

1 Single-cell phylogenies reveal deviations from clock-like, neutral evolution 2 in cancer and healthy tissues

3
4 Nico Borgsmüller^{1,2,†}, Monica Valecha^{3,4,†}, Jack Kuipers^{1,2}, Niko Beerenswinkel^{1,2,✉}, and David Posada^{3,4,5,✉}

5 ¹Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland

6 SIB, Swiss Institute of Bioinformatics, 4058 Basel, Switzerland

7 ³CINBIO, Universidade de Vigo, 36310 Vigo, Spain

8 ⁴Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO

9 ⁵Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain.

10 [†]These authors contributed equally to this work.

11 [✉]To whom correspondence should be addressed.

12

13 Abstract

14 How tumors evolve affects cancer progression, therapy response, and relapse. However, whether tumor evolution
15 is driven primarily by selectively advantageous or neutral mutations remains under debate. Resolving this controversy
16 has so far been limited by the use of bulk sequencing data. Here, we leverage the high resolution of single-cell DNA
17 sequencing (scDNA-seq) to test for clock-like, neutral evolution. Under neutrality, different cell lineages evolve at
18 a similar rate, accumulating mutations according to a molecular clock. We developed and benchmarked a test of
19 the somatic clock based on single-cell phylogenies and applied it to 22 scDNA-seq datasets. We rejected the clock
20 in 10/13 cancer and 5/9 healthy datasets. The clock rejection in seven cancer datasets could be related to known
21 driver mutations. Our findings demonstrate the power of scDNA-seq for studying somatic evolution and suggest
22 that some cancer and healthy cell populations are driven by selection while others seem to evolve under neutrality.

23 1 Introduction

24 Understanding tumor evolution is essential for predicting cancer progression and treatment response [1–5]. Still, the
25 relative role of adaptive and neutral evolution after the malignant transformation has been debated extensively in
26 recent years, without having reached a clear consensus yet [6–11]. Williams *et al.* [7] proposed a model for neutral
27 somatic evolution where multiple clones grow at similar rates after tumor initiation. They used the variant allele
28 frequencies (VAFs) of bulk sequencing samples to test for neutral evolution, assuming that clones with an increased
29 growth rate alter the expected VAF distribution. When applied to samples from different tumor types, they failed to
30 reject neutral evolution in up to 33 % of the datasets analyzed [7, 12]. Several studies, however, questioned these
31 findings and criticized the test proposed by Williams *et al.* as biased, as different simulation approaches or statistical
32 tests lead to contradictory results [9–11].

33 Alternatively, neutrality can be tested directly by assessing differences in the evolutionary rate among somatic
34 lineages. Under neutral evolution and in a constant environment, different cell lineages accumulate mutations at a
35 constant rate, as in a molecular clock [13, 14]. A cell lineage with a growth advantage, in contrast, divides faster and
36 accumulates more mutations per time, leading to distinct evolutionary rates in the cell phylogeny [15]. However,
37 assessing rate heterogeneity among cell lineages with bulk samples is difficult, as millions of cells are sequenced
38 simultaneously. Consequently, cell lineages are mixed, and the deconvolution process is complex and error-prone.
39 Single-cell DNA sequencing (scDNA-seq), in comparison, facilitates the inference of the evolutionary rates among
40 cell lineages [16–19], therefore enabling a direct test of the somatic molecular clock. However, scDNA-seq data
41 suffers from technical errors like false or missed mutations [20] that could bias downstream analysis if not taken
42 into account.

43 Here, we introduce a Poisson tree (PT) test for detecting deviations from the molecular clock in cell phylogenies
44 inferred from scDNA-seq data. On simulated data, the PT test can identify non-clock evolution while still being
45 robust to scDNA-seq noise. We applied the PT test to 22 scDNA-seq datasets from cancer and healthy tissues and
46 rejected neutral, clock-like evolution in 10/13 cancer and 5/9 normal datasets.

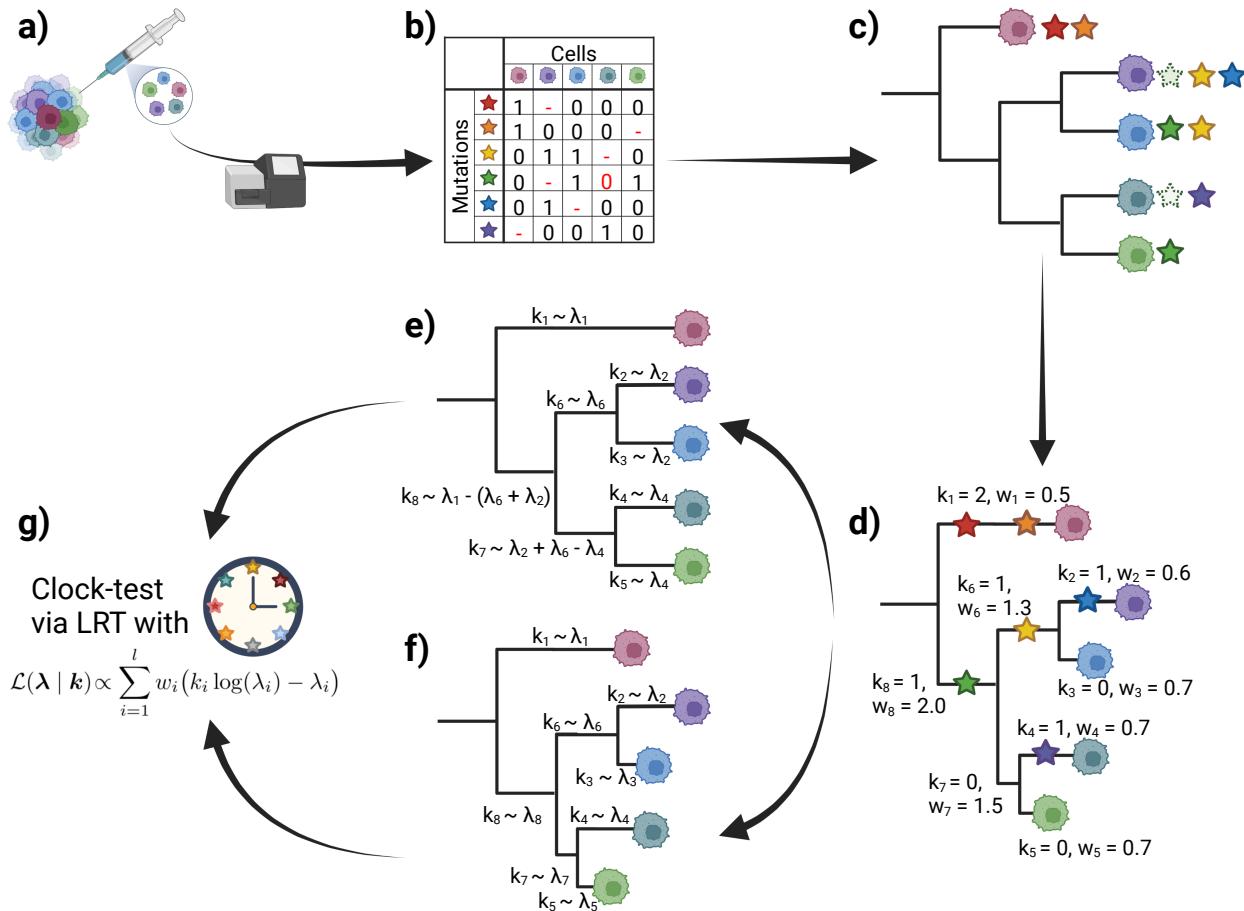


Figure 1: Overview of the Poisson Tree test. Single cells are isolated from a tissue, and their genome is amplified and sequenced (a). Based on the sequencing reads, mutations are called and displayed in a mutation matrix (b), which is used to infer the cell phylogeny (c). Mutations are mapped onto the branches of the cell phylogeny, specifying their length k , and branch weights w are determined based on the branches' sensitivity to errors (d). Branch lengths k are modeled by a Poisson distribution with rate parameter λ . Under the clock (null) model, the evolutionary rate is constant, implying that the cumulative branch length from the root to any cell is the same (e), and the rate parameters λ are constrained accordingly. Under the non-clock (alternative) model, the branch lengths are independent and, therefore, unconstrained (f). The likelihood of the data under the clock and the unconstrained model is computed and compared with a Likelihood Ratio Test (LRT) (g).

2 Results

2.1 A Poisson tree (PT) test of the molecular clock

A standard pipeline for scDNA-seq processing includes sampling, isolation, amplification, sequencing, and mutation calling (Fig. 1a). Mutations can be displayed as a mutation matrix (Fig. 1b) and used to infer a cell phylogeny and scDNA-seq error rates (Fig. 1c). The PT test requires as input a mutation matrix, a phylogeny of contemporaneously sampled cells, and error rates. First, it maps mutations to branches and weights them according to their probability of missing true mutations (Fig. 1d). Then, it models the number of mutations per branch with a Poisson distribution and estimates the maximum likelihood under the clock (null hypothesis; Fig. 1e)) and the non-clock (alternative hypothesis; (Fig. 1f)) models. Under the former, the lengths of the branches are constrained, while under the latter, they are independent. Finally, it compares the two models with a likelihood ratio test (LRT) (Fig. 1g). The PT test is described in detail in section 4.1.

58 2.2 The PT test detects clock-deviations reliably

59 To evaluate the performance of the PT test, we simulated scDNA-seq data under the clock, with and without
60 sequencing errors.

61 Without scDNA-seq errors, the p-value distribution of the PT test was uniform, as expected for an unbiased
62 test under the null (Fig. 2a, first panel). In the presence of scDNA-seq errors, p-values were strongly shifted towards
63 1, making the PT test conservative (Fig. 2a, second to fourth panel). With false negative (FN) rates above 0.3, low
64 p-values became more common, indicating that the test may not distinguish between high scDNA-seq error rates
65 and deviations from the clock (Fig. S1). In all cases, the difference in the p-value distributions between using the
66 inferred cell phylogeny and the estimated scDNA-seq error rates using CellPhy [18] (blue) or the true cell phylogeny
67 and simulated scDNA-seq error rates (red) was marginal. Performance was similar when using SCITE [16] instead
68 of CellPhy (Fig. S1).

69 For comparison, we also applied the clock LRT implemented in PAUP* [21, 22] and the Poisson dispersion
70 test [23]. The former is typically used in organismal phylogenetics and assumes error-free data. The latter tests if
71 the number of mutations per cell is sampled from a Poisson distribution, ignoring the underlying tree topology. The
72 PAUP* LRT was biased towards low p-values, even without scDNA-seq errors and using the true cell phylogeny
73 (Fig. 2b - orange). The p-values of the Poisson dispersion test were biased towards 1 in the absence of scDNA-seq
74 errors (Fig. 2b - green), but became biased towards 0 in the presence of scDNA-seq errors, resulting in high false
75 positive rates. We concluded that both tests are unsuited for testing clock-like evolution with scDNA-seq data.

76 We also simulated deviations from the clock with CellCoal [24] by introducing changes in the evolutionary
77 rate of a single lineage. For this, we choose a branch with probability proportional to its length. Then, we multiplied
78 its length and that of all descendant branches by 2 \times , 5 \times , or 10 \times . To assess the effect of the sample size, we simulated
79 100 cells and subsampled 10, 30, 50, 70, and 90 cells. As expected, the power of the PT test increased with more drastic
80 evolutionary rate changes and larger sample sizes (Fig. 2c, S3). Without scDNA-seq errors, the power of the PT test
81 was 92 % to 100 % already at the 2 \times rate changes. With scDNA-seq errors, the power of the PT was above 90 % for
82 5 \times and 10 \times rate changes and samples with more than 10 cells. For the 2 \times rate change, the power dropped below
83 50 %, especially for small sample sizes and high error rates. Overall, we conclude that the PT test can reliably assess
84 clock-like evolution in scDNA-seq data.

85 2.3 VAF-based selection tests detect clock-deviations poorly

86 Next, we simulated bulk data at 100 \times depth without scDNA-seq errors, based on the same single-cell phylogenies
87 of the previous section, and ran the 1/f test [7] and mobster [25]. We only included datasets where the fraction of
88 cells affected by the rate change was between 20 % and 70 %, as the 1/f test detects deviations from neutrality only
89 in that VAF range [25]. The 1/f test rejected neutrality in 20 % of the simulations under the clock and in more than
90 30 % of the simulations in the presence of a 2 \times , 5 \times , or 10 \times change of the evolutionary rate (Fig. 2c, first panel -
91 yellow). Mobster did not infer subclonal selection for all evolutionary rate changes (Fig. S2).

92 2.4 The PT test infers clock and non-clock evolution in scDNA-seq data

93 We applied the PT test to 22 scDNA-seq datasets (10 whole-genome and 12 whole-exome) from 15 patients containing
94 between 7 and 71 cells (Table 1). Thirteen datasets were derived from cancer tissues (blood, bladder, lung, prostate,
95 breast, colorectal (CRC), and renal cancer) and nine from normal, healthy tissue. Additionally, all datasets contained
96 a bulk normal sample and all but two cancer datasets contained a bulk tumor sample. Tables S1 and Spreadsheet S1
97 describe them in detail. We ran the PT test with the cell phylogenies and scDNA-seq error rates inferred by CellPhy.
98 Then, we mapped the mutations to specific branches (see 4) and identified cancer-specific driver mutations using
99 IntOGen [26].

100 Out of the 22 scDNA-seq datasets, we rejected neutral evolution in 10/13 cancer and 5/9 normal data sets. We
101 did not find any relationships between the PT test results and the number of mutations, cells, or inferred scDNA-seq
102 FN rate (Fig. S4). Some of the results of the PT-test might be explained by the identified known cancer-specific driver
103 mutations on internal branches (Fig. 3). Driver mutations on the trunk branch affect all sampled lineages equally
104 and, therefore, will not alter the clock. In four normal datasets (Lodato-P2-N, Wang-ER+-N, Wu-CRC0827-N, and
105 Wu-CRC0907-P), the PT test did not reject the clock (Fig. 3a). In Wang-ER+-N, we detected no driver mutations, and

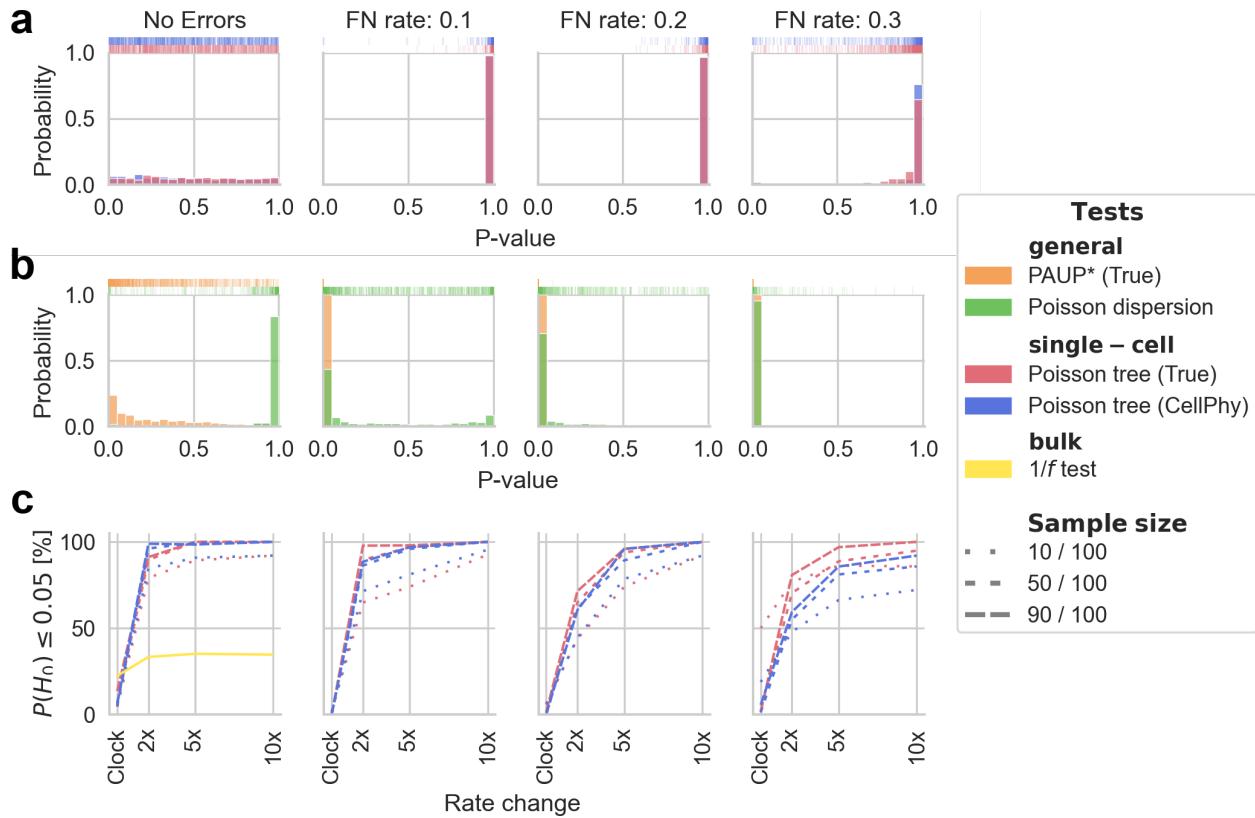


Figure 2: Molecular clock testing on simulated data. **b)** P-value distribution under the clock of the Poisson Tree (PT) test using the true (red) or inferred (blue) cell phylogeny and scDNA-seq error rates, for different scDNA-seq false negative (FN) rates. **a)** P-value distribution under the clock of PAUP*’s LRT (orange) and the Poisson dispersion test (green) for different scDNA-seq FN rates. **c)** Statistical power of the PT test for detecting non-clock evolution. Clock deviations are introduced by changing the evolutionary rate for a given lineage by 2 \times , 5 \times , or 10 \times . Different sample sizes are represented by distinct line styles (total: 100 cells). In the left panel, the yellow line represents the proportion of datasets in which the 1/f test proposed by Williams *et al.* rejected neutrality on bulk data comparable to the scDNA-seq data.

Dataset	Tissue	Subset	N Cell	N Mut	FN rate	PT test [p-value]	Driver mutations Trunk br.	Driver mutations Internal br.
Hou-C [27]	Blood	Cancer	71	1387	0.09	0.095	<i>ATM,PRKD2</i>	
Kang-C [19]	Colon	Cancer	34	2495	0.06	$<1 \times 10^{-6}$		<i>NCOR2</i>
Kang-N	Colon	Normal	14	287	0.01	0.007		<i>NCOR2</i>
Kozlov-C [18]	Colon	Cancer	24	2799	0.03	$<1 \times 10^{-6}$	<i>NRAS</i>	
Li-C [28]	Bladder	Cancer	54	885	0.11	0.005	<i>SF3B1</i>	<i>ATM</i>
Li-N	Bladder	Normal	8	644	0.17	$<1 \times 10^{-6}$		
Lodato-P1-N [29]	Neurons	Normal	10	935	0.05	4×10^{-4}		
Lodato-P2-N [29]	Neurons	Normal	15	747	0.04	0.128	<i>ZNRF3</i>	
Lodato-P3-N [29]	Neurons	Normal	8	928	0.09	$<1 \times 10^{-4}$	<i>TET2</i>	
Ni-C [30]	Lung	Cancer	8	340	0.20	$<1 \times 10^{-6}$	<i>PIK3CA, RB1,TP53</i>	<i>SETD2</i>
Su-P1-C [31]	Prostate	Cancer	7	23130	0.14	$<1 \times 10^{-6}$		
Su-P2-C [31]	Prostate	Cancer	8	15394	0.04	$<1 \times 10^{-6}$		
Wang-ER+-C [32]	Breast	Cancer	46	355	0.04	0.999	<i>PIK3CA, MAP3K1</i>	
Wang-ER+-N	Breast	Normal	12	300	0.12	0.231		
Wang-TNBC-C [32]	Breast	Cancer	16	1472	0.10	$<1 \times 10^{-6}$	<i>SPEN,NOTCH2, NTRK1,ZFHX3</i>	<i>ARID1B,SMAD4, ERBB4,GNAS</i>
Wang-TNBC-N	Breast	Normal	15	68	0.03	$<1 \times 10^{-6}$		
Wu-CRC0827-C [33]	Colon	Cancer	50	652	0.09	$<1 \times 10^{-6}$		<i>PARP4,NBEA, TP53,FAT4,TBX3</i>
Wu-CRC0827-P	Colon	Cancer	19	379	0.10	$<2 \times 10^{-4}$		<i>PARP4</i>
Wu-CRC0827-N	Colon	Normal	15	298	0.10	0.491		<i>PARP4</i>
Wu-CRC0907-C [33]	Colon	Cancer	49	574	0.10	$<1 \times 10^{-6}$		<i>SMARCA4,APC, GNAS,ARID1A</i>
Wu-CRC0907-P	Colon	Normal	25	181	0.04	0.336	<i>SMARCA4</i>	<i>BRAF</i>
Xu-C [34]	Kidney	Cancer	20	747	0.04	0.158		

Table 1: Poisson tree (PT) test results and called cancer-specific driver genes for scDNA-seq datasets. For the PT test, p-values below a significance level of 0.05 are displayed in bold.

N = Number of, Mut = Mutations, br = branch.

in Lodato-P2-N all known drivers were placed on the trunk branch. In the benign polyp dataset Wu-CRC0907-P, we detected an activating mutation in the oncogene *BRAF* in 3/25 cells, which was not reported in the original study. *BRAF* activation is a known early event in CRC tumor initiation [35], indicating that the polyp might have been adenomatous already. In Wu-CRC0827-N, we inferred a *PARP4* mutation on an internal branch, present in 4/15 cells. However, *PARP4*'s mode of action is labeled as "ambiguous" in IntOGen, and it is not listed as a driver gene in the Cancer Gene Census (CGC) [36]. The PT test rejected the clock in the remaining five normal datasets (Fig. 3b). Within these, only in Kang-N we found a driver mutation on an internal branch (present in 9/14 cells), namely an activation of *NCOR2*, a known driver in the CGC. For Lodato-P1-N, Lodato-P3-N, and Li-N, we inferred fully ladder-like trees, meaning that every internal node was connected to at least one single-cell. Such a pattern might be caused by varying scDNA-seq error rates across otherwise contemporaneous cells. Therefore, these results should be interpreted with caution. In Wang-TNBC-N only 68 mutations were called, out of which 37 were mapped to the trunk branch. The low number of mutations at internal branches did not prevent rejecting of the clock. The PT test did not reject the clock (Fig. 3c) in three cancer datasets (Wang-ER+-C, Hou-C, Xu-C). In all of them, we could not identify drivers on internal branches. For the remaining nine cancer datasets, the PT test rejected the clock (Fig. 3d). In six of these, we identified at least one known driver mutation on an internal branch of the tree.

Additionally, we calculated the dN/dS ratios of mutations affecting cancer driver genes for the combined mutations from all individual cells ("pseudo-bulks") [37]. In ten datasets, mainly derived from normal tissue, the dN/dS ratio could not be calculated as no or just one mutation was located in a cancer driver gene (Table S1). For

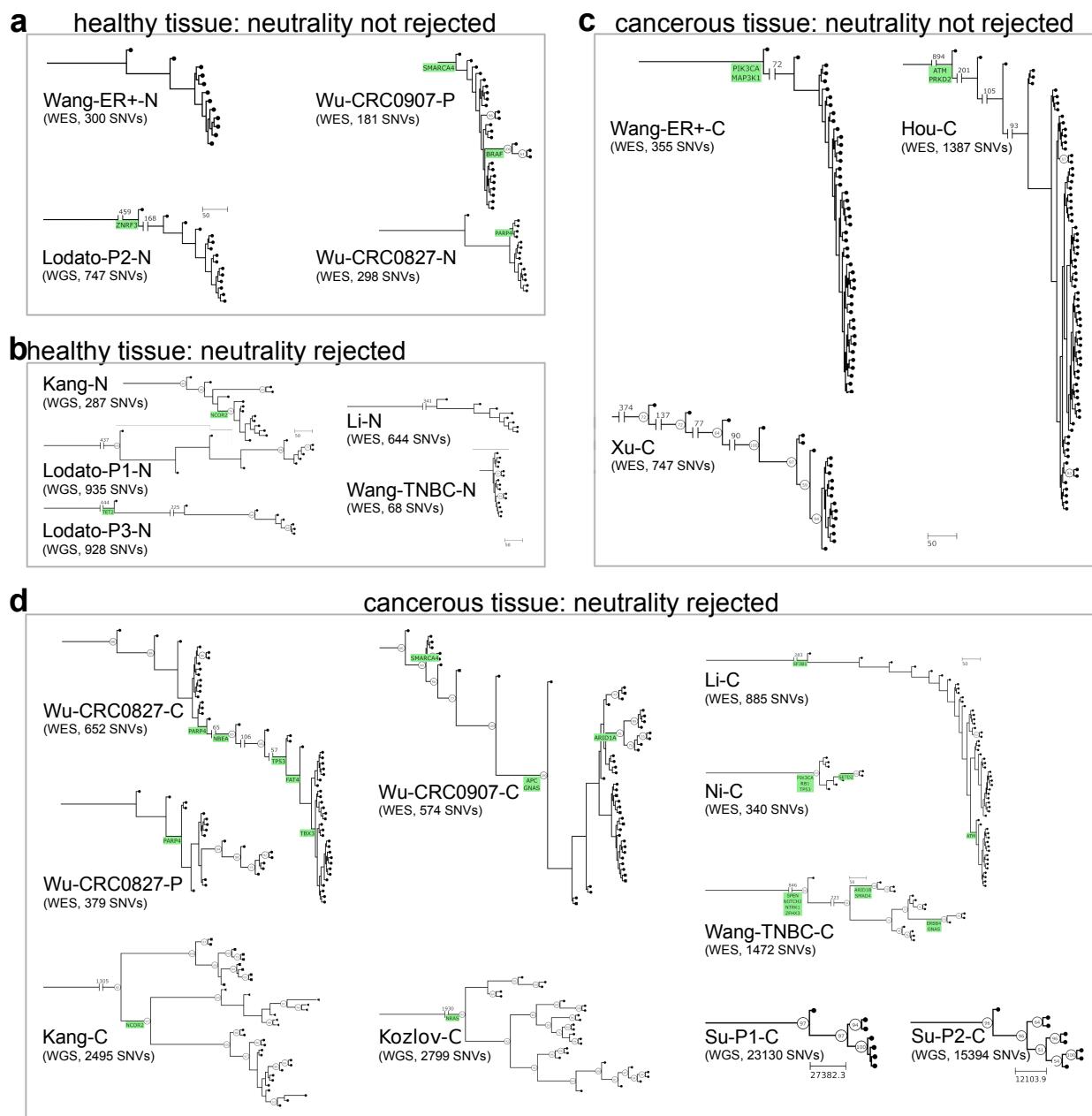


Figure 3: Inferred single-cell phylogenies and known driver mutations. **a)** In four healthy tissue datasets, we detected no deviation from the molecular clock. Driver mutations were either absent, located on the trunk branch, or present in four cells at most. **b)** In five healthy tissue datasets, we rejected the clock. Three of these showed a ladder-like pattern, meaning that each internal node is an ancestor to at least one leaf node (Lodato-P1, Lodato-P3, and Li-N). In the Wang-TNBC-N dataset, we called only 68 mutations and mapped most the trunk branch. In Kang-N, we identified a known driver mutation on an internal branch. **c)** In three cancer datasets, we did not reject the clock. We either identified no driver mutations (Xu-C) or mapped all known drivers to the trunk branch (Hou-C and Wang-ER+C). **d)** In ten cancer datasets, we found significant deviations from the clock. In seven of these, we identified at least one known driver mutation on an internal branch. In the Kozlov-C datasets, the only known driver was placed on the trunk branch, and in Su-P1-C and Su-P2-C we identified no drivers.

The leaf node shapes correspond with different spatial sampling locations. Bootstrap values above 50 are indicated.

124 the remaining datasets, the confidence intervals of the dN/dS ratios included 1 (Kang-C, Kozlov-C, Li-C, Li-N, Ni-C,
125 Wang-TNBC-C, Wang-ER+-C, Wang-ER+-N, Wu-CRC0827-C, Wu-CRC0907-C, and Xu-C) or only values smaller
126 than 1 (Hou-C and Su-P1-C). Therefore, the dN/dS ratios showed no evidence for positive selection.

127 **2.5 Bulk selection tests produce ambiguous results on scDNA-seq data**

128 Additional to the analysis of the scDNA-seq data, we calculated dN/dS ratios and applied the two approaches by
129 Williams *et al.* to all 16 available bulk tumor samples (Table S2). The dN/dS ratio confidence intervals for all cancer
130 bulk samples included 1. The $1/f$ test rejected neutrality in six cases, including two datasets in which the PT test
131 did not (Wu-CRC0907-P and Xu-C). Contrarily, the $1/f$ test did not reject neutrality in four datasets where the PT
132 test did so (Wu-CRC0827-C, Wang-TNBC-C, Ni-C, and Kozlov-C). These findings may be limited as a sequencing
133 depth above $100\times$ and cellularity above 0.5, required for the $1/f$ test to be robust [25], was only achieved in the
134 Li-BC sample. Mobster only produced results for three datasets. In the bladder cancer bulk sample corresponding
135 to Li-C, a clone with selective disadvantage ($s = -1.1$) was inferred, and no clones were inferred in the bulk samples
136 corresponding to Wang-TNBC-C (PT test p-value: $<1e-6$) and Xu-C (PT test p-value: 0.16).

137 **3 Discussion**

138 The controversies over the mode of tumor evolution arise from the impracticality of directly assessing the effect of
139 individual mutations on cancer progression in humans *in vivo*. Consequently, different tests assess deviations from
140 neutrality indirectly, e.g., via the genome-wide VAF distribution or the ratio of non-synonymous to synonymous
141 mutations in driver genes. In this work, we developed a Poisson tree (PT) test for a molecular clock, implying
142 homogeneity of the evolutionary rates (i.e., the number of mutations accumulated in a time period) among cell
143 lineages. Since we expect clock-like evolution under neutrality [13, 14], deviations from the clock can unveil
144 deviations from neutrality. In somatic evolution, deviations from the clock can result from an increased number of
145 cell divisions per time, i.e., a higher fitness, in a given cell lineage or clone. The expansion of one or more selectively
146 advantageous subclone/s will therefore result in non-clock evolution [15].

147 Our test is based on single-cell phylogenies, leveraging the high resolution of scDNA-seq data for inferring
148 evolutionary relationships while accounting for the technical noise inherent to scDNA-seq. In our benchmark, the
149 PT test showed a low false positive rate and high power. Minor clock deviations, resulting from effectively neutral
150 evolution, are generally difficult to detect [8], but the PT test was still able to identify variation in the evolutionary
151 rates where the VAF tests did not. When we applied the PT test to 22 real scDNA-seq datasets, we rejected the clock
152 in 15 of them. If the rejection is due to selection, we might be able to locate a driver gene in one of the internal
153 branches of the cell phylogenies. Driver mutations are one of the best understood causes for an increased somatic
154 evolutionary rate [26, 38]. Early driver events, i.e., those mapped to the trunk, will be likely involved in tumor
155 initiation or previous selective sweeps. Later driver events, mapped to internal branches, will result in subclonal
156 selection and a deviation from the clock in the cell phylogeny. In most datasets rejecting the clock, we identified
157 driver mutations on internal branches, possibly causing deviations in the evolutionary rates of different cell lineages.
158 In datasets without clock rejections, we identified either no drivers, drivers on the trunk branch, or drivers being
159 present in only a small fraction of cells. The latter might correspond to late evolutionary rate changes (effectively
160 neutral evolution) but could also result from sampling biases.

161 We acknowledge that changes in the evolutionary rates, and therefore rejections of the clock, might still
162 occur under neutrality. For example, increases in the mutation rate per cell division for a particular lineage, spatial
163 constraints [39], cell dormancy [40], or variations in the tumor microenvironment of some cells [2], might result in
164 heterogeneous evolutionary rates in the absence of adaptive changes. Indeed, such scenarios might also lead VAF
165 tests ($1/f$ test and mobster) to reject “neutrality” [7]. Small sample sizes limit the power of the PT test. Incomplete
166 sampling is an open problem inherent to somatic next-generation sequencing overall, not only to scDNA-seq. In
167 bulk approaches, detectable clones and their VAF distribution depend on the number, type, and spatial location of
168 biopsies taken [41]. While bulk sequencing indeed samples many more cells than single-cell strategies, they rely
169 on summaries of the data that might hide non-obvious levels of evolutionary heterogeneity. For example, although
170 both the PT and VAF tests target recent, ongoing selection, the PT test might be more sensible for newborn selective
171 sweeps.

172 Understanding whether cell lineages evolve at similar or distinct rates will be relevant for various aspects of
 173 cell biology, especially for processes like cancer, development, or differentiation. A molecular clock, for example, is
 174 frequently assumed to determine the age of tumors [42], or to study the temporal framework of tissue development
 175 [43–45]. Combining established methods from evolutionary biology with advances in single-cell technologies, as we
 176 did in this work, offers great potential to study the evolution of somatic tissues through time and space.

177 4 Methods

178 4.1 Poisson tree test model and input data

179 The Poisson tree (PT) test requires as input a mutation matrix, false positive (FP) and false negative (FN) error
 180 rates, and a rooted tree topology \mathcal{T} representing the genealogy of the sampled cells. The mutation matrix $\mathbf{X} \in$
 181 $\{0, 1, -\}^{m \times n}$ indicates which of the m mutations are present in the n cells, with 0 representing the absence of a
 182 mutation, 1 the presence, and “-” a missing value. The FP rate α is the fraction of 0’s wrongly called as 1’s, while
 183 the FN rate β is the fraction of true 1’s wrongly called as 0’s. In scDNA-seq data, FPs arise mainly from DNA
 184 lesions during cell isolation and manipulations, single-cell whole-genome amplification (scWGA), and sequencing
 185 errors; FNs arise mainly from allele dropout (ADO) events during scWGA. Missing values result from ADOs of
 186 both alleles or insufficient coverage to call mutations reliably. The fraction of missing data in each cell j is $\gamma_j =$
 187 $1/m \sum_{p=1}^m [X_{p,j} = -]$, where $[\cdot]$ is the indicator function. The cell tree topology $\mathcal{T} = (V, E)$ consists of $|V| = 2n - 1$
 188 nodes and $l = |E| = 2n - 2$ branches. The n leaf nodes L are the sampled cells and the $n - 1$ internal nodes I are
 189 unobserved ancestor cells. We infer the branch lengths (number of mutations between two nodes) of the cell tree
 190 $\mathbf{k} = [k_1 \dots k_l]^T \in \mathbb{R}^+$ by mapping mutations to specific branches (see next section). We model the inferred
 191 branch length k_i as a Poisson process, depending on a branch-specific evolutionary rate λ_i . In particular, $\lambda_i \in \mathbb{R}_{>0}$
 192 is the product of a mutation rate per cell division and the number of cell divisions.

193 The likelihood of the evolutionary rates $\lambda = (\lambda_1, \dots, \lambda_l)$ given the inferred branch lengths \mathbf{k} is then

$$L(\lambda | \mathbf{k}) = \prod_{i=1}^l \text{Poisson}(k_i | \lambda_i)^{w_i} = \prod_{i=1}^l \left(\frac{\lambda_i^{k_i} e^{-\lambda_i}}{k_i!} \right)^{w_i} \quad (1)$$

194 with w_i weighting the impact of branch i on the likelihood. If $\mathbf{w} = \mathbf{1} \in \mathbb{R}^l$, all branches are weighted equally;
 195 otherwise, branches with a higher weight impact the total likelihood more. The log-likelihood is

$$\mathcal{L}(\lambda | \mathbf{k}) = \log L(\lambda | \mathbf{k}) \propto \sum_{i=1}^l w_i (k_i \log(\lambda_i) - \lambda_i) \quad (2)$$

196 where we have omitted the constant $\sum_{i=1}^l \log(k_i!)$, which cancels out in the likelihood ratio below. We infer λ by
 197 using maximum likelihood estimation (MLE), which amounts to solving

$$\min_{\lambda \in \mathbb{R}_{>0}^l} - \sum_{i=1}^l w_i (k_i \log(\lambda_i) - \lambda_i). \quad (3)$$

198 **Null model H_0 : molecular clock.** The null model assumes a homogeneous evolutionary rate along the cell
 199 phylogeny (i.e., a molecular clock) and that all cells have been sampled at the same time point. Consequently,
 200 the cumulative branch length from any internal node to its succeeding leaf nodes should be equal. This imposes
 201 $n - 1$ constraints on λ , which can be written as a system of linear equations defined by a constraint matrix $\mathbf{C} \in$
 202 $\{-1, 0, 1\}^{(n-1) \times l}$. Each row in \mathbf{C} corresponds to an internal node, each column to a branch, and

$$C_{i,j} = \begin{cases} 1 & \text{if } E_j \in P(I_i, L_{i \rightarrow}) \\ -1 & \text{if } E_j \in P(I_i, L_{i \leftarrow}) \\ 0 & \text{else} \end{cases} \quad (4)$$

203 where $P(I_x, L_y)$ is the path between the internal node x and the leaf node y , i.e., the set of all branches connecting the
 204 two nodes, and $L_{i \rightarrow}$ and $L_{i \leftarrow}$ are arbitrary leaf nodes from the left or right subtree succeeding node I_i , respectively.

205 There are several equivalent parametrizations of the constraint matrix, as both left and right subtrees, as well as the
 206 leaf nodes, are chosen arbitrarily. Given that the sum of Poisson-distributed random variables is Poisson-distributed
 207 as well, we can write the constraints imposed by the molecular clock as

$$\mathbf{C} \cdot \boldsymbol{\lambda} = \mathbf{0}. \quad (5)$$

208 To solve the MLE problem (Eq. 3) subject to the clock constraints (Eq. 5) and the boundary constraints $\boldsymbol{\lambda} > \mathbf{0}$, we used
 209 the Byrd-Omokun Trust-Region Sequential Quadratic Programming algorithm [46], a gradient-based numerical
 210 optimizer.

211 **Alternative model H_1 : constraint-free evolutionary rates.** If there are no constraints on $\boldsymbol{\lambda}$, i.e., $\mathbf{C} = \mathbf{0}$, Eq. 3
 212 can be solved analytically. The likelihood is maximal if the parameters $\boldsymbol{\lambda}$ are equal to the branch lengths \mathbf{k} (Section
 213 S2). For branches with no mapped mutations, we use the limit $\lim_{k \rightarrow 0^+} k_i \log(k_i) = 0$.

214 **Likelihood ratio test (LRT).** As the null model is nested in the alternative model, their likelihoods can directly be
 215 compared with a χ^2 -distributed LRT. The test statistic Λ is twice the negative log-likelihood ratio

$$\Lambda = -2[\mathcal{L}(\boldsymbol{\lambda}_0 \mid \mathbf{k}) - \mathcal{L}(\boldsymbol{\lambda}_1 \mid \mathbf{k})] = -2 \left[\sum_{i=1}^l w_i (k_i(\log(\lambda_{0,i}) - \log(\lambda_{1,i})) - \lambda_{0,i} + \lambda_{1,i}) \right] \quad (6)$$

216 and χ^2 -distributed with $n - 1$ degrees of freedom. The probability of the null model given the observed data is
 217

$$P(H_0 \mid \mathbf{k}, \mathbf{C}) = \int_0^\Lambda \chi_{(n-1)}^2 \quad (7)$$

218 If k optimized parameters were on the boundary under the null, however, we changed the distribution of the test
 219 statistic to a mixture of χ^2 distributions with $n, n-1, \dots, n-k$ degrees of freedom, weighted by normalized binomial
 220 coefficients, as reported by Self and Liang [47](case 9).

221 4.2 Mapping mutations and defining branch lengths

222 To map mutations onto specific branches of the cell phylogeny, we define the matrix $\mathbf{M}^{m \times l} \in [0, 1]$, where $M_{p,i}$
 223 is the probability that mutation p is assigned to branch i . We assume that mutations are i.i.d. and make the infinite
 224 sites assumption (ISA), i.e., we exclude the possibility of parallel and back mutations. Consequently, any mutation
 225 that is placed on its true branch is expected to be present in all cells succeeding that branch if no errors occurred. By
 226 comparing the expected mutations with the observed ones, we can calculate the probability of assigning a mutation
 227 to any branch, similarly to SCITE [16]:

$$M_{p,i} = \frac{\prod_{j=1}^n P(X_{p,j} \mid A_{i,j})}{\prod_{j=1}^n P(X_{p,j} \mid 0) + \sum_{i'=1}^l \prod_{j=1}^n P(X_{p,j} \mid A_{i',j})} \quad (8)$$

228 with $\mathbf{A} \in \{0, 1\}^{l \times n}$ being the ancestor matrix representing \mathcal{T} , where rows represent branches and columns represent
 229 cells, and $A_{i,j} = 1$ if branch i belongs to the lineage of cell j , and 0 otherwise. The first product of the denominator
 230 represents a mutation-free cell and therefore the probability of a wrong mutation call. With FP rate α and FN rate
 231 β , we obtain the following probability for the observed mutation state x given an expected state y :

$$P(x \mid y) = \begin{cases} 1 - \alpha & \text{if } x = 0 \wedge y = 0 \\ \beta & \text{if } x = 0 \wedge y = 1 \\ \alpha & \text{if } x = 1 \wedge y = 0 \\ 1 - \beta & \text{if } x = 1 \wedge y = 1 \\ 1 & \text{if } x = - \end{cases} \quad (9)$$

232 The number of mutations mapped to a branch j is the column sum over \mathbf{M} :

$$k_j = \sum_{p=1}^m M_{p,j}. \quad (10)$$

233 A schematic of the mutation mapping is displayed in Figure S5.

234 4.3 Weighting branches

235 The estimated branch lengths k are subject to uncertainties. The soft assignment in Eq. 8 accounts for FP calls and
 236 uncertainties in the mutation placement, including FN calls in some but not all cells. However, true mutations can
 237 also be not reported in general due to FN or missing events in all cells simultaneously. We call this event a mutation
 238 loss. For each branch, the probability of a mutation loss is proportional to the number of cells containing the branch
 239 in their lineage, and can be defined as

$$240 P_{loss}(E_i | A, \alpha, \beta, \gamma) = \prod_{j=1}^n [(1 - \gamma_j)\beta + \gamma_j]^{A_{i,j}} \cdot [(1 - \gamma_j)(1 - \alpha) + \gamma_j]^{1 - A_{i,j}} \quad (11)$$

241 The first term in Eq. 11 describes the probability of FN or missing events in all cells containing the mutation; the
 242 second term is the probability of no FP or missing events in any other cell. Given that the probability for a FN call
 243 is Bernoulli-distributed, we can weight the branches by their inverse-variance by defining

$$244 \tilde{w}_i = \min \left\{ \left(P_{loss}(E_i | A, \alpha, \beta, \gamma) (1 - P_{loss}(E_i | A, \alpha, \beta, \gamma)) \right)^{-1}, w_{\max} \right\}. \quad (12)$$

245 For instance, a w_{\max} value of 100 corresponds to a maximum probability of 0.99 to observe a true mutation anywhere
 246 in the tree, a value of 1000 to a maximum probability of 0.999.

247 To retain the degrees of freedom of the χ^2 approximation used in the LRT statistic, we normalize the weights

$$248 w_i = l \cdot \frac{\tilde{w}_i}{\sum_{i'=1}^l \tilde{w}_{i'}} \quad (13)$$

249 such that $\sum_{i=1}^l w_i = l$. A schematic of the branch weighting is displayed in Figure S6. The limit of the inverse
 250 variance of a Bernoulli distribution is infinity, therefore the upper limit w_{\max} is necessary. Without it, the weight for
 251 a single or few branches with a very low probability for mutation losses would be several magnitudes higher than
 252 for most other branches. As the weights are normalized, w_{\max} regulates their dispersion: low w_{\max} values lead to
 253 weights closer to 1, and larger w_{\max} values lead to weights dispersed more widely.

254 We evaluated the impact of w_{\max} on the PT tests' accuracy using simulations and found that $w_{\max} = 1000$
 255 ensured a false positive rate close to zero (Section S1, Fig. S3). Therefore, we used this value for all the calculations
 256 in this study.

257 4.4 Simulation of clock and non-clock scDNA-seq data

258 We used CellCoal [24] to simulate scDNA-seq data with 30 and 100 cells and different levels of error (mainly varying
 259 ADO). CellCoal simulates the genealogy of a sample of cells together with genotype data, subject to scDNA-seq
 260 errors, in VCF format. To simulate pseudo-bulk data with $100 \times$ depth and a cellularity of 1, we simulated 100 single
 261 cells with $1 \times$ depth and without scDNA-seq errors. All datasets consisted of 10 000 sites, a somatic mutation rate
 262 of 10^{-6} , and a sequencing depth of $20 \times$. For the simulation of scDNA-seq datasets, the amplification error was 1%,
 263 the sequencing error was 1%, and the sequencing depth overdispersion was 5. We increased the ADO rates from
 264 $20\% \pm 10\%$ (std) per cell to $80\% \pm 10\%$ per cell in steps of 20 %. As input for the PT test, we used half the ADO rate plus
 265 one-third of the amplification error rate as FN. The former represents the chance that the mutated allele is affected by
 266 an ADO. Due to the binarization, homozygous mutations are not affected by ADO and heterozygous mutations are
 267 affected only in 50 % of the cases. The latter represents the chance of the mutated allele appearing as the reference
 268 allele due to a technical error during the scDNA-seq pipeline. As FP rate, we used CellCoal's amplification error rate.
 269 Sequencing errors were ignored, as it is very unlikely that the same sequencing error occurs in multiple reads at the
 270 same position. For all datasets, mutation calls with depth $< 5 \times$ or quality (GQ) < 1 were filtered out.

271 By default, CellCoal simulates an ultrametric cell genealogy resulting from a single evolutionary rate (i.e., a
 272 clock-like tree). Alternatively, deviations from the clock can be modeled with a single change in the evolutionary
 273 rate along the tree. A branch is sampled with probability proportional to its length, and the length of this branch
 274 and all descendant branches are multiplied by a given factor.

275 Here, we simulated non-clock evolution with $2 \times$, $5 \times$, and $10 \times$ rate changes. We only included simulations
 276 where the fraction of cells affected by the change was between 10 % and 90 %, similar to Williams *et al.*. A smaller

275 fraction corresponds to a late change in the evolutionary rates, a higher fraction to an early change or selective
276 sweep, resulting in effectively neutral, clock-like evolution. To obtain a comparable number of mutations across
277 the different non-clock scenarios, we decreased the global mutation rate for the 2 \times , 5 \times , and 10 \times rate changes to
278 8 $^{-7}$, 5 $^{-7}$, and 3 $^{-7}$, respectively. Simulations under the null were repeated 1000 times and simulations under the
279 alternative 3000 times.

280 4.5 Inference of cell phylogenies

281 For the benchmark of the PT test, we inferred the cell phylogenies with CellPhy [18] (default parameters and ML
282 model), which operates a constraint-free model for the branch lengths, and with SCITE [16] (-r 1 -n 5e5
283 -d 0.01 -ad 0.2 -e 0.1 -z -a -transpose), which infers the tree topology but not the branch
284 lengths). Cellphy infers the amplification/sequencing error rate, corresponding to the probability of observing a
285 wrong base, and the ADO rate, rather than FN and FP rates. We used half the ADO rate estimated by CellPhy, plus
286 one-third of the inferred amplification/sequencing error rate, as the FN rate for the PT test. As FP rate, we used
287 the amplification/sequencing error rate inferred by CellPhy. SCITE infers FN and FP rates directly. For the real
288 scDNA-seq data, we inferred cell phylogenies with CellPhy with the same settings as for the benchmark. To root
289 the phylogenetic trees inferred by CellPhy, we added a synthetic cell without any mutation and used it for outgroup
290 rooting.

291

292 4.6 Statistical tests of neutrality and subclonal selection for bulk data

293 For the benchmark of the 1/f neutrality test [7], we ran the 1/f test (version 0.0.3) with depth 100 \times , ploidy 2, and
294 cellularity 1. For the benchmark of mobster [48] (version 1.0.0), we ran it with default parameters except for the
295 number of subclones, which we set to 1, according to the single rate change we deployed to simulate deviations from
296 neutrality, resulting in two clades with different evolutionary rates.

297 For the real bulk data, we used the ploidy and cellularity values inferred by sequenza (version 3.0.0) [49] for
298 the 1/f test. Mobster was run with default parameters.

299 4.7 dN/dS ratio estimation

300 We calculated dN/dS ratios with the R package dndscv [37] and default parameters, including only mutations in the
301 369 cancer driver genes identified by Martínconera *et al.* [37]. For the scDNA-seq data, we used pseudo-bulk data,
302 as the number of coding mutations per cell was not enough to calculate dN/dS ratios for individual cells.

303 4.8 Biological data processing

304 All datasets were downloaded in FASTQ format from the NCBI's Sequence Read Archive (SRA) database. Library
305 adapters and amplification protocol-specific adapters were trimmed with cutadapt (version 1.18). Reads were mapped
306 to the 1000G Reference Genome hs37d5 by using bwa (version 0.7.17), aligned files were sorted by using Picard
307 SortSam (version 2.18.14), and files from different lanes were merged and duplicates marked by using Picard MarkDuplicates
308 (version 2.18.14). GATK IndelRealignment (version 3.7.0) was applied for local realignment based on indel calls by
309 using the 1000G Phase 1 and the Mills and 1000G gold standard databases, and GATK BaseRecalibrator (version
310 4.0.10) to recalibrate base scores by using dbSNP (build 138) and indels from the 1000G Phase 1. We calculated
311 sequencing depth and breadth with samtools (version 1.9) and the ADO rate as described in [29] for each cell. Cells
312 with extremely high ADO rate (above Q3 + 1.5 IQR per dataset), as well as cells with < 40% coverage breadth, were
313 excluded (Table S2). In contrast to the original studies using WES data, we did not filter the off-target loci but used
314 all sequenced sites. Similar preprocessing was done for the bulk data for normal and tumor samples, followed by
315 estimation of copy numbers using sequenza.

316 Mutations in single cells were called with a modified version of SCcaller (<https://github.com/NBMueller/SCcaller> - modifications listed) with default parameters and dbSNP build 138. Additionally,
317 pileups with a minimum mapping quality of 40 were generated with samtools (version 1.9) to call mutations with a
318 modified version of Monovar (<https://github.com/NBMueller/MonoVar> - modifications listed) with
319 default parameters and without the consensus filtering step. Where tumor bulk samples were available, mutations
320

321 were called with Mutect2 following the GATK best practice workflow for “Somatic short variant discovery (SNVs +
322 Indels)”. Finally, a set of high-confidence mutations was generated for each dataset by 1) excluding mutations with
323 a quality score below ten or a read depth below ten, and by 2) excluding mutations that were called in only one
324 cell and were not supported by both single-cell callers or by the bulk tumor sample. Additionally, mutations with
325 missing data at more than 50 % of the cells were excluded. To annotate the mutations, we used the Ensembl Variant
326 Effect Predictor [50].

327 **4.9 Implementation**

328 The pipelines for processing scDNA-seq data, simulating data, and analyzing data were implemented in Snakemake.
329 The PT test is implemented in Python and requires called mutations in VCF format, a phylogenetic tree in Newick
330 format, and estimated FN and FP rates of the called mutations as input. All the code is freely available at <https://github.com/cbg-ethz/scSomMerClock>.

332 **Funding**

333 This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie
334 Skłodowska-Curie CONTRA grant agreement No. 766030, the European Research Council (ERC) agreements n°
335 617457 to D.P. and n° 609883 to N.B.], and the Spanish Ministry of Science and Innovation - MICINN (PID2019-106247GB-I00
336 to D.P.). D.P. also receives support from Xunta de Galicia.

337

338 *Conflict of Interest:* none declared.

339 **References**

- 340 1. Burrell, R. A. & Swanton, C. Re-Evaluating Clonal Dominance in Cancer Evolution. *Trends in Cancer* **2**, 263–276
341 (2016).
- 342 2. Maley, C. C. *et al.* Classifying the evolutionary and ecological features of neoplasms. *Nature Reviews Cancer* **17**,
343 605–619 (2017).
- 344 3. Turajlic, S. *et al.* Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.
345 *Cell* **173**, 595–610 (2018).
- 346 4. West, J. *et al.* Towards Multidrug Adaptive Therapy. eng. *Cancer research* **80**, 1578–1589 (2020).
- 347 5. Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. *Nature Reviews Clinical*
348 *Oncology* **17**, 675–686 (2020).
- 349 6. Ling, S. *et al.* Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell
350 evolution. *Proceedings of the National Academy of Sciences* **112**, E6496–E6505 (2015).
- 351 7. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution
352 across cancer types. *Nature Genetics* **48**, 238–244 (2016).
- 353 8. Sun, R. *et al.* Between-region genetic divergence reflects the mode and tempo of tumor evolution. *Nature*
354 *Genetics* **49**, 1015–1024 (2017).
- 355 9. Tarabichi, M. *et al.* Neutral tumor evolution? *Nature Genetics* **50**, 1630–1633 (2018).
- 356 10. McDonald, T. O., Chakrabarti, S. & Michor, F. Currently available bulk sequencing data do not necessarily
357 support a model of neutral tumor evolution. *Nature Genetics* **50**, 1620–1623 (2018).
- 358 11. Balaparya, A. & De, S. Revisiting signatures of neutral tumor evolution in the light of complexity of cancer
359 genomic data. *Nature Genetics* **50**, 1626–1628 (2018).
- 360 12. Heide, T. *et al.* Reply to ‘Neutral tumor evolution?’ *Nature Genetics* **50**, 1633–1637 (2018).
- 361 13. Zuckerkandl, E. & Pauling, L. in *Evolving Genes and Proteins* (eds Bryson, V. & Vogel, H. J.) 97–166 (Academic
362 Press, 1965).

363 14. Kimura, M. Evolutionary Rate at the Molecular Level. *Nature* **217**, 624–626 (1968).

364 15. Niida, A., Iwasaki, W. M. & Innan, H. Neutral Theory in Cancer Cell Population Genetics. *Molecular Biology and*
365 *Evolution* **35**, 1316–1321 (2018).

366 16. Jahn, K., Kuipers, J. & Beerenwinkel, N. Tree inference for single-cell data. *Genome Biology* **17**, 86 (2016).

367 17. Zafar, H., Tzen, A., Navin, N., Chen, K. & Nakhleh, L. SiFit: inferring tumor trees from single-cell sequencing
368 data under finite-sites models. *Genome Biology* **18**, 178 (2017).

369 18. Kozlov, A., Alves, J. M., Stamatakis, A. & Posada, D. CellPhy: accurate and fast probabilistic inference of single-cell
370 phylogenies from scDNA-seq data. *Genome Biology* **23**, 37 (2022).

371 19. Kang, S. *et al.* SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA
372 sequencing data. *bioRxiv* (2022).

373 20. Navin, N. E. Cancer genomics: one cell at a time. *Genome Biology* **15**, 452 (2014).

374 21. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. *Journal of Molecular*
375 *Evolution* **17**, 368–376 (1981).

376 22. Swofford, D. L. *PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods)*. Version 4. Sinauer Associates,
377 Sunderland, Massachusetts. 2003.

378 23. Ohta, T. & Kimura, M. On the constancy of the evolutionary rate of cistrons. *Journal of Molecular Evolution* **1**,
379 18–25 (1971).

380 24. Posada, D. CellCoal: coalescent simulation of single-cell sequencing samples. *Molecular Biology and Evolution*
381 (2020).

382 25. Williams, M. J. *et al.* Quantification of subclonal selection in cancer from bulk sequencing data. *Nature Genetics*
383 **50**, 895–903 (2018).

384 26. Martínez-Jiménez, F. *et al.* A compendium of mutational cancer driver genes. *Nature Reviews Cancer* **20**, 555–572
385 (2020).

386 27. Hou, Y. *et al.* Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative
387 Neoplasm. *Cell* **148**, 873–885 (2012).

388 28. Li, Y. *et al.* Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive
389 bladder cancer. *GigaScience* **1**, 2047-217X-1-12 (2012).

390 29. Lodato, M. A. *et al.* Somatic mutation in single human neurons tracks developmental and transcriptional history.
391 *Science (New York, N.Y.)* **350**, 94–98 (2015).

392 30. Ni, X. *et al.* Reproducible copy number variation patterns among single circulating tumor cells of lung cancer
393 patients. *Proceedings of the National Academy of Sciences* **110**, 21083–21088 (2013).

394 31. Su, F. *et al.* Spatial Intratumor Genomic Heterogeneity within Localized Prostate Cancer Revealed by Single-nucleus
395 Sequencing. *European Urology* **74**, 551–559 (2018).

396 32. Wang, Y. *et al.* Clonal evolution in breast cancer revealed by single nucleus genome sequencing. *Nature* **512**,
397 155–160 (2014).

398 33. Wu, H. *et al.* Evolution and heterogeneity of non-hereditary colorectal cancer revealed by single-cell exome
399 sequencing. *Oncogene* **36**, 2857–2867 (2017).

400 34. Xu, X. *et al.* Single-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney
401 Tumor. *Cell* **148**, 886–895 (2012).

402 35. Fanelli, G. N. *et al.* The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal
403 cancer. *Cancer Cell International* **20**, 30 (2020).

404 36. Sondka, Z. *et al.* The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers.
405 *Nature Reviews Cancer* **18**, 696–705 (2018).

406 37. Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues. *Cell* **171**, 1029–1041.e21
407 (2017).

408 38. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. *Cell* **144**, 646–674 (2011).

409 39. Noble, R. *et al.* Spatial structure governs the mode of tumour evolution. *Nature Ecology & Evolution* **6**, 207–217
410 (2022).

411 40. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. *Nature Reviews Cancer* **20**, 398–411 (2020).

412 41. Chkhaidze, K. *et al.* Spatially constrained tumour growth affects the patterns of clonal selection and neutral
413 drift in cancer genomic data. *PLOS Computational Biology* **15**, 1–26 (2019).

414 42. Gerstung, M. *et al.* The evolutionary history of 2,658 cancers. *Nature* **578**, 122–128 (2020).

415 43. Osorio, F. G. *et al.* Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human
416 Hematopoiesis. *Cell Reports* **25**, 2308–2316.e4 (2018).

417 44. Coorens, T. H. H. *et al.* Extensive phylogenies of human development inferred from somatic mutations. *Nature*
418 **597**, 387–392 (2021).

419 45. Mitchell, E. *et al.* Clonal dynamics of haematopoiesis across the human lifespan. *Nature* **606**, 343–350 (2022).

420 46. Lalee, M., Nocedal, J. & Plantenga, T. On the Implementation of an Algorithm for Large-Scale Equality Constrained
421 Optimization. *SIAM Journal on Optimization* **8**, 682–706 (1998).

422 47. Self, S. G. & Liang, K.-Y. Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests
423 Under Nonstandard Conditions. *Journal of the American Statistical Association* **82**, 605–610 (1987).

424 48. Caravagna, G. *et al.* Subclonal reconstruction of tumors by using machine learning and population genetics.
425 *Nature Genetics* **52**, 898–907 (2020).

426 49. Favero, F. *et al.* Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. eng.
427 *Annals of oncology : official journal of the European Society for Medical Oncology* **26**, 64–70 (2015).

428 50. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biology* **17**, 122 (2016).