

1 Confidence of probabilistic predictions modulates 2 the cortical response to pain

3 **Dounia Mulders^{1,2,*}, Ben Seymour³, André Mouraux¹ and Flavia Mancini^{4,*}**

4 ¹IONS institute, UCLouvain, Belgium

5 ²Department of Brain and Cognitive Sciences & McGovern Institute, MIT, USA

6 ³University of Oxford, UK

7 ⁴Computational and Biological Learning Unit, Department of Engineering, University of Cambridge, UK

8 ABSTRACT

9 Pain typically evolves over time and the brain needs to learn this temporal evolution to predict how pain is likely to change in
10 the future and orient behavior. This process is termed temporal statistical learning (TSL). Recently, it has been shown that TSL
11 for pain sequences can be achieved using optimal Bayesian inference, which is encoded in somatosensory processing regions.
12 Here, we investigate whether the confidence of these probabilistic predictions modulates the EEG response to noxious stimuli,
13 using a TSL task. Confidence measures the uncertainty about the probabilistic prediction, irrespective of its actual outcome.
14 Bayesian models dictate that the confidence about probabilistic predictions should be integrated with incoming inputs and
15 weight learning, such that it modulates the early components of the EEG responses to noxious stimuli, and this should be
16 captured by a negative correlation: when confidence is higher, the early neural responses are smaller as the brain relies more
17 on expectations/predictions and less on sensory inputs (and vice versa). We show that participants were able to predict the
18 sequence transition probabilities using Bayesian inference, with some forgetting. Then, we find that the confidence of these
19 probabilistic predictions was negatively associated with the amplitude of the N2 and P2 components of the Vertex Potential:
20 the more confident were participants about their predictions, the smaller was the Vertex Potential. These results confirm key
21 predictions of a Bayesian learning model and clarify the functional significance of the early EEG responses to nociceptive
22 stimuli, as being implicated in confidence-weighted statistical learning.

23 **Keywords:** Temporal statistical learning | nociception | confidence | EEG | pain | probabilistic inference
24 | prediction

25 SIGNIFICANCE

26 The functional significance of EEG responses to pain has long been debated because of their dramatic
27 variability. This study indicates that such variability can be partly related to the confidence of probabilistic
28 predictions emerging from sequences of pain inputs. The confidence of pain predictions is negatively
29 associated with the cortical EEG responses to pain. This indicates that the brain relies less on sensory
30 inputs when confidence is higher and shows us that confidence-weighted statistical learning modulates
31 the cortical response to pain.

32 INTRODUCTION

33 In order to survive, animals need to minimise their risk of harm and can do so by learning to predict pain and
34 other body threats. Learning to predict threats is necessary to orient behaviour. How does the brain learn to
35 predict pain and aversive states? The majority of previous work has focused on associative learning to predict
36 pain outcomes based on non-pain cues (Atlas et al., 2010; Atlas and Wager, 2012; Jepma et al., 2018; Strube
37 et al., 2021). Associative learning well describes the prediction of isolated, transient threatening events, but

*Corresponding authors.

DM: dmulders@mit.edu, BS: ben.seymour@ndcn.ox.ac.uk, AM: andre.mouraux@uclouvain.be, FM: flavia.mancini@eng.cam.ac.uk

38 is insufficient to characterise learning to predict long-lasting sequences of pain inputs (Mancini et al., 2022),
39 which typically occur in pain conditions (Schulz et al., 2015). When experiencing temporally-evolving pain,
40 the brain needs to learn to predict forthcoming pain based on its past history. Recently, we have shown that
41 learning to predict pain sequences can be achieved using optimal Bayesian inference, in absence of non-pain
42 cues (Mancini et al., 2022). Probabilistic predictions of the frequency of getting pain are encoded in the
43 human primary and secondary cortex, motor cortex and right caudate, whereas their precision is encoded in
44 the right superior parietal cortex.

45 Bayesian inference frameworks make testable hypotheses about the role of confidence in learning and
46 its effect on neural activity. The confidence and error of neural predictions are dissociable measures of
47 uncertainty. Confidence is a measure of the variability of the prediction, irrespective of the outcome of the
48 prediction. In contrast, the prediction error refers to the discrepancy between a prediction and reality. A
49 Bayesian inference account predicts that the confidence of a probabilistic inference (1) weights learning, (2)
50 is integrated with sensory information at early stages of information processing, and (3) is inversely related
51 with sensory cortical responses (i.e. high confidence reduces sensory responses) as the brain relies less on
52 incoming sensory inputs (Büchel et al., 2014; Seymour and Mancini, 2020). Here, we test these predictions
53 using a TSL task with thermal stimuli and EEG in healthy, human participants.

54 We focus on the largest wave that can be recorded from EEG in response to transient sensory stimuli:
55 the Vertex Potential (VP) (Crucu et al., 2008). The VP is typically composed by a biphasic, negative (N2
56 component) and positive (P2 component) waveform with a characteristic, symmetric scalp distribution
57 with peak over the vertex (Cz-FCz). The VP can be observed for stimuli in virtually any sensory modality
58 (Mouraux and Iannetti, 2009), but despite its ubiquity there is no consensus over its functional significance.

59 The traditional interpretation is that the VP reflects the intensity of a sensory stimulus (Chen et al.,
60 2001; Crucu et al., 2008; De Keyser et al., 2018). A recent study using a pain conditioning paradigm did
61 not find evidence for a modulation of the VP by expectations and prediction errors, suggesting that the VP
62 mostly reflects the sensory processing of a stimulus (Nickel et al., 2022). However, other studies have shown
63 that the amplitude of the VP is modulated by the history and unpredictability of previous stimuli, and can
64 be decoupled from perceived intensity (Bromm and Treede, 1987; Ronga et al., 2012; Torta et al., 2012;
65 Valentini et al., 2012; Mancini et al., 2018).

66 The seemingly divergent conclusions of previous studies could stem from the different definitions of
67 stimulus predictability and uncertainty, and the lack of a mathematical quantification of these concepts.
68 Here we use a normative approach to dissect the contributions of temporal predictions, their confidence and
69 error on the Event Related Potentials (ERPs) elicited by sequences of somatosensory, thermal stimuli. The
70 stimulus sequences had a probabilistic (Markovian) temporal structure, with underlying statistics that can
71 be learned (Fig. 1) (Mancini et al., 2022).

72 RESULTS

73 Thirty-one human participants received five different types of probabilistic sequences of thermal stimuli
74 delivered with a contact thermode to the right forearm (Fig. 1a). In each sequence, there were two types
75 of stimuli – one stimulus was cold (I_1), and the other was painfully hot (I_2 , above the A δ -fiber threshold).
76 The low intensity was chosen as being cold to ensure that the participants were able to discriminate
77 both intensities based on pilot experiments. The sequences transitioned between the cold and hot stimuli
78 according to a Markovian process described with two generative transition probabilities (TPs, Fig. 1c-d).
79 Occasionally, the sequence was paused and participants were asked to predict the probability of the next
80 stimulus based on the previous stimuli and to report their confidence in these estimates on a numerical
81 rating scale (Fig. 1b). Each participant received 2 sequences of 100 stimuli generated with each of the
82 5 distinct TPs indicated in Fig. 1d in a randomized order and was informed that the sequence statistics
83 changed (see Methods). On average along the whole experiment, participants received similar numbers
84 of stimuli from both intensities and rated similar numbers of transitions from both intensities (Fig. S1).
85 In line with our previous work, participants were able to predict the frequency of the stimulus intensities,
86 as shown by the positive association between generative and rated item frequencies in Fig. 2a. Likewise,
87 with a slightly improved accuracy, participants were able to estimate the transition probabilities from one

88 intensity to the other, as indicated in Figs. 2b-c. Finally, the subjective confidence reports were quadratically
 89 related to the probability estimates: confidence tended to increase for more extreme probability estimates,
 90 as previously reported for auditory and visual sequences (Meyniel et al., 2016).

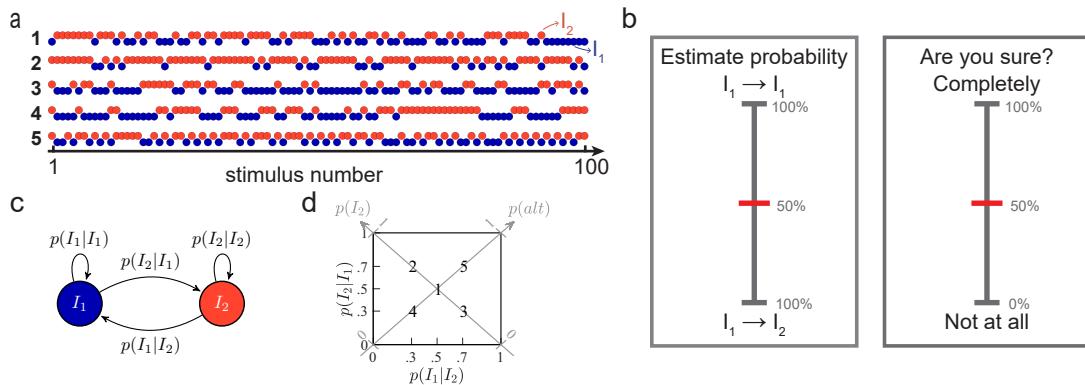


Figure 1. Temporal statistical learning experiment.

a, Examples of sequences of stimuli of intensities I_1 and I_2 that are applied to the participants' forearm. Each sequence has different generative statistics (a majority of I_2 or I_1 , more alternations or repetitions, etc) and the inter-stimulus-interval (ISI) is set to 3 seconds.
 b, Behavioral questions asked to the participants every 15 ± 3 stimuli in the sequences to evaluate their stimulus probability estimates and numerical confidence in these predictions. The sequences are paused during a maximum of 8 seconds per question.
 c, Markovian generative process of the sequences of stimuli whose intensities are I_1 and I_2 .
 d, Transition probability matrix in which the five generative pairs of transition probabilities (TPs) employed are indicated with bold numbers. One example of sequence generated with each of these five TPs is shown in a.

91 Behavioral modeling

92 First, we defined the computational principles underlying the participants' inference of the sequence statistics.
 93 We therefore consider a series of models which are fed with the exact same sequences of binary inputs as
 94 the participants. Each of these models constructs predictions about the stimulus probabilities along the
 95 sequences and can be compared to the subjective reports to shed light on the mechanisms of pain inference.

96 We fitted two families of three models to the subjective probability estimates obtained in the statistical
 97 learning task. One family of models uses Bayesian inference, whereas the other family uses a heuristic,
 98 i.e. a non-probabilistic delta rule (Rescorla-Wagner model) with fixed learning rate. The Bayesian models
 99 use the confidence of the prediction to weight the update of the representation of the stimulus statistics,
 100 whereas delta rule models use a fixed learning rate which is not scaled by uncertainty. In each family, the
 101 models differ according to what they predict: the item frequency (IF), the alternation frequency (AF) or the

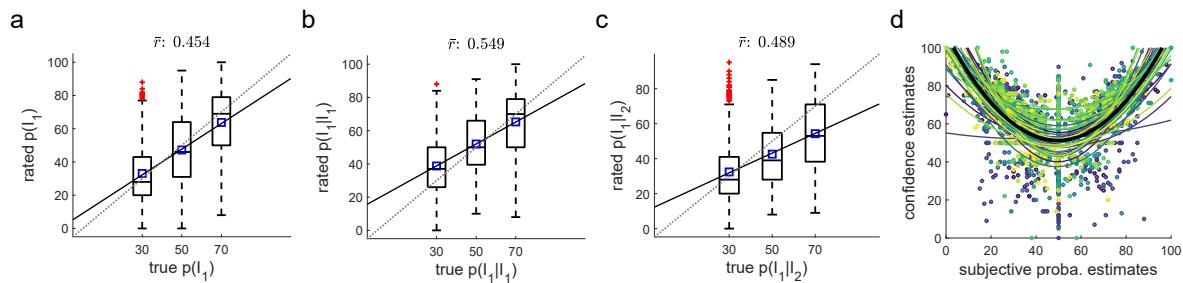


Figure 2. Participants identify the generative sequence statistics.

a, True and rated probabilities to receive a stimulus of intensity I_1 are correlated subject-wise. The mean correlation across participants is 0.454 ($t_{30} = 13.603$, $p < 10^{-5}$, Cohen's $d = 2.443$), indicating that participants identify the trends within the sequences. Dotted line: identity, plain line: linear fit averaged across participants, blue squares: mean rated probabilities.
 b, Participants also accurately identify the trends in the transitions from I_1 . The grand mean correlation between generative and estimated $p(I_1|I_1)$ is 0.549 ($t_{30} = 14.007$, $p < 10^{-5}$, Cohen's $d = 2.516$).
 c, Similar to b for the transitions from I_2 . The grand mean correlation between generative and estimated $p(I_1|I_2)$ is 0.489 ($t_{30} = 11.585$, $p < 10^{-5}$, Cohen's $d = 2.443$).
 d, Confidence reports are quadratically related to the probability estimates (mean coefficient of determination of the quadratic fits: $R^2 = 0.47$). Plain colored lines: individual quadratic fits, thick plain black line: quadratic fit averaged across participants.

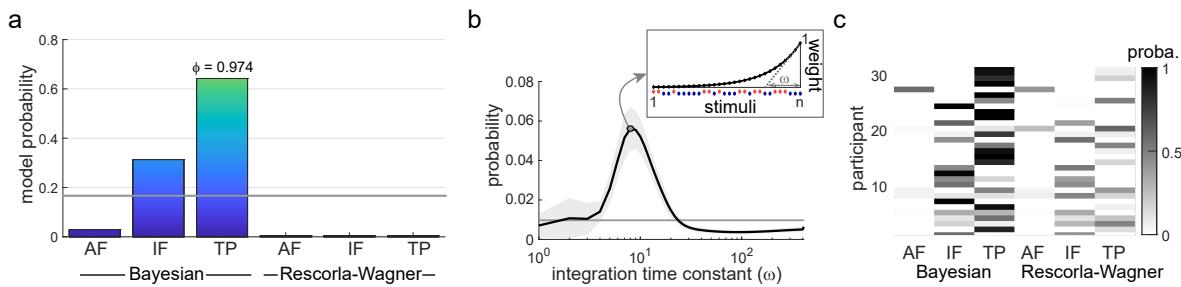


Figure 3. Model comparison. Six different models are considered to explain the subjective reports: Bayesian learners inferring the alternation frequency (AF), the item frequency (IF) or the transition probabilities (TPs), and delta-rule, or Rescorla-Wagner (RW) models, inferring the same sequence statistics (AF, IF, TP).

a, Bayesian model comparison shows that the participants' reports are best approximated by a Bayesian model learning the TPs (the exceedance probability of this model – i.e. the probability for this model to be more frequent than the others in the population – is $\phi = 0.974$). Colored bars: model probabilities, horizontal gray line: prior (uniform) probability.

b, Bayesian model averaging reveals that the participants' integration of observations is best approximated with a time constant ω of 8 stimuli. Horizontal line: uniform prior probability, shaded area: s.e.m. across participants, plain dot: curve maximum. The inset illustrates the exponentially decreasing weights that are used to count the number of past stimuli when n stimuli have been delivered, with a time constant ω of 8.

c, Individual model probabilities (reflecting the similarity between estimated and modeled probabilities) indicate that most subjective reports are best approximated by the Bayesian model learning the TPs, and to a lesser extent by the Bayesian model learning the IFs, but not much by RW models.

102 transition probabilities (TPs) of the stimuli.

103 At group level, we found that probability estimates were best approximated by a Bayesian model which
104 estimates the transition probabilities (Fig 3a). Given that the sequences were not volatile, we used Bayesian
105 models with fixed update of beliefs and a leaky integration to account for forgetting. We estimated that
106 an integration time constant of approximately 8 stimuli best approximated behaviour (Fig 3b), which
107 corresponds to 24 seconds and an integration half-life of around 6 stimuli. This provides evidence that
108 statistical learning for nociceptive stimuli uses a Bayesian inference strategy, whereby the update of the
109 representation is weighted by confidence.

110 A minority of subjects ($n = 11$) favoured a simpler Bayesian inference strategy, predicting item frequencies
111 instead of transition probabilities (Fig. 3c). This somehow contrasts with our previous study with volatile
112 sequences, in which only a minority of participants could predict the TPs between the stimuli, whereas the
113 majority of participants showed a preference for the simpler strategy of encoding the IF (Mancini et al.,
114 2022). Here, the two models that best approximate the subjective reports and are above the prior uniform
115 probability remain the Bayesian models learning the IF or the TPs, but most participants were able to predict
116 the more complex temporal statistics that are the TPs (Fig. 3c). This discrepancy can be explained by the
117 fact that the present task was simplified by the absence of volatility in the generative sequence statistics.
118 Note that frequency can always be derived from transition probabilities (the IF corresponds to the principal
119 diagonal of the TP matrix, see Fig. 1d), so participants who prefer a transition probability inference strategy
120 should also access the frequency of the stimuli.

121 To explore the quality of the fit (i.e. to which extent the winning model is actually close to the participant's
122 responses), we display the positive correlation between rated and model probability estimates in Fig. 4a.
123 Overall, participants' reports were highly correlated with the model estimates (grand mean correlation of
124 0.659, $t_{30} = 24.4$, $p < 10^{-5}$). Importantly, the confidence ratings (which were not used to optimize the fit
125 of the model) correlated with the confidence measures deduced from the Bayesian model, Fig. 4b (grand
126 mean correlation of 0.285, $t_{30} = 9.3$, $p < 10^{-5}$). Bayesian confidence relates to the statistical certainty about
127 the estimated TPs, i.e. to the inverse spread of the posterior distribution over these TPs. The quality of the
128 confidence fit was similar to previous works (Meyniel, 2020). We then quantified the accuracy of probability
129 and confidence ratings as the correlation coefficients between rated and model estimates, and found they
130 were positively correlated across participants (Fig. 4c, correlation of 0.493, $p = 0.005$). This indicates that
131 optimizing the model to probability estimates provides a good description of participant's confidence ratings;
132 it also suggests that confidence and probability estimates are derived from a common cognitive process, in
133 line with previous works (Meyniel et al., 2015; Gherman and Philiastides, 2015). Finally, Fig. 4d illustrates
134 the quadratic relationship between Bayesian model probability estimates and confidence, similarly to what
135 we observed for the subjective reports (Fig. 2d).

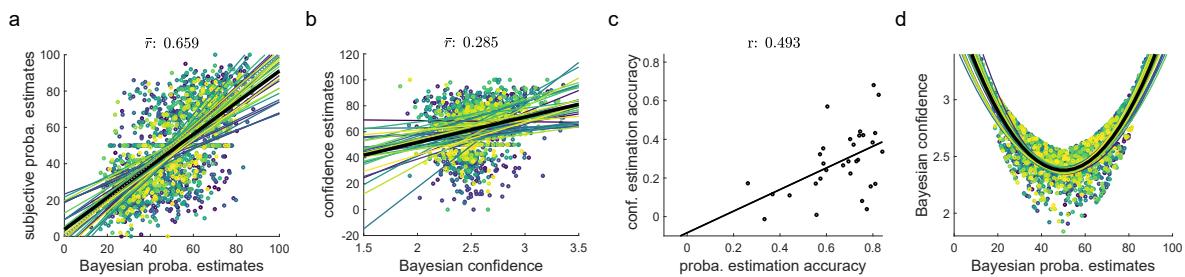


Figure 4. Quality of fit of the best model for the ratings. Subjective estimates of stimulus probability and confidence are highly correlated with Bayes-optimal values obtained from a model learning the TPs with an integration time constant of 8 stimuli.

a, Scatter plot of estimated and modeled stimulus probabilities, with one color per participant. The grand mean correlation is 0.659 ($t_{30} = 24.398$, $p < 10^{-5}$, Cohen's $d = 4.382$). Dotted line: identity, plain colored lines: individual linear fits, thick plain black line: linear fit averaged across participants.

b, Scatter plot of estimated and modeled confidence, with the same color code as in a. The grand mean correlation is 0.285 ($t_{30} = 9.293$, $p < 10^{-5}$, Cohen's $d = 1.669$).

c, The accuracy of probability and confidence estimates are positively correlated across participants (Pearson correlation: 0.493, $p = 0.005$). Each accuracy was computed as the correlation coefficient between the subjective reports and the model estimates across trials.

d, Bayesian confidence is quadratically related to Bayesian probability estimates (mean coefficient of determination of the quadratic fits: $R^2 = 0.59$). Plain colored lines: quadratic fits obtained using the sequences of each participant, thick plain black line: quadratic fit averaged across participants' sequences.

136 EEG

137 Sixty-four channels EEG was recorded on all participants while they were exposed to the sequences of
 138 thermal stimuli. As expected, the main evoked response consisted in a biphasic waveform – the Vertex
 139 Potential (VP) – which peaked over fronto-central electrodes (Crucu et al., 2008; Legrain et al., 2011).
 140 Figure 5a illustrates the grand-average VPs following cool (I_1) and hot (I_2) stimuli, with scalp topographies
 141 of their two main components: the N2 and P2 waves. These two components peaked at 205 ± 17 ms and
 142 318 ± 40 ms after stimulus onset for I_1 , and 369 ± 33 ms and 518 ± 42 ms for I_2 (mean \pm s.t.d.), similar to
 143 previous studies using thermal stimulation (De Keyser et al., 2018; De Schoenmacker et al., 2022). The VPs
 144 in response to both types of stimuli were analyzed separately given their different latencies and thermal
 145 qualities. At a single trial level, the earlier N1 wave was not clearly identifiable due to its low signal-to-noise
 146 ratio.

147 Crucially, we investigated whether the confidence and error of the probabilistic inferences modulate
 148 the Vertex Potentials. Using the learning model which best explains the subjective reports (a Bayesian
 149 model learning the TPs with an integration time constant of 8 stimuli), we regressed the single-trial EEG
 150 signals on two distinct inferential quantities: the residual confidence and Bayesian prediction error (BPE).
 151 Confidence is defined as the log precision of the posterior distribution over the latent parameter and is
 152 therefore inversely proportional to the posterior variance – confidence gets higher when the variance gets
 153 smaller (see (7)). The residual confidence is obtained from the confidence by regressing out the predicted
 154 probability, its square and its logarithm to ensure that these quantities do not drive the confidence effects
 155 (see Methods and (11)) (Meyniel, 2020). Besides, BPE corresponds to the difference between the received
 156 intensity and its predicted probability (see (8)). For each participant, we included these two regressors in
 157 linear regressions at each time point from -0.5 to 1 second around stimulus onset and at central electrodes
 158 of interest (C3, Cz, FCz, CPz, C4). To make sure that BPE and confidence were not collinear, confidence was
 159 regressed on BPE subject-wise, leading to average variance inflation factors (VIFs) of 1 and 1 for I_1 and I_2
 160 respectively, (regression $R^2 < 10^{-5}$). Two variables are typically considered to be highly collinear when their
 161 VIF is above 5 (Sheather, 2009).

162 Grand averages of the t -statistics obtained from t -tests against 0 for the regression coefficients are shown
 163 in Figs. 5b and 6. First, we found a clear modulation of the VP by residual confidence for both intensities
 164 (Fig. 5b). The sign of these modulations is opposite to the VP, meaning that the larger the confidence, the
 165 smaller the N2 and P2 components.

166 Supplementary analyses show that using confidence instead of residual confidence leads to comparable
 167 observations (Fig. S2, even though the VIFs are slightly larger in this case). If the Bayesian model learning
 168 the IF instead of the TPs is considered (second best model fitted to the behavioral reports), results are also

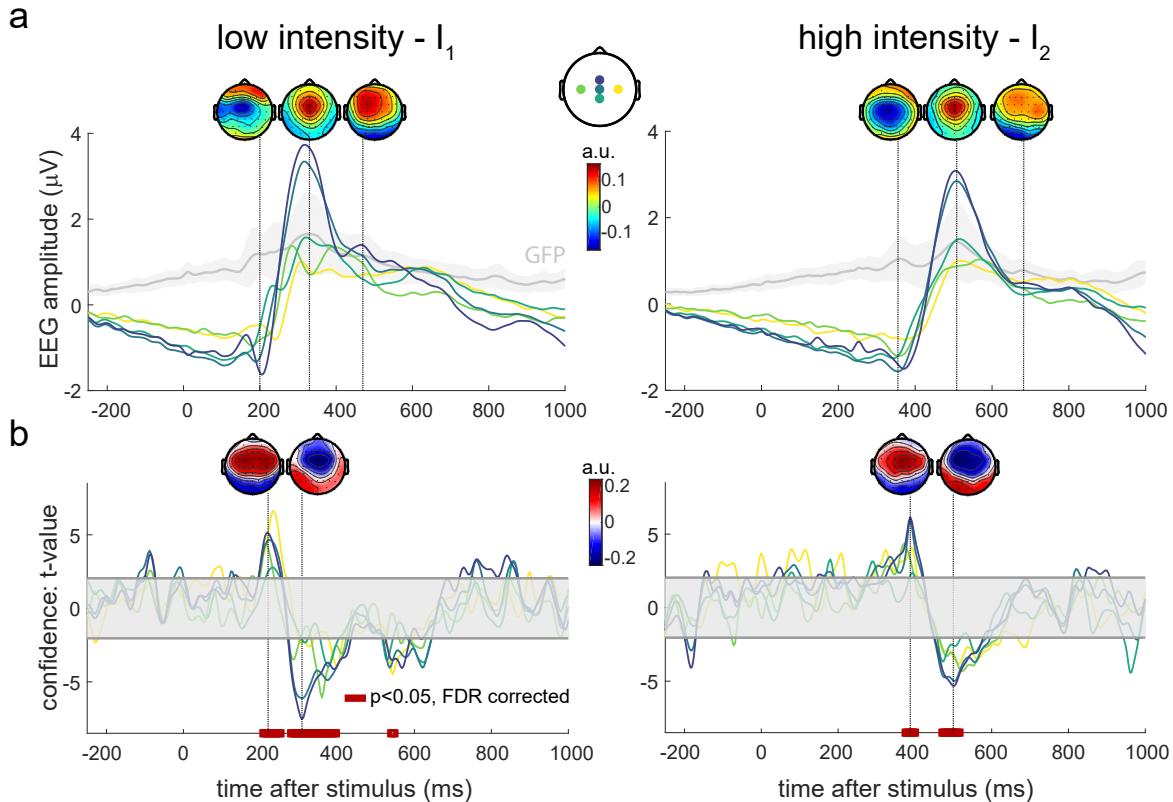


Figure 5. EEG correlates of Bayesian confidence.

a, EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.
b, Encoding of residual confidence in the EEG responses – *t*-statistics for the regression coefficients associated with model confidence. Confidence is obtained from the model which best explains the participants' behavior: a Bayesian model learning the TPs with an integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for $p < 0.05$, two-tailed. Red bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after False Discovery Rate (FDR) correction of the significance levels. Topographies of the largest effects are indicated.

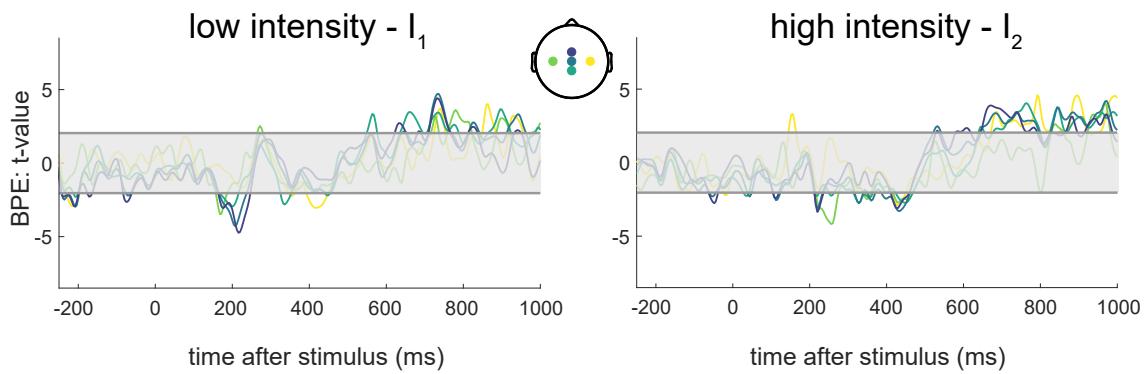


Figure 6. EEG correlates of Bayesian prediction errors (BPE).

Encoding of BPE in the EEG responses, similar to Fig. 5b – *t*-statistics for the regression coefficients associated with BPE. BPE is obtained from the model which best explains the participants' behavior: a Bayesian model learning the TPs with a time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for $p < 0.05$, two-tailed. No time interval was deemed significant after False Discovery Rate (FDR) correction of the significance levels.

¹⁶⁹ similar (Fig. S3).

¹⁷⁰ Finally, we found no statistical evidence for a modulation of the BPE on the EEG potentials, after

171 correcting for the False Discovery Rate (Fig. 6). However, the prediction error derived from a Bayesian
172 model learning the IF instead of the TPs significantly modulates late EEG waves (Fig. S3). The IF model
173 typically leads to more confident predictions than the TP model, because it is simply inferring one parameter
174 (the frequency) rather than two transition probabilities. However, the IF model predictions are more likely
175 to be ‘wrong’ than the TP model predictions, because the sequences of stimuli were generated using TPs
176 rather than only IFs. Bigger BPEs should yield stronger modulations of the late EEG waves, according to a
177 hierarchical Bayesian inference framework. This is what we find, i.e. the IF BPE modulates more consistently
178 late cortical responses than the TP BPE.

179 DISCUSSION

180 The brain needs to learn to predict forthcoming nociceptive stimuli in order to minimize potential harm.
181 When pain persists over time, the brain needs to extract and learn structure or patterns from streams
182 of sensory inputs without relying on explicit feedback or associated cues (Giorgio et al., 2018). Using
183 a statistical learning task in conjunction with EEG, we provide evidence in support of the view that the
184 human brain uses confidence-weighted Bayesian inference to learn to predict future pain levels and that
185 confidence modulates the cortical response to pain. (Yoshida et al., 2013; Grahrl et al., 2018; Valentini et al.,
186 2011; Brown et al., 2008). First, we found that subjective probability estimates of thermal sensations and
187 the associated confidence reports are well approximated by a Bayesian inference model. The best fitting
188 model learns the transition probabilities within the sequences and accounts for participant’s forgetting by
189 integrating past observations with a time constant of 8 stimuli (24 seconds). At the opposite of non-Bayesian
190 models, this winning model indicates that the effect of prior expectations is weighted by confidence to
191 predict forthcoming nociceptive inputs (Meyniel and Dehaene, 2017; Jepma et al., 2018; Mancini et al.,
192 2022). Second, the modeled confidence was negatively associated with the amplitude of the Vertex Potential
193 (VP): the higher the participants’ confidence in the intensity prediction, the smaller the VP. Prediction Errors
194 (PEs), measuring the discrepancy between the expected stimulus and the one which was received, were only
195 weakly associated with increases in later EEG responses. These findings were predicted by our hierarchical
196 Bayesian processing hypothesis: high confidence reduces the cortical response to thermal stimuli because the
197 brain relies less on incoming sensory information, and more on prior information, to generate an inference.

198 The notion of confidence corresponds to a ‘feeling-of-knowing’ about some variables in an uncertain
199 environment (Meyniel et al., 2015). It is important to note that this notion is employed in two kinds of
200 situations, leading to different computational definitions of confidence. First, confidence in a discrete variable
201 that is learned can be quantified by the probability for this variable to take a given value; it corresponds to
202 the so-called choice or decision confidence (Kepecs et al., 2008; Hangya et al., 2016; Sanders et al., 2016;
203 Herding et al., 2019; Pouget et al., 2016). Second, confidence in the value of a continuous variable instead
204 relates to the spread (often quantified by the standard deviation) of the estimated posterior distribution of
205 this variable (Meyniel et al., 2015; Lebreton et al., 2015; Pouget et al., 2016). For instance, in a TSL task
206 like in this work, the confidence in the next stimulus intensity corresponds to the estimated probability to
207 receive this intensity, while the confidence in the sequence statistic that is learned (AF, IF or TP) is related
208 to its estimated standard deviation. As a consequence, decision confidence – which has been the object of
209 numerous publications about choice and decision-making – should not be confounded with the inferential
210 confidence studied here. For the EEG analysis presented in Fig. 5, the estimated probability of each intensity
211 has even been regressed out to obtain the *residual* confidence which is not linearly nor quadratically related
212 to decision confidence.

213 Statistical models of sensory perception predict that inferential confidence should serve as a weighting
214 factor increasing the effect of prior beliefs on perception (Brown et al., 2008; Büchel et al., 2014; Meyniel
215 and Dehaene, 2017). In the pain field, a few works have studied this principle: from a behavioral view point,
216 confidence indeed modulates pain perception by weighting the effect of expectations (Brown et al., 2008;
217 Grahrl et al., 2018; Yoshida et al., 2013). While it is clear that individuals are able to provide metacognitive
218 judgments about pain to some extent (Dildine et al., 2020), some works suggested that humans have a less
219 accurate sense of confidence in the sensory discrimination of pain compared to other sensory modalities
220 (Beck et al., 2019). This contrasts with our finding that inferential confidence is correlated with the Bayesian

221 model confidence, suggesting it is derived from a near-optimal inference process.

222 Regarding the effects of confidence on brain response dynamics, in a hierarchical Bayesian framework
223 we would expect to see early modulations of EEG responses by confidence, such that increased confidence
224 would lead to a reduction of these responses (Brown et al., 2008; Seymour and Mancini, 2020). The few
225 existing studies that looked at confidence effects on EEG signals are consistent with this view (Valentini et al.,
226 2011; Brown et al., 2008), but haven't tested its key predictions on the main EEG responses to pain. Here,
227 we show that confidence in statistical inference has a negative association with an early cortical response
228 to nociceptive stimuli, i.e. the VP. The functional significance of the VP has been debated for decades.
229 Traditionally, it was thought that the VP reflects the sensory processing of a stimulus, and it is indeed often
230 used in clinical neurophysiology as a marker of sensory function (Chen et al., 2001; Crucu et al., 2008;
231 De Keyser et al., 2018). Using nociceptive stimuli, the VP has been associated with subjective pain intensity
232 and, as such, it could be influenced by perceptual and attentional mechanisms (Garcia-Larrea et al., 1997;
233 Lee et al., 2009). Other works have shown that the VP is more likely to encode the differential intensity of
234 a stimulus (with respect to baseline) rather than its absolute intensity (Somervail et al., 2021). Besides,
235 several studies have emphasized that the VP amplitude is not only affected by stimulus intensity and the
236 recent history of stimulation, but also by the unpredictability, novelty and saliency of each stimulus (Iannetti
237 et al., 2008; Valentini et al., 2011; Zhang et al., 2012; Ronga et al., 2012). For instance, just repeating the
238 same stimulus a few times induces a dramatic habituation of the VP, despite the fact that perception remains
239 stable and peripheral habituation can largely be ruled out (e.g. because a new skin spot has been stimulated
240 after each stimulus) (Iannetti et al., 2008; Mancini et al., 2018). Still, a more recent study using a cued
241 pain paradigm suggested that the VP is mostly associated with the sensory processing of a stimulus, without
242 being affected by expectations and PEs (Nickel et al., 2022). These different interpretations can result from
243 the lack of a computational quantification of the pain learning process on a trial basis that would enable
244 fitting individual learning models to each participant (Karlaftis et al., 2019; Beck et al., 2019). Indeed, the
245 aforementioned works did not have estimates of uncertainty or confidence at an individual level because they
246 relied on axiomatic approaches and/or cue-based paradigms. Here, we introduce a computational approach
247 which quantifies nociceptive inference trial-by-trial, enabling the direct correlation of information processing
248 quantities to their brain encoders instead of limiting the contextual information to binary intensities or
249 discrete stimulus and cues categories.

250 Another component of the statistical learning process is the generation of prediction errors (PEs),
251 measuring the difference between what is predicted (based on previous experiences) and what is actually
252 received. PEs (or surprise) signals are expected to modulate some brain responses regardless of the sensory
253 modality (Maheu et al., 2019), though it is likely that the neural implementation of these effects have some
254 stimulus-specificity (Frost et al., 2015). Here, we did not find significant evidence for an effect of PE on
255 the VP, although there was a weak modulation of late-onset EEG responses. In different paradigms, using
256 shorter sequences of stimuli, PEs can account for shorter time-scale habituation (Somervail et al., 2021;
257 Strube et al., 2021). This is not incompatible with our findings: in short and/or cued sequences, PEs tend to
258 be large and this is likely to lead to a stronger cortical modulation, as dictated by Bayesian inference.

259 To conclude, we have shown that subjective probability reports about nociceptive intensity are well
260 approximated by a Bayesian model learning the transition probabilities between high and low intensity
261 stimuli. The Bayesian model's confidence was correlated with the participants' reported confidence levels.
262 Importantly, inferential confidence was negatively correlated with the VP – the higher the confidence,
263 the smaller the VP. This indicates that the VP is modulated by confidence-weighted statistical learning of
264 sequences of nociceptive inputs and is consistent with the predictions of a hierarchical Bayesian inference
265 framework. Given that some pathological pain conditions have been associated with altered learning and
266 predictive capabilities (Baliki et al., 2010, 2011; Smith et al., 2008; Ploner et al., 2016), future works
267 could assess how confidence representations are modified in these patients, opening the path to promising
268 translational studies.

269 **METHODS**

270 **Participants**

271 Thirty-six healthy participants (19 females) took part in the experiment, aged 18-30 years, 32 of them being
272 right-handed. The study was approved by the local ethics committee (Comité d'Ethique Hospitalo-Facultaire
273 de l'Université catholique de Louvain, B403201316436). All participants gave written informed consent and
274 received financial compensation. Five participants were not able to distinguish the two stimulus intensities
275 until the end of the experiment, so they were excluded from all the analyses, leaving 31 subjects (16 females).

276 **Experiments**

277 The task aims to assess temporal statistical learning (TSL) using sequences of nociceptive stimuli of two
278 distinct intensities – I_1 and I_2 . The core principle is that as participants are exposed to a such stream of
279 stimuli, they are able to track the sequence statistics to some extent. Indeed, as the sequence goes, one
280 collects evidences of whether the sequence contains more I_1 , more I_2 , systematically more I_1 following I_1 or
281 I_2 , etc. In our experiment, we aim to understand how these learning mechanisms are implemented.

282 **Stimuli and generative model**

283 The stimulus intensity $y_n \in \{I_1, I_2\}$ at each time step n along a given sequence is uniquely generated according
284 to a two-state Markovian process such that

$$285 \begin{aligned} \bullet \quad p(y_1 = I_1) &= \frac{p(I_1|I_2)}{p(I_1|I_2) + p(I_2|I_1)} \\ \bullet \quad p(y_n|y_{1:n-1}) &= p(y_n|y_{n-1}). \end{aligned}$$

287 Each sequence is therefore characterized by its generative transition probabilities (TPs, $(p(I_1|I_2), p(I_2|I_1))$),
288 i.e. the probabilities of either intensity given the previous stimulus intensity. The stimuli were 250ms-
289 long thermal pulses, applied to the participant's right volar forearm with a contact thermode (QST Lab,
290 Strasbourg, France, active stimulation surface: 120mm^2 , heating and cooling ramps of $300^\circ/\text{s}$). To ensure
291 that the participants were able to easily identify the stimulus intensities along all the tested sequences,
292 the low intensity I_1 was chosen to be non painful and cool, while the high intensity I_2 was selected to be
293 painful and above the individual A δ fiber threshold while being bearable. The temperatures employed were
294 therefore $I_1 = 15^\circ\text{C}$ and $I_2 = 58^\circ\text{C}$, up to modifications based on individual thresholds and/or discrimination
295 capabilities, as detailed below. The high intensity I_2 was described as painful and pricking by all participants.

296 **Procedure**

297 Each participant underwent the following steps: (1) A δ fibers threshold estimation through a staircase
298 procedure using reaction times, (2) one pre-check block to assess the discrimination of the two stimulus
299 intensities, (3) one training block, (4) 10 testing blocks and (5) one post-check block to re-assess the
300 discrimination of the two stimulus intensities at the end of the experiment. The total duration of the
301 experiment was approximately 3 hours.

302 **A δ fibers threshold estimation**

303 The threshold for activating A δ fibers was determined with an adaptive staircase procedure using reaction
304 times (RTs) as described in (Churyukanov et al., 2012). A 250 ms heat stimulus was assumed to activate A δ
305 fibers when the perception RT was ≤ 650 ms. Starting with a 45°C -stimulus, temperature was increased until
306 the RT became shorter than 650 ms, which led to decrease the next stimulus temperature. The successive
307 absolute temperature differences were in $\{5, 2, 1, 0.1\}^\circ\text{C}$, decreasing after each detection change (RT shorter
308 vs. longer than 650 ms). The threshold was defined as the mean of 4 stimulation temperatures which led to
309 3 consecutive changes of RT shorter vs. longer than 650 ms. This led to thresholds of 52.7°C (± 5.1) on
310 average (\pm standard deviation).

311 **Check blocks**

312 During each pre-check and post-check block, the participant received a random sequence of 15 stimuli with
313 intensities I_1 and I_2 (fully random TPs of $(0.5, 0.5)$) and self-paced inter-stimulus-intervals (ISIs). After
314 each stimulus, the participant was asked to report the stimulus identity (cool or hot) and the thermode

315 was displaced before delivering the next stimulus. If there were more than 5 mistakes in a pre-check block,
316 pronounced hesitations about the stimulus identity or if I_2 was unbearable, the stimulus intensities were
317 adjusted accordingly. This led to increase I_1 for 4 participants and decrease I_2 to 57°C for 10 participants. If
318 there were more than 5 mistakes in a post-check block, the subject was excluded from the analyses.

319 **Training and testing blocks**

320 During a training or testing block, the participant was exposed to one sequence of stimuli whose intensities
321 were generated based on fixed TPs. The thermode was displaced on the forearm between successive stimuli
322 to avoid trial-to-trial habituation and sensitization which could prevent the participant from distinguishing
323 the two intensities until the sequence ended. The within-sequence ISI was set to 3 seconds. Every 15 ± 3
324 stimuli, the sequence was paused to probe the participant's inference of the sequence TPs – the participant
325 was asked to (1) estimate the probability of the next stimulus intensity and then (2) rate their confidence
326 in this estimate, Fig. 1b. The scales were displayed on a computer screen in front of the participant and
327 numerical ratings were collected based on keyboard inputs. A time limit of 8 seconds was set to answer
328 each question to avoid too long breaks within the sequences which could affect learning (Atlas et al., 2021).

329 The **training block** consisted of one sequence of 50 stimuli generated with TPs (0.7, 0.4) and enabled
330 the participants to understand the generative process and familiarize with the task. Subjects received a
331 feedback at the end of this sequence on the correctness of their rating trend.

332 In each of the **10 testing blocks**, the participant received one sequence of 100 stimuli. The first and last
333 5 sequences were generated with the 5 different TPs indicated with numbers in Fig. 1d: (0.5, 0.5), (0.3, 0.7),
334 (0.7, 0.3), (0.3, 0.3) and (0.7, 0.7). The order of the blocks was randomized across participants and variable
335 breaks were allowed between sequences.

336 Behavioral data were analyzed with Matlab R2019b (The MathWorks) and Cohen's d is reported as
337 effect size for each t -test.

338 **Learning models**

339 The generative parameters of the sequence can be continuously estimated based on the stimuli received,
340 leading to predictions about the forthcoming stimulus. To understand how participants perform this inference
341 task, different models performing the same task were fitted to the subjective probability estimates and
342 compared.

343 Two families of learning models were considered to explain the sequence statistics inference: a Bayesian
344 learner and a non-Bayesian Reinforcement Learning (RL) model which is called the delta-rule or Rescorla-
345 Wagner (RW) model (Meyniel et al., 2016; Meyniel and Dehaene, 2017; Rescorla and Wagner, 1972).

346 **Bayesian model**

347 A Bayesian model estimates the posterior distribution of a latent parameter θ given the sequence of observed
348 stimuli $y_{1:n}$ at each time step n using Bayes' rule (Meyniel et al., 2016). Each model M estimates specific
349 sequence parameters: either the item frequency (IF) or the alternation frequency (AF) or the transition
350 probabilities (TPs). Given a model M , the parameter posterior is obtained by combining the parameter prior
351 and the likelihood of past observations:

$$p(\theta|y_{1:n}, M) \propto p(y_{1:n}|\theta, M) \cdot p(\theta|M). \quad (1)$$

352 We use a uniform (conjugate) prior distribution over the parameter values (i.e. $p(\theta|M) \sim \text{Beta}(\theta|1, 1)$, which
353 enables deriving analytical solutions for the posterior. Using the Markovian assumption $p(y_{n+1}|y_{1:n}, \theta) =$
354 $p(y_{n+1}|y_n, \theta)$, the likelihood can be decomposed as

$$p(y_{1:n}|\theta, M) = p(y_n|y_{n-1}, \theta, M) \cdot \dots \cdot p(y_3|y_2, \theta, M) \cdot p(y_2|y_1, \theta, M) \cdot p(y_1|\theta, M). \quad (2)$$

355 This likelihood and thereby the posterior can be further simplified depending on the model M as shown
356 below.

357 1. **IF learning.** With this model, the inferred parameter is the probability to receive a stimulus of intensity
358 I_1 : $\theta = p(I_1) := \theta_{I_1}$. The posterior is therefore

$$p(\theta_{I_1} | y_{1:n}, M) \sim \text{Beta}(\theta_{I_1} | N_1 + 1, N_2 + 1), \quad (3)$$

359 where N_1 and N_2 are the numbers of stimuli of intensity I_1 and I_2 respectively within $y_{1:n}$.

360 **2. AF learning.** The inferred parameter is the probability of intensity alternation, i.e. the probability to
361 switch from I_1 to I_2 or vice versa within the sequence: $\theta = p(\text{alt.}) := \theta_{\text{alt.}}$. The posterior dsitribution
362 reads

$$p(\theta_{\text{alt.}} | y_{1:n}, M) \sim \text{Beta}(\theta_{\text{alt.}} | N_a + 1, N_r + 1), \quad (4)$$

363 with N_a and N_r the number of alternations and repetitions of stimulus intensities within $y_{1:n}$.

364 **3. TPs learning.** The inferred parameter is now two-dimensional and corresponds to the transition
365 probabilities of the sequence of stimuli: $\theta := (\theta_{I_1|I_2}, \theta_{I_2|I_1})$, which leads to the posterior

$$p(\theta | y_{1:n}, M) \sim \text{Beta}(\theta_{I_1|I_2} | N_{1|2} + 1, N_{2|2} + 1) \cdot \text{Beta}(\theta_{I_2|I_1} | N_{2|1} + 1, N_{1|1} + 1), \quad (5)$$

366 where $N_{j|k}$ is the number of transitions from I_j to I_k counted within $y_{1:n}$.

367 To account for limited memory constraints during inference and an unknown timescale of integration, a
368 leaky integration of observations is considered (Meyniel et al., 2016). All the models are endowed with a
369 free parameter $\omega \in [1, \infty[$ – the integration time constant – and the k^{th} last observation counted (being it
370 an item, an alternation or a transition depending on the model considered) is weighted according to an
371 exponential decay by a factor $\exp^{-k/\omega}$.

372 For all Bayesian models, some outcomes of interest can be deduced from the posterior at each position n
373 within the sequence, when the observations $y_{1:n}$ have been received:

374 • **The probability of the next stimulus** is the mean of the posterior distribution:

$$p(y_{n+1} | y_{1:n}, M) = \int_{\theta} p(y_{n+1}, \theta | y_{1:n}, M) d\theta = \int_{\theta} p(y_{n+1} | \theta, y_n, M) \cdot p(\theta | y_{1:n}, M) d\theta. \quad (6)$$

375 • **The confidence in the learned parameter** relates to the precision (inverse variance, $\pi := 1/\sigma^2$) of
376 the posterior (Meyniel and Dehaene, 2017; Pouget et al., 2016):

$$c_n = -\log(\sigma(p(\theta | y_{1:n}, M))) = 0.5 \cdot \log(\pi(p(\theta | y_{1:n}, M))). \quad (7)$$

377 The confidence quantifies the certainty in the estimated continuous variable, and is typically expressed
378 in log space so that the standard deviation and variance are proportional.

379 • **The prediction error** is defined like in a Bayesian predictive coding framework (Aitchison and Lengyel,
380 2017; Geuter et al., 2017) as

$$e_n = 1 - p(y_n | y_{1:n-1}, M). \quad (8)$$

381 It can be noted that, likewise, the Shannon surprise (Meyniel and Dehaene, 2017) elicited by the last
382 stimulus also quantifies the discrepancy between the intensity that was expected and the one that is
383 received (y_n), in a log space: $s_n = -\log(p(y_n | y_{1:n-1}, M))$.

384 To assess the extent to which these models and their parameter (the integration time constant) are identifiable
385 in our experiment, parameter and model recovery analyses can be found in Fig. S4.

386 **Rescorla-Wagner, or delta-rule, models**

387 The delta-rule model, or Rescorla-Wagner (RW) model (Rescorla and Wagner, 1972; Miller et al., 1995), is
 388 compared to the Bayesian model. While the latter weights the posterior updates by confidence (Meyniel
 389 and Dehaene, 2017), the delta rule uses a constant and non-statistical weighting of incoming observations
 390 to estimate the latent parameter. The inferred parameter θ (IF, AF or TPs) is initiated at 0.5 and is seen as a
 391 state value V in the RW models, as detailed in what follows.

392 1. **IF learning.** The state value corresponds to the estimated probability to receive a stimulus of intensity
 393 I_1 : $V_n := \hat{\theta}_{I_1,n}$.

394 At each step n in the sequence, the state is updated as $V_n = V_{n-1} + \alpha \cdot (R_n - V_{n-1})$, where $R_n = 1$ if
 395 $y_n = I_1$ and $R_n = 0$ if $y_n = I_2$ and with the learning rate $\alpha \in]0, 1[$ being a free model parameter.

396 2. **AF learning.** The state value corresponds to the estimated probability of an alternation within the
 397 sequence: $V_n := \hat{\theta}_{\text{alt.},n}$.

398 The state is updated as $V_n = V_{n-1} + \alpha \cdot (R_n - V_{n-1})$, where $R_n = 0$ if $y_n = y_{n-1}$ and $R_n = 1$ otherwise.

399 3. **TPs learning.** The state value is two-dimensional and corresponds to the estimated transition proba-
 400 bilities: $V_{1,n} := \hat{\theta}_{I_1|I_1,n}$, $V_{2,n} := \hat{\theta}_{I_1|I_2,n}$.

401 The state is updated as

- 402 • $V_{i,n} = V_{i,n-1} + \alpha \cdot (R_n - V_{i,n-1})$, with $R_n = 1$ if $y_n = I_1$ and $R_n = 0$ if $y_n = I_2$, if $y_{n-1} = I_i$
- 403 • $V_{i,n} = V_{i,n-1}$ if $y_{n-1} = I_i$.

404 **Model fitting**

405 To determine to which extent each model accounts for the subjective reports, we quantify the relationship
 406 between subjective and model probability estimates by linearly regressing the subjective reports on the
 407 modeled estimates for each participant and model. Across trials indexed by n , the probability report x_n is
 408 hence regressed on the model probability of I_1 $p_n^{M_i, \omega_i}$ deduced from each model M_i with free parameter ω_i
 409 as described above (Bayesian and RW models learning the IF, AF or TPs, with integration time constant or
 410 learning rate as free parameter) as:

$$x_n = \beta_0 + \beta_1 \cdot p_n^{M_i, \omega_i} + \epsilon, \quad (9)$$

411 where β are the regression coefficients, estimated by OLS, and ϵ the residuals.

412 The quality of this fit is quantified by the model evidence (or marginal likelihood) $p(x|M_i)$, which is
 413 estimated with the Bayesian Information Criterion (BIC) as:

$$p(x|M_i) \approx \exp\left(\frac{-BIC}{2}\right), \quad (10)$$

414 with $BIC = N \cdot \log(\sigma_e^2) + q \cdot \log(N)$, the mean squared error (MSE) of the regression $\sigma_e^2 = \min_{\omega_i} \frac{1}{N} \sum_{n=1}^N (x_n -$
 415 $\hat{x}_n^{M_i, \omega_i})^2$, N the number of observations and q the number of parameters (here there are 2 regression
 416 coefficients and 1 model free parameter). When comparing models with the same number of parameters,
 417 minimizing the BIC amounts to minimizing the MSE. We considered 99 possible learning rates for the RW
 418 models in the range from 0.005 to 0.95, and 103 integration time constants for the Bayesian models from 1
 419 to 400 plus infinity (i.e. a perfect integrator).

420 Individual, subject-wise, model probabilities were obtained by normalizing the model evidences estimated
 421 with the BIC as in (10).

422 **Model comparison**

423 The model with the largest model evidence (or lowest BIC) was considered to be the best fit for the ratings.
 424 To compare the six models M_i described above, we conducted a Bayesian model comparison as implemented
 425 in the VBA toolbox (Daunizeau et al., 2014) and adopted a random-effect approach, assuming that the
 426 optimal model can differ across participants. The analysis yielded the expected probability of each model M_i
 427 and the probability for M_i to be more frequent than all the other models in the population, which is called
 428 the 'exceedance probability' and is denoted by ϕ .

429 The model free parameter which approximated the subjective reports best on average was determined
 430 through Bayesian model averaging (Maheu et al., 2019) for the Bayesian and RW models separately by
 431 estimating $p(\omega|x) \propto \sum_i p(x|M_i, \omega) \approx \sum_i \exp(-\text{BIC}(M_i, \omega)/2)$.

432 **Electrophysiological recordings**

433 EEG was recorded during the whole experiment using 64 Ag-AgCl electrodes placed on the scalp according
 434 to the international 10/10 system (WaveGuard 64-channel cap, Advanced Neuro Technologies) and with
 435 an average reference. Synchronization of the stimuli, triggers on the EEG and behavioral questions was
 436 performed with the Data Acquisition Toolbox and Psychotoolbox running on Matlab. Electrode impedances
 437 were kept below $10\text{k}\Omega$. Eye movements were recorded using a pair of surface electrodes placed above and
 438 on the right side of the right eye, and one electrocardiogram (EKG) lead was recorded with two surface
 439 electrodes, one below the right clavicle near the shoulder and the other on the last left rib. Signals were
 440 amplified and digitized at 1000 Hz. Participants were asked to move as little as possible and keep their gaze
 441 fixed on the computer screen in front of them, which displayed a fixation cross and occasional behavioral
 442 questions (see the Experiments section).

443 **Preprocessing**

444 The EEG recordings were analyzed using Matlab R2019b (The MathWorks). First, the following preprocessing
 445 steps were conducted using Letswave 6 (<http://letswave.org>) (Mouraux and Iannetti, 2008): high-pass
 446 filtering above 0.5 Hz with a 4th order zero-phase Butterworth filter, 50 Hz bandpass notch filtering, down-
 447 sampling to 500 Hz, segmentation of trials from -1 to $+1.5$ seconds relative to stimulus onsets, baseline
 448 mean correction, and rejection of stereotyped artifacts using an Independent Component Analysis (ICA)
 449 decomposition (Bell and Sejnowski, 1995). Then, using Matlab, epochs were low-pass filtered below 30
 450 Hz and trials with amplitudes reaching $80\text{ }\mu\text{V}$ were rejected, leading to keep 491 ± 17.3 and 490.2 ± 16.27
 451 (grand mean \pm standard deviation) stimuli of intensities I_1 and I_2 .

452 **Linear regressions**

453 We sought to determine if and how the Vertex Potential (VP) reflects the behavioral outcomes observed
 454 during TSL. The model which best approximated the participants' behavior was considered (Bayesian model
 455 learning the TPs with a time constant $\omega = 8$), and the VP was regressed on its key inferential outcomes. Two
 456 regressors were included in the analysis: the prediction error (see (8), known to affect sensory responses
 457 (Maheu et al., 2019; Strube et al., 2021)) and the confidence in the estimates, which weights learning in a
 458 Bayesian framework (Meyniel and Dehaene, 2017) (see (7)).

459 To ensure that the effects of confidence on EEG signals were not driven by confounding factors related
 460 to the prediction itself ($p(I_1|y_{1:n}, M_i, \omega_i) := p_n$) (Meyniel, 2020), we first computed the *residual confidence*
 461 c_n^r from the confidence c_n by regressing out the predicted probability, its logarithm and its square as:

$$c_n = \beta_{0,k}^r + \beta_1^r \cdot p_n + \beta_2^r \cdot p_n^2 + \beta_3^r \cdot \log(p_n) + \beta_4^r \cdot \log(1-p_n) + c_n^r, \quad (11)$$

462 where k denotes the testing block index, n the trial index and β^r the regression coefficients. The first
 463 coefficient $\beta_{0,k}^r$ is a fixed intercept grouped by testing condition k (i.e. generative probabilities of the
 464 sequences). Then, for each participant, at each channel and at each time point from -0.5 to 1 second
 465 around stimulus onset, the EEG signal z_n was regressed on the Bayesian prediction error (BPE) e_n and
 466 residual confidence c_n^r (omitting the dependence of the regressors upon the model M_i and its parameter ω_i
 467 for clarity):

$$z_n = \beta_{0,k} + \beta_1 \cdot e_n + \beta_2 \cdot c_n^r + \epsilon. \quad (12)$$

468 The regressions were computed across all available trials.

469 The two considered regressors – BPE and residual confidence – deduced from the optimal inference were
470 not linearly related, enabling to compute and safely interpret the regression coefficients. To confirm that
471 they are not collinear, we computed the Variance Inflation Factors (VIFs) for (residual) confidence against
472 BPE (Sheather, 2009): $VIF = \frac{1}{1-R^2}$, where R^2 is the coefficient of determination obtained when linearly
473 regressing (residual) confidence on BPE. Unless stated otherwise, ‘residual’ is assumed when mentioning
474 confidence in this work. Significance of the regression coefficients across participants was assessed using
475 one-sample t -tests against 0. Significance level was set to 0.05 and corrected for multiple comparisons across
476 time points and selected channels (C3, Cz, FCz, CPz, C4) with the False Discovery Rate (FDR) correction.

477 **Supplemental information**

478 Supplemental Information includes 4 figures and can be found with this article online.

479 **Acknowledgments**

480 This work was supported by a Medical Research Council Career Development Award to FM (MR/T010614/1)
481 and Wellcome Trust grants to BS. DM is a Research Fellow of the Fonds de la Recherche Scientifique - FNRS.

482 **Author contributions**

483 DM, BS, AM and FM designed the experiments. DM collected and analyzed the data. DM and FM wrote the
484 original paper draft, which was reviewed and edited by all co-authors.

485 **Declaration of interests**

486 The authors declare no competing interests.

487 **Data and code availability**

488 The behavioral and EEG data sets will be made publicly available on an OSF repository upon acceptance
489 and are also available from the corresponding authors upon request. The codes used to generate the model
490 outcomes and analyze the data are available on GitHub (upon acceptance).

491 **REFERENCES**

492 Aitchison, L. and Lengyel, M. (2017). With or without you: predictive coding and bayesian inference in the
493 brain. *Current opinion in neurobiology*, 46:219–227.

494 Atlas, L. Y., Bolger, N., Lindquist, M. A., and Wager, T. D. (2010). Brain mediators of predictive cue effects
495 on perceived pain. *Journal of Neuroscience*, 30(39):12964–12977.

496 Atlas, L. Y., Sandman, C. F., and Phelps, E. A. (2021). Rating expectations can slow aversive reversal learning.
497 *Psychophysiology*, page e13979.

498 Atlas, L. Y. and Wager, T. D. (2012). How expectations shape pain. *Neuroscience letters*, 520(2):140–148.

499 Baliki, M. N., Baria, A. T., and Apkarian, A. V. (2011). The cortical rhythms of chronic back pain. *Journal of
500 Neuroscience*, 31(39):13981–13990.

501 Baliki, M. N., Geha, P. Y., Fields, H. L., and Apkarian, A. V. (2010). Predicting value of pain and analgesia:
502 nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. *Neuron*, 66(1):149–
503 160.

504 Beck, B., Peña-Vivas, V., Fleming, S., and Haggard, P. (2019). Metacognition across sensory modalities:
505 Vision, warmth, and nociceptive pain. *Cognition*, 186:32–41.

506 Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind
507 deconvolution. *Neural computation*, 7(6):1129–1159.

508 Bromm, B. and Treede, R.-D. (1987). Human cerebral potentials evoked by CO₂ laser stimuli causing pain.
509 *Experimental brain research*, 67(1):153–162.

510 Brown, C. A., Seymour, B., El-Deredy, W., and Jones, A. K. (2008). Confidence in beliefs about pain
511 predicts expectancy effects on pain perception and anticipatory processing in right anterior insula. *Pain*,
512 139(2):324–332.

513 Büchel, C., Geuter, S., Sprenger, C., and Eippert, F. (2014). Placebo analgesia: a predictive coding perspective.
514 *Neuron*, 81(6):1223–1239.

515 Chen, A. C., Niddam, D. M., and Arendt-Nielsen, L. (2001). Contact heat evoked potentials as a valid means
516 to study nociceptive pathways in human subjects. *Neuroscience letters*, 316(2):79–82.

517 Churyukanov, M., Plaghki, L., Legrain, V., and Mouraux, A. (2012). Thermal detection thresholds of A δ -
518 and C-fiber afferents activated by brief CO₂ laser pulses applied onto the human hairy skin. *PLoS one*,
519 7(4):e35817.

520 Crucu, G., Aminoff, M., Curio, G., Guerit, J., Kakigi, R., Mauguire, F., Rossini, P., Treede, R.-D., and
521 Garcia-Larrea, L. (2008). Recommendations for the clinical use of somatosensory-evoked potentials.
522 *Clinical neurophysiology*, 119(8):1705–1719.

523 Daunizeau, J., Adam, V., and Rigoux, L. (2014). VBA: a probabilistic treatment of nonlinear models for
524 neurobiological and behavioural data. *PLoS computational biology*, 10(1):e1003441.

525 De Keyser, R., van den Broeke, E. N., Courtin, A., Dufour, A., and Mouraux, A. (2018). Event-related brain
526 potentials elicited by high-speed cooling of the skin: A robust and non-painful method to assess the
527 spinothalamic system in humans. *Clinical Neurophysiology*, 129(5):1011–1019.

528 De Schoenmacker, I., Archibald, J., Kramer, J., and Hubli, M. (2022). Improved acquisition of contact heat
529 evoked potentials with increased heating ramp. *Scientific reports*, 12(1):1–11.

530 Dildine, T. C., Necka, E. A., and Atlas, L. Y. (2020). Confidence in subjective pain is predicted by reaction
531 time during decision making. *Scientific reports*, 10(1):1–14.

532 Frost, R., Armstrong, B. C., Siegelman, N., and Christiansen, M. H. (2015). Domain generality versus
533 modality specificity: the paradox of statistical learning. *Trends in cognitive sciences*, 19(3):117–125.

534 Garcia-Larrea, L., Peyron, R., Laurent, B., and Mauguire, F. (1997). Association and dissociation between
535 laser-evoked potentials and pain perception. *Neuroreport*, 8(17):3785–3789.

536 Geuter, S., Boll, S., Eippert, F., and Büchel, C. (2017). Functional dissociation of stimulus intensity encoding
537 and predictive coding of pain in the insula. *Elife*, 6:e24770.

538 Gherman, S. and Philippiades, M. G. (2015). Neural representations of confidence emerge from the process
539 of decision formation during perceptual choices. *Neuroimage*, 106:134–143.

540 Giorgio, J., Karlaftis, V. M., Wang, R., Shen, Y., Tino, P., Welchman, A., and Kourtzi, Z. (2018). Functional
541 brain networks for learning predictive statistics. *cortex*, 107:204–219.

542 Grahl, A., Onat, S., and Büchel, C. (2018). The periaqueductal gray and bayesian integration in placebo
543 analgesia. *Elife*, 7:e32930.

544 Hangya, B., Sanders, J. I., and Kepecs, A. (2016). A mathematical framework for statistical decision
545 confidence. *Neural Computation*, 28(9):1840–1858.

546 Heald, J. B., Lengyel, M., and Wolpert, D. M. (2021). Contextual inference underlies the learning of
547 sensorimotor repertoires. *Nature*, 600(7889):489–493.

548 Herding, J., Ludwig, S., von Lautz, A., Spitzer, B., and Blankenburg, F. (2019). Centro-parietal EEG potentials
549 index subjective evidence and confidence during perceptual decision making. *NeuroImage*, 201:116011.

550 Iannetti, G. D., Hughes, N. P., Lee, M. C., and Mouraux, A. (2008). Determinants of laser-evoked eeg
551 responses: pain perception or stimulus saliency? *Journal of neurophysiology*, 100(2):815–828.

552 Jepma, M., Koban, L., van Doorn, J., Jones, M., and Wager, T. D. (2018). Behavioural and neural evidence
553 for self-reinforcing expectancy effects on pain. *Nature human behaviour*, 2(11):838–855.

554 Karlaftis, V. M., Giorgio, J., Vértes, P. E., Wang, R., Shen, Y., Tino, P., Welchman, A. E., and Kourtzi, Z. (2019).
555 Multimodal imaging of brain connectivity reveals predictors of individual decision strategy in statistical
556 learning. *Nature human behaviour*, 3(3):297–307.

557 Kepecs, A., Uchida, N., Zariwala, H. A., and Mainen, Z. F. (2008). Neural correlates, computation and
558 behavioural impact of decision confidence. *Nature*, 455(7210):227.

559 Lebreton, M., Abitbol, R., Daunizeau, J., and Pessiglione, M. (2015). Automatic integration of confidence in
560 the brain valuation signal. *Nature neuroscience*, 18(8):1159–1167.

561 Lee, M. C., Mouraux, A., and Iannetti, G. D. (2009). Characterizing the cortical activity through which pain
562 emerges from nociception. *Journal of Neuroscience*, 29(24):7909–7916.

563 Legrain, V., Iannetti, G. D., Plaghki, L., and Mouraux, A. (2011). The pain matrix reloaded: a salience
564 detection system for the body. *Progress in neurobiology*, 93(1):111–124.

565 Maheu, M., Dehaene, S., and Meyniel, F. (2019). Brain signatures of a multiscale process of sequence
566 learning in humans. *eLife*, 8:e41541.

567 Mancini, F., Pepe, A., Bernacchia, A., Di Stefano, G., Mouraux, A., and Iannetti, G. D. (2018). Characterizing
568 the short-term habituation of event-related evoked potentials. *eNeuro*, 5(5).

569 Mancini, F., Zhang, S., and Seymour, B. (2022). Learning the statistics of pain: computational and neural
570 mechanisms. *Nature Communications*. In press.

571 Meyniel, F. (2020). Brain dynamics for confidence-weighted learning. *PLOS Computational Biology*,
572 16(6):e1007935.

573 Meyniel, F. and Dehaene, S. (2017). Brain networks for confidence weighting and hierarchical inference
574 during probabilistic learning. *Proceedings of the National Academy of Sciences*, 114(19):E3859–E3868.

575 Meyniel, F., Maheu, M., and Dehaene, S. (2016). Human inferences about sequences: A minimal transition
576 probability model. *PLoS computational biology*, 12(12):e1005260.

577 Meyniel, F., Schlunegger, D., and Dehaene, S. (2015). The sense of confidence during probabilistic learning:
578 A normative account. *PLoS computational biology*, 11(6):e1004305.

579 Miller, R. R., Barnet, R. C., and Grahame, N. J. (1995). Assessment of the Rescorla-Wagner model. *Psycholog-
580 ical bulletin*, 117(3):363.

581 Mouraux, A. and Iannetti, G. D. (2008). Across-trial averaging of event-related EEG responses and beyond.
582 *Magnetic resonance imaging*, 26(7):1041–1054.

583 Mouraux, A. and Iannetti, G. D. (2009). Nociceptive laser-evoked brain potentials do not reflect nociceptive-
584 specific neural activity. *Journal of neurophysiology*, 101(6):3258–3269.

585 Nickel, M. M., Tiemann, L., Hohn, V. D., May, E. S., Ávila, C. G., Eippert, F., and Ploner, M. (2022). Temporal-
586 spectral signaling of sensory information and expectations in the cerebral processing of pain. *Proceedings
587 of the National Academy of Sciences*, 119(1).

588 Ploner, M., Sorg, C., and Gross, J. (2016). Brain rhythms of pain. *Trends in Cognitive Sciences*.

589 Pouget, A., Drugowitsch, J., and Kepcs, A. (2016). Confidence and certainty: distinct probabilistic quantities
590 for different goals. *Nature neuroscience*, 19(3):366–374.

591 Rescorla, R. A. and Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness
592 of reinforcement and nonreinforcement. *Classical Conditioning II: Current Theory and Research*, pages
593 64–99.

594 Ronga, I., Valentini, E., Mouraux, A., and Iannetti, G. D. (2012). Novelty is not enough: laser-evoked poten-
595 tials are determined by stimulus saliency, not absolute novelty. *Journal of neurophysiology*, 109(3):692–701.

596 Sanders, J. I., Hangya, B., and Kepcs, A. (2016). Signatures of a statistical computation in the human sense
597 of confidence. *Neuron*, 90(3):499–506.

598 Schulz, E., May, E. S., Postorino, M., Tiemann, L., Nickel, M. M., Witkovsky, V., Schmidt, P., Gross, J.,
599 and Ploner, M. (2015). Prefrontal gamma oscillations encode tonic pain in humans. *Cerebral cortex*,
600 25(11):4407–4414.

601 Seymour, B. and Mancini, F. (2020). Hierarchical models of pain: Inference, information-seeking, and
602 adaptive control. *NeuroImage*, 222:117212.

603 Sheather, S. (2009). *A modern approach to regression with R*. Springer Science & Business Media.

604 Smith, B. W., Tooley, E. M., Montague, E. Q., Robinson, A. E., Cosper, C. J., and Mullins, P. G. (2008).
605 Habituation and sensitization to heat and cold pain in women with fibromyalgia and healthy controls.
606 *Pain*, 140(3):420–428.

607 Somervail, R., Zhang, F., Novembre, G., Bufacchi, R., Guo, Y., Crepaldi, M., Hu, L., and Iannetti, G. (2021).
608 Waves of change: brain sensitivity to differential, not absolute, stimulus intensity is conserved across
609 humans and rats. *Cerebral Cortex*, 31(2):949–960.

610 Strube, A., Rose, M., Fazeli, S., and Büchel, C. (2021). The temporal and spectral characteristics of
611 expectations and prediction errors in pain and thermoception. *Elife*, 10:e62809.

612 Torta, D., Liang, M., Valentini, E., Mouraux, A., and Iannetti, G. D. (2012). Dishabituation of laser-evoked EEG
613 responses: dissecting the effect of certain and uncertain changes in stimulus spatial location. *Experimental
614 brain research*, 218(3):361–372.

615 Valentini, E., Hu, L., Chakrabarti, B., Hu, Y., Aglioti, S. M., and Iannetti, G. D. (2012). The primary
616 somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive

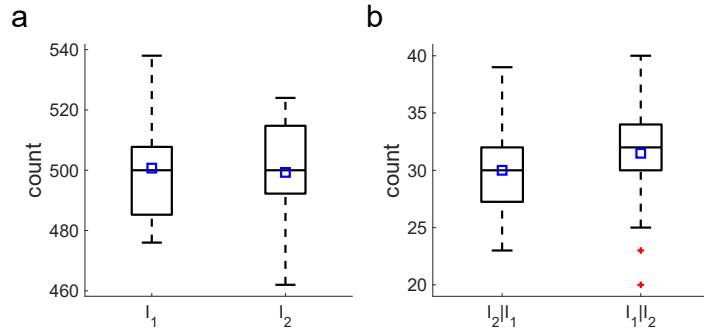


Figure S1. The number of stimuli from both intensities and the number of rated transitions are balanced.

a, Numbers of stimuli from each intensity delivered to the participants along all the testing blocks. Participants received balanced numbers of stimuli from both intensities (mean difference between the numbers of I_1 and I_2 : -1.419 , $t_{30} = -0.25$, $p = 0.804$, Cohen's $d = -0.045$). Blue squares: mean number of stimuli.
b, Likewise, participants rated, on average, similar numbers of both types of transitions (mean difference of numbers of rated transitions from I_1 and from I_2 : 1.484 , $t_{30} = 1.054$, $p = 0.3$, Cohen's $d < 10^{-5}$).

617 stimuli. *Neuroimage*, 59(2):1571–1581.
618 Valentini, E., Torta, D. M., Mouraux, A., and Iannetti, G. D. (2011). Dishabituation of laser-evoked eeg
619 responses: dissecting the effect of certain and uncertain changes in stimulus modality. *Journal of Cognitive
620 Neuroscience*, 23(10):2822–2837.
621 Yoshida, W., Seymour, B., Koltzenburg, M., and Dolan, R. J. (2013). Uncertainty increases pain: evidence
622 for a novel mechanism of pain modulation involving the periaqueductal gray. *Journal of Neuroscience*,
623 33(13):5638–5646.
624 Zhang, Z., Hu, L., Hung, Y. S., Mouraux, A., and Iannetti, G. (2012). Gamma-band oscillations in the
625 primary somatosensory cortex — a direct and obligatory correlate of subjective pain intensity. *Journal of
626 Neuroscience*, 32(22):7429–7438.

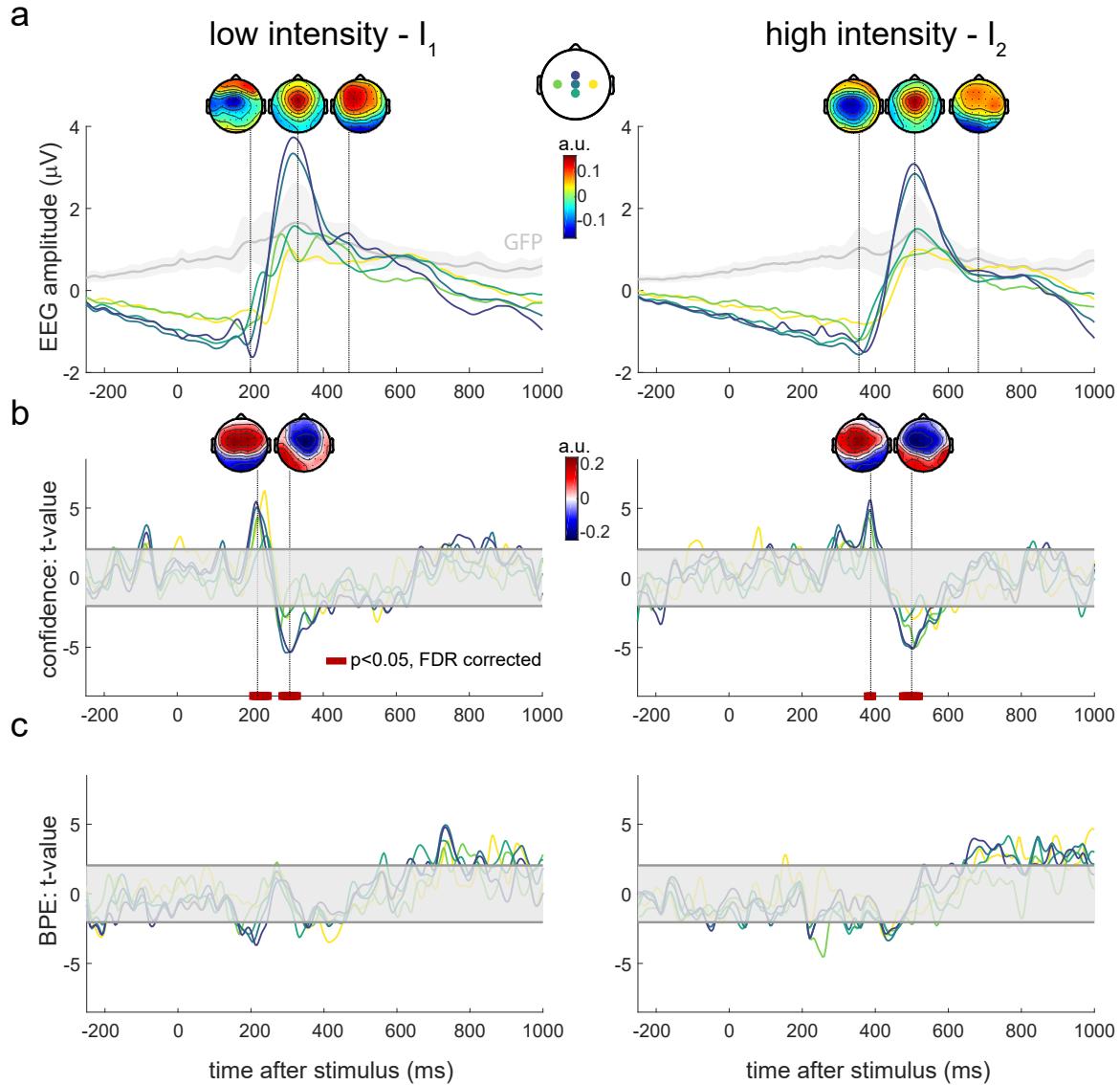


Figure S2. Links between the EEG responses and the Bayesian prediction error (BPE) and raw confidence. Similar to Fig. 5 but using the raw instead of residual confidence as regressor.

a, EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.

b, Encoding of raw confidence in the EEG responses – t -statistics for the regression coefficients associated with the model confidence.

c, Encoding of BPE in the EEG responses – t -statistics for the regression coefficients associated with the BPE.

In b and c, confidence and BPE are obtained from the model which best explains the participants' behavior: a Bayesian model learning the TPs with an integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for $p < 0.05$, two-tailed. Red bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after False Discovery Rate (FDR) correction of the significance levels. BPE and raw confidence are not collinear: the average variance inflation factors (VIFs) of raw confidence against BPE = 1.1 and 1.08 for I_1 and I_2 respectively, far below 5 (Sheather, 2009) ($R^2 = 8.92$ and 7.36% when we regress the raw confidence on BPE).

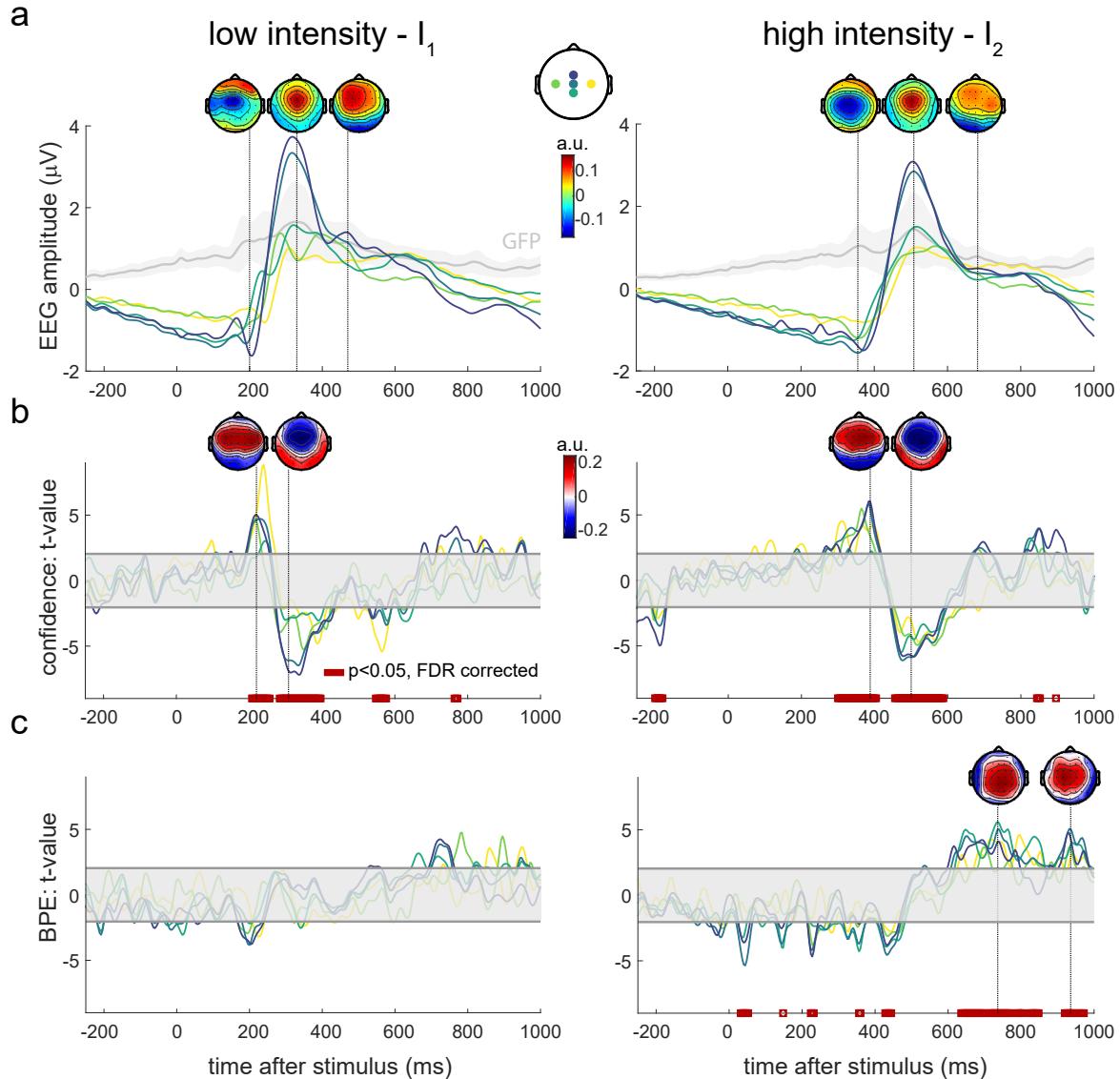


Figure S3. Links between the EEG responses and the Bayesian prediction error (BPE) and residual confidence. Similar to Fig. 5 but using a Bayesian model learning the IF instead of TPs.

a. EEG responses averaged over trials and blocks, for low (left) and high (right) stimulation intensities. Global Field Power (GFP) time courses are shown in gray, with shaded s.d. across participants. Labels of depicted electrodes: C3, Cz, FCz, CPz, C4.

b. Encoding of residual confidence in the EEG responses – t -statistics for the regression coefficients associated with the model confidence.

c. Encoding of BPE in the EEG responses – t -statistics for the regression coefficients associated with the BPE.

In **b** and **c**, confidence and BPE are obtained from the second model which best explains the participants' behavior: a Bayesian model learning the IF with an integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the non-significant regions for $p < 0.05$, two-tailed. Red bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after False Discovery Rate (FDR) correction of the significance levels. Again, BPE and confidence are not collinear: the average VIFs of confidence against BPE = 1.0048 and 1.0058 for I_1 and I_2 respectively, far below 5 (Sheather, 2009) ($R^2 = 0.47$ and 0.58% when we regress confidence on BPE).

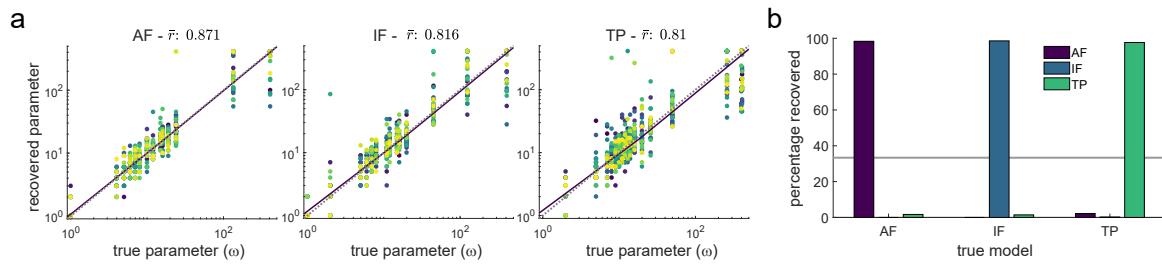


Figure S4. Parameter and model recovery for the Bayesian learner. To assess whether the three Bayesian models and their hyper-parameter (the integration time constant ω) are identifiable, we simulated data using each model with different parameters and fitted the models to these synthetic data like we did it to the behavioral reports. Since the model predictions (i.e. probability estimates) are deterministic for a given sequence, data were simulated by sampling probability estimates from the Beta distribution estimated at each time step (see Methods). For each model (learning AF, IF or TPs), we consider all the optimal time constants that were fitted to the individual behavioral data (Heald et al., 2021). Using each time constant and model, 30 synthetic data sets were built based on the same number of sequences and probability estimates as for the real participants (10 sequences were generated with the TPs indicated in Fig. 1d and probability estimates were sampled every 15 ± 3 stimuli).

a, The parameter recovery analysis indicates that the integration time constant can be reliably recovered despite readout noise for all three models in our experiments (Pearson correlation coefficient between true and fitted $\omega = 0.871, 0.816, 0.81$). Scatter plots of fitted vs. true parameters, with one color per simulation ($n = 30$). Dotted line: identity, thick plain black line: linear fit.

b, The model recovery shows that the three models are highly identifiable in our experimental setting, with 98.3, 98.6 and 97.6% of correctly recovered models for the model learning AF, IF and TPs respectively.