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Abstract13

How tumors evolve affects cancer progression, therapy response, and relapse. However, whether tumor evolution14

is driven primarily by selectively advantageous or neutralmutations remains under debate. Resolving this controversy15

has so far been limited by the use of bulk sequencing data. Here, we leverage the high resolution of single-cell DNA16

sequencing (scDNA-seq) to test for clock-like, neutral evolution. Under neutrality, different cell lineages evolve at17

a similar rate, accumulating mutations according to a molecular clock. We developed and benchmarked a test of18

the somatic clock based on single-cell phylogenies and applied it to 22 scDNA-seq datasets. We rejected the clock19

in 10/13 cancer and 5/9 healthy datasets. The clock rejection in seven cancer datasets could be related to known20

driver mutations. Our findings demonstrate the power of scDNA-seq for studying somatic evolution and suggest21

that some cancer and healthy cell populations are driven by selection while others seem to evolve under neutrality.22

1 Introduction23

Understanding tumor evolution is essential for predicting cancer progression and treatment response [1–5]. Still, the24

relative role of adaptive and neutral evolution after the malignant transformation has been debated extensively in25

recent years, without having reached a clear consensus yet [6–11]. Williams et al. [7] proposed a model for neutral26

somatic evolution where multiple clones grow at similar rates after tumor initiation. They used the variant allele27

frequencies (VAFs) of bulk sequencing samples to test for neutral evolution, assuming that clones with an increased28

growth rate alter the expected VAF distribution. When applied to samples from different tumor types, they failed to29

reject neutral evolution in up to 33% of the datasets analyzed [7, 12]. Several studies, however, questioned these30

findings and criticized the test proposed by Williams et al. as biased, as different simulation approaches or statistical31

tests lead to contradictory results [9–11].32

Alternatively, neutrality can be tested directly by assessing differences in the evolutionary rate among somatic33

lineages. Under neutral evolution and in a constant environment, different cell lineages accumulate mutations at a34

constant rate, as in a molecular clock [13, 14]. A cell lineage with a growth advantage, in contrast, divides faster and35

accumulates more mutations per time, leading to distinct evolutionary rates in the cell phylogeny [15]. However,36

assessing rate heterogeneity among cell lineages with bulk samples is difficult, as millions of cells are sequenced37

simultaneously. Consequently, cell lineages are mixed, and the deconvolution process is complex and error-prone.38

Single-cell DNA sequencing (scDNA-seq), in comparison, facilitates the inference of the evolutionary rates among39

cell lineages [16–19], therefore enabling a direct test of the somatic molecular clock. However, scDNA-seq data40

suffers from technical errors like false or missed mutations [20] that could bias downstream analysis if not taken41

into account.42

Here, we introduce a Poisson tree (PT) test for detecting deviations from themolecular clock in cell phylogenies43

inferred from scDNA-seq data. On simulated data, the PT test can identify non-clock evolution while still being44

robust to scDNA-seq noise. We applied the PT test to 22 scDNA-seq datasets from cancer and healthy tissues and45

rejected neutral, clock-like evolution in 10/13 cancer and 5/9 normal datasets.46
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Figure 1: Overview of the Poisson Tree test. Single cells are isolated from a tissue, and their genome is amplified and
sequenced (a). Based on the sequencing reads, mutations are called and displayed in a mutation matrix (b), which is
used to infer the cell phylogeny (c). Mutations are mapped onto the branches of the cell phylogeny, specifying their
length k, and branch weights w are determined based on the branches’ sensitivity to errors (d). Branch lengths k
are modeled by a Poisson distribution with rate parameter λ. Under the clock (null) model, the evolutionary rate is
constant, implying that the cumulative branch length from the root to any cell is the same (e), and the rate parameters
λ are constrained accordingly. Under the non-clock (alternative) model, the branch lengths are independent and,
therefore, unconstrained (f). The likelihood of the data under the clock and the unconstrained model is computed
and compared with a Likelihood Ratio Test (LRT) (g).

2 Results47

2.1 A Poisson tree (PT) test of the molecular clock48

A standard pipeline for scDNA-seq processing includes sampling, isolation, amplification, sequencing, and mutation49

calling (Fig. 1a). Mutations can be displayed as a mutation matrix (Fig. 1b) and used to infer a cell phylogeny and50

scDNA-seq error rates (Fig. 1c). The PT test requires as input a mutation matrix, a phylogeny of contemporaneously51

sampled cells, and error rates. First, it maps mutations to branches and weights them according to their probability52

of missing true mutations (Fig. 1d). Then, it models the number of mutations per branch with a Poisson distribution53

and estimates the maximum likelihood under the clock (null hypothesis; Fig. 1e)) and the non-clock (alternative54

hypothesis; (Fig. 1f)) models. Under the former, the lengths of the branches are constrained, while under the latter,55

they are independent. Finally, it compares the two models with a likelihood ratio test (LRT) (Fig. 1g). The PT test is56

described in detail in section 4.1.57
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2.2 The PT test detects clock-deviations reliably58

To evaluate the performance of the PT test, we simulated scDNA-seq data under the clock, with and without59

sequencing errors.60

Without scDNA-seq errors, the p-value distribution of the PT test was uniform, as expected for an unbiased61

test under the null (Fig. 2a, first panel). In the presence of scDNA-seq errors, p-values were strongly shifted towards62

1, making the PT test conservative (Fig. 2a, second to fourth panel). With false negative (FN) rates above 0.3, low63

p-values became more common, indicating that the test may not distinguish between high scDNA-seq error rates64

and deviations from the clock (Fig. S1). In all cases, the difference in the p-value distributions between using the65

inferred cell phylogeny and the estimated scDNA-seq error rates using CellPhy [18] (blue) or the true cell phylogeny66

and simulated scDNA-seq error rates (red) was marginal. Performance was similar when using SCITE [16] instead67

of CellPhy (Fig. S1).68

For comparison, we also applied the clock LRT implemented in PAUP*[21, 22] and the Poisson dispersion69

test [23]. The former is typically used in organismal phylogenetics and assumes error-free data. The latter tests if70

the number of mutations per cell is sampled from a Poisson distribution, ignoring the underlying tree topology. The71

PAUP* LRT was biased towards low p-values, even without scDNA-seq errors and using the true cell phylogeny72

(Fig. 2b - orange). The p-values of the Poisson dispersion test were biased towards 1 in the absence of scDNA-seq73

errors (Fig. 2b - green), but became biased towards 0 in the presence of scDNA-seq errors, resulting in high false74

positive rates. We concluded that both tests are unsuited for testing clock-like evolutionwith scDNA-seq data.75

We also simulated deviations from the clock with CellCoal [24] by introducing changes in the evolutionary76

rate of a single lineage. For this, we choose a branch with probability proportional to its length. Then, we multiplied77

its length and that of all descendant branches by 2×, 5×, or 10×. To assess the effect of the sample size, we simulated78

100 cells and subsampled 10, 30, 50, 70, and 90 cells. As expected, the power of the PT test increased with more drastic79

evolutionary rate changes and larger sample sizes (Fig. 2c, S3). Without scDNA-seq errors, the power of the PT test80

was 92% to 100% already at the 2× rate changes. With scDNA-seq errors, the power of the PT was above 90% for81

5× and 10× rate changes and samples with more than 10 cells. For the 2× rate change, the power dropped below82

50%, especially for small sample sizes and high error rates. Overall, we conclud that the PT test can reliably assess83

clock-like evolution in scDNA-seq data.84

2.3 VAF-based selection tests detect clock-deviations poorly85

Next, we simulated bulk data at 100× depth without scDNA-seq errors, based on the same single-cell phylogenies86

of the previous section, and ran the 1/f test [7] and mobster [25]. We only included datasets where the fraction of87

cells affected by the rate change was between 20% and 70%, as the 1/f test detects deviations from neutrality only88

in that VAF range [25]. The 1/f test rejected neutrality in 20% f the simulations under the clock and in more than89

30% of the simulations in the presence of a 2×, 5×, or 10× change of the evolutionary rate (Fig. 2c, first panel -90

yellow). Mobster did not infer subclonal selection for all evolutionary rate changes (Fig. S2).91

2.4 The PT test infers clock and non-clock evolution in scDNA-seq data92

We applied the PT test to 22 scDNA-seq datasets (10 whole-genome and 12whole-exome) from 15 patients containing93

between 7 and 71 cells (Table 1). Thirteen datasets were derived from cancer tissues (blood, bladder, lung, prostate,94

breast, colorectal (CRC), and renal cancer) and nine from normal, healthy tissue. Additionally, all datasets contained95

a bulk normal sample and all but two cancer datasets contained a bulk tumor sample. Tables S1 and Spreadsheet S196

describe them in detail. We ran the PT test with the cell phylogenies and scDNA-seq error rates inferred by CellPhy.97

Then, we mapped the mutations to specific branches (see 4) and identified cancer-specific driver mutations using98

IntOGen [26].99

Out of the 22 scDNA-seq datasets, we rejected neutral evolution in 10/13 cancer and 5/9 normal data sets. We100

did not find any relationships between the PT test results and the number of mutations, cells, or inferred scDNA-seq101

FN rate (Fig. S4). Some of the results of the PT-test might be explained by the identified known cancer-specific driver102

mutations on internal branches (Fig. 3). Driver mutations on the trunk branch affect all sampled lineages equally103

and, therefore, will not alter the clock. In four normal datasets (Lodato-P2-N, Wang-ER+-N, Wu-CRC0827-N, and104

Wu-CRC0907-P), the PT test did not reject the clock (Fig. 3a). In Wang-ER+-N, we detected no driver mutations, and105
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Figure 2: Molecular clock testing on simulated data. b) P-value distribution under the clock of the Poisson Tree (PT)
test using the true (red) or inferred (blue) cell phylogeny and scDNA-seq error rates, for different scDNA-seq false
negative (FN) rates. a) P-value distribution under the clock of PAUP*’s LRT (orange) and the Poisson dispersion
test (green) for different scDNA-seq FN rates. c) Statistical power of the PT test for detecting non-clock evolution.
Clock deviations are introduced by changing the evolutionary rate for a given lineage by 2×, 5×, or 10×. Different
sample sizes are represented by distinct line styles (total: 100 cells). In the left panel, the yellow line represents the
proportion of datasets in which the 1/f test proposed by Williams et al. rejected neutrality on bulk data comparable
to the scDNA-seq data.
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Dataset Tissue Subset N N FN PT test Driver mutations
Cell Mut rate [p-value] Trunk br. Internal br.

Hou-C [27] Blood Cancer 71 1387 0.09 0.095 ATM,PRKD2
Kang-C [19] Colon Cancer 34 2495 0.06 <1 × 10−6 NCOR2
Kang-N Colon Normal 14 287 0.01 0.007 NCOR2
Kozlov-C [18] Colon Cancer 24 2799 0.03 <1 × 10−6 NRAS
Li-C [28] Bladder Cancer 54 885 0.11 0.005 SF3B1 ATM
Li-N Bladder Normal 8 644 0.17 <1 × 10−6

Lodato-P1-N [29] Neurons Normal 10 935 0.05 4 × 10−4

Lodato-P2-N [29] Neurons Normal 15 747 0.04 0.128 ZNRF3
Lodato-P3-N [29] Neurons Normal 8 928 0.09 <1 × 10−4 TET2

Ni-C [30] Lung Cancer 8 340 0.20 <1 × 10−6 PIK3CA,
RB1,TP53

SETD2

Su-P1-C [31] Prostate Cancer 7 23130 0.14 <1 × 10−6

Su-P2-C [31] Prostate Cancer 8 15394 0.04 <1 × 10−6

Wang-ER+-C [32] Breast Cancer 46 355 0.04 0.999 PIK3CA,
MAP3K1

Wang-ER+-N Breast Normal 12 300 0.12 0.231

Wang-TNBC-C [32] Breast Cancer 16 1472 0.10 <1 × 10−6 SPEN,NOTCH2,
NTRK1,ZFHX3

ARID1B,SMAD4,
ERBB4,GNAS

Wang-TNBC-N Breast Normal 15 68 0.03 <1 × 10−6

Wu-CRC0827-C [33] Colon Cancer 50 652 0.09 <1 × 10−6 PARP4,NBEA,
TP53,FAT4,TBX3

Wu-CRC0827-P Colon Cancer 19 379 0.10 <2 × 10−4 PARP4
Wu-CRC0827-N Colon Normal 15 298 0.10 0.491 PARP4

Wu-CRC0907-C [33] Colon Cancer 49 574 0.10 <1 × 10−6 SMARCA4,APC,
GNAS,ARID1A

Wu-CRC0907-P Colon Normal 25 181 0.04 0.336 SMARCA4 BRAF
Xu-C [34] Kidney Cancer 20 747 0.04 0.158

Table 1: Poisson tree (PT) test results and called cancer-spicific driver genes for scDNA-seq datasets. For the PT test,
p-values below a significance level of 0.05 are displayed in bold.
N = Number of, Mut = Mutations, br = branch.

in Lodato-P2-N all known drivers were placed on the trunk branch. In the benign polyp dataset Wu-CRC0907-P,106

we detected an activating mutation in the oncogene BRAF in 3/25 cells, which was not reported in the original107

study. BRAF activation is a known early event in CRC tumor initiation [35], indicating that the polyp might have108

been adenomatous already. In Wu-CRC0827-N, we inferred a PARP4 mutation on an internal branch, present in109

4/15 cells. However, PARP4’s mode of action is labeled as “ambiguous” in IntOGen, and it is not listed as a driver110

gene in the Cancer Gene Census (CGC) [36]. The PT test rejected the clock in the remaining five normal datasets111

(Fig. 3b). Within these, only in Kang-N we found a driver mutation on an internal branch (present in 9/14 cells),112

namely an activation of NCOR2, a known driver in the CGC. For Lodato-P1-N, Lodato-P3-N, and Li-N, we inferred113

fully ladder-like trees, meaning that every internal node was connected to at least one single-cell. Such a pattern114

might be caused by varying scDNA-seq error rates across otherwise contemporaneous cells. Therefore, these results115

should be interpreted with caution. In Wang-TNBC-N only 68 mutations were called, out of which 37 were mapped116

to the trunk branch. The low number of mutations at internal branches did not prevent rejecting of the clock. The PT117

test did not reject the clock (Fig. 3c) in three cancer datasets (Wang-ER+-C, Hou-C, Xu-C). In all of them, we could118

not identify drivers on internal branches. For the remaining nine cancer datasets, the PT test rejected the clock119

(Fig. 3d). In six of these, we identified at least one known driver mutation on an internal branch of the tree.120

Additionally, we calculated the dN/dS ratios of mutations affecting cancer driver genes for the combined121

mutations from all individual cells (“pseudo-bulks”) [37]. In ten datasets, mainly derived from normal tissue, the122

dN/dS ratio could not be calculated as no or just one mutation was located in a cancer driver gene (Table S1). For123
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Wu-CRC0827-C
(WES, 652 SNVs)

Wu-CRC0827-P
(WES, 379 SNVs)

Wu-CRC0907-C
(WES, 574 SNVs)

Kang-C
(WGS, 2495 SNVs)

Li-C
(WES, 885 SNVs)

Kozlov-C 
(WGS, 2799 SNVs)

Wang-TNBC-C
(WES, 1472 SNVs)

Su-P2-C
(WGS, 15394 SNVs)

Su-P1-C
(WGS, 23130 SNVs)

Ni-C
(WES, 340 SNVs)

d cancerous tissue: neutrality rejected

Hou-C
(WES, 1387 SNVs)

Wang-ER+-C
(WES, 355 SNVs)

Xu-C
(WES, 747 SNVs)

cancerous tissue: neutrality not rejectedc

Wang-TNBC-N
(WES, 68 SNVs)

Li-N
(WES, 644 SNVs)

Lodato-P3-N
(WGS, 928 SNVs)

Lodato-P1-N
(WGS, 935 SNVs)

Kang-N
(WGS, 287 SNVs)

healthy tissue: neutrality rejectedb

Lodato-P2-N
(WGS, 747 SNVs)

Wu-CRC0907-P
(WES, 181 SNVs)

Wu-CRC0827-N
(WES, 298 SNVs)

Wang-ER+-N
(WES, 300 SNVs)

healthy tissue: neutrality not rejecteda

Figure 3: Inferred single-cell phylogenies and known driver mutations. a) In four healthy tissue datasets, we detected
no deviation from the molecular clock. Driver mutations were either absent, located on the trunk branch, or present
in four cells at most. b) In five healthy tissue datasets, we rejected the clock. Three of these showed a ladder-like
pattern, meaning that each internal node is an ancestor to at least one leaf node (Lodato-P1, Lodato-P3, and Li-N). In
theWang-TNBC-N dataset, we called only 68mutations andmappedmost the trunk branch. In Kang-N, we identified
a known driver mutation on an internal branch. c) In three cancer datasets, we did not reject the clock. We either
identified no driver mutations (Xu-C) or mapped all known drivers to the trunk branch (Hou-C and Wang-ER+-C).
d) In ten cancer datasets, we found significant deviations from the clock. In seven of these, we identified at least one
known driver mutation on an internal branch. In the Kozlov-C datasets, the only known driver was placed on the
trunk branch, and in Su-P1-C and Su-P2-C we identified no drivers.
The leaf node shapes correspond with different spatial sampling locations. Bootstrap values above 50 are indicated.
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the remaining datasets, the confidence intervals of the dN/dS ratios included 1 (Kang-C, Kozlov-C, Li-C, Li-N, Ni-C,124

Wang-TNBC-C, Wang-ER+-C, Wang-ER+-N, Wu-CRC0827-C, Wu-CRC0907-C, and Xu-C) or only values smaller125

than 1 (Hou-C and Su-P1-C). Therefore, the dN/dS ratios showed no evidence for positive selection.126

2.5 Bulk selection tests produce ambiguous results on scDNA-seq data127

Additional to the analysis of the scDNA-seq data, we calculated dN/dS ratios and applied the two approaches by128

Williams et al. to all 16 available bulk tumor samples (Table S2). The dN/dS ratio confidence intervals for all cancer129

bulk samples included 1. The 1/f test rejected neutrality in six cases, including two datasets in which the PT test130

did not (Wu-CRC0907-P and Xu-C). Contrarily, the 1/f test did not reject neutrality in four datasets where the PT131

test did so (Wu-CRC0827-C, Wang-TNBC-C, Ni-C, and Kozlov-C). These findings may be limited as a sequencing132

depth above 100× and cellularity above 0.5, required for the 1/f test to be robust [25], was only achieved in the133

Li-BC sample. Mobster only produced results for three datasets. In the bladder cancer bulk sample corresponding134

to Li-C, a clone with selective disadvantage (s = -1.1) was inferred, and no clones were inferred in the bulk samples135

corresponding to Wang-TNBC-C (PT test p-value: <1e-6) and Xu-C (PT test p-value: 0.16).136

3 Discussion137

The controversies over the mode of tumor evolution arise from the impracticality of directly assessing the effect of138

individual mutations on cancer progression in humans in vivo. Consequently, different tests assess deviations from139

neutrality indirectly, e.g., via the genome-wide VAF distribution or the ratio of non-synonymous to synonymous140

mutations in driver genes. In this work, we developed a Poisson tree (PT) test for a molecular clock, implying141

homogeneity of the evolutionary rates (i.e., the number of mutations accumulated in a time period) among cell142

lineages. Since we expect clock-like evolution under neutrality [13, 14], deviations from the clock can unveil143

deviations from neutrality. In somatic evolution, deviations from the clock can result from an increased number of144

cell divisions per time, i.e., a higher fitness, in a given cell lineage or clone. The expansion of one or more selectively145

advantageous subclone/s will therefore result in non-clock evolution [15].146

Our test is based on single-cell phylogenies, leveraging the high resolution of scDNA-seq data for inferring147

evolutionary relationships while accounting for the technical noise inherent to scDNA-seq. In our benchmark, the148

PT test showed a low false positive rate and high power. Minor clock deviations, resulting from effectively neutral149

evolution, are generally difficult to detect [8], but the PT test was still able to identify variation in the evolutionary150

rates where the VAF tests did not. When we applied the PT test to 22 real scDNA-seq datasets, we rejected the clock151

in 15 of them. If the rejection is due to selection, we might be able to locate a driver gene in one of the internal152

branches of the cell phylogenies. Driver mutations are one of the best understood causes for an increased somatic153

evolutionary rate [26, 38]. Early driver events, i.e., those mapped to the trunk, will be likely involved in tumor154

initiation or previous selective sweeps. Later driver events, mapped to internal branches, will result in subclonal155

selection and a deviation from the clock in the cell phylogeny. In most datasets rejecting the clock, we identified156

driver mutations on internal branches, possibly causing deviations in the evolutionary rates of different cell lineages.157

In datasets without clock rejections, we identified either no drivers, drivers on the trunk branch, or drivers being158

present in only a small fraction of cells. The latter might correspond to late evolutionary rate changes (effectively159

neutral evolution) but could also result from sampling biases.160

We acknowledge that changes in the evolutionary rates, and therefore rejections of the clock, might still161

occur under neutrality. For example, increases in the mutation rate per cell division for a particular lineage, spatial162

constraints [39], cell dormancy [40], or variations in the tumor microenvironment of some cells [2], might result in163

heterogeneous evolutionary rates in the absence of adaptive changes. Indeed, such scenarios might also lead VAF164

tests (1/f test and mobster) to reject “neutrality” [7]. Small sample sizes limit the power of the PT test. Incomplete165

sampling is an open problem inherent to somatic next-generation sequencing overall, not only to scDNA-seq. In166

bulk approaches, detectable clones and their VAF distribution depend on the number, type, and spatial location of167

biopsies taken [41]. While bulk sequencing indeed samples many more cells than single-cell strategies, they rely168

on summaries of the data that might hide non-obvious levels of evolutionary heterogeneity. For example, although169

both the PT and VAF tests target recent, ongoing selection, the PT test might be more sensible for newborn selective170

sweeps.171
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Understanding whether cell lineages evolve at similar or distinct rates will be relevant for various aspects of172

cell biology, especially for processes like cancer, development, or differentiation. A molecular clock, for example, is173

frequently assumed to determine the age of tumors [42], or to study the temporal framework of tissue development174

[43–45]. Combining established methods from evolutionary biology with advances in single-cell technologies, as we175

did in this work, offers great potential to study the evolution of somatic tissues through time and space.176

4 Methods177

4.1 Poisson tree test model and input data178

The Poisson tree (PT) test requires as input a mutation matrix, false positive (FP) and false negative (FN) error179

rates, and a rooted tree topology T representing the genealogy of the sampled cells. The mutation matrix X ∈180

{0, 1,−}m×n indicates which of the m mutations are present in the n cells, with 0 representing the absence of a181

mutation, 1 the presence, and “−” a missing value. The FP rate α is the fraction of 0’s wrongly called as 1’s, while182

the FN rate β is the fraction of true 1’s wrongly called as 0’s. In scDNA-seq data, FPs arise mainly from DNA183

lesions during cell isolation and manipulations, single-cell whole-genome amplification (scWGA), and sequencing184

errors; FNs arise mainly from allele dropout (ADO) events during scWGA. Missing values result from ADOs of185

both alleles or insufficient coverage to call mutations reliably. The fraction of missing data in each cell j is γj =186

1/m
∑m

p=1[Xp,j = −], where [ · ] is the indicator function. The cell tree topology T = (V,E) consists of |V | = 2n−1187

nodes and l = |E| = 2n− 2 branches. The n leaf nodes L are the sampled cells and the n− 1 internal nodes I are188

unobserved ancestor cells. We infer the branch lengths (number of mutations between two nodes) of the cell tree189

k =
[
k1 . . . kl

]T ∈ R+ by mapping mutations to specific branches (see next section). We model the inferred190

branch length ki as a Poisson process, depending on a branch-specific evolutionary rate λi. In particular, λi ∈ R>0191

is the product of a mutation rate per cell division and the number of cell divisions.192

The likelihood of the evolutionary rates λ = (λ1, . . . , λl) given the inferred branch lengths k is then193

L(λ | k) =
l∏

i=1

Poisson(ki | λi)
wi =

l∏
i=1

(
λki
i e−λi

ki!

)wi

(1)

with wi weighting the impact of branch i on the likelihood. If w = 1 ∈ Rl, all branches are weighted equally;194

otherwise, branches with a higher weight impact the total likelihood more. The log-likelihood is195

L(λ | k) = logL(λ | k) ∝
l∑

i=1

wi

(
ki log(λi)− λi

)
(2)

where we have omitted the constant
∑l

i=1 log(ki!), which cancels out in the likelihood ratio below. We infer λ by196

using maximum likelihood estimation (MLE), which amounts to solving197

min
λ∈Rl

>0

−
l∑

i=1

wi(ki log(λi)− λi). (3)

Null model H0: molecular clock. The null mode assumes a homogeneous evolutionary rate along the cell198

phylogeny (i.e, a molecular clock) and that all cells have been sampled at the same time point. Consequently,199

the cumulative branch length from any internal node to its succeeding leaf nodes should be equal. This imposes200

n − 1 constraints on λ, which can be written as a system of linear equations defined by a constraint matrix C ∈201

{−1, 0, 1}(n−1)×l. Each row in C corresponds to an internal node, each column to a branch, and202

Ci,j =


1 if Ej ∈ P (Ii, Li→)

−1 if Ej ∈ P (Ii, Li←)

0 else
(4)

whereP (Ix, Ly) is the path between the internal node x and the leaf node y, i.e., the set of all branches connecting the203

two nodes, and Li→ and Li← are arbitrary leaf nodes from the left or right subtree succeeding node Ii, respectively.204
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There are several equivalent parametrizations of the constraint matrix, as both left and right subtrees, as well as the205

leaf nodes, are chosen arbitrarily. Given that the sum of Poisson-distributed random variables is Poisson-distributed206

as well, we can write the constraints imposed by the molecular clock as207

C · λ = 0. (5)

To solve theMLE problem (Eq. 3) subject to the clock constraints (Eq. 5) and the boundary constraintsλ > 0, we used208

the Byrd-Omojokun Trust-Region Sequential Quadratic Programming algorithm [46], a gradient-based numerical209

optimizer.210

Alternative model H1: constraint-free evolutionary rates. If there are no constraints on λ, i.e., C = 0, Eq. 3211

can be solved analytically. The likelihood is maximal if the parameters λ are equal to the branch lengths k (Section212

S2). For branches with no mapped mutations, we use the limit limk→0+ ki log(ki) = 0.213

Likelihood ratio test (LRT). As the null model is nested in the alternative model, their likelihoods can directly be214

compared with a χ2-distributed LRT. The test statistic Λ is twice the negative log-likelihood ratio215

Λ = −2[L(λ0 | k)− L(λ1 | k)] = −2

[
l∑

i=1

wi (ki(log(λ0,i)− log(λ1,i))− λ0,i + λ1,i)

]
(6)

and χ2-distributed with n − 1 degrees of freedom. The probability of the null model given the observed data is216

217

P (H0 | k,C) =

∫ Λ

0

χ2
(n−1) (7)

If k optimized parameters were on the boundary under the null, however, we changed the distribution of the test218

statistic to amixture ofχ2 distributions withn, n−1, . . . , n−k degrees of freedom, weighted by normalized binomial219

coefficients, as reported by Self and Liang [47](case 9).220

4.2 Mapping mutations and defining branch lengths221

To map mutations onto specific branches of the cell phylogeny, we define the matrix Mm×l ∈ [0, 1], where Mp,i222

is the probability that mutation p is assigned to branch i. We assume that mutations are i.i.d. and make the infinite223

sites assumption (ISA), i.e., we exclude the possibility of parallel and back mutations. Consequently, any mutation224

that is placed on its true branch is expected to be present in all cells succeeding that branch if no errors occurred. By225

comparing the expected mutations with the observed ones, we can calculate the probability of assigning a mutation226

to any branch, similarly to SCITE [16]:227

Mp,i =

∏n
j=1 P (Xp,j | Ai,j)∏n

j=1 P (Xp,j | 0) +
∑l

i′=1

∏n
j=1 P (Xp,j | Ai′,j)

(8)

withA ∈ {0, 1}l×n being the ancestormatrix representing T , where rows represent branches and columns represent228

cells, and Ai,j = 1 if branch i belongs to the lineage of cell j, and 0 otherwise. The first product of the denominator229

represents a mutation-free cell and therefore the probability of a wrong mutation call. With FP rate α and FN rate230

β, we obtain the following probability for the observed mutation state x given an expected state y:231

P (x | y) =



1− α if x = 0 ∧ y = 0

β if x = 0 ∧ y = 1

α if x = 1 ∧ y = 0

1− β if x = 1 ∧ y = 1

1 if x = −

(9)

The number of mutations mapped to a branch j is the column sum over M :232

kj =
m∑

p=1

Mp,j . (10)

A schematic of the mutation mapping is displayed in Figure S5.233
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4.3 Weighting branches234

The estimated branch lengths k are subject to uncertainties. The soft assignment in Eq. 8 accounts for FP calls and235

uncertainties in the mutation placement, including FN calls in some but not all cells. However, true mutations can236

also be not reported in general due to FN or missing events in all cells simultaneously. We call this event a mutation237

loss. For each branch, the probability of a mutation loss is proportional to the number of cells containing the branch238

in their lineage, and can be defined as239

Ploss(Ei | A,α, β, γ) =
n∏

j=1

[(1− γj)β + γj]
Ai,j · [(1− γj)(1− α) + γj]

1−Ai,j (11)

The first term in Eq. 11 describes the probability of FN or missing events in all cells containing the mutation; the240

second term is the probability of no FP or missing events in any other cell. Given that the probability for a FN call241

is Bernoulli-distributed, we can weight the branches by their inverse-variance by defining242

w̃i = min

{(
Ploss(Ei | A,α, β, γ)

(
1−Ploss(Ei | A, α, β, γ)

))−1
,wmax

}
. (12)

For instance, awmax value of 100 corresponds to a maximum probability of 0.99 to observe a true mutation anywhere243

in the tree, a value of 1000 to a maximum probability of 0.999.244

To retain the degrees of freedom of the χ2 approximation used in the LRT statistic, we normalize the weights245

246

wi = l · w̃i∑l
i′=1 w̃i′

(13)

such that
∑l

i=1 wi = l. A schematic of the branch weighting is displayed in Figure S6. The limit of the inverse247

variance of a Bernoulli distribution is infinity, therefore the upper limitwmax is necessary. Without it, the weight for248

a single or few branches with a very low probability for mutation losses would be several magnitudes higher than249

for most other branches. As the weights are normalized, wmax regulates their dispersion: low wmax values lead to250

weights closer to 1, and larger wmax values lead to weights dispersed more widely.251

We evaluated the impact of wmax on the PT tests’ accuracy using simulations and found that wmax= 1000252

ensured a false positive rate close to zero (Section S1, Fig. S3). Therefore, we used this value for all the calculations253

in this study.254

4.4 Simulation of clock and non-clock scDNA-seq data255

We used CellCoal [24] to simulate scDNA-seq data with 30 and 100 cells and different levels of error (mainly varying256

ADO). CellCoal simulates the genealogy of a sample of cells together with genotype data, subject to scDNA-seq257

errors, in VCF format. To simulate pseudo-bulk data with 100× depth and a cellularity of 1, we simulated 100 single258

cells with 1× depth and without scDNA-seq errors. All datasets consisted of 10 000 sites, a somatic mutation rate259

of 10−6, and a sequencing depth of 20×. For the simulation of scDNA-seq datasets, the amplification error was 1%,260

the sequencing error was 1%, and the sequencing depth overdispersion was 5. We increased the ADO rates from261

20%±10% (std) per cell to 80%±10% per cell in steps of 20 %. As input for the PT test, we used half the ADO rate plus262

one-third of the amplification error rate as FN.The former represents the chance that the mutated allele is affected by263

an ADO. Due to the binarization, homozygous mutations are not affected by ADO and heterozygous mutations are264

affected only in 50% of the cases. The latter represents the chance of the mutated allele appearing as the reference265

allele due to a technical error during the scDNA-seq pipeline. As FP rate, we used CellCoal’s amplification error rate.266

Sequencing errors were ignored, as it is very unlikely that the same sequencing error occurs in multiple reads at the267

same position. For all datasets, mutation calls with depth < 5× or quality (GQ) < 1 were filtered out.268

By default, CellCoal simulates an ultrametric cell genealogy resulting from a single evolutionary rate (i.e., a269

clock-like tree). Alternatively, deviations from the clock can be modeled with a single change in the evolutionary270

rate along the tree. A branch is sampled with probability proportional to its length, and the length of this branch271

and all descendant branches are multiplied by a given factor.272

Here, we simulated non-clock evolution with 2×, 5×, and 10× rate changes. We only included simulations273

where the fraction of cells affected by the change was between 10% and 90%, similar to Williams et al. . A smaller274
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fraction corresponds to a late change in the evolutionary rates, a higher fraction to an early change or selective275

sweep, resulting in effectively neutral, clock-like evolution. To obtain a comparable number of mutations across276

the different non-clock scenarios, we decreased the global mutation rate for the 2×, 5×, and 10× rate changes to277

8−7, 5−7, and 3−7, respectively. Simulations under the null were repeated 1000 times and simulations under the278

alternative 3000 times.279

4.5 Inference of cell phylogenies280

For the benchmark of the PT test, we inferred the cell phylogenies with CellPhy [18] (default parameters and ML281

model), which operates a constraint-free model for the branch lengths, and with SCITE [16] (-r 1 -n 5e5282

-d 0.01 -ad 0.2 -e 0.1 -z -a -transpose), which infers the tree topology but not the branch283

lengths). Cellphy infers the amplification/sequencing error rate, corresponding to the probability of observing a284

wrong base, and the ADO rate, rather than FN and FP rates. We used half the ADO rate estimated by CellPhy, plus285

one-third of the inferred amplification/sequencing error rate, as the FN rate for the PT test. As FP rate, we used286

the amplification/sequencing error rate inferred by CellPhy. SCITE infers FN and FP rates directly. For the real287

scDNA-seq data, we inferred cell phylogenies with CellPhy with the same settings as for the benchmark. To root288

the phylogenetic trees inferred by CellPhy, we added a synthetic cell without any mutation and used it for outgroup289

rooting.290

291

4.6 Statistical tests of neutrality and subclonal selection for bulk data292

For the benchmark of the 1/f neutrality test [7], we ran the 1/f test (version 0.0.3) with depth 100×, ploidy 2, and293

cellularity 1. For the benchmark of mobster [48] (version 1.0.0), we ran it with default parameters except for the294

number of subclones, which we set to 1, according to the single rate change we deployed to simulate deviations from295

neutrality, resulting in two clades with different evolutionary rates.296

For the real bulk data, we used the ploidy and cellularity values inferred by sequenza (version 3.0.0) [49] for297

the 1/f test . Mobster was run with default parameters.298

4.7 dN/dS ratio estimation299

We calculated dN/dS ratios with the R package dndscv [37] and default parameters, including only mutations in the300

369 cancer driver genes identified by Martinconera et al. [37]. For the scDNA-seq data, we used pseudo-bulk data,301

as the number of coding mutations per cell was not enough to calculate dN/dS ratios for individual cells.302

4.8 Biological data processing303

All datasets were downloaded in FASTQ format from the NCBI’s Sequence Read Archive (SRA) database. Library304

adapters and amplification protocol-specific adapters were trimmedwith cutadapt (version 1.18). Readsweremapped305

to the 1000G Reference Genome hs37d5 by using bwa (version 0.7.17), aligned files were sorted by using Picard306

SortSam (version 2.18.14), and files fromdifferent lanesweremerged and duplicatesmarked by using PicardMarkDuplicates307

(version 2.18.14). GATK IndelRealignement (version 3.7.0) was applied for local realignment based on indel calls by308

using the 1000G Phase 1 and the Mills and 1000G gold standard databases, and GATK BaseRecalibrator (version309

4.0.10) to recalibrate base scores by using dbSNP (build 138) and indels from the 1000G Phase 1. We calculated310

sequencing depth and breadth with samtools (version 1.9) and the ADO rate as described in [29] for each cell. Cells311

with extremely high ADO rate (above Q3 + 1.5 IQR per dataset), as well as cells with< 40% coverage breadth, were312

excluded (Table S2). In contrast to the original studies using WES data, we did not filter the off-target loci but used313

all sequenced sites. Similar preprocessing was done for the bulk data for normal and tumor samples, followed by314

estimation of copy numbers using sequenza.315

Mutations in single cells were called with a modified version of SCcaller (https://github.com/316

NBMueller/SCcaller - modifications listed) with default parameters and dbSNP build 138. Additionally,317

pileups with a minimum mapping quality of 40 were generated with samtools (version 1.9) to call mutations with a318

modified version of Monovar (https://github.com/NBMueller/MonoVar - modifications listed) with319

default parameters and without the consensus filtering step. Where tumor bulk samples were available, mutations320
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were called with Mutect2 following the GATK best practice workflow for “Somatic short variant discovery (SNVs +321

Indels)”. Finally, a set of high-confidence mutations was generated for each dataset by 1) excluding mutations with322

a quality score below ten or a read depth below ten, and by 2) excluding mutations that were called in only one323

cell and were not supported by both single-cell callers or by the bulk tumor sample. Additionally, mutations with324

missing data at more than 50% of the cells were excluded. To annotate the mutations, we used the Ensembl Variant325

Effect Predictor [50].326

4.9 Implementation327

The pipelines for processing scDNA-seq data, simulating data, and analyzing data were implemented in Snakemake.328

The PT test is implemented in Python and requires called mutations in VCF format, a phylogenetic tree in Newick329

format, and estimated FN and FP rates of the called mutations as input. All the code is freely available at https:330

//github.com/cbg-ethz/scSomMerClock.331
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