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Highlights 31 

 32 

● New software framework for prototyping bespoke image registration pipelines  33 

● Automated pipeline to register stand-alone histology sections to whole-brain MRI 34 

● Novel deformable slice-to-volume registration algorithm 35 

● No strict necessity for serial histological sectioning for MRI-histology registration 36 

 37 

Abstract 38 

 39 

Background: Accurate registration between microscopy and MRI data is necessary for validating 40 

imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in 41 

microstructural MRI. Existing registration methods often rely on serial histological sampling or 42 

significant manual input, providing limited scope to work with a large number of stand-alone histology 43 

sections. Here we present a customisable pipeline to automate the registration of stand-alone 44 

histology sections to whole-brain MRI data. 45 

Methods: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 46 

stages, with the help of two photographic intermediaries: a block face image (to undistort histology 47 

sections) and coronal brain slice photographs (to insert them into MRI space). Each registration stage 48 

is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image 49 

Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience 50 

of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to 51 

assess the accuracy and robustness of each stage of the pipeline. 52 

Results: All 87 histology sections were successfully registered to MRI. Histology-to-block registration 53 

(Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice 54 

matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue 55 

blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level 56 

accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in 57 

over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 58 

combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI 59 

stacks. 60 

Conclusions: Our open-source pipeline provides robust automation tools for registering stand-alone 61 

histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it 62 

readily adaptable to a diverse range of microscopy-MRI studies. 63 

 64 
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1. Introduction 65 

 66 

MRI is a powerful neuroimaging technique providing non-invasive images of the entire brain but 67 

suffers from limited spatial resolution and biological non-specificity. In comparison, microscopy 68 

techniques are highly complementary, conferring specificity through high spatial resolution and 69 

precise targeting of cellular constituents, but being highly invasive (e.g., requiring tissue extraction). 70 

Combined MRI-microscopy studies are useful for validating radiological signs of disease against 71 

neuropathological evidence [1, 2], and to improve biophysical models [3] that infer microstructural 72 

properties of the tissue beyond ordinary resolution limits of MRI.  73 

 74 

Depending on the aim, MRI-microscopy datasets can vary along many axes: 1) whole brain [4] vs tissue 75 

blocks [5], 2) serial histological sectioning [6] vs single-section sampling [7], 3) large [8] vs small [9] 76 

histology sections, 4) ex-vivo [10] vs post-mortem MRI [11], and 5) the exact combination of MRI and 77 

microscopy modalities used. This diversity of the input data presents unique challenges [12] for the 78 

alignment of MRI-microscopy images (e.g., extreme contrast differences, vastly different spatial 79 

resolutions, 2D vs 3D image domains), which are difficult to overcome with existing registration 80 

software that was not optimised for this task. This is especially true if the source code is closed, or an 81 

inflexible implementation prohibits the customisation of the core algorithm. 82 

 83 

An overwhelming majority of previous works addressed microscopy-to-MRI registration via volumetric 84 

reconstruction of serial sections [13-31]. A comprehensive review of these techniques was published 85 

by Pichat et al [32]. For these methods, the tissue must be sectioned with a constant slice gap. First, 86 

the histology images are undistorted in 2D using photographs of the tissue block as a reference. 87 

Subsequently, the undistorted histology images are stacked to create a volume, which is then 88 

registered to MRI using 3D registration tools such as ABA [33] or ANTs [34]. While the results are highly 89 

accurate, these methods cannot work with single-section histology images, and serial histological 90 

sampling is often prohibitively labour-intensive, especially for whole-brain coverage in multiple 91 

subjects [35]. 92 

 93 

Registering stand-alone histology images to volumetric MRI data on the other hand presents unique 94 

challenges. First, the 2D-to-3D transformation must account for both the in-plane deformations of the 95 

tissue section as well as the bulk deformations of the brain that may deflect the sectioning plane. 96 

Second, a complex transformation model implies a vast parameter space, that must be navigated 97 

effectively during the optimisation to find the global optimum. Third, the cost function must be able 98 
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to account for the contrast, data type, and dimensionality difference of the input images. Finally, the 99 

algorithm should aim to be fully automated, (e.g., without requiring manual landmarks) to be feasible 100 

for larger datasets. A comprehensive survey of slice-to-volume registration methods was published by 101 

Ferrante et al [36]. One early landmark-free approach used 2nd and 3rd-degree polynomial extensions 102 

of the 3D affine transformation model [37] but achieved limited accuracy (3-8 mm) [38]. Meyer et al 103 

[7] introduced a thin-plate spline (TPS) transformation model and obtained “visually accurate” results. 104 

A comprehensive study by Osechinskiy et al [39, 40] concluded that transformation models, cost 105 

functions, and optimisation methods must be tailored to the specifics of the input MRI and histology 106 

data. The additional challenge of registering small-format histology sections (as opposed to whole-107 

hemisphere sections) was later addressed by Ohnishi et al [41], using manual landmarks to stitch 108 

together multiple histology images and register them indirectly to MRI via a brain slice photograph. 109 

Goubran et al [42] introduced a hybrid 2D/3D algorithm specifically for sparsely sampled histology 110 

sections that alternates between slice-based and volume-based registration with ex-vivo MRI. 111 

However, their method relies on multiple slices and cannot account for 3D slice deformations. While 112 

these works collectively laid down important algorithmic foundations, each of them concerned a 113 

specific problem at hand, and the underlying software framework was not released to the wider 114 

community for further testing and refinement. HistoloZee [43] is a recent development that addresses 115 

the previously unmet need for histology-to-MRI registration software, and even provides an 116 

interactive graphical user interface. However, the registration process strongly relies on manual input, 117 

the transformation model cannot account for deformations of the sectioning plane, and the source 118 

code is closed. 119 

 120 

Hence, existing software tools are not well-positioned to automate the registration of sparsely 121 

sampled histology sections to volumetric MRI data. An experimental MRI-microscopy registration 122 

framework is needed, that is open-source, and provides enough flexibility to create, test, and refine 123 

various algorithms. Simultaneously, the framework should exhibit a sufficiently high-level 124 

programming interface such that bespoke MRI-microscopy pipelines can be deployed in a timely 125 

manner. Ideally, one would additionally reduce the steep learning curve that is normally associated 126 

with the more general-purpose, low-level frameworks, such as the Insight Toolkit [44]. 127 

 128 

In this paper we describe a novel pipeline for the registration of sparsely sampled single-section 129 

histology images to MRI volumes of the human brain. A significant proportion of the pipeline is 130 

automated, and it is implemented in our newly built software framework, the Tensor Image 131 
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Registration Library (TIRL). TIRL aims to provide a flexible solution for implementing bespoke image 132 

registration pipelines for diverse MRI-microscopy applications. 133 

 134 

 135 

2. Methods 136 

 137 

2.1. Registration workflow in the Tensor Image Registration Library 138 

 139 

The Tensor Image Registration Library (TIRL) is a an open-source software platform 140 

(https://git.fmrib.ox.ac.uk/ihuszar/tirl, also distributed with FSL v6.0.4 and above) for implementing 141 

bespoke image registration routines in Python 3. We designed it for situations where the type of the 142 

input data (e.g., histology formats) or the nature of the registration problem (e.g., 2D-to-3D 143 

transformation) makes it difficult to employ existing software, and one can benefit from taking full 144 

control over the registration process with the granularity of individual parameter updates. TIRL is 145 

highly modular; it consists of generic objects that may be customised (via parameters or subclassing) 146 

and assembled in unique ways within a Python script – hereafter designated as a TIRL script – to 147 

perform specialised image registration tasks. While we summarise the main design concepts of TIRL 148 

here, readers may refer to a full documentation of the library at 149 

https://git.fmrib.ox.ac.uk/ihuszar/tirldocs. 150 

 151 

 152 
Figure 1. Schematic representation of a generic TIRL registration workflow. Specialised instances of this workflow are 153 
implemented by all four stages of the pipeline, employing specialised subclasses of the Cost, Optimiser and Regulariser base 154 
classes. For a detailed description of the objects/classes, the reader is referred to the general documentation of TIRL. A 155 
coarse overview of the TImage object and the workflow is given in section 2.1 of the main text. 156 
 157 
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Figure 1 shows the anatomy of a basic TIRL script that registers two images. A core part of the library 158 

is a universal image container, the TImage object (Figure 1, black box). Image data is imported from 159 

disk in chunks into the TImage to avoid memory overload. Image data in the TImage is defined on an 160 

N-dimensional discrete manifold (a grid or scattered datapoints), where each datapoint can be an L-161 

rank tensor (scalar/vector/matrix/tensor). For interim points, image data is retrieved by the associated 162 

Interpolator object (Figure 1, yellow box), supporting nearest-neighbour, linear, and spline 163 

interpolation by default. (For large images, interpolation is internally distributed across parallel 164 

processes for higher performance.) Each TImage has an associated Domain (Figure 1, red box), which 165 

represents the pixel/voxel coordinates of the image. Pixel/voxel coordinates are mapped to physical 166 

coordinates by the Chain of Transformation objects that is assigned to the Domain. The Chain is 167 

divided into two parts. The internal Chain (Figure 1, grey parallelograms) is managed by TIRL to store 168 

the resolution of the image and to preserve the physical coordinates of the image when padding is 169 

applied. The external Chain is where the author of the TIRL script can specify an arbitrary sequence of 170 

linear and non-linear Transformation objects (Figure 1, white boxes) for optimisation. The parameters 171 

of the external Chain can be optimised either all-at-once or in arbitrary groups, identified by 172 

OptimisationGroups (Figure 1, brown box). The registration process is controlled by the Optimiser 173 

object (Figure 1, green box), which iteratively updates the selected parameters within their predefined 174 

range according to its own predefined algorithm. The Optimiser’s objective function is evaluated at 175 

every iteration as a sum of image-specific cost and parameter-specific regularisation terms, 176 

represented by the respective Cost (Figure 1, blue box) and Regularisation objects (Figure 1, light grey 177 

box). 178 

 179 

Using the above scheme, one can create individual TIRL scripts that specialise in a specific type of input 180 

or transformation, then assemble these into a bespoke modular registration pipeline by passing the 181 

optimised transformation chain from one script to another. Any object of the workflow can be saved 182 

into a TIRL file or loaded from a TIRL file at any time, which eliminates compatibility issues, and makes 183 

it straightforward to interrogate the results even at the level of elementary transformations. TIRL 184 

transformation chains can be split and freely recombined, as well as concatenated with FLIRT [45, 46] 185 

matrices or FNIRT [47] fields, providing full interoperability with FSL [48] registration tools. Finally, 186 

TIRL chains have built-in methods to realign vectors and tensors under transformations, making them 187 

compatible with direction-sensitive data, such as diffusion MRI. 188 

 189 

In the following sections, we overview the TIRL scripts that we created to register histology sections 190 

to MRI data in an existing dataset. We implemented these in a general style, with several configuration 191 
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options, with the aim of making them directly accessible to users without professional coding skills. 192 

The scripts are distributed as part of a growing open-source collection, called TIRLScripts 193 

(https://git.fmrib.ox.ac.uk/ihuszar/tirlscripts). 194 

 195 

2.2. MRI-histology dataset 196 

 197 

For demonstrating histology-to-MRI registration with TIRL, we resourced images from a previous post-198 

mortem study [49], only including subjects with a consistent set of histology, photographic, and MRI 199 

data (Figure 2). All data was collected and used according to the Oxford Brain Bank’s (OBB) generic 200 

Research Ethics Committee approval (15/SC/0639). Written informed consent was obtained by the 201 

OBB from all participants of this study. The image acquisition [49-51] and post-processing [52-54] 202 

details have been described earlier; we only summarise the most important aspects here. 203 

 204 

 205 
Figure 2. Overview of the MRI-histology dataset for demonstrating histology-to-MRI registration with TIRL. Fourteen (11 206 
MND + 3 control) post-mortem brains with a consistent set of multi-modal MRI data, dissection photographs, and digitised 207 
histology slides were resourced from a previous study [49]. Further details are given in section 2.2 of the main text. 208 
 209 

Our reduced dataset represented a mixed group of post-mortem brains, 11 of which were affected by 210 

terminal-stage motor neuron disease (MND) and 3 brains without pathological evidence of 211 

neurodegeneration at the time of death (median age: 65.5 years). The brains were immersed in 10% 212 

neutral buffered formalin for a median duration of 4 months.  213 

 214 

MRI scans (Figure 2, blue panel) were acquired on a 7T Siemens Magnetom scanner and processed to 215 

produce quantitative T1 and T2 maps at 1 mm isotropic resolution, T2* and susceptibility maps at 216 

0.5 mm isotropic resolution, diffusion-derived parametric maps at 0.85 mm isotropic resolution, and 217 
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a TRUFI anatomical reference scan at 0.25 mm isotropic resolution. All modalities were aligned to 218 

TRUFI space using FSL’s Linear Registration Tool (FLIRT), and to the 1 mm MNI152 template using 219 

ANTs. 220 

 221 

As further shown in Figure 2 (green panel), the brains were subsequently dissected by hand to create 222 

approximately 1 cm thick coronal sections, starting from the plane of the mammillary bodies. The total 223 

number of slices (13-17) varied with the size of the brain. One or more (usually 4-8), approximately 25 224 

´ 35 mm large tissue blocks were sampled from predefined anatomical locations of each coronal 225 

section. The tissue block sampling process was carefully documented by taking photographs of both 226 

sides of the coronal slices and the extracted tissue blocks. The brain slices were photographed 227 

repeatedly, whenever a new block was sampled from them to create a series of “cut-out” images. 228 

Photographs were 5472 ´ 3648 pixels large (approximately 50 μm/pixel). 229 

 230 

The tissue blocks were embedded in paraffin and sectioned on their anterior surface on a microtome 231 

at 6-10 μm thickness. Consecutive tissue sections from each block were immuno-stained separately 232 

for myelin proteolipid protein (PLP), neurofilaments (SMI-312), microglia (Iba-1), activated microglia 233 

and macrophages (CD68), and phosphorylated TAR-DNA binding protein-43 (pTDP-43), and counter-234 

stained with haematoxylin to visualise cell nuclei [49]. The slides were digitised in SVS format using an 235 

Aperio ScanScope slide scanner at ´20 objective magnification, yielding a typical image size of 60,000 236 

x 45,000 at full resolution (approximately 0.5 μm/pixel) and thumbnails at 8 μm/pixel resolution 237 

(Figure 2, yellow panel). 238 

 239 

2.3. Creating a multi-stage TIRL pipeline for histology-to-MRI registration 240 

 241 

Histology sections are prone to distortions, and it is often very difficult to localise them in whole-brain 242 

MRI data without anatomical knowledge. We eliminate these difficulties and automate most of the 243 

registration process by proposing a multi-stage pipeline (Figure 3), that relies on two intermediate 244 

photographs to undistort (Stage 1) and guide the insertion (Stages 2 & 3) of each histology image into 245 

MRI space. 246 

 247 
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 248 
Figure 3. Overview of the automated histology-to-MRI registration pipeline with two photographic intermediaries. Each 249 
stage maps the pixel coordinates of the input image to the pixel/voxel coordinates of the output image by a chain of 250 
transformations. The stage-specific transformation chains are optimised separately and eventually combined to obtain a 251 
one-to-one (invertible) mapping between histology and MRI. Due to the generality of the transformations, each histology 252 
image is mapped onto a parametric surface in MRI space. Images are not shown to scale. 253 
 254 

Figure 3 shows how the histology-to-MRI transformation chain is broken down into three independent 255 

parts, whose optimisation may be carried out in parallel (Stages 1-3). The optimised stage-specific 256 

chains are then concatenated and fed into a 4th stage to refine the transformation parameters by 257 

directly registering histology to MRI data. Each stage is implemented as a stand-alone Python script, 258 

which uses the components and methods of the TIRL package and is accompanied by a YAML-259 

formatted configuration file, allowing users to customise each stage for their own data. For further 260 

details, readers can refer to the openly available source code of the scripts and annotated 261 

configuration files (https://git.fmrib.ox.ac.uk/ihuszar/tirlscripts). Example data from the above-262 

mentioned MRI-histology dataset with completed registrations are available through the Digital Brain 263 

Bank (https://open.win.ox.ac.uk/DigitalBrainBank/#/datasets/pathologist). The full dataset is 264 

available on request via a material transfer agreement to ensure that the data is used for purposes 265 

that satisfy research ethics and funding requirements. 266 

 267 

In the subsequent sections, we discuss the multi-stage optimisation sequence of the transformation 268 

chain that maps the pixels of a stand-alone histology onto the voxels of whole-brain MRI, and further 269 

discuss the experiments to validate the accuracy of each stage. 270 

 271 

2.4. Stage 1 272 

 273 

The goal of Stage 1 is to establish a forward mapping from the pixel coordinates of a histology image 274 

to the pixel coordinates of the corresponding tissue block photograph (Figure 3). Stage 1 therefore 275 

accounts for the deformations of the tissue section that occur while it is mounted on the glass slide. 276 

Both images are pre-processed before the registration in line with the Stage-1 configurations. 277 

 278 

Stage 1 Stage 2 Stage 3

Stage 4



10 
 

Pre-processing: The block photo was cropped loosely around the edges of the block (to eliminate 279 

other objects from the frame) and background-segmented by pixelwise k-means clustering (k=2) using 280 

auxiliary scripts (provided via Git). The Stage-1 script automatically downsamples the histology image 281 

by a Gaussian kernel (FWHM = 6.25 pixels) to equalise the resolution of the inputs. Both images are 282 

converted to grayscale. The histology image is padded on all four edges by 1/6th of the respective 283 

image dimension. Padding avoids trivial reductions in cost function by simply shifting one image 284 

outside the other’s field of view. A manually defined mask is occasionally supplied as an input with the 285 

histology image to exclude artefactual drivers of the registration, such as tears, holes, folds, stain 286 

deficiencies, overstaining, tissue debris, bubbles, or slide scanning defects. To bridge the modality gap, 287 

equal representations of the images are obtained by applying a non-linear filter, the Modality 288 

Independent Neighbourhood Descriptor (MIND) [55] to the grayscale images. MIND accentuates 289 

edges in the images by replacing pixel values with an 8 ´ 1 vector describing the intensity relationship 290 

of the pixel with its immediate neighbours. The images are initially aligned by their geometrical 291 

centres. 292 

 293 

 294 
Figure 4. Stage 1 – deformable registration of a histology image to a tissue block photograph. Contrast differences between 295 
the input images are equalised by applying the non-linear image filter MIND. Image dissimilarity is defined as the Euclidean 296 
distance between the MIND representation of the images. The parameters of the Stage-1 transformation chain are found in 297 
three successive linear and one non-linear optimisation steps. See further details in section 2.4 of the main text. 298 
 299 

Registration: The Stage-1 chain consists of the following transformations (Figure 4, chain): 2D rotation 300 

(about the geometrical centre of the histology image), isotropic scaling, 2D translation, 2D affine, and 301 

a pixelwise defined displacement field. The registration cost (hereafter referred to as MIND cost) is 302 

calculated as the sum of pixelwise Euclidean distances of MIND vectors across the histology image 303 

domain. The MIND cost is successively minimised in 3 linear and 1 non-linear step (Figure 4). The linear 304 

registration steps uniformly employ the gradient-free bounded BOBYQA optimisation method [56]. 305 

For the non-linear registration, the cost function is extended with a diffusion regularisation term [55, 306 
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57] that enforces smooth deformations by penalising sharp gradients in the displacement field. The 307 

relative weight (a) of the regularisation term is determined empirically for each dataset. The 308 

displacement vectors are initialised to 0 and refined by 20 or fewer iterations of Gauss–Newton 309 

optimisation [55, 58] at each of the prespecified resolution levels (typically 0.8, 0.4, and 0.2 mm/pixel). 310 

 311 

Experiments: We performed Stage-1 registrations on PLP-stained histology images from the 312 

hippocampus and anterior cingulate cortex regions of all subjects (2 ´ 14 images). A foreground mask 313 

was generated for the block photos by thresholding at 0.1 relative intensity and dilating by a 10x10 314 

pixel kernel. The regularisation weight was empirically set to a = 0.4. 315 

 316 

To quantitatively assess the accuracy and robustness of the registration, ground-truth grey-white 317 

matter contours were segmented by hand on both the original tissue block photographs and the 318 

histology images. The histology contours were transformed by the optimised Stage-1 chain and 319 

compared with the respective photographic contours by calculating the median contour distance 320 

(MCD, in millimetres). MCDs were compared between the linear and non-linear registration steps and 321 

plotted for different regularisation weights. Finally, the accuracy of the Stage-1 registration was 322 

compared for both anatomical regions against various ANTs paradigms, including both the Mattes 323 

mutual information and the cross-correlation metrics that were used in a previous study [25] to 324 

register histology sections. Further details of the ANTs registration parameters are given in 325 

Supplementary material 1. 326 

 327 

2.5. Stage 2 328 

 329 

The goal of Stage 2 is to establish a forward mapping from the tissue block photograph to the 330 

corresponding coronal brain slice photograph (Figure 3). This stage eliminates the need for anatomical 331 

knowledge to manually localise small tissue sections within whole-brain MRI data. Both images are 332 

pre-processed before the registration in line with the Stage-2 configurations. 333 

 334 
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 335 
Figure 5. Stage 2 – Automated sampling site matching and deformable registration of tissue blocks to coronal brain slices. 336 
The raw inputs (A-F) are background-extracted (G-L), and the sampling sites on G are automatically identified by binarizing 337 
and pairwise subtracting (XOR) subsequent photographs of the coronal brain slice (G-K). Tissue block photographs (F) are 338 
cross-matched with the identified sampling sites (M) and their alignment is fine-tuned (N) at the relevant site using both 339 
linear and diffusion-regularised deformable registration. 340 
 341 

Pre-processing: The pre-processing steps for the input images are identical to those in Stage 1 with 342 

respect to cropping, background segmentation. The Stage-2 script also converts inputs to grayscale. 343 

 344 

Sampling site determination: All photographs pertaining to a specific coronal slice of the brain are 345 

collected and automatically sorted starting from the most intact image of the slice towards the slice 346 

with the most regions missing. Consecutive image pairs (Figure 5G-K) are aligned by a succession of 347 

rigid, affine, and non-linear registration, as described in Stage 1. The non-linear registration is carried 348 

out at slightly coarser resolutions (1.5 mm/pixel and 1 mm/pixel) and with higher regularisation (a = 349 

0.6) to avoid excessive deformations around missing regions, but no masks are used at this stage. The 350 

aligned image pairs are binarized and their difference (XOR) is taken to highlight potential sampling 351 

sites (Figure 5M). Sites with area smaller than 1 cm2 or width narrower than 4 mm are considered 352 

minor registration errors, and hence discarded. The centroids of the remaining blobs are deemed 353 

possible sampling sites, and their coordinates are mapped onto the most intact slice (Figure 5G), which 354 

are then used as the registration target for the individual blocks (e.g., the one in Figure 5L). 355 

 356 

Registration: The Stage-2 chain maps the pixel coordinates of the tissue block onto the pixels of the 357 

corresponding brain slice photograph. The Stage-2 chain consists of the following transformations: a 358 

2D rotation (about the centre of the tissue block), a 2D isotropic scaling, a fixed 2D translation to the 359 

sampling site (sampling site offset), a variable 2D translation, a 2D affine, and a pixelwise displacement 360 
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field defined over the domain of the tissue block image (Figure 5). To identify the correct sampling site 361 

for any block, the block is first initialised at all sites, and the MIND cost is evaluated for set 362 

combinations of rotations (typically in 30-degree increments) and translation parameters (typically at 363 

+/-10 mm from the sampling site) to account for small inaccuracies of the sampling site determination. 364 

The best three sets of parameters at each site are fine-tuned by BOBYQA optimisation, and the one 365 

associated with the lowest MIND cost at the end of this process is used to initialise the chain by setting 366 

the sampling site offset and the 2D rotation. From this initial state, the registration proceeds through 367 

rigid, affine, and non-linear optimisation as described in Stage 1 to fine-tune the rest of the Stage-2 368 

chain parameters. Masks to exclude the background are used throughout all Stage-2 registration steps 369 

and are generated automatically by thresholding both grayscale inputs at 10% relative intensity. 370 

 371 

Experiments: We performed Stage-2 registrations on 87 tissue blocks from various anatomical regions 372 

(corpus callosum, anterior cingulate cortex, hippocampus, visual cortex). To test the accuracy of the 373 

registration, contours were defined manually along salient anatomical features on 28 image pairs and 374 

the MCD were measured after registration. The robustness of the automatic sampling site matching 375 

was tested by registering 8 blocks that were extracted from the same brain slice. Finally, to test the 376 

robustness of Stage-2 registration against block initialisation error, we simulated the registration of 377 

the same 8 blocks from 100 different positions around the centre of their respective sampling sites 378 

and counted successful registrations (<0.2 mm MCD) as a function of initialisation error in millimetres. 379 

 380 

2.6. Stage 3 381 

 382 

The goal of Stage 3 is to establish a forward mapping from the pixel coordinates of a coronal brain 383 

slice photograph to the voxel coordinates of an MRI volume (Figure 3). Crucially, we make very few 384 

assumptions about the physical brain slices in Stage 3. While their orientation is ‘coronal’, it is unlikely 385 

that they correspond perfectly to acquisition slices of the MRI data. In fact, it is possible that the 386 

sectioning plane is curved in MRI space, due to the irregularity of the cuts or the bulk deformations of 387 

the brain during either dissection or scanning. Therefore, Stage 3 leverages the unique cross-sectional 388 

anatomy of the brain slice photographs (e.g., the shape of the cortical ribbon, the cross section of 389 

subcortical nuclei and ventricles) to find a 3D surface in MRI space that best represents the “cutting 390 

plane” and maps the pixels of the 2D slice photograph onto this surface. Slight in-plane deformations 391 

of the brain slices are also taken into account, as they could jeopardise the alignment of anatomical 392 

structures. As the number of transformation parameters is large, Stage 3 makes extensive use of 393 

parallel computing by performing grid searches, ranking interim results, and employing nested 394 
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gradient-free local optimisations, which make it the most algorithmically complex part of the entire 395 

pipeline. The Stage-3 algorithm was developed empirically in a detailed trial-and-error process. The 396 

schedule of parameter re-initialisations and optimisation bound updates was found to be critical to 397 

achieve general robustness. While this may give the impression that Stage 3 would be difficult to use 398 

with a different dataset, in practice we found the current implementation to be readily adaptable for 399 

a range of microscopy and MRI images of both mouse and macaque brains by changing the 400 

concomitant Stage-3 configuration file. Readers may compare the different configurations that are 401 

provided in the Git repository to learn more about adapting Stage 3. Here, we provide a high-level 402 

overview of the optimisation process, which is common to all protocols. 403 

 404 

Pre-processing: The brain slice photograph was cropped and background-extracted before importing 405 

to Stage 3 using auxiliary scripts (provided via Git). The Stage-3 script converts the input to grayscale, 406 

and downsamples it by a Gaussian kernel (FWHM = 5 pixels) to match the resolution of the MRI 407 

(0.25 mm/voxel). Where necessary, slice masks were generated by hand to exclude areas where the 408 

brain slice had been damaged due to further investigations on the motor cortex (Supplementary 409 

material 2). 410 

 411 

 412 
Figure 6. Stage 3 – Deformable registration of a brain slice photograph to an MRI volume. The four tiles from left to right 413 
illustrate consecutive steps of the optimisation process. See the main text for further details. 414 
 415 

Registration: The Stage-3 chain consists of the following transformations (Figure 6): a 2D isotropic 416 

scaling, a 2D rotation about the slice centre, a 2D translation, a 2D-to-3D embedding (sets z = 0), a 3D 417 

displacement field, a 3D rotation (about the adjusted centre of the slice photograph), a 3D translation, 418 

and a 3D affine. The chain parameters are initialised such that the brain slice corresponds to the 419 
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middle layer of a 2-cm-thick rectangular slab (Figure 6, panel 1, in orange). The slab, which is defined 420 

manually in the configurations by its centre and orientation, represents the spatial extent of the 4-421 

step optimisation process. The first step (Figure 6, panel 1, rigid search) moves the centre of the photo 422 

to several (usually 5-11) equidistant points along the central axis of the slab and varies the 3D rotation 423 

parameters at each of these in a prespecified range (e.g., 3 values in a 30-degree range about each 424 

axis). Each combination of the initial rigid parameters is then refined in a multi-resolution local 425 

optimisation scheme (typically 2, 1, 0.5, and 0.25 mm/pixel) that minimises the MIND cost. The MIND 426 

cost is always calculated between the brain slice photo and the MRI data that is resampled onto the 427 

same 2D domain. This step employs heavy parallelisation and interim results are constantly ranked to 428 

reduce the number of optimisations that need to be carried out at higher resolutions. The second step 429 

(Figure 6, panel 2, affine alignment) starts from the best rigid position and orientation of the slice and 430 

optimises the 3D affine matrix to account for shears. The last two steps estimate the vectors of the 3D 431 

displacement field: first the in-plane components only (Figure 6, panel 3), then both the in-plane and 432 

the orthogonal components simultaneously (Figure 6, panel 4). As an empirical compromise between 433 

accuracy and computational efficiency, exact displacements are estimated for only a small number of 434 

evenly distributed control points (typically 32), which are generated automatically by the script. For 435 

the rest of the pixels, the local displacements are calculated by interpolation using Gaussian radial 436 

basis functions. All optimisations throughout Stage 3 employ the BOBYQA method and minimise the 437 

MIND cost, which demonstrated superior robustness in our experiments when compared to 438 

normalised mutual information (Supplementary Material 3). 439 

 440 

Experiments: To assess the accuracy and robustness of Stage 3, we registered 209 brain slice 441 

photographs from 14 subjects (approximately 15 slices per subject), and inspected the alignment of 442 

salient anatomical structures, with special attention to the highly variable grey-white matter 443 

boundary, ventricle cross sections, and perforating vessels. 444 

 445 

Simulations: To quantify the accuracy of Stage 3, and specifically its ability to compensate 3D 446 

deformations of 2D slices, we also performed registrations with simulated slices. These were 447 

generated by virtually recreating the coronal slicing scheme (Figure 2, green panel), i.e., by resampling 448 

the structural MRI data of a single subject onto a series of analytically defined parallel first-order 449 

(planar) and second-order (quadratic) polynomial surfaces. Two groups of planar and quadratic slices 450 

were generated: first in coronal orientation, then slightly (10 degrees) tilted towards the left and 451 

inferior directions for increased difficulty. Starting from a perturbed position and orientation, the 452 

slices were registered to structural MRI data by the Stage-3 algorithm. We calculated the median 453 
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registration error (MRE) for each slice and for each optimisation step by measuring the median 454 

distance of the registered slice pixels from the corresponding analytical surface points. 455 

 456 

2.7. Stage 4 457 

 458 

The goal of Stage 4 is to fine-tune the alignment of a histology image after it has been registered in 459 

MRI space by the previous three stages. Stage 4 accounts for two specific imperfections of the 460 

intermediate photographs, which are discussed below in conjunction with the most important 461 

methodological considerations for this stage. 462 

 463 

Imperfection of the tissue block photographs: Anatomical inconsistencies may arise between the 464 

tissue block photograph and the histology section if the histology section comes from several hundred 465 

micrometres deep inside the tissue block (as a result of shaving off an excessive number of tissue 466 

layers in the microtome). Such inconsistencies may drive the non-linear registration in Stage 1 to 467 

overestimate local deformations, leading to the misalignment and an overly distorted appearance of 468 

the histology image in MRI space. 469 

 470 

Imperfection of the coronal brain slice photographs: Excessive widening or closing of the 471 

interhemispheric fissure (Figure 7A-B) in the brain slice photographs (compared to their relative 472 

configuration in the MRI volume) requires the estimation of local large displacements in Stage 3. 473 

However, this goes against the design principles of Stage 3, which defines the 3D displacement field 474 

sparsely to prevent local large deformations under the assumption that they are physically 475 

implausible. 476 

 477 

Pre-processing: As a preparation for Stage 4, we run Stage 3 twice with hemisphere-specific 3D masks 478 

(Figure 7C-D) to maximise the registration accuracy within the hemispheres. Using an auxiliary script 479 

(provided via Git) we create a single whole-slice Stage-3 chain from the weighted combination of the 480 

hemisphere-specific Stage-3 transformations. This ensures that the alignment remains precise in both 481 

hemispheres irrespective of variations in the interhemispheric gap or the antero-posterior shearing of 482 

the hemispheres (Figure 7G), which is particularly important for registering histology sections that 483 

were extracted from the midline. Finally, we load the histology data as a TImage and initialise it in MRI 484 

space by concatenating the optimised chains from Stages 1-2 and the whole-slice Stage-3 chain. 485 

 486 
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Registration: Stage 4 imports the so initialised histology image and the structural MRI volume. To 487 

reduce the complexity of the direct histology-to-MRI registration, a new Stage-4 chain is introduced 488 

that consists of the following transformations: a 3D displacement field (defined sparsely by a handful 489 

of control points, typically 16, scattered evenly across the histology domain), a 3D rotation (about the 490 

centre of the histology domain), and a 3D translation. The parameters of the new chain are set to 491 

provide a nearly equivalent mapping between histology and MRI space as the combined Stage 1-3 492 

chain. By reducing the degrees of freedom of the non-linear transformation (from pixelwise in Stage 493 

1 to 16 points in Stage 4), we reduce small-scale distortions of the histology image that have most 494 

likely arisen from anatomical disparities with the blockface photograph or the granularity of the 495 

histology stain. Finally, the parameters of the initialised Stage-4 chain are fine-tuned in a 4-step 496 

optimisation sequence that is similar to what was described for Stage 3. Here, the rigid search range 497 

is narrowed down, such that the histology section in MRI space is only allowed to travel ±2 mm 498 

perpendicularly to its initial orientation, accounting for the anatomical discrepancies that may be 499 

present as a result of sectioning the tissue block at greater depths. 500 

 501 

Experiments: We ran Stage-4 optimisations on all 87 PLP-stained histology images that we had 502 

previously registered to MRI (TRUFI) data using Stages 1-3. The Stage-4 outcomes were visually 503 

compared with the Stage 1-3 outputs with special attention to the amount of distortions and the 504 

alignment of anatomical contours. 505 

 506 
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 507 
Figure 7. Stage 4 pre-processing – hemisphere-specific deformable registration of a coronal brain slice photograph to a 508 
structural MRI volume. The red contour represents the grey-white matter boundary as it is seen on the brain slice 509 
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photograph (A). Due to the closing of the interhemispheric fissure (green arrowhead), the bilaterally driven Stage-3 510 
registration result (B) is not uniformly accurate (purple arrowheads). (C-D) Stage-3 registrations with hemisphere-specific 511 
masking produce accurate results. (E-F) Hemisphere-specific Stage-3 registration reveals large differences in the slicing plane 512 
between the left and the right hemispheres, which is most likely caused by the antero-posterior shearing of the hemispheres 513 
during dissection. (G) Merging hemisphere-specific slice-to-volume transformations results in a single smooth 514 
transformation of the slice that preserves the accuracy of the alignment in both hemispheres irrespective of variations in the 515 
interhemispheric gap or the antero-posterior shearing of the hemispheres (encircled). 516 
 517 

 518 

3. Results 519 

 520 

3.1. Stage 1 521 

 522 

 523 
Figure 8. Registration error expressed as median contour distances (in mm) shown for 14 callosal and 14 hippocampal 524 
sections after the linear (white background) and non-linear (green background) steps of Stage 1. The non-linear registration 525 
error is reported for a range of different regularisation weights. 526 
 527 

The panels in Figure 8 show the registration error (MCD) for the linear and non-linear optimisation 528 

steps of the histology-to-block registration routine (Stage 1) for the 14 callosal and the 14 hippocampal 529 

sections. Actual registration results with different regularisation weights can be viewed in 530 

Supplementary material 4. Registration errors were also compared for different regularisation weights 531 

(a) in both anatomical regions. The linear registration steps constituted a gradual improvement in the 532 

alignment of the images. The non-linear substage significantly improved the accuracy of the 533 

registration, confirming the distorted state of the histology images. For the callosal sections, the 534 

difference between the MCD after the rotation search and the similarity transform was minimal, and 535 

the affine substage seemed to have a stronger influence on the images that were highly misaligned 536 

after the previous stages. An inspection of these images revealed that shears were interfering with 537 
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the correct estimation of the rotation and the scale factor in the first substages, which were 538 

successfully compensated by the affine substage. The regularisation weight had an optimum at 0.3 < 539 

a < 0.4 (median MCD 0.22mm-0.23mm). At the highest regularisation value of a = 1.0 the alignment 540 

was still noticeably better compared to the result of the affine registration, especially for sections with 541 

larger initial misalignment (as evidenced by shrinkage of the interquartile ranges and the top bar). This 542 

is in keeping with the existence of bulk deformations (e.g., a slight bending of a gyrus) in the mounted 543 

tissue slice that cannot be compensated by global transformations but are still captured by the highly 544 

regularised non-linear substage. On the contrary, high regularisation cannot account for some finer 545 

distortions of tissue (e.g., anisotropic stretching). The pixelwise Jacobian determinants were positive 546 

across the images for all a > 0.2, indicating that no topological errors are induced by the registration. 547 

 548 
Figure 9. Comparison of histology-to-block registration by Stage 1 and various ANTs paradigms. Top: distribution of the 549 
registration error (MCDs in mm) corresponding to the four registration paradigms tested on 14 callosal and 14 hippocampal 550 
slides. Bottom: a visual comparison of registration results on representative callosal and hippocampal sections obtained with 551 
TIRL Stage 1 and ANTs SyN CC registration. The red and blue contours represent manual segmentations of the grey-white 552 
matter boundary in the tissue block photo and the PLP-stained histology images, respectively. These and similar contours 553 
were used to compute the MCDs. 554 
 555 
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The registration of the same callosal sections with two different ANTs paradigms yielded consistently 556 

higher MCDs (SyN+Mattes: 0.4 mm, SyN+CC: 0.25 mm) than the results obtained by our Stage 1 557 

routine (0.23 mm). The same trend was observed for hippocampal sections as well, although the 558 

registration errors were generally higher in this anatomical region (SyN+Mattes: 0.65 mm, SyN+CC: 559 

0.6 mm, Stage 1: 0.4 mm). The distribution of MCDs (Figure 9) also reveals that the ANTs registration 560 

paradigms were generally less robust than the Stage-1 routine, with more frequent misregistrations 561 

in the affine stage. Supplementing the ANTs SyN+Mattes registration paradigm with TIRL-generated 562 

binary masks did not improve, rather aggravated affine initialisation errors in both anatomical regions. 563 

Representative registration results are shown in Figure 9. The runtimes for the two software were 564 

comparable: averaging around 1 minute for ANTs, and around 1 minute and 15 seconds for Stage 1. 565 

  566 



22 
 

3.2. Stage 2 567 

 568 

Upon careful observation, 81 out of 87 block-to-slice registrations were highly accurate: grey-white 569 

boundaries were well-aligned and characteristic small features of the images, such as penetrating 570 

vascular structures, were generally seen within a 4-pixel range (<0.2 mm) from each other, which in 571 

MRI terms translates to sub-voxel precision even for our high-resolution TRUFI data (0.25 mm/voxel). 572 

Figure 10 shows representative registration results from various anatomical regions. MCD 573 

measurements on 12 randomly chosen examples confirmed the <0.2mm accuracy. In the remaining 6 574 

out of 87 cases, the registration could not succeed due to some form of human error, such as incorrect 575 

labelling of the slice photograph or the tissue block, misidentification of the corresponding slice, or 576 

block surface. After fixing these, Stage 2 yielded equally accurate results for these images as well. 577 

 578 
Figure 10. Accuracy of Stage-2 registration of tissue blocks in various anatomical regions. (A) Tissue block photograph 579 
showing the left visual cortex. Grid spacing: 5 mm. (B) Left visual cortex region of the corresponding brain slice photograph 580 
shown after alignment with (A). (a,b,c): colour-coded edge-enhanced overlay of (A, red) and (B, green) within the marked 581 
regions, demonstrating the alignment of perforating vessels. The yellow colour emerges from red-green overlap, indicating 582 
accurate alignment between anatomical contours. (C-D) Registered right hippocampus block. (E-F) Registered left 583 
parahippocampal gyrus. 584 
 585 

In our robustness experiment, the automatic block initialisation routine could successfully identify as 586 

many as 8 different sampling sites on the same brain slice, and all corresponding tissue blocks could 587 

be assigned to the correct sampling site. Comparing the initial and final positions of all 87 blocks at 588 

their respective sampling sites, we further found that the error of the automatic block initialisation 589 

routine was consistently low, with a median value of 0.49 mm, and a 95th percentile of 2.54 mm.  590 
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 591 

The resilience of the registration algorithm against initialisation errors is vital for robust performance 592 

at Stage 2. To test this resilience, we simulated 100 different initialisations for each of the previously 593 

mentioned 8 blocks and recorded whether they led to a successful (MCD < 0.2 mm) or an unsuccessful 594 

registration of the blocks. Figure 11 shows that the overwhelming majority of the simulated 595 

registrations were successful for all blocks, and most unsuccessful registrations occurred when the 596 

blocks were initialised far away from the centre of the sampling site. Importantly, no failures were 597 

observed within the median initialisation error mark for any of the blocks. Two failures were observed 598 

for blocks b and c, and one for block g within the 95th percentile radius. For blocks with less salient 599 

anatomical features (b, c, d) there was a marked decrease in the success rate (Figure 11, plots) beyond 600 

the 95th percentile error mark, which only occurred after 7.5mm for the blocks that presented with 601 

clear contrast. 602 

 603 

 604 
Figure 11. Resilience of the Stage-2 registration algorithm against simulated block initialisation errors. The purple crosses 605 
mark the true centre of the blocks on the brain slice photographs. The green dots represent random initialisations associated 606 
with a successful (MCD < 0.2 mm) registration result, whereas red dots correspond to unsuccessful registrations. The red 607 
graphs represent 100 − #failures within a given radius from the true centre. The dashed grey lines indicate the median and 608 
the 95th percentile values of the true block initialisation error measured on the whole dataset. 609 
 610 
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The results of the robustness experiment indicate that with the default configurations, Stage-2 block 611 

registrations are highly accurate (<0.2mm). Failures can be more prevalent for blocks with less salient 612 

anatomical features, but only if the insertion site is offset by more than 2.5mm. If a misregistration 613 

occurs due to erroneous initialisation, manual intervention is needed to provide a more appropriate 614 

initial position for a block. Alternatively, the grid search of the rotation and translation parameters 615 

may be expanded to attempt to increase the robustness of the pipeline, though this will be at the 616 

expense of additional computational cost. 617 

 618 

3.3. Stage 3 619 

 620 

3.3.1. Registration results with actual brain slice photographs 621 

 622 

 623 
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Figure 12. Stage-3 (slice-to-volume) registration result of an actual coronal brain slice photograph. The grey-white matter 624 
boundary (red contour) was segmented by hand on the brain slice photograph (A) and overlaid on the resampled MRI data 625 
after each optimisation step (B-D) to assess the accuracy of the registration. Notable misalignments are indicated by the 626 
yellow arrowheads. Through-plane deformations (D) are essential for an accurate registration of this slice. (E) The 627 
conservative range of Jacobians suggest moderate in-plane deformations, while the 3D deformations of the slicing plane (F) 628 
are remarkable (the scale shows displacements in mm). 629 
 630 
Figure 12 shows an example brain slice registration. The cutting plane was oblique, as evidenced by 631 

the asymmetric appearance of the lateral ventricles, the hemispheres were completely detached, and 632 

the cerebellum was not represented in the photograph (Figure 12A). Similar phenomena were found 633 

to be common across the dataset. Stage 3 was run with default configurations, and the accuracy of 634 

the registration was assessed qualitatively by overlaying grey-white matter contours after each 635 

registration step. The rigid and affine registration steps estimated the obliqueness of the cut surface 636 

accurately enough to reproduce the gross shape of the hemispherical cross sections with the 637 

asymmetric appearance of the lateral ventricles (Figure 12B). However, a closer inspection of the 638 

reconstructed MRI slice with the contours reveals several regions where the affine registration was 639 

less accurate (yellow arrowheads in Figure 12B). In most of these regions, the contours are not only 640 

misaligned but anatomically different – a hallmark that the slicing plane could not be fully estimated 641 

by the affine transformation, most likely because it is curved. Accordingly, the misalignments in these 642 

regions persisted after optimising in-plane deformations (Figure 12C). On the contrary, the free-form 643 

deformation step could achieve an almost perfect alignment of the grey-white contours (Figure 12D). 644 

The presented final registration accuracy is representative of all 209 slices that we processed with 645 

Stage 3. Generally, the slices were registered with through-plane deformations exceeding the MRI 646 

voxel size, and in this specific case, they were as large as 6.5mm. The Jacobian exhibited a conservative 647 

±10% dilation/shrinkage of the slice throughout the entire 2D/3D transformation (Figure 12E), 648 

indicating the non-linear deformations were predominantly related to slice curvature. The spatial 649 

distribution of in-plane and through-plane deformations appears to be consistent with a combination 650 

of two factors: the bulk deformations of the brain while it is loaded into a plastic mould for scanning, 651 

as well as the compression and shearing of the hemispheres while the brain is cut (Figure 12F). 652 

 653 

3.3.2. Registration results with simulated brain slices 654 

 655 

Using simulated slices, which were generated by resampling the structural MRI data of a single subject 656 

onto a series of analytically defined surfaces (Figure 13), we could further quantify the registration 657 

accuracy and robustness. Starting from a perturbed position and orientation, all slices registered well 658 
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with no exceptions, and the MRE showed a steady decline across consecutive optimisation steps 659 

(Table 1). 660 

 661 

 662 
 663 

Table 1. Median slice registration error (MRE, in mm) after each optimisation step of Stage 3. Step 0 refers to the initial 664 
state, and the numbers represent the extent of slice perturbations. The optimisation steps are 1: rigid, 2: affine, 3: in-plane 665 
deformations, 4: 3D deformations. The output of step 4 (highlighted) was accepted as the final output from Stage 3 in all 666 
cases. 667 
 668 

Planar slices: Following the initial perturbation of the 10 straight slices (Table 1, column 1), the MREs 669 

were uniformly distributed between 2.5 mm and 12 mm with an average MRE of 5.36 mm. Despite 670 

the large variation, all 10 slices could be registered equally well by the rigid substage (MRE = 0.058 671 

mm), which was further improved to MRE = 0.014 mm by the affine optimisation. The MRE stayed 672 

roughly constant through the non-linear optimisation steps. As for the oblique slices (Table 1, column 673 

2), despite the larger initial perturbations (average MRE = 7.397 mm), the rigid optimisation step 674 

successfully registered all 10 slices (MRE = 0.013 mm), and the affine optimisation made a further 675 

improvement (MRE = 0.004 mm), which stayed roughly constant during the non-linear steps. These 676 

results underpin that the linear optimisation steps converge to the desired optimum, regardless of 677 

whether the initialisation is close or further away, and that Stage 3 does not introduce unnecessary 678 

slice deformations. 679 

 680 

Quadratic slices: The straight (Table 1, column 3) and oblique series (Table 1, column 4) showed a 681 

common trend of the MRE, but this was qualitatively different from that of the planar sections (Figure 682 

13). The random perturbations were somewhat larger for the oblique series (MRE: 4.94 mm vs. 7.81 683 

mm), but this difference completely vanished after the rigid substage (MRE: 1.57 mm vs. 1.61 mm), 684 

indicating that the rotation components were accurately estimated for the oblique slices despite their 685 

coexisting curvature. The MREs after the rigid alignment were comparable in size to the deflections of 686 

the planes (<3 mm), and neither the affine transformation (MRE: 1.56 mm vs. 1.60 mm), nor the in-687 

plane deformations (MRE: 1.64 mm vs. 1.66 mm) could make any improvement. In fact, the in-plane 688 

Slice series

Step Straight Oblique
Straight

quadratic

Oblique

quadratic

0 5.366 7.397 4.935 7.805

1 0.058 0.012 1.570 1.611

2 0.013 0.004 1.558 1.604

3 0.013 0.004 1.641 1.667

4 0.015 0.008 0.125 0.126

1
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optimisation slightly increased the registration error by falsely attributing slice curvature related 689 

misalignments to in-plane deformations. These were reverted and successfully converted to 690 

orthogonal displacements in the 4th optimisation step, as indicated by the MREs of 0.125 mm and 691 

0.126 mm for the straight and oblique series, respectively. This result demonstrates that Stage 3 can 692 

converge on physically realistic curvatures of the brain slices from an initial planar estimate, and the 693 

curvatures can be estimated with sub-voxel (<0.25 mm) precision. 694 

 695 

 696 
Figure 13. Quantifying Stage-3 (slice-to-volume) registration error using four different sets of simulated slices. Each series 697 
(straight planar, oblique planar, straight quadratic, oblique quadratic) consists of 10 simulated slices in the postero-anterior 698 
direction. The median registration error (MRE) is plotted for each slice after each optimisation step (0: perturbed initial state, 699 
1: rigid, 2: affine, 3: in-plane deformations, 4: 3D deformations). The gradual convergence of the MRE towards zero in all 700 
cases demonstrates the robustness of Stage 3 as well as the added value of each optimisation step. 701 
 702 
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3.4. Stage 4 703 

 704 

We observed significant improvements in the alignment of histology and MRI features after the Stage-705 

4 optimisation of Stage 1-3 results, for sections where the primary source of error was the anatomical 706 

discrepancy between the histology and the tissue block photograph (Figure 14). Stage 4 also 707 

dramatically improved the registration accuracy for histology sections that were sampled from across 708 

the interhemispheric fissure (e.g., anterior cingulate cortices, corpus callosum). Regions with limited 709 

anatomical features, however, struggled to drive the non-linear steps of Stage 4, and often led to 710 

exaggerated deformations. This led us to conclude that the linear optimisation steps of Stage 4 711 

provided the best overall match between PLP and TRUFI data in our dataset, but further steps can 712 

easily be specified in the Stage 4 configurations for other datasets. 713 

 714 

 715 
Figure 14. Stage 4 can improve the accuracy of histology-to-MRI registration. Top row: visual cortex, Bottom row: 716 
hippocampus. In both cases, the histology sections were sampled from deeper inside the tissue block, hence they exhibit a 717 
slightly different anatomical pattern than the corresponding tissue block photographs that were used in Stage 1. The red 718 
centre lines are provided to guide the eye. The main areas of improvement after Stage 4 are highlighted by the orange circles. 719 
Also note that tissue contours appear less distorted in the Stage 4 results, because Stage 4 deformations are defined with 720 
fewer degrees of freedom to mitigate any previously overestimated deformations of the tissue. 721 
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Visual cortex
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5 mm Stage 4
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  722 

We resampled multi-modal MRI data onto the registered histology domain by concatenating and 723 

applying the Stage-4 optimised chains with the respective inter-modality linear transformation 724 

matrices obtained from FLIRT. The MRI modalities included both scalar and vector quantities, the 725 

latter of which were adequately rotated in 3D by the combined transformation chain. Using an 726 

adapted version of the Stage 1 script (available via Git) we could also register histology sections of 727 

various stains onto the domain of the respective PLP-stained section. Since this was originally used for 728 

the registration with MRI, we could achieve a pixel-to-voxel mapping between any pair of histology 729 

and MRI modality by concatenating the histology-to-histology and histology-to-MRI chains (Figure 15). 730 

 731 
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 732 
Figure 15. Example of a registered MRI-histology stack of the left visual cortex, consisting of five histology stains (PLP, Iba1, 733 
CD68, SMI-312, pTDP-43), various relaxometry (T1, T2, T2*, QSM), and diffusion MRI modalities (MD, AD, RD, FA, V1). All 734 
images are pixelwise aligned (the red centre lines are provided to guide the eye). V1: PLP-stained histological section of the 735 
left visual cortex overlaid with a map of principal fibre orientations derived from post-mortem diffusion MRI data via diffusion 736 
tensor fitting. The fibre orientation vectors are automatically rotated by TIRL in accordance with the transformations of the 737 
histology slide. 738 
 739 

 740 

4. Discussion 741 
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 742 

In this paper, we presented a novel image registration framework, TIRL, and used it to create an 743 

automated histology-to-MRI registration pipeline that was specifically designed to work with sparsely 744 

sampled histology data, unlike most existing methods that require serial histological sectioning. 745 

Nevertheless, there is nothing to prevent one from registering adjacent sections of densely sampled 746 

histology data to MRI using TIRL, as we recently demonstrated in a macaque brain dataset with 747 

preliminary results [59, 60]. 748 

 749 

Our results with deformable 2D-to-3D registration demonstrate the value of compensating for 3D slice 750 

deformations to achieve submillimetre accurate alignment between histology and MRI. Our method 751 

does not rely on specialised cutting or stain automation hardware for tissue processing and reduces 752 

the imperfections of alignment that arise from freehand brain cutting, making it suitable for 753 

integration into routine neuropathological practice. The four stages of the pipeline support full 754 

automation of the registration, provided that the relevant dissection photographs are available. With 755 

suitable manual initialisation however, Stage 4 could also be used as a stand-alone semi-automated 756 

tool in the absence of photos to directly register histology images to volumetric MRI data, although in 757 

this work we have not tested the performance of this specific usage. 758 

 759 

TIRL was designed to be a general image registration tool that can support a wide range of 760 

applications, which could include a range of species, organ systems, and pathologies. The 761 

implementation of the MIND cost function [55] in TIRL ensures that our pipeline is compatible with a 762 

diverse range of image modalities, and the modular implementation of the library allows further 763 

intuitive and straightforward customisation of its components.  764 

 765 

In our efforts to make TIRL as general as possible, we had to make occasional trade-offs with 766 

computational efficiency. Nevertheless, we made significant efforts to include computational 767 

optimisations where possible, such as parallel processing, chunked interpolation, function caching, 768 

optimising sub-chains of linear transformations by affine replacement, and avoiding interpolation of 769 

displacement fields where the field is defined over the same domain as the image. Our experiments 770 

were carried out on a Dell T7500 workstation computer with two hexa-core Intel X5670 CPUs (2.93 771 

GHz) and 64 GB of RAM. The typical runtimes were ~2 minutes for stage 1, ~30 minutes for stage 2 772 

(with 6 insertion sites), 1–2 hours for stage 3 (using 50 control points), and ~15 minutes for stage 4. 773 

For relatively undistorted slices, it is possible to reduce the runtime of stage 3 by using fewer control 774 



32 
 

points (≤16) to optimise deformations. Stages 1-3 can be run in parallel, while Stage 4 requires the 775 

outputs of the earlier stages. 776 

 777 

Based on our personal experience, future users should observe the following data acquisition 778 

principles to achieve high-quality registration results with our pipeline: 779 

 780 

(1) Histology sections should be sampled as close as possible (<1 mm) to the photographed surface 781 

of the tissue blocks. Care should be taken to avoid tears and folds of the tissue as well as staining 782 

artefacts during the histological processing. At least one stain with sufficient anatomical contrast 783 

(in brain, grey-white matter) must be available for registration with MRI. This specific stain can 784 

then guide the alignment of other stains without this contrast. 785 

(2) Dissection: Standardising the position and orientation of the brain cuts makes it easier to initialise 786 

slice-to-volume registrations (Stage 3). 787 

(3) Photographs: Photographs should be taken at high resolution, under diffuse lighting conditions, 788 

on a clean, matte surface. The background should have a distinct colour from the brain tissue to 789 

allow segmentation. Brain slices should be photographed on both sides, avoiding glare from any 790 

lighting. The approximate mm/pixel resolution of the photographs should be recorded. The slices 791 

should be identified with labels within the photographs to avoid mix-up. 792 

(4) MRI: MRI should be acquired at high resolution (0.25–1 mm/voxel) with strong contrast of 793 

relevant anatomy. Specimens should ideally be scanned in a container that is tailored to the 794 

shape of the specimens to avoid excessive deformations (small deformations can be corrected by 795 

the pipeline). The container should be filled with a susceptibility-matched, signal-free fluid (e.g., 796 

perfluorocarbon such as Fluorinert) [61], and air bubbles should be avoided [54]. 797 

  798 

We have committed to sharing our multi-modal MRI-histology data via the Oxford Digital Brain Bank 799 

(https://open.win.ox.ac.uk/DigitalBrainBank/#/datasets/pathologist). Both TIRL and the MRI-800 

histology registration pipeline are distributed in the form of Git repositories, and as part of FSL (v6.0.4 801 

and above). We hope that this will facilitate MRI-histology research and encourage the development 802 

of further analysis tools built on top of TIRL, paving the way toward more histologically validated 803 

imaging studies in the future. 804 

 805 

 806 

5. Conclusion 807 

 808 
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A novel image registration framework, TIRL was presented through its application to create an 809 

automated pipeline for registering sparsely sampled histology sections to volumetric post-mortem 810 

MRI data. The pipeline accounts for 3D deformations of thin tissue sections, does not require manual 811 

intervention in most cases, and achieves submillimetre registration accuracy through photographic 812 

intermediaries, which can be readily acquired as part of routine neuropathological practice. The 813 

customisability of the pipeline and the underlying software framework present a great appeal for 814 

future histology-MRI investigations. 815 

 816 
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Supplementary Material 1 –  876 

Details of the ANTs registrations that were used in the Stage-1 accuracy comparison testing 877 

 878 

Comparisons were made with both the Mattes mutual information and the cross-correlation metrics, 879 

that were used in a previous study [25] to register histology sections. The registrations were carried 880 

out on the same 14 callosal and 14 hippocampal sections that were previously registered to their 881 

corresponding tissue blocks with the Stage 1 routine. For a fair comparison, all ANTs registrations were 882 

initialised using antsAffineInitializer with 30° increments over the whole circle. Various 883 

combinations of parameters were screened for each metric, starting from those that were 884 

recommended in the ANTs documentation. Empirically the following multi-resolution configurations 885 

were found to yield the best results with ANTs: 886 

 887 
1. ANTs SyN Mattes: antsRegistration –dimensionality 2 –float 0 –output 888 

$outdir/ants.syn/moving_to_fixed –interpolation Linear –winsorize-889 
imageintensities [0.005,0.995] –use-histogram-matching 1 -r 890 
$outdir/ants.syn/init.mat -m Mattes[$outdir/fixed.png, 891 
$outdir/moving.png,1, 20, Random, 0.2] -t affine[2.0] -c [1500 x 1500 x 892 
1500 x 300 x 100 x 0, 1.e-7, 5] -s 5x4x3x2x1x0 -f 7x6x5x4x2x1 -m 893 
Mattes[$outdir/fixed.png, $outdir/moving.png, 1, 32] -t syn[0.25,3.0,1] -c 894 
[200 x 200 x 200 x 200 x 150 x 50, 0, 5] -s 5x4x3x2x1x0 -f 7x6x5x4x2x1 895 
 896 

2. ANTs SyN CC: antsRegistration –dimensionality 2 –float 0 –output 897 
$outdir/ants.syn.cc/moving_to_fixed –interpolation Linear –winsorize-image-898 
intensities [0.005,0.995] –use-histogram-matching 1 -r 899 
$outdir/ants.syn.cc/init.mat -m Mattes[$outdir/fixed.png, 900 
$outdir/moving.png, 1, 20, Random, 0.2] -t 901 

 902 

As the TIRL Stage 1 routine uses binary masks for the registration, the masks were exported from the 903 

TIRL pipeline, and the ANTs registrations were repeated with the masks. The previously generated 904 

contours of the tissue block photographs were transformed to histology space with the 905 

antsApplyTransformsToPoints tool, and the MCDs were calculated to measure the accuracy of the 906 

registrations in each case: 907 

 908 
antsApplyTransformsToPoints –dimensionality 2 –precision 1 –input blockpts − 909 
−outputd/transformed_block_contour.csv -t [$d/moving_to_fixed0GenericAffine.mat,1] -t 910 
$d/moving_to_fixed1InverseWarp.nii.gz 911 
  912 
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Supplementary Material 2 – 913 

Example Stage-3 registration of a severely damaged coronal brain slice using a manually defined 914 

binary mask for cost-function weighting. 915 

 916 

 917 
Figure B.1. Result of slice-to-volume registration of a severely damaged coronal brain slice. (A) Coronal brain slice 918 
photograph with bilateral hiatus in the sensorimotor regions. (B) A hand-drawn binary mask for cost-function weighting. (C) 919 
Registration result without using the target mask. The red curve is an overlay of the manually segmented grey-white matter 920 
contour of the brain slice photograph. (D) Registration result with the hand-drawn target mask. The accuracy of the corrected 921 
registration is qualitatively similar to that on non-damaged slices. 922 
  923 
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Supplementary Material 3 –  924 

Stage-3 simulation experiment with MIND and NMI cost functions 925 

 926 

Figure C.1 shows that for oblique quadratic simulated slices with no Gaussian noise, MIND already 927 

outperforms NMI with respect to the final registration error (substage 4), which becomes even more 928 

obvious when Gaussian noise is added, mimicking the conditions of registering a slice of a different 929 

modality (e.g., a photograph). Based on the result of this experiment, NMI was dropped from the 930 

Stage-3 routine despite faster computations versus MIND. 931 

 932 

 933 
Figure C.1. Comparison of the MIND and the normalised mutual information (NMI) image dissimilarity metric for Stage-3 934 
registration of simulated slices (oblique quadratic series, using 16 control points in Steps 3 and 4). The registration substages 935 
are as described in the Stage-3 algorithm: 0) perturbed initial state, 1) rigid, 2) affine, 3) in-plane deformation, 4) 3D 936 
deformation. 937 

  938 
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Supplementary Material 4 –  939 

Effect of regularisation weight on Stage-1 registration results: a visual comparison 940 

 941 

 942 
Figure D.1. Stage-1 registration results on a hippocampal section using varying weights (0.2 < a < 1.0) for diffusion 943 
regularisation. Images show deformed versions of the histology image on the domain of the tissue block photograph after 944 
the registration. The blue curve represents the transformed grey-white matter contour of the histology image, and the red 945 
curve is the grey-white matter boundary as observed in the tissue block photo. Their median distances are reported in 946 
millimetres above the images (acc). The Jacobian range (jac) is calculated from the total deformation of the histology image, 947 
and it indicates the magnitude of the largest local compression and largest local dilation of the image in relative units (1 = no 948 
compression). 949 
 950 

Figure D.1 suggests an optimal range for a between 0.4 and 0.6, corresponding to slightly more 951 

conservative deformations at a = 0.6 based on the Jacobian ranges. All values of a, except for 0.2 led 952 

to diffeomorphic transformations with Jacobians > 0. 953 

  954 
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