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Abstract

Although >90% of somatic mutations reside in non-coding regions, few have been reported as
cancer drivers. To predict driver non-coding variants (NCVs), we present a novel transcription
factor (TF)-aware burden test (TFA-BT) based on a model of coherent TF function in promoters.
We applied our TFA-BT to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and

predicted 2,555 driver NCVs in the promoters of 813 genes across 20 cancer-types. These genes
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are enriched in cancer-related gene ontologies, essential genes, and genes associated with
cancer prognosis. We found that 765 candidate driver NCVs alter transcriptional activity, 510 lead
to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the
binding of ETS factors. Finally, we show that different NCVs within a promoter often affect
transcriptional activity through shared mechanisms. Our integrated computational and
experimental approach shows that cancer NCVs are widespread and that ETS factors are

commonly disrupted.
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Introduction
Cancer initiation and progression are often associated with environmentally induced or
spontaneous mutations, and inherited genomic variants that increase cancer risk '~. Large scale
projects such as the Cancer Genome Atlas (TCGA) and the International Genome Consortium
(ICGC) have identified millions of somatic variants in tumors “°. However, in most cases, it is not
known whether these mutations affect any cellular function, confer growth advantage, or are
causally implicated in cancer development ”. The difficulty in annotating variants is because only
a few cancer driver mutations are needed to initiate tumor growth, development, and metastasis
and these mutations must be distinguished from thousands of passenger mutations that do not
alter fitness 7. Even though more than 90% of somatic variants are in non-coding regions, few
non-coding cancer drivers have been identified ®®°, highlighting the need for approaches to
identify and validate non-coding variants (NCVs) in cancer.

Mutational burden tests have been used to predict driver NCVs. These tests are based on
determining an increased mutational frequency in DNA regions of interest (e.g., cis-regulatory

10-18 Methods have employed

elements (CREs)) compared to a background mutational frequency
a range of different parameters to estimate the background mutational frequency in CREs,
including cancer-specific mutational signatures, sequence conservation, functional annotations,
mutational frequencies in neighboring regions or other “similar” genomic regions, replication
timing, and expression levels *'°. Despite these varied approaches to estimate mutational burden
and the increasing number of sequenced tumor samples, studies have only identified ~100 driver
NCVs. For example, burden tests within specific cancer types have identified NCVs in the
promoters of TERT, FOXA1, HES1, SDHD, and PLEKHS1 2°??, Further, a global analysis of
2,568 cancer whole genome samples from the Pan-Cancer Analysis of Whole Genomes
(PCAWG) identified driver NCVs in the promoters of TERT, HES1 and seven additional genes °.

A more recent analysis of 3,949 tumors from PCAWG and the Hartwig Medical Foundation

identified driver NCVs in the promoters and enhancers of 52 genes '°. Additional driver NCVs
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have been identified in the super-enhancers of BLC6, BCL2, CXCR4 in diffuse large B-cell
lymphomas . Whether this somewhat limited number of driver NCVs is due to a modest
contribution of NCVs to cancer or to limitations of current approaches to identify and validate NCV
drivers remains to be determined.

NCVs in CREs likely affect the binding of transcription factors (TFs) and the recruitment
of regulatory cofactors (COFs) leading to changes in gene expression . For example, TERT
overexpression, a major contributor to cancer, is caused by multiple NCVs in its promoter that
create ETS factor binding sites ?*?’. We hypothesize that an approach to assess NCV burden
that accounts for changes in TF binding may improve the sensitivity to detect mutational burden.
Here, we present a novel TF-aware burden test (TFA-BT) based on the assumption that creating
(or disrupting) binding sites for a particular TF at different positions within a CRE will have similar
transcriptional effects and should therefore be grouped together in the burden analysis. Indeed,
it has been reported that TF binding sites (TFBSs) in CREs frequently occur in homotypic clusters
and regulate gene expression through cooperative and non-cooperative mechanisms 222°,

We applied our TFA-BT to promoter NCVs from the PCAWG datasets and predicted 2,555
cancer driver NCVs in the promoters of 813 genes across 20 cancer-types. These genes are
enriched in cancer-related and essential genes, and their expression levels are associated with
cancer prognosis. To evaluate our TFA-BT NCVs, we used a novel integrative approach that
combines two high-throughput experimental approaches to assay the impact of NCVs on gene
expression and the disruption of TF-COF regulatory complexes. Using MPRAs (massively parallel
reporter assays) we found that 765 TFA-BT NCVs altered transcriptional activity, which is a similar
validation rate to known driver NCVs. Further, using the microarray-based CASCADE
(comprehensive assessment of complex assembly at DNA elements) assay, we found that 510
TFA-BT NCVs lead to differential binding of TF-COF regulatory complexes, and impact primarily
the binding of ETS factors. Together, our integrated computational and experimental approach

shows that cancer NCVs are a more widespread driver mechanism than previously recognized.
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86  Results
87  Prediction of cancer driver NCVs
88  We developed a novel TFA-BT that identifies CREs containing a higher-than-expected number of
89 NCVs across patients that alter (i.e., create or disrupt) TFBSs for a particular TF. We applied our
90 TFA-BT to somatic NCVs in the promoters of protein-coding genes (from -2,000 to +250 bp of the
91 transcription start site). Briefly, for each TF-promoter pair (A, B) our method counts the number
92 of NCVs predicted the alter the binding of a specific TF (A) within a promoter (B). We then
93 determine the probability of this observation given (1) the total number of observed NCVs in
94  promoter B across a set of patient samples, and (2) the probability that a random NCV in B
95 (according to the mutational frequency in the patient samples) alters a binding site for TF A (Fig.
96 1a). These TF-promoter pair probabilities are then used to calculate corrected p-values to identify
97 increased mutational burden in particular promoters. We note that in TFA-BT the mutational
98 burden in the promoter itself, rather than other similar or neighboring genomic regions, functions
99 as background to determine enrichment for altered TF binding. This reduces the need to identify
100 and model the appropriate confounding factors into the burden test, and results in increased
101  power to identify potential driver NCVs.
102 We applied the TFA-BT to predict cancer driver NCVs (hereafter referred to as TFA-BT
103  NCVs) in the promoters of protein-coding genes using 2,654 tumor samples from the PCAWG
104  cohort corresponding to 20 cancer types °. Predictions were performed per cancer type and in a
105 pan-cancer analysis. In total, we predicted 2,555 TFA-BT NCVs in the promoters of 813 genes,
106  which altered binding sites of 404 TFs (Supplementary Table 1). Most TFA-BT NCVs (65%)
107  were obtained from skin cancer (Fig. 1b). This is not only related to skin cancer samples having
108 the largest number of SNVs, but also to a higher fraction of these being predicted as TFA-BT
109 NCVs (Supplementary Fig. 1a). The majority of TFA-BT NCVs (76%) are associated with the

110  disruption, rather than gain, of TFBSs. This is likely related to the disruption of a TFBS having a
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higher likelihood of being functional and selected in cancers, as we have previously observed that
random gain and loss of TFBSs in CREs have similar likelihoods *°
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Figure 1. Identification of TFA-BT NCVs. (a) Overview of the TFA-BT approach. The number
of observed NCVs across tumor samples that disrupt (or create) a binding site of TF A in promoter
B is compared to the expected probability distribution to identify significant promoter-TF
associations. (b) Number of TFA-BT NCVs with predicted gain and/or loss of TF binding per
cancer-type. (c¢) Scatter plot showing the number of different TFA-BT NCVs per gene in
the PCAWG cohort versus the number of patients in PCAWG with TFA-BT NCVs in the
corresponding promoter. Insert shows fraction of patients in PCAWG for each mutation in the
TERT promoter. (d) Percentage of prognostic (i.e., genes whose expression levels are favorably
or unfavorably associated with cancer), fitness-related, and essential genes within all protein-
coding, IntOGen, Cancer Gene Census (CGC), and TFA-BT genes. Statistical significance
determined by Fisher's exact test compared to all protein-coding genes. (e) Biological process
gene ontology fold enrichment associated with different terms for IntOGen and TFA-BT gene sets.
Each dot represents a gene ontology term classified into general classes. Insert shows overlap
between TFA-BT and IntoGen genes.
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129 We observed a wide range of TFA-BT NCVs per gene (Fig. 1¢). In some cases, such as
130 the highly mutated BCL2 and BCL6, individual TFA-BT NCVs are generally not recurrent but affect
131  the binding of the same TFs at different positions in the promoter across tumor samples. In other
132  cases, such as TERT, a few TFA-BT NCVs are highly recurrent including the widely reported
133 ¢hr5:1295228 C>T and chr5:1295250 C>T mutations (Fig. 1¢, see insert) >*?’. We detected TFA-
134 BT NCVs in multiple other genes with reported driver NCVs in promoters, including the highly
135 mutated PLEKHS1, CDC20, DPH3, and BCL6 '92'233132 (§ypplementary Fig. 1b). We also
136  found genes with no previously reported driver NCVs with TFA-BT NCVs in at least 5% of tumors
137  within certain cancer types, such as RPL13A (bladder and skin cancer), TEDC2 (skin cancer),
138 and PES1 (skin cancer) (Supplementary Fig. 1b).

139 Multiple lines of evidence showed that our TFA-BT gene set is associated with known
140 cancer related genes, pathways, and functions. First, we detected a significant enrichment in
141  cellular fitness genes 3, essential genes **, and genes whose expression has been associated
142  with favorable or unfavorable cancer prognosis *°, which was overall higher than for the well-
143  curated lists of Cancer Gene Census and IntOGen genes (Fig. 1d) *%. Second, we identified a
144  significant overlap with genes whose somatic copy humber variation is associated with changes
145  in their expression across multiple cancer-types (OR=1.42, p=0.007) 3. Finally, we found a
146  significant enrichment in gene ontologies associated with general and cancer-related cellular
147  processes (Supplementary Fig. 1c). Interestingly, although many gene ontology terms overlap
148  between TFA-BT and IntOGen genes (a set of genes with driver coding mutations), multiple terms
149  are more enriched in either gene set (Fig. 1e). For example, terms associated with translation
150 and rRNA processing are more enriched within TFA-BT genes, whereas cell cycle, signaling, and
151  transcription terms are more enriched in IntOGen genes. This suggests that non-coding and
152  coding mutations may affect genes with different functions.

153

154
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155 TFA-BT NCVs alter transcriptional activity
156  To determine whether the TFA-BT NCVs affect transcriptional activity, we evaluated the 2,555

) 39,40

157  TFA-BT NCVs and control NCVs using massively parallel reporter assays (MPRAs in Jurkat

158  (lymphoma), SK-MEL-28 (melanoma), and HT-29 (colorectal) cell lines, which match the cancer
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160 Figure 2. TBA-BT NCVs alter transcriptional activity. (a) Overview of the evaluation of NCVs
161 by massively parallel reporter assays (MPRAs). (b) Fraction of NCVs from each test set within
162  MPRA active regions that show expression allelic skew at different g-value thresholds in Jurkat,
163  SK-MEL-28, and HT-29 cells. (c) Heatmap of validation rates in each cell line for NCVs present
164 in1,2, 3,4, and 5 or more patients. (d) Fraction of TFA-BT NCVs per recurrency (i.e., number of
165  tumors with each NCV) across patient in PCAWG.

166

167 types with the most TFA-BT NCVs (Fig. 2a). NCVs that had statistically significant allelic skew
168  between the reference and alternate alleles were called expression-modulating variants (emVars)
169  *' (Supplementary Table 2). Since only a subset of DNA regions are active (show MPRA activity
170 for either allele), we calculated the validation rate as the ratio of emVars over the total number of
171  active DNA regions for each NCV category. For the TFA-BT NCVs, we detected emVars for 53%,
172 27%, and 33% NCVs (q < 0.05) for Jurkat, SK-ML-28, and HT-29 cells, respectively, which highly
173  overlap between cell lines (Fig. 2b and Supplementary Fig. 2a). This validation rate is higher
174  than for NCVs with no predicted differential TF binding (Fig. 2b ‘No differential binding’) or random
175  NCVs with predicted differential TF binding (Fig. 2b ‘Non-driver differential TF binding’). The high

176  validation rates for the TFA-BT NCVs are similar to experimentally reported driver NCVs in
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177  promoters (Fig. 2b ‘Reported driver NCVs’), NCVs leading to allelic imbalance in ChIP-seq
178  experiments (Fig. 2b ‘ChIP-seq allelic imbalance’), and disease-associated germline NCVs that
179 lead to altered target gene expression and cause differential TF binding (Fig, 2b ‘Reported
180 germline NCVs’). Altogether, these results show that the TFA-BT can prioritize functional NCVs.
181 Most burden tests can identify genomic regions enriched in cancer mutations but cannot
182  determine which of the many mutations in a particular region are actually functional. Interestingly,
183 TFA-BT NCVs validated at a higher rate than random patient-derived NCVs in the promoters of
184  genes reported to have high mutational burden (Fig. 2b ‘Random NCVs in reported genes’),
185  suggesting that TFA-BT can better pinpoint functional NCVs. TFA-BT can also be used to predict
186 likely functional NCVs. We tested the transcriptional activity of random NCVs that correspond to
187  significant TF-promoter pairs by TFA-BT but that were not observed in the PCAWG cohort (Fig.
188 2b ‘TFA-BT - unobserved’). These unobserved NCVs validated at a higher rate than random
189 NCVs in reported genes, suggesting that TFA-BT also has predictive value for NCVs not yet
190 observed in patients.

191 Recurrency is often used as a criterion to prioritize cancer mutations. Interestingly, we
192  found that the validation rate for TFA-BT NCVs is similar regardless of the NCV frequency across
193  cancer samples (Fig. 2c). This suggests that NCVs with low mutation frequency, such as those
194  private to particular tumor samples, can also lead to altered transcriptional activity. The power of
195 TFA-BT to predict functional private mutations is important given that most cancer mutations are
196 private as well as most TFA-BT NCVs (Fig. 2d).

197 We validated TFA-BT NCVs associated with both gain and loss of TFBSs. However, we
198 observed a higher validation rate for NCVs that lose TFBSs (56%, 35%, and 29% in Jurkat, HT-
199 29, and SK-MEL-28 cells, respectively) than for NCVs that gain TFBSs (40%, 21%, and 14% in
200  Jurkat, HT-29, and SK-MEL-28 cells, respectively) or NCVs that lead to gain and loss of TFBSs
201  (46%, 24%, and 23% in Jurkat, HT-29, and SK-MEL-28 cells, respectively) (Supplementary Fig.

202  2b). This difference may be related to a higher likelihood of affecting expression by disrupting an
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203  existing TFBS in a CRE than by creating a TFBS that may not be in the appropriate CRE context
204  ordistance/orientation to other TFBSs to affect transcriptional activity.

205 Most driver NCVs have been identified and characterized in core promoter regions (-
206  250bp to +250bp from the TSS) ®2'. Here, we used extended promoter regions of -2kb to +250bp
207 from the TSS, expanding the current analysis landscape. Although the fraction of NCVs in
208 PCAWG is mostly homogenous throughout the extended promoter region, we observed an
209  enrichment of TFA-BT NCVs in the core promoter, even though our model did not incorporate any
210 additional information beyond TF specificities and promoter sequence (Supplementary Fig. 2c).
211  This suggests that considering core promoter regions likely identifies most driver NCVs in gene
212 promoters. Nevertheless, 25.8% of detected MPRA-validated TFA-BT NCVs reside outside the
213 core promoter (upstream of -250 from TSS), suggesting that interrogating sequences beyond core
214  promoters can identify functional NCVs.

215

216  Profiling the impact of NCVs on gene regulatory complexes

217 A primary mechanism by which NCVs alter gene expression is by altering the binding of TF-COF
218  regulatory complexes. To examine the mechanism of our TFA-BT NCVs, we profiled their ability
219 to alter the binding of TF-COF complexes. To do this, we employed the recently described
220 CASCADE method in which protein-binding microarrays (PBMs) incubated with cell nuclear
221  extracts are used to profile the differential recruitment of regulatory COFs (e.g., BRD4) to Ref/Alt
222 DNA probe sets ** (Fig. 3a and Supplementary Fig. 3). As COFs interact broadly with many
223 TFs** profiling a single COF can report on many DNA-bound TF-COF complexes in a parallel
224  manner without requiring knowledge of the TFs involved. The CASCADE approach provides a
225 mechanistic annotation to our TFA-BT NCVs that can be integrated with functional MPRA
226  annotations.

227 To identify differentially bound NCVs, we profiled the recruitment of six COFs spanning a

228 range of functional categories: SRC1 (NCOAA1) is a transcriptional coactivator with acetyl-

10
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Figure 3. Profiling TF-COF complex binding altered by NCVs. (a) Overview of the CASCADE
method to profile TF-COF complex binding affected by NCVs (Ref - reference and Alt - alternative
alleles). (b) Impact of TFA-BT NCVs on recruitment of SRC1 and BRD4 to 2,555 Ref/Alt NCV
probes sets assayed using Jurkat T-cell nuclear extracts. Impact is quantified with -log10(p-value)
of the COF recruitment to the different probe sets and the difference in PBM-determined Z-score
between Ref and Alt alleles (Az-score). The NCVs identified as significant are highlighted in red.
(c) Fraction of NCVs from different probe sets identified as significant by CASCADE in Jurkat and
SK-MEL-28 cells. Numbers at the top of the bars indicate the number of probes tested in each
set. (d) Number of TF-ABT NCVs leading to loss, gain, or no change (NC) (i.e., both alleles
similarly recruit the COF) of recruitment for each COF tested. (e) Number of TFA-BT NCVs that
affect the recruitment of 1 to 6 COFs. (f) Overlap between the number of TFA-BT NCVs significant
by MPRAs and CASCADE. (g-h) UMAP clustering TFA-BT NCVs based on Az-score for each of
the six COFs tested. (g) Each UMAP plot depicts the Az-score for each COF. (h) UMAP depicting
the MPRA expression allelic skew for each TFA-BT NCV. (i) NCOR recruitment motifs associated
with two TFA-BT NCVs. (j) BRD4 add TBL1XR1 recruitment motifs associated with NCV at
position chr12:120105668.
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246  transferase activity; BRD4 is a chromatin reader and regulatory scaffold; MOF (KAT8) is a histone
247  acetyltransferase; NCOR1 is a transcriptional corepressor; RBBP5 is a core member of the
248  MLL/SET histone methyltransferase complexes; TBL1XR1 is a member of the NCoR corepressor
249  complex. COF recruitment was profiled using nuclear extracts from Jurkat and SK-MEL-28 cells
250 to 2,956 paired Ref/Alt probe sets that included: 2,555 TFA-BT NCVs, 17 literature-reported driver
251 NCVs, and 384 background NCVs predicted to not impact TF binding. NCVs that lead to
252 significant differential recruitment (either gain or loss) of any single COF were classified as a
253  bmVar (binding-modulating variant) (Fig. 3b, Supplementary Fig. 4, Supplementary Table 3).
254 Of the 2,956 assayed NCVs, we identified 513 bmVars: 510 TFA-BT NCVs, two literature-
255  annotated driver NCVs, and one background NCV (Fig. 3c). Critically, bmVars were differentially
256  enriched across the three allele probe groups (Pearson Chi-square test: p < 7.18 x 10?°), with
257  highest bmVar enrichment in our predicted TFA-BT group which was enriched well beyond our
258  background NCVs. Our CASCADE approach is cell-type dependent, and results will vary based
259  on the expression levels and interaction strengths of the TFs and COFs assayed. We identified
260 more bmVars using Jurkat cell extracts but the general trends across probe groups were
261  consistent for both cell types. Of the 510 TFA-BT bmVars we identified, the majority were
262  disruptions in which the NCV led to loss of binding (Fig. 3d). We found that many bmVars were
263  supported by profiles from multiple COFs (Fig. 3e), suggesting that either the disrupted TF is
264  interacting with multiple COFs or multiple TF-COF complexes are disrupted by the NCV. To
265 determine whether our differential TF-COF binding may explain observed gene expression
266 differences, we determined the overlap between our 510 bmVars and 765 emVars identified for
267  the 2,555 TFA-BT NCVs assayed by MPRAs and CASCADE (Fig. 3f). We found 47.0% (359 /
268  765) of the emVars were also characterized as bmVars in CASCADE, despite only six COFs
269  being profiled. This highly significant overlap (p-value = 4.3 x 107'°? by hypergeometric test, 2.4-
270 fold-enriched) demonstrates that alteration of regulatory complex binding is strongly predictive of

271  achange in gene expression (i.e., 70%; 359 / 510) and suggests possible mechanisms for the
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272  observed gene expression effects. Importantly, TFA-BT genes with NCVs classified as emVars
273  orbmVars displayed a higher enrichment in essential, fitness, and prognostic genes than all TFA-
274 BT genes (Supplementary Fig. 5). This suggests that these functional NCVs impact genes with
275  important roles in cell viability and cancer.

276 To examine the relationships between COF dependence and gene expression we used
277 UMAP to represent NCVs based on their impact on COF binding (Fig. 3g). This functional
278  representation of NCVs highlights that NCVs vary in their influence on the recruitment of different
279  COFs. For example, MOF and TBL1XR1 are most strongly disrupted by different sets of NCVs.
280 Mapping the NCV impact on gene expression (i.e., logSkew values from MPRA analysis) onto
281  this COF-binding representation we find relatively uniform distribution throughout, suggesting that
282  gene expression data as measured by a reporter assay is not strongly correlated with the impact
283  on a particular COF (Fig. 3h). This data suggests that transcription can be impacted by altering
284  the binding of complexes with diverse COF recruitment characteristics.

285

286  TF-ABT NCVs primarily affect the binding of ETS factors

287  Our TFA-BT approach is based on identifying NCVs that alter TF binding motifs. In our original
288 analysis, we predicted TFBS alterations for 404 TFs from multiple TF families. For 48.7% of the
289 NCVs we predicted binding changes in two or more TFs, and for some NCVs up to 62 TFs.
290 Therefore, prediction alone is not sufficient to determine the TF whose binding is altered by an
291  NCV. To address the identity of the TF affected by each NCVs, we used CASCADE to determine
292  binding motifs impacted by the 359 NCVs identified as significant by both CASCADE and MPRAs
293  (Fig. 3f, Supplementary Table 4). To do this, we assayed COF recruitment to all single-
294  nucleotide variants spanning each NCV loci and determined recruitment motifs that can be used
295 to infer the underlying TFs by matching against TF motif databases (Supplementary Fig. 6) *2.
296  We profiled recruitment of our six COFs, using Jurkat nuclear extracts, and determined COF

297  recruitment motifs for 273 loci (Methods). 98% of the COF motifs matched ETS-family motifs,
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298  while the remaining ones resembled ETS motifs but matched similar looking motifs (e.g., IRF and
299  STAT family motifs).

300 Most of the identified motifs are single ETS motifs with the NCV disrupting this single
301 binding site (Supplementary Fig. 7). However, we also identified 18 composite ETS sites where
302 two motifs occur together or separated by up to seven bases (i.e., GGAA-N-GGAA, N=2,3,5,6,8,9)
303 (Fig. 3i-j). The presence of composite ETS sites is consistent with their tendency to cluster in

304 human promoters “°.

Motifs were consistent across COF experiments (Figs. 3i-j and
305 Supplementary Fig. 7), demonstrating that the different COFs are recruited by either the same
306 ETS protein or by different ETS proteins to the same site(s). While motifs agree well across COFs,
307 we did find evidence of COF-specific base preferences at some loci. In the PARS2 promoter, for
308 two sites, we found that BRD4 was recruited to an extended ETS motif with additional 5-prime-
309 flank base preferences compared to NCOR (Supplementary Fig. 7). Another example is seen
310 for a composite ETS site where we found that TBL1XR1 and BRD4 differed in their preferences
311  for the 2-bp spacer between the sites, with TBL1XR1 preferring the canonical CC bases while
312 BRD4 preferences were more degenerate (Fig. 3j). These COF-specific preferences provide a
313  mechanism for the differential impact of NCVs on COF recruitment at the same loci and highlight
314  the complexity of determining mechanisms for individual NCVs even for the same class of TFBSs.
315

316 NCVs derived from highly prevalent mutational processes affect transcriptional activity
317 and COF recruitment

318 Somatic mutations are caused by endogenous and exogenous mutational processes that differ
319 between patients and cancer types leading to different mutational signatures '*’. We examined
320 the possible mutational processes generating our TFA-BT NCVs using the PCAWG mutational
321  signature assignments. 58% of TFA-BT NCVs were associated with the SBS 7a, 7b, 7c, and 65
322 UV-light mutational signatures, consistent with most NCVs being identified in skin cancer (Fig.

323  4a). We also found 7.4% of NCVs were associated with POLE signatures (SBS61, SBS62, and
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325 Figure 4. NCVs derived from highly prevalent mutational processes affect transcriptional
326  activity and COF recruitment. (a) MPRA and CASCADE validation rates for TFA-BT NCVs
327 associated with different mutational signatures. Only mutational signatures associated with five
328 or more NCVs in MPRA active regions in at least one cell line are shown. Gray cells indicate
329  mutational signatures with less than 5 NCVs in MPRA active regions in the indicated cell line. The
330 right heatmap depicts the fraction of TFA-BT NCVs in each mutation signature that are associated
331  with altered COF recruitment. (b) Validation rate for NCVs associated or not with UV-light
332  mutational signature in SK-MEL-28 cells. Significance determined by Fisher's exact test. (c)
333  Mutational frequency and effect on transcriptional activity and COF binding for skin cancer TFA-
334 BT NCVs depending on the position within the ETS motif. The top violin plot shows the logqo
335  expression allelic skew by MPRA for NCVs affecting different positions within ETS motifs. The
336 bottom six violin plots show the Az-score in COF binding between the reference and the
337 alternative allele based on the position of the NCV within the ETS motif. The median is indicated
338 by the bold horizontal line, and the first and third quartiles are indicated by the dotted horizontal
339 lines. The bar plot indicates the number of TFA-BT NCVs affecting each position in the ETS motif.
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340

341 SBS10a frequently present in colorectal cancers) and 1.4% were associated with APOBEC
342  signatures (SBS2 and SBS13). These highly prevalent signatures, which frequently lead to
343  hypermutation, are often filtered either prior to the burden test or post-test to determine driver
344  NCV candidates °?'. Interestingly, we found that NCVs associated with many of these signatures
345 (SBS7a, 7b, 7c, 13, 61, and 65) validate by MPRAs at similar or higher rates than other TBA-BT
346 NCVs (Fig. 4a). This suggests that many NCVs excluded from other burden test analyses are
347  potentially functional, affecting transcriptional activity and COF recruitment (Fig. 4a). In particular,
348 NCVs associated with UV-light mutational signatures validate at a higher rate than NCVs not
349  associated with UV-light (Fig. 4a-b). These UV-light TFA-BT NCVs are enriched at the GG
350 doublet in the 5-GGAA-3’ consensus site and downstream flanking sequence, as previously
351 reported (Fig. 4c) ***°. However, their effect on gene expression and COF binding has not been
352 fully addressed. We found that these frequently mutated bases, in particular the two Gs in the 5’-
353 GGAA-3 consensus ETS site, also correspond to the positions with the largest perturbation in
354 transcriptional activity and COF binding (Fig. 4c). Although this is generally consistent across
355  COFs, we found that mutations in the second G rarely disrupt and often increase RBBP5 binding.
356 This suggests that the binding of different COFs may be differentially perturbed at different
357 positions of the ETS motif. Further, we found that position information content does not
358 necessarily correlate with functional changes, as mutations in the first A in the 5-GGAA-3’
359 consensus site rarely perturb transcriptional activity and COF binding (Fig. 4c). Altogether, this
360 shows a complex interplay between mutations, transcriptional activity, and COF binding and
361 underscores the need for extensive COF profiling.

362

363 Mechanistic similarities and differences between NCVs within promoters

364  Multiple TFA-BT NCVs in a gene promoter often led to similar transcriptional effects (over or under

365 expression). For example, all validated NCVs in the TERT promoter led to increased
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Figure 5. Altered transcriptional activity and COF recruitment within promoters. (a-b)
Changes in MPRA activity and COF recruitment for TF-ABT NCV in the (a) EGR1 and (b) RNF20
promoters. The top heatmaps show the logio(p-value) of expression allelic skew in MPRA in
Jurkat, SK-MEL-28, and HT-29 cells is indicated. The bottom heatmaps show the altered COF
recruitment by CASCADE, which is indicated as Az-score. Gray cells indicate cases where the
COF was not recruited to either NCV allele. Numbers at the top of the heatmaps indicate the
number of patients in PCAWG carrying the indicated NCV. Mutation and TSS coordinates are
indicated. (c) Pearson correlation coefficient (PCC) between Az-score in CASCADE for each COF
between pairs of TF-ABT NCVs within a gene promoter and between gene promoters.
Significance determined by Mann-Whitney U test. (d-e) COF recruitment motifs determined by
single nucleotide variant scanning using CASCADE for the NCVs indicated in a-b.

transcriptional activity, consistent with previously characterized TERT promoter drivers
associated with TERT overexpression **?’ (Supplementary Fig. 8). Conversely, all validated
TFA-BT NCVs in the EGR1 and RNF20 promoters led to reduced transcriptional activity (Fig. 5a-
b and Supplementary Fig. 8). This is consistent with under expression of EGR1 and RNF20

being reported in multiple cancer types °°°2. For example, RNF20 under expression due to
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385 promoter hypermethylation has been previously associated with genome instability in multiple
386  cancer types °%%%* Our results suggest that reduced RNF20 promoter activity resulting from
387 NCVs constitutes another potential cancer mechanism.

388 Similar changes in transcriptional activity between NCVs within a promoter can either be
389 related to similar changes in COF recruitment or to different COF recruitment patterns. We found
390 that NCVs within a promoter have a more similar effect on COF recruitment patterns than NCVs
391  between promoters (Fig. 5¢). For example, four of five NCVs in the EGR1 promoter led to reduced
392 recruitment of BRD4, MOF, NCOR, and SCR1, showing mechanistic convergence between
393 different mutations within the same promoter (Fig. 5a). This convergence can, in some cases, be
394  explained by NCVs being in close proximity (<10 bp), likely affecting the same TFBS; however,
395 other NCVs that similarly alter COF recruitment are located tens of bp away (Fig. 5a, d
396 chr5:137800743 and chr5:137800840, and Fig. 5b, e chr9:104296044 and chr9:104296134).
397  Although there is an overall similarity in altered COF recruitment between NCVs in a promoter,
398 we also observed multiple cases where NCVs in a promoter alter the recruitment of overlapping
399  but different sets of COFs (Fig. 5a-b and Supplementary Fig. 7). This suggests that either a few
400 overlapping COFs may be primarily responsible for the observed transcriptional effect or that
401 different COFs can lead to similar transcriptional effects. Finally, we detected NCVs with altered
402 transcriptional activity where none of the COFs tested showed altered recruitment (Fig. 5a and
403 Supplementary Fig. 7b). We hypothesize that these NCVs may affect transcriptional activity
404  through altered recruitment of other COFs not profiled in our assay.

405

406 Discussion

407  In this study, we developed a novel TFA-BT which we applied to 2,654 tumor samples from the
408 PCAWG cohort ® and predicted 2,555 driver candidates in the promoters of 813 genes. This is
409  10- to 20-fold more NCVs and genes than what has been previously reported °'*-??, showing the

410 power of our TFA-BT approach. Importantly, one third of the TFA-BT NCVs displayed expression
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411  allelic skew in MPRAs, a similar rate to well characterized somatic driver and germline NCVs.
412  Further, this is likely a conservative estimate given that our MPRAs (i) only evaluate a small 200
413  bp sequence fragment and are missing neighboring chromatin context %', (ii) many (40%) NCVs
414  reside in elements that do not exhibit activity by MPRA and are thus unable to be evaluated, and
415  (iii) we evaluated only three cell lines in this study. We also found that one fifth of the TFA-BT
416 NCVs lead to altered DNA binding of TF-COF complexes assayed by CASCADE. This is also
417 likely a conservative estimate as only six COFs were profiled and NCVs show COF specificity.
418  Altogether, these results show that the TFA-BT can prioritize NCVs that lead to altered gene
419  expression and binding of regulatory complexes. The success of the TFA-BT approach highlights
420 the importance of using regulatory models in NCV burden tests.

421 Genes containing TFA-BT NCVs are enriched in translation and rRNA processing genes.
422  Mutations in the promoters of these genes may alter their expression leading not only to changes
423  in protein synthesis which can affect cell proliferation, but also to an imbalance in ribosome
424  components and free ribosomal proteins. Free ribosomal proteins caused by altered gene
425  expression or copy number variation have been shown to affect cell cycle, apoptosis, and DNA

%537 Qur results suggest that mutations in the promoters of translation

426  repair leading to cancer
427  genes constitute a potential cancer mechanism.

428 Most of the TFA-BT NCVs for which we detected altered transcriptional activity reduced
429  gene expression in MPRAs. Given that the vast majority of cancer mutations are heterozygous,
430 this suggests that partial reduction in the expression of most TFA-BT genes may be sufficient to
431 have a functional role in cancer. Indeed, haploinsufficiency of multiple genes caused by copy
432  number variation or promoter methylation has been widely associated with cancer %%,
433 Interestingly, we found that 52 of the TFA-BT NCVs are biallelic (49-fold enrichment versus
434  bpiallelic mutations in PCAWG)® and 290 pairs of TFA-BT NCVs are within 10 nt and affect the

435 same TFBS in at least one donor. This suggests that in many cases, TFA-BT NCVs affect both
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436  alleles either at the same nucleotide position or at different positions within a TFBS, likely leading
437  to biallelic disruption of gene expression.

438 We found that NCVs impacting gene expression and regulatory complex binding primarily
439  disrupted ETS-factor binding sites. This is consistent with the known role of ETS factors in cancer
440 initiation and progression ¢, Increased and decreased activity of different ETS factors has been
441 implicated in all stages of tumorigenesis via diverse mechanisms, including gene rearrangement
442  and amplification, feed-forward signaling loops, gain-of-function co-regulatory complexes, and
443  cis-acting NCVs in ETS target gene promoters ®. Our studies further identified the disruption of
444  ETS binding sites as a widespread cancer mechanism. A large fraction of these disruptions are
445  associated with UV-light mutational signatures and are concentrated primarily in the GG doublet
446  of the canonical 5-GGAA-3’' ETS box and downstream bases, as has been reported “4°,
447  Mutations at these positions have been associated with increased mutational rates at sites of ETS
448  factor binding and potential reduced DNA repair %%, but are mostly considered non-functional
449  and are, therefore, excluded from most burden tests. Here, we show that these frequent ETS-
450  disrupting mutations have the largest transcriptional effects and disruption of COF binding. This
451  suggests that excluding these mutations, as well as those associated with other mutational
452  signatures such as APOBEC and POLE, may not be warranted.

453 TFA-BT is based on the hypothesis that creating (or disrupting) a TFBS at different
454  positions within a gene promoter is likely to lead to similar effects on target gene expression.
455  However, some of these NCVs may reside in TFBSs that are not bound or functional in vivo. We
456  consider this not to be the major driver of our findings as non-functional NCVs would, in general,
457  not be enriched across patients given that TFA-BT considers the overall promoter mutational
458  burden as background. Another possibility is that binding sites predicted to affect the same TF in
459  apromoter may actually bind TF paralogs with different effector functions. However, this does not
460 seem to occur frequently, as most TFA-BT NCVs in a promoter tend to perturb transcriptional

461  activity in the same direction (activation or repression).
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462 Although TFA-BT is focused on individual TFs, NCVs that affect the binding of different
463  TFs within a promoter can also have a similar effect on gene expression. This may be the case
464  for NCVs within a promoter that alter the recruitment of similar COFs. Indeed, we found that
465  different TFA-BT NCVs within a promoter often share similar changes in COF recruitment,
466  suggesting shared mechanisms. This supports a potential extension of our approach to develop
467 a COF-aware burden test. This type of test would require knowledge of the COFs that are highly
468  active in a tumor sample as well as the TFs involved in the recruitment of such COFs. Future
469  studies incorporating information on TF-COF complexes will allow us to extend our predictions to
470 other CREs and TFs that may not necessarily function through homotypic clusters.
471
472  Methods
473  Altered transcription factor binding predictions
474  To predict the effect of all possible NCVs in the human genome on TF binding, for each possible
475 NCV and each TF with available position weight matrices (PWMs), we determined the binding
476  score corresponding to the reference and alternative sequences. We downloaded 1898 PWMs
477  corresponding to human TFs from CIS-BP on April 3, 2018 ¢” and their corresponding TF family.
478  Given a PWM of length n and a genomic position (hs37d5 from the 1000 Genome Project), for
479 each of the 2n-1 DNA sequences on each strand of length n that overlap with the genomic
480  position, we determined a TF binding score using the function:
n

F(s,M) = z log (%)
481 i=1 St
482  where s is a genomic sequence of length n, M is the PWM with n columns and each column in M
483  contains the frequency of each nucleotide in each position i=1,...,n, and bs; is the background
484  frequency of nucleotide si assuming a uniform distribution. The highest score obtained for the 4n-

485  2sequences (2n-1 sequences in forward and reverse strands) was assigned as the binding score
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486 corresponding to the PWM for the reference or alternate NCV alleles. Significant scores were
487  selected and reported based on TFM-pvalue ® score thresholds determined using a significance
488 level o = 10™. This method was applied for each reference position and the three possible
489  alternative alleles for the entire human genome (hs37d5) to create an altered TFBS database, a
490 genome-wide catalog of NCV-TF effects. Custom C scripts were developed to generate this
491 dataset using GPUs and the data was stored in the Hadoop servers at Boston University

492  (www.github.com/fuxmanlab/altered TFBS).

493

494  ChlIP-seq allelic imbalance analysis

495  To estimate optimal threshold(s) of motif scores differences for a given PWM between a reference
496 allele and alternative allele to predict allelic imbalance in TF binding, we used available ChIP-seq
497  experimental data. ChlP-seq experiment FASTQ files were downloaded from the ENCODE
498  Project ® for 14 datasets (55 experiments) performed in cell lines with normal karyotype
499  (Supplementary Table 5). The files were aligned using BWA ° and pre-processed using
500 standard GATK methodology ’'. Variant calling was performed on the aligned BAM files using
501 GATK Variant Discovery pipeline " and BCF Tools '2. The intersection of variants from both tools
502 was used to extract the allele read counts for each variant. Allelic imbalance analysis was
503 performed for heterozygous positions in promoters for each experiment. A binomial test was used
504 toidentify NCVs located in positions where reads were not evenly distributed (0.5 for each allele).
505 Differential predicted binding events were calculated by comparing the motif score of each
506 alternative to its reference allele. Thresholds of two types were generated for gain/disruption of
507 TFBSs to determine their ability to predict ChlP-seq allelic imbalance: 1) when only the reference
508 or alternate allele pass the binding threshold for the motif determined by TFM-pvalue %, or 2)
509 when at least one allele passed the motif binding threshold and the difference in score between
510 alleles (allele score) is above a certain value ranging from 0 to 7. To benchmark our predictions,

511 for each TF, we used NCVs in allelic imbalance in ChlP-seq as true positives and those not in
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512  allelic imbalance as true negatives, and compared to predicted gain/loss of TFBSs in the same
513 direction as the allelic imbalance. F-values and relative accuracies were calculated for all
514  thresholds. Based on the F-values, we selected three parameter settings: 1) either the reference
515 or alternate allele pass the binding threshold for the motif determined by TFM-pvalue, 2) at least
516 one allele passed the motif binding threshold and the difference in score between alleles was
517  greater than two, and 3) at least one allele passed the motif binding threshold and the difference
518 in score between alleles was greater than three. These three parameter settings were
519 independently used for the TF-aware burden test (TFA-BT).

520

521 Processing of PCAWG mutational data

522  We downloaded VCF files of 2,654 samples from the PCAWG cohort © using the ICGC portal °
523  (Jan 23 2019). To identify NCVs in promoter regions, we used BEDTools intersection command?.
524  Promoters from protein-coding genes were defined as regions between -2 kb to +250 bp from the
525 transcription start sites (TSSs) annotated in GENCODE v19 . In the case of overlapping
526 alternative promoters, promoter regions were merged to prevent over-counting. To avoid
527  considering protein-coding regions, in the case of alternative promoters, we filtered
528  “coding_regions” using the GENCODE v19 " (Jun 14 2018) annotation. We used the R package
529 IRanges " to determine the promoter coordinates, and BEDTools " was used to remove promoter
530 coordinates overlapping with coding regions (Supplementary Table 6).

531

532 Development of the TF-aware burden test

533  We designed the TFA-BT to determine whether the number of NCVs observed in promoter B that
534  led to creation (or disruption) of a binding site for PWM A is more than expected by chance, given
535 the total number of mutations observed in promoter B across samples within a certain cancer-

536 type. The number of promoter NCVs that create (or disrupt) a binding site for PWM A in promoter
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537 B follows a binomial distribution P(n, p), where n is number of NCVs in promoter B across patients,
538 and p is the probability that an NCV in B creates (or disrupts) a binding site for PWM A.

539  The probability (p) was estimated as:

A

~. e~

540 p F(B;, M;).C(PWM A, B, M)

L~
I
gy

Y

541  where F(B;, M) is the probability of changing the reference base at position i in promoter B to the
542  mutated base Mj, C(PWM A, B;, M)) is 1 if mutating B; to M; leads the creation (or disruption) of a
543  binding site for PWM A and 0 otherwise, and L is the nucleotide length of promoter B. F(B;, M)
544  was calculated based on the genome-wide mutational frequencies in a cancer type, whereas
545  C(PWM A, B, M;) was determined by calculating the motif score difference between the sequence
546  surrounding position i for the reference and alternate alleles. These motif scores were obtained
547 by querying the altered TFBS database. We used thresholds obtained from the TFMp-value
548 algorithm °® to determine whether a motif score is significant, and the three different thresholds
549  selected from the ChIP-seq allelic imbalance analysis. For a given set of tumor samples, we
550 calculated P(n,p) for each PWM-promoter pair using each of three thresholds selected
551 independently, followed by multiple hypothesis testing correction using FDR. For robustness and
552  to increase the confidence in our predictions, only PWM-promoter associations that were
553  significant with an FDR < 0.01 using all three score thresholds were considered in subsequent
554  analyses. Then, we selected the NCVs from the PCAWG samples ° located in the promoters with
555  significant promoter-PWM associations that were associated with differential scores of the
556  corresponding PWM. Finally, we applied the TFA-BT to tumor samples from each of the 20
557  cancer-types, as to all PCAWG samples in a pan-cancer analysis to identify predicted driver NCVs
558 (TFA-BT NCVs).

559

560
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561 Computational validation of TFA-BT NCVs

562  To identify functional gene sets associated with the 813 genes containing TFA-BT NCVs in their
563 promoters, we used Metascape to obtain fold-enrichments and g-values for overlaps with GO,
564 Reactome, and PANTHER gene sets "°. As a comparison, functional enrichments were also
565 determined for driver genes from IntOGen *¢. Enrichments were only computed for GO Molecular
566  Functions, GO Biological Processes, Reactome Gene Sets, and PANTHER Pathways. The
567 Metascape filtering parameters were set to very lenient values: the min overlap parameter was
568 setto 3 genes, the p-value cutoff to 1, and minimum enrichment to 1. Functional genes sets with
569 qg-values > 0.05 for TFA-BT and IntOGen gene lists were removed, and the remaining gene sets
570  were manually grouped into categories to facilitate comparisons of fold-enrichments between the
571 TFA-BT genes and IntOGen genes. Gene ontologies were classified into supra-categories to
572  facilitate comparisons.

573 We also compared enrichments of essential, fithess, and prognosis genes between TFA-

574 BT, Cancer Gene Census *’, and IntOGen 3¢ genes, relative to all protein-coding genes

575  (downloaded from the HUGO Gene Nomenclature Committee at the European Bioinformatics

576 Institute www.genenames.org; filename gene_with_protein_product.txt). The list of genes

577 identified as essential in all cell lines in the DepMap Achilles project was downloaded from the
578 DepMap 21Q4 release (filename CRISPR_common_essentials.csv) "®. The list of fitness genes
579 was derived from the Fitness/Non-Fitness Binary Matrix (flename binaryDepScores.tsv)
580 downloaded from the DepMap ProjectScore website 7. Only genes designated as “fitness” genes
581 in at least 10 cell lines were considered “fitness” genes for the enrichment analyses. The list of
582  prognostic genes was derived from the pathology data from the Human Protein Atlas version 21.0
583 ¥ (filename pathology.tsv). Genes with reported p-values (from Kaplan-Meier log-rank tests of the
584  correlation between the mRNA level of each gene and survival of patients in a specific cancer

585  type) for one or no cancer types were discarded. For the remaining gene-cancer pairs, p-values
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586  associated with favorable or unfavorable prognosis were adjusted using an FDR correction and
587 further filtered for g-values of less than 0.01. Genes passing this threshold in at least one cancer-
588 type were considered prognostic.

589 Odds ratios and p-values for enrichments of essential, fithess, and prognostic genes
590 among the TFA-BT, Cancer Gene Census, and IntOGen genes were computed using Fisher’s
591 exact tests. Enrichments of essential genes used the list of all protein-coding genes as the
592  background, enrichments of fitness genes used the list of all genes in the unfiltered file
593  downloaded from the ProjectScore website, and enrichments of prognostic genes used the list of
594  all genes in the unfiltered file downloaded from the Human Protein Atlas website. Confidence
595 intervals for the proportions of enriched genes were computed using Wald intervals.

596 Structural variation has been associated with changes in gene expression. We obtained
597 genes associated with changes in gene expression caused by structural variation across 21
598 TCGA cohorts *® (May 25 2020), and considered genes with altered gene expression in more than
599 five cancer-types. We then calculated an enrichment of these genes in the 813 TFA-BT gene set
600 using a proportional comparison test.

601

602  MPRA library construction

603 The MPRA library was constructed as previously described *. Briefly, oligos were synthesized
604  (Agilent Technologies) as 230 bp sequences containing 200 bp of genomic sequences and 15 bp
605 of adaptor sequence on either end. Unique 20 bp barcodes were added by PCR along with
606  additional constant sequences for subsequent incorporation into a backbone vector (addgene
607  #109035) by Gibson assembly. The oligo library was expanded by electroporation into NEB 10-
608 beta E. coli, and the resulting plasmid library was sequenced by lllumina 2 x 150 bp chemistry to
609  acquire oligo-barcode pairings. The library underwent restriction digestion using AsiSl, and GFP
610 with a minimal TATA promoter was inserted by Gibson assembly resulting in the 200 bp oligo

611 sequence positioned directly upstream of the promoter and the 20 bp barcode residing in the 3’
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612 UTR of GFP. After library expansion in E. coli, the final MPRA plasmid library was sequenced by
613 lllumina 1 x 26 bp chemistry to acquire a baseline representation of each oligo-barcode pair within
614  the library.

615

616  MPRA library transfection into cell lines

617  Jurkat cells were grown in RPMI with 10% FBS to a density of 1 million cells per mL prior to
618 transfection. HT-29 cells were cultured in Mocoy’s 5a media with 10% FBS, and SK-MEL-28 cells
619 in EMEM supplemented with 10% FBS. Six electroporation replicates were performed on
620 separate days by collecting 90 million cells and splitting across nine 100 uL transfections each
621  containing 10 ug of MPRA plasmid. Cells were electroporated with the Neon Transfection System
622 (100 pl kit) using three pulses at 1350V for 10 ms for Jurkat cells, two pulses at 1300V for 20 ms
623  for HT-29 cells, and one pulse at 1200V for 40 ms for SK-MEL-28 cells. After transfection each
624  replicate was split between two T-175 flasks with 150 mL of culture media for recovery. After 48
625  hours, the cells were pelleted, washed three times with PBS, and stored at -80 C for later RNA
626  extraction.

627

628 RNA extraction and MPRA RNA-seq library generation

629  RNA for all cell lines was extracted from frozen cell pellets using the Qiagen RNeasy Maxi kit.
630  Half of the isolated total RNA underwent DNase treatment and a mixture of three GFP-specific
631  biotinylated primers (#120, #123 and #126)(Supplementary Table 7a) were used to capture GFP
632  transcripts with Streptavidin C1 Dynabeads (Life Technologies). An additional DNase treatment
633  was performed. cDNA was synthesized from GFP mRNA using SuperScript Il and purified with
634 AMPure XP beads. Quantitative PCR using primers specific for the GFP transcript (#781 and
635 #782)(Supplementary Table 7a) was used to measure GFP transcript abundance in each
636 sample. Replicates within each cell type were diluted to approximately the same concentration

637 based on the qPCR results. lllumina sequencing libraries were constructed using a two-step
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638  amplification process to add sequencing adapters and indices. An initial PCR amplification with
639  NEBNext Ultra Il Q5 Master Mix and primers 781 and 782 were used to extend adapters. To
640  minimize overamplification during library construction, the number of PCR cycles used in the first
641 amplification was selected based on where linear amplification began for each cell type (Jurkat:
642 10 cycles, SK-MEL-28 & HT-29: 13 cycles). A second 6 cycle PCR using NEBNext Ultra Il Q5
643  Master Mix added P7 and P5 indices and flow cell adapters (Supplementary Table 7b). For SK-
644  MEL-28 samples we failed to recover enough product during the first amplification and processed
645 the second total RNA aliquot using the same protocol, pooling the two preparations prior to
646  sequencing. The resulting MPRA RNA-tag libraries were sequenced using lllumina single-end 31
647  bp chemistry (with 8 bp index read), clustered at 80-90% maximum density on a NextSeq High
648  Output flow cell.

649

650 MPRA data analysis

651 Data from the MPRA was analyzed as previously described *. Briefly, the sum of the barcode
652  counts for each oligo were provided to DESeq2 " and replicates were median normalized followed
653 by an additional normalization of the RNA samples to center the average RNA/DNA activity
654  distribution of the 506 negative control sequences over a log2 fold change of zero. This
655 normalization was performed independently for each cell type. Dispersion-mean relationships
656 were modeled for each cell type independently and used by DESeq2 in a negative binomial
657  distribution to identify oligos showing differential expression relative to the plasmid input. Oligos
658 passing a false discovery rate (FDR) threshold of 1% were considered to be active. For sequences
659 that displayed significant MPRA activity, a paired t-test was applied on the log-transformed
660 RNA/plasmid ratios for each experimental replicate to test whether the reference and alternate
661 allele had similar activity (Supplementary Table 2). An FDR threshold of 5% was used to identify
662  SNPs with a significant skew in MPRA activity between alleles (allelic skew).

663
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664  Mutational signatures for MPRA validated drivers

665 NCVs can be caused by multiple mutational processes such as UV-light. We used ICGC
666  probabilities for each NCV-donor combination to assign them a given mutational process if its
667  probability is greater than 0.5, as described °. Then, we compared the MPRA and CASCADE

668 validation rates for TFA-BT NCVs associated with different mutational signatures. We used UV-

669  light associated signatures® Bl COMPOSITE_SNV_SBS7a_S,
670 BI_COMPOSITE_SNV_SBS7b_S, Bl _ COMPOSITE_SNV_SBS7c_S,
671 BI_COMPOSITE_SNV_SBS3 P, BI_COMPOSITE_SNV_SBS55_S,

672 BI_COMPOSITE_SNV_SBS67_S, BI_COMPOSITE_SNV_SBS75_S.

673

674  Cell culture and nuclear extraction for CASCADE

675  Jurkat cells, were obtained from ATCC (TIB-152). The cells were grown in suspension in RPMI
676 1640 Glutamax media (Thermofisher Scientific, Catalog #72400120) with 10% heat-inactivated
677 fetal bovine serum (Thermofisher Scientific, Catalog #132903). T175 (Thermofisher

678  Scientific, Catalogue #132903) non-treated flasks were used when culturing Jurkat cells for
679  experiments. Cells were grown in 50mL of media when being cultured in T175 flasks.

680 SK-MEL-28 cells were obtained from the Tewhey lab to ensure the same cells used for
681 the MPRA experiments were used for the CASCADE experiments. The cells were cultured using
682 EMEM media (ATCC, Catalog #30-2003) with 10% heat-inactivated fetal bovine serum
683  (Thermofisher Scientific, Catalog #132903). Cells were grown in 30mL of media when being
684  cultured in T225 flasks for adherent cells (Corning, Catalog #35138).

685 Nuclear extracts were obtained as previously described >, with modifications detailed
686  below. To harvest nuclear extracts from Jurkat cells, the cells were collected in a falcon tube and
687 placed on ice. To harvest nuclear extracts from SK-MEL-28 cells, the media was aspirated off
688 and the cells were washed once with 1X PBS (Thermofisher Scientific, Catalog #100010049).

689  Once the 1X PBS used to wash the cells was aspirated off, enough 1X PBS was mixed with
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690 0.1mM Protease Inhibitor (Sigma-Aldrich, Catalogue #P8340) to cover the cells was added to
691 each flask. A cell scraper was used to dislodge the cells from the flask, and cells were collected
692 in afalcon tube and placed on ice. Jurkat and SK-MEL28 cells were pelleted by centrifugation at
693  500xg for 5 min at 4°C. Both pellets were washed with 2mL of 1X PBS with Protease Inhibitor and
694 pelleted again at 500xg for 2 min at 4°C. To lyse the plasma membrane, the cells were
695 resuspended in Buffer A (1 mL Buffer A for Jurkat cells, 1.5 mL Buffer A for SK-MEL28 cells)
696 (10mM HEPES, pH 7.9, 1.5mM MgCl, 10mM KCI, 0.1mM Protease Inhibitor, Phosphatase
697 Inhibitor (Santa-Cruz Biotechnology, Catalog #sc-45044), 0.5mM DTT (Sigma-Aldrich, Catalog
698 #4315) and incubated for 10 min on ice. After the 10 min incubation, Igepal detergent (final
699  concentration of 0.1%) was added to the cell and Buffer A mixture and vortexed for 10 s. To
700 separate the cytosolic fraction from the nuclei, the sample was centrifuged at 500xg for 5 min at
701  4°C to pellet the nuclei. The cytosolic fraction was collected into a separate microcentrifuge tube.
702  The pelleted nuclei were then resuspended in Buffer C (100 yL for Jurkat nuclei and 150 L for
703  SK-MEL-28 nuclei) (20mM HEPES, pH 7.9, 25% glycerol, 1.5mM MgCI, 0.2mM EDTA, 0.1mM
704  Protease Inhibitor, Phosphatase Inhibitor, 0.5mM DTT, and 420mM NacCl) and then vortexed for
705 30 s. To extract the nuclear proteins (i.e., the nuclear extract), the nuclei were incubated in Buffer
706  Cfor 1 h while mixing at 4°C. To separate the nuclear extract from the nuclear debris, the mixture
707  was centrifuged at 21,000xg for 20 min at 4°C. The nuclear extract was collected in a separate
708  microcentrifuge tube and flash frozen using liquid nitrogen. Nuclear extracts were stored at -80°C.
709

710 CASCADE PBM experimental methods

711  All experiments were performed using the 4-chambered, 4x180K Agilent microarray platform
712  (design details described below). DNA microarrays were double stranded as described in Berger
713 et al. ® PBM experiments using cell extracts were performed following the protocols previously
714  described ®'% and outlined below. The double-stranded microarray was pre-wetted in HBS+TX-

715 100 (20mM HEPES, 150mM NaCl, 0.01% Triton X-100) for 5 min and then de-wetted in an HBS
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716  bath. Each of the microarray chambers were then incubated with 180 uL of nuclear extract binding
717  mixture for 1 h in the dark. Nuclear extract binding mixture (per chamber): 400-600 nug of nuclear
718  extract; 20mM HEPES (pH 7.9); 100mM NaCl; 1mM DTT; 0.2mg/mL BSA; 0.02% Triton X-100;
719  0.4mg/mL salmon testes DNA (Sigma-Aldrich, Catalog #D7656)). The microarray was then rinsed
720 in an HBS bath containing 0.1% Tween-20 and subsequently de-wetted in an HBS bath. After the
721  nuclear extract incubation, the microarray was incubated for 20 min in the dark with 20ug/mL
722  primary antibody for the TF or COF of interest (Supplemental Table 8). The primary antibody
723 was diluted in 180 uL of 2% milk in HBS. After the primary antibody incubation, the array was first
724  rinsedin an HBS bath containing 0.1% Tween-20 and then de-wetted in an HBS bath. Microarrays
725 were then incubated with 10ug/mL of either Alexa488- or Alexa647-conjugated secondary
726  antibody (see Supplemental Table 8) for 20 min in the dark. The secondary antibody was diluted
727  in 180 uL of 2% milk in HBS. Excess antibody was removed by washing the array twice for 3 min
728 in 0.05% Tween-20 in HBS and once for 2 min in HBS in Coplin jars as described above. After
729  the washes, the microarray was de-wetted in an HBS bath. Microarrays were scanned with a
730 GenePix 4400A scanner and fluorescence was quantified using GenePix Pro 7.2. Exported
731  fluorescence data were normalized with MicroArray LINEar Regression 2.

732  CASCADE microarray designs

733 CASCADE experiments were performed using custom-designed microarrays (Agilent
734  Technologies Inc, AMADID 086310 and 086772, 4x180K format). Microarray probes are all 60
735 nucleotides (nt) long and of the format: “GCCTAG” 5-prime flank sequence - 26-nt variable
736 sequence - “CTAG” 3-prime flank sequence - “GTCTTGATTCGCTTGACGCTGCTG” 24-nt
737  common primer (Supplementary Table 9). For each unique probe sequence (i.e., unique 26-nt
738  variable region) five replicate probes are included on the microarray with the variable sequence
739 in each orientation with respect to the glass slide (i.e., 10 probes total per unique variable

740  sequence).
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741 Design 1 (Agilent AMADID 086310): Microarray Design for profiling Ref/Alt impact — This
742  microarray was designed to profile the impact of NCVs on COF binding by comparing the binding
743 toreference (Ref) and alternate (Alt) probes. The design included 2,956 Ref/Alt paired probe sets
744  thatinclude: 2,555 TFA-BT NCVs, 17 literature-reported driver NCVs, and 384 background NCVs
745  (Supplementary Table 9). The background NCVs were selected from those NCVs for which the
746  TFA-BT algorithm found no predicted binding of any TF. A priori we do not know where within a
747  TF binding site a NCV will reside, so probe sequences were designed such that each NCV was
748  represented in three separate DNA registers in our microarray (i.e., NCV centered in each DNA
749  probe, or off-set by 5 nt in either direction, Supplementary Fig. 3a-b). Using this design, each
750  Ref/Alt pair (i.e., each NCV assayed) required 60 individual probes on our array (3 registers x 10
751  replicates x 2 Ref/Alt-variants).

752 Design 2 (Agilent AMADID 086310): Microarray Design for determining COF motifs — This
753  microarray was designed to determine COF recruitment motifs for each NCV loci. The design is

754  based on the exhaustive mutagenesis approach outlined in Bray & Hook et al. *?

where all possible
755  single-nucleotide variant (SV) probes of a defined genomic locus are included as probes in the
756  microarray. By profiling the differential binding of a COF to all SV probes we can directly determine
757  amotif/logo for that COF and genomic loci as described in Bray & Hook et al. (details below). The
758  designincluded probes to evaluate motifs at 359 NCVs identified as significant by both CASCADE
759  (differential COF recruitment using Design 1 microarray) and MPRAs (differential gene
760  expression) (Supplementary Table 10). In our initial NCV screen using the Design 1 microarray,
761  for each NCV we evaluated the differential COF binding to probes in the three different NCV
762  registers (i.e., NCV centered or offset, see above) and two orientations with respect to the glass
763  slide. For the Design 2 microarray, we selected the probe register and orientation that gave the
764  largest differential COF binding in our initial NCV screen, and use this ‘best register’ probe

765  (hereafter referred to as the ‘seed’ sequence) along with all SV probes covering the 26-nt genomic

766  locus. Furthermore, for the starting seed sequence we used either the Ref or the Alt probe based
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767  on which had the strongest COF binding in our initial screen. We note that this specific choice of
768 Ref or Alt as the starting seed probe was generally consistent across all different COF
769  experiments. Each unique 26-nt sequence was represented by 5 replicate probes. Using this
770  design, each NCV loci was characterized using 395 individual probes on our microarray: (1 seed
771  + 3 variants x 26 positions) x 5 replicates.

772

773  CASCADE computational analysis

774  Image analysis and spatial detrending of the microarray fluorescence intensities was performed
775  as previously described 8%, Probe fluorescence values were transformed to a z-score (as
776  previously described ®') using the fluorescence distribution of a set of background probes included
777  on each microarray.

778 Design 1: Microarray Design for profiling Ref/Alt impact — To determine differential COF
779  binding due to each NCV, probe intensities were compared between the Ref and Alt probes. For
780 each NCV, differential binding was assessed independently to all six sequences representing that
781 NCV (i.e., three NCV registers and two orientations). For each of the six sequences, the
782  significance of the differential binding was assessed using a Student’'s T-test between the 5
783  replicate probes for the Ref and Alt alleles. Finally, an aggregate, multiple hypothesis-corrected
784  p-value for differential binding was determined using Fisher's method (sum log p-values) and the
785  six independent p-values. The magnitude of the differential binding was quantified using a “ Az-
786  score” computed as the difference in the mean z-score for the Ref probes (all registers,
787  orientations, and replicates) and the Alt probes. Therefore, for each NCV we assessed the
788  magnitude (Az-score) and significance (aggregate p-value) of the differential COF binding. We
789 annotated NCVs as differentially bound in each experiment if they met the following criteria: (1)

790 the z-score of Ref or Alt allele > 2.0; (2) delta z-score > 2.0; (3) aggregate p-value < 10. NCVs
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791 were called differentially bound if they met the above criteria in both replicate CASCADE
792  experiments.

793 Design 2 (Agilent AMADID 086310): Microarray Design for determining COF motifs — COF
794  motifs were determined by evaluating the z-scores for the seed and SV probes representing each
795  NCV as previously described “>°. COF motifs can either be represented as a Az-score matrix,
796  which is akin to an energy matrix that evaluates the change in binding magnitude for each
797  nucleotide variant, or as a position probability matrix (PPM) that is based on a probabilistic model
798 relating base frequencies and binding energies 8. We use Az-score matrices to directly show of
799 the impact of base identify on binding and use PPMs to compare against motifs in public
800 databases which almost exclusively represent motifs as PPMs. Az-score matrices for a locus are
801 determined using z-scores from the seed probe (zsees) and three SV probes at each of the 26
802  base positions across the locus. The Az-score matrix values are based on the z-score differences
803  from the median, calculated independently for each position (i) along the probe:

804 Az; ; = z; ; — median j_ A,C,G,T(zi, j)

805  where i indicates the nucleotide position (1 to 26) and j indicates the nucleotide (A,C,G,T). The
806 median at position i/ is determined over the seed sequence and three probes with variant
807 nucleotide at position i. PPMs are determined by transforming the same z-scores in a different

808 manner:

exp (B * z; )

809 PPM: ; =
M Yiexp (B xz; )

810 where iindicates the nucleotide position (1 to 26), j indicates the nucleotide (A,C,G,T), and B is
811 an empirically determined scaling parameter:

812 g =4 Zsoeq < 0

Z
813 ,8=4—%ed 0 < Zgoq <6
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814 p=1 6 < Zseed

815

816 PPMs for each locus were compared against PPMs from JASPAR® using the TomTom %
817  algorithm (dist=Euclidean Distance; min_overlap = 6) using the “meme” package ¢ implemented
818 inR.

819

820 Data and Code Availability

821 e Results of all MPRA and CASCADE experiments performed here have been deposited in the
822 Gene Expression Omnibus and are publicly available (GEO accession: XXXX — will be
823 deposited upon manuscript acceptance).

824 e Original code for the TFA-BT has been deposited on Github
825 (https://github.com/fuxmanlab/noncoding_drivers) and is publicly available.

826 e Original code for the CASCADE analysis has been deposited on Github
827 (https://github.com/Siggers-Lab/Carrasco-Pro-Hook-et-al.-PBM-Analysis.git) and is publicly
828 available.

829 e Additional information required to reanalyze the data reported in this paper is available from
830 the lead contacts upon request.
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