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Abstract

Primary resistance drastically limits the clinical success of immune checkpoint
blockade (ICB) in melanoma. Resistance to ICB may also develop when tumours
relapse after targeted therapy. To identify cancer cell-intrinsic mechanisms driving
resistance to ICB, we generated single-cell RNA-sequencing (scRNA-seq) data from
a prospective longitudinal cohort of patients on ICB therapy, including an early time
point obtained after only one cycle of treatment. Comparing these data with murine
scRNA-seq datasets, we established a comprehensive view of the cellular architecture
of the treatment-naive melanoma ecosystem, and defined 6 evolutionarily conserved
melanoma transcriptional metaprograms (Melanocytic or MEL, Mesenchymal-like or
MES, Neural Crest-like, Antigen Presentation, Stress (hypoxia response) and Stress
(p53 response)). Spatial multi-omics revealed a non-random geographic distribution
of cell states that is, at least partly, driven by the tumour microenvironment. The single-
cell data allowed unambiguous discrimination between melanoma MES cells and
cancer-associated fibroblasts both in silico and in situ, a long-standing challenge in
the field. Importantly, two of the melanoma transcriptional metaprograms were
associated with divergent clinical responses to ICB. While the Antigen Presentation
cell population was more abundant in tumours from patients who exhibited a clinical
response to ICB, MES cells were significantly enriched in early on-treatment biopsies
from non-responders, and their presence significantly predicted lack of response.
Critically, we identified TCF4 (E2-2) as a master regulator of the MES program and
suppressor of both MEL and Antigen Presentation programs. Targeting TCF4
expression in MES cells either genetically or pharmacologically using a bromodomain
inhibitor increased immunogenicity and sensitivity to targeted therapy. This study
describes an increasingly complex melanoma transcriptional landscape and its rapid
evolution under ICB. It also identifies a putative biomarker of early response to ICB
and an epigenetic therapeutic strategy that increases both immunogenicity of ICB-

refractory melanoma and their sensitivity to targeted therapy.
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Introduction

Despite several breakthroughs in the field, metastatic melanoma (MM) continues
to be a major clinical challenge'?. Although treatment outcomes have substantially
improved since the introduction of immune checkpoint blockade (ICB)3# approximately
half of the MM patients do not gain any durable survival benefit. One of the key
challenges is therefore to elucidate why ICB therapies, such as anti-PD-1, anti-CTLA-
4 or their combination, are effective in some, but not all, patients, and ultimately identify
rational therapeutic (combination) strategies that overcome resistance.

Tumour-extrinsic and intrinsic mechanisms can drive resistance to ICB%¢. For
instance, tumour mutational burden has been associated with ICB response through
increased neoantigen formation, bolstering immunogenicity”®. Inactivating mutations
in genes encoding components of the antigen processing and/or presentation
machinery (e.g., MHC class |, B2-microglobulin) can lead to ICB resistance. Similarly,
tumours with inactivating mutations in JAK1/JAK2 are associated with loss of
interferon responsiveness, and thereby resistance to PD-1 blockade® .

In addition, there is increasing evidence that melanoma cells can adopt a variety
of phenotypic states through nongenetic reprogramming, and thereby exhibit different
sensitivities to cancer treatments, including ICB'". Dedifferentiation of melanoma cells
was previously described as such a nongenetic mechanism that drives immune
escape and resistance to adoptive T cell transfer'>'3, Based on bulk RNA-seq data
analyses of anti-PD-1 treated melanoma patients, with samples collected at baseline
and upon progression, it was further proposed that dedifferentiation may also be a
mechanism driving resistance to ICB'*. Deconvolution of additional bulk RNA-seq
datasets and immunostaining further confirmed the enrichment of a dedifferentiated
(NGFRMa") Neural-Crest-like program in tumours associated with immune-exclusion'®
and resistance to immunotherapy'®. Mechanistically, dedifferentiation was proposed
to dampen response to ICB due to a decrease in expression and/or presentation of
melanocytic antigens'>'3, MHC class | downregulation'”, and secretion of the
neurotrophic factor BDNF, which contributes to resistance to antigen-specific T cells'®.
Consistent with these findings, the innate PD-1-inhibitor resistance (IPRES) signature
(which was defined based on the analysis of bulk RNA-seq data and includes 26 gene
signatures associated with dedifferentiation) was associated with poor response to
anti-PD-1 in pre-treatment biopsies'. However, such an association could not be
established in other melanoma cohorts'®'°. The difficulty in identifying reliable
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predictive information at baseline using bulk transcriptomic data was further
exemplified by the lack of reproducibility when predicting response to ICB using
IMPRES'620, yet another gene expression signature derived from bulk RNA-seq
datasets?! . Bulk longitudinal analyses later confirmed that a robust pre-treatment
biomarker is unlikely to capture the heterogenous nature of cancer and/or anticipate
the rapid evolution of tumour phenotypes under ICB therapy'”.

It has therefore become evident that understanding resistance to ICB requires
single-cell resolution and temporal dissection of the entire cellular architecture of the
melanoma ecosystem. Using scRNA-seq, a MYC-driven malignant gene expression
signature associated with immune evasion and T-cell exclusion was recently
identified®?. Although very informative, this study was limited by the recovery of a
relatively small number of malignant cells and absence of patient-matched samples
across both time points. In addition, only one responder was identified in the discovery
cohort. It is important to note that, equal to the previous study by the same group?,
most biopsies in this study originated from patients with prior exposure to diverse
treatments. Therefore, a comprehensive view of the cellular architecture of the
treatment-naive melanoma ecosystem, and in particular of its transcriptomic

landscape, and its evolution under ICB therapy is still lacking.
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Results
Portraying the treatment-naive human melanoma transcriptomic landscape.

To dissect the cellular composition of the human melanoma ecosystem and
study how it evolves under ICB, we set up a unique prospective longitudinal study
including treatment naive stage IlI/IV (AJCC 8™ edition) melanoma patients receiving
anti-PD-1 based therapy (anti-PD-1 monotherapy (nivolumab): n=17; anti-PD-1 and
anti-CTLA4 combination therapy (ipilimumab + nivolumab): (n=6) SPECIAL trial;
UZ/KU Leuven #562275). Cutaneous, subcutaneous or lymph node metastases were
biopsied before initiation of therapy (before treatment; BT). Subsequently, a second
tumour biopsy was collected right before the administration of the second ICB
treatment cycle (early on-treatment; OT). We obtained patient- and lesion-matched
biopsies across both time points for 20 patients. Part of the obtained material was
preserved for routine pathological assessment, multiplex immunohistochemistry
(mIHC), multiplex RNA fluorescence in situ hybridization (mFISH) and untargeted
spatial transcriptomics. The remaining tissue was processed for single-cell
transcriptome profiling (Figure 1A). Demographic, clinical, histopathological and
genetic information was collected at baseline. Patients with unresectable disease were
stratified as responders (complete remission, partial remission) and non-responders
(stable disease, progressive disease) based on RECISTv1.1. best overall response,
whereas patients treated with curative intent were stratified according to pathological
response assessment at tumour resection?*.

In total, > 59K single cells passed our quality control requirements (see
methods). To dissect the cellular composition of the melanoma tumour
microenvironment (TME), we first measured the activity of previously described
stromal, immune and malignant/melanoma gene sets?? and assigned each cell from
the unsupervised clusters to one of these three compartments (Supplemental Figure
S1A-C). Importantly, each of these compartments could be detected in all lesions,
irrespective of their metastatic site of origin (Supplemental Figure S1D).

We further refined our malignant cell annotation pipeline to filter out cells that do
not exhibit large-scale genomic rearrangements (Supplemental Figure S1E), and do
not harbour a high score for the malignant signature described by Jerby-Arnon and
colleagues® or for the “Melanoma Signature”, which we generated to discriminate
between dedifferentiated melanoma cells and cancer-associated fibroblasts
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(Supplemental Figure S1E,F and Supplemental Table S1; see methods and below).
We also excluded cells expressing the immune cell marker gene PTPRC (CD45).

As previously reported for melanoma?2232% and other human cancers®?7,
dimension reduction visualisation showed a clear separation of malignant cells per
patient, thereby impeding identification of shared transcriptomic states (Supplemental
Figure S2A). This was partly overcome by regressing for patient ID and integrating the
data using Harmony?® (Supplemental Figure S2B,C). Silhouette?® scores were
measured to identify the optimal clustering resolution (Supplemental Figure S2D),
which we initially set to 12 Seurat malignant clusters (Supplemental Figure S2E).
Differential gene expression (DEG) analysis resulted in characteristic gene lists for
each cluster (Supplemental Table S2). This analysis prompted us to merge cluster O
and cluster 2 as they exhibited a similar enrichment for ribosomal genes, thus yielding
11 distinct malignant clusters.

For an in-depth characterisation of the treatment-naive melanoma ecosystem,
we performed another DEG analysis focusing on the untreated samples and
interpreted the differentially expressed gene lists (Supplemental Figure S3A and
Supplemental Table S3) using EnrichR*° across multiple databases (Supplemental
Table S4). Gene regulatory modules were also defined for each cluster using
SCENIC?" (Supplemental Figure S3B and Supplemental Table S5).

For the functional annotation of malignant clusters (Figure 1B) we relied both on
the interpretation of DEG lists, with various gene set enrichment tools (Supplemental
Table S4), and prior biological knowledge acquired through analysis of a sScRNA-seq
dataset from Tyr::NRasQ61K/°;Ink4a-/- mouse tumours®. Unsupervised clustering of
these mouse lesions identified 7 distinct melanoma cell states, which we named
Melanocytic, Mesenchymal-like, Neural Crest-like, Stress (hypoxia), RNA-processing,
Stem-like (pre-EMT) and Antigen Presenting cell states. 6 of these 7 murine
melanoma states overlapped with cellular states identified in the human lesions
(Figure 1C). These included the Melanocytic (MEL), Mesenchymal-like (MES),
Antigen Presentation, Neural Crest-like, Stress (hypoxia response) cell states. The
murine RNA processing state largely overlapped with the human Stress (p53
response) state. Among the previously described marker genes NGFR was identified
in the Neural-Crest-like state, VEGFA was highly expressed in Stress (hypoxia
response) cells, and collagen genes (i.e. COL5A7) in MES cells (Supplemental Figure
S3A). HLA class | and Il and other genes involved in antigen processing and
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presentation, such as TAP1, B2M and NLRCS5, were identified as discriminative
markers of the Antigen Presentation cell population (Supplemental Figure S3A and
Supplemental Table S3). Antigen Presentation cells also expressed many of the
canonical interferon-stimulated genes, including among others STAT1-regulated
genes (Supplemental Figure S3B and Supplemental Table S3).

The cross-species comparison also highlighted five human-specific cell states:
an Interferon Alpha/Beta Response state expressing interferon type | responsive
genes (i.e. IFI6, IFI27, IRF7), but not genes involved in antigen processing and
presentation. A Mitotic state, which expressed high levels of MKI67 and TOPZ2A, was
also identified, as well as a Mitochondrial state, which exhibited high mitochondrial
gene expression and showed no consistent pathway enrichment. We annotated this
latter cell state as a “low quality” (LQ) malignant cell cluster. Mitotic and Mitochondrial
(LQ) cell clusters are both routinely identified in human tumour biopsy samples3334,
Finally, two patient-specific clusters (Patient-specific A and Patient-specific B), which
did not exhibit any specific recognizable functional features, emerged at this level of
resolution. Since these clusters were only detected in individual patients, we
postulated that they may be driven by specific genetic alterations. Note that while the
murine pre-EMT stem-like state did not emerge as an independent cluster, supervised
analysis highlighted human melanoma cells from different patients residing in this
state®?.

Using the gene signature of each state we calculated signature scores and
visualized each score per state (Figure 1D). While the cellular heterogeneity of
melanoma cells broadly aligned with the 11 cell states, a substantial fraction of cells
was not exclusively constrained to these states, indicating that melanoma cells can
manifest multiple and/or overlapping phenotypes.

The MITF rheostat model predicts that melanoma cell state identity is regulated
by the activity of the MITF transcription factor (TF)''. The proliferative/melanocytic and
dedifferentiated invasive/mesenchymal-like states exhibit high and low MITF activity,
respectively. Measuring the activity of these gene expression programs3®3¢ across all
malignant cells confirmed that cells with varying MITF activity co-exist in drug-naive
human metastatic melanoma lesions (data not shown). As expected, the Neural Crest-
like and MES states were the most dedifferentiated states. We also measured the
activity of a series of previously published melanoma transcriptional cell states®’—40
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identified in various cellular and/or in vivo model systems to confirm their identity
and/or presence in clinical samples?? (Figure 1E and Supplemental Table S6).

Next, we grouped all malignant cells in distinct Copy Number Variation (CNV)
genomic clusters using the inferred CNV profiles described in Supplemental Figure
S1E. An alluvial plot was used to connect the genomic and transcriptomic clusters for
each cell (Figure 1F). Except for cells from the patient-specific clusters A and B, all
transcriptional clusters were fed with cells from different genomic clusters.

Moreover, we were able to retrieve all the metaprograms in most of the samples
and we did not observe any association between the abundance of a particular
melanoma cell state and a specific oncogenic driver mutation (Supplemental Figure
S4C, D).

Together these analyses identified several recurrent and evolutionarily
conserved transcriptional metaprograms in melanoma, which do not appear to be
driven by genetic intra-tumour heterogeneity, but instead are likely to be specified by

cues emanating from the tumour microenvironment.

Spatially mapping of melanoma cell state diversity.

To gain insights into the spatial organization of the various melanoma cell states
in drug-naive lesions, we performed untargeted spatially resolved transcriptomics on
selected samples (n=6; S1 to S6) from our patient cohort, using the 10X Genomics
Visium platform. Each section was annotated by a pathologist based on the
morphology of the associated haematoxylin and eosin (H&E) staining. Regions were
labelled as either malignant, stromal or immune.

On the Visium platform, multiple (often different) cell types contribute to the
transcription profile of each capture area or spot (up to 20 cells/spot). Therefore, to
properly capture the nuances of the molecular profile of each patient, and to not risk
quenching weak signals, each slide/patient was analysed separately*'. To spatially
resolve the malignant cell states, the spatial transcriptomics data was integrated with
the scRNA-seq data using Seurat-v3 anchor-based (CCA) integration*? and CellTrek*3
deconvolution methods (Figure 2A and Supplemental Figure S5A). The Seurat
anchor-based integration confirmed that spots in cancer regions were highly enriched
for the malignant signature and spots falling outside of the malignant areas were
enriched with stromal and/or immune cells (data not shown). These findings were
considered as affirmative of our mapping’s validity.
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These spatial transcriptomics data further confirmed the existence of the above-
described melanoma cell states, including the two stress states (hypoxia response
and p53 response), among cancer cells in the absence of dissociation for sScRNA-seq.
Zooming further into the cancer regions revealed that melanoma transcriptional
metaprograms are not randomly distributed but tend to co-occur in spatially restricted
clusters (Figure 2A-B and Supplemental Figure S5A-B). The differential spatial
distribution of the malignant cell states can be further highlighted through co-
localisation analyses. We found that, as opposed to Mesenchymal-like cells, cells
harbouring the Neural Crest-like state preferentially co-occurred with Antigen
presentation cells (Supplemental Figure S5C).

Using the scRNA-seq data, we further established a significant positive
correlation between the percentage of cells harbouring the Antigen Presentation state
and activated CD8" T cells (Figure 2C). Quantitative inference and analysis of
intercellular communication networks predicted a functional interaction between these
two cell types through engagement of the MHC class | and Il signalling pathways
(Figure 2D). Consistently, the Antigen Presentation cell state was enriched in lesions
with an immune inflamed, often referred to as brisk, phenotype (Supplemental Figure
S5D). To further establish a spatial relationship between these two cell types, we
performed mIHC using multiple iterative labelling by antibody neodeposition** (MILAN)
on treatment naive melanoma samples (n=10). Neighbourhood analysis confirmed
enrichment of melanoma cells positive for the MHC class Il marker HLA-DR in the
proximity of CD8" T cells (Tcy; Figure 2E,F). In contrast, HLA-DR-negative melanoma
cells and CD8" T cells occurred in mutually exclusive regions.

Together, these findings indicate that the transcriptomic heterogeneity of
melanoma is spatially organized within the tumour architecture and is, at least partly,
driven by heterotypic cellular interactions with the tumour microenvironment. For
instance, by integrating signalling predictions with cellular proximity, the data suggest
that the melanoma Antigen Presentation cell population emerge by direct interaction
with immune cells (i.e. CD8" T cells).

Unambiguous detection of melanoma MES cells.

Similar to epithelial cancer cells that have undergone Epithelial-to-Mesenchymal
Transition (EMT), melanoma cells that acquired a mesenchymal-like/dedifferentiated
phenotype closely resemble normal mesenchymal cells and cancer associated
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fibroblasts (CAFs) in particular''#548, Findings concerning EMT through the analysis
of bulk-level expression data from human tumours have therefore been confounded
by the presence of CAFs*’. Moreover, identification of coherent and specific marker
gene sets that distinguish CAFs and malignant cells that underwent EMT has been a
major challenge in the field. Recently, an approach for decoupling the mesenchymal
expression profiles of cancer cells and CAFs leveraging scRNA-seq datasets was
developed and applied to various epithelial cancers*’. Unexpectedly, there was no
clear evidence for a full EMT malignant state, indicating that this state either does not
exist, or is extremely rare and/or transient. Instead, cancer cell-specific partial EMT
(PEMT) programs that are distinct from CAF signatures were defined. Even more
surprisingly, pEMT was not associated with any specific clinical features across
cancers, thereby indicating that the clinical relevance of pEMT expression programs
may be highly context-specific. Our single cell analyses did, however, identify
melanoma cells expressing a full MES program in both human and mouse?®? datasets.
In our human dataset, the 50 most abundantly expressed genes in MES cells were
remarkably almost all highly expressed in CAFs (Figure 3A, left panel and
Supplemental Figure S6A, B). In order to define a melanoma-specific Mesenchymal-
like gene expression signature, we established a list of the 50 most differentially
expressed genes between melanoma MES cells and CAFs (Figure 3A right panel and
Supplemental Table S7). Several of these genes including CDH19 and ST00A 1, which
we termed Minimal Lineage Genes (MLGs), were identified in both mouse and human
MES signatures and were indeed highly and selectively expressed in MES cells
(Figure 3B). Importantly, expression of these genes was higher than MITF and SOX10,
two melanoma markers known to be expressed at very low to undetectable levels in
the dedifferentiated MES cells. In contrast, whereas stromal genes like THY71, LUM
and DCN were expressed at higher levels in CAFs than in MES cells, several markers
including the basic helix-loop-helix TF TCF4 (also known as ITF2 or E2-2) were
instead expressed at comparable levels in both cell types (Figure 3C). Note that,
consistent with previous findings*, TCF4 expression was also detected in endothelial
(ECs) and plasmacytoid dendritic cells (pDCs; data not shown). Measuring expression
of these genes in all melanoma states revealed that while CDH719 and ST00A1 were
expressed in all of them (including MES cells), TCF4 and other stromal genes were
selectively expressed in melanoma MES cells (Figure 3D). We conclude that the
MLGs provide the field with a unique tool to unambiguously discriminate between
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dedifferentiated/mesenchymal-like melanoma cells and CAFs in both mouse and
human single-cell datasets.

We next sought to devise a method for the detection and mapping of
Mesenchymal-like cells in situ. Because expression of the MLGs is relatively low in
MES cells, we opted to combine a highly sensitive detection mFISH method
(RNAscope) with a multiplexed protein staining assay CODEX for CO-Detection by
indEXing*°. Guided by our scRNA-seq data, we designed a mFISH panel selecting the
most discriminatory MLGs (S7100A71 and CDH19) and MES (THY1, DCN, LUM)
markers to complement a broad panel of melanoma, immune and stromal protein
markers (see methods for a full list). We included the pan-mesenchymal marker TCF4,
as well as MITF and SOX10, in both our protein and RNA panels. We first tested the
method on a selected treatment naive melanoma lesion. MES cells were identified by
co-staining of MLGs (CDH19 and S100A1) and melanoma markers (MITF and
SOX10) with MES markers (DCN, THY1, LUM and TCF4) within the CD45-negative
cell population. Instead, CAFs were positive for the MES markers and negative for
MLGs. Other melanoma subpopulations were positive for the MEL and MLG markers
and negative for the MES markers (Figure 3E). Note that pDCs were identifiable as
CD45+ CD31- MES- MLGs-, and ECs were CD45- CD31+ MES+ MLGs- (data not
shown). To further validate our method, we selected another melanoma sample that
was particularly rich in melanoma MES cells and harboured the BRAFY6%°E mutation.
We stained adjacent sections with our combined multiplex IHC/FISH protocol, and with
an antibody directed against BRAFV6%°E mutation. As expected, this sample contained
a very high proportion of cells identified as melanoma MES cells (Supplemental Figure
S6C). These same cells also stained for the BRAFV®°%E-gpecific antibody, thus further
confirming their malignant origin.

Together, these data provide methodologies to unambiguously identify true
melanoma MES cells in both scRNA-seq datasets and on tissue sections, and firmly

establish the presence of these cells in human treatment-naive melanoma lesions.

MES cells are enriched in early on-treatment melanomas refractory to ICB.
Having established the cellular architecture of the drug-naive melanoma
ecosystem and the necessary tools for the unambiguous annotation of all malignant
cell states, we next studied how one cycle of ICB therapy may remodel the melanoma
transcriptional landscape. There were no overall differences in the proportion of the
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various melanoma cell states between the BT and OT time points grouping responding
and non-responding patients. (Supplemental Figure S7A). Interestingly, however, two
of the melanoma cell states, namely the MES and Antigen Presentation states were
associated with divergent clinical responses (Figure 4A). Whereas the Antigen
Presentation cell state was enriched in OT samples from responders (R), the MES
cells were significantly enriched in OT samples from non-responders (NR). The trend
of increased abundance of Antigen Presentation cells in lesions from R compared to
NR was already observed BT, but this difference was further enhanced at the OT time
point (Figure 4A). This observation is consistent with previous findings showing that a
subset of melanomas, which harbour tumour cells expressing MHC class Il (HLA-DR)
molecules, are characterized by an increased CD8+ tumour infiltrate and favourable
response to anti-PD-1 therapy®.

In contrast, the enrichment of melanoma MES cells in the NR lesions was only
observed OT (Wilcoxon-test p=0.015). Importantly, the presence of both MES and
Antigen Presentation cell populations in the OT samples showed a high diagnostic
ability for response prediction and, thereby, biomarker potential (Figure 4B), whereas
none of the other melanoma cell states showed any significant association with
response (Supplemental Figure S7B).

TCF4 orchestrates multiple melanoma transcriptional metaprograms.

TCF4 is a known EMT inducer that promotes tumour progression and cell
survival, in various epithelial cancers®-%*. In melanoma, TCF4 was shown to promote
invasion®>%, In agreement with these observations, within the malignant
compartment, TCF4 is both specifically expressed and transcriptionally active in MES
cells (Supplemental Figure S3A,B and Figure 3D). Consistent with these findings,
TCF4 expression was higher in the human TCGA samples harbouring the Verfaillie et
al.3¢ invasive/mesenchymal-like (INV) compared to proliferative (PRO) melanoma
signature, as well as in metastatic compared to primary lesions (Supplemental Figure
S8A,B). TCF4 expression also inversely correlated with MITF expression in samples
from the TCGA cohort (Supplemental Figure S8C).

To assess the contribution of TCF4 in the establishment/maintenance of the MES
transcriptional metaprogram, we performed bulk RNA-seq in a short-term melanoma
MES line (MMO099), following silencing of TCF4 expression. Genes downregulated
upon TCF4 knockdown were involved in cellular movement, EMT, integrin signalling
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and angiogenesis, thus establishing its role as a driver of the MES transcriptional
program (Figure 5A,B). This was concomitant to an upregulation of a series of MITF
target genes and genes from the MEL transcriptional program (Figure 5B). This
observation was consistent with a previous report indicating that TCF4 can repress
MITF in normal melanocytes®’. However, whether TCF4 represses MITF in melanoma
cells is unknown. To test this hypothesis, we overexpressed TCF4 in two different
melanocytic melanoma cell lines (MM0O0O1 and MMO0O11) and observed a
downregulation of both MITF mRNA and protein levels as well as of its target genes
(Figure 5C,D). These data indicated that, in addition to its function as a master
regulator of the MES transcriptional program, TCF4 also actively suppresses the
MITF-driven melanocytic transcriptional program. Importantly, silencing TCF4 in
MMO99 caused a dramatic decrease in the ability to invade in short-term in vitro
migration assays (Supplemental Figure S8D).

Consistent with the melanoma MES state being intrinsically resistant to MAPK
therapeutics'', an inverse correlation between the sensitivity to BRAF- and MEK-
inhibitors and TCF4 expression was observed in the Cancer Cell Line Encyclopedia
melanoma cell line cohort (Supplemental Figure S8E). Critically, silencing TCF4
sensitized the human melanoma BRAFY6E-mutant invasive line MMO099 to these
inhibitors (Figure 5E). These data indicated that TCF4 contributes to the acquisition
and/or maintenance of the mesenchymal-like phenotype and thereby to resistance to
targeted therapy.

Remarkably, many genes involved in immune response (antigen processing and
presentation, activation of leukocytes, and interferon signalling) were upregulated
upon TCF4 knockdown (Figure 5A,B). This included the transcription factor NLRCS, a
master regulator of MHC class | and related genes®. Consistently, there was a strong
enrichment of the Antigen Presentation and Interferon (IFN) signalling gene signatures
among the genes upregulated upon TCF4 silencing. Together, these data indicated
that TCF4 actively suppresses the melanoma MEL, Antigen Presentation and
Interferon signalling gene expression programs. By doing so, TCF4 may directly
promote immune cell evasion and/or resistance to immunotherapy. Indeed, immune
cells often target melanoma cells because they express melanocytic antigens. By
suppressing the antigen processing and presentation machinery, TCF4 may further
protect dedifferentiated melanoma cells from T-cell killing. Consistent with this model,
TCF4 silencing increased apoptotic cell death activation in a melanoma MES cell
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culture exposed to HLA-matched peripheral blood mononuclear cells (PBMCs), which
were pre-treated with a T-cell activating cytokine cocktail (Figure 5F).

Targeting TCF4 expression through BET inhibition.

TCF4 was shown to drive B cell lymphoma and blastic plasmacytoid dendritic
cell neoplasm (BPDCN)%*%9, In these studies, TCF4 expression was shown to be
dependent on the bromodomain and extra terminal domain (BET) protein BRD4
through its recruitment to a specific TCF4 enhancer region. Inhibition of BRD4 using
the BET-degrader ARV-771 was shown to decrease TCF4 expression. Interestingly,
bulk Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)
revealed that the BRD4-binding enhancer region upstream from the TCF4 promoter is
largely accessible in melanoma MES cells such as MM099 and MMO057, but not in
melanoma MEL cells such as MM001 and MMO0O11 (Figure 6A). Exposure of the
melanoma line MMO057 to the BET-degrader ARV-771 decreased chromatin
accessibility upstream of the TCF4 locus, including of one of the sites previously
identified as a BRD4-bound enhancer region (Figure 6A). Consistently, this treatment
led to a dose-dependent decrease in TCF4 expression (Figure 6B). Notably, the
overall transcriptional reprogramming effect observed upon BET-inhibition was far
more drastic in MES than in MEL cell lines (Figure 6C), indicating that the MES
transcriptional program may be particularly dependent on BET epigenetic reader
proteins.

Furthermore, exposure to ARV-771 recapitulated most of the transcriptional
changes observed upon TCF4 silencing (Figure 6D-F). Most genes from the MES
signature were strongly downregulated, whereas genes from the MITF-dependent
MEL signature were upregulated. Importantly, just like upon TCF4 knockdown, these
transcriptional changes were accompanied by an increased sensitivity to BRAF- and
MEK-inhibition (Figure 6G). Moreover, the antigen presentation program was also
upregulated upon exposure to ARV-771 (Figure 6D). This observation raises the
possibility that this compound may also be used to increase the immunogenicity of
MES cells and thereby their sensitivity to ICB.
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Discussion

In this study, we portrayed the cellular architecture of treatment-naive skin and
lymph node melanoma metastases, and thereby provide the field with a rich resource
which may serve as the foundation for the creation of a comprehensive cell atlas of
melanoma.

We focused our attention on the malignant compartment and show that the
melanoma transcriptional landscape is even more complex than previously assumed.
We describe a series of recurrent cell states that are evolutionarily conserved and
show that the spatial distribution of these distinct melanoma subpopulations is not
random, suggesting that the tumour microenvironment directly contributes to this
geographically organised transcriptomic heterogeneity. This is, for instance, illustrated
by the proximity we describe between the Antigen Presentation cell population and T
cells, which suggests that this particular transcriptional program may be acquired
through an intercellular communication pathway established by T cells. In
concordance with this hypothesis, we previously observed that engraftment of a
homogeneous mouse melanocytic cell line into immune competent, but not into
immunodeficient, mice resulted in the formation melanoma lesions harbouring a
complex and heterogenous transcriptomic landscape that included the Antigen
Presentation cell state®? (data not shown). Moreover, a cancer cell state that
expresses both antigen processing and interferon response genes was recently
shown to recur across multiple tumour types and to colocalize with T cells®.

The functional contribution to tumour growth and/or metastatic spreading of
these newly defined melanoma transcriptional states remain to be explored. The
identification of these evolutionarily conserved states makes it possible to use the
mouse as a model system for this, through lineage tracing and depletion experiments.
Notably, using such approaches, we recently demonstrated that a population of MES
cells present in primary tumours in minute amounts drives the metastatic process®.

Importantly, our single-cell RNA-sequencing data made it possible to identify true
malignant MES cells and develop a set of markers that unambiguously distinguish
MES cells from CAFs in scRNA-seq datasets, as well as in situ. The method we
describe herein is a critical step forward for the field, as it permits to directly assess
the contribution of this critical cell population to various aspects of melanoma biology
and map their position within the complex melanoma ecosystem. In addition, the gene
signature established from our single-cell datasets may also, in theory, be used to infer
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the proportion of MES cells from bulk transcriptomics data. However, although we
have not tested the performance of our MES signature to predict the presence of these
cells in bulk RNA-sequenced samples, we anticipate that, given the overall rarity of
these cells in our melanoma samples, obtaining reliable deconvolution results may be
very challenging. Such deconvolution analyses should therefore be performed with
extreme caution.

Previous studies indicated that melanoma de-differentiation may contribute to
immune escape'?'3. However, a clear association between melanoma MES and
resistance to immune checkpoint inhibition is yet to be formally established. Our data
provide evidence that these cells may contribute to primary resistance to ICB therapy
and that their presence after one cycle of treatment is predictive for a lack of response.
This observation indicates that (multiplex) analysis of an early on-treatment biopsy (2
weeks after the first infusion of immune checkpoint inhibitors) may provide a predictive
biomarker for robust stratification of patients into R and NR, and thus before NR
patients are increasing their risk of developing treatment related adverse events. This
observation validates our initial hypothesis that early on-treatment samples may be
much more informative than baseline samples. It is, however, important to stress that
the predictive value of the presence of MES cells needs to be firmly established in a
larger population cohort before this concept can be exploited clinically.

Although the presence of MES in the on-treatment samples is predictive of lack
of response, their proportion remains overall relatively low (below 20% of all malignant
cells for most samples) at this early time point. Additional studies will be needed to
monitor the dynamics of this population over time and assess whether their proportion
increases at later time points. However, this observation also suggests that these cells
are not the only melanoma cells able to escape T cell killing. One interesting possibility
is that the MES population may also contribute to primary resistance to ICB in a non-
cell autonomous manner, by promoting an immunosuppressive environment. In
support of this possibility, emerging data indicate that cells harbouring overlapping
phenotypes with melanoma MES cells, such as inflammatory fibroblasts and
mesenchymal carcinoma cells, do secrete immunosuppressive factors such as
CD73%'. Moreover, it was shown that expression of the EMT TF ZEB1 in melanoma
cells is associated with decreased CD8" T cell infiltration and ZEB1 ectopic expression
in melanoma cells impairs CD8" T cell recruitment in syngeneic mouse models,

resulting in tumour immune evasion and resistance to ICB therapy. Mechanistically, it
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was shown that ZEB1 directly represses the secretion of T cell-attracting chemokines,
including CXCL 1082,

We identified TCF4 (E2-2) as a key driver of the mesenchymal-like transcriptional
program. Other TFs such as c-JUN/AP1%3, ZEB1%2, SOX9%, TEADs®*¢ and more
recently PRRX132. have previously been identified as master regulators of this
particular program. It will be thought-provoking to study how redundant and
interconnected the activity of these TFs are.

Critically, our data suggest that in addition to driving the MES transcriptional
program and related phenotypes, TCF4 actively suppresses both the MEL and antigen
presentation programs. By doing so, TCF4 may directly promote immune cell evasion
and resistance to ICB therapy as melanocytic antigens are prime targets of the
adaptive immune system. Moreover, by suppressing the antigen processing and
presentation machinery, TCF4 may further reduce the immunogenicity of this
dedifferentiated melanoma subpopulation. Together, these data identify TCF4 as a
putative target to improve response to ICB therapy.

A potential limitation of targeting TCF4 is that this TF is also expressed in other
cell types. However, beside melanoma MES cells, TCF4 expression is the highest in
pDCs, where it was shown to act as a major suppressor of their immunogenic
function®. Therefore, manipulation of the TCF4 pathway in pDCs could represent a
therapeutic opportunity to further boost antitumor immunity.

Additionally, TFs are notoriously difficult to target pharmacologically. However,
just like observed in BPDCN cells®*%°, BET-inhibition recapitulated most of the
transcriptional changes observed upon TCF4 silencing in melanoma MES cells. The
use of BET protein inhibitors may therefore offer an alternative strategy to target this
pathway. Mechanistically, the disruption of the TCF4-controlled transcriptional
program by BET inhibitors can be explained either by the dependency of TCF4
expression itself on the recruitment of BRD4 to the TCF4 promoter and/or by an
important role of BDR4 in the recruitment of TCF4 to, at least some of, its target genes.
Additional experiments will be required to further establish the TCF4-dependency of
the effects observed upon BET-inhibition in melanoma MES cells and to discriminate
between these two, not necessarily mutually exclusive, scenarios.

The treatment of cancer with BET-inhibitors has been explored in early clinical
trials®. Toxicity profiles of several generations of inhibitors showed that these agents
can be given safely to patients. Unfortunately, these inhibitors have not yet been

17


https://doi.org/10.1101/2022.08.11.502598
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.11.502598; this version posted August 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

broadly used in the clinic due to their modest anti-tumour activity when used as single
agents. BET-inhibitors remain, however, attractive drugs for combinatorial treatments
and when used in the appropriate clinical settings®”:%8. Our observation that BET-
inhibition sensitizes melanoma cells to BRAF- and MEK-inhibition, is in line with similar
observations by other groups®-7', and offers one clinical context in which BET-
inhibitors may provide clinical benefit for BRAF-mutant melanoma patients
(Supplemental Figure S9). Another attractive clinical context in which BET-inhibition
could be positioned is in combination with ICB. We provide evidence that exposure of
melanoma MES cells to the BET-inhibitor ARV-711, just like TCF4 silencing,
unleashes the expression of antigen presentation machinery and HLA-genes. These
data therefore offer a rationale to increase the immunogenicity of melanoma MES cells
and warrant the further testing of BET-inhibition in combination with ICB to overcome
primary resistance (Supplemental Figure S9). Notably, recent preclinical studies have
supported this possibility®®7%73, Moreover, since emergence of the mesenchymal-like
signature was shown to be prominent in patients who experience disease progression
after first line immunotherapy'’, one could envision that BET-inhibition could
reinvigorate anti-tumour immune responses and overcome secondary resistance to
ICB (Supplemental Figure S9).

Lower efficacy was observed with ICB therapy when given as second-line
treatment, after first-line targeted’#-76. It has recently been proposed that this cross-
resistance phenomenon may be driven, at least partly, by changes in the tumour
microenvironment induced by BRAF and MEK-inhibition, leading to a lack of functional
CD103* DCs, and consequently an ineffective T cell response’’. Our findings may
offer an alternative (but not mutually exclusive) explanation, invoking a cancer-cell
intrinsic mechanism. It is well-established that melanoma MES cells are key drivers of
tolerance and/or resistance to targeted therapy''. Likewise, we show that this
population is enriched in (early on-treatment) lesions from non-responders to ICB, and
therefore propose that MES cells may drive, at least partly, cross-resistance to these
treatments. Importantly, we show that these cells are exquisitely sensitive to the
BRAF/MEK/BET-inhibitors triple combination. This combination may therefore also
offer an attractive treatment strategy for patients who do not respond to
immunotherapy and those who develop resistance to targeted therapy through
nongenetic mechanisms (Supplemental Figure S9).
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Together, our data offer the rationale for the (pre-)clinical testing of BET-inhibition
(or TCF4 targeting) as both a putative sensitizer to targeted therapy and ICB and for
the treatment of patients that develop secondary resistance to these therapies. We
argue, however, that the testing of these new combination treatment regimens should
be accompanied by a careful selection of the models and patients. In this context, the
method we describe herein, which allows for the unambiguous identification of
melanoma MES cells in tumour biopsies, should be considered as a critical selecting

or recruiting criteria.
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Methods

Patient biopsies

Tumour biopsies were collected as part of a non-interventional prospective study
investigating transcriptomic changes upon immune checkpoint inhibition (Prospective
Serial biopsy collection before and during immune-checkpoint inhibitor therapy in
patients with malignant melanoma; SPECIAL). While most patients (n=20) were
treatment-naive, patients with metastatic relapse were allowed prior systemic
treatment in adjuvant setting (n=2). In addition, one patient had received Cisplatinum-
based neo-adjuvant chemotherapy for a metachronous non-small cell lung carcinoma
eight months before inclusion. Written informed consent was obtained from all
patients. All study procedures were in accordance with the principles of the Declaration
of Helsinki, applicable Belgian law and regulations, and approved by the UZ Leuven
Medical Ethical Committee (S62275).

Tumour dissociation of human samples

Fresh tumour tissue was collected in cold transport Dulbecco’s Modified Eagle
Medium (DMEM, Invitrogen, Cat#61965025) on ice. To make a single cell solution,
tumour fragments were rinsed in cold Dulbecco’s Phospho-Buffered Saline (DPBS)
and mechanically and enzymatically dissociated. The tumour was minced with sterile
scalpels and incubated 15 minutes in a heather-shaker at 37°C 800 rpm in 1,32 mL
DMEM supplemented with 120 pL DNase | (10 mg/mL; Sigma-Aldrich,
Cat#11284932001) and 60 pL collagenase P (50 ng/mL; Sigma-Aldrich,
Cat#11249002001). The sample was diluted 1:2 in DPBS, centrifuged 5 min. at 300G
at room temperature, incubated 5 min. in 500 pL red blood lysis buffer at room
temperature, washed twice with DPBS supplemented with 0,04% bovine serum
albumin and strained through a 35 ym nylon mesh. Cell concentration and viability
was determined with acridine orange/propidium iodide staining (Westburg, Cat#LB

F23001) on a LUNA-FL automated fluorescence counter.

Single-cell RNA-sequencing

Libraries for scRNA-seq were constructed using the 10X Genomics Chromium
platform according to manufacturer’s instructions. Library construction was primarily
done with the Chromium Single Cell 3' GEM, Library & Gel Bead Kit v3 (10x genomics,
Cat#1000092). Thirteen samples were processed using the Chromium Single Cell A
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Chip Kit and 5’ Library & Gel Bead Kit (10x genomics, Cat#1000014). When comparing
sequenced 3’ and 5 gene expression libraries from the same tumour samples, we
observed similar quality metrics. We opted for high target recovery (median 5000,
range 1000-10000), keeping within the range of optimal input concentration per target
recovery, as recommended by the manufacturer. In brief, cells were partitioned into
Gel Bead-in-emulsions (GEMs) at limiting dilution, where lysis and reverse
transcription occurred vyielding uniquely barcoded full-length cDNA from poly-
adenylated mRNA. GEMs were subsequently broken, and the pooled fraction was
amplified, followed by fragmentation, end repair and adaptor ligation of size selected
fractions.

All libraries were sequenced with single end reads on an lllumina NextSeq, HiSeq4000
or NovaSeq6000 until sufficient saturation was reached (60% on average). The raw
sequencing reads were processed by CellRanger (10x Genomics), human reference
genome v. GRCh38.

scRNA-seq data analysis

Raw count matrices were analysed using R package Seurat v. 3.1.578. The matrices
were filtered by removing cell barcodes with >1000 expressed genes, <7,500
expressed genes and <30% of reads mapping to mitochondrial reads. Next,
SCTransform was applied to each Seurat object for data normalization and
transformation. DoubletFinder v. 2.0.283 was applied to each Seurat object (sample)
separately assuming that the doublet rate in each sample was as indicated in the 10X
Genomics website. Next, all the Seurat objects were merged, SCTransform was
applied regressing out mitochondrial read percentage per cell. Subsequently, the data
integration was performed using R package Harmony v. 1.040. After having the data
normalized and integrated, cell cycle scoring was performed, data were filtered for
singlets, and SCTransform was applied regressing out mitochondrial read percentage
and cell cycle scores. This was followed by data integration of this subset as described
above. The number of dimensions for clustering were chosen based on Harmony
embeddings clustering. The cut-off was driven by identification of clear variation in
embeddings across the cells. For cell type identification from the malignant, immune
and stromal compartments we analysed the data including cells from both time points,
but for the detailed characterisation of the treatment naive samples we subset only for
this time point.
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Initial identification of the tumour microenvironment compartments

To gain a global view on the components of the tumour microenvironment we used
existing signatures acquired from Jerby-Arnon et al.?? to calculate gene set scores
using R package AUCell v.1.6.1%" for the immune, stromal and malignant
compartments. By plotting the scores, we assigned each unsupervised cluster to one
of these three compartments.

CNV inference in human samples

To distinguish malignant from normal cells we inferred copy number variation (CNV)
based on scRNA-seq data using the R package HoneyBadger v. 0.17°. The count
matrix from the “RNA” assay of the integrated Seurat object of all cells was used as
input. Immune cells were used as a reference for normal cells. They were defined
based on the immune gene set from Jerby-Arnon et al.?2, using an AUCell score cut-
off >0.15.The mean CNV score was calculated as below:

CNV score = Zil%envil ;“V'"

where, G = gene, i = cell.

Identification and analysis malignant cells.

Differential gene expression was run between globally classified malignant clusters
(2,28,0,12,17,20,19) vs CAFs clusters (7,8) (Supplemental Figure S1A) using Seurat
FindMarkers function (two-sided Wilcoxon test). Next, for each gene, the difference of
the percentage of cells expressing this gene in the malignant clusters minus the CAFs
clusters was calculated and the genes were sorted in descending order. The top 50
genes were plotted on the global UMAP in order to identify the most specific and
ubiquitously expressed ones within malignant clusters further called as Melanoma
Score (MS).

To identify malignant cells, three stringent steps of filtration were applied. Firstly, the
data was subset based on the AUCell score of malignant gene set acquired from
Jerby-Arnon et al.?? >0.11 or mean CNV score >0.15. Subsequently, cells that passed
the first filtration step were filtered based on the MS >0.2 or mean CNV score >0.15.

Finally, to remove any contaminating immune cells, we filtered out PTPRC (CDA45)
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cells. Lastly, samples with less than 10 remaining cells were removed from
downstream analysis.

The malignant cell subsets were subjected to SCTransform (regressing out
mitochondrial read percentage and the cell cycle scores) and Harmony integration
(grouping the variables by samples) followed by unsupervised Seurat clustering. The
number of dimensions for clustering were chosen based on Harmony embeddings
clustering — a cut-off was driven by identification of clear variation in embeddings
across the cells. Number of clusters was chosen based on Silhouette?® scores
measured at different resolutions and biological relevance of the marker genes per
cluster. The marker genes of each unsupervised and semi-supervised cluster were
identified using FindAllMarkers function in Seurat (two-sided Wilcoxon test). The final
cluster annotations were based on the enriched pathways and terms of the top marker
genes per cluster (top 100 genes) wusing an online tool Enrichr
(https://maayanlab.cloud/Enrichr/). To understand the biological identity of the
malignant clusters, we used databases such as Gene Ontology (GO), Reactome,
OMIM Disease, MSigDB Hallmark 2020, Jensen Compartments, CellMarker
Augmented, and CCLE Proteomics. Furthermore, AUCell scores of the functionally
enriched marker genes per malignant mouse state (acquired from Karras et. al®?), the
top 100 marker genes of the malignant states, and the scores of various previously
published melanoma signatures were averaged and plotted across the malignant
clusters.

To infer cell-cell interactions we used the Seurat object and run CellChat® version
1.1.3 applying 10 % truncated mean for average gene expression per cell group and
minimum twenty cells required per cell.

The percentages of the malignant clusters within the malignant compartment were
calculated per sample and tested among various groups. For the two groups
comparisons, the two-sided Wilcoxon test, for three or more groups, the Kruskal-Wallis
test was used. Area Under the Receiver Operating Characteristics (AUROC) was used
to estimate the response prediction.

Gene regulatory network analysis

SCENIC?! analysis was run with raw counts from the “SCT” assay of malignant cells
50x. SCENIC uses gene regulatory network inference, followed by a refinement step
using cis-regulatory information, to generate a set of refined regulons (i.e. TFs and
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their target genes) in the scRNA-seq data. The Python implementation, (pySCENIC:
https://github.com/aertslab/pySCENIC, version 0.9.19), was run using a Nextflow
pipeline  (https://github.com/aertslab/SCENICprotocol, version 0.2.0), which
streamlined the main steps of gene regulatory network inference and refinement with
pySCENIC, as well as the quantification of cellular activity, and visualization. The
Nextflow pipeline also performed a standard analysis in parallel, using highly variable
genes selected based on expression. Differentially activated TF regulons of each
malignant cluster were identified by the two-sided Wilcoxon test (using Bonferroni
correction for multiple tests) against all the cells of the rest of the clusters.

Identification of the Minimal Lineage Gene signature (MLGs)

To identify the MLGs we subset CAFs together with the Mesenchymal-like state and
performed differential gene expression analysis between them. The top 50 genes were
called the MLGs, from which four (SOX70, ST00A1, MITF and CDH19), were selected
for further validation by CODEX/mFISH (RNAscope).

Validation of identified melanoma states in independent scRNA-seq dataset
Transcript per Million (TPM) normalized the Jerby-Arnon et al.?? dataset was
downloaded from the GEO portal (Accession number GSE115978). The TPM
normalized dataset was used to generate a Seurat object. The cells with a number of
genes > 1000 & < 7500 were selected for further analysis. Next, the AUCell score for
the MS was calculated using the same set of genes as in the main cohort (EDNRB,
MYO10, PLP1, ERBB3, SYNGR1). The malignant cells were subset based on an SMS
score >0.1 and the criteria applied in the Jerby-Arnon et al.?? study. Additionally, cells
positive for PTPRC were excluded. Next, the data was scaled regressing out the cell
cycle scores and percentage of expressed mitochondrial genes, and integrated using
Harmony.

To validate the transcriptomic states identified in our dataset we performed label
transfer of the malignant clusters in Seurat, using the following parameters: integration
features = 3000, k.anchor = 20, and reduction = “pcaproject”. The prediction scores

were plotted on the Harmony integrated UMAP.
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Spatial transcriptomics

Selected samples were processed for spatial transcriptomics using the 10X Genomics
Visium platform. The analysis of these was approved by the Ethical Commission of
the University Hospital of Leuven and approved by the review board (#S55760).
Tumours were dissected, washed with 1x DPBS and snap-frozen in liquid nitrogen-
chilled isopentane. Frozen tumours were transferred to a cold tissue mould filled with
chilled optimal cutting temperature compound (Tissue-Tek O.C.T. compound, Sakura
Finetek Cat#4583). The mould was then immediately placed on dry ice. Tissue blocks
were stored at —80°C in a sealed container. Both the tissue block and the proprietary
Visium Spatial Gene Expression Slide (10X Genomics, Cat#PN-2000233) were
equilibrated inside the cryostat for 30 min at -12 °C before sectioning. Sections were
cut at a thickness of 10 ym and immediately placed onto the slide. Slides containing
sections were stored at —80°C for a maximum of 24h before use.

Fixation, staining, imaging, and construction of cDNA libraries was done according to
the manufacturer’s instructions (Visium Spatial Gene Expression User Guide_Rev D;
10x Genomics, CG000239) using the Visium Spatial Gene Expression Slide &
Reagent Kit (10x Genomics, Cat#PN-1000187). Briefly, sections were fixed in chilled
methanol for 30 min at —20 °C and stained with haematoxylin and eosin. Imaging was
performed on a Nikon-Marzhauser Slide Express 2 whole-slide scanner at 10x
magnification. After imaging, sections were permeabilized at 37 °C for 18 minutes.
Permeabilization time was determined using the Visium Spatial Tissue Optimization
Slide & Reagent Kit (10x Genomics, PN-1000193) following the Visium Spatial Tissue
Optimization User Guide_RevA (10x Genomics, CG000238). After permeabilization,
the on-slide reverse transcription reaction was performed at 53 °C for 45 min. Second
strand synthesis was subsequently performed on-slide for 15 min at 65 °C. All on-slide
reactions were performed in a thermocycler with a metal slide adapter plate. Following
second strand synthesis, samples were transferred to tubes for cDNA amplification
and clean-up. Library QC was assessed using an Agilent Technologies Bioanalyzer
High Sensitivity kit (Agilent Technologies, Cat#5067-4626).

Visium libraries were sequenced on lllumina NextSeq2000. The sequencing depth
was chosen by determining the amount of 55um spots that were covered by tissue,
and this was multiplied by 50.000 reads. Raw sequencing files were processed with
SpaceRanger (v1.1.0, 10x Genomics) to generate spatial gene expression matrices.
Next, the data was analysed using the Seurat v. 4.1.08" spatial vignette in R v. 4.0.2.
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Spots with spatial features >500 and percentage of mitochondrial reads either <3 or
<5 were retained and the expression data was normalized using SCTransform. Firstly,
the spatial distribution of the major tumour immune microenvironment (TIME)
constituents such as malignant cells, T cells, B cells, macrophages, CAFs, and ECs
was mapped using the label transfer function with CCA-based label transfer (k
anchor=10). Furthermore, to identify true malignant spots, we leveraged copy number
inference using HoneyBadger’®. Bcell or EC spots with prediction score >0.8 were
used as “normal’ reference. Subsequently, we selected spots with a prediction score
>0.7 for the malignant label and the mean CNV score (calculated as described above)
>0.07 and annotated these as melanoma. Finally, for the malignant cell deconvolution,
distance and co-localization calculations we used the CellTrek** R package.

Multiplex immunostaining followed by multiplex FISH

Five ym FFPE tissue sections of selected samples sectioned 5 were cut and mounted
on poly-L-lysine coated coverslips. Akoya Biosciences CODEX multiplex
immunostaining (CODEX) and ACDbio RNAscope HiPlex v2 (12-plex) multiplex FISH
(RNAscope) were each performed according to their respective manufacturer’'s
instructions (kits used are listed in Supplemental Table S8), and combined in
sequence as previously described, with slight modifications®.

In brief, coverslips were deparaffinized followed by heat-induced antigen retrieval in
citrate buffer, pH 6. Next, they were stained with a combination of DNA-barcoded
primary antibodies, including in-house conjugated antibodies (Supplemental Table
S8), washed and post-fixed in ice-cold methanol. They were mounted on an Akoya
Biosciences CODEX system for multiple cycle immunostaining and imaged using a
Keyence microscope with Akoya Biosciences CODEX instrument manager and
Keyence software. Secondary antibodies were fed to the instrument in a pre-prepared
96-well plate. In total, 11 cycles of immunostaining (including 2 blanks with only
nuclear staining) were run, consisting of DAPI nuclear staining, Atto550-, Cy5- and
Alexa Fluor 750 fluorophores. Akoya Biosciences CODEX processor software
performed automated image registration, autofluorescence and background
subtraction. Cover slips were kept in storage buffer until RNAscope was performed.
To prepare samples for RNAscope, samples were washed in ethanol for 2 min. and
air dried for 5 min. in a 60°C oven. Target retrieval was followed by protease treatment.

The 12-plex RNAscope assay consisted of 3 rounds (each round using 4 probes) of

28


https://doi.org/10.1101/2022.08.11.502598
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.11.502598; this version posted August 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

probe hybridization, amplification, autofluorescence reduction, fluorophore
hybridization, DAPI counterstaining, imaging, fluorophore cleavage and washing.
Coverslips were imaged using VectraPolaris Automated Quantitative Pathology
Imaging System.

CODEX images were registered to RNAscope using the BigWarp plugin for ImageJ®&3
The CODEX image stack was used as a fixed target to register the 3 RNAscope
imaging rounds onto, using manually placed landmarks. This resulted in resampling
of the RNAscope to target resolution. Next, regions of interest (ROIs) of 100 x 100 um
were delineated using QuPath Quantitative Pathology & Bioimage Analysis software®.
In these ROls, the autofluorescence channel of each RNAscope imaging round was
subtracted from each respective fluorescent channel using the Image Calculator in
ImagedJ. Cells were segmented with the StarDist® extension in QuPath, using the

dsb2018 heavy augment.pb pretrained model®®.

MILAN (mIHC)

Multiplex immunofluorescent staining was performed according to the previously
published MILAN protocol*. Immunofluorescence images were scanned using the
Axio scan.Z1 slidescanner (Zeiss, Germany) at 10X objective with resolution of 0.65
um/pixel. All samples were stained simultaneously. Image acquisition order was
distributed spatially and independently of patient replicates. The stains were visually
evaluated for quality by digital image experts and experienced pathologists (FB, YVH,
double-blind). Multiple approaches were taken to ensure data. On the image level,
focus, presence of external artefacts and tissue integrity were reviewed. Regions that
contained severely deformed tissues and artefacts were identified and excluded from
downstream analysis. Antibodies that gave low confidence staining patterns by visual
evaluation were excluded from the analysis. Image analysis was performed following
a custom pipeline. Briefly, flat field correction was performed using a custom
implementation of a previously described algorithm®. Then, adjacent tiles were
stitched by minimizing the Frobenius distance of the overlapping regions. Next,
images from consecutive rounds were registered following an algorithm previously
described®. During this process, the first round was always used as a fixed image
whereas all consecutive rounds were sequentially used as moving images.
Transformation matrices were calculated using the DAPI channel and then applied to
the rest of the channels. Registration results were visually inspected by domain
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experts (FB, YVH). Samples with tissue folds showed significant misalignments and
were manually segmented in different regions. Each region was independently re-
registered. Downstream analysis was independently performed for each annotated
region. Next, tissue autofluorescence was subtracted using a baseline image with only
secondary antibody. Finally, cell segmentation was applied to the DAPI channel using
StarDist®®. For every cell, topological features (X/Y coordinates), morphological
features (nuclear size), and molecular features (Mean Fluorescence Intensity (MFI) of
each measured marker) were extracted.

For the cell Identification MFI values were normalized within each region to Z-scores
as recommended in Caicedo et al®®. Z scores were trimmed in the [0, 5] range to avoid
a strong influence of possible outliers in downstream analyses. Single cells were
mapped to known cell phenotypes using three different clustering methods:
PhenoGraph®, FlowSom®, and KMeans as implemented in the Rphenograph,
FlowSOM, and stats R packages. While FlowSom and KMeans require the number of
clusters as input, PhenoGraph can be executed by defining exclusively the number of
nearest neighbours to calculate the Jaccard coefficient. The number of clusters
identified by PhenoGraph was then passed as an argument for FlowSom and KMeans.
Clustering was performed exclusively in a subset of the identified cells (50,000)
selected by stratified proportional random sampling and using only the 23 markers
defined as phenotypic. For each clustering method, clusters were mapped to known
cell phenotypes following manual annotation from domain experts (FMB, YVH, double-
blind). If two or more clustering methods agreed on the assigned phenotype, the cell
was annotated as such. If all three clustering methods disagreed on the assigned
phenotype, the cell was annotated as “not otherwise specified” (NOS). Annotated cells
were used to construct a template that was in turn used to extrapolate the cell labels
to the rest of the dataset. To that end, a UMAP was built by sampling 500 cells for
each identified cell type in the consensus clustering. The complete dataset was
projected into the UMAP using the base predict R function. For each cell, the label of
the closest 100 neighbours was evaluated in the UMAP space and the label of the
most frequent cell type was assigned.

Melanoma cells were further segmented based on the expression of HLA-DR®! Here,
we set a cut-off of Z=2 to differentiate between HLA-DR positive and HLA-DR negative

melanoma cells.
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For neighbourhood analysis, a quantitative analysis of cell-cell interactions was
performed using an adaptation of the algorithm described in Schapiro, et al.%. A
detailed description of the adapted implementation was previously published®:. Briefly,
for every cell, all the other cells that are located at a maximum distance d were
counted. Then the tissue is randomized preserving the cytometry of the tissue as well
as the X and Y coordinates of each cell but permutating the cell identities. This is
repeated N times (here N=1000) which allows to assign an empirical p-value by
comparing the number of counts observed in the real tissue versus the N random
cases. We performed the described analysis for different values of the distance d (from
10 to 100 um with a step of 10 um) to show the consistency of the reported results.
Particularly here, the analysis was performed exclusively to evaluate whether CD3+
and CD8+ T cells (Tcys) were interacting more with HLA-DR positive or HLA-DR
negative melanoma cells. Therefore, we only included melanoma subtypes in the
randomization process while keeping all the other cell subtypes unchanged. To add
an effect-size metric, we also calculated the ratio between the observed counts and

the random counts.

Cell culture

The human melanoma cell cultures were derived from patient biopsies by the
Laboratory of Oncology and Experimental Surgery (Prof. Dr. Ghanem Ghanem,
Institute Jules Bordet, Brussels, Belgium). All cell lines (MM011, MM029, MMO034,
MM047, MMO057, MM099, MM164) were grown in 5% CO2 at 37°C in F10
supplemented with 10% FBS, 2.5% GlutaMAX and 1% penicillin/streptomycin.
HEK293 FT cells were grown in DMEM with 10% FBS and 1% penicillin/streptomycin.

Cells were tested for Mycoplasma contamination prior to performed experiments.

Drugs
Dabrafenib (Cat#HY-14660) and Trametinib (Cat#HY-10999) were purchased from
MedChemExpress. ARV-771 (Cat#HY-100972) was purchased from Bioconnect.

siRNA-Mediated Transient Genetic Inactivation

Cells were transfected with the indicated specific short interfering RNA (siRNA)
SMARTDpools (Dharmacon, Cat# L-004594-00-0005 and Cat# D-001810-10-20) using
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TransIT-X2 Transfection Reagent (Mirus) according to the manufacturer’s protocol.
siRNAs were used at a final concentration of 50 nM.

Lentiviral vector production

HEK293 FT cells were transfected with dVPR and VSVG packaging plasmids using
Lipofectamine 2000 reagent (ThermoFisher Scientific) according to the manufacturer’s
instructions. 24 hours after transfection, medium was replaced with DMEM medium
(Invitrogen) supplemented with 20% foetal bovine serum (FBS). Medium containing
viral vectors was collected 48 and 72 hours after transfection. Viral vectors were
filtered through a 0,45 nm syringe filter, aliquoted and stored at —-80 °C.

Inducible TCF4 overexpression was achieved using a Doxycycline-inducible vector
system. Briefly, a TetR-T2A-NeoR insert was cloned inside a FUGW vector (Addgene
Plasmid, Cat#14883). In a second plasmid, the expression of TCF4 was controlled by
Doxycycline through a TetO-regulated CMV promoter. Both vectors were transduced
in MMO011 cells and selection was obtained with neomycin and puromycin respectively.
Inducible TCF4 downregulation was achieved using a Doxycycline-inducible vector
system. Briefly, the shRNA sequence targeting TCF4 was designed based on the
sequence of the siRNA pool and cloned in a FH1 vector (Addgene Plasmid,
Cat#164098).

Bulk RNA-sequencing

Approximately 2*10° cells were plated in a 6-well plate. For knockdown experiments,
these were transfected with the described siRNA pool 24 and 72 hours after plating
and collected 24 hours after the second transfection. For inducible TCF4 experiments,
cells were treated with 2 ng/mL Doxycycline (Sigma-Aldrich, Cat# D9891) every 48
hours and collected 96 hours after plating. For ARV-771 experiments, cells were
treated with 50 nM ARV-771 (Bioconnect, Cat#HY-100972) 24 hours after plating and
collected 96 hours after plating. RNA was extracted using the RNA NucleoSpin
extraction kit (Macherey&Nagel) according to the manufacturer’s instructions.

The RNA integrity was monitored using Bioanalyzer analysis. 5 ng of RNA per sample
was reverse-transcribed and amplified using a modified version of the SMARTseq2
protocol, previously described in Rambow et al.®. Prior to generating sequencing
libraries using the NexteraXT kit (lllumina, Cat#FC-131-10), cDNA profiles were

monitored using the Bioanalyzer. Sequencing was performed on a lllumina
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Nextseq500 platform. Differential gene expression analyses were executed using the
DeSeq2 pipeline.

Geneset enrichment analysis

Geneset enrichment analysis was performed using GSEA 4.1.0. Briefly, approximately
3000 DEGs (si TCF4 vs si Ctrl) were ranked by log2FC and the overlap with the
following gene sets was estimated (MsigDB ID: M5930, M983 and M518).

Western blotting

Harvested cell culture pellets were resuspended in protein lysis buffer (25 mM HEPES
pH 7,5; 0,3 M NaCl; 1,5 mM MgClI2; 2 mM EDTA; 2 mM EGTA; 1 mM DTT; 1% Triton
X-100; 10% glycerol; phosphatase/protease inhibitor cocktail), incubated on ice
(10min) and centrifuged at 14000 rcf for 15 minutes at 4°C. Equal amounts of protein,
quantified using aLife Technologies Qubit 2.0 instrument were run on 4-12% Bis-Tris
Plus Bolt gels (ThermoFisher Scientific) and transferred to a nitrocellulose membrane
with an iBlot dryblot system (ThermoFisher Scientific). Membrane blocking (5%
milk/TBS-0,2%Tween) was followed by incubation with the appropriate primary
antibodies and HRP-conjugated secondary antibody. Signals were detected by
enhanced chemiluminescence on Amersham hyperfilm. Antibodies that were used are
the following:

Rabbit polyclonal anti-MITF Sigma-Aldrich Cat# HPA003259; RRID:
AB_1079381

Rabbit monoclonal anti-TCF4 Abcam Cat# ab217668; RRID:
AB_ 2714172

Rabbit monoclonal anti-GAPDH Cell Signaling Cat# 2118; RRID:
AB_561053

Goat polyclonal anti-Rabbit IgG-HRP Cell Signaling Cat# 7074; RRID:
AB_2099233

Colony formation assay
Cells were grown to near confluency on 12-well plates and treated on the following
day with 2 ug/mL Doxycycline (Sigma-Aldrich, cat# D9891) or vehicle. 48 hours after

plating, cells were treated with the indicated drug combinations for four days. Cells
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were washed once with DPBS, stained with crystal violet (1% crystal violet w/v, 35%
methanol v/v) for 15 minutes, washed with DPBS again and rinsed with tap water.
Three regions of interests were quantified using the ImagedJ plugin ColonyArea® to
define the intensity percentage. Each sample was then normalized over the relative
control well and statistical significance was assessed t-test (unpaired, two-tailed
Student’s t-test).

Co-culture experiments

HLA-matched peripheral blood mononuclear cells (PBMCs) and MMO099 cells were
grown in 5% CO2 at 37°C for two days in RPMI 1640 medium supplemented with 10%
FBS, 3 pg/mL anti-CD3 antibody (ThermoFisher Scientific, Cat#16-0038-85), 5 ug/mL
anti-CD28 antibody (ThermoFisher Scientific, Cat#16-0289-85), 100 ng IL-2
(ThermoFisher Scientific, Cat#PHC0027).

TCF4 was silenced in MM099 cells as described above. Upon TCF4 knockdown,
approximately 2000 MMO099 cells per well were plated in a 96-well plate. Eight hours
after plating, 10000 activated PBMCs per well were added, alongside aforementioned
activating proteins and CellEvent™ Caspase-3/7 Green Detection Reagent (1:5000,
ThermoFisher Scientific, Cat#C10423). Cells were imaged using the IncuCyte ZOOM
System (Essen Bioscience) and automated apoptosis measurements were obtained
based in images taken at 2-hour intervals, for the duration of the experiment. Three
biological replicates were averaged and normalized over the last time point of the
control and statistical significance was assessed (paired, two-tailed Student’s t-test).

OmniATAC-seq

Approximately 2*10° MMO057 cells were plated in a 6-well plate and treated with ARV-
771 100 nM after 24 hours. 48 hours after plating, cells were collected. Nuclei of
50,000 cells were isolated and an Omni-assay for transposase-accessible chromatin
using sequencing (OmniATAC-seq) was performed as described previously®. After
final amplification, samples were cleaned up with MinElute (QIAGEN) and libraries
were prepareded using the KAPA Library Quantification Kit (supplier). Samples were
sequenced on an llluminaNextSeq 500 High Output chip.

Briefly, reads were mapped to human genome (GRCh37) using STAR (2.7.1a-foss-
2018a). Resulting BAM files were cleaned for duplicates using Picard (2.21.8-Java-
1.8.0) and indexed. Mitochondrial reads were removed using SAMtools (1.9-
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20190828-foss-2018a) and BigWig files were created (deepTools/3.3.1-foss-2018a-
Python-3.7.4). ATAC-seq peaks were identified and visualized using MACS2 peak
calling (2.1.2.1-foss-2018a-Python-2.7.16) with single-end BAMPE parameters.
Finally, BED files were created from broadPeak files using BEDTools (2.28.0-foss-
2018a).

RT-gPCR

MMO57 cells were plated and treated with the specified dose of ARV-771, as described
above 48 hours after plating, cells were collected, resuspended in RA1 lysis buffer
using the RNA NucleoSpin extraction kit (Macherey&Nagel) and processed according
to manufacturer’s instructions. RNA was quantified using a ThermoScientific
NanoDrop 1000 and 500 to 2000 ng was reverse transcribed with a High-Capacity
cDNA Reverse Transcription Kit (Life Technologies). gPCRs were run using the
SensiFAST probe No-ROX kit (Bioline, Cat#Bl0O-86005) on a Roche Life Science
LightCycler 384. Data processing with Biogazelle Qbase+ 3.1 software relied on
normalization with a minimum of two reference genes. RT-gPCR primer sequences
are the following:

hTCF4 Forward: ATGGCAAATAGAGGAAGCGG

hTCF4 Reverse: TGGAGAATAGATCGAAGCAAG

hACTB Forward: CTGGAACGGTGAAGGTGACA

hACTB Reverse: AAGGGACTTCCTGTAACAATGCA

hRPL13A Forward: CCTGGAGGAGAAGAGGAAAGAGA

hRPL13A Reverse: TTGAGGACCTCTGTGTATTTGTCAA

hSDHA Forward: TGGGAACAAGAGGGCATCTG

hSDHA Reverse: CCACCACTGCATCAAATTCATG

Proliferation assay

Roughly 400 MMO029 cells per well were plated in a 96-well plate and treated with
ARV-771 300 nM and/or Dabrafenib 50 nM + Trametinib 10 nM after 24 hours. Cells
were imaged using the IncuCyte ZOOM System (Essen Bioscience) and automated
cell confluency measurements were made using images taken at 2 hour intervals, for
the duration of the experiments. Five technical replicates were averaged and statistical
significance was assessed (paired, two-tailed Student’s t-test).
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TCGA SKCM data analysis

The SKCM raw count matrix composed of 375 samples was downloaded from
Firehose. Raw TCF4 counts were calculated per sample and samples were grouped
based on their phenotype®. Furthermore, log2 transformed read counts of were
compared in metastatic versus primary melanoma lesions. Correlation analysis
between MITF and TCF4 mRNA levels in TCGA_SKCM was performed using

cbioportal®:°7.

Matrigel invasion assay and quantification

The invasive capacity of melanoma cells was determined by Matrigel transwell
invasion assays using 0.8 mm BD BioCoatMatrigel Invasion Chambers (Corning,
Cat#354480), according to manufacturer’s guidelines. Briefly, TCF4 expression was
knocked down in MMO099 cells as described above. Next, cells were starved overnight
in FBS- and L-glutamine-deprived medium. Around 2*10° cells were plated in each
chamber (coated with 25 yg Matrigel) in FBS-deprived medium, while 10% FBS- and
2.5% L-glutamine-enriched medium was used in the wells placed in the lower
chamber. Uncoated inserts were used as a control for proliferation. 24 hours after
seeding, membranes were stained with crystal violet.

Non-invading cells remaining on the upper surface of the chamber were removed by
scrubbing with a cotton-tipped swab. Three to four randomly selected images were
acquired per well and the surface cells were counted with ImageJ. The surface
occupied by invading cells was calculated relative to the total surface of the
membrane. Experiments included biological triplicates and technical duplicates.

CCLE data analysis

TCF4 read counts were plotted for skin_melanoma cell lines from the CCLE cohort®
and correlated (Pearson correlation coefficient) with IC50s (uM) of BRAF- (PLX4720)
and MEK- (AZD6244) inhibitors.

Data availability

Raw sequencing reads of all scRNA-seq have been deposited in the European
Genome-phenome Archive (EGA) under study no. EGAS00001006488. Requests for
accessing raw sequencing reads will be reviewed by the UZ Leuven-VIB data access
committee. Any data shared will be released via a Data Transfer Agreement that will
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include the necessary conditions to guarantee protection of personal data (according
to European GDPR law). Processed data of the malignant treatment naive subset and
the spatial transcriptomic RNA-sequencing data are available upon request.
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Figure 1: Refining the human melanoma transcriptomic landscape

A, Study design, including timing of sample collection and processing methodologies.
B, Uniform Manifold Approximation and Projection (UMAP) of malignant cells,
containing 11 functionally annotated clusters.

C, AUCell scores of the functionally enriched marker genes per malignant mouse state
(acquired from Karras et. al*?), averaged and plotted across the malignant human
states.

D, AUCell scores of the top 100 marker genes of the malignant states averaged and
replotted across each state.

E, AUCell scores of various previously published melanoma signatures averaged and
plotted across each state.

F, Alluvial plot intersecting each cell, represented in clusters based on CNV patterns

and in the transcriptomic states.
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Figure 2: Treatment-naive melanoma ecosystem mapped spatially

A, Spatial transcriptomics on three representative treatment naive metastatic
samples. Shown are malignant spots annotated per state.

B, Heatmaps of the k-distance calculated between the query state and every other cell
state (rows). Note that as the k-distance metric is not normalized to the number of
cells, comparisons can only be made within rows.

C, Correlation of the percentage of the Antigen Presentation state within the tumour
compartment with the percentage of activated CD8+ T cells within the immune
compartment for each scRNA-seq sample.

D, Cell-cell interaction prediction from the scRNA-seq data between cells from the
malignant and tumour immune microenvironment compartments, via MHC class | and
Il molecules. The width of the line linking cells indicates the probability strength.

E, Neighbourhood analysis of the HLA-DR high and low expressing melanoma cells
with CD8 T cells in treatment naive samples (n = 10) from the MILAN data. X-axis:
interaction distance considered for neighbourhood analysis (um). Y-axis: interaction
score (positive values indicate interaction, negative avoidance).

F, Representative image of a clinical biopsy in which HLA-DR high, but not HLA-DR

low, melanoma cells co-localise with the CD8+ immune infiltrate.
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Figure 3: Identification and in situ mapping of melanoma MES cells

A, AUCell score of the top 50 marker genes of the MES state identified by testing MES
vs all other malignant states (left), and Minimal Lineage Genes signature (MLGs)
identified by testing MES versus CAFs (right), plotted for CAFs and MES cells.

B, Expression of four selected MLG marker genes in CAFs and MES cells.

C, Expression of four selected MES marker genes in CAFs and MES cells.

D, Expression of the marker genes from B and C across all malignant cell states.

E, Combined mIHC and mFISH image of a representative treatment naive lymph node
metastasis. CD45, CD31 and TCF4 (white) protein stains are shown, whereas FISH
of the four selected genes for the MLGs (MITF, SOX10, S100A1 and CDH19; red) and
MES state (DCN, TCF4, THY1 and LUM,; green) are combined (top). A colour-split of
each four genes is shown (bottom). Nuclei of Mesenchymal-like cells co-expressing
MLGs and MES genes are segmented based on DAPI staining (dark blue).
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Figure 4: Antigen Presentation and MES states are associated with response
to immunotherapy

A, Percentage of Antigen Presentation and MES cells out of all malignant cells in each
sample, compared between R and NR at both time points (two-sided Wilcoxon test).
B, Area Under the Receiver Operating Characteristics (AUROC) curves for the
percentage of Antigen-presenting and MES cells out of all malignant cells in the BT
(left) and OT (right) samples.
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Figure 5: TCF4 orchestrates multiple melanoma transcriptional programs

A, GSEA analysis showing enrichment of gene sets related to EMT, antigen
presentation, IFN signalling among the top DEGs upon silencing of TCF4 in MM099
cells (bulk RNA-seq, n=2 biological replicates). NES, normalized enrichment score;
FDR, false discovery rate.

B, Corresponding heatmap of DEGs.

C, Western blot analysis of TCF4, MITF and GAPDH expression in MM0O1 cells upon
induction of TCF4 overexpression (OE). Expression in parental (non-induced, NI) cells
is shown as control.

D, Heatmap of differentially expressed genes in MMO011 upon Doxycycline (Dox)
-dependent induction of TCF4 expression (bulk RNA-seq, n=3 biological replicates).
E, Colony formation assay performed with the melanoma MES cell line MMO029, either
left untreated (UT) or exposed to the BRAF- and MEK- inhibitors (Dabrafenib and
Trametinib, respectively) at the indicated concentrations. TCF4 silencing was induced
with Doxycycline (Dox). The non-induced (NI) cells are used here as control. Lower
panel, quantification of ROIs (n=3 technical replicates), paired Student's t-test,
*p=0.0096, **p=0.0023). Error bars indicate mean +SEM.

F, Normalised dead cell counts in co-culture of MM099 with activated HLA-matched
PBMCs upon silencing of TCF4 by siRNA (n=3 biological replicates, paired t-test,
****p<0.0001). Line and filled area indicate mean +SEM, respectively (n=6 technical
replicates). Lower panel, representative IncuCyte images showing Caspase-3/7-

positive cells in purple.
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Figure 6: TCF4 targeting through BET-inhibition

A, ATAC-seq peaks indicating chromatin accessibility regions upstream the TCF4
locus in MMO0S57 control cells (DMSO) and following exposure to the BET-inhibitor
ARV-771. The ATAC-seq profile of untreated MM099 and of two previously profiled3®
melanocytic MM line (MMO001, MMO011) is shown below. The previously reported BRD4
binding site is framed®®.

B, RT-qPCR showing dose-dependent downregulation of TCF4 upon ARV-771
treatment (n=3 technical replicates, Student’s t-test, **p<0.01, ***p<0.001).

C, Number of up- or downregulated genes upon ARV-771 treatment in a panel of MM
lines (bulk RNA-seq, n=2 biological replicates). MES, mesenchymal-like MM lines
(MMO047, MM099); MEL, melanocytic lines (MM034, MM164).

D, Heatmap of selected panel of DEGs upon ARV-771 treatment in MMO099 cells (bulk
RNA-seq, n=2 biological replicates).

E, Venn diagram showing the overlap between genes downregulated upon silencing
of TCF4 and ARV-771 treatment in MMO099 cells (bulk RNA-seq, n=2 biological
replicates, hypergeometric test)

F, GSEA analysis showing enrichment of gene sets of a panel of proliferative versus
invasive MM lines for the 292 commonly regulated genes. PRO, Proliferative; INV,
Invasive.

G, Cell growth of MM029 cells upon treatment with BET inhibitor (ARV-771 300 nM),
BRAF- and MEK-inhibitors (Dabrafenib 50 nM, Trametinib 10 nM) or a combination
thereof. Error bars indicate mean +SEM (n=6 technical replicates, paired Student’s t-
test, ****p<0.0001).
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