

1 Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough

2 infection

3 Zijun Wang^{1,*}, Pengcheng Zhou^{1,*}, Frauke Muecksch^{2,*}, Alice Cho^{1,*}, Tarek Ben Tanfous¹,
4 Marie Canis², Leander Witte², Brianna Johnson¹, Raphael Raspe¹, Fabian Schmidt², Eva
5 Bednarski², Justin Da Silva², Victor Ramos¹, Shuai Zong¹, Martina Turroja¹, Katrina G. Millard¹,
6 Kai-Hui Yao¹, Irina Shimeliovich¹, Juan Dizon¹, Anna Kaczynska¹, Mila Jankovic¹, Anna
7 Gazumyan¹, Thiago Y. Oliveira¹, Marina Caskey¹, Christian Gaebler¹, Paul D. Bieniasz^{2,3},
8 Theodora Hatzioannou², Michel C. Nussenzweig^{1,3}

9
10
11 ¹Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
12 ²Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
13 ³Howard Hughes Medical Institute

14
15 *equal contribution
16 Address correspondence to: Paul D. Bieniasz pbieniasz@rockefeller.edu; Theodora Hatzioannou
17 thatzii@rockefeller.edu; Michel C. Nussenzweig nussen@rockefeller.edu

18

19

20

21

22

23

24

25 **Abstract**

26 Individuals that receive a 3rd mRNA vaccine dose show enhanced protection against severe
27 COVID19 but little is known about the impact of breakthrough infections on memory responses.
28 Here, we examine the memory antibodies that develop after a 3rd or 4th antigenic exposure by Delta
29 or Omicron BA.1 infection, respectively. A 3rd exposure to antigen by Delta breakthrough
30 increases the number of memory B cells that produce antibodies with comparable potency and
31 breadth to a 3rd mRNA vaccine dose. A 4th antigenic exposure with Omicron BA.1 infection
32 increased variant specific plasma antibody and memory B cell responses. However, the 4th
33 exposure did not increase the overall frequency of memory B cells or their general potency or
34 breadth compared to a 3rd mRNA vaccine dose. In conclusion, a 3rd antigenic exposure by Delta
35 infection elicits strain-specific memory responses and increases in the overall potency and breadth
36 of the memory B cells. In contrast, the effects of a 4th antigenic exposure with Omicron BA.1 is
37 limited to increased strain specific memory with little effect on the potency or breadth of memory
38 B cell antibodies. The results suggest that the effect of strain-specific boosting on memory B cell
39 compartment may be limited.

40

41 **Introduction**

42 Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) emerged in late 2019 causing a
43 global pandemic with more than 500 million infections and over 6 million deaths reported to date.
44 Over the course of the pandemic SARS-COV-2 continued to evolve resulting in substantial genetic
45 distance between circulating variants and the initial viral sequence on which vaccines are based.
46 Several of these circulating variants have been designated variants of concern (VoC) and have led

47 to successive waves of infection, most notably by VoCs Alpha (Supasa et al., 2021), Delta (Liu et
48 al., 2021), Omicron (Dejnirattisai et al., 2022).

49

50 Higher rates of re-infection and vaccine-breakthrough infection with the Delta and Omicron
51 variants highlighted the potential for immune escape from neutralizing antibody responses
52 resulting in reduced vaccine efficacy against SARS-CoV-2 infection(Cao et al.; Cele et al., 2022;
53 Dejnirattisai et al., 2022; Gaebler et al., 2022; Hachmann et al., 2022; Kuhlmann et al., 2022; Liu
54 et al., 2021). With the emergence of Omicron BA.1 and related lineages infection has surged
55 worldwide, and these new variants account for over 95% of recent COVID-19 cases. To date,
56 BA.2.12.1 variant (a BA.2 lineage) contributes 59% of new cases in the United States, while BA.4
57 and BA.5 caused a fifth wave of COVID-19 infection in South Africa. Nevertheless, vaccine-
58 elicited immunity continues to provide robust protection against severe disease, even in the face
59 of viral variants(Andrews et al., 2022; Madhi et al., 2022; Wolter et al., 2022; World Health, 2022).

60

61 Previous studies have shown that Delta or Omicron breakthrough infection boosts plasma
62 neutralizing activity against both the Wuhan-Hu-1 strain and the infecting variant, which might
63 suggest recall responses of cross-reactive vaccine-induced memory B cells (Kaku et al., 2022;
64 Quandt et al., 2022; Richardson et al., 2022; Seaman et al., 2022; Servellita et al., 2022). However,
65 far less is known about the memory antibody responses after breakthrough infection. Here we
66 report on the development of antibodies produced by memory B cells in a cohort of vaccinated
67 individuals that were subsequently infected with Delta or Omicron.

68

69 **Results**

70 Between August 13, 2021, and February 3, 2022, we recruited individuals that had been vaccinated
71 with 2 or 3 doses of an mRNA vaccine and experienced breakthrough infections with Delta (n=24,
72 age range 21 – 63 years, median age=30 years; 67% male, 33% female) or Omicron (n=29, age
73 range 22 – 79 years, median age=33.5 years; 53% male, 47% female) (Table S1, (Gaebler et al.,
74 2022)). Volunteers received either the Moderna (mRNA-1273; n=12), Pfizer-BioNTech
75 (BNT162b2; n=33) or combination (Moderna-Pfizer; n=8) mRNA vaccine (Table S1). Samples
76 from Delta and Omicron BA.1 breakthrough participants were collected a median 26.5 days (range
77 0-60) or 24 days (range 10-37) after positive test for infection, respectively (Table S1). As a result,
78 Delta breakthrough samples were collected at a median of 5.5 months (range 109-211 days) after
79 2nd vaccination, and Omicron BA.1 samples were collected at median of 2.4 months (range 26-
80 141 days) after 3rd vaccination (Fig. 1a, see Methods and Table S1). For two participants paired
81 samples were collected shortly after their 3rd vaccine dose and again after Omicron BA.1
82 breakthrough infection (Table S1).

83

84 **Plasma binding and neutralization**

85 Plasma IgG antibody titers against SARS-CoV-2 Wuhan-Hu-1-(wildtype, WT), or Delta-receptor
86 binding domain (RBD), and Omicron BA.1-Spike were measured by enzyme-linked
87 immunosorbent assays (ELISA) (Wang et al., 2021d). Anti-WT-RBD IgG titers were significantly
88 increased after Delta breakthrough infection in individuals who received 2 doses of mRNA vaccine
89 (Delta BT), compared to vaccinated individuals who did not experience infection (5m-Vax2)
90 (p<0.0001, Vax2 (Cho et al., 2021) vs. Delta, Fig. 1b and Table S1). Similarly, there was a 2-fold
91 increase in geometric mean IgG-binding titers against WT-RBD after Omicron BA.1 breakthrough
92 infection (Omicron BT) in individuals who received 3 doses of mRNA vaccine, compared to

93 vaccinated individuals who were not infected after the 3rd vaccine dose (1m-Vax3) ($p=0.033$, Vax3
94 (Muecksch et al., 2022) vs. Omicron, Fig. 1b and Table S1). Individuals who experienced Omicron
95 BA.1 infection exhibited higher anti-Delta-RBD and anti-Omicron BA.1-Spike IgG binding titers
96 than individuals with Delta breakthrough infection or those receiving 3 mRNA vaccine doses (Fig.
97 S1, anti-Delta RBD: $p<0.0001$, Delta BT vs Omicron BT, $p=0.047$, Vax3 vs Omicron BT; anti-
98 Omicron BA.1 Spike: $p<0.0001$, Delta BT vs Omicron BT, $p=0.021$, Vax3 vs Omicron BT).

99

100 Plasma neutralizing activity in 49 participants was measured using HIV-1 pseudotyped with the
101 WT SARS-CoV-2 spike protein (Cho et al., 2021; Wang et al., 2021d) (Fig. 1c and Table S1).
102 Compared to individuals that received 2 mRNA vaccine doses (Cho et al., 2021), Delta
103 breakthrough infection resulted in 11-fold increased geometric mean half-maximal neutralizing
104 titer (NT₅₀) ($p=0.0003$, Vax2 vs. Delta, Fig. 1c). However, the resulting geometric mean NT₅₀ was
105 lower than after the 3rd mRNA vaccine dose ($p=0.03$, Delta vs. Vax3, Fig. 1c). Notably, the NT₅₀
106 against WT after Omicron breakthrough was not significantly different from individuals that
107 received a 3rd vaccine dose (Muecksch et al., 2022) ($p>0.99$, Vax3 vs. Omicron, Fig. 1c).

108

109 Plasma neutralizing activity was also assessed against SARS-CoV-2 Delta, Omicron BA.1, BA.2
110 and BA.4/5 variants using viruses pseudotyped with appropriate variant spike proteins.
111 Delta breakthrough infection resulted in 15-fold increased neutralizing titers against Delta
112 compared to 2-dose vaccinated-only individuals ($p<0.0001$, Fig. 1c) with resulting titers being
113 comparable to 3-dose vaccinated individuals before and after Omicron breakthrough infection
114 ($p>0.99$, Fig. 1c). While Delta breakthrough infection also increased neutralizing titers against
115 Omicron BA.1, BA.2, and BA4/5 ($p=0.0003$, $p=0.002$ and $p<0.0001$, respectively, Fig. 1c), the

116 titers were not significantly different from titers observed in 3-dose vaccinated individuals
117 (Muecksch et al., 2022)($p>0.99$, $p>0.99$ and $p=0.61$, respectively, Fig. 1c). Conversely, Omicron
118 breakthrough infection after 3-dose vaccination resulted in a further 3.5-fold and 2.9-fold increase
119 of Omicron BA.1 and BA.2 neutralizing titers, respectively, when compared to 3-dose vaccinated
120 only individuals (Muecksch et al., 2022)($p=0.005$ and $p=0.019$, respectively. Fig. 1c). Omicron
121 BA.4/5 showed the highest neutralization resistance of all variants tested, resulting in low
122 geometric mean neutralizing titers in plasma samples obtained after the second vaccine dose
123 ($NT_{50}=72$, Fig. 1c). Nevertheless, individuals who had at least 3 antigen exposures (Delta
124 breakthrough, Vax3 and Omicron breakthrough) were able to neutralize Omicron BA.4/5 with
125 NT_{50} s of 2173, 1311 and 2476, respectively at the time points assayed.

126

127 **Memory B cells**

128 mRNA vaccines elicit memory B cells (MBCs) that can contribute to durable immune protection
129 from serious disease by mediating rapid and anamnestic antibody response (Muecksch et al., 2022;
130 Victora and Nussenzweig, 2022). To better understand the MBC compartment after Delta or
131 Omicron BA.1 breakthrough infection in vaccinated individuals, we enumerated RBD-specific
132 MBCs using Alexa Fluor 647 (AF647)- and phycoerythrin (PE)-labeled WT RBD of the SARS-
133 CoV-2 spike protein by flow cytometry (Fig. 2a, Fig. S2). The number of WT RBD-specific MBCs
134 after Delta breakthrough infection was significantly higher than after the 2nd or 3rd vaccine dose
135 (Delta vs. Vax2, $p<0.0001$, and Delta vs. Vax3, $p=0.011$, Fig. 2b). Omicron BA.1 breakthrough
136 infection elicited a 1.7-fold increase in the number of MBCs compared to individuals that received
137 3 vaccine doses (Vax3 vs. Omicron, $p=0.013$, Fig. 2b). Consistent with previous reports (Goel et
138 al., 2022; Kaku et al., 2022; Nutalai et al., 2022; Park et al., 2022), flow cytometry showed that a

139 larger fraction of the MBCs developing after the 3rd vaccine dose or Omicron BA.1 breakthrough
140 infection were cross-reactive with WT-, Delta- and Omicron BA.1-RBDs than after Delta
141 breakthrough infection (Fig. 2c). Additional phenotyping indicated that RBD-specific memory B
142 cells elicited by Vax3 or Delta or Omicron BA.1 breakthrough infection showed higher
143 frequencies of IgG than IgM and IgA expression (Fig. S2c-e).

144

145 To examine the specificity and neutralizing activity of the antibodies produced by MBCs, we
146 purified and sequenced antibody genes in individual WT-RBD-specific B cells from 10 individuals
147 that experienced Delta or Omicron BA.1 breakthrough infection, following the 2nd or 3rd vaccine
148 dose, respectively (Fig. 2d, Fig. S2f, Table S1), including 2 participants for whom paired samples
149 were collected shortly after their 3rd vaccine dose and after subsequent Omicron BA.1
150 breakthrough infection.

151

152 686 paired heavy and light chain anti-RBD antibody sequences were obtained (Fig. 2d, Table S2).
153 Clonally expanded WT-RBD-specific B cells represented 9% of all memory B cells after Delta
154 breakthrough infection and 28% of the repertoire after Omicron BA.1 breakthrough infection (Fig.
155 2d and Table S2). Similar to mRNA vaccinees (Cho et al., 2021; Muecksch et al., 2022; Wang et
156 al., 2021d), several sets of VH genes including *VH3-30* and *VH3-53* were over-represented in
157 Delta- or Omicron BA.1 breakthrough infection (Fig. S3). In addition, *VH3-49*, *VH4-38* and *VH1-24*
158 were exclusively over-represented after Delta breakthrough infection (Fig. S3a), while *VH1-69*,
159 *VH1-58*, *VH4-61*, and *VH4-38* were specifically over-represented after Omicron BA.1
160 breakthrough infection (Fig. S3d). These results suggest that Delta and Omicron BA.1
161 breakthrough infections elicit variant-specific memory antibody responses. While levels of

162 somatic mutation in memory B cells emerging after Delta breakthrough infection were comparable
163 to those after the 2nd vaccine dose, significantly higher numbers of somatic mutations were noted
164 following Omicron BA.1 breakthrough infection compared to the 3rd vaccine dose ($p<0.0001$) (Fig.
165 2e, Fig. S4a and b). Moreover, phylogenetic analysis revealed that sequences found after the 3rd
166 vaccine dose and following Omicron BA.1 breakthrough infection were intermingled and similarly
167 distant from their unmutated common ancestors (Fig. S4c).

168

169 **Monoclonal antibodies**

170 338 anti-RBD monoclonal antibodies were expressed and tested for binding by ELISA, including
171 115 antibodies obtained after Delta breakthrough infection (Delta BT), 40 isolated from 2
172 longitudinal samples after their 3rd vaccine dose in individuals that were subsequently infected
173 (Vax3), and 183 antibodies obtained from 6 individuals after Omicron BA.1 breakthrough
174 infection (Omicron). 85% ($n=288$) of the antibodies bound to the WT RBD with an EC₅₀ of less
175 than 1000 ng/mL (Table S3). The geometric mean ELISA half-maximal concentration (EC₅₀)
176 against WT RBD for the monoclonal antibodies obtained from Vax3 was comparable to those
177 found after Delta or Omicron BA.1 breakthrough infections (Fig. 3a). In addition, antibodies
178 isolated after both Delta and Omicron-breakthrough infection showed comparable affinity for WT
179 RBD to antibodies obtained from Vax3 when measured by biolayer interferometry (BLI, Fig. S5a).
180 However, when tested against Delta-RBD antibodies obtained after Delta breakthrough infection
181 showed increased binding compared to those after Vax3. In contrast, there was no statistically
182 significant difference in binding to Omicron BA.1-Spike by Omicron and Vax3 antibodies (Fig.
183 3a).

184

185 Anti-RBD antibodies elicited by mRNA vaccination target 4 structurally defined classes of
186 epitopes on the SARS-CoV-2 RBD (Barnes et al., 2020a; Cho et al., 2021; Muecksch et al., 2022;
187 Yuan et al., 2020). To compare the epitopes recognized by anti-RBD memory antibodies elicited
188 by mRNA vaccination (Muecksch et al., 2022) and breakthrough infection, we performed BLI
189 competition experiments. A preformed antibody-RBD-complex was exposed to a second antibody
190 recognizing one of four classes of structurally defined antigenic sites (C105 as Class 1; C144 as
191 Class 2, C135 as Class 3 and C2172 as Class 4 (Barnes et al., 2020a; Muecksch et al., 2022) Fig.
192 S5b). Antibodies obtained after Delta (n=48) or Omicron BA.1 (n=49) breakthrough infection
193 were examined, including 30 of 48 from Delta Breakthrough and 30 of 49 from Omicron BA.1
194 breakthrough with IC₅₀s lower than 1000 ng/mL (neutralizing) against WT (Fig. S5c). In general,
195 there was no significant difference in the distribution of targeted epitopes among antibodies
196 obtained following breakthrough infection as compared to those obtained after mRNA vaccination
197 (Fig. S5c).

198
199 All 288 WT RBD-binding antibodies were tested for neutralization in a SARS-CoV-2 pseudotype
200 neutralization assay based on the WT SARS-CoV-2 spike(Robbiani et al., 2020; Schmidt et al.,
201 2020b). For comparison, we used a previously characterized set of antibodies isolated after the 2nd
202 (Cho et al., 2021) or the 3rd vaccine dose (Muecksch et al., 2022). Potency against WT was
203 considerably improved after Delta breakthrough infection compared to the 2nd vaccine dose (Vax2)
204 (IC₅₀=182 ng/ml vs IC₅₀=50ng/ml, p=0.0013, Fig. 3b) but not compared to the 3rd vaccine dose
205 (IC₅₀=98 ng/ml, p=0.62, Fig. 3b). In addition, there was no further improvement of neutralizing
206 activity following Omicron BA.1 breakthrough infection compared to the 3rd dose (IC₅₀=73 ng/ml)
207 (p>0.99, Fig. 3b).

208

209 To examine whether and how neutralizing breadth evolves in vaccinees after Delta or Omicron
210 BA.1 breakthrough infection, we analyzed the 288 newly expressed antibodies obtained from
211 breakthrough individuals and 45 previously described antibodies obtained from Vax2 individuals
212 (Cho et al., 2021) and measured their neutralizing activity against SARS-CoV-2 pseudoviruses
213 carrying amino acid substitutions found in the Delta-RBD and Omicron BA.1 variant. In addition,
214 105 randomly selected antibodies from all four groups were tested against an Omicron BA.4/5
215 pseudovirus (Fig. 3c). Neutralizing potency was generally lower against Omicron BA.1 compared
216 to Delta pseudovirus. However, while antibodies obtained 5 months after the 2nd vaccine dose were
217 not significantly more potent against Delta ($IC_{50}=181\text{ng/ml}$) vs. BA.1 pseudovirus ($IC_{50}=405\text{ng/ml}$)
218 ($p=0.20$, Fig. 3c), those obtained after subsequent Delta breakthrough infection neutralize Delta
219 with 6.8-fold increased potency compared to BA.1 ($p<0.0001$, Fig. 3c). In contrast, the ratio of
220 Delta vs. BA.1 IC_{50} in Vax3 antibodies was only 2.2 ($p=0.07$, Fig. 3c), while antibodies recovered
221 after subsequent omicron breakthrough neutralized Delta and Omicron with similar potencies
222 $IC_{50}=122\text{ ng/ml}$ for Delta vs. 148 ng/ml for Omicron ($p=0.92$, Fig. 3c).

223

224 Compared to the 2nd vaccine dose, antibodies from Delta breakthrough infection showed increased
225 potency against Delta pseudovirus (181 vs. 61 ng/ml, $p=0.047$, Fig. 3d). However, there was no
226 significant improvement of antibody potency against Delta, Omicron BA.1 or Omicron BA.4/5
227 pseudovirus comparing 5m-Vax2 versus Delta breakthrough antibodies. Moreover, there were
228 only 2 fold differences that did not reach statistical significance when comparing Vax3 and
229 Omicron breakthrough antibodies for Omicron BA.1 and BA.4/5 neutralization (Fig. 3d). Notably,
230 Omicron BA.4/5 showed the highest degree of neutralization resistance for all tested antibody

231 groups (Fig. 3c and d). Neutralizing activity of clonally related antibody pairs from participants
232 C018 and C023 was measured against a panel of SARS-CoV-2 pseudoviruses harboring RBD
233 amino acid substitutions representative of variants including Delta and Omicron BA.1. Most pairs
234 of antibodies obtained from clones persisting between the 3rd dose to the following Omicron BA.1
235 breakthrough infection showed little improvement in antibody breadth within the analyzed pairs
236 (Table S4).

237

238 When comparing the fraction of antibodies showing neutralizing activity against Delta or
239 Delta+WT, or Omicron BA.1 or Omicron BA.1+WT, or all three viruses (WT+Delta+Omicron
240 BA.1), it became apparent that antibodies isolated after 2 vaccine doses and subsequent Delta
241 breakthrough infection show the largest proportion of Delta-neutralizing antibodies. Conversely,
242 antibodies isolated after the 3rd vaccine dose and subsequent Omicron BA.1 breakthrough infection
243 show the largest number of antibodies that neutralized all three pseudoviruses (Fig. 3e, Fig. S5d).
244 Vax3 antibodies and Omicron BA.1 breakthrough antibodies were enriched for those neutralizing
245 BA.4/5 with IC₅₀ values of less than 1000 ng/ml with 37% and 38% of all tested antibodies
246 neutralizing BA.4/5, respectively, while only 17% and 27% of Vax2 and Delta breakthrough
247 antibodies, respectively neutralized BA.4/5 (Fig. 3f). Thus, in both cases tested a 3rd exposure to
248 antigen increases memory antibody potency and breadth but a 4th exposure with Omicron BA.1
249 does little more when it occurs in the time frame measured in this study.

250

251

252 **Discussion**

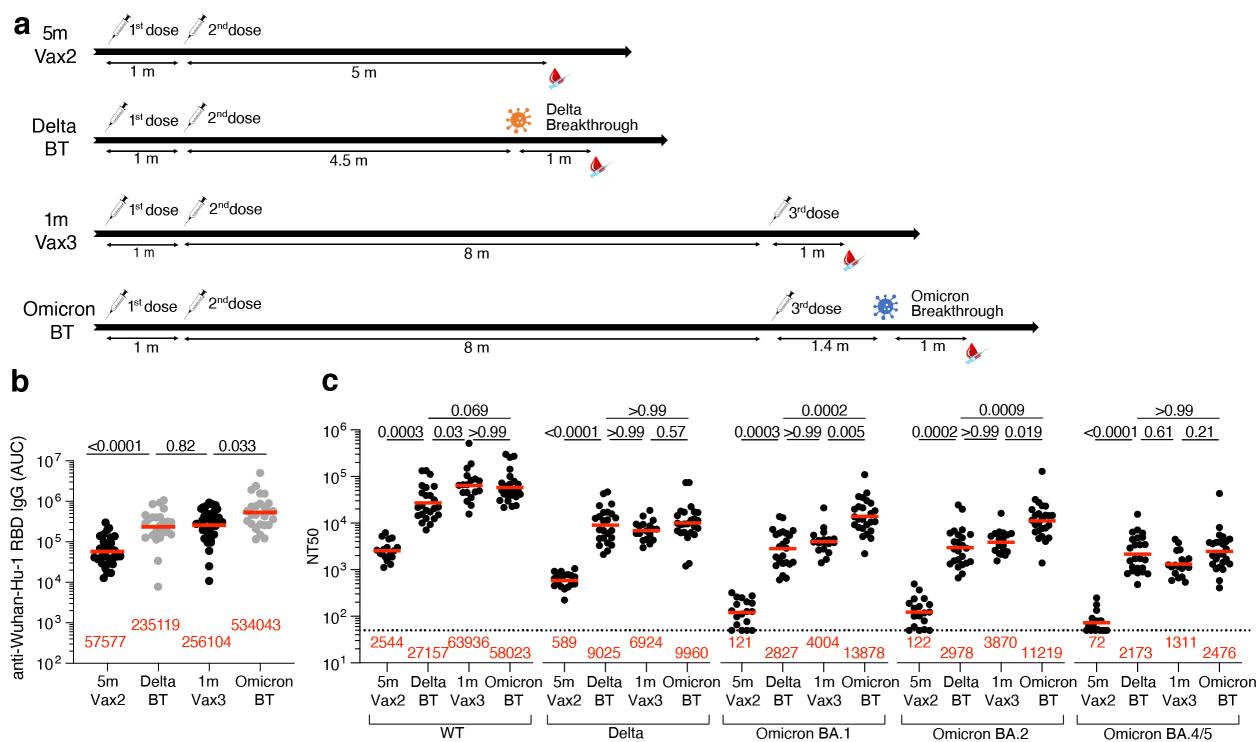
253 Omicron and its subvariants are reported to be more transmissible than any prior VoC and have
254 spurred a resurgence of new cases worldwide(Mallapaty, 2022). While early reports suggested that
255 Omicron may cause less severe illness, recent studies show variant-specific symptoms but similar
256 virulence (Whitaker et al., 2022), and increased resistance to approved vaccine regimens (Nealon
257 and Cowling, 2022).

258

259 We and others have shown that a 3rd mRNA vaccine dose boosts plasma antibody responses to
260 SARS-CoV-2 variants including Omicron BA.1 and increases the number, potency and breadth of
261 the antibodies found in the memory B cell compartment (Goel et al., 2022; Muecksch et al., 2022).
262 Although the antibodies in plasma are generally not sufficient to prevent breakthrough infection
263 boosted individuals are protected against serious disease upon breakthrough infection (Kuhlmann
264 et al., 2022; Nemet et al., 2022). Our findings suggest that a 3rd exposure to antigen in the form of
265 Delta breakthrough infection produces similar effects on the overall size of the memory
266 compartment to a 3rd mRNA vaccine dose, and specifically boosts strain-specific responses. In
267 contrast, while a 4th antigen exposure by infection with Omicron elicits strain-specific memory, it
268 has far more modest effects on the overall potency and breadth of memory B cell antibodies. The
269 data suggest that a variant-specific mRNA vaccine boost will increase plasma neutralizing activity
270 and memory B-cells that are specific to the variant and closely related strains but may not elicit
271 memory B cells with better general potency or breadth than the Wuhan-Hu-1-based mRNA
272 vaccine.

273

274 Antigenic variation between viral strains as well as the time interval between antigenic exposures
275 are likely important contributors to the observed differences in immune responses. For example,

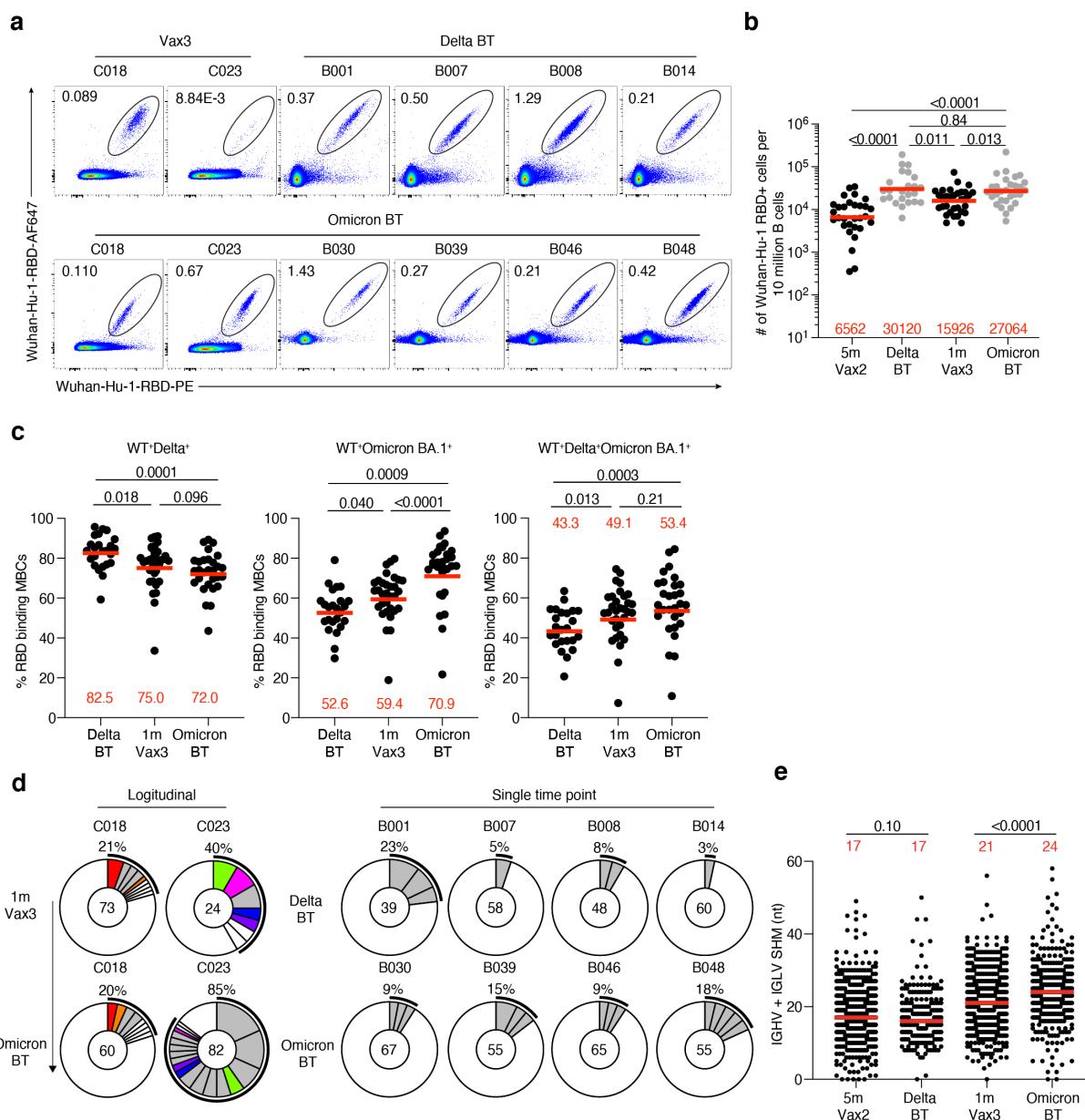

276 the antigenic distance between Wuhan-Hu-1 and Delta is shorter than that between Wuhan-hu-1
277 and Omicron BA.1 or between Delta(Liu et al., 2021) and Omicron BA.1(Dejnirattisai et al., 2022),
278 which could in part explain a more limited antibody response and less cross-reactive MBCs even
279 after a 4th antigen exposure with Omicron BA.1. In addition, we found that Delta breakthrough
280 infection resulted in similar Delta specific antibody responses compared to a 3rd mRNA
281 vaccination or Omicron breakthrough infection. This may be partly due to shorter intervals
282 between exposures in the Delta-BT cohort which is consistent with the notion that the duration
283 after antigen exposure is associated with the continued evolution of the humoral response resulting
284 in greater somatic hypermutation and breadth as well as increased potency
285 (Cho et al., 2021; Gaebler et al., 2021b; Sokal et al., 2021; Wang et al., 2021c).

286
287 The data highlights the challenges involved in selecting variant-specific vaccines in the absence
288 of reliable information on the nature of the next emerging variant and suggests that a focus should
289 be on designing vaccines with broader general activity against coronaviruses.

290
291
292
293

294 **Figure Legends**

295 **Fig. 1: Plasma ELISAs and neutralizing activity**

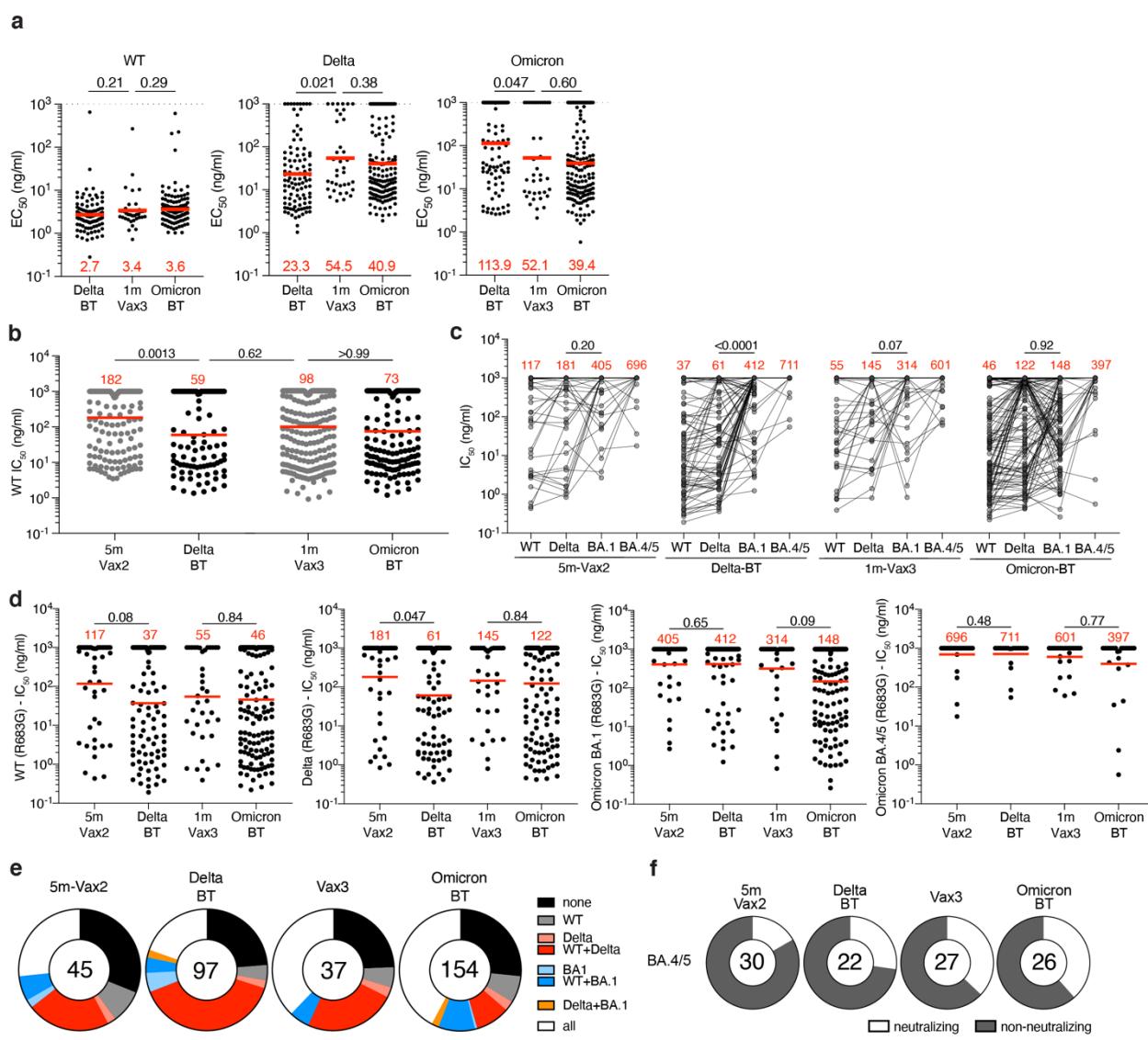

296

297 **a**, Diagram shows, blood donation schedules for vaccinated-only individuals 5 months after the
298 2nd dose (Vax2, top)(Cho et al., 2021), Delta breakthrough infection after Vax2 (Delta BT, 2nd
299 from top), and vaccinated-only individuals 1 month after the 3rd dose (Vax3, 2nd from
300 bottom)(Muecksch et al., 2022) and Omicron breakthrough infection after Vax3 (Omicron BT,
301 bottom). **b**, Graph shows area under the curve (AUG) for plasma IgG antibody binding to wild-
302 type SARS-CoV-2 (WT) RBD after Vax2(Cho et al., 2021), Delta BT for n=24 samples,
303 Vax3(Muecksch et al., 2022) and Omicron BA.1 BT for n=26 samples. **c**, Plasma neutralizing
304 activity against indicated SARS-CoV-2 variants after Vax2(Cho et al., 2021) for n=18 samples,
305 Delta BT for n=24 samples, Vax3(Muecksch et al., 2022) for n=18 samples and Omicron BA.1
306 BT for n=26 samples. WT and Omicron BA.1 NT₅₀ values are derived from two previous reports
307 (Gaebler et al., 2022; Schmidt et al., 2022). See Methods for a list of all

308 substitutions/deletions/insertions in the spike variants. All experiments were performed at least in
 309 duplicate. Red bars and values in **a**, **b**, and **c** represent geometric mean values. Statistical
 310 significance in **b** and **c** was determined by two-tailed Kruskal-Wallis test with subsequent Dunn's
 311 multiple comparisons.

312

313 **Fig. 2: Anti-SARS-CoV-2 RBD memory B cells after breakthrough infection.**



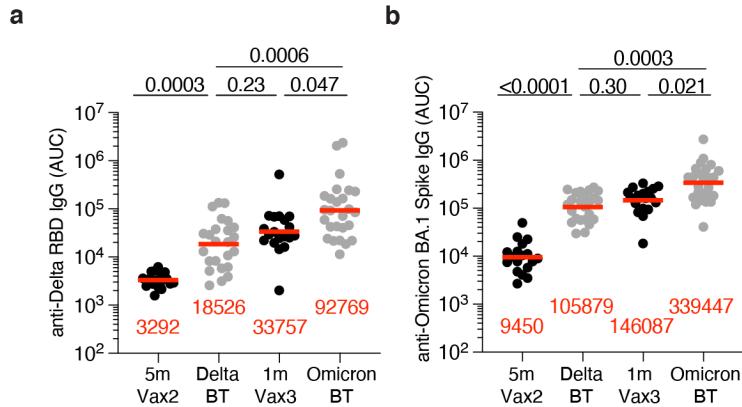
314

315 **a**, Representative flow cytometry plots indicating PE-WT-RBD and AlexaFluor-647-WT-RBD
316 binding memory B cells from 4 individuals after Delta breakthrough infection following Vax2
317 (Delta BT), 2 individuals 1 month after Vax3, and 6 individuals after Omicron BA.1 breakthrough
318 infection following Vax3 (Omicron BT). The number of WT RBD-specific B cells is indicated in
319 **b**, 5 months after Vax2(Cho et al., 2021), Delta BT (n=24), 1 month after Vax3(Muecksch et al.,
320 2022) and Omicron BT (n=29). **c**, Graphs showing the percentage of WT-, Delta-, and Omicron
321 BA.1-RBD cross-binding B cells determined by flow cytometer in vaccinees (Vax3) and
322 breakthrough individuals (Delta BT) or (Omicron BT) (See also in **Fig. S2b**). **d**, Pie charts show
323 the distribution of IgG antibody sequences obtained from WT-specific memory B cells from: 2
324 individuals assayed sequentially 1 month after the 3rd mRNA dose (Vax3) an Omicron infection
325 (left); 4 individuals after Delta breakthrough (Delta), and 4 individuals after Omicron breakthrough
326 (Omicron). The number inside the circle indicates the number of sequences analyzed for the
327 individual denoted above the circle. Pie slice size is proportional to the number of clonally related
328 sequences. The black outline and associated numbers indicate the percentage of clonal sequences
329 detected at each time point. Colored slices indicate persisting clones (same IGHV and IGLV genes,
330 with highly similar CDR3s) found at more than one timepoint within the same individual. Grey
331 slices indicate clones unique to the timepoint. White slices indicate sequences isolated only once
332 per time point. **e**, Number of nucleotide somatic hypermutations (SHM) in IGHV + IGLV in WT-
333 RBD-specific sequences after Delta or Omicron breakthrough infection, compared to 5 months
334 after Vax2, and 1 month after Vax3. Red bars and numbers in **b** and **c** represent geometric mean,
335 and in **e**, represent median values. **e**, Statistic analysis in **b**, and **c**, was determined by two-tailed
336 Kruskal-Wallis test with subsequent Dunn's multiple-comparisons test and in **e** by two-tailed
337 Mann-Whitney test.

338

339 **Fig. 3: Anti-SARS-CoV-2 RBD monoclonal antibodies.**

340

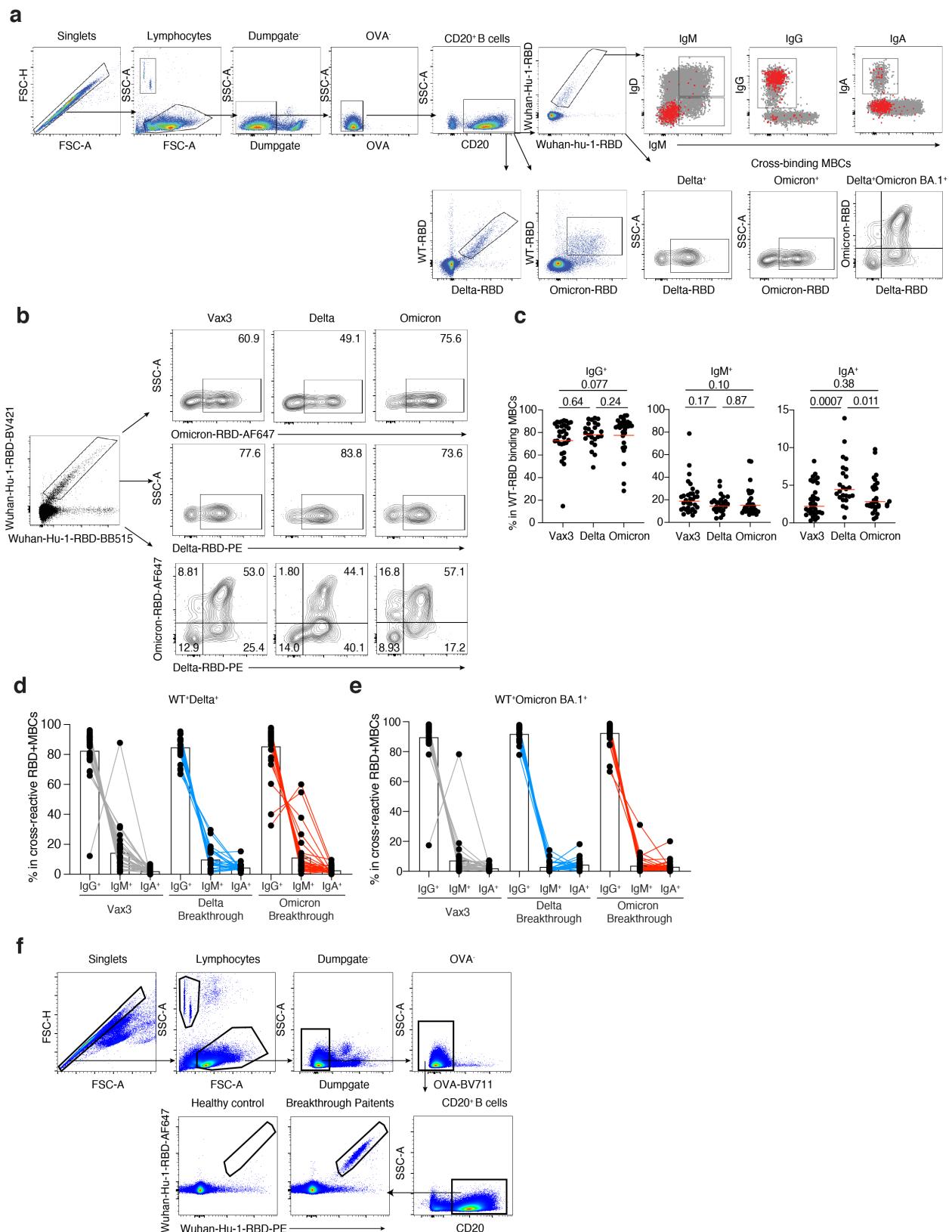

341 **a**, Graphs show half-maximal effective concentration (EC₅₀) of n=342 monoclonal antibodies
342 measured by ELISA against WT-RBD, Delta-RBD and Omicron BA.1-spike protein. Antibodies
343 were obtained memory B cells after Delta breakthrough (Delta BT), after mRNA Vax3, and
344 Omicron breakthrough (Omicron BT). **b**, Graph shows anti-SARS-CoV-2 neutralizing activity of
345 monoclonal antibodies measured by a SARS-CoV-2 pseudotype virus neutralization assay using
346 WT SARS-CoV-2 pseudovirus. IC₅₀ values for all antibodies including the 288 reported and tested

347 herein, and 350 previously reported (Cho et al., 2021; Muecksch et al., 2022). **c-d**, Graphs show
348 IC₅₀s of monoclonal antibodies against WT, Delta-RBD, and Omicron BA.1 SARS-CoV-2
349 pseudoviruses. Each dot represents one antibody, where 333 total antibodies were tested including
350 the 288 reported herein, and 45 5m-Vax2 antibodies previously reported(Cho et al., 2021;
351 Muecksch et al., 2022). Red values represent geometric mean values. In addition, 105 antibodies
352 distributed over all four cohorts were also tested against Omicron BA.4/5 psuedovirus. **e**, Ring
353 plots show fraction of neutralizing (IC₅₀<1000ng/ml) antibodies against WT, Delta-RBD, and
354 Omicron BA.1 SARS-CoV-2 pseudoviruses, and non-neutralizing (IC₅₀>1000 ng/ml) antibodies
355 from each time point. **f**, Ring plots show fraction of mAbs that are neutralizing (IC₅₀ 1-1000 ng/mL,
356 white), or non-neutralizing (IC₅₀>1000 ng/mL, black) against Omicron BA.4/5. Number in inner
357 circles indicates number of antibodies tested. The deletions/substitutions corresponding to viral
358 variants used in **c-f** were incorporated into a spike protein that also includes the R683G substitution,
359 which disrupts the furin cleavage site and increases particle infectivity. Neutralizing activity
360 against mutant pseudoviruses was compared to a wildtype (WT) SARS-CoV-2 spike sequence
361 (NC_045512), carrying R683G where appropriate. Red bars and values in **a, b, and d**, represent
362 geometric mean values. Statistical significance in **a and b** was determined by two-tailed Kruskal-
363 Wallis test with subsequent Dunn's multiple comparisons, in **c** was determined by two-tailed
364 Wilcoxon test and in **d** was determined by two-tailed Mann-Whitney test.

365

366 **Supplementary Figure Legends**

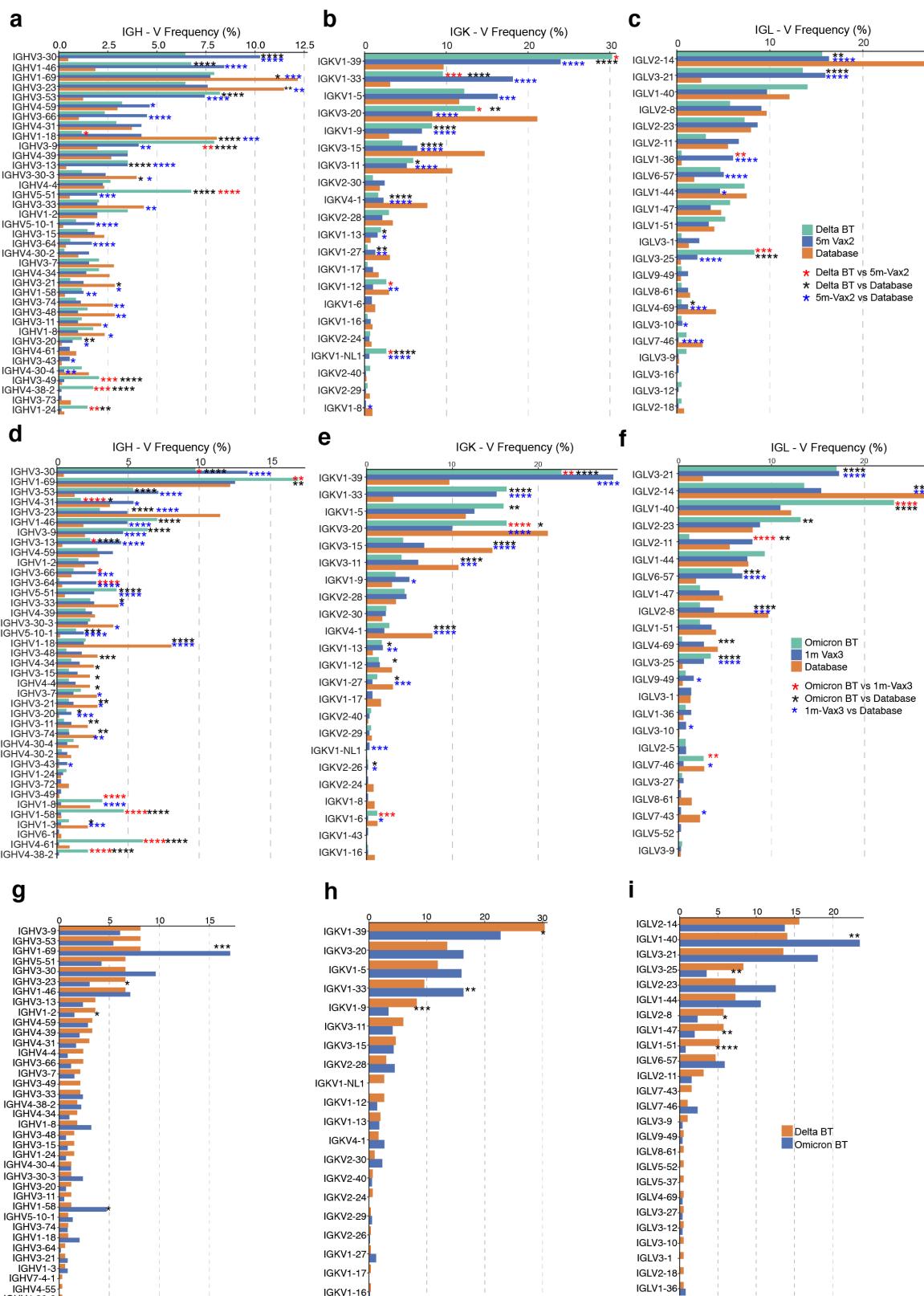
367 **Fig. S1: Plasma ELISA.**



368

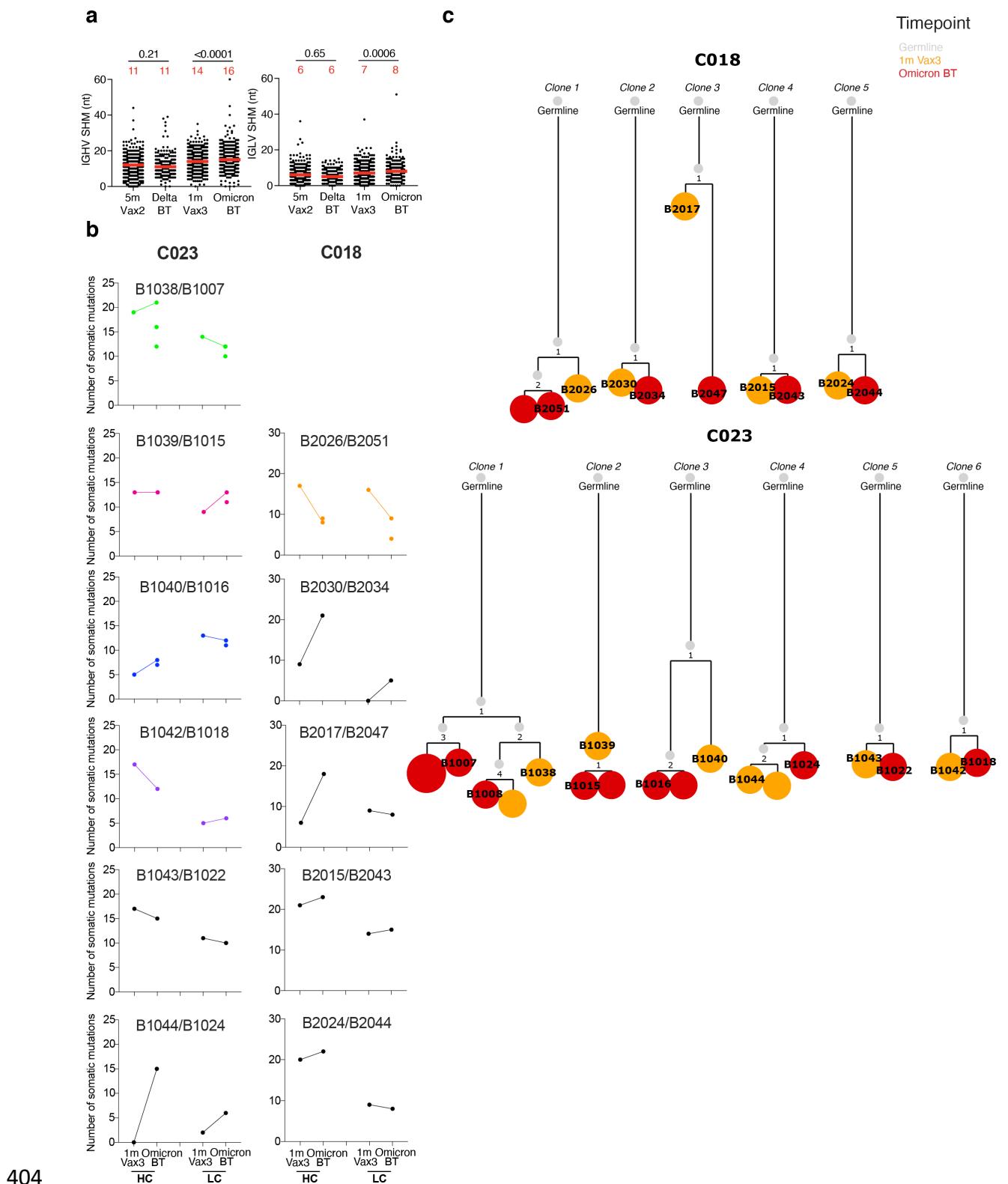
369 **a-b**, Graph shows area under the curve (AUC) for plasma IgG binding to **a**, SARS-CoV-2 Delta-
370 RBD and **b**, Omicron-Spike for vaccinated individuals after Vax2(Cho et al., 2021), Delta
371 breakthrough (Delta BT, n=24), and vaccinated individuals after Vax3 (Muecksch et al., 2022) and
372 Omicron breakthrough infection after Vax3 (Omicron BT, n=26). All experiments were performed
373 at least in duplicate and repeated twice. Red bars and values represent geometric mean values.
374 Statistical significance in **a** and **b** was determined by two-tailed Kruskal-Wallis test with
375 subsequent Dunn's multiple comparisons.

376


377 **Fig. S2: Flow Cytometry.**

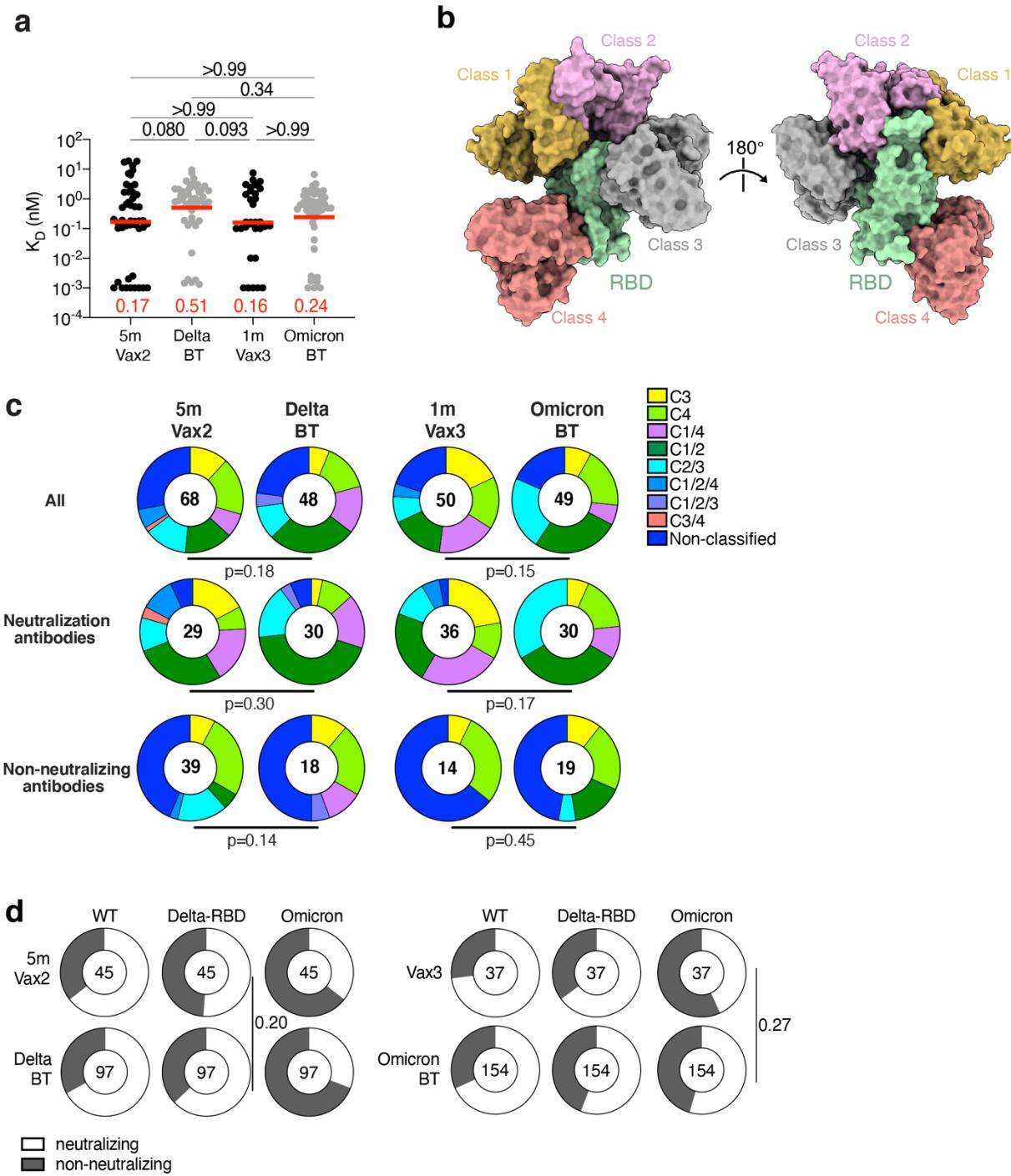
379 **a-b**, Gating strategy for phenotyping. Gating was on lymphocytes singlets that were CD20⁺ and
380 CD3-CD8-CD16-Ova-. Anti-IgG, IgM, IgA antibodies were used for B cell phenotype analysis.
381 Antigen-specific cells were detected based on binding to WT RBD-PE⁺ and RBD-AF647⁺, or to
382 Delta -RBD and Omicron BA.1-RBD. **c-e**, Graphs show the frequency of IgM, IgG, and IgA
383 isotype expression in **c**, WT RBD+ MBCs, **d**, WT+Delta+ RBD binding MBCs, **e**, WT+Omicron
384 BA.1+ RBD binding MBCs cells. **f**, Gating strategy for single-cell sorting for CD20⁺ B cells for
385 WT RBD-PE and RBD-AF647. Statistical significance in **c**, was determined by two-tailed
386 Kruskal-Wallis test with subsequent Dunn's multiple comparisons.

387


388 **Fig. S3: Frequency distribution of human V genes.**

390 **a-c**, Comparison of the frequency distribution of human V genes for heavy chain and light chains
391 of anti-RBD antibodies from this study and from a database of shared clonotypes of human B cell
392 receptor generated by Cinque Soto et al (Soto et al., 2019). Graph shows relative abundance of
393 human *IGHV* (left panel), *IGKV* (middle panel) and *IGLV* (right panel) genes in Sequence Read
394 Archive accession SRP010970 (orange), antibodies obtained from Delta breakthrough infection
395 (green), and Vax2 (blue). **d-f**, Same as **a-c**, Graph shows relative abundance of human *IGHV* (left
396 panel), *IGKV* (middle panel) and *IGLV* (right panel) genes in Sequence Read Archive accession
397 SRP010970 (orange), antibodies obtained from Omicron BA.1 breakthrough infection (green), and
398 Vax3 (blue). **g-i**, Graph shows relative abundance of human *IGHV* (left panel), *IGKV* (middle
399 panel) and *IGLV* (right panel) genes of antibodies obtained from Delta breakthrough infection
400 (orange) and from Omicron BA.1 breakthrough infection (blue). Statistical significance was
401 determined by two-sided binomial test. * = $p \leq 0.05$, ** = $p \leq 0.01$, *** = $p \leq 0.001$, **** = $p \leq 0.0001$.

402


403 **Fig. S4: Antibody gene somatic hypermutations analysis and phylogenetic trees.**

407 and Vax3(Muecksch et al., 2022). Red bars and numbers in **a** represent median value. **b**, The
408 number of somatic nucleotide mutations found in clonally related families found in 1mo after Vax3
409 and following Omicron breakthrough infection from patients C018 and C023. Color of dot plots
410 match the color of pie slices within the donut plot (Fig 2d), which indicate persisting clones. **c**, the
411 phylogenetic tree graph shows clones from C018 and C023, representing the clonal evolution of
412 RBD-binding memory B cells and derived antibodies obtained from the 3rd mRNA vaccine and
413 the following Omicron BA.1 breakthrough infection.

414

415 **Fig. S5: mAb affinity, epitopes and neutralizing breadth.**

417 **a**, Graph showing affinity measurements (K_D s) for WT RBD measured by BLI for antibodies
 418 cloned from vaccinated individuals after Delta or Omicron breakthrough infection, compared to
 419 Vax2(Cho et al., 2021), and Vax3(Muecksch et al., 2022). **b**, Diagram represents binding poses of
 420 antibodies used in BLI competition experiments on the RBD epitope. **c**, Results of epitope

421 mapping performed by competition BLI, comparing mAbs cloned from vaccinated individuals
422 after Delta(n=48) or Omicron BA.1(n=49) breakthrough infection, compared to Vax2(Cho et al.,
423 2021), and Vax3(Muecksch et al., 2022). Pie charts show the distribution of the antibody classes
424 among all RBD-binding antibodies (upper panel), WT neutralizing antibodies only (middle panel)
425 or non-neutralizing antibodies only (lower panel). Red bars represent geometric mean values.
426 Statistical significance was determined by using **a**, by two-tailed Kruskal Wallis test with
427 subsequent Dunn's multiple comparisons; **c**, two-tailed Chi-square test. **d**, Ring plots show fraction
428 of mAbs in Fig. 3c-e that are neutralizing (IC₅₀ 1-1000 ng/mL, white), or non-neutralizing
429 (IC₅₀>1000 ng/mL, black) for mutant or variant SARS-CoV-2 pseudovirus indicated across the
430 top at the time point indicated to the left. The number inside the circle indicates the number of
431 antibodies tested. The deletions/substitutions corresponding to viral variants were incorporated
432 into a spike protein that also includes the R683G substitution, which disrupts the furin cleavage
433 site and increases particle infectivity. Neutralizing activity against mutant pseudoviruses was
434 compared to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512), carrying R683G where
435 appropriate. All experiments were performed at least in duplicate and repeated twice. Statistical
436 significance in **d** was determined by using two-sided Fisher's exact test.

437

438

439

440

441

442

443

444 **Methods**

445

446 **Study participants**

447 Participants were healthy adults that had been vaccinated with 2 or 3 doses of an mRNA vaccine
448 (mRNA-1273 (Moderna) or BNT162b2 (Pfizer)) and reported breakthrough SARS-CoV-2
449 infection diagnosed by PCR or antigen testing. Breakthrough infection with delta or omicron
450 variants were deduced based on the prevalent variant circulating in New York City at the time of
451 infection(Gaebler et al., 2022). All participants provided written informed consent before
452 participation in the study and the study was conducted in accordance with Good Clinical Practice.
453 The study was performed in compliance with all relevant ethical regulations and the protocol
454 (DRO-1006) for studies with human participants was approved by the Institutional Review Board
455 of the Rockefeller University. For detailed participant characteristics see Table S1.

456

457 **Blood samples processing and storage**

458 Venous blood samples were collected into Heparin and Serum-gel monovette tubes by standard
459 phlebotomy at The Rockefeller University. Peripheral Blood Mononuclear Cells (PBMCs)
460 obtained from samples collected were further purified as previously reported by gradient
461 centrifugation and stored in liquid nitrogen in the presence of Fetal Calf Serum (FCS) and
462 Dimethylsulfoxide (DMSO) (Gaebler et al., 2021a; Robbiani et al., 2020). Heparinized serum and
463 plasma samples were aliquoted and stored at -20°C or less. Prior to experiments, aliquots of plasma
464 samples were heat-inactivated (56°C for 1 hour) and then stored at 4°C.

465

466 **ELISAs**

467 Enzyme-Linked Immunosorbent Assays (ELISAs)(Amanat et al., 2020; Grifoni. et al., 2020) were
468 performed to evaluate antibodies binding to SARS-CoV-2 wild-type (Wuhan-Hu-1) RBD, and
469 variants of concern Delta (B.1.617.2) RBD, and Omicron (BA.1) spike protein by coating of high-
470 binding 96-half-well plates (Corning 3690) with 50 μ l per well of a 1 μ g/ml indicated protein
471 solution in Phosphate-buffered Saline (PBS) overnight at 4°C. Plates were washed 6 times with
472 washing buffer (1 \times PBS with 0.05% Tween-20 (Sigma-Aldrich)) and incubated with 170 μ l per
473 well blocking buffer (1 \times PBS with 2% BSA and 0.05% Tween-20 (Sigma)) for 1 hour at room
474 temperature. Immediately after blocking, plasma samples or monoclonal antibodies were added in
475 PBS and incubated for 1 hour at room temperature. Plasma samples were assayed at a 1:66 starting
476 dilution and 10 additional 3-fold serial dilutions.
477 10 μ g/ml starting concentration was used to test monoclonal antibodies followed by 10 additional
478 4-fold serial dilutions. Plates were washed 6 times with washing buffer and then incubated with
479 anti-human IgG secondary antibody conjugated to horseradish peroxidase (HRP) (Jackson
480 Immuno Research 109-036-088 109-035-129 and Sigma A0295) in blocking buffer at a 1:5,000
481 dilution. Plates were developed by addition of the HRP substrate, 3,3',5,5'-Tetramethylbenzidine
482 (TMB) (ThermoFisher) for 10 minutes (plasma samples and monoclonal antibodies). 50 μ l of 1 M
483 H₂SO₄ was used to stop the reaction and absorbance was measured at 450 nm with an ELISA
484 microplate reader (FluoStar Omega, BMG Labtech) with Omega and Omega MARS software for
485 analysis. A positive control (For anti-RBD ELISA, plasma from participant COV72, diluted 66.6-
486 fold and ten additional threefold serial dilutions in PBS; for anti-Omicron spike ELISA, plasma
487 from B039 was used as a control) was added to every assay plate for normalization for plasma
488 samples. The average of its signal was used for normalization of all the other values on the same
489 plate with Excel software before calculating the area under the curve using Prism V9.1(GraphPad).

490 Negative controls of pre-pandemic plasma samples from healthy donors were used for validation
491 (for more details please see(Robbiani et al., 2020)). For monoclonal antibodies, the ELISA half-
492 maximal concentration (EC₅₀) was determined using four-parameter nonlinear regression
493 (GraphPad Prism V9.1). EC₅₀s above 1000 ng/mL were considered non-binders.

494

495 **Proteins**

496 The mammalian expression vector encoding the Receptor Binding-Domain (RBD) of SARS-CoV-
497 2 (GenBank MN985325.1; Spike (S) protein residues 319-539) was previously described(Barnes
498 et al., 2020b).

499

500 **SARS-CoV-2 pseudotyped reporter virus**

501 A panel of plasmids expressing RBD-mutant SARS-CoV-2 spike proteins in the context of
502 pSARS-CoV-2-S_{Δ19} has been described(Cho et al., 2021; Muecksch et al., 2021; Wang et al.,
503 2021d; Weisblum et al., 2020). Variant pseudoviruses resembling SARS-CoV-2 variants Delta
504 (B.1.617.2) and Omicron BA.1 (B.1.1.529) have been described before(Cho et al., 2021; Schmidt
505 et al., 2022; Wang et al., 2021b) and were generated by introduction of substitutions using
506 synthetic gene fragments (IDT) or overlap extension PCR mediated mutagenesis and Gibson
507 assembly. Specifically, the variant-specific deletions and substitutions introduced were:
508 Delta: T19R, Δ156-158, L452R, T478K, D614G, P681R, D950N
509 Omicron BA.1: A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D,
510 S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493K, G496S, Q498R,
511 N501Y, Y505H, T547K, D614G, H655Y, H679K, P681H, N764K, D796Y, N856K, Q954H,
512 N969H, N969K, L981F

513 Omicron BA.2: T19I, L24S, del25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A,
514 D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H,
515 D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

516 Omicron BA.4/5: T19I, L24S, del25-27, del69-70, G142D, V213G, G339D, S371F, S373P, S375F,
517 T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R,
518 N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

519 Deletions/substitutions corresponding to variants of concern listed above were incorporated into a
520 spike protein that also includes the R683G substitution, which disrupts the furin cleavage site and
521 increases particle infectivity. Neutralizing activity against mutant pseudoviruses were compared
522 to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512), carrying R683G where
523 appropriate.

524

525 SARS-CoV-2 pseudotyped particles were generated as previously described(Robbiani et al., 2020;
526 Schmidt et al., 2020a). Briefly, 293T (CRL-11268) cells were obtained from ATCC, and the cells
527 were transfected with pNL4-3ΔEnv-nanoluc and pSARS-CoV-2-S_{Δ19}, particles were harvested 48
528 hours post-transfection, filtered and stored at -80°C.

529

530 **Pseudotyped virus neutralization assay**

531 Pre-pandemic negative control plasma from healthy donors, plasma from individuals who received
532 mRNA vaccines and had Delta or Omicron BA.1 breakthrough infection, or monoclonal antibodies
533 were five-fold serially diluted and incubated with SARS-CoV-2 pseudotyped virus for 1 hour at
534 37 °C. The mixture was subsequently incubated with 293T_{Ace2} cells(Robbiani et al., 2020) (for all
535 WT neutralization assays) or HT1080/Ace2 cl14 cells (for all variant neutralization assays) for 48

536 hours after which cells were washed with PBS and lysed with Luciferase Cell Culture Lysis 5×
537 reagent (Promega). Nanoluc Luciferase activity in lysates was measured using the Nano-Glo
538 Luciferase Assay System (Promega) with the ClarioStar Microplate Multimode Reader (BMG).
539 The relative luminescence units were normalized to those derived from cells infected with SARS-
540 CoV-2 pseudotyped virus (Wang et al., 2021d) in the absence of plasma or monoclonal antibodies.
541 The half-maximal neutralization titers for plasma (NT₅₀) or half-maximal and 90% inhibitory
542 concentrations for monoclonal antibodies (IC₅₀ and IC₉₀) were determined using four-parameter
543 nonlinear regression (least squares regression method without weighting; constraints: top=1,
544 bottom=0) (GraphPad Prism).

545

546 **Biotinylation of viral protein for use in flow cytometry**

547 Purified and Avi-tagged SARS-CoV-2 WT and Delta RBD was biotinylated using the Biotin-
548 Protein Ligase-BIRA kit according to manufacturer's instructions (Avidity) as described
549 before (Robbiani et al., 2020). Ovalbumin (Sigma, A5503-1G) was biotinylated using the EZ-Link
550 Sulfo-NHS-LC-Biotinylation kit according to the manufacturer's instructions (Thermo Scientific).
551 Biotinylated ovalbumin was conjugated to streptavidin-BV711 for single-cell sorts (BD
552 biosciences, 563262) or to streptavidin-BB515 for phenotyping panel (BD, 564453). WT RBD
553 was conjugated to streptavidin-PE (BD Biosciences, 554061) and streptavidin-AF647 (Biolegend,
554 405237) for single-cell sorts, or streptavidin-BV421 (Biolegend, 405225) and streptavidin-BV711
555 (BD biosciences, 563262) for phenotyping. Delta RBD was conjugated to streptavidin-PE (BD
556 Biosciences, 554061) and Omicron BA.1 RBD (ACROBiosystems, SPD-C82E4) was conjugated
557 to streptavidin-AF647 (Biolegend, 405237).

558

559 **Flow cytometry and single cell sorting**

560 Single-cell sorting by flow cytometry was described previously(Robbiani et al., 2020). Simply,
561 peripheral blood mononuclear cells (PBMC) were enriched for B cells by negative selection using
562 a pan-B-cell isolation kit according to the manufacturer's instructions (Miltenyi Biotec, 130-101-
563 638). The enriched B cells were incubated in Flourescence-Activated Cell-sorting (FACS) buffer
564 (1 x PBS, 2% FCS, 1 mM ethylenediaminetetraacetic acid (EDTA)) with the following anti-human
565 antibodies (all at 1:200 dilution): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-
566 eFluro 780 (Invitrogen, 47-0037-41), anti-CD8-APC-eFluor 780 (Invitrogen, 47-0086-42), anti-
567 CD16-APC-eFluor 780 (Invitrogen, 47-0168-41), anti-CD14-APC-eFluor 780 (Invitrogen, 47-
568 0149-42), as well as Zombie NIR (BioLegend, 423105) and fluorophore-labeled RBD and
569 ovalbumin (Ova) for 30 min on ice. Single CD3⁻CD8⁻CD14⁻CD16⁻CD20⁺Ova⁻WT RBD-PE⁺-
570 WT RBD-AF647⁺ B cells were sorted into individual wells of 96-well plates containing 4 μ l of
571 lysis buffer (0.5 x PBS, 10 mM Dithiothreitol (DTT), 3,000 units/ml RNasin Ribonuclease
572 Inhibitors (Promega, N2615) per well using a FACS Aria III and FACSDiva software (Becton
573 Dickinson) for acquisition and FlowJo for analysis. The sorted cells were frozen on dry ice, and
574 then stored at -80 °C or immediately used for subsequent RNA reverse transcription. For B cell
575 phenotype analysis, in addition to above antibodies, B cells were also stained with following anti-
576 human antibodies (all at 1:200 dilution): anti-IgD-BV650 (BD, 740594), anti-CD27-BV786 (BD
577 biosciences, 563327), anti-CD19-BV605 (Biolegend, 302244), anti-CD71-PerCP-Cy5.5
578 (Biolegend, 334114), anti-IgG-PECF594 (BD, 562538), anti-IgM-AF700 (Biolegend, 314538),
579 anti-IgA-Viogreen (Miltenyi Biotec, 130-113-481).

580

581 **Antibody sequencing, cloning and expression**

582 Antibodies were identified and sequenced as described previously (Robbiani et al., 2020; Wang et
583 al., 2021a). In brief, RNA from single cells was reverse transcribed (SuperScript III Reverse
584 Transcriptase, Invitrogen, 18080-044), and the cDNA was stored at -20°C or used for subsequent
585 amplification of the variable *IGH*, *IGL* and *IGK* genes by nested PCR and Sanger sequencing.
586 Sequence analysis was performed using MacVector. Amplicons from the first PCR reaction were
587 used as templates for sequence- and ligation-independent cloning into antibody expression vectors.
588 Recombinant monoclonal antibodies were produced and purified as previously
589 described(Robbiani et al., 2020).

590

591 **Biolayer interferometry**

592 Biolayer interferometry assays were performed as previously described(Robbiani et al., 2020). In
593 brief, we used the Octet Red instrument (ForteBio) at 30°C with shaking at 1,000 r.p.m. Epitope
594 binding assays were performed with protein A biosensor (ForteBio 18-5010), following the
595 manufacturer's protocol “classical sandwich assay” as follows: (1) Sensor check: sensors
596 immersed 30 sec in buffer alone (buffer ForteBio 18-1105), (2) Capture 1st Ab: sensors immersed
597 10 min with Ab1 at 10 $\mu\text{g}/\text{mL}$, (3) Baseline: sensors immersed 30 sec in buffer alone, (4) Blocking:
598 sensors immersed 5 min with IgG isotype control at 10 $\mu\text{g}/\text{mL}$. (5) Baseline: sensors immersed 30
599 sec in buffer alone, (6) Antigen association: sensors immersed 5 min with RBD at 10 $\mu\text{g}/\text{mL}$. (7)
600 Baseline: sensors immersed 30 sec in buffer alone. (8) Association Ab2: sensors immersed 5 min
601 with Ab2 at 10 $\mu\text{g}/\text{mL}$. Curve fitting was performed using the Fortebio Octet Data analysis
602 software (ForteBio). Affinity measurement of anti-SARS-CoV-2 IgGs binding were corrected by
603 subtracting the signal obtained from traces performed with IgGs in the absence of WT RBD. The
604 kinetic analysis using protein A biosensor (as above) was performed as follows: (1) baseline: 60sec

605 immersion in buffer. (2) loading: 200sec immersion in a solution with IgGs 10 μ g/ml. (3) baseline:
606 200sec immersion in buffer. (4) Association: 300sec immersion in solution with WT RBD at 20,
607 10 or 5 μ g/ml (5) dissociation: 600sec immersion in buffer. Curve fitting was performed using a
608 fast 1:1 binding model and the Data analysis software (ForteBio). Mean K_D values were
609 determined by averaging all binding curves that matched the theoretical fit with an R^2 value ≥ 0.8 .

610

611 **Computational analyses of antibody sequences**

612 Antibody sequences were trimmed based on quality and annotated using Igblastn v.1.14. with
613 IMGT domain delineation system. Annotation was performed systematically using Change-O
614 toolkit v.0.4.540 (Gupta et al., 2015). Clonality of heavy and light chain was determined using
615 DefineClones.py implemented by Change-O v0.4.5 (Gupta et al., 2015). The script calculates the
616 Hamming distance between each sequence in the data set and its nearest neighbor. Distances are
617 subsequently normalized and to account for differences in junction sequence length, and clonality
618 is determined based on a cut-off threshold of 0.15. Heavy and light chains derived from the same
619 cell were subsequently paired, and clonotypes were assigned based on their V and J genes using
620 in-house R and Perl scripts. All scripts and the data used to process antibody sequences are publicly
621 available on GitHub (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).

622 The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study
623 was compared to 131,284,220 IgH and IgL sequences generated by(Soto et al., 2019) and
624 downloaded from cAb-Rep(Guo et al., 2019), a database of human shared BCR clonotypes
625 available at <https://cab-rep.c2b2.columbia.edu/>. We selected the IgH and IgL sequences from the
626 database that are partially coded by the same V genes and counted them according to the constant
627 region. The frequencies shown in Fig. S3 are relative to the source and isotype analyzed. We used

628 the two-sided binomial test to check whether the number of sequences belonging to a specific
629 *IGHV* or *IGLV* gene in the repertoire is different according to the frequency of the same IgV gene
630 in the database. Adjusted p-values were calculated using the false discovery rate (FDR) correction.
631 Significant differences are denoted with stars.

632
633 Nucleotide somatic hypermutation and Complementarity-Determining Region (CDR3) length
634 were determined using in-house R and Perl scripts. For somatic hypermutations, *IGHV* and *IGLV*
635 nucleotide sequences were aligned against their closest germlines using Igblastn and the number
636 of differences was considered to correspond to nucleotide mutations. The average number of
637 mutations for V genes was calculated by dividing the sum of all nucleotide mutations across all
638 participants by the number of sequences used for the analysis. GCTree
639 (<https://github.com/matsengrp/gctree>) (DeWitt et al., 2018) was further used to perform the
640 phylogenetic trees construction. Each node represents a unique IgH and IgL combination and the
641 size of each node is proportional to the number of identical sequences. The numbered nodes
642 represent the unobserved ancestral genotypes between the germline sequence and the sequences
643 on the downstream branch.

644

645

646 **Data presentation**

647 Figures were arranged in Adobe Illustrator 2022.

648

649 **Data availability statement:**

650 Data are provided in Tables S1-4. The raw sequencing data and computer scripts associated with
651 Figure 2 have been deposited at Github
652 (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2). This study also uses data
653 from “A Public Database of Memory and Naive B-Cell Receptor Sequences”
654 (<https://doi.org/10.5061/dryad.35ks2>), Protein Data Bank (6VYB and 6NB6), cAb-Rep
655 (<https://cab-rep.c2b2.columbia.edu/>), the Sequence Read Archive (accession SRP010970), and
656 from “High frequency of shared clonotypes in human B cell receptor repertoires”
657 (<https://doi.org/10.1038/s41586-019-0934-8>).

658

659 **Code availability statement:**

660 Computer code to process the antibody sequences is available at GitHub
661 (https://github.com/stratust/igpipeline/tree/igpipeline2_time-point_v2).

662 Reference

663 Amanat, F., D. Stadlbauer, S. Strohmeier, T.H. Nguyen, V. Chromikova, M. McMahon, K. Jiang,
664 G.A. Arunkumar, D. Jurczyszak, and J. Polanco. 2020. A serological assay to detect SARS-
665 CoV-2 seroconversion in humans. *Nature medicine* 26:1033-1036.

666 Andrews, N., J. Stowe, F. Kirsebom, S. Toffa, T. Rickeard, E. Gallagher, C. Gower, M. Kall, N. Groves,
667 A.M. O'Connell, D. Simons, P.B. Blomquist, A. Zaidi, S. Nash, N. Iwani Binti Abdul Aziz, S.
668 Thelwall, G. Dabrera, R. Myers, G. Amirthalingam, S. Gharbia, J.C. Barrett, R. Elson, S.N.
669 Ladhani, N. Ferguson, M. Zambon, C.N.J. Campbell, K. Brown, S. Hopkins, M. Chand, M.
670 Ramsay, and J. Lopez Bernal. 2022. Covid-19 Vaccine Effectiveness against the Omicron
671 (B.1.1.529) Variant. *N Engl J Med* 386:1532-1546.

672 Barnes, C.O., C.A. Jette, M.E. Abernathy, K.-M.A. Dam, S.R. Esswein, H.B. Gristick, A.G. Malyutin,
673 N.G. Sharaf, K.E. Huey-Tubman, and Y.E. Lee. 2020a. SARS-CoV-2 neutralizing antibody
674 structures inform therapeutic strategies. *Nature* 588:682-687.

675 Barnes, C.O., A.P. West Jr, K.E. Huey-Tubman, M.A. Hoffmann, N.G. Sharaf, P.R. Hoffman, N.
676 Koranda, H.B. Gristick, C. Gaebler, and F. Muecksch. 2020b. Structures of human
677 antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of
678 antibodies. *Cell* 182:828-842. e816.

679 Cao, Y., A. Yisimayi, F. Jian, W. Song, T. Xiao, L. Wang, S. Du, J. Wang, Q. Li, X. Chen, P. Wang, Z.
680 Zhang, P. Liu, R. An, X. Hao, Y. Wang, J. Wang, R. Feng, H. Sun, L. Zhao, W. Zhang, D. Zhao,
681 J. Zheng, L. Yu, C. Li, N. Zhang, R. Wang, X. Niu, S. Yang, X. Song, L. Zheng, Z. Li, Q. Gu, F.
682 Shao, W. Huang, R. Jin, Z. Shen, Y. Wang, X. Wang, J. Xiao, and X.S. Xie. - BA.2.12.1, BA.4
683 and BA.5 escape antibodies elicited by Omicron infection. - 2022.2004.2030.489997.

684 Cele, S., L. Jackson, D.S. Khoury, K. Khan, T. Moyo-Gwete, H. Tegally, J.E. San, D. Cromer, C.
685 Scheepers, D.G. Amoako, F. Karim, M. Bernstein, G. Lustig, D. Archary, M. Smith, Y. Ganga,
686 Z. Jule, K. Reedoy, S.H. Hwa, J. Giandhari, J.M. Blackburn, B.I. Gosnell, S.S. Abdool Karim,
687 W. Hanekom, S.A. Ngs, C.-K. Team, A. von Gottberg, J.N. Bhiman, R.J. Lessells, M.S. Moosa,
688 M.P. Davenport, T. de Oliveira, P.L. Moore, and A. Sigal. 2022. Omicron extensively but
689 incompletely escapes Pfizer BNT162b2 neutralization. *Nature* 602:654-656.

690 Cho, A., F. Muecksch, D. Schaefer-Babajew, Z. Wang, S. Finkin, C. Gaebler, V. Ramos, M. Cipolla,
691 P. Mendoza, M. Agudelo, E. Bednarski, J. DaSilva, I. Shimeliovich, J. Dizon, M. Daga, K.G.
692 Millard, M. Turroja, F. Schmidt, F. Zhang, T.B. Tanfous, M. Jankovic, T.Y. Oliveria, A.
693 Gazumyan, M. Caskey, P.D. Bieniasz, T. Hatzioannou, and M.C. Nussenzweig. 2021. Anti-
694 SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. *Nature*
695 600:517-522.

696 Dejnirattisai, W., J. Huo, D. Zhou, J. Zahradnik, P. Supasa, C. Liu, H.M.E. Duyvesteyn, H.M. Ginn,
697 A.J. Mentzer, A. Tuekprakhon, R. Nutalai, B. Wang, A. Dijokait, S. Khan, O. Avinoam, M.
698 Bahar, D. Skelly, S. Adele, S.A. Johnson, A. Amini, T.G. Ritter, C. Mason, C. Dold, D. Pan, S.
699 Assadi, A. Bellass, N. Omo-Dare, D. Koeckerling, A. Flaxman, D. Jenkin, P.K. Aley, M. Voysey,
700 S.A. Costa Clemens, F.G. Naveca, V. Nascimento, F. Nascimento, C. Fernandes da Costa,
701 P.C. Resende, A. Pauvolid-Correia, M.M. Siqueira, V. Baillie, N. Serafin, G. Kwatra, K. Da
702 Silva, S.A. Madhi, M.C. Nunes, T. Malik, P.J.M. Openshaw, J.K. Baillie, M.G. Semple, A.R.
703 Townsend, K.A. Huang, T.K. Tan, M.W. Carroll, P. Klenerman, E. Barnes, S.J. Dunachie, B.
704 Constantinides, H. Webster, D. Crook, A.J. Pollard, T. Lambe, O. Consortium, I.C.

705 Consortium, N.G. Paterson, M.A. Williams, D.R. Hall, E.E. Fry, J. Mongkolsapaya, J. Ren, G.
706 Schreiber, D.I. Stuart, and G.R. Scratton. 2022. SARS-CoV-2 Omicron-B.1.1.529 leads to
707 widespread escape from neutralizing antibody responses. *Cell* 185:467-484 e415.

708 DeWitt, W.S., 3rd, L. Mesin, G.D. Victora, V.N. Minin, and F.A.t. Matsen. 2018. Using Genotype
709 Abundance to Improve Phylogenetic Inference. *Mol Biol Evol* 35:1253-1265.

710 Gaebler, C., J. DaSilva, E. Bednarski, F. Muecksch, F. Schmidt, Y. Weisblum, K.G. Millard, M.
711 Turroja, A. Cho, Z. Wang, M. Caskey, M.C. Nussenzweig, P.D. Bieniasz, and T. Hatzioannou.
712 2022. SARS-CoV-2 neutralization after mRNA vaccination and variant breakthrough
713 infection. *Open Forum Infectious Diseases*

714 Gaebler, C., Z. Wang, J.C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama, A. Cho, M. Jankovic, D.
715 Schaefer-Babajew, and T.Y. Oliveira. 2021a. Evolution of antibody immunity to SARS-CoV-
716 2. *Nature* 591:639-644.

717 Gaebler, C., Z. Wang, J.C.C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama, A. Cho, M. Jankovic, D.
718 Schaefer-Babajew, T.Y. Oliveira, M. Cipolla, C. Viant, C.O. Barnes, Y. Bram, G. Breton, T.
719 Hagglof, P. Mendoza, A. Hurley, M. Turroja, K. Gordon, K.G. Millard, V. Ramos, F. Schmidt,
720 Y. Weisblum, D. Jha, M. Tankelevich, G. Martinez-Delgado, J. Yee, R. Patel, J. Dizon, C.
721 Unson-O'Brien, I. Shimeliovich, D.F. Robbiani, Z. Zhao, A. Gazumyan, R.E. Schwartz, T.
722 Hatzioannou, P.J. Bjorkman, S. Mehandru, P.D. Bieniasz, M. Caskey, and M.C.
723 Nussenzweig. 2021b. Evolution of antibody immunity to SARS-CoV-2. *Nature* 591:639-644.

724 Goel, R.R., M.M. Painter, K.A. Lundgreen, S.A. Apostolidis, A.E. Baxter, J.R. Giles, D. Mathew, A.
725 Pattekar, A. Reynaldi, D.S. Khouri, S. Gouma, P. Hicks, S. Dysinger, A. Hicks, H. Sharma, S.
726 Herring, S. Korte, W. Kc, D.A. Oldridge, R.I. Erickson, M.E. Weirick, C.M. McAllister, M.
727 Awofolaju, N. Tanenbaum, J. Dougherty, S. Long, K. D'Andrea, J.T. Hamilton, M.
728 McLaughlin, J.C. Williams, S. Adamski, O. Kuthuru, E.M. Drapeau, M.P. Davenport, S.E.
729 Hensley, P. Bates, A.R. Greenplate, and E.J. Wherry. 2022. Efficient recall of Omicron-
730 reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. *Cell* 185:1875-
731 1887 e1878.

732 Grifoni, A., D. Weiskopf, and S.I. Ramirez. 2020. Targets of T cell responses to SARS-CoV-2
733 coronavirus in humans with COVID-19 disease and unexposed individuals. *Cell*

734 Guo, Y., K. Chen, P.D. Kwong, L. Shapiro, and Z. Sheng. 2019. cAb-Rep: a database of curated
735 antibody repertoires for exploring antibody diversity and predicting antibody prevalence.
736 *Frontiers in immunology* 23:65.

737 Gupta, N.T., J.A. Vander Heiden, M. Uduman, D. Gadala-Maria, G. Yaari, and S.H. Kleinstein. 2015.
738 Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing
739 data. *Bioinformatics* 31:3356-3358.

740 Hachmann, N.P., J. Miller, A.-r.Y. Collier, J.D. Ventura, J. Yu, M. Rowe, E.A. Bondzie, O. Powers, N.
741 Surve, K. Hall, and D.H. Barouch. 2022. Neutralization Escape by the SARS-CoV-2 Omicron
742 Variants BA.2.12.1 and BA.4/BA.5. *medRxiv* 2022.2005.2016.22275151.

743 Kaku, C.I., A.J. Bergeron, C. Ahlm, J. Normark, M. Sakharkar, M.N.E. Forsell, and L.M. Walker. 2022.
744 Recall of pre-existing cross-reactive B cell memory following Omicron BA.1 breakthrough
745 infection. *Sci Immunol* eabq3511.

746 Kuhlmann, C., C.K. Mayer, M. Claassen, T. Maponga, W.A. Burgers, R. Keeton, C. Riou, A.D.
747 Sutherland, T. Suliman, M.L. Shaw, and W. Preiser. 2022. Breakthrough infections with
748 SARS-CoV-2 omicron despite mRNA vaccine booster dose. *Lancet* 399:625-626.

749 Liu, C., H.M. Ginn, W. Dejnirattisai, P. Supasa, B. Wang, A. Tuekprakhon, R. Nutalai, D. Zhou, A.J.
750 Mentzer, Y. Zhao, H.M.E. Duyvesteyn, C. Lopez-Camacho, J. Slon-Campos, T.S. Walter, D.
751 Skelly, S.A. Johnson, T.G. Ritter, C. Mason, S.A. Costa Clemens, F. Gomes Naveca, V.
752 Nascimento, F. Nascimento, C. Fernandes da Costa, P.C. Resende, A. Pauvolid-Correa,
753 M.M. Siqueira, C. Dold, N. Temperton, T. Dong, A.J. Pollard, J.C. Knight, D. Crook, T. Lambe,
754 E. Clutterbuck, S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S.C. Gilbert, T. Malik,
755 M.W. Carroll, P. Klenerman, E. Barnes, S.J. Dunachie, V. Baillie, N. Serafin, Z. Ditse, K. Da
756 Silva, N.G. Paterson, M.A. Williams, D.R. Hall, S. Madhi, M.C. Nunes, P. Goulder, E.E. Fry,
757 J. Mongkolsapaya, J. Ren, D.I. Stuart, and G.R. Screamton. 2021. Reduced neutralization of
758 SARS-CoV-2 B.1.617 by vaccine and convalescent serum. *Cell* 184:4220-4236 e4213.

759 Madhi, S.A., G. Kwatra, J.E. Myers, W. Jassat, N. Dhar, C.K. Mukendi, A.J. Nana, L. Blumberg, R.
760 Welch, N. Ngorima-Mabhena, and P.C. Mutevedzi. 2022. Population Immunity and Covid-
761 19 Severity with Omicron Variant in South Africa. *N Engl J Med* 386:1314-1326.

762 Mallapaty, S. 2022. COVID-19: How Omicron overtook Delta in three charts. *Nature*
763 Muecksch, F., Z. Wang, A. Cho, C. Gaebler, T. Ben Tanfous, J. DaSilva, E. Bednarski, V. Ramos, S.
764 Zong, B. Johnson, R. Raspe, D. Schaefer-Babajew, I. Shimeliovich, M. Daga, K.H. Yao, F.
765 Schmidt, K.G. Millard, M. Turroja, M. Jankovic, T.Y. Oliveira, A. Gazumyan, M. Caskey, T.
766 Hatzioannou, P.D. Bieniasz, and M.C. Nussenzweig. 2022. Increased Memory B Cell
767 Potency and Breadth After a SARS-CoV-2 mRNA Boost. *Nature*
768 Muecksch, F., Y. Weisblum, C.O. Barnes, F. Schmidt, D. Schaefer-Babajew, Z. Wang, J.C. Lorenzi,
769 A.I. Flyak, A.T. DeLaitsch, and K.E. Huey-Tubman. 2021. Affinity maturation of SARS-CoV-
770 2 neutralizing antibodies confers potency, breadth, and resilience to viral escape
771 mutations. *Immunity* 54:1853-1868. e1857.

772 Nealon, J., and B.J. Cowling. 2022. Omicron severity: milder but not mild. *Lancet* 399:412-413.

773 Nemet, I., L. Kliker, Y. Lustig, N. Zuckerman, O. Erster, C. Cohen, Y. Kreiss, S. Alroy-Preis, G. Regev-
774 Yochay, E. Mendelson, and M. Mandelboim. 2022. Third BNT162b2 Vaccination
775 Neutralization of SARS-CoV-2 Omicron Infection. *N Engl J Med* 386:492-494.

776 Nutalai, R., D. Zhou, A. Tuekprakhon, H.M. Ginn, P. Supasa, C. Liu, J. Huo, A.J. Mentzer, H.M.E.
777 Duyvesteyn, A. Dijokait-Guraliuc, D. Skelly, T.G. Ritter, A. Amini, S. Bibi, S. Adele, S.A.
778 Johnson, B. Constantinides, H. Webster, N. Temperton, P. Klenerman, E. Barnes, S.J.
779 Dunachie, D. Crook, A.J. Pollard, T. Lambe, P. Goulder, C. Conlon, A. Deeks, J. Frater, L.
780 Frending, S. Gardiner, A. Jämsén, K. Jeffery, T. Malone, E. Phillips, L. Rothwell, L. Stafford,
781 N.G. Paterson, M.A. Williams, D.R. Hall, J. Mongkolsapaya, E.E. Fry, W. Dejnirattisai, J. Ren,
782 D.I. Stuart, and G.R. Screamton. 2022. Potent cross-reactive antibodies following Omicron
783 breakthrough in vaccinees. *Cell*

784 Park, Y.-J., D. Pinto, A.C. Walls, Z. Liu, A.D. Marco, F. Benigni, F. Zatta, C. Silacci-Fregni, J. Bassi,
785 K.R. Sprouse, A. Addetia, J.E. Bowen, C. Stewart, M. Giurdanella, C. Saliba, B. Guarino, M.A.
786 Schmid, N. Franko, J. Logue, H.V. Dang, K. Hauser, J. di Iulio, W. Rivera, G. Schnell, F.A.
787 Lempp, J. Janer, R. Abdelnabi, P. Maes, P. Ferrari, A. Ceschi, O. Giannini, G. Dias de Melo,
788 L. Kergoat, H. Bourhy, J. Neyts, L. Soriaga, L.A. Purcell, G. Snell, S.P.J. Whelan, A.
789 Lanzavecchia, H.W. Virgin, L. Piccoli, H. Chu, M.S. Pizzuto, D. Corti, and D. Veesler. 2022.
790 Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. *bioRxiv*
791 2022.2005.2008.491108.

792 Quandt, J., A. Muik, N. Salisch, B.G. Lui, S. Lutz, K. Kruger, A.K. Wallisch, P. Adams-Quack, M.
793 Bacher, A. Finlayson, O. Ozhelvaci, I. Vogler, K. Grikscheit, S. Hoehl, U. Goetsch, S. Ciesek,
794 O. Tureci, and U. Sahin. 2022. Omicron BA.1 breakthrough infection drives cross-variant
795 neutralization and memory B cell formation against conserved epitopes. *Sci Immunol*
796 eabq2427.

797 Richardson, S.I., V.S. Madzorera, H. Spencer, N.P. Manamela, M.A. van der Mescht, B.E. Lambson,
798 B. Oosthuysen, F. Ayres, Z. Makhado, T. Moyo-Gwete, N. Mzindle, T. Motlou, A. Strydom,
799 A. Mendes, H. Tegally, Z. de Beer, T. Roma de Villiers, A. Bodenstein, G. van den Berg, M.
800 Venter, T. de Oliviera, V. Ueckermann, T.M. Rossouw, M.T. Boswell, and P.L. Moore. 2022.
801 SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in
802 previously vaccinated, but not unvaccinated, individuals. *Cell Host Microbe*

803 Robbiani, D.F., C. Gaebler, F. Muecksch, J.C.C. Lorenzi, Z. Wang, A. Cho, M. Agudelo, C.O. Barnes,
804 A. Gazumyan, S. Finkin, T. Hagglof, T.Y. Oliveira, C. Viant, A. Hurley, H.H. Hoffmann, K.G.
805 Millard, R.G. Kost, M. Cipolla, K. Gordon, F. Bianchini, S.T. Chen, V. Ramos, R. Patel, J.
806 Dizon, I. Shimeliovich, P. Mendoza, H. Hartweger, L. Nogueira, M. Pack, J. Horowitz, F.
807 Schmidt, Y. Weisblum, E. Michailidis, A.W. Ashbrook, E. Waltari, J.E. Pak, K.E. Huey-
808 Tubman, N. Koranda, P.R. Hoffman, A.P. West, Jr., C.M. Rice, T. Hatzioannou, P.J.
809 Bjorkman, P.D. Bieniasz, M. Caskey, and M.C. Nussenzweig. 2020. Convergent antibody
810 responses to SARS-CoV-2 in convalescent individuals. *Nature* 584:437-442.

811 Schmidt, F., F. Muecksch, Y. Weisblum, J. Da Silva, E. Bednarski, A. Cho, Z. Wang, C. Gaebler, M.
812 Caskey, and M.C. Nussenzweig. 2022. Plasma neutralization of the SARS-CoV-2 Omicron
813 variant. *New Engl J Med* 386:599-601.

814 Schmidt, F., Y. Weisblum, F. Muecksch, H.-H. Hoffmann, E. Michailidis, J.C. Lorenzi, P. Mendoza,
815 M. Rutkowska, E. Bednarski, and C. Gaebler. 2020a. Measuring SARS-CoV-2 neutralizing
816 antibody activity using pseudotyped and chimeric viruses. *Journal of Experimental
817 Medicine* 217:

818 Schmidt, F., Y. Weisblum, F. Muecksch, H.H. Hoffmann, E. Michailidis, J.C.C. Lorenzi, P. Mendoza,
819 M. Rutkowska, E. Bednarski, C. Gaebler, M. Agudelo, A. Cho, Z. Wang, A. Gazumyan, M.
820 Cipolla, M. Caskey, D.F. Robbiani, M.C. Nussenzweig, C.M. Rice, T. Hatzioannou, and P.D.
821 Bieniasz. 2020b. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped
822 and chimeric viruses. *J Exp Med* 217:

823 Seaman, M.S., M.J. Siedner, J. Boucau, C.L. Levine, F. Gantous, M.Y. Liew, J. Mathews, A. Singh,
824 C. Marino, J. Regan, R. Uddin, M.C. Choudhary, J.P. Flynn, G. Chen, A.M. Stuckwisch, T.
825 Lipiner, A. Kittilson, M. Melberg, R.F. Gilbert, Z. Reynolds, S.L. Iyer, G.C. Chamberlin, T.D.
826 Vyas, J.M. Vyas, M.B. Goldberg, J. Luban, J.Z. Li, A.K. Barczak, and J.E. Lemieux. 2022.
827 Vaccine Breakthrough Infection with the SARS-CoV-2 Delta or Omicron (BA.1) Variant
828 Leads to Distinct Profiles of Neutralizing Antibody Responses. *medRxiv*

829 Servellita, V., A.M. Syed, M.K. Morris, N. Brazer, P. Saldhi, M. Garcia-Knight, B. Sreekumar, M.M.
830 Khalid, A. Ciling, P.Y. Chen, G.R. Kumar, A.S. Gliwa, J. Nguyen, A. Sotomayor-Gonzalez, Y.
831 Zhang, E. Frias, J. Prostko, J. Hackett, Jr., R. Andino, D.A. Wadford, C. Hanson, J. Doudna,
832 M. Ott, and C.Y. Chiu. 2022. Neutralizing immunity in vaccine breakthrough infections
833 from the SARS-CoV-2 Omicron and Delta variants. *Cell* 185:1539-1548 e1535.

834 Sokal, A., P. Chappert, G. Barba-Spaeth, A. Roeser, S. Fourati, I. Azzaoui, A. Vandenberghe, I.
835 Fernandez, A. Meola, M. Bouvier-Alias, E. Crickx, A. Beldi-Ferchiou, S. Hue, L. Languille, M.

836 Michel, S. Baloul, F. Noizat-Pirenne, M. Luka, J. Megret, M. Menager, J.M. Pawlotsky, S.
837 Fillatreau, F.A. Rey, J.C. Weill, C.A. Reynaud, and M. Mahevas. 2021. Maturation and
838 persistence of the anti-SARS-CoV-2 memory B cell response. *Cell* 184:1201-1213 e1214.

839 Soto, C., R.G. Bombardi, A. Branchizio, N. Kose, P. Matta, A.M. Sevy, R.S. Sinkovits, P. Gilchuk, J.A.
840 Finn, and J.E. Crowe. 2019. High frequency of shared clonotypes in human B cell receptor
841 repertoires. *Nature* 566:398-402.

842 Supasa, P., D. Zhou, W. Dejnirattisai, C. Liu, A.J. Mentzer, H.M. Ginn, Y. Zhao, H.M.E. Duyvesteyn,
843 R. Nutalai, A. Tuekprakhon, B. Wang, G.C. Paesen, J. Slon-Campos, C. Lopez-Camacho, B.
844 Hallis, N. Coombes, K.R. Bewley, S. Charlton, T.S. Walter, E. Barnes, S.J. Dunachie, D. Skelly,
845 S.F. Lumley, N. Baker, I. Shaik, H.E. Humphries, K. Godwin, N. Gent, A. Sienkiewicz, C. Dold,
846 R. Levin, T. Dong, A.J. Pollard, J.C. Knight, P. Klenerman, D. Crook, T. Lambe, E. Clutterbuck,
847 S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S. Gilbert, D.R. Hall, M.A. Williams,
848 N.G. Paterson, W. James, M.W. Carroll, E.E. Fry, J. Mongkolsapaya, J. Ren, D.I. Stuart, and
849 G.R. Screamton. 2021. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by
850 convalescent and vaccine sera. *Cell* 184:2201-2211 e2207.

851 Victora, G.D., and M.C. Nussenzweig. 2022. Germinal centers. *Annual review of immunology*
852 40:413-442.

853 Wang, Z., J.C. Lorenzi, F. Muecksch, S. Finkin, C. Viant, C. Gaebler, M. Cipolla, H.-H. Hoffmann, T.Y.
854 Oliveira, and D.A. Oren. 2021a. Enhanced SARS-CoV-2 neutralization by dimeric IgA. *Science translational medicine* 13:eabf1555.

855 Wang, Z., F. Muecksch, D. Schaefer-Babajew, S. Finkin, C. Viant, C. Gaebler, H.-H. Hoffmann, C.O.
856 Barnes, M. Cipolla, and V. Ramos. 2021b. Naturally enhanced neutralizing breadth against
857 SARS-CoV-2 one year after infection. *Nature* 595:426-431.

858 Wang, Z., F. Muecksch, D. Schaefer-Babajew, S. Finkin, C. Viant, C. Gaebler, H.H. Hoffmann, C.O.
859 Barnes, M. Cipolla, V. Ramos, T.Y. Oliveira, A. Cho, F. Schmidt, J. Da Silva, E. Bednarski, L.
860 Aguado, J. Yee, M. Daga, M. Turroja, K.G. Millard, M. Jankovic, A. Gazumyan, Z. Zhao, C.M.
861 Rice, P.D. Bieniasz, M. Caskey, T. Hatzioannou, and M.C. Nussenzweig. 2021c. Naturally
862 enhanced neutralizing breadth against SARS-CoV-2 one year after infection. *Nature*
863 595:426-431.

864 Wang, Z., F. Schmidt, Y. Weisblum, F. Muecksch, C.O. Barnes, S. Finkin, D. Schaefer-Babajew, M.
865 Cipolla, C. Gaebler, J.A. Lieberman, T.Y. Oliveira, Z. Yang, M.E. Abernathy, K.E. Huey-
866 Tubman, A. Hurley, M. Turroja, K.A. West, K. Gordon, K.G. Millard, V. Ramos, J. Da Silva, J.
867 Xu, R.A. Colbert, R. Patel, J. Dizon, C. Unson-O'Brien, I. Shimeliovich, A. Gazumyan, M.
868 Caskey, P.J. Bjorkman, R. Casellas, T. Hatzioannou, P.D. Bieniasz, and M.C. Nussenzweig.
869 2021d. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. *Nature*
870 592:616-622.

871 Weisblum, Y., F. Schmidt, F. Zhang, J. DaSilva, D. Poston, J.C. Lorenzi, F. Muecksch, M. Rutkowska,
872 H.-H. Hoffmann, and E. Michailidis. 2020. Escape from neutralizing antibodies by SARS-
873 CoV-2 spike protein variants. *eLife* 9:e61312.

874 Whitaker, M., J. Elliott, B. Bodinier, W. Barclay, H. Ward, G. Cooke, C.A. Donnelly, M. Chadeau-
875 Hyam, and P. Elliott. 2022. Variant-specific symptoms of COVID-19 among 1,542,510
876 people in England. *medRxiv* 2022.2005.2021.22275368.

877 Wolter, N., W. Jassat, S. Walaza, R. Welch, H. Moultrie, M. Groome, D.G. Amoako, J. Everatt, J.N.
878 Bhiman, C. Scheepers, N. Tebeila, N. Chiwandire, M. du Plessis, N. Govender, A. Ismail, A.

880 Glass, K. Mlisana, W. Stevens, F.K. Treurnicht, Z. Makatini, N.Y. Hsiao, R. Parboosing, J.
881 Wadula, H. Hussey, M.A. Davies, A. Boulle, A. von Gottberg, and C. Cohen. 2022. Early
882 assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a
883 data linkage study. *Lancet* 399:437-446.

884 World Health, O. 2022. WHO SAGE roadmap for prioritizing uses of COVID-19 vaccines: an
885 approach to optimize the global impact of COVID-19 vaccines, based on public health
886 goals, global and national equity, and vaccine access and coverage scenarios, first issued
887 20 October 2020, updated: 13 November 2020, updated: 16 July 2021, latest update: 21
888 January 2022. In World Health Organization, Geneva.

889 Yuan, M., H. Liu, N.C. Wu, C.-C.D. Lee, X. Zhu, F. Zhao, D. Huang, W. Yu, Y. Hua, and H. Tien. 2020.
890 Structural basis of a shared antibody response to SARS-CoV-2. *Science* 369:1119-1123.
891