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3

1IONS institute, UCLouvain, Belgium4

2Department of Brain and Cognitive Sciences & McGovern Institute, MIT, USA5

3University of Oxford, UK6

4Computational and Biological Learning Unit, Department of Engineering, University of Cambridge, UK7

ABSTRACT8

Pain typically evolves over time and the brain needs to learn this temporal evolution to predict how pain is likely to change in
the future and orient behavior. This process is termed temporal statistical learning (TSL). Recently, it has been shown that TSL
for pain sequences can be achieved using optimal Bayesian inference, which is encoded in somatosensory processing regions.
Here, we investigate whether the confidence of these probabilistic predictions modulates the EEG response to noxious stimuli,
using a TSL task. Confidence measures the uncertainty about the probabilistic prediction, irrespective of its actual outcome.
Bayesian models dictate that the confidence about probabilistic predictions should be integrated with incoming inputs and
weight learning, such that it modulates the early components of the EEG responses to noxious stimuli, and this should be
captured by a negative correlation: when confidence is higher, the early neural responses are smaller as the brain relies more
on expectations/predictions and less on sensory inputs (and vice versa). We show that participants were able to predict the
sequence transition probabilities using Bayesian inference, with some forgetting. Then, we find that the confidence of these
probabilistic predictions was negatively associated with the amplitude of the N2 and P2 components of the Vertex Potential:
the more confident were participants about their predictions, the smaller was the Vertex Potential. These results confirm key
predictions of a Bayesian learning model and clarify the functional significance of the early EEG responses to nociceptive
stimuli, as being implicated in confidence-weighted statistical learning.
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SIGNIFICANCE25

The functional significance of EEG responses to pain has long been debated because of their dramatic
variability. This study indicates that such variability can be partly related to the confidence of probabilistic
predictions emerging from sequences of pain inputs. The confidence of pain predictions is negatively
associated with the cortical EEG responses to pain. This indicates that the brain relies less on sensory
inputs when confidence is higher and shows us that confidence-weighted statistical learning modulates
the cortical response to pain.
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INTRODUCTION32

In order to survive, animals need to minimise their risk of harm and can do so by learning to predict pain and33

other body threats. Learning to predict threats is necessary to orient behaviour. How does the brain learn to34

predict pain and aversive states? The majority of previous work has focused on associative learning to predict35

pain outcomes based on non-pain cues (Atlas et al., 2010; Atlas and Wager, 2012; Jepma et al., 2018; Strube36

et al., 2021). Associative learning well describes the prediction of isolated, transient threatening events, but37
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is insufficient to characterise learning to predict long-lasting sequences of pain inputs (Mancini et al., 2022),38

which typically occur in pain conditions (Schulz et al., 2015). When experiencing temporally-evolving pain,39

the brain needs to learn to predict forthcoming pain based on its past history. Recently, we have shown that40

learning to predict pain sequences can be achieved using optimal Bayesian inference, in absence of non-pain41

cues (Mancini et al., 2022). Probabilistic predictions of the frequency of getting pain are encoded in the42

human primary and secondary cortex, motor cortex and right caudate, whereas their precision is encoded in43

the right superior parietal cortex.44

Bayesian inference frameworks make testable hypotheses about the role of confidence in learning and45

its effect on neural activity. The confidence and error of neural predictions are dissociable measures of46

uncertainty. Confidence is a measure of the variability of the prediction, irrespective of the outcome of the47

prediction. In contrast, the prediction error refers to the discrepancy between a prediction and reality. A48

Bayesian inference account predicts that the confidence of a probabilistic inference (1) weights learning, (2)49

is integrated with sensory information at early stages of information processing, and (3) is inversely related50

with sensory cortical responses (i.e. high confidence reduces sensory responses) as the brain relies less on51

incoming sensory inputs (Büchel et al., 2014; Seymour and Mancini, 2020). Here, we test these predictions52

using a TSL task with thermal stimuli and EEG in healthy, human participants.53

We focus on the largest wave that can be recorded from EEG in response to transient sensory stimuli:54

the Vertex Potential (VP) (Cruccu et al., 2008). The VP is typically composed by a biphasic, negative (N255

component) and positive (P2 component) waveform with a characteristic, symmetric scalp distribution56

with peak over the vertex (Cz-FCz). The VP can be observed for stimuli in virtually any sensory modality57

(Mouraux and Iannetti, 2009), but despite its ubiquity there is no consensus over its functional significance.58

The traditional interpretation is that the VP reflects the intensity of a sensory stimulus (Chen et al.,59

2001; Cruccu et al., 2008; De Keyser et al., 2018). A recent study using a pain conditioning paradigm did60

not find evidence for a modulation of the VP by expectations and prediction errors, suggesting that the VP61

mostly reflects the sensory processing of a stimulus (Nickel et al., 2022). However, other studies have shown62

that the amplitude of the VP is modulated by the history and unpredictability of previous stimuli, and can63

be decoupled from perceived intensity (Bromm and Treede, 1987; Ronga et al., 2012; Torta et al., 2012;64

Valentini et al., 2012; Mancini et al., 2018).65

The seemingly divergent conclusions of previous studies could stem from the different definitions of66

stimulus predictability and uncertainty, and the lack of a mathematical quantification of these concepts.67

Here we use a normative approach to dissect the contributions of temporal predictions, their confidence and68

error on the Event Related Potentials (ERPs) elicited by sequences of somatosensory, thermal stimuli. The69

stimulus sequences had a probabilistic (Markovian) temporal structure, with underlying statistics that can70

be learned (Fig. 1) (Mancini et al., 2022).71

RESULTS72

Thirty-one human participants received five different types of probabilistic sequences of thermal stimuli73

delivered with a contact thermode to the right forearm (Fig. 1a). In each sequence, there were two types74

of stimuli – one stimulus was cold (I1), and the other was painfully hot (I2, above the Aδ-fiber threshold).75

The low intensity was chosen as being cold to ensure that the participants were able to discriminate76

both intensities based on pilot experiments. The sequences transitioned between the cold and hot stimuli77

according to a Markovian process described with two generative transition probabilities (TPs, Fig. 1c-d).78

Occasionally, the sequence was paused and participants were asked to predict the probability of the next79

stimulus based on the previous stimuli and to report their confidence in these estimates on a numerical80

rating scale (Fig. 1b). Each participant received 2 sequences of 100 stimuli generated with each of the81

5 distinct TPs indicated in Fig. 1d in a randomized order and was informed that the sequence statistics82

changed (see Methods). On average along the whole experiment, participants received similar numbers83

of stimuli from both intensities and rated similar numbers of transitions from both intensities (Fig. S1).84

In line with our previous work, participants were able to predict the frequency of the stimulus intensities,85

as shown by the positive association between generative and rated item frequencies in Fig. 2a. Likewise,86

with a slightly improved accuracy, participants were able to estimate the transition probabilities from one87

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503296
http://creativecommons.org/licenses/by/4.0/


intensity to the other, as indicated in Figs. 2b-c. Finally, the subjective confidence reports were quadratically88

related to the probability estimates: confidence tended to increase for more extreme probability estimates,89

as previously reported for auditory and visual sequences (Meyniel et al., 2016).90
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Figure 1. Temporal statistical learning experiment.
a, Examples of sequences of stimuli of intensities I1 and I2 that are applied to the participants’ forearm. Each sequence has different generative
statistics (a majority of I2 or I1, more alternations or repetitions, etc) and the inter-stimulus-interval (ISI) is set to 3 seconds.
b, Behavioral questions asked to the participants every 15±3 stimuli in the sequences to evaluate their stimulus probability estimates and numerical
confidence in these predictions. The sequences are paused during a maximum of 8 seconds per question.
c, Markovian generative process of the sequences of stimuli whose intensities are I1 and I2.
d, Transition probability matrix in which the five generative pairs of transition probabilities (TPs) employed are indicated with bold numbers. One
example of sequence generated with each of these five TPs is shown in a.

Behavioral modeling91

First, we defined the computational principles underlying the participants’ inference of the sequence statistics.92

We therefore consider a series of models which are fed with the exact same sequences of binary inputs as93

the participants. Each of these models constructs predictions about the stimulus probabilities along the94

sequences and can be compared to the subjective reports to shed light on the mechanisms of pain inference.95

We fitted two families of three models to the subjective probability estimates obtained in the statistical96

learning task. One family of models uses Bayesian inference, whereas the other family uses a heuristic,97

i.e. a non-probabilistic delta rule (Rescorla-Wagner model) with fixed learning rate. The Bayesian models98

use the confidence of the prediction to weight the update of the representation of the stimulus statistics,99

whereas delta rule models use a fixed learning rate which is not scaled by uncertainty. In each family, the100

models differ according to what they predict: the item frequency (IF), the alternation frequency (AF) or the101
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Figure 2. Participants identify the generative sequence statistics.
a, True and rated probabilities to receive a stimulus of intensity I1 are correlated subject-wise. The mean correlation across participants is 0.454
(t30 = 13.603 , p< 10−5, Cohen’s d = 2.443), indicating that participants identify the trends within the sequences. Dotted line: identity, plain line:
linear fit averaged across participants, blue squares: mean rated probabilities.
b, Participants also accurately identify the trends in the transitions from I1. The grand mean correlation between generative and estimated p(I1|I1) is
0.549 (t30 = 14.007 , p< 10−5, Cohen’s d = 2.516).
c, Similar to b for the transitions from I2. The grand mean correlation between generative and estimated p(I1|I2) is 0.489 (t30 = 11.585 , p< 10−5,
Cohen’s d = 2.443).
d, Confidence reports are quadratically related to the probability estimates (mean coefficient of determination of the quadratic fits: R2 = 0.47). Plain
colored lines: individual quadratic fits, thick plain black line: quadratic fit averaged across participants.
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Figure 3. Model comparison. Six different models are considered to explain the subjective reports: Bayesian learners inferring the alternation
frequency (AF), the item frequency (IF) or the transition probabilities (TPs), and delta-rule, or Rescorla-Wagner (RW) models, inferring the same
sequence statistics (AF, IF, TP).
a, Bayesian model comparison shows that the participants’ reports are best approximated by a Bayesian model learning the TPs (the exceedance
probability of this model – i.e. the probability for this model to be more frequent than the others in the population – is φ = 0.974). Colored bars:
model probabilities, horizontal gray line: prior (uniform) probability.
b, Bayesian model averaging reveals that the participants’ integration of observations is best approximated with a time constant ω of 8 stimuli.
Horizontal line: uniform prior probability, shaded area: s.e.m. across participants, plain dot: curve maximum. The inset illustrates the exponentially
decreasing weights that are used to count the number of past stimuli when n stimuli have been delivered, with a time constant ω of 8.
c, Individual model probabilities (reflecting the similarity between estimated and modeled probabilities) indicate that most subjective reports are best
approximated by the Bayesian model learning the TPs, and to a lesser extent by the Bayesian model learning the IFs, but not much by RW models.

transition probabilities (TPs) of the stimuli.102

At group level, we found that probability estimates were best approximated by a Bayesian model which103

estimates the transition probabilities (Fig 3a). Given that the sequences were not volatile, we used Bayesian104

models with fixed update of beliefs and a leaky integration to account for forgetting. We estimated that105

an integration time constant of approximately 8 stimuli best approximated behaviour (Fig 3b), which106

corresponds to 24 seconds and an integration half-life of around 6 stimuli. This provides evidence that107

statistical learning for nociceptive stimuli uses a Bayesian inference strategy, whereby the update of the108

representation is weighted by confidence.109

A minority of subjects (n=11) favoured a simpler Bayesian inference strategy, predicting item frequencies110

instead of transition probabilities (Fig. 3c). This somehow contrasts with our previous study with volatile111

sequences, in which only a minority of participants could predict the TPs between the stimuli, whereas the112

majority of participants showed a preference for the simpler strategy of encoding the IF (Mancini et al.,113

2022). Here, the two models that best approximate the subjective reports and are above the prior uniform114

probability remain the Bayesian models learning the IF or the TPs, but most participants were able to predict115

the more complex temporal statistics that are the TPs (Fig. 3c). This discrepancy can be explained by the116

fact that the present task was simplified by the absence of volatility in the generative sequence statistics.117

Note that frequency can always be derived from transition probabilities (the IF corresponds to the principal118

diagonal of the TP matrix, see Fig. 1d), so participants who prefer a transition probability inference strategy119

should also access the frequency of the stimuli.120

To explore the quality of the fit (i.e. to which extent the winning model is actually close to the participant’s121

responses), we display the positive correlation between rated and model probability estimates in Fig. 4a.122

Overall, participants’ reports were highly correlated with the model estimates (grand mean correlation of123

0.659, t30 = 24.4, p< 10−5). Importantly, the confidence ratings (which were not used to optimize the fit124

of the model) correlated with the confidence measures deduced from the Bayesian model, Fig. 4b (grand125

mean correlation of 0.285, t30= 9.3, p< 10−5). Bayesian confidence relates to the statistical certainty about126

the estimated TPs, i.e. to the inverse spread of the posterior distribution over these TPs. The quality of the127

confidence fit was similar to previous works (Meyniel, 2020). We then quantified the accuracy of probability128

and confidence ratings as the correlation coefficients between rated and model estimates, and found they129

were positively correlated across participants (Fig. 4c, correlation of 0.493, p= 0.005). This indicates that130

optimizing the model to probability estimates provides a good description of participant’s confidence ratings;131

it also suggests that confidence and probability estimates are derived from a common cognitive process, in132

line with previous works (Meyniel et al., 2015; Gherman and Philiastides, 2015). Finally, Fig. 4d illustrates133

the quadratic relationship between Bayesian model probability estimates and confidence, similarly to what134

we observed for the subjective reports (Fig. 2d).135
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Figure 4. Quality of fit of the best model for the ratings. Subjective estimates of stimulus probability and confidence are highly correlated with
Bayes-optimal values obtained from a model learning the TPs with an integration time constant of 8 stimuli.
a, Scatter plot of estimated and modeled stimulus probabilities, with one color per participant. The grand mean correlation is 0.659 (t30 = 24.398 ,
p< 10−5, Cohen’s d = 4.382). Dotted line: identity, plain colored lines: individual linear fits, thick plain black line: linear fit averaged across
participants.
b, Scatter plot of estimated and modeled confidence, with the same color code as in a. The grand mean correlation is 0.285 (t30 = 9.293 , p< 10−5,
Cohen’s d = 1.669).
c, The accuracy of probability and confidence estimates are positively correlated across participants (Pearson correlation: 0.493, p= 0.005). Each
accuracy was computed as the correlation coefficient between the subjective reports and the model estimates across trials.
d, Bayesian confidence is quadratically related to Bayesian probability estimates (mean coefficient of determination of the quadratic fits: R2 = 0.59).
Plain colored lines: quadratic fits obtained using the sequences of each participant, thick plain black line: quadratic fit averaged across participants’
sequences.

EEG136

Sixty-four channels EEG was recorded on all participants while they were exposed to the sequences of137

thermal stimuli. As expected, the main evoked response consisted in a biphasic waveform – the Vertex138

Potential (VP) – which peaked over fronto-central electrodes (Cruccu et al., 2008; Legrain et al., 2011).139

Figure 5a illustrates the grand-average VPs following cool (I1) and hot (I2) stimuli, with scalp topographies140

of their two main components: the N2 and P2 waves. These two components peaked at 205±17 ms and141

318±40 ms after stimulus onset for I1, and 369±33 ms and 518±42 ms for I2 (mean ± s.t.d.), similar to142

previous studies using thermal stimulation (De Keyser et al., 2018; De Schoenmacker et al., 2022). The VPs143

in response to both types of stimuli were analyzed separately given their different latencies and thermal144

qualities. At a single trial level, the earlier N1 wave was not clearly identifiable due to its low signal-to-noise145

ratio.146

Crucially, we investigated whether the confidence and error of the probabilistic inferences modulate147

the Vertex Potentials. Using the learning model which best explains the subjective reports (a Bayesian148

model learning the TPs with an integration time constant of 8 stimuli), we regressed the single-trial EEG149

signals on two distinct inferential quantities: the residual confidence and Bayesian prediction error (BPE).150

Confidence is defined as the log precision of the posterior distribution over the latent parameter and is151

therefore inversely proportional to the posterior variance – confidence gets higher when the variance gets152

smaller (see (7)). The residual confidence is obtained from the confidence by regressing out the predicted153

probability, its square and its logarithm to ensure that these quantities do not drive the confidence effects154

(see Methods and (11)) (Meyniel, 2020). Besides, BPE corresponds to the difference between the received155

intensity and its predicted probability (see (8)). For each participant, we included these two regressors in156

linear regressions at each time point from -0.5 to 1 second around stimulus onset and at central electrodes157

of interest (C3, Cz, FCz, CPz, C4). To make sure that BPE and confidence were not collinear, confidence was158

regressed on BPE subject-wise, leading to average variance inflation factors (VIFs) of 1 and 1 for I1 and I2159

respectively, (regression R2< 10−5). Two variables are typically considered to be highly collinear when their160

VIF is above 5 (Sheather, 2009).161

Grand averages of the t-statistics obtained from t-tests against 0 for the regression coefficients are shown162

in Figs. 5b and 6. First, we found a clear modulation of the VP by residual confidence for both intensities163

(Fig. 5b). The sign of these modulations is opposite to the VP, meaning that the larger the confidence, the164

smaller the N2 and P2 components.165

Supplementary analyses show that using confidence instead of residual confidence leads to comparable166

observations (Fig. S2, even though the VIFs are slightly larger in this case). If the Bayesian model learning167

the IF instead of the TPs is considered (second best model fitted to the behavioral reports), results are also168
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Figure 5. EEG correlates of Bayesian confidence.
a, EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are
shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.
b, Encoding of residual confidence in the EEG responses – t-statistics for the regression coefficients associated with model confidence. Confidence is
obtained from the model which best explains the participants’ behavior: a Bayesian model learning the TPs with an integration time constant of 8
stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for p< 0.05, two-tailed. Red bars at the bottom of the plots
show intervals where the regression coefficients are significantly different from 0 after False Discovery Rate (FDR) correction of the significance levels.
Topographies of the largest effects are indicated.
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Figure 6. EEG correlates of Bayesian prediction errors (BPE).
Encoding of BPE in the EEG responses, similar to Fig. 5b – t-statistics for the regression coefficients associated with BPE. BPE is obtained from the
model which best explains the participants’ behavior: a Bayesian model learning the TPs with a time constant of 8 stimuli. The shaded horizontal areas
centered around 0 indicate the non-significant regions for p< 0.05, two-tailed. No time interval was deemed significant after False Discovery Rate
(FDR) correction of the significance levels.

similar (Fig. S3).169

Finally, we found no statistical evidence for a modulation of the BPE on the EEG potentials, after170
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correcting for the False Discovery Rate (Fig. 6). However, the prediction error derived from a Bayesian171

model learning the IF instead of the TPs significantly modulates late EEG waves (Fig. S3). The IF model172

typically leads to more confident predictions than the TP model, because it is simply inferring one parameter173

(the frequency) rather than two transition probabilities. However, the IF model predictions are more likely174

to be ‘wrong’ than the TP model predictions, because the sequences of stimuli were generated using TPs175

rather than only IFs. Bigger BPEs should yield stronger modulations of the late EEG waves, according to a176

hierarchical Bayesian inference framework. This is what we find, i.e. the IF BPE modulates more consistently177

late cortical responses than the TP BPE.178

DISCUSSION179

The brain needs to learn to predict forthcoming nociceptive stimuli in order to minimize potential harm.180

When pain persists over time, the brain needs to extract and learn structure or patterns from streams181

of sensory inputs without relying on explicit feedback or associated cues (Giorgio et al., 2018). Using182

a statistical learning task in conjunction with EEG, we provide evidence in support of the view that the183

human brain uses confidence-weighted Bayesian inference to learn to predict future pain levels and that184

confidence modulates the cortical response to pain. (Yoshida et al., 2013; Grahl et al., 2018; Valentini et al.,185

2011; Brown et al., 2008). First, we found that subjective probability estimates of thermal sensations and186

the associated confidence reports are well approximated by a Bayesian inference model. The best fitting187

model learns the transition probabilities within the sequences and accounts for participant’s forgetting by188

integrating past observations with a time constant of 8 stimuli (24 seconds). At the opposite of non-Bayesian189

models, this winning model indicates that the effect of prior expectations is weighted by confidence to190

predict forthcoming nociceptive inputs (Meyniel and Dehaene, 2017; Jepma et al., 2018; Mancini et al.,191

2022). Second, the modeled confidence was negatively associated with the amplitude of the Vertex Potential192

(VP): the higher the participants’ confidence in the intensity prediction, the smaller the VP. Prediction Errors193

(PEs), measuring the discrepancy between the expected stimulus and the one which was received, were only194

weakly associated with increases in later EEG responses. These findings were predicted by our hierarchical195

Bayesian processing hypothesis: high confidence reduces the cortical response to thermal stimuli because the196

brain relies less on incoming sensory information, and more on prior information, to generate an inference.197

The notion of confidence corresponds to a ‘feeling-of-knowing’ about some variables in an uncertain198

environment (Meyniel et al., 2015). It is important to note that this notion is employed in two kinds of199

situations, leading to different computational definitions of confidence. First, confidence in a discrete variable200

that is learned can be quantified by the probability for this variable to take a given value; it corresponds to201

the so-called choice or decision confidence (Kepecs et al., 2008; Hangya et al., 2016; Sanders et al., 2016;202

Herding et al., 2019; Pouget et al., 2016). Second, confidence in the value of a continuous variable instead203

relates to the spread (often quantified by the standard deviation) of the estimated posterior distribution of204

this variable (Meyniel et al., 2015; Lebreton et al., 2015; Pouget et al., 2016). For instance, in a TSL task205

like in this work, the confidence in the next stimulus intensity corresponds to the estimated probability to206

receive this intensity, while the confidence in the sequence statistic that is learned (AF, IF or TP) is related207

to its estimated standard deviation. As a consequence, decision confidence – which has been the object of208

numerous publications about choice and decision-making – should not be confounded with the inferential209

confidence studied here. For the EEG analysis presented in Fig. 5, the estimated probability of each intensity210

has even been regressed out to obtain the residual confidence which is not linearly nor quadratically related211

to decision confidence.212

Statistical models of sensory perception predict that inferential confidence should serve as a weighting213

factor increasing the effect of prior beliefs on perception (Brown et al., 2008; Büchel et al., 2014; Meyniel214

and Dehaene, 2017). In the pain field, a few works have studied this principle: from a behavioral view point,215

confidence indeed modulates pain perception by weighting the effect of expectations (Brown et al., 2008;216

Grahl et al., 2018; Yoshida et al., 2013). While it is clear that individuals are able to provide metacognitive217

judgments about pain to some extent (Dildine et al., 2020), some works suggested that humans have a less218

accurate sense of confidence in the sensory discrimination of pain compared to other sensory modalities219

(Beck et al., 2019). This contrasts with our finding that inferential confidence is correlated with the Bayesian220
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model confidence, suggesting it is derived from a near-optimal inference process.221

Regarding the effects of confidence on brain response dynamics, in a hierarchical Bayesian framework222

we would expect to see early modulations of EEG responses by confidence, such that increased confidence223

would lead to a reduction of these responses (Brown et al., 2008; Seymour and Mancini, 2020). The few224

existing studies that looked at confidence effects on EEG signals are consistent with this view (Valentini et al.,225

2011; Brown et al., 2008), but haven’t tested its key predictions on the main EEG responses to pain. Here,226

we show that confidence in statistical inference has a negative association with an early cortical response227

to nociceptive stimuli, i.e. the VP. The functional significance of the VP has been debated for decades.228

Traditionally, it was thought that the VP reflects the sensory processing of a stimulus, and it is indeed often229

used in clinical neurophysiology as a marker of sensory function (Chen et al., 2001; Cruccu et al., 2008;230

De Keyser et al., 2018). Using nociceptive stimuli, the VP has been associated with subjective pain intensity231

and, as such, it could be influenced by perceptual and attentional mechanisms (Garcia-Larrea et al., 1997;232

Lee et al., 2009). Other works have shown that the VP is more likely to encode the differential intensity of233

a stimulus (with respect to baseline) rather than its absolute intensity (Somervail et al., 2021). Besides,234

several studies have emphasized that the VP amplitude is not only affected by stimulus intensity and the235

recent history of stimulation, but also by the unpredictability, novelty and saliency of each stimulus (Iannetti236

et al., 2008; Valentini et al., 2011; Zhang et al., 2012; Ronga et al., 2012). For instance, just repeating the237

same stimulus a few times induces a dramatic habituation of the VP, despite the fact that perception remains238

stable and peripheral habituation can largely be ruled out (e.g. because a new skin spot has been stimulated239

after each stimulus) (Iannetti et al., 2008; Mancini et al., 2018). Still, a more recent study using a cued240

pain paradigm suggested that the VP is mostly associated with the sensory processing of a stimulus, without241

being affected by expectations and PEs (Nickel et al., 2022). These different interpretations can result from242

the lack of a computational quantification of the pain learning process on a trial basis that would enable243

fitting individual learning models to each participant (Karlaftis et al., 2019; Beck et al., 2019). Indeed, the244

aforementioned works did not have estimates of uncertainty or confidence at an individual level because they245

relied on axiomatic approaches and/or cue-based paradigms. Here, we introduce a computational approach246

which quantifies nociceptive inference trial-by-trial, enabling the direct correlation of information processing247

quantities to their brain encoders instead of limiting the contextual information to binary intensities or248

discrete stimulus and cues categories.249

Another component of the statistical learning process is the generation of prediction errors (PEs),250

measuring the difference between what is predicted (based on previous experiences) and what is actually251

received. PEs (or surprise) signals are expected to modulate some brain responses regardless of the sensory252

modality (Maheu et al., 2019), though it is likely that the neural implementation of these effects have some253

stimulus-specificity (Frost et al., 2015). Here, we did not find significant evidence for an effect of PE on254

the VP, although there was a weak modulation of late-onset EEG responses. In different paradigms, using255

shorter sequences of stimuli, PEs can account for shorter time-scale habituation (Somervail et al., 2021;256

Strube et al., 2021). This is not incompatible with our findings: in short and/or cued sequences, PEs tend to257

be large and this is likely to lead to a stronger cortical modulation, as dictated by Bayesian inference.258

To conclude, we have shown that subjective probability reports about nociceptive intensity are well259

approximated by a Bayesian model learning the transition probabilities between high and low intensity260

stimuli. The Bayesian model’s confidence was correlated with the participants’ reported confidence levels.261

Importantly, inferential confidence was negatively correlated with the VP – the higher the confidence,262

the smaller the VP. This indicates that the VP is modulated by confidence-weighted statistical learning of263

sequences of nociceptive inputs and is consistent with the predictions of a hierarchical Bayesian inference264

framework. Given that some pathological pain conditions have been associated with altered learning and265

predictive capabilities (Baliki et al., 2010, 2011; Smith et al., 2008; Ploner et al., 2016), future works266

could assess how confidence representations are modified in these patients, opening the path to promising267

translational studies.268
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METHODS269

Participants270

Thirty-six healthy participants (19 females) took part in the experiment, aged 18-30 years, 32 of them being271

right-handed. The study was approved by the local ethics committee (Comité d’Ethique Hospitalo-Facultaire272

de l’Université catholique de Louvain, B403201316436). All participants gave written informed consent and273

received financial compensation. Five participants were not able to distinguish the two stimulus intensities274

until the end of the experiment, so they were excluded from all the analyses, leaving 31 subjects (16 females).275

Experiments276

The task aims to assess temporal statistical learning (TSL) using sequences of nociceptive stimuli of two277

distinct intensities – I1 and I2. The core principle is that as participants are exposed to a such stream of278

stimuli, they are able to track the sequence statistics to some extent. Indeed, as the sequence goes, one279

collects evidences of whether the sequence contains more I1, more I2, systematically more I1 following I1 or280

I2, etc. In our experiment, we aim to understand how these learning mechanisms are implemented.281

Stimuli and generative model282

The stimulus intensity yn ∈{I1, I2} at each time step n along a given sequence is uniquely generated according283

to a two-state Markovian process such that284

• p(y1 = I1) =
p(I1|I2)

p(I1|I2)+p(I2|I1)
285

• p(yn|y1:n−1) = p(yn|yn−1).286

Each sequence is therefore characterized by its generative transition probabilities (TPs, (p(I1|I2), p(I2|I1))),287

i.e. the probabilities of either intensity given the previous stimulus intensity. The stimuli were 250ms-288

long thermal pulses, applied to the participant’s right volar forearm with a contact thermode (QST Lab,289

Strasbourg, France, active stimulation surface: 120mm2, heating and cooling ramps of 300◦/s). To ensure290

that the participants were able to easily identify the stimulus intensities along all the tested sequences,291

the low intensity I1 was chosen to be non painful and cool, while the high intensity I2 was selected to be292

painful and above the individual Aδ fiber threshold while being bearable. The temperatures employed were293

therefore I1= 15◦C and I2= 58◦C, up to modifications based on individual thresholds and/or discrimination294

capabilities, as detailed below. The high intensity I2 was described as painful and pricking by all participants.295

Procedure296

Each participant underwent the following steps: (1) Aδ fibers threshold estimation through a staircase297

procedure using reaction times, (2) one pre-check block to assess the discrimination of the two stimulus298

intensities, (3) one training block, (4) 10 testing blocks and (5) one post-check block to re-assess the299

discrimination of the two stimulus intensities at the end of the experiment. The total duration of the300

experiment was approximately 3 hours.301

Aδ fibers threshold estimation302

The threshold for activating Aδ fibers was determined with an adaptive staircase procedure using reaction303

times (RTs) as described in (Churyukanov et al., 2012). A 250 ms heat stimulus was assumed to activate Aδ304

fibers when the perception RT was≤ 650 ms. Starting with a 45◦C-stimulus, temperature was increased until305

the RT became shorter than 650 ms, which led to decrease the next stimulus temperature. The successive306

absolute temperature differences were in {5,2,1,0.1}◦C, decreasing after each detection change (RT shorter307

vs. longer than 650 ms). The threshold was defined as the mean of 4 stimulation temperatures which led to308

3 consecutive changes of RT shorter vs. longer than 650 ms. This led to thresholds of 52.7◦C (±5.1) on309

average (± standard deviation).310

Check blocks311

During each pre-check and post-check block, the participant received a random sequence of 15 stimuli with312

intensities I1 and I2 (fully random TPs of (0.5,0.5)) and self-paced inter-stimulus-intervals (ISIs). After313

each stimulus, the participant was asked to report the stimulus identity (cool or hot) and the thermode314
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was displaced before delivering the next stimulus. If there were more than 5 mistakes in a pre-check block,315

pronounced hesitations about the stimulus identity or if I2 was unbearable, the stimulus intensities were316

adjusted accordingly. This led to increase I1 for 4 participants and decrease I2 to 57◦C for 10 participants. If317

there were more than 5 mistakes in a post-check block, the subject was excluded from the analyses.318

Training and testing blocks319

During a training or testing block, the participant was exposed to one sequence of stimuli whose intensities320

were generated based on fixed TPs. The thermode was displaced on the forearm between successive stimuli321

to avoid trial-to-trial habituation and sensitization which could prevent the participant from distinguishing322

the two intensities until the sequence ended. The within-sequence ISI was set to 3 seconds. Every 15 ± 3323

stimuli, the sequence was paused to probe the participant’s inference of the sequence TPs – the participant324

was asked to (1) estimate the probability of the next stimulus intensity and then (2) rate their confidence325

in this estimate, Fig. 1b. The scales were displayed on a computer screen in front of the participant and326

numerical ratings were collected based on keyboard inputs. A time limit of 8 seconds was set to answer327

each question to avoid too long breaks within the sequences which could affect learning (Atlas et al., 2021).328

The training block consisted of one sequence of 50 stimuli generated with TPs (0.7,0.4) and enabled329

the participants to understand the generative process and familiarize with the task. Subjects received a330

feedback at the end of this sequence on the correctness of their rating trend.331

In each of the 10 testing blocks, the participant received one sequence of 100 stimuli. The first and last332

5 sequences were generated with the 5 different TPs indicated with numbers in Fig. 1d: (0.5,0.5), (0.3,0.7),333

(0.7,0.3), (0.3,0.3) and (0.7,0.7). The order of the blocks was randomized across participants and variable334

breaks were allowed between sequences.335

Behavioral data were analyzed with Matlab R2019b (The MathWorks) and Cohen’s d is reported as336

effect size for each t-test.337

Learning models338

The generative parameters of the sequence can be continuously estimated based on the stimuli received,339

leading to predictions about the forthcoming stimulus. To understand how participants perform this inference340

task, different models performing the same task were fitted to the subjective probability estimates and341

compared.342

Two families of learning models were considered to explain the sequence statistics inference: a Bayesian343

learner and a non-Bayesian Reinforcement Learning (RL) model which is called the delta-rule or Rescorla-344

Wagner (RW) model (Meyniel et al., 2016; Meyniel and Dehaene, 2017; Rescorla and Wagner, 1972).345

Bayesian model346

A Bayesian model estimates the posterior distribution of a latent parameter θ given the sequence of observed347

stimuli y1:n at each time step n using Bayes’ rule (Meyniel et al., 2016). Each model M estimates specific348

sequence parameters: either the item frequency (IF) or the alternation frequency (AF) or the transition349

probabilities (TPs). Given a model M , the parameter posterior is obtained by combining the parameter prior350

and the likelihood of past observations:351

p(θ |y1:n, M)∝ p(y1:n|θ , M) · p(θ |M). (1)

We use a uniform (conjugate) prior distribution over the parameter values (i.e. p(θ |M)∼Beta(θ |1,1), which352

enables deriving analytical solutions for the posterior. Using the Markovian assumption p(yn+1|y1:n,θ) =353

p(yn+1|yn,θ ), the likelihood can be decomposed as354

p(y1:n|θ , M) = p(yn|yn−1,θ , M) · . . . · p(y3|y2,θ , M) · p(y2|y1,θ , M) · p(y1|θ , M). (2)

This likelihood and thereby the posterior can be further simplified depending on the model M as shown355

below.356

1. IF learning. With this model, the inferred parameter is the probability to receive a stimulus of intensity357

I1: θ = p(I1) := θI1 . The posterior is therefore358
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p(θI1 |y1:n, M)∼ Beta(θI1 |N1+1,N2+1), (3)

where N1 and N2 are the numbers of stimuli of intensity I1 and I2 respectively within y1:n.359

2. AF learning. The inferred parameter is the probability of intensity alternation, i.e. the probability to360

switch from I1 to I2 or vice versa within the sequence: θ = p(alt.) := θalt.. The posterior dsitribution361

reads362

p(θalt.|y1:n, M)∼ Beta(θalt.|Na+1,Nr +1), (4)

with Na and Nr the number of alternations and repetitions of stimulus intensities within y1:n.363

3. TPs learning. The inferred parameter is now two-dimensional and corresponds to the transition364

probabilities of the sequence of stimuli: θ := (θI1|I2 ,θI2|I1), which leads to the posterior365

p(θ |y1:n, M)∼ Beta(θI1|I2 |N1|2+1,N2|2+1) ·Beta(θI2|I1 |N2|1+1,N1|1+1), (5)

where N j|k is the number of transitions from I j to Ik counted within y1:n.366

To account for limited memory constraints during inference and an unknown timescale of integration, a367

leaky integration of observations is considered (Meyniel et al., 2016). All the models are endowed with a368

free parameter ω∈ [1,∞[ – the integration time constant – and the kth last observation counted (being it369

an item, an alternation or a transition depending on the model considered) is weighted according to an370

exponential decay by a factor exp−k/ω.371

For all Bayesian models, some outcomes of interest can be deduced from the posterior at each position n372

within the sequence, when the observations y1:n have been received:373

• The probability of the next stimulus is the mean of the posterior distribution:374

p(yn+1|y1:n, M) =

∫

θ

p(yn+1,θ |y1:n, M)dθ =

∫

θ

p(yn+1|θ , yn, M) · p(θ |y1:n, M)dθ . (6)

• The confidence in the learned parameter relates to the precision (inverse variance, π := 1/σ2) of375

the posterior (Meyniel and Dehaene, 2017; Pouget et al., 2016):376

cn =− log(σ(p(θ |y1:n, M))) = 0.5 · log(π(p(θ |y1:n, M))). (7)

The confidence quantifies the certainty in the estimated continuous variable, and is typically expressed377

in log space so that the standard deviation and variance are proportional.378

• The prediction error is defined like in a Bayesian predictive coding framework (Aitchison and Lengyel,379

2017; Geuter et al., 2017) as380

en = 1− p(yn|y1:n−1, M). (8)

It can be noted that, likewise, the Shannon surprise (Meyniel and Dehaene, 2017) elicited by the last381

stimulus also quantifies the discrepancy between the intensity that was expected and the one that is382

received (yn), in a log space: sn =− log(p(yn|y1:n−1, M)).383

To assess the extent to which these models and their parameter (the integration time constant) are identifiable384

in our experiment, parameter and model recovery analyses can be found in Fig. S4.385
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Rescorla-Wagner, or delta-rule, models386

The delta-rule model, or Rescorla-Wagner (RW) model (Rescorla and Wagner, 1972; Miller et al., 1995), is387

compared to the Bayesian model. While the latter weights the posterior updates by confidence (Meyniel388

and Dehaene, 2017), the delta rule uses a constant and non-statistical weighting of incoming observations389

to estimate the latent parameter. The inferred parameter θ (IF, AF or TPs) is initiated at 0.5 and is seen as a390

state value V in the RW models, as detailed in what follows.391

1. IF learning. The state value corresponds to the estimated probability to receive a stimulus of intensity392

I1: Vn := bθI1,n.393

At each step n in the sequence, the state is updated as Vn = Vn−1+α · (Rn−Vn−1), where Rn = 1 if394

yn = I1 and Rn = 0 if yn = I2 and with the learning rate α∈]0,1[ being a free model parameter.395

2. AF learning. The state value corresponds to the estimated probability of an alternation within the396

sequence: Vn := bθalt.,n.397

The state is updated as Vn = Vn−1+α ·(Rn−Vn−1), where Rn = 0 if yn = yn−1 and Rn = 1 otherwise.398

3. TPs learning. The state value is two-dimensional and corresponds to the estimated transition proba-399

bilities: V1,n := bθI1|I1,n, V2,n := bθI1|I2,n.400

The state is updated as401

• Vi,n = Vi,n−1+α ·(Rn−Vi,n−1), with Rn = 1 if yn = I1 and Rn = 0 if yn = I2, if yn−1 = Ii402

• Vi,n = Vi,n−1 if yn−1¬= Ii .403

Model fitting404

To determine to which extent each model accounts for the subjective reports, we quantify the relationship405

between subjective and model probability estimates by linearly regressing the subjective reports on the406

modeled estimates for each participant and model. Across trials indexed by n, the probability report xn is407

hence regressed on the model probability of I1 pMi ,ωi
n deduced from each model Mi with free parameter ωi408

as described above (Bayesian and RW models learning the IF, AF or TPs, with integration time constant or409

learning rate as free parameter) as:410

xn = β0+β1 · pMi ,ωi
n +ε, (9)

where β are the regression coefficients, estimated by OLS, and ε the residuals.411

The quality of this fit is quantified by the model evidence (or marginal likelihood) p(x |Mi), which is412

estimated with the Bayesian Information Criterion (BIC) as:413

p(x |Mi)≈ exp(
−BIC

2
), (10)

with BIC =N · log(σ2
e )+q · log(N), the mean squared error (MSE) of the regression σ2

e =minωi
1
N

∑N
n=1(xn−414

x̂ Mi ,ωi
n )2, N the number of observations and q the number of parameters (here there are 2 regression415

coefficients and 1 model free parameter). When comparing models with the same number of parameters,416

minimizing the BIC amounts to minimizing the MSE. We considered 99 possible learning rates for the RW417

models in the range from 0.005 to 0.95, and 103 integration time constants for the Bayesian models from 1418

to 400 plus infinity (i.e. a perfect integrator).419

Individual, subject-wise, model probabilities were obtained by normalizing the model evidences estimated420

with the BIC as in (10).421
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Model comparison422

The model with the largest model evidence (or lowest BIC) was considered to be the best fit for the ratings.423

To compare the six models Mi described above, we conducted a Bayesian model comparison as implemented424

in the VBA toolbox (Daunizeau et al., 2014) and adopted a random-effect approach, assuming that the425

optimal model can differ across participants. The analysis yielded the expected probability of each model Mi426

and the probability for Mi to be more frequent than all the other models in the population, which is called427

the ‘exceedance probability’ and is denoted by φ.428

The model free parameter which approximated the subjective reports best on average was determined429

through Bayesian model averaging (Maheu et al., 2019) for the Bayesian and RW models separately by430

estimating p(ω|x)∝
∑

i p(x |Mi ,ω)≈
∑

i exp(−BIC(Mi ,ω)/2).431

Electrophysiological recordings432

EEG was recorded during the whole experiment using 64 Ag-AgCl electrodes placed on the scalp according433

to the international 10/10 system (WaveGuard 64-channel cap, Advanced Neuro Technologies) and with434

an average reference. Synchronization of the stimuli, triggers on the EEG and behavioral questions was435

performed with the Data Acquisition Toolbox and Psychtoobox running on Matlab. Electrode impedances436

were kept below 10kΩ. Eye movements were recorded using a pair of surface electrodes placed above and437

on the right side of the right eye, and one electrocardiogram (EKG) lead was recorded with two surface438

electrodes, one below the right clavicle near the shoulder and the other on the last left rib. Signals were439

amplified and digitized at 1000 Hz. Participants were asked to move as little as possible and keep their gaze440

fixed on the computer screen in front of them, which displayed a fixation cross and occasional behavioral441

questions (see the Experiments section).442

Preprocessing443

The EEG recordings were analyzed using Matlab R2019b (The MathWorks). First, the following preprocessing444

steps were conducted using Letswave 6 (http://letswave.org) (Mouraux and Iannetti, 2008): high-pass445

filtering above 0.5 Hz with a 4th order zero-phase Butterworth filter, 50 Hz bandpass notch filtering, down-446

sampling to 500 Hz, segmentation of trials from −1 to +1.5 seconds relative to stimulus onsets, baseline447

mean correction, and rejection of stereotyped artifacts using an Independent Component Analysis (ICA)448

decomposition (Bell and Sejnowski, 1995). Then, using Matlab, epochs were low-pass filtered below 30449

Hz and trials with amplitudes reaching 80 µV were rejected, leading to keep 491±17.3 and 490.2±16.27450

(grand mean ± standard deviation) stimuli of intensities I1 and I2.451

Linear regressions452

We sought to determine if and how the Vertex Potential (VP) reflects the behavioral outcomes observed453

during TSL. The model which best approximated the participants’ behavior was considered (Bayesian model454

learning the TPs with a time constant ω= 8), and the VP was regressed on its key inferential outcomes. Two455

regressors were included in the analysis: the prediction error (see (8), known to affect sensory responses456

(Maheu et al., 2019; Strube et al., 2021)) and the confidence in the estimates, which weights learning in a457

Bayesian framework (Meyniel and Dehaene, 2017) (see (7)).458

To ensure that the effects of confidence on EEG signals were not driven by confounding factors related459

to the prediction itself (p(I1|y1:n, Mi ,ωi) := pn) (Meyniel, 2020), we first computed the residual confidence460

cr
n from the confidence cn by regressing out the predicted probability, its logarithm and its square as:461

cn = β
r
0,k+β

r
1 · pn+β

r
2 · p

2
n+β

r
3 · log(pn)+β

r
4 · log(1− pn)+ cr

n, (11)

where k denotes the testing block index, n the trial index and β r the regression coefficients. The first462

coefficient β r
0,k is a fixed intercept grouped by testing condition k (i.e. generative probabilities of the463

sequences). Then, for each participant, at each channel and at each time point from −0.5 to 1 second464

around stimulus onset, the EEG signal zn was regressed on the Bayesian prediction error (BPE) en and465

residual confidence cr
n (omitting the dependence of the regressors upon the model Mi and its parameter ωi466

for clarity):467

zn = β0,k+β1 · en+β2 · cr
n+ε. (12)

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503296doi: bioRxiv preprint 

http://letswave.org
https://doi.org/10.1101/2022.08.11.503296
http://creativecommons.org/licenses/by/4.0/


The regressions were computed across all available trials.468

The two considered regressors – BPE and residual confidence – deduced from the optimal inference were469

not linearly related, enabling to compute and safely interpret the regression coefficients. To confirm that470

they are not collinear, we computed the Variance Inflation Factors (VIFs) for (residual) confidence against471

BPE (Sheather, 2009): VIF= 1
1−R2 , where R2 is the coefficient of determination obtained when linearly472

regressing (residual) confidence on BPE. Unless stated otherwise, ‘residual’ is assumed when mentioning473

confidence in this work. Significance of the regression coefficients across participants was assessed using474

one-sample t-tests against 0. Significance level was set to 0.05 and corrected for multiple comparisons across475

time points and selected channels (C3, Cz, FCz, CPz, C4) with the False Discovery Rate (FDR) correction.476
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Figure S1. The number of stimuli from both intensities and the number of rated transitions are balanced.
a, Numbers of stimuli from each intensity delivered to the participants along all the testing blocks. Participants received balanced numbers of stimuli
from both intensities (mean difference between the numbers of I1 and I2: −1.419, t30 =−0.25, p= 0.804, Cohen’s d =−0.045). Blue squares: mean
number of stimuli.
b, Likewise, participants rated, on average, similar numbers of both types of transitions (mean difference of numbers of rated transitions from I1 and
from I2: 1.484, t30 = 1.054, p= 0.3, Cohen’s d < 10−5).
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Figure S2. Links between the EEG responses and the Bayesian prediction error (BPE) and raw confidence. Similar to Fig. 5 but using the raw
instead of residual confidence as regressor.
a, EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are
shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.
b, Encoding of raw confidence in the EEG responses – t-statistics for the regression coefficients associated with the model confidence.
c, Encoding of BPE in the EEG responses – t-statistics for the regression coefficients associated with the BPE.
In b and c, confidence and BPE are obtained from the model which best explains the participants’ behavior: a Bayesian model learning the TPs with an
integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for p< 0.05, two-tailed. Red
bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after False Discovery Rate (FDR)
correction of the significance levels. BPE and raw confidence are not collinear: the average variance inflation factors (VIFs) of raw confidence against
BPE = 1.1 and 1.08 for I1 and I2 respectively, far below 5 (Sheather, 2009) (R2 = 8.92 and 7.36% when we regress the raw confidence on BPE).

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503296
http://creativecommons.org/licenses/by/4.0/


time after stimulus (ms)

EE
G

 a
m

pl
itu

de
 (µ

V)

low intensity - I1 high intensity - I2

co
nf

id
en

ce
: t

-v
al

ue
BP

E:
 t-

va
lu

e

time after stimulus (ms)

-0.1
0
0.1

a.u.

a

b

c

-0.2

0

0.2
a.u.

GFP

-200 0 200 400 600 800 1000
-2

0

2

4

-200 0 200 400 600 800 1000
-2

0

2

4

p<0.05, FDR corrected

-200 0 200 400 600 800 1000

-5

0

5

-200 0 200 400 600 800 1000

-5

0

5

-200 0 200 400 600 800 1000

-5

0

5

-200 0 200 400 600 800 1000

-5

0

5

Figure S3. Links between the EEG responses and the Bayesian prediction error (BPE) and residual confidence. Similar to Fig. 5 but using a
Bayesian model learning the IF instead of TPs.
a, EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are
shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.
b, Encoding of residual confidence in the EEG responses – t-statistics for the regression coefficients associated with the model confidence.
c, Encoding of BPE in the EEG responses – t-statistics for the regression coefficients associated with the BPE.
In b and c, confidence and BPE are obtained from the second model which best explains the participants’ behavior: a Bayesian model learning the IF
with an integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for p< 0.05,
two-tailed. Red bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after False Discovery
Rate (FDR) correction of the significance levels. Again, BPE and confidence are not collinear: the average VIFs of confidence against BPE = 1.0048 and
1.0058 for I1 and I2 respectively, far below 5 (Sheather, 2009) (R2 = 0.47 and 0.58% when we regress confidence on BPE).
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Figure S4. Parameter and model recovery for the Bayesian learner. To assess whether the three Bayesian models and their hyper-parameter (the
integration time constant ω) are identifiable, we simulated data using each model with different parameters and fitted the models to these synthetic
data like we did it to the behavioral reports. Since the model predictions (i.e. probability estimates) are deterministic for a given sequence, data were
simulated by sampling probability estimates from the Beta distribution estimated at each time step (see Methods). For each model (learning AF, IF or
TPs), we consider all the optimal time constants that were fitted to the individual behavioral data (Heald et al., 2021). Using each time constant and
model, 30 synthetic data sets were built based on the same number of sequences and probability estimates as for the real participants (10 sequences
were generated with the TPs indicated in Fig. 1d and probability estimates were sampled every 15±3 stimuli).
a, The parameter recovery analysis indicates that the integration time constant can be reliably recovered despite readout noise for all three models in
our experiments (Pearson correlation coefficient between true and fitted ω = 0.871, 0.816, 0.81). Scatter plots of fitted vs. true parameters, with one
color per simulation (n= 30). Dotted line: identity, thick plain black line: linear fit.
b, The model recovery shows that the three models are highly identifiable in our experimental setting, with 98.3, 98.6 and 97.6% of correctly recovered
models for the model learning AF, IF and TPs respectively.
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