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Abstract 21 

Although >90% of somatic mutations reside in non-coding regions, few have been reported as 22 

cancer drivers. To predict driver non-coding variants (NCVs), we present a novel transcription 23 

factor (TF)-aware burden test (TFA-BT) based on a model of coherent TF function in promoters. 24 

We applied our TFA-BT to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and 25 

predicted 2,555 driver NCVs in the promoters of 813 genes across 20 cancer-types. These genes 26 
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are enriched in cancer-related gene ontologies, essential genes, and genes associated with 27 

cancer prognosis. We found that 765 candidate driver NCVs alter transcriptional activity, 510 lead 28 

to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the 29 

binding of ETS factors. Finally, we show that different NCVs within a promoter often affect 30 

transcriptional activity through shared mechanisms. Our integrated computational and 31 

experimental approach shows that cancer NCVs are widespread and that ETS factors are 32 

commonly disrupted.   33 
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Introduction 34 

Cancer initiation and progression are often associated with environmentally induced or 35 

spontaneous mutations, and inherited genomic variants that increase cancer risk 1–3. Large scale 36 

projects such as the Cancer Genome Atlas (TCGA) and the International Genome Consortium 37 

(ICGC) have identified millions of somatic variants in tumors 4–6. However, in most cases, it is not 38 

known whether these mutations affect any cellular function, confer growth advantage, or are 39 

causally implicated in cancer development 7. The difficulty in annotating variants is because only 40 

a few cancer driver mutations are needed to initiate tumor growth, development, and metastasis 41 

and these mutations must be distinguished from thousands of passenger mutations that do not 42 

alter fitness 7. Even though more than 90% of somatic variants are in non-coding regions, few 43 

non-coding cancer drivers have been identified 6,8,9, highlighting the need for approaches to 44 

identify and validate non-coding variants (NCVs) in cancer.  45 

Mutational burden tests have been used to predict driver NCVs. These tests are based on 46 

determining an increased mutational frequency in DNA regions of interest (e.g., cis-regulatory 47 

elements (CREs)) compared to a background mutational frequency 10–18. Methods have employed 48 

a range of different parameters to estimate the background mutational frequency in CREs, 49 

including cancer-specific mutational signatures, sequence conservation, functional annotations, 50 

mutational frequencies in neighboring regions or other “similar” genomic regions, replication 51 

timing, and expression levels 9,19. Despite these varied approaches to estimate mutational burden 52 

and the increasing number of sequenced tumor samples, studies have only identified ~100 driver 53 

NCVs. For example, burden tests within specific cancer types have identified NCVs in the 54 

promoters of TERT, FOXA1, HES1, SDHD, and PLEKHS1 20–22. Further, a global analysis of 55 

2,568 cancer whole genome samples from the Pan-Cancer Analysis of Whole Genomes 56 

(PCAWG) identified driver NCVs in the promoters of TERT, HES1 and seven additional genes 9. 57 

A more recent analysis of 3,949 tumors from PCAWG and the Hartwig Medical Foundation 58 

identified driver NCVs in the promoters and enhancers of 52 genes 19. Additional driver NCVs 59 
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have been identified in the super-enhancers of BLC6, BCL2, CXCR4 in diffuse large B-cell 60 

lymphomas 23. Whether this somewhat limited number of driver NCVs is due to a modest 61 

contribution of NCVs to cancer or to limitations of current approaches to identify and validate NCV 62 

drivers remains to be determined. 63 

NCVs in CREs likely affect the binding of transcription factors (TFs) and the recruitment 64 

of regulatory cofactors (COFs) leading to changes in gene expression 8. For example, TERT 65 

overexpression, a major contributor to cancer, is caused by multiple NCVs in its promoter that 66 

create ETS factor binding sites 24–27. We hypothesize that an approach to assess NCV burden 67 

that accounts for changes in TF binding may improve the sensitivity to detect mutational burden. 68 

Here, we present a novel TF-aware burden test (TFA-BT) based on the assumption that creating 69 

(or disrupting) binding sites for a particular TF at different positions within a CRE will have similar 70 

transcriptional effects and should therefore be grouped together in the burden analysis. Indeed, 71 

it has been reported that TF binding sites (TFBSs) in CREs frequently occur in homotypic clusters 72 

and regulate gene expression through cooperative and non-cooperative mechanisms 28,29.  73 

We applied our TFA-BT to promoter NCVs from the PCAWG datasets and predicted 2,555 74 

cancer driver NCVs in the promoters of 813 genes across 20 cancer-types. These genes are 75 

enriched in cancer-related and essential genes, and their expression levels are associated with 76 

cancer prognosis. To evaluate our TFA-BT NCVs, we used a novel integrative approach that 77 

combines two high-throughput experimental approaches to assay the impact of NCVs on gene 78 

expression and the disruption of TF-COF regulatory complexes. Using MPRAs (massively parallel 79 

reporter assays) we found that 765 TFA-BT NCVs altered transcriptional activity, which is a similar 80 

validation rate to known driver NCVs. Further, using the microarray-based CASCADE 81 

(comprehensive assessment of complex assembly at DNA elements) assay, we found that 510 82 

TFA-BT NCVs lead to differential binding of TF-COF regulatory complexes, and impact primarily 83 

the binding of ETS factors. Together, our integrated computational and experimental approach 84 

shows that cancer NCVs are a more widespread driver mechanism than previously recognized.  85 
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Results 86 

Prediction of cancer driver NCVs  87 

We developed a novel TFA-BT that identifies CREs containing a higher-than-expected number of 88 

NCVs across patients that alter (i.e., create or disrupt) TFBSs for a particular TF. We applied our 89 

TFA-BT to somatic NCVs in the promoters of protein-coding genes (from -2,000 to +250 bp of the 90 

transcription start site). Briefly, for each TF-promoter pair (A, B) our method counts the number 91 

of NCVs predicted the alter the binding of a specific TF (A) within a promoter (B). We then 92 

determine the probability of this observation given (1) the total number of observed NCVs in 93 

promoter B across a set of patient samples, and (2) the probability that a random NCV in B 94 

(according to the mutational frequency in the patient samples) alters a binding site for TF A (Fig. 95 

1a). These TF-promoter pair probabilities are then used to calculate corrected p-values to identify 96 

increased mutational burden in particular promoters. We note that in TFA-BT the mutational 97 

burden in the promoter itself, rather than other similar or neighboring genomic regions, functions 98 

as background to determine enrichment for altered TF binding. This reduces the need to identify 99 

and model the appropriate confounding factors into the burden test, and results in increased 100 

power to identify potential driver NCVs.  101 

We applied the TFA-BT to predict cancer driver NCVs (hereafter referred to as TFA-BT 102 

NCVs) in the promoters of protein-coding genes using 2,654 tumor samples from the PCAWG 103 

cohort corresponding to 20 cancer types 6. Predictions were performed per cancer type and in a 104 

pan-cancer analysis. In total, we predicted 2,555 TFA-BT NCVs in the promoters of 813 genes, 105 

which altered binding sites of 404 TFs (Supplementary Table 1). Most TFA-BT NCVs (65%) 106 

were obtained from skin cancer (Fig. 1b). This is not only related to skin cancer samples having 107 

the largest number of SNVs, but also to a higher fraction of these being predicted as TFA-BT 108 

NCVs (Supplementary Fig. 1a). The majority of TFA-BT NCVs (76%) are associated with the 109 

disruption, rather than gain, of TFBSs. This is likely related to the disruption of a TFBS having a 110 
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higher likelihood of being functional and selected in cancers, as we have previously observed that 111 

random gain and loss of TFBSs in CREs have similar likelihoods 30. 112 

 113 

Figure 1. Identification of TFA-BT NCVs. (a) Overview of the TFA-BT approach. The number 114 
of observed NCVs across tumor samples that disrupt (or create) a binding site of TF A in promoter 115 
B is compared to the expected probability distribution to identify significant promoter-TF 116 
associations. (b) Number of TFA-BT NCVs with predicted gain and/or loss of TF binding per 117 
cancer-type. (c) Scatter plot showing the number of different TFA-BT NCVs per gene in 118 
the PCAWG cohort versus the number of patients in PCAWG with TFA-BT NCVs in the 119 
corresponding promoter. Insert shows fraction of patients in PCAWG for each mutation in the 120 
TERT promoter. (d) Percentage of prognostic (i.e., genes whose expression levels are favorably 121 
or unfavorably associated with cancer), fitness-related, and essential genes within all protein-122 
coding, IntOGen, Cancer Gene Census (CGC), and TFA-BT genes. Statistical significance 123 
determined by Fisher’s exact test compared to all protein-coding genes. (e) Biological process 124 
gene ontology fold enrichment associated with different terms for IntOGen and TFA-BT gene sets. 125 
Each dot represents a gene ontology term classified into general classes. Insert shows overlap 126 
between TFA-BT and IntoGen genes. 127 
 128 
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We observed a wide range of TFA-BT NCVs per gene (Fig. 1c). In some cases, such as 129 

the highly mutated BCL2 and BCL6, individual TFA-BT NCVs are generally not recurrent but affect 130 

the binding of the same TFs at different positions in the promoter across tumor samples. In other 131 

cases, such as TERT, a few TFA-BT NCVs are highly recurrent including the widely reported 132 

chr5:1295228 C>T and chr5:1295250 C>T mutations (Fig. 1c, see insert) 24,27. We detected TFA-133 

BT NCVs in multiple other genes with reported driver NCVs in promoters, including the highly 134 

mutated PLEKHS1, CDC20, DPH3, and BCL6 19,21,23,31,32 (Supplementary Fig. 1b). We also 135 

found genes with no previously reported driver NCVs with TFA-BT NCVs in at least 5% of tumors 136 

within certain cancer types, such as RPL13A (bladder and skin cancer), TEDC2 (skin cancer), 137 

and PES1 (skin cancer) (Supplementary Fig. 1b). 138 

Multiple lines of evidence showed that our TFA-BT gene set is associated with known 139 

cancer related genes, pathways, and functions. First, we detected a significant enrichment in 140 

cellular fitness genes 33, essential genes 34, and genes whose expression has been associated 141 

with favorable or unfavorable cancer prognosis 35, which was overall higher than for the well-142 

curated lists of Cancer Gene Census and IntOGen genes (Fig. 1d) 36,37. Second, we identified a 143 

significant overlap with genes whose somatic copy number variation is associated with changes 144 

in their expression across multiple cancer-types (OR=1.42, p=0.007) 38.  Finally, we found a 145 

significant enrichment in gene ontologies associated with general and cancer-related cellular 146 

processes (Supplementary Fig. 1c). Interestingly, although many gene ontology terms overlap 147 

between TFA-BT and IntOGen genes (a set of genes with driver coding mutations), multiple terms 148 

are more enriched in either gene set (Fig. 1e). For example, terms associated with translation 149 

and rRNA processing are more enriched within TFA-BT genes, whereas cell cycle, signaling, and 150 

transcription terms are more enriched in IntOGen genes. This suggests that non-coding and 151 

coding mutations may affect genes with different functions.  152 

 153 

 154 
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TFA-BT NCVs alter transcriptional activity  155 

To determine whether the TFA-BT NCVs affect transcriptional activity, we evaluated the 2,555 156 

TFA-BT NCVs and control NCVs using massively parallel reporter assays (MPRAs) 39,40 in Jurkat 157 

(lymphoma), SK-MEL-28 (melanoma), and HT-29 (colorectal) cell lines, which match the cancer 158 

 159 

Figure 2. TBA-BT NCVs alter transcriptional activity. (a) Overview of the evaluation of NCVs 160 
by massively parallel reporter assays (MPRAs). (b) Fraction of NCVs from each test set within 161 
MPRA active regions that show expression allelic skew at different q-value thresholds in Jurkat, 162 
SK-MEL-28, and HT-29 cells. (c) Heatmap of validation rates in each cell line for NCVs present 163 
in 1, 2, 3, 4, and 5 or more patients. (d) Fraction of TFA-BT NCVs per recurrency (i.e., number of 164 
tumors with each NCV) across patient in PCAWG.  165 
 166 

types with the most TFA-BT NCVs (Fig. 2a). NCVs that had statistically significant allelic skew 167 

between the reference and alternate alleles were called expression-modulating variants (emVars) 168 

41 (Supplementary Table 2). Since only a subset of DNA regions are active (show MPRA activity 169 

for either allele), we calculated the validation rate as the ratio of emVars over the total number of 170 

active DNA regions for each NCV category. For the TFA-BT NCVs, we detected emVars for 53%, 171 

27%, and 33% NCVs (q < 0.05) for Jurkat, SK-ML-28, and HT-29 cells, respectively, which highly 172 

overlap between cell lines (Fig. 2b and Supplementary Fig. 2a). This validation rate is higher 173 

than for NCVs with no predicted differential TF binding (Fig. 2b ‘No differential binding’) or random 174 

NCVs with predicted differential TF binding (Fig. 2b ‘Non-driver differential TF binding’). The high 175 

validation rates for the TFA-BT NCVs are similar to experimentally reported driver NCVs in 176 
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 9 

promoters (Fig. 2b ‘Reported driver NCVs’), NCVs leading to allelic imbalance in ChIP-seq 177 

experiments (Fig. 2b ‘ChIP-seq allelic imbalance’), and disease-associated germline NCVs that 178 

lead to altered target gene expression and cause differential TF binding (Fig, 2b ‘Reported 179 

germline NCVs’). Altogether, these results show that the TFA-BT can prioritize functional NCVs.  180 

Most burden tests can identify genomic regions enriched in cancer mutations but cannot 181 

determine which of the many mutations in a particular region are actually functional. Interestingly, 182 

TFA-BT NCVs validated at a higher rate than random patient-derived NCVs in the promoters of 183 

genes reported to have high mutational burden (Fig. 2b ‘Random NCVs in reported genes’), 184 

suggesting that TFA-BT can better pinpoint functional NCVs. TFA-BT can also be used to predict 185 

likely functional NCVs. We tested the transcriptional activity of random NCVs that correspond to 186 

significant TF-promoter pairs by TFA-BT but that were not observed in the PCAWG cohort (Fig. 187 

2b ‘TFA-BT - unobserved’). These unobserved NCVs validated at a higher rate than random 188 

NCVs in reported genes, suggesting that TFA-BT also has predictive value for NCVs not yet 189 

observed in patients. 190 

Recurrency is often used as a criterion to prioritize cancer mutations. Interestingly, we 191 

found that the validation rate for TFA-BT NCVs is similar regardless of the NCV frequency across 192 

cancer samples (Fig. 2c). This suggests that NCVs with low mutation frequency, such as those 193 

private to particular tumor samples, can also lead to altered transcriptional activity. The power of 194 

TFA-BT to predict functional private mutations is important given that most cancer mutations are 195 

private as well as most TFA-BT NCVs (Fig. 2d). 196 

We validated TFA-BT NCVs associated with both gain and loss of TFBSs. However, we 197 

observed a higher validation rate for NCVs that lose TFBSs (56%, 35%, and 29% in Jurkat, HT-198 

29, and SK-MEL-28 cells, respectively) than for NCVs that gain TFBSs (40%, 21%, and 14% in 199 

Jurkat, HT-29, and SK-MEL-28 cells, respectively) or NCVs that lead to gain and loss of TFBSs 200 

(46%, 24%, and 23% in Jurkat, HT-29, and SK-MEL-28 cells, respectively) (Supplementary Fig. 201 

2b). This difference may be related to a higher likelihood of affecting expression by disrupting an 202 
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existing TFBS in a CRE than by creating a TFBS that may not be in the appropriate CRE context 203 

or distance/orientation to other TFBSs to affect transcriptional activity.  204 

Most driver NCVs have been identified and characterized in core promoter regions (-205 

250bp to +250bp from the TSS) 9,21. Here, we used extended promoter regions of -2kb to +250bp 206 

from the TSS, expanding the current analysis landscape. Although the fraction of NCVs in 207 

PCAWG is mostly homogenous throughout the extended promoter region, we observed an 208 

enrichment of TFA-BT NCVs in the core promoter, even though our model did not incorporate any 209 

additional information beyond TF specificities and promoter sequence (Supplementary Fig. 2c). 210 

This suggests that considering core promoter regions likely identifies most driver NCVs in gene 211 

promoters. Nevertheless, 25.8% of detected MPRA-validated TFA-BT NCVs reside outside the 212 

core promoter (upstream of -250 from TSS), suggesting that interrogating sequences beyond core 213 

promoters can identify functional NCVs.  214 

 215 

Profiling the impact of NCVs on gene regulatory complexes 216 

A primary mechanism by which NCVs alter gene expression is by altering the binding of TF-COF 217 

regulatory complexes. To examine the mechanism of our TFA-BT NCVs, we profiled their ability 218 

to alter the binding of TF-COF complexes. To do this, we employed the recently described 219 

CASCADE method in which protein-binding microarrays (PBMs) incubated with cell nuclear 220 

extracts are used to profile the differential recruitment of regulatory COFs (e.g., BRD4) to Ref/Alt 221 

DNA probe sets 42 (Fig. 3a and Supplementary Fig. 3). As COFs interact broadly with many 222 

TFs43–45, profiling a single COF can report on many DNA-bound TF-COF complexes in a parallel 223 

manner without requiring knowledge of the TFs involved. The CASCADE approach provides a 224 

mechanistic annotation to our TFA-BT NCVs that can be integrated with functional MPRA 225 

annotations.  226 

        To identify differentially bound NCVs, we profiled the recruitment of six COFs spanning a 227 

range of functional categories: SRC1 (NCOA1) is a transcriptional coactivator with acetyl- 228 
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 229 

Figure 3. Profiling TF-COF complex binding altered by NCVs. (a) Overview of the CASCADE 230 
method to profile TF-COF complex binding affected by NCVs (Ref - reference and Alt - alternative 231 
alleles). (b) Impact of TFA-BT NCVs on recruitment of SRC1 and BRD4 to 2,555 Ref/Alt NCV 232 
probes sets assayed using Jurkat T-cell nuclear extracts. Impact is quantified with -log10(p-value) 233 
of the COF recruitment to the different probe sets and the difference in PBM-determined Z-score 234 
between Ref and Alt alleles (Δz-score). The NCVs identified as significant are highlighted in red. 235 
(c) Fraction of NCVs from different probe sets identified as significant by CASCADE in Jurkat and 236 
SK-MEL-28 cells. Numbers at the top of the bars indicate the number of probes tested in each 237 
set. (d) Number of TF-ABT NCVs leading to loss, gain, or no change (NC) (i.e., both alleles 238 
similarly recruit the COF) of recruitment for each COF tested. (e) Number of TFA-BT NCVs that 239 
affect the recruitment of 1 to 6 COFs. (f) Overlap between the number of TFA-BT NCVs significant 240 
by MPRAs and CASCADE. (g-h) UMAP clustering TFA-BT NCVs based on Δz-score for each of 241 
the six COFs tested. (g) Each UMAP plot depicts the Δz-score for each COF. (h) UMAP depicting 242 
the MPRA expression allelic skew for each TFA-BT NCV. (i) NCOR recruitment motifs associated 243 
with two TFA-BT NCVs. (j) BRD4 add TBL1XR1 recruitment motifs associated with NCV at 244 
position chr12:120105668. 245 
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transferase activity; BRD4 is a chromatin reader and regulatory scaffold; MOF (KAT8) is a histone 246 

acetyltransferase; NCOR1 is a transcriptional corepressor; RBBP5 is a core member of the 247 

MLL/SET histone methyltransferase complexes; TBL1XR1 is a member of the NCoR corepressor 248 

complex. COF recruitment was profiled using nuclear extracts from Jurkat and SK-MEL-28 cells 249 

to 2,956 paired Ref/Alt probe sets that included: 2,555 TFA-BT NCVs, 17 literature-reported driver 250 

NCVs, and 384 background NCVs predicted to not impact TF binding. NCVs that lead to 251 

significant differential recruitment (either gain or loss) of any single COF were classified as a 252 

bmVar (binding-modulating variant) (Fig. 3b, Supplementary Fig. 4, Supplementary Table 3).  253 

 Of the 2,956 assayed NCVs, we identified 513 bmVars: 510 TFA-BT NCVs, two literature-254 

annotated driver NCVs, and one background NCV (Fig. 3c). Critically, bmVars were differentially 255 

enriched across the three allele probe groups (Pearson Chi-square test: p < 7.18 x 10-20), with 256 

highest bmVar enrichment in our predicted TFA-BT group which was enriched well beyond our 257 

background NCVs. Our CASCADE approach is cell-type dependent, and results will vary based 258 

on the expression levels and interaction strengths of the TFs and COFs assayed. We identified 259 

more bmVars using Jurkat cell extracts but the general trends across probe groups were 260 

consistent for both cell types. Of the 510 TFA-BT bmVars we identified, the majority were 261 

disruptions in which the NCV led to loss of binding (Fig. 3d). We found that many bmVars were 262 

supported by profiles from multiple COFs (Fig. 3e), suggesting that either the disrupted TF is 263 

interacting with multiple COFs or multiple TF-COF complexes are disrupted by the NCV. To 264 

determine whether our differential TF-COF binding may explain observed gene expression 265 

differences, we determined the overlap between our 510 bmVars and 765 emVars identified for 266 

the 2,555 TFA-BT NCVs assayed by MPRAs and CASCADE (Fig. 3f). We found 47.0% (359 / 267 

765) of the emVars were also characterized as bmVars in CASCADE, despite only six COFs 268 

being profiled. This highly significant overlap (p-value = 4.3 x 10-102 by hypergeometric test, 2.4-269 

fold-enriched) demonstrates that alteration of regulatory complex binding is strongly predictive of 270 

a change in gene expression (i.e., 70%; 359 / 510) and suggests possible mechanisms for the 271 
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observed gene expression effects. Importantly, TFA-BT genes with NCVs classified as emVars 272 

or bmVars displayed a higher enrichment in essential, fitness, and prognostic genes than all TFA-273 

BT genes (Supplementary Fig. 5). This suggests that these functional NCVs impact genes with 274 

important roles in cell viability and cancer. 275 

To examine the relationships between COF dependence and gene expression we used 276 

UMAP to represent NCVs based on their impact on COF binding (Fig. 3g). This functional 277 

representation of NCVs highlights that NCVs vary in their influence on the recruitment of different 278 

COFs. For example, MOF and TBL1XR1 are most strongly disrupted by different sets of NCVs. 279 

Mapping the NCV impact on gene expression (i.e., logSkew values from MPRA analysis) onto 280 

this COF-binding representation we find relatively uniform distribution throughout, suggesting that 281 

gene expression data as measured by a reporter assay is not strongly correlated with the impact 282 

on a particular COF (Fig. 3h). This data suggests that transcription can be impacted by altering 283 

the binding of complexes with diverse COF recruitment characteristics. 284 

 285 

TF-ABT NCVs primarily affect the binding of ETS factors 286 

Our TFA-BT approach is based on identifying NCVs that alter TF binding motifs. In our original 287 

analysis, we predicted TFBS alterations for 404 TFs from multiple TF families. For 48.7% of the 288 

NCVs we predicted binding changes in two or more TFs, and for some NCVs up to 62 TFs. 289 

Therefore, prediction alone is not sufficient to determine the TF whose binding is altered by an 290 

NCV. To address the identity of the TF affected by each NCVs, we used CASCADE to determine 291 

binding motifs impacted by the 359 NCVs identified as significant by both CASCADE and MPRAs 292 

(Fig. 3f, Supplementary Table 4). To do this, we assayed COF recruitment to all single-293 

nucleotide variants spanning each NCV loci and determined recruitment motifs that can be used 294 

to infer the underlying TFs by matching against TF motif databases (Supplementary Fig. 6) 42. 295 

We profiled recruitment of our six COFs, using Jurkat nuclear extracts, and determined COF 296 

recruitment motifs for 273 loci (Methods). 98% of the COF motifs matched ETS-family motifs, 297 
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while the remaining ones resembled ETS motifs but matched similar looking motifs (e.g., IRF and 298 

STAT family motifs).  299 

Most of the identified motifs are single ETS motifs with the NCV disrupting this single 300 

binding site (Supplementary Fig. 7). However, we also identified 18 composite ETS sites where 301 

two motifs occur together or separated by up to seven bases (i.e., GGAA-N-GGAA, N=2,3,5,6,8,9) 302 

(Fig. 3i-j). The presence of composite ETS sites is consistent with their tendency to cluster in 303 

human promoters 46. Motifs were consistent across COF experiments (Figs. 3i-j and 304 

Supplementary Fig. 7), demonstrating that the different COFs are recruited by either the same 305 

ETS protein or by different ETS proteins to the same site(s). While motifs agree well across COFs, 306 

we did find evidence of COF-specific base preferences at some loci. In the PARS2 promoter, for 307 

two sites, we found that BRD4 was recruited to an extended ETS motif with additional 5-prime-308 

flank base preferences compared to NCOR (Supplementary Fig. 7). Another example is seen 309 

for a composite ETS site where we found that TBL1XR1 and BRD4 differed in their preferences 310 

for the 2-bp spacer between the sites, with TBL1XR1 preferring the canonical CC bases while 311 

BRD4 preferences were more degenerate (Fig. 3j). These COF-specific preferences provide a 312 

mechanism for the differential impact of NCVs on COF recruitment at the same loci and highlight 313 

the complexity of determining mechanisms for individual NCVs even for the same class of TFBSs.  314 

 315 

NCVs derived from highly prevalent mutational processes affect transcriptional activity 316 

and COF recruitment 317 

Somatic mutations are caused by endogenous and exogenous mutational processes that differ 318 

between patients and cancer types leading to different mutational signatures 1,47. We examined 319 

the possible mutational processes generating our TFA-BT NCVs using the PCAWG mutational 320 

signature assignments. 58% of TFA-BT NCVs were associated with the SBS 7a, 7b, 7c, and 65 321 

UV-light mutational signatures, consistent with most NCVs being identified in skin cancer (Fig. 322 

4a). We also found 7.4% of NCVs were associated with POLE signatures (SBS61, SBS62, and 323 
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 324 

Figure 4. NCVs derived from highly prevalent mutational processes affect transcriptional 325 
activity and COF recruitment. (a) MPRA and CASCADE validation rates for TFA-BT NCVs 326 
associated with different mutational signatures. Only mutational signatures associated with five 327 
or more NCVs in MPRA active regions in at least one cell line are shown. Gray cells indicate 328 
mutational signatures with less than 5 NCVs in MPRA active regions in the indicated cell line. The 329 
right heatmap depicts the fraction of TFA-BT NCVs in each mutation signature that are associated 330 
with altered COF recruitment. (b) Validation rate for NCVs associated or not with UV-light 331 
mutational signature in SK-MEL-28 cells. Significance determined by Fisher’s exact test. (c) 332 
Mutational frequency and effect on transcriptional activity and COF binding for skin cancer TFA-333 
BT NCVs depending on the position within the ETS motif. The top violin plot shows the log10 334 
expression allelic skew by MPRA for NCVs affecting different positions within ETS motifs. The 335 
bottom six violin plots show the Δz-score in COF binding between the reference and the 336 
alternative allele based on the position of the NCV within the ETS motif. The median is indicated 337 
by the bold horizontal line, and the first and third quartiles are indicated by the dotted horizontal 338 
lines. The bar plot indicates the number of TFA-BT NCVs affecting each position in the ETS motif. 339 
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 340 

SBS10a frequently present in colorectal cancers) and 1.4% were associated with APOBEC 341 

signatures (SBS2 and SBS13). These highly prevalent signatures, which frequently lead to 342 

hypermutation, are often filtered either prior to the burden test or post-test to determine driver 343 

NCV candidates 9,21. Interestingly, we found that NCVs associated with many of these signatures 344 

(SBS 7a, 7b, 7c, 13, 61, and 65) validate by MPRAs at similar or higher rates than other TBA-BT 345 

NCVs (Fig.  4a). This suggests that many NCVs excluded from other burden test analyses are 346 

potentially functional, affecting transcriptional activity and COF recruitment (Fig. 4a). In particular, 347 

NCVs associated with UV-light mutational signatures validate at a higher rate than NCVs not 348 

associated with UV-light (Fig. 4a-b). These UV-light TFA-BT NCVs are enriched at the GG 349 

doublet in the 5’-GGAA-3’ consensus site and downstream flanking sequence, as previously 350 

reported (Fig. 4c) 48,49. However, their effect on gene expression and COF binding has not been 351 

fully addressed. We found that these frequently mutated bases, in particular the two Gs in the 5’-352 

GGAA-3’ consensus ETS site, also correspond to the positions with the largest perturbation in 353 

transcriptional activity and COF binding (Fig. 4c). Although this is generally consistent across 354 

COFs, we found that mutations in the second G rarely disrupt and often increase RBBP5 binding. 355 

This suggests that the binding of different COFs may be differentially perturbed at different 356 

positions of the ETS motif. Further, we found that position information content does not 357 

necessarily correlate with functional changes, as mutations in the first A in the 5’-GGAA-3’ 358 

consensus site rarely perturb transcriptional activity and COF binding (Fig. 4c). Altogether, this 359 

shows a complex interplay between mutations, transcriptional activity, and COF binding and 360 

underscores the need for extensive COF profiling. 361 

 362 

Mechanistic similarities and differences between NCVs within promoters 363 

Multiple TFA-BT NCVs in a gene promoter often led to similar transcriptional effects (over or under 364 

expression). For example, all validated NCVs in the TERT promoter led to increased 365 
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 366 

 367 

Figure 5. Altered transcriptional activity and COF recruitment within promoters. (a-b) 368 
Changes in MPRA activity and COF recruitment for TF-ABT NCV in the (a) EGR1 and (b) RNF20 369 
promoters. The top heatmaps show the log10(p-value) of expression allelic skew in MPRA in 370 
Jurkat, SK-MEL-28, and HT-29 cells is indicated. The bottom heatmaps show the altered COF 371 
recruitment by CASCADE, which is indicated as Δz-score. Gray cells indicate cases where the 372 
COF was not recruited to either NCV allele. Numbers at the top of the heatmaps indicate the 373 
number of patients in PCAWG carrying the indicated NCV. Mutation and TSS coordinates are 374 
indicated. (c) Pearson correlation coefficient (PCC) between Δz-score in CASCADE for each COF 375 
between pairs of TF-ABT NCVs within a gene promoter and between gene promoters. 376 
Significance determined by Mann-Whitney U test. (d-e) COF recruitment motifs determined by 377 
single nucleotide variant scanning using CASCADE for the NCVs indicated in a-b.  378 
 379 

transcriptional activity, consistent with previously characterized TERT promoter drivers 380 

associated with TERT overexpression 24,27 (Supplementary Fig. 8). Conversely, all validated 381 

TFA-BT NCVs in the EGR1 and RNF20 promoters led to reduced transcriptional activity (Fig. 5a-382 

b and Supplementary Fig. 8). This is consistent with under expression of EGR1 and RNF20 383 

being reported in multiple cancer types 50–52. For example, RNF20 under expression due to 384 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 18 

promoter hypermethylation has been previously associated with genome instability in multiple 385 

cancer types 50,53,54. Our results suggest that reduced RNF20 promoter activity resulting from 386 

NCVs constitutes another potential cancer mechanism. 387 

Similar changes in transcriptional activity between NCVs within a promoter can either be 388 

related to similar changes in COF recruitment or to different COF recruitment patterns. We found 389 

that NCVs within a promoter have a more similar effect on COF recruitment patterns than NCVs 390 

between promoters (Fig. 5c). For example, four of five NCVs in the EGR1 promoter led to reduced 391 

recruitment of BRD4, MOF, NCOR, and SCR1, showing mechanistic convergence between 392 

different mutations within the same promoter (Fig. 5a). This convergence can, in some cases, be 393 

explained by NCVs being in close proximity (<10 bp), likely affecting the same TFBS; however, 394 

other NCVs that similarly alter COF recruitment are located tens of bp away (Fig. 5a, d 395 

chr5:137800743 and chr5:137800840, and Fig. 5b, e chr9:104296044 and chr9:104296134). 396 

Although there is an overall similarity in altered COF recruitment between NCVs in a promoter, 397 

we also observed multiple cases where NCVs in a promoter alter the recruitment of overlapping 398 

but different sets of COFs (Fig. 5a-b and Supplementary Fig. 7). This suggests that either a few 399 

overlapping COFs may be primarily responsible for the observed transcriptional effect or that 400 

different COFs can lead to similar transcriptional effects. Finally, we detected NCVs with altered 401 

transcriptional activity where none of the COFs tested showed altered recruitment (Fig. 5a and 402 

Supplementary Fig. 7b). We hypothesize that these NCVs may affect transcriptional activity 403 

through altered recruitment of other COFs not profiled in our assay. 404 

 405 

Discussion  406 

In this study, we developed a novel TFA-BT which we applied to 2,654 tumor samples from the 407 

PCAWG cohort 6 and predicted 2,555 driver candidates in the promoters of 813 genes. This is 408 

10- to 20-fold more NCVs and genes than what has been previously reported 9,19–22, showing the 409 

power of our TFA-BT approach. Importantly, one third of the TFA-BT NCVs displayed expression 410 
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allelic skew in MPRAs, a similar rate to well characterized somatic driver and germline NCVs. 411 

Further, this is likely a conservative estimate given that our MPRAs (i) only evaluate a small 200 412 

bp sequence fragment and are missing neighboring chromatin context 39,41, (ii) many (40%) NCVs 413 

reside in elements that do not exhibit activity by MPRA and are thus unable to be evaluated, and 414 

(iii) we evaluated only three cell lines in this study. We also found that one fifth of the TFA-BT 415 

NCVs lead to altered DNA binding of TF-COF complexes assayed by CASCADE. This is also 416 

likely a conservative estimate as only six COFs were profiled and NCVs show COF specificity. 417 

Altogether, these results show that the TFA-BT can prioritize NCVs that lead to altered gene 418 

expression and binding of regulatory complexes. The success of the TFA-BT approach highlights 419 

the importance of using regulatory models in NCV burden tests. 420 

  Genes containing TFA-BT NCVs are enriched in translation and rRNA processing genes. 421 

Mutations in the promoters of these genes may alter their expression leading not only to changes 422 

in protein synthesis which can affect cell proliferation, but also to an imbalance in ribosome 423 

components and free ribosomal proteins. Free ribosomal proteins caused by altered gene 424 

expression or copy number variation have been shown to affect cell cycle, apoptosis, and DNA 425 

repair leading to cancer 55–57. Our results suggest that mutations in the promoters of translation 426 

genes constitute a potential cancer mechanism.  427 

Most of the TFA-BT NCVs for which we detected altered transcriptional activity reduced 428 

gene expression in MPRAs. Given that the vast majority of cancer mutations are heterozygous, 429 

this suggests that partial reduction in the expression of most TFA-BT genes may be sufficient to 430 

have a functional role in cancer. Indeed, haploinsufficiency of multiple genes caused by copy 431 

number variation or promoter methylation has been widely associated with cancer 58,59. 432 

Interestingly, we found that 52 of the TFA-BT NCVs are biallelic (49-fold enrichment versus 433 

biallelic mutations in PCAWG)60 and 290 pairs of TFA-BT NCVs are within 10 nt and affect the 434 

same TFBS in at least one donor. This suggests that in many cases, TFA-BT NCVs affect both 435 
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alleles either at the same nucleotide position or at different positions within a TFBS, likely leading 436 

to biallelic disruption of gene expression.  437 

We found that NCVs impacting gene expression and regulatory complex binding primarily 438 

disrupted ETS-factor binding sites. This is consistent with the known role of ETS factors in cancer 439 

initiation and progression 61–63. Increased and decreased activity of different ETS factors has been 440 

implicated in all stages of tumorigenesis via diverse mechanisms, including gene rearrangement 441 

and amplification, feed-forward signaling loops, gain-of-function co-regulatory complexes, and 442 

cis-acting NCVs in ETS target gene promoters 64. Our studies further identified the disruption of 443 

ETS binding sites as a widespread cancer mechanism. A large fraction of these disruptions are 444 

associated with UV-light mutational signatures and are concentrated primarily in the GG doublet 445 

of the canonical 5’-GGAA-3’ ETS box and downstream bases, as has been reported 48,49. 446 

Mutations at these positions have been associated with increased mutational rates at sites of ETS 447 

factor binding and potential reduced DNA repair 65,66, but are mostly considered non-functional 448 

and are, therefore, excluded from most burden tests. Here, we show that these frequent ETS-449 

disrupting mutations have the largest transcriptional effects and disruption of COF binding. This 450 

suggests that excluding these mutations, as well as those associated with other mutational 451 

signatures such as APOBEC and POLE, may not be warranted. 452 

TFA-BT is based on the hypothesis that creating (or disrupting) a TFBS at different 453 

positions within a gene promoter is likely to lead to similar effects on target gene expression. 454 

However, some of these NCVs may reside in TFBSs that are not bound or functional in vivo. We 455 

consider this not to be the major driver of our findings as non-functional NCVs would, in general, 456 

not be enriched across patients given that TFA-BT considers the overall promoter mutational 457 

burden as background. Another possibility is that binding sites predicted to affect the same TF in 458 

a promoter may actually bind TF paralogs with different effector functions. However, this does not 459 

seem to occur frequently, as most TFA-BT NCVs in a promoter tend to perturb transcriptional 460 

activity in the same direction (activation or repression). 461 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 21 

Although TFA-BT is focused on individual TFs, NCVs that affect the binding of different 462 

TFs within a promoter can also have a similar effect on gene expression. This may be the case 463 

for NCVs within a promoter that alter the recruitment of similar COFs. Indeed, we found that 464 

different TFA-BT NCVs within a promoter often share similar changes in COF recruitment, 465 

suggesting shared mechanisms. This supports a potential extension of our approach to develop 466 

a COF-aware burden test. This type of test would require knowledge of the COFs that are highly 467 

active in a tumor sample as well as the TFs involved in the recruitment of such COFs. Future 468 

studies incorporating information on TF-COF complexes will allow us to extend our predictions to 469 

other CREs and TFs that may not necessarily function through homotypic clusters.  470 

 471 

Methods 472 

Altered transcription factor binding predictions 473 

To predict the effect of all possible NCVs in the human genome on TF binding, for each possible 474 

NCV and each TF with available position weight matrices (PWMs), we determined the binding 475 

score corresponding to the reference and alternative sequences. We downloaded 1898 PWMs 476 

corresponding to human TFs from CIS-BP on April 3, 2018 67 and their corresponding TF family. 477 

Given a PWM of length n and a genomic position (hs37d5 from the 1000 Genome Project), for 478 

each of the 2n-1 DNA sequences on each strand of length n that overlap with the genomic 479 

position, we determined a TF binding score using the function:  480 

 481 

where s is a genomic sequence of length n, M is the PWM with n columns and each column in M 482 

contains the frequency of each nucleotide in each position i=1,…,n, and bsi is the background 483 

frequency of nucleotide si assuming a uniform distribution. The highest score obtained for the 4n-484 

2 sequences (2n-1 sequences in forward and reverse strands) was assigned as the binding score 485 

𝐹(𝑠,𝑀) = 	)log	(
𝑀!!,#

𝑏!!
)

$

#%&
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corresponding to the PWM for the reference or alternate NCV alleles. Significant scores were 486 

selected and reported based on TFM-pvalue 68 score thresholds determined using a significance 487 

level a = 10-4. This method was applied for each reference position and the three possible 488 

alternative alleles for the entire human genome (hs37d5) to create an altered TFBS database, a 489 

genome-wide catalog of NCV-TF effects. Custom C scripts were developed to generate this 490 

dataset using GPUs and the data was stored in the Hadoop servers at Boston University 491 

(www.github.com/fuxmanlab/altered_TFBS). 492 

 493 

ChIP-seq allelic imbalance analysis  494 

To estimate optimal threshold(s) of motif scores differences for a given PWM between a reference 495 

allele and alternative allele to predict allelic imbalance in TF binding, we used available ChIP-seq 496 

experimental data. ChIP-seq experiment FASTQ files were downloaded from the ENCODE 497 

Project 69 for 14 datasets (55 experiments) performed in cell lines with normal karyotype 498 

(Supplementary Table 5). The files were aligned using BWA 70 and pre-processed using 499 

standard GATK methodology 71. Variant calling was performed on the aligned BAM files using 500 

GATK Variant Discovery pipeline 71 and BCF Tools 12. The intersection of variants from both tools 501 

was used to extract the allele read counts for each variant. Allelic imbalance analysis was 502 

performed for heterozygous positions in promoters for each experiment. A binomial test was used 503 

to identify NCVs located in positions where reads were not evenly distributed (0.5 for each allele). 504 

Differential predicted binding events were calculated by comparing the motif score of each 505 

alternative to its reference allele. Thresholds of two types were generated for gain/disruption of 506 

TFBSs to determine their ability to predict ChIP-seq allelic imbalance: 1) when only the reference 507 

or alternate allele pass the binding threshold for the motif determined by TFM-pvalue 68, or 2) 508 

when at least one allele passed the motif binding threshold and the difference in score between 509 

alleles (allele score) is above a certain value ranging from 0 to 7. To benchmark our predictions, 510 

for each TF, we used NCVs in allelic imbalance in ChIP-seq as true positives and those not in 511 
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allelic imbalance as true negatives, and compared to predicted gain/loss of TFBSs in the same 512 

direction as the allelic imbalance. F-values and relative accuracies were calculated for all 513 

thresholds. Based on the F-values, we selected three parameter settings: 1) either the reference 514 

or alternate allele pass the binding threshold for the motif determined by TFM-pvalue, 2) at least 515 

one allele passed the motif binding threshold and the difference in score between alleles was 516 

greater than two, and 3) at least one allele passed the motif binding threshold and the difference 517 

in score between alleles was greater than three. These three parameter settings were 518 

independently used for the TF-aware burden test (TFA-BT). 519 

 520 

Processing of PCAWG mutational data  521 

We downloaded VCF files of 2,654 samples from the PCAWG cohort 6 using the ICGC portal 5 522 

(Jan 23 2019). To identify NCVs in promoter regions, we used BEDTools intersection command72. 523 

Promoters from protein-coding genes were defined as regions between -2 kb to +250 bp from the 524 

transcription start sites (TSSs) annotated in GENCODE v19 73. In the case of overlapping 525 

alternative promoters, promoter regions were merged to prevent over-counting. To avoid 526 

considering protein-coding regions, in the case of alternative promoters, we filtered 527 

“coding_regions” using the GENCODE v19 73 (Jun 14 2018) annotation. We used the R package 528 

IRanges 74 to determine the promoter coordinates, and BEDTools 72 was used to remove promoter 529 

coordinates overlapping with coding regions (Supplementary Table 6). 530 

 531 

Development of the TF-aware burden test  532 

We designed the TFA-BT to determine whether the number of NCVs observed in promoter B that 533 

led to creation (or disruption) of a binding site for PWM A is more than expected by chance, given 534 

the total number of mutations observed in promoter B across samples within a certain cancer-535 

type. The number of promoter NCVs that create (or disrupt) a binding site for PWM A in promoter 536 
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B follows a binomial distribution P(n, p), where n is number of NCVs in promoter B across patients, 537 

and p is the probability that an NCV in B creates (or disrupts) a binding site for PWM A. 538 

The probability (p) was estimated as:  539 

𝑝 =)𝐹(𝐵# , 𝑀'). 𝐶(𝑃𝑊𝑀	𝐴, 𝐵# , 𝑀')	

#%(
'%)

#%&
'%&

 540 

where F(Bi, Mj) is the probability of changing the reference base at position i in promoter B to the 541 

mutated base Mj, C(PWM A, Bi, Mj) is 1 if mutating Bi to Mj leads the creation (or disruption) of a 542 

binding site for PWM A and 0 otherwise, and L is the nucleotide length of promoter B. F(Bi, Mj) 543 

was calculated based on the genome-wide mutational frequencies in a cancer type, whereas 544 

C(PWM A, Bi, Mj) was determined by calculating the motif score difference between the sequence 545 

surrounding position i for the reference and alternate alleles. These motif scores were obtained 546 

by querying the altered TFBS database. We used thresholds obtained from the TFMp-value 547 

algorithm 68 to determine whether a motif score is significant, and the three different thresholds 548 

selected from the ChIP-seq allelic imbalance analysis. For a given set of tumor samples, we 549 

calculated P(n,p) for each PWM-promoter pair using each of three thresholds selected 550 

independently, followed by multiple hypothesis testing correction using FDR. For robustness and 551 

to increase the confidence in our predictions, only PWM-promoter associations that were 552 

significant with an FDR < 0.01 using all three score thresholds were considered in subsequent 553 

analyses. Then, we selected the NCVs from the PCAWG samples 6 located in the promoters with 554 

significant promoter-PWM associations that were associated with differential scores of the 555 

corresponding PWM. Finally, we applied the TFA-BT to tumor samples from each of the 20 556 

cancer-types, as to all PCAWG samples in a pan-cancer analysis to identify predicted driver NCVs 557 

(TFA-BT NCVs). 558 

 559 

 560 
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Computational validation of TFA-BT NCVs 561 

To identify functional gene sets associated with the 813 genes containing TFA-BT NCVs in their 562 

promoters, we used Metascape to obtain fold-enrichments and q-values for overlaps with GO, 563 

Reactome, and PANTHER gene sets 75. As a comparison, functional enrichments were also 564 

determined for driver genes from IntOGen 36. Enrichments were only computed for GO Molecular 565 

Functions, GO Biological Processes, Reactome Gene Sets, and PANTHER Pathways. The 566 

Metascape filtering parameters were set to very lenient values: the min overlap parameter was 567 

set to 3 genes, the p-value cutoff to 1, and minimum enrichment to 1. Functional genes sets with 568 

q-values > 0.05 for TFA-BT and IntOGen gene lists were removed, and the remaining gene sets 569 

were manually grouped into categories to facilitate comparisons of fold-enrichments between the 570 

TFA-BT genes and IntOGen genes. Gene ontologies were classified into  supra-categories to 571 

facilitate comparisons. 572 

 We also compared enrichments of essential, fitness, and prognosis genes between TFA-573 

BT, Cancer Gene Census 37, and IntOGen 36 genes, relative to all protein-coding genes 574 

(downloaded from the HUGO Gene Nomenclature Committee at the European Bioinformatics 575 

Institute www.genenames.org; filename gene_with_protein_product.txt). The list of genes 576 

identified as essential in all cell lines in the DepMap Achilles project was downloaded from the 577 

DepMap 21Q4 release (filename CRISPR_common_essentials.csv) 76. The list of fitness genes 578 

was derived from the Fitness/Non-Fitness Binary Matrix (filename binaryDepScores.tsv) 579 

downloaded from the DepMap ProjectScore website 77. Only genes designated as “fitness” genes 580 

in at least 10 cell lines were considered “fitness” genes for the enrichment analyses. The list of 581 

prognostic genes was derived from the pathology data from the Human Protein Atlas version 21.0 582 

35 (filename pathology.tsv). Genes with reported p-values (from Kaplan-Meier log-rank tests of the 583 

correlation between the mRNA level of each gene and survival of patients in a specific cancer 584 

type) for one or no cancer types were discarded. For the remaining gene-cancer pairs, p-values 585 
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associated with favorable or unfavorable prognosis were adjusted using an FDR correction and 586 

further filtered for q-values of less than 0.01. Genes passing this threshold in at least one cancer-587 

type were considered prognostic. 588 

 Odds ratios and p-values for enrichments of essential, fitness, and prognostic genes 589 

among the TFA-BT, Cancer Gene Census, and IntOGen genes were computed using Fisher’s 590 

exact tests. Enrichments of essential genes used the list of all protein-coding genes as the 591 

background, enrichments of fitness genes used the list of all genes in the unfiltered file 592 

downloaded from the ProjectScore website, and enrichments of prognostic genes used the list of 593 

all genes in the unfiltered file downloaded from the Human Protein Atlas website. Confidence 594 

intervals for the proportions of enriched genes were computed using Wald intervals. 595 

Structural variation has been associated with changes in gene expression. We obtained 596 

genes associated with changes in gene expression caused by structural variation across 21 597 

TCGA cohorts 38 (May 25 2020), and considered genes with altered gene expression in more than 598 

five cancer-types. We then calculated an enrichment of these genes in the 813 TFA-BT gene set 599 

using a proportional comparison test. 600 

 601 

MPRA library construction  602 

The MPRA library was constructed as previously described 39. Briefly, oligos were synthesized 603 

(Agilent Technologies) as 230 bp sequences containing 200 bp of genomic sequences and 15 bp 604 

of adaptor sequence on either end. Unique 20 bp barcodes were added by PCR along with 605 

additional constant sequences for subsequent incorporation into a backbone vector (addgene 606 

#109035) by Gibson assembly. The oligo library was expanded by electroporation into NEB 10-607 

beta E. coli, and the resulting plasmid library was sequenced by Illumina 2 × 150 bp chemistry to 608 

acquire oligo-barcode pairings. The library underwent restriction digestion using AsiSI, and GFP 609 

with a minimal TATA promoter was inserted by Gibson assembly resulting in the 200 bp oligo 610 

sequence positioned directly upstream of the promoter and the 20 bp barcode residing in the 3’ 611 
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UTR of GFP. After library expansion in E. coli, the final MPRA plasmid library was sequenced by 612 

Illumina 1 × 26 bp chemistry to acquire a baseline representation of each oligo-barcode pair within 613 

the library. 614 

 615 

MPRA library transfection into cell lines 616 

Jurkat cells were grown in RPMI with 10% FBS to a density of 1 million cells per mL prior to 617 

transfection. HT-29 cells were cultured in Mocoy’s 5a media with 10% FBS, and SK-MEL-28 cells 618 

in EMEM supplemented with 10% FBS. Six electroporation replicates were performed on 619 

separate days by collecting 90 million cells and splitting across nine 100 uL transfections each 620 

containing 10 ug of MPRA plasmid. Cells were electroporated with the Neon Transfection System 621 

(100 µl kit) using three pulses at 1350V for 10 ms for Jurkat cells, two pulses at 1300V for 20 ms 622 

for HT-29 cells, and one pulse at 1200V for 40 ms for SK-MEL-28 cells. After transfection each 623 

replicate was split between two T-175 flasks with 150 mL of culture media for recovery. After 48 624 

hours, the cells were pelleted, washed three times with PBS, and stored at -80 C for later RNA 625 

extraction. 626 

 627 

RNA extraction and MPRA RNA-seq library generation 628 

RNA for all cell lines was extracted from frozen cell pellets using the Qiagen RNeasy Maxi kit. 629 

Half of the isolated total RNA underwent DNase treatment and a mixture of three GFP-specific 630 

biotinylated primers (#120, #123 and #126)(Supplementary Table 7a) were used to capture GFP 631 

transcripts with Streptavidin C1 Dynabeads (Life Technologies). An additional DNase treatment 632 

was performed. cDNA was synthesized from GFP mRNA using SuperScript III and purified with 633 

AMPure XP beads. Quantitative PCR using primers specific for the GFP transcript (#781 and 634 

#782)(Supplementary Table 7a) was used to measure GFP transcript abundance in each 635 

sample. Replicates within each cell type were diluted to approximately the same concentration 636 

based on the qPCR results. Illumina sequencing libraries were constructed using a two-step 637 
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amplification process to add sequencing adapters and indices. An initial PCR amplification with 638 

NEBNext Ultra II Q5 Master Mix and primers 781 and 782 were used to extend adapters. To 639 

minimize overamplification during library construction, the number of PCR cycles used in the first 640 

amplification was selected based on where linear amplification began for each cell type (Jurkat: 641 

10 cycles, SK-MEL-28 & HT-29: 13 cycles).  A second 6 cycle PCR using NEBNext Ultra II Q5 642 

Master Mix added P7 and P5 indices and flow cell adapters (Supplementary Table 7b). For SK-643 

MEL-28 samples we failed to recover enough product during the first amplification and processed 644 

the second total RNA aliquot using the same protocol, pooling the two preparations prior to 645 

sequencing. The resulting MPRA RNA-tag libraries were sequenced using Illumina single-end 31 646 

bp chemistry (with 8 bp index read), clustered at 80-90% maximum density on a NextSeq High 647 

Output flow cell. 648 

 649 

MPRA data analysis 650 

Data from the MPRA was analyzed as previously described 39. Briefly, the sum of the barcode 651 

counts for each oligo were provided to DESeq2 78 and replicates were median normalized followed 652 

by an additional normalization of the RNA samples to center the average RNA/DNA activity 653 

distribution of the 506 negative control sequences over a log2 fold change of zero. This 654 

normalization was performed independently for each cell type. Dispersion-mean relationships 655 

were modeled for each cell type independently and used by DESeq2 in a negative binomial 656 

distribution to identify oligos showing differential expression relative to the plasmid input. Oligos 657 

passing a false discovery rate (FDR) threshold of 1% were considered to be active. For sequences 658 

that displayed significant MPRA activity, a paired t-test was applied on the log-transformed 659 

RNA/plasmid ratios for each experimental replicate to test whether the reference and alternate 660 

allele had similar activity (Supplementary Table 2). An FDR threshold of 5% was used to identify 661 

SNPs with a significant skew in MPRA activity between alleles (allelic skew). 662 

 663 
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Mutational signatures for MPRA validated drivers 664 

NCVs can be caused by multiple mutational processes such as UV-light. We used ICGC 665 

probabilities for each NCV-donor combination to assign them a given mutational process if its 666 

probability is greater than 0.5, as described 9. Then, we compared the MPRA and CASCADE 667 

validation rates for TFA-BT NCVs associated with different mutational signatures. We used UV-668 

light associated signatures9 BI_COMPOSITE_SNV_SBS7a_S, 669 

BI_COMPOSITE_SNV_SBS7b_S, BI_COMPOSITE_SNV_SBS7c_S, 670 

BI_COMPOSITE_SNV_SBS3_P, BI_COMPOSITE_SNV_SBS55_S, 671 

BI_COMPOSITE_SNV_SBS67_S, BI_COMPOSITE_SNV_SBS75_S. 672 

 673 

Cell culture and nuclear extraction for CASCADE 674 

Jurkat cells, were obtained from ATCC (TIB-152). The cells were grown in suspension in RPMI 675 

1640 Glutamax media (Thermofisher Scientific, Catalog #72400120) with 10% heat-inactivated 676 

fetal bovine serum (Thermofisher Scientific, Catalog #132903). T175 (Thermofisher 677 

Scientific, Catalogue #132903) non-treated flasks were used when culturing Jurkat cells for 678 

experiments. Cells were grown in 50mL of media when being cultured in T175 flasks.  679 

SK-MEL-28 cells were obtained from the Tewhey lab to ensure the same cells used for 680 

the MPRA experiments were used for the CASCADE experiments. The cells were cultured using 681 

EMEM media (ATCC, Catalog #30-2003) with 10% heat-inactivated fetal bovine serum 682 

(Thermofisher Scientific, Catalog #132903). Cells were grown in 30mL of media when being 683 

cultured in T225 flasks for adherent cells (Corning, Catalog #35138).  684 

Nuclear extracts were obtained as previously described 42,79, with modifications detailed 685 

below. To harvest nuclear extracts from Jurkat cells, the cells were collected in a falcon tube and 686 

placed on ice. To harvest nuclear extracts from SK-MEL-28 cells, the media was aspirated off 687 

and the cells were washed once with 1X PBS (Thermofisher Scientific, Catalog #100010049). 688 

Once the 1X PBS used to wash the cells was aspirated off, enough 1X PBS was mixed with 689 
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0.1mM Protease Inhibitor (Sigma-Aldrich, Catalogue #P8340) to cover the cells was added to 690 

each flask. A cell scraper was used to dislodge the cells from the flask, and cells were collected 691 

in a falcon tube and placed on ice. Jurkat and SK-MEL28 cells were pelleted by centrifugation at 692 

500xg for 5 min at 4˚C. Both pellets were washed with 2mL of 1X PBS with Protease Inhibitor and 693 

pelleted again at 500xg for 2 min at 4˚C. To lyse the plasma membrane, the cells were 694 

resuspended in Buffer A (1 mL Buffer A for Jurkat cells, 1.5 mL Buffer A for SK-MEL28 cells) 695 

(10mM HEPES, pH 7.9, 1.5mM MgCl, 10mM KCl, 0.1mM Protease Inhibitor, Phosphatase 696 

Inhibitor (Santa-Cruz Biotechnology, Catalog #sc-45044), 0.5mM DTT (Sigma-Aldrich, Catalog 697 

#4315) and incubated for 10 min on ice. After the 10 min incubation, Igepal detergent (final 698 

concentration of 0.1%) was added to the cell and Buffer A mixture and vortexed for 10 s. To 699 

separate the cytosolic fraction from the nuclei, the sample was centrifuged at 500xg for 5 min at 700 

4˚C to pellet the nuclei. The cytosolic fraction was collected into a separate microcentrifuge tube. 701 

The pelleted nuclei were then resuspended in Buffer C (100 µL for Jurkat nuclei and 150 µL for 702 

SK-MEL-28 nuclei) (20mM HEPES, pH 7.9, 25% glycerol, 1.5mM MgCl, 0.2mM EDTA, 0.1mM 703 

Protease Inhibitor, Phosphatase Inhibitor, 0.5mM DTT, and 420mM NaCl) and then vortexed for 704 

30 s. To extract the nuclear proteins (i.e., the nuclear extract), the nuclei were incubated in Buffer 705 

C for 1 h while mixing at 4˚C. To separate the nuclear extract from the nuclear debris, the mixture 706 

was centrifuged at 21,000xg for 20 min at 4˚C. The nuclear extract was collected in a separate 707 

microcentrifuge tube and flash frozen using liquid nitrogen. Nuclear extracts were stored at -80˚C.  708 

 709 

CASCADE PBM experimental methods 710 

All experiments were performed using the 4-chambered, 4x180K Agilent microarray platform 711 

(design details described below).  DNA microarrays were double stranded as described in Berger 712 

et al. 80 PBM experiments using cell extracts were performed following the protocols previously 713 

described 81,82 and outlined below. The double-stranded microarray was pre-wetted in HBS+TX-714 

100 (20mM HEPES, 150mM NaCl, 0.01% Triton X-100) for 5 min and then de-wetted in an HBS 715 
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bath. Each of the microarray chambers were then incubated with 180 µL of nuclear extract binding 716 

mixture for 1 h in the dark. Nuclear extract binding mixture (per chamber): 400-600 µg of nuclear 717 

extract; 20mM HEPES (pH 7.9); 100mM NaCl; 1mM DTT; 0.2mg/mL BSA; 0.02% Triton X-100; 718 

0.4mg/mL salmon testes DNA (Sigma-Aldrich, Catalog #D7656)). The microarray was then rinsed 719 

in an HBS bath containing 0.1% Tween-20 and subsequently de-wetted in an HBS bath. After the 720 

nuclear extract incubation, the microarray was incubated for 20 min in the dark with 20µg/mL 721 

primary antibody for the TF or COF of interest (Supplemental Table 8). The primary antibody 722 

was diluted in 180 µL of 2% milk in HBS. After the primary antibody incubation, the array was first 723 

rinsed in an HBS bath containing 0.1% Tween-20 and then de-wetted in an HBS bath. Microarrays 724 

were then incubated with 10µg/mL of either Alexa488- or Alexa647-conjugated secondary 725 

antibody (see Supplemental Table 8) for 20 min in the dark. The secondary antibody was diluted 726 

in 180 µL of 2% milk in HBS. Excess antibody was removed by washing the array twice for 3 min 727 

in 0.05% Tween-20 in HBS and once for 2 min in HBS in Coplin jars as described above. After 728 

the washes, the microarray was de-wetted in an HBS bath. Microarrays were scanned with a 729 

GenePix 4400A scanner and fluorescence was quantified using GenePix Pro 7.2. Exported 730 

fluorescence data were normalized with MicroArray LINEar Regression 83.  731 

CASCADE microarray designs  732 

CASCADE experiments were performed using custom-designed microarrays (Agilent 733 

Technologies Inc, AMADID 086310 and 086772, 4x180K format).  Microarray probes are all 60 734 

nucleotides (nt) long and of the format: “GCCTAG” 5-prime flank sequence - 26-nt variable 735 

sequence - “CTAG” 3-prime flank sequence - “GTCTTGATTCGCTTGACGCTGCTG” 24-nt 736 

common primer (Supplementary Table 9). For each unique probe sequence (i.e., unique 26-nt 737 

variable region) five replicate probes are included on the microarray with the variable sequence 738 

in each orientation with respect to the glass slide (i.e., 10 probes total per unique variable 739 

sequence).  740 
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 Design 1 (Agilent AMADID 086310): Microarray Design for profiling Ref/Alt impact – This 741 

microarray was designed to profile the impact of NCVs on COF binding by comparing the binding 742 

to reference (Ref) and alternate (Alt) probes. The design included 2,956 Ref/Alt paired probe sets 743 

that include: 2,555 TFA-BT NCVs, 17 literature-reported driver NCVs, and 384 background NCVs 744 

(Supplementary Table 9). The background NCVs were selected from those NCVs for which the 745 

TFA-BT algorithm found no predicted binding of any TF.  A priori we do not know where within a 746 

TF binding site a NCV will reside, so probe sequences were designed such that each NCV was 747 

represented in three separate DNA registers in our microarray (i.e., NCV centered in each DNA 748 

probe, or off-set by 5 nt in either direction, Supplementary Fig. 3a-b). Using this design, each 749 

Ref/Alt pair (i.e., each NCV assayed) required 60 individual probes on our array (3 registers x 10 750 

replicates x 2 Ref/Alt-variants).   751 

Design 2 (Agilent AMADID 086310): Microarray Design for determining COF motifs – This 752 

microarray was designed to determine COF recruitment motifs for each NCV loci. The design is 753 

based on the exhaustive mutagenesis approach outlined in Bray & Hook et al. 42 where all possible 754 

single-nucleotide variant (SV) probes of a defined genomic locus are included as probes in the 755 

microarray. By profiling the differential binding of a COF to all SV probes we can directly determine 756 

a motif/logo for that COF and genomic loci as described in Bray & Hook et al. (details below). The 757 

design included probes to evaluate motifs at 359 NCVs identified as significant by both CASCADE 758 

(differential COF recruitment using Design 1 microarray) and MPRAs (differential gene 759 

expression) (Supplementary Table 10). In our initial NCV screen using the Design 1 microarray, 760 

for each NCV we evaluated the differential COF binding to probes in the three different NCV 761 

registers (i.e., NCV centered or offset, see above) and two orientations with respect to the glass 762 

slide. For the Design 2 microarray, we selected the probe register and orientation that gave the 763 

largest differential COF binding in our initial NCV screen, and use this ‘best register’ probe 764 

(hereafter referred to as the ‘seed’ sequence) along with all SV probes covering the 26-nt genomic 765 

locus. Furthermore, for the starting seed sequence we used either the Ref or the Alt probe based 766 
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on which had the strongest COF binding in our initial screen. We note that this specific choice of 767 

Ref or Alt as the starting seed probe was generally consistent across all different COF 768 

experiments. Each unique 26-nt sequence was represented by 5 replicate probes. Using this 769 

design, each NCV loci was characterized using 395 individual probes on our microarray: (1 seed 770 

+ 3 variants x 26 positions) x 5 replicates.  771 

 772 

CASCADE computational analysis 773 

Image analysis and spatial detrending of the microarray fluorescence intensities was performed 774 

as previously described 80,83.  Probe fluorescence values were transformed to a z-score (as 775 

previously described 81) using the fluorescence distribution of a set of background probes included 776 

on each microarray. 777 

Design 1: Microarray Design for profiling Ref/Alt impact – To determine differential COF 778 

binding due to each NCV, probe intensities were compared between the Ref and Alt probes. For 779 

each NCV, differential binding was assessed independently to all six sequences representing that 780 

NCV (i.e., three NCV registers and two orientations). For each of the six sequences, the 781 

significance of the differential binding was assessed using a Student’s T-test between the 5 782 

replicate probes for the Ref and Alt alleles. Finally, an aggregate, multiple hypothesis-corrected 783 

p-value for differential binding was determined using Fisher’s method (sum log p-values) and the 784 

six independent p-values. The magnitude of the differential binding was quantified using a “ Dz-785 

score” computed as the difference in the mean z-score for the Ref probes (all registers, 786 

orientations, and replicates) and the Alt probes. Therefore, for each NCV we assessed the 787 

magnitude (Dz-score) and significance (aggregate p-value) of the differential COF binding.  We 788 

annotated NCVs as differentially bound in each experiment if they met the following criteria: (1) 789 

the z-score of Ref or Alt allele > 2.0; (2) delta z-score > 2.0; (3) aggregate p-value < 10-3. NCVs 790 
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were called differentially bound if they met the above criteria in both replicate CASCADE 791 

experiments.  792 

Design 2 (Agilent AMADID 086310): Microarray Design for determining COF motifs – COF 793 

motifs were determined by evaluating the z-scores for the seed and SV probes representing each 794 

NCV as previously described 42,79. COF motifs can either be represented as a Dz-score matrix, 795 

which is akin to an energy matrix that evaluates the change in binding magnitude for each 796 

nucleotide variant, or as a position probability matrix (PPM) that is based on a probabilistic model 797 

relating base frequencies and binding energies 84. We use Dz-score matrices to directly show of 798 

the impact of base identify on binding and use PPMs to compare against motifs in public 799 

databases which almost exclusively represent motifs as PPMs. Dz-score matrices for a locus are 800 

determined using z-scores from the seed probe (zseed) and three SV probes at each of the 26 801 

base positions across the locus. The Dz-score matrix values are based on the z-score differences 802 

from the median, calculated independently for each position (i) along the probe: 803 

∆𝑧!,# = 𝑧!,# −median	#%&,',(,)+𝑧!,#, 804 

where i indicates the nucleotide position (1 to 26) and j indicates the nucleotide (A,C,G,T). The 805 

median at position i is determined over the seed sequence and three probes with variant 806 

nucleotide at position i.  PPMs are determined by transforming the same z-scores in a different 807 

manner: 808 

𝑃𝑃𝑀!,# =
exp	(𝛽 ∗ 𝑧!,#)
∑ exp	(𝛽 ∗ 𝑧!,#)#

 809 

where i indicates the nucleotide position (1 to 26), j indicates the nucleotide (A,C,G,T), and b is 810 

an empirically determined scaling parameter:  811 

𝛽 = 4																															𝑧!""# < 0			 812 

𝛽 = 4 −	
𝑧!""#
2

				0 ≤ 	 𝑧!""# 	≤ 6				 813 
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𝛽 = 1																					6 < 	 𝑧!""# 	     814 

 815 

PPMs for each locus were compared against PPMs from JASPAR85 using the TomTom 86 816 

algorithm (dist=Euclidean Distance; min_overlap = 6) using the “meme” package 87 implemented 817 

in R.  818 

 819 

Data and Code Availability 820 

• Results of all MPRA and CASCADE experiments performed here have been deposited in the 821 

Gene Expression Omnibus and are publicly available (GEO accession: XXXX – will be 822 

deposited upon manuscript acceptance).  823 

• Original code for the TFA-BT has been deposited on Github 824 

(https://github.com/fuxmanlab/noncoding_drivers) and is publicly available.  825 

• Original code for the CASCADE analysis has been deposited on Github 826 

(https://github.com/Siggers-Lab/Carrasco-Pro-Hook-et-al.-PBM-Analysis.git) and is publicly 827 

available.  828 

• Additional information required to reanalyze the data reported in this paper is available from 829 

the lead contacts upon request.  830 

 831 

Acknowledgements 832 

We thank Katia Bulekova and Brian Gregor for computational and I&T assistance. We also thank 833 

Drs. Zeba Wunderlich and Ana Fiszbein for critically reading and commenting on the manuscript. 834 

 835 

 836 

 837 

 838 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 36 

Funding 839 

This work was funded by the National Institutes of Health (NIH) grants R35 GM128625 awarded 840 

to J.I.F.B, R21 HG011289 and R01 AI51051 awarded to T.S., and R00HG008179 and 841 

R35HG011329 awarded to R.T. 842 

 843 

Author information 844 

S.C.P and J.I.F.B. conceived the project. S.C.P., A.T.L., and J.I.F.B. developed the TFA-BT. 845 

S.C.P., D.M., D.B., D.B., H.H., R.T., T.S., and J.I.F.B. performed data analyses and generated 846 

the figures. D.B. and M.Y. performed the MPRA experiments. H.H. performed the CASCADE 847 

experiments. S.C.P., J.I.F.B., H.H., and T.S. wrote the manuscript. All authors read, edited, and 848 

approved the manuscript. 849 

 850 

References 851 

1. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 852 
94–101 (2020). 853 

2. Ding, L. et al. Perspective on Oncogenic Processes at the End of the Beginning of Cancer 854 
Genomics. Cell 173, 305-320.e10 (2018). 855 

3. Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in 856 
human cancers. Nat Rev Genet 15, 585–598 (2014). 857 

4. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 858 
1113–20 (2013). 859 

5. International Cancer Genome Consortium et al. International network of cancer genome 860 
projects. Nature 464, 993–998 (2010). 861 

6. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). 862 

7. Pon, J. R. & Marra, M. A. Driver and Passenger Mutations in Cancer. Annu Rev Pathology 863 
Mech Dis 10, 1–26 (2015). 864 

8. Khurana, E. et al. Role of non-coding sequence variants in cancer. Nat Rev Genet 17, 93–865 
108 (2016). 866 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 37 

9. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. 867 
Nature 578, 102–111 (2020). 868 

10. Shuai, S. et al. Combined burden and functional impact tests for cancer driver discovery 869 
using DriverPower. Nat Commun 11, 734 (2020). 870 

11. Lochovsky, L., Zhang, J., Fu, Y., Khurana, E. & Gerstein, M. LARVA: an integrative 871 
framework for large-scale analysis of recurrent variants in noncoding annotations. Nucleic Acids 872 
Res 43, 8123–34 (2015). 873 

12. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and 874 
population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 875 
(2011). 876 

13. Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 877 
173, 1823 (2018). 878 

14. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumor 879 
types. Nature 505, 495–501 (2014). 880 

15. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole genome 881 
sequences. Nature 534, 47–54 (2016). 882 

16. Juul, M. et al. Non-coding cancer driver candidates identified with a sample- and position-883 
specific model of the somatic mutation rate. Elife 6, e21778 (2017). 884 

17. Hornshøj, H. et al. Pan-cancer screen for mutations in non-coding elements with 885 
conservation and cancer specificity reveals correlations with expression and survival. Npj 886 
Genom Medicine 3, 1 (2018). 887 

18. Lanzós, A. et al. Discovery of Cancer Driver Long Noncoding RNAs across 1112 Tumour 888 
Genomes: New Candidates and Distinguishing Features. Sci Rep-uk 7, 41544 (2017). 889 

19. Dietlein, F. et al. Genome-wide analysis of somatic noncoding mutation patterns in cancer. 890 
Science 376, eabg5601 (2022). 891 

20. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of 892 
noncoding regulatory mutations in cancer. Nat Genet 46, 1160–1165 (2014). 893 

21. Rheinbay, E. et al. Recurrent and functional regulatory mutations in breast cancer. Nature 894 
547, 55–60 (2017). 895 

22. Piraino, S. W. & Furney, S. J. Identification of coding and non-coding mutational hotspots in 896 
cancer genomes. Bmc Genomics 18, 17 (2017). 897 

23. Bal, E. et al. Super-enhancer hypermutation alters oncogene expression in B cell 898 
lymphoma. Nature 607, 808–815 (2022). 899 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 38 

24. Horn, S. et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science 339, 900 
959–961 (2013). 901 

25. Huang, F. W. et al. TERT promoter mutations and monoallelic activation of TERT in cancer. 902 
Oncogenesis 4, e176 (2015). 903 

26. Shrestha, S. et al. Discovering human transcription factor physical interactions with genetic 904 
variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays. 905 
Genome Res 29, 1533–1544 (2019). 906 

27. Huang, F. W. et al. Highly Recurrent TERT Promoter Mutations in Human Melanoma. 907 
Science 339, 957–959 (2013). 908 

28. Weingarten-Gabbay, S. et al. Systematic interrogation of human promoters. Genome Res 909 
29, 171–183 (2019). 910 

29. Gotea, V. et al. Homotypic clusters of transcription factor binding sites are a key component 911 
of human promoters and enhancers. Genome Res 20, 565–77 (2010). 912 

30. Pro, S. C., Bulekova, K., Gregor, B., Labadorf, A. & Bass, J. I. F. Prediction of genome-wide 913 
effects of single nucleotide variants on transcription factor binding. Sci Rep-uk 10, 17632 914 
(2020). 915 

31. Denisova, E. et al. Frequent DPH3 promoter mutations in skin cancers. Oncotarget 6, 916 
35922–30 (2015). 917 

32. He, Z. et al. Pan-cancer noncoding genomic analysis identifies functional CDC20 promoter 918 
mutation hotspots. Iscience 24, 102285 (2021). 919 

33. Meyers, R. M. et al. Computational correction of copy-number effect improves specificity of 920 
CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49, 1779–1784 (2017). 921 

34. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. 922 
Nature 568, 511–516 (2019). 923 

35. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, (2017). 924 

36. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat Rev 925 
Cancer 20, 555–572 (2020). 926 

37. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across 927 
all human cancers. Nat Rev Cancer 18, 696–705 (2018). 928 

38. Li, A., Chapuy, B., Varelas, X., Sebastiani, P. & Monti, S. Identification of candidate cancer 929 
drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Sci Rep-uk 9, 930 
16904 (2019). 931 

39. Tewhey, R. et al. Direct Identification of Hundreds of Expression-Modulating Variants using 932 
a Multiplexed Reporter Assay. Cell 165, 1519–1529 (2016). 933 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 39 

40. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human 934 
cells using a massively parallel reporter assay. Nat Biotechnol 30, 271–277 (2012). 935 

41. Mouri, K. et al. Prioritization of autoimmune disease-associated genetic variants that perturb 936 
regulatory element activity in T cells. Nat Genet 54, 603–612 (2022). 937 

42. Bray, D. et al. CASCADE: high-throughput characterization of regulatory complex binding 938 
altered by non-coding variants. Cell Genom 2, 100098 (2022). 939 

43. Vo, N. & Goodman, R. H. CREB-binding Protein and p300 in Transcriptional Regulation. J 940 
Biol Chem 276, 13505–13508 (2001). 941 

44. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. 942 
Gene Dev 14, 1553–1577 (2000). 943 

45. Janknecht, R. & Hunter, T. Transcriptional control: Versatile molecular glue. Curr Biol 6, 944 
951–954 (1996). 945 

46. FitzGerald, P. C., Shlyakhtenko, A., Mir, A. A. & Vinson, C. Clustering of DNA sequences in 946 
human promoters. Genome Res 14, 1562–74 (2004). 947 

47. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 948 
415–421 (2013). 949 

48. Mao, P. et al. ETS transcription factors induce a unique UV damage signature that drives 950 
recurrent mutagenesis in melanoma. Nat Commun 9, 2626 (2018). 951 

49. Elliott, K. et al. Elevated pyrimidine dimer formation at distinct genomic bases underlies 952 
promoter mutation hotspots in UV-exposed cancers. Plos Genet 14, e1007849 (2018). 953 

50. Shema, E. et al. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative 954 
tumor suppressor through selective regulation of gene expression. Gene Dev 22, 2664–2676 955 
(2008). 956 

51. Baron, V., Adamson, E. D., Calogero, A., Ragona, G. & Mercola, D. The transcription factor 957 
Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and 958 
fibronectin. Cancer Gene Ther 13, 115–124 (2006). 959 

52. Ferraro, B., Bepler, G., Sharma, S., Cantor, A. & Haura, E. B. EGR1 Predicts PTEN and 960 
Survival in Patients With Non–Small-Cell Lung Cancer. J Clin Oncol 23, 1921–1926 (2005). 961 

53. Guppy, B. J. & McManus, K. J. Synthetic lethal targeting of RNF20 through PARP1 silencing 962 
and inhibition. Cell Oncol 40, 281–292 (2017). 963 

54. Nakamura, K. et al. Regulation of Homologous Recombination by RNF20-Dependent H2B 964 
Ubiquitination. Mol Cell 41, 515–528 (2011). 965 

55. Guimaraes, J. C. & Zavolan, M. Patterns of ribosomal protein expression specify normal and 966 
malignant human cells. Genome Biol 17, 236 (2016). 967 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 40 

56. Bastide, A. & David, A. The ribosome, (slow) beating heart of cancer (stem) cell. 968 
Oncogenesis 7, 34 (2018). 969 

57. Keersmaecker, K. D., Sulima, S. O. & Dinman, J. D. Ribosomopathies and the paradox of 970 
cellular hypo- to hyperproliferation. Blood 125, 1377–82 (2015). 971 

58. Bouras, E. et al. Gene promoter methylation and cancer: An umbrella review. Gene 710, 972 
333–340 (2019). 973 

59. Inoue, K. & Fry, E. A. Haploinsufficient tumor suppressor genes. Adv Medicine Biology 118, 974 
83–122 (2017). 975 

60. Demeulemeester, J., Dentro, S. C., Gerstung, M. & Loo, P. V. Biallelic mutations in cancer 976 
genomes reveal local mutational determinants. Nat Genet 54, 128–133 (2022). 977 

61. Bell, R. J. A. et al. The transcription factor GABP selectively binds and activates the mutant 978 
TERT promoter in cancer. Science 348, 1036–1039 (2015). 979 

62. Bell, R. J. A. et al. Understanding TERT Promoter Mutations: A Common Path to 980 
Immortality. Mol Cancer Res 14, 315–323 (2016). 981 

63. Li, Y. et al. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant 982 
TERT promoter activation. Nat Cell Biol 17, 1327–38 (2015). 983 

64. Sizemore, G. M., Pitarresi, J. R., Balakrishnan, S. & Ostrowski, M. C. The ETS family of 984 
oncogenic transcription factors in solid tumours. Nat Rev Cancer 17, 337–351 (2017). 985 

65. Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. 986 
Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 987 
264–267 (2016). 988 

66. Roberts, S. A., Brown, A. J. & Wyrick, J. J. Recurrent Noncoding Mutations in Skin Cancers: 989 
UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 41, 1800152 990 
(2019). 991 

67. Weirauch, M. T. et al. Determination and Inference of Eukaryotic Transcription Factor 992 
Sequence Specificity. Cell 158, 1431–1443 (2014). 993 

68. Touzet, H. & Varré, J.-S. Efficient and accurate P-value computation for Position Weight 994 
Matrices. Algorithm Mol Biol 2, 15 (2007). 995 

69. Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. 996 
Nucleic Acids Res 46, D794–D801 (2018). 997 

70. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 998 
Bioinformatics 25, 1754–1760 (2009). 999 

71. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-1000 
generation DNA sequencing data. Nat Genet 43, 491–498 (2011). 1001 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/


 41 

72. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic 1002 
features. Bioinformatics 26, 841–842 (2010). 1003 

73. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE 1004 
Project. Genome Res 22, 1760–74 (2012). 1005 

74. Lawrence, M. et al. Software for Computing and Annotating Genomic Ranges. Plos Comput 1006 
Biol 9, e1003118 (2013). 1007 

75. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-1008 
level datasets. Nat Commun 10, 1523 (2019). 1009 

76. Boehm, J. S. & Golub, T. R. An ecosystem of cancer cell line factories to support a cancer 1010 
dependency map. Nat Rev Genet 16, 373–374 (2015). 1011 

77. Kim, E. & Hart, T. Improved analysis of CRISPR fitness screens and reduced off-target 1012 
effects with the BAGEL2 gene essentiality classifier. Genome Med 13, 2 (2021). 1013 

78. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 1014 
RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). 1015 

79. Mohaghegh, N. et al. NextPBM: a platform to study cell-specific transcription factor binding 1016 
and cooperativity. Nucleic Acids Res 47, gkz020- (2019). 1017 

80. Berger, M. F. & Bulyk, M. L. Universal protein-binding microarrays for the comprehensive 1018 
characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4, 393–411 1019 
(2009). 1020 

81. Mohaghegh, N. et al. NextPBM: a platform to study cell-specific transcription factor binding 1021 
and cooperativity. Nucleic Acids Res 47, gkz020- (2019). 1022 

82. Hook, H., Zhao, R. W., Bray, D., Keenan, J. L. & Siggers, T. NF-κB Transcription Factors. 1023 
Methods Mol Biology 2366, 43–66 (2021). 1024 

83. Berger, M. F. et al. Compact, universal DNA microarrays to comprehensively determine 1025 
transcription-factor binding site specificities. Nat Biotechnol 24, 1429–1435 (2006). 1026 

84. Stormo, G. D. Modeling the specificity of protein-DNA interactions. Quantitative Biology 1, 1027 
115–130 (2013). 1028 

85. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database 1029 
of transcription factor binding profiles. Nucleic Acids Res 50, D165–D173 (2021). 1030 

86. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity 1031 
between motifs. Genome Biol 8, R24–R24 (2007). 1032 

87. Nystrom, S. L. & McKay, D. J. Memes: A motif analysis environment in R using tools from 1033 
the MEME Suite. Plos Comput Biol 17, e1008991 (2021). 1034 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503516doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503516
http://creativecommons.org/licenses/by-nc/4.0/

