in appendix A.2. We rely on a variational
approach here, since the effective non-Gaussian prior over k makes obtaining an exact ex-
pression for the marginal log-likelihood intractable.

A lower bound to the marginal log-likelihood can be obtained by applying Jensen’s inequality

log P(Y|®,0) = log/P(Y, wi, W |D, ) dwdw, (18)
P(Y7Wt7w:l?|q)76)

q(wi, W)

> / a(wi, w,) log dwidw, 2 F(q,6) (19)

where ¢(w;, w,) is a distribution over the whitened temporal and spatial receptive field param-
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eters w; and w,.. F(q, 0) is often called the variational “free energy” or “evidence lower bound”
(ELBO).

Instead of computing and optimising the model evidence directly, we can instead perform
coordinate ascent, and alternatingly maximize F with respect to the distribution ¢(w;, w,) and
with respect to the parameters 6, as part of the Expectation Maximization (EM) [30] algorithm.
The optimisation over ¢(w;, w,.) can either be performed exactly (which amounts to setting ¢
equal to the posterior joint distribution over w; and w,), or under additional constraints on g,
such as restricting it to a particular family of variational distribution.

The free energy can be written in two equivalent ways:
F(Q(WU Wm)7 0) = <10g P(Y7 Wi, Wx’q)7 0>>q(Wg,Wx) + H[Q(Wt; WI)] (21)

where H]g| is the entropy of ¢. The EM algorithm involves iteratively maximizing this lower
bound with respect to a distribution over w, and w, (E-step) and with respect to the hyperpa-
rameters 0 (M-step). From (20) it is apparent that the free energy is maximized when ¢(w;, w,,)
is equal to the posterior distribution

P(Y,w;, w,|®,0)

(22)

at which the Kullback-Leibler divergence in (20) vanishes and the free energy provides a tight
lower bound to the marginal log-likelihood. Performing this computation exactly is intractable
in our model. We therefore choose a variational approximation of the form

q(wi, wy) = q(wy)g(w,) (23)

where we assume that the approximate posterior distribution factorizes over the spatial and
temporal receptive field. We now seek to find the distribution ¢(w,, w,) that lies within the
family of distributions that factorize over w; and w,, and maximizes the free energy. Taking
variational derivatives of the free energy, the variational updates for our approximating distri-
butions are found to be of the general form

q(wy) oc exp(log P(Y, wi, Wo|®, 0)) g(w,) (24)
Q(W$> X exp(log P(}/J Wi, W:C|q)7 0)>Q(Wt) (25)
where angled brackets denote expectations. Evaluating the above in our model, we obtain mul-
tivariate Gaussian distributions of the form g(w;) = N (wy|us, 3¢) and g(w,) = N (W |, X2)-

The variational updates for the posterior means ., 1., and covariances 3, >, are available in
closed form. Detailed derivations and the exact update equations are given in Appendix B.

The M-step in our variational EM algorithm involves maximizing the free energy with respect
to the model parameters b, o and hyperparameters 6§ = {6,,6,.}, and requires solving

0", 0", 0" < argmax(log P(Y, Wy, W |, 0)) g(ws,w.) (26)

using gradient based optimization. We update the hyperparameters in Bj and Bj , and the
model parameters b and ¢ in separate conditional M-Steps. Performing conditional M-steps
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allows one to project the high-dimensional stimulus onto either the temporal or spatial basis
and never requires building or inverting the full stimulus design matrix . Thus, this strategy
further exploits the lower-dimensional decomposition of the full receptive field and provides an
efficient algorithm, even for high-dimensional data. Further details are provided in Appendix
C.

6 Results

6.1 Data efficient estimation under correlated stimulus distributions

We first tested the VLR estimator using synthetic data. We simulated data from a linear-
Gaussian encoding model with a rank-2 receptive field that was stimulated with correlated
(exponentially filtered) Gaussian stimuli. To assess performance, we computed the estimate
using different numbers of receptive field coefficients and different amounts of simulated train-
ing data. We compared VLR to the classic spike-triggered average (STA), and Bayesian ridge
regression (RR). Figure 4A,B shows that the STA estimate suffers from severe bias due to the
correlated stimulus distribution. The RR estimate provides an improvement in terms of the
bias, but exhibits a high level of variability. Our proposed VLR estimator, in contrast, yields ac-
curate estimates under correlated stimulus distributions, even when using only small amounts
of training data.

6.2 Application to macaque V1 simple cells

Next, we examined recordings from V1 simple cells in response to random binary “bar” stimuli,
previously published in [31]. The stimulus contained 12 to 24 1-dimensional spatial bars on
each frame that were aligned with each cell's preferred orientation. We used 16 time bins
(160 ms) of stimulus history to define the temporal receptive field, so the entire STRF had
between 12 x 16 and 24 x 16 total coefficients. We examined performance of estimator for
different ranks and different amounts of training data, and evaluated the mean squared error
on held-out test data. For comparison, we also computed the RR estimate and the Maximum
Likelihood estimate (MLE), which in this setting corresponds to the ordinary least squares
regression estimate (Fig. 5). We found that VLR outperformed the MLE and RR estimators,
achieving lower prediction errors on held-out test data under varying amounts of training data
(Figure 5C,F). These results illustrate the heterogeneity of STRF ranks in the V1 simple cell
population, as the three example STRFs shown in Figure 5A,D,G achieved minimal prediction
error for different choices of STRF rank (Figure 5B,E,H).

6.3 Application to rat retinal ganglion cells

Previous work has identified multiple cell types of retinal ganglion cells (RGCs) [32]. Functional
cell-type distinctions are usually based on receptive field properties such as ON/OFF regions,
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Figure 4: Synthetic data example. A: The true STRF that was used for generating synthetic
responses and recovered estimates using STA, RR, and our VLR approach with a rank of
2, with ALD for the 2D spatial and TRD for the temporal component. Shown estimates are
obtained using 1le* training samples. B, C: Same as A but plotting the top two spatial (B)
and temporal (C) components of the true and recovered STRF estimates. Dashed lines show
the spatial and temporal components of the true STRF for reference. Spatial and temporal
components of the STA and RR were not accessible by estimation, they were obtained by
taking the leading left and right singular vectors of the STRF in matrix form and rescaling by
the size of the true STRF. D: Correlation of the STRF estimate and the true STRF used to
generate data, for different numbers of STRF coefficients and amounts of training data. Lines
represent the average correlation across 20 repeated simulations with different random seeds;
shaded regions represent + 1 standard error.

temporal filtering properties, or other structure that can be extracted from STRFs [33-35].
Other differences in response properties, such as STRF rank, may prove valuable for further
distinguishing functional cell-types.
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Figure 5: Application to V1 simple cells A,D,G: Example STRF estimates using MLE, RR, and
our VLR approach. Shown estimates are obtained using 5 minutes of training data. B,E,H:
Mean squared error on 10 minutes of held-out test data using different ranks and amounts of
training data for the VLR approach. C,F,l: Mean squared error on 10 minutes of held-out test
data when using different amounts of training data for MLE, RR, and an example rank for VLR.

To further illustrate the power of the VLR estimator, we examined a dataset consisting of
electrophysiological recordings from rat RGCs in response to binary white noise stimuli. We
selected a region of 25 x 25 pixels in space based on the center of the RF ( as estimated by
the STA) from the 80 x 40 overall stimulus, and we considered 30 time lags (0.5 seconds) of
stimulus history. This yielded a total of N = 18750 STRF coefficients. Standard regression
estimators like the MLE require large amounts of training data for STRFs of this size. Bayesian
estimators like ASD and ALD are computationally intractable in high-dimensional settings due
to necessity of storing and inverting matrices of size N2. Thus, we compare the VLR esti-
mator with the STA, which can readily be computed even for large STRF sizes such as those
considered here.

Figure 6 shows the performance of STA and VLR for different receptive field ranks. VLR
achieved lower prediction errors on held-out test data, even when using only small amounts
of training data. Figure 6A shows that VLR outperformed the STA estimate computed on 83
minutes of training data using as little as 4.2 minutes of training data, and under all assumed
STRF ranks (Figure 6B). Comparing the STA and VLR estimates in the top panels of Figures
6D,E, VLR managed to more successfully extract signal from the data and reduce speckle
noise in the estimate. The temporal and spatial components of the STRF can be extracted
as the leading left and right singular vectors of the matrix unfolding of the STRF tensor, each
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weighted by the square-root of the associated sigular value. The STA estimate was dominated
by noise and provided much poorer estimates of the spatial and temporal components of the
STRF, as demonstrated in the bottom panels of Figure 6D,E. The second spatial component
of the STA estimate is dominated almost exclusively by speckle noise (6D, lower left), while it
is structured in the VLR estimate (6E, lower left). The rank of the receptive field indicates how
many rank-one space-time components are required to reconstruct the STRF. The singular
values of the STRF indicate the associated weight of each rank-one space-time component
in this reconstruction. As the assumed rank of the VLR estimate grows, our model has the
capacity to fit more complex structure in the STRF. Figure 6C shows the singular values of the
STA and and VLR STRF estimates under different assumed ranks. As the assumed rank of
the VLR estimate grows, the associated singular values decay to zero. This demonstrates that
the VLR estimator is able to successfully prune out space-time components that do not reflect
signal in the training data, and thus prevents overfitting to noise. This feature can be attributed
to the non-Gaussian prior distribution over the effective STRF weights of our model, and is a
favorable regularization property. As a result, the prediction error plateaus after a sufficient
rank has been reached, demonstrating that even estimates obtained under a higher assumed
rank generalize well to unseen data (Figure 6B).

Lastly, in Figure 7 we show summary statistics across a population of 15 RGCs, which can be
grouped into three cell-types depending on STRF properties such as ON/OFF regions or STRF
shape. Figure 7A shows that VLR robustly outperforms the STA, while Figure 7B shows that
STRF ranks are diverse across the assigned cell-types, adding to previous reports on diverse
response properties within ON/OFF pathways in mammalian RGCs [36]. Figure 7C shows the
leading spatial component of the inferred STRFs across different cells and cell-types. Further
examples along with the temporal receptive field components are shown in Supplementary
Figure 1.

7 Discussion

In this paper, we have introduced a novel method for inferring low-rank STRFs from neural
recordings, and have shown a substantial improvement over previous methods for STRF esti-
mation. Previous approaches like the STA have low computational complexity and are hence
applicable to STRFs with large sizes, but provide biased estimates under correlated stimulus
distributions and classically require large amounts of training data to arrive at accurate esti-
mates. Previous Bayesian approaches have been shown to be more data efficient and can
provide more accurate STRF estimates, even under correlated stimulus distributions. How-
ever, they require matrix inversions that are computationally costly. Thus, applying Bayesian
approaches to large stimulus ensembles remains challenging. Furthermore, all of these ap-
proaches parameterize the full STRF and do not explicitly make use of potential low-rank
structure in the STRF. These methods are therefore general, but require estimation of large
numbers of parameters which prohibits their application to large-scale problems.

The VLR estimator we have introduced in this paper addresses limitations of previous ap-
proaches to STRF estimation in linear encoding models. We have shown that our method
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Figure 6: Application to a rat retinal ganglion cell (RGC). A: Mean squared error on 27.66 min-
utes of held-out test data using different ranks and amounts of training data. The dashed grey
line indicates the prediction error achieved by the STA using the maximum amount of training
data, showing that estimates computed under the VLR approach achieve similar performance
using as little as 4.2 minutes of training data. B: Same as A but plotting the prediction error
against ranks for the VLR approach. C: The top singular values computed on the STRF esti-
mate using STA or the VLR approach under different assumed ranks and using the maximum
amount (83mins) of training data. D: STRF estimate computed using STA on 13.83 minutes of
training data together with the top two spatial and top four temporal components, determined
as the leading left and right singular vectors of the STRF, scaled by the square root of the
corresponding singular value. E: Same as D but using the VLR approach with an assumed
rank of 4.
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Figure 7: Application to a population of rat retinal ganglion cells. A: Mean squared error
on 27.66 minutes of held-out test data using different ranks and amounts of training data,
averaged across 15 cells. B: Mean and + one standard deviation of the singular values for the
rank 4 VLR estimate, separated by cell-type. Singular values are normalized to sum to one.
Cell-types have been classified by hand by the experimenters based on STRF properties. C:
Leading spatial STRF component for five example cells of each of three different cell-types.

provides accurate estimates in settings when stimuli are correlated, the receptive field dimen-
sionality is high, or training data is limited. We developed a new prior covariance function that
captures the non-stationary smoothness that is typical of temporal receptive fields. In combi-
nation with previous priors capturing localized smooth structure for spatial receptive fields, our
probabilistic model provided a powerful framework for low-rank STRF estimation. While we
have focused on these modeling choices in this paper, our modeling framework is general and
can easily accommodate other choices of prior covariance functions.

The ability to accurately estimate STRFs from limited amounts of data will be important for
quantifying changes of receptive field properties over time, or during learning. Furthermore,
it will open up possibilities for closed-loop experiments, where stimuli are selected actively
on each frame to reduce uncertainty about the STRF. Furthermore, being able to use high-
dimensional stimuli and correlated stimulus distributions will be important for studying popula-
tion responses. In this setting, VLR will be useful for estimating the receptive fields of many
cells in parallel. Finally, VLR allows for cross-validated estimates of the STRF rank, which
may prove important for quantifying single-cell response properties and categorize cells into
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specific functional classes.

While we have presented our method in the context of Gaussian linear encoding models, it is
also possible to extend the variational inference algorithm we presented here to non-Gaussian
observation models in a generalized linear encoding model (GLM). Here, the ability to perform
closed form updates for the posterior means and covariances will be lost and will instead re-
quire direct optimization of the variational free energy. Previous aproaches have made use of
basis functions to improve the scalability of RF estimation in Poisson GLMs [20]. However, this
typically requires setting parameters like the number, location and shape of basis function by
hand. Recent work has started to consider circumventing this cumbersome by-hand selection
of basis functions by using sparse variational Gaussian process approximations instead [37].
This approach relies on inducing point methods which recently gained popularity in improv-
ing the scalability of Gaussian Process methods more generally [38, 39]. The framework we
presented here is closely related to the basis function approach for GLMs and can be used
to determine parameters such as the number, location and shape of basis functions auto-
matically. The improvements in scalability we achieve due to whitened representations of the
receptive field also apply in the context of GLMs. Ultimately, algorithms that can automatically
determine such hyperparameters and do not require user-dependent input will contribute to
the robustness and reproducability of modeling results.

Code availability

We provide Matlab code for fitting low-rank STRFs under flexible choices of prior covariance
functions at https://github.com/pillowlab/VLR-STRF.
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A Bayesian receptive field estimation

Here we review the standard approaches for estimating receptive fields from data under the
linear-Gaussian encoding model (Sec. 2) using Gaussian priors (Sec. 3).

A.1 Maximum a posteriori (MAP) estimation

Given a fixed setting of the hyperparameters 4, it is straightforward to compute the maximum
a posteriori (MAP) estimate, which is simply the maximum of the posterior distribution over k
given the data. The posterior can be computed using Bayes’ rule:

y [ Xk, o?)p(k | )
ply | X,0,07)

The numerator consists of the likelihood times the prior, where the likelihood term comes from
the Gaussian encoding model,

Pk |y, X, 0%, 0) = 2L @7)

T T
_ =k xp)?
p(y | X, k,0%) = H/\/(yt | k'x; +b,0%) = H \/ﬁe 27, (28)
t=1 t=1
and the prior is
pk|6) = N(k|0,Cy) = —L e 2k Gk (29)

i
|2 Co|2

The denominator term, p(y | X, 6), is known as the evidence or marginal likelihood, and rep-
resents a normalizing constant that we can ignore when computing the MAP estimate.

In this setting, where the likelihood and prior are both Gaussian in k, the posterior is also
Gaussian. The posterior mean, which is also the MAP estimate, has a closed-form solution:

Kmap = (BT® + 02Cy 1) 10Ty, (30)

where y denotes the vector of responses, and ¢ is the design matrix, which contains the
corresponding stimulus vectors along its rows:

Y - X1T—

Yr —x7' —
If needed, the posterior covariance is equal to

A=(ZeTe+Cyh)h). (32)

A.2 Evidence optimization and empirical Bayes

A critical question we have not yet discussed is how to set the noise variance o2 and the
hyperparameters 6 governing the prior. A common approach for selecting hyperparameter
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values is cross-validation over a grid of candidate values. However, this approach is unwieldy
for models with more than one or two hyperparameters.

A popular alternative in Bayesian settings is evidence optimization, also known as type-Il max-
imum likelihood estimation [17, 25, 40, 41]. The idea is to compute maximum likelihood esti-
mates for o2 and ¢ using the marginal likelihood or evidence, which is obtained by marginaliz-
ing over the model parameters k. Incidentally, the marginal likelihood is also the denominator
in Bayes' rule (eq. 27). In the current setting, the marginal likelihood is given by:

p(y|X,02,9):/p(y\X,k,cT?)p(kW)dk

Al . o
= W exp (—#YTY + 1knap ' A 1kmap> , (33)
2 0 2

where k,,,, and A are the posterior mean and covariance defined above.

In practice, one performs inference for o2

marginal likelihood:

and 6 by numerically optimizing the log of the

02,0 = argmax log p(y|X, 2, 6), (34)

02,0
although there are also fixed-point methods available for the ridge regression case [17, 40].
Once this numerical optimization is complete, we can compute the MAP estimate for the recep-

tive field k conditioned on these point estimates. This two-step estimation procedure (evidence
optimization followed by MAP estimation) is known as empirical Bayes:

Kpp = argmax p(kly, X, o2, é) = (@' + UAQC’é_l)_lq)Ty. (35)
K

This approach has been shown to obtain substantially improved receptive field estimates in
settings with limited data and correlated stimulus distributions, particularly using ASD or ALD
priors [17, 25]. However, computing the evidence (eq. 33) or even the simple MAP estimate
(eq. 30) requires storing and inverting a matrix of size N x N, where N = n,, -n,, -n, is the total
number of coefficients in k. The storage costs thus scale as O(N?), while the computational
costs scale as O(NN?), cubically in the number of receptive field coefficients. This severely
limits the feasibility of MAP and empirical Bayesian estimators in high-dimensional settings.

B Variational updates for low-rank STRF inference

The variational updates require computing

q(w;) o< exp(log P(Y, Wi, WP, 0))4(w,)
q(wy) o< exp(log P(Y, Wy, Wa| D, 0)) 4w

Both of these distribution will turn out to be Gaussians, such that the variational update, or E-
step, reduces to computing means and covariances that fully specify the distributions ¢(w;) =
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To find the variational update for ¢(w;), we evaluate the expected log-joint distribution of the
response and receptive field with respect to ¢(w, ). The log-joint distribution can be expressed
as

log P(Y, W, ,|®,0) = log P(Y|wi, w,, ®,0) + log P(w,) + ¢ (36)

where ¢ absorbs all terms that are constant with respect to w;. The log-likelihood of the
response can be expressed as

1

log P(Y |w;, w,, ®,0) = —ﬁ(y —b—Ok) (Y —b—®k) +c (37)
g
1

= —T‘z(Y —b—®Byw)" (Y —b— ®Byw) (38)

Using properties of the Kronecker product, we can note that w can be re-written in two ways:
w = vec(W,W,") = (I,, @ W))w, = (W, @ L, )w,

with w; = vec(W;) and w, = vec(WW, 7). Substituting this into the expression for the log-joint
distribution and taking expectations (denoted by angled brackets) we have

<10g P(Y, Wy, lee, X)>q(ww) (39)
1 1
= T'Q«Y —b—OBy(W, @ L, )W) (Y — b — ®Bp(W, @ L, )W) g(w) — 5thwt +ec
(40)
1
= - T‘Q(TTK(WJ: ® [pt)TB;—CDT(I)BG(Wx ® Ipt)>q(wz)WtWtT] (41)
1
— 2w, (M*® 1,)T By ®T(Y — b)) — §thwt +c (42)
1 1 &
== §[WtT([ptr + ?(Z(Ir ® Sp)P(3q + prapte )P (L @ Sp) " )wy (43)
n=1
2
— —QWtT(Mx @ L) By ®" (Y —b)]+¢ (44)
o

where 1, = vec(M*T) = vec((W, ") y(w.)), P is a commutation matrix [42] such that vec(M,,) =
Pvec(M*T) = Ppu, , and S, = reshape(¢y, [p:, p»]) and o, is the n-th row of ®B,. The above
can be brought into a multivariate Gaussian form by completing the square, yielding the varia-
tional updates:

N

1
Xt (Lpr + ;(Z([r ® Sp)P(E, + HzMxT)PT(Ir ® Sn)T))_l (45)
n=1
1
[ — gzt(Mx ® 1,) "By ®T(Y —b) (46)

Similarly, to evaluate the expectation with respect to ¢(w;):

<10g P(Y, Wi, Wx|07 X))q(wt)
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1 1

= — @«Y —b—®By(W, ® L, )W) (Y — b — ®By(W, @ L, )W,)) g(wi) — §W$wa +c
1

= — 55 (T[(We © 1,)T BJOT@Bs(Wa © I, ) (wews ) o)

1
—2u," (W, ®1,,) "B, ®" (Y — b)) — wangg +c
1
== 55 (Trl(Wo ® 1) By @ 0 By(W @ L) (S0 + puupre )]
1
— 2w, (I,, @ M")TB, ®" (Y — b)) — §wawx +c
1 N

= — WP (Y (1 ® ST+ pun )1 © S,) ) P,
n=1

1
—w, ' (I,, ® M})TBJ®T(Y — b)) — §wawx +c

where 1, = vec(M") = vec((Wi)qw:)), and S,, and P are the same as before.

We can again complete the square to obtain a Gaussian form in w,, leading to the variational
updates

S (P (s + 5 S (( © ST+ pu ™)1 @ 5,))P)

n=1

1
[ ﬁzz(fpz @ MHTB, (Y —b)

C M-Step updates for low-rank STRF inference

The M-step updatesfor the hyperparameters 0 = {6,.,0;} can be carried out most efficiently by
performing conditional M-steps for either the spatial or temporal parameters, while holding the
other set of parameters fixed.

Dropping all terms that do not depend on the hyperparamaters 6 from the free energy:

1
-3 2<Z — Te(W,T B} TP, B W,))? >
g
n=1
1 N
F< Te(W,TBL," @, By W,)? — 2ynTr(WtTB§tT(I>nB§EWI)>
g
n=1
1 & 1
FZ (Te(W," B}, ®, B W,,)? )+ 5T (M BT Zyn )Bg PM, ))
g

n=1

Here @, is the nth row of ® (which is equal to x,,), reshaped to have the same size as the
STRF.
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To evaluate the first term efficiently, it can be rewritten as follows:

<Tr(WtTB ®, BE W, > <<Zwt B, @ntsz:’i>z>

= < Z Tr <BétT(I)ntz Wz:,in:—l,—iBQxITq)lB;t Wt:,thIi) >
i=1

2<iZTf(B D, B5, W W T, B, T B, Wi WiT ) )

i=1 i<j

-3 T (Bgfcane AZBE chTB(,tA’;)

23 3 T (B ®,Bj A% B, TCIDTBQtAt-Z)

i=1 i<j

Here, the blocks of the second moment of the vectorized STRF are expressed as

[AZ, ... A%
A* = P(w,w, ) PT = P(3, + popug)PT = | 1 -
AL AL
(AL, AL
AN=(ww,") =S+’ = | 1 -
AL AL

It is apparent from the above expression that the conditional M-steps will rely on statistics of the
stimulus projected onto the basis we are not optimizing over. In order to evaluate each M-step
update as efficiently as possible, these statistics can be pre-computed and stored throughout
the M-step update. Below, we provide further details for each conditional M-step.

C.1 Spatial parameter updates

N
5 QZT (55, > T B, AL By, @) B AL )
- ,
1 N
T X X xr T X xX
ZZTr( Z@T39 NBY TR, B AL BT + ST (MY 4By, @) By M )
n=1

=1 1<g

Now, before computing the parameter updates for the spatial parameters, we can pre-compute:
N N
= (> @B ALBE, ) Sy = (3" yaBj, )
n=1 n=1
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This involves (") matrices of size p, x p,. While building this matrix is expensive, the size of
p. is pruned using ALD. This cost is only incurred once before performing repeated updates to

the spatial hyperparameters.

C.2 Temporal parameter updates

N r
1
) D) D AL NI ALY
o
n=1 i=1
1 N r 1 a
— YYD (B, 0By AL By TOTB AL ) + (M B (Y 3 @) By M)
n=1 i=1 1<j =t

Now, before computing the parameter updates for the spatial parameters, we can pre-compute:
N N
St, = (D uBj ALB; @) 5= un®aBg)
n=1 n=1

Analogously to the spatial parameter updates, this involves pre-computing and storing (:J_’})
matrices of size p; X p;.
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Supplementary Figure 1: Inferred spatial and temporal components using VLR for different
cell types and example cells. Each panel shows the four spatial (A,C,E) and temporal (B,D,F)
low-rank receptive field components for five example cells that have been classified as OFF
brisk sustained (A,B), ON brisk sustained (C,Eg, or ON transient (E,F).


https://doi.org/10.1101/2022.08.12.503812
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	The Linear-Gaussian encoding model
	The receptive field tensor
	Low rank receptive fields

	Existing receptive field priors
	Ridge prior
	Automatic Smoothness Determination (ASD)
	Automatic Locality Determination (ALD)

	A new prior for temporal Receptive Fields
	A probabilistic model for low-rank receptive fields
	Scalability via sparse spectral representations of covariance matrices
	Variational inference and hyperparameter learning for low-rank STRFs (VLR) 

	Results
	Data efficient estimation under correlated stimulus distributions
	Application to macaque V1 simple cells
	Application to rat retinal ganglion cells

	Discussion
	Bayesian receptive field estimation
	Maximum a posteriori (MAP) estimation
	Evidence optimization and empirical Bayes

	Variational updates for low-rank STRF inference
	M-Step updates for low-rank STRF inference
	Spatial parameter updates
	Temporal parameter updates


