

1 **Title:** IL-22/IL-22RA1 promotes human Tenon's capsule fibroblasts proliferation and
2 regulates fibrosis through STAT3 signaling pathway

3 **Running title:** IL-22/IL-22RA1/STAT3 mediates fibrosis

4 **Authors:**

5 Yang Zhao Dr., Ph.D^{1,2,3}, Xiaoyu Zhou Dr., Ph.D^{1,2,3}, Xinyue Zhang Dr., Ph.D
6 ^{1,2,3}Dengming Zhou Dr.², Baihua Chen Professor., Dr., Ph.D², Xuanchu Duan
7 Professor., Dr., Ph.D^{3,4}

8 **Affiliations:**

9 ¹ Aier Eye Hospital Group, Changsha 410015, China

10 ² The Second Xiangya Hospital, Changsha 410013, China

11 ³ Changsha Aier Eye Hospital, Changsha 410015, China

12 ⁴ Aier School of Ophthalmology, Central South University, Changsha 410015, China

13 **Corresponding author:**

14 Name: Xuanchu Duan Professor, Dr, Ph.D^{3,4}

15 Address: No.188 Furong South Rd, Changsha, Hunan, 410000, China

16 Phone: +86 13807314691

17 Email: duanxchu@csu.edu.cn

18 **Key words:** fibrosis; IL-22; IL-22RA1; STAT3; human Tenon's capsule fibroblasts;

19

20

21

22

23 **Summary Statement:**

24 The present study suggested that IL-22 expression in glaucoma patient after surgery.
25 IL-22/IL-22RA1 signaling pathway promoted fibroblasts cell proliferation and α -SMA by
26 activating the STAT3 signaling pathway, thereby potentially regulating glaucoma filtration
27 trace fibrosis.

28 **Abstract**

29 The study is aimed to investigate that the IL-22/IL-22RA1 signaling pathway regulates
30 scar formation. A total of 31 glaucoma patients who had been previously treated with
31 trabeculectomy surgery and the intraocular pressure was uncontrollable because of
32 scarring and 19 strabismus patients as control patient group. ELISA showed that the
33 IL-22 content of serum from glaucoma patients was 29.80 ± 5.1 ng/ μ l which is higher
34 than that 5.21 ± 0.9 ng/ μ l from healthy group significantly. Serum from patients was
35 used to incubate human Tenon's capsule fibroblasts (HTFs) cells and IL-22 antibody
36 rescued the effect of IL-22 on the biological functions. qPCR and western blot result
37 showed that IL-22 mediates the biological function of HTFs cells via binding IL-22RA1
38 directly. When transfection of siR-IL-22RA1 or IL-22RA1 gene, the HTFs cells shown
39 significantly anti-fibrosis or pro-fibrosis separately. By using STAT3 inhibitor BAY in
40 IL-22RA1 overexpression group, IL-22-induced proliferation were reduced in HTFs
41 cells. IL-22 promoted fibroblasts cell proliferation and α -SMA via
42 IL-22/IL-22RA1/STAT3 signaling pathway, thereby potentially regulating glaucoma
43 filtration trace fibrosis. This results also show the novel factor in process of
44 postoperative scarring.

45

46 **Introduction**

47 Glaucoma causes blindness accounting for 3.8% of all blind people among age 40 to
48 80 years in the world(Kang and Tanna, 2021). The number of glaucoma patients over
49 the age 40 has exceeded 9.4 million, of which 5.2 million are monocular blindness and
50 1.7 million are blindness in both eyes, and the number is expected to reach 111.9
51 million in 2040(Tham et al., 2014). As the first irreversible blinding eye disease,
52 blindness and disability rates induced by glaucoma have a serious impact on the
53 quality of life of patients. To date, intraocular pressure control remains the mainstay of
54 treatment, and surgery is often considered when medication and laser therapy fail to
55 lower eye drops(Caprioli and Varma, 2011).

56 The current surgical treatments for glaucoma include: trabeculectomy, aqueous
57 humor drainage implantation and minimally invasive glaucoma surgery (MIGS). In
58 recent years, MIGS surgeries have emerged in an endless stream. However,
59 procedures for internal drainage of aqueous humor to Schlemm's canal cannot reduce
60 intraocular pressure below the level of episcleral venous pressure(Kasahara and
61 Shoji, 2021); and external drainage procedures require patients to face stent pigment
62 release, pigment obstruction and wound scarring formation(Laroche et al., 2019).
63 From a long-term point of view, trabeculectomy is still a recognized surgical method
64 for lowering intraocular pressure, providing patients with reliable and durable effective
65 intraocular pressure. However, postoperative scarring of the filtering tract, resulting in

66 uncontrolled intraocular pressure and optic nerve damage, is still a vital cause of
67 blindness in glaucoma patients.

68 Transforming growth factor- β (TGF- β), the main inflammatory factor in the filtration
69 tract, stimulates the proliferation of human Tenon's capsule fibroblasts (HTFs), and
70 activates cells to be myofibroblasts. Moreover, HTFs cells synthesize and secrete a
71 large amount of extracellular matrix (ECM) to forming wound scar(Zada et al., 2018).
72 In this process, a durable immune response, and the release of inappropriate immune
73 mediators play an important role.

74 The expression of postoperative immune factors increased, such as (interleukin,
75 IL)-1 β , IL-6, IL-8, IL-17, IL-22, etc.(Gajda-Derylo et al., 2019). IL-22 is classified into
76 the IL-10 cytokine family, which is one of the cytokines in immediate response to
77 tissue damage(Wolk and Sabat, 2006). It is mainly secreted by CD4+ T cells, Th cells,
78 and Th22 cells. It is the only known immune factor secreted by immune cells and
79 mainly acts on non-immune cells(Arshad et al., 2020). As a necessary factor for the
80 repair of non-immune cells (epithelial cells, mesenchymal cells, fibroblasts), IL-22
81 affects the wound healing process, and plays an important biological function after
82 binding to the IL-22 receptor complex, which is a heterodimeric transmembrane
83 receptor composed of interleukin 22 receptor alpha 1 (IL-22RA1) and interleukin 10
84 receptor 2 (IL-10R2) composition. IL-22 stimulates IL22RA1-expressing cells by
85 increasing the phosphorylation level of Janus protein tyrosine kinase (JAK) /Signal
86 Transducer and Activator of Transcription (STAT) 3, is widely involved in cell
87 proliferation, differentiation, apoptosis, and pro-fibrotic effects(Dong et al., 2021).

88 Previous studies have shown that the expression of IL-22RA1 in the fascia tissue of
89 the filtration tract in patients with glaucoma after surgery is increased(Zhao et al.,
90 2019). However, the specific mechanism of the IL-22 effect on filtration tract scarring
91 is still unclear. Therefore, in order to study filtration tract scarring formation and find
92 new therapeutic targets. It is important to understand the characteristics of IL-22
93 expression and its binding to receptors and analyze the molecular mechanism of
94 downstream signaling pathways.

95 **Results**

96 **Expression of IL-22 is elevated in peripheral blood from patients with postsurgical
97 scar**

98 IL-22 content was 29.80 ± 5.1 ng/ μ l in the serum of glaucoma patients with post-surgical
99 scarring (GP) group was significantly higher than 5.21 ± 0.9 ng/ μ l in that of the control
100 patients (CP) group (Fig1A) To determine whether IL-22 might play a role in filtration track
101 scar tissue, we analyzed the mRNA and protein expression of IL-22 in that tissue. As
102 shown in Fig 1C, IL-22 protein expression was significantly higher in tissues from patient
103 group than that in the healthy group ($P < 0.05$). And there is similar level in mRNA
104 expression (Fig 1B).

105 **Expression of IL-22RA1 is elevated in postsurgical scar tissue**

106 The specific and sensitive of IL-22 is depend on IL-22RA1 expression and localization.
107 IL-22RA1 shows a broad tissue distribution, and it was cleared that IL-22RA1 is
108 expressed in the tenon's capsule fibroblasts in our previous study. To achieve the function,
109 we detected IL-22RA1 expression by PCR and Western blotting, and localized IL-22RA1

110 protein by immunohistochemical techniques in postsurgical scar tissue. Shown in Fig2A,
111 IL-22RA1 mRNA expression was higher in scar tissue than that in healthy tissue. Western
112 blot also confirmed IL-22RA1 protein expression in scar tissue lysates from anti-glaucoma
113 surgery patients and healthy patients (Fig 2B). Confocal microscopy detected plasma
114 membrane localization of IL-22RA1 in tissue (Fig 2C). α -smooth muscle actin(α -SMA) is a
115 marker of HTFs activation. The result shown in Fig 2 that in postsurgical scar tissue, both
116 mRNA and protein level of α -SMA elevated.

117 **Glaucoma patient serum stimulates HTFs cell proliferation and activation**

118 After incubation with healthy or glaucoma patient serum for 24 hours, the levels of
119 IL-22RA1 mRNA in HTFs cells were determined by RT-qPCR. The expression of
120 IL-22RA1 mRNA in HTFs cells treated with serum from GP group was significantly higher
121 than that in untreated HTFs cells (CM) ($P<0.05$), and there was no significant difference
122 between the control group and the healthy serum group (CP group) (Fig 3A). As shown in
123 Fig 3B, the proliferation of HTFs cells at 0, 12, 24, 48 and 72 h after serum treatment was
124 significantly higher than that of untreated ($P<0.05$), and there was no statistical
125 significance in the control group compared with the healthy serum group ($P<0.05$).

126 The proportion of G1 phase cells of HTFS cells treated with patient serum was
127 significantly lower than that of the control group ($P<0.05$; Fig 3C), and there was no
128 significant difference in the proportion of G1 cells between the control group and the
129 healthy serum group. Moreover, the proportion of S-phase cells in HTFS cells treated with
130 serum from glaucoma patients was higher than that in the control group, and there was no
131 significant difference between the control and healthy serum groups.

132 In addition, the patient serum also plays a role in HTFs cell activation. The mRNA and
133 protein expression levels of IL-22RA1, α -SMA were significantly higher than those in the
134 control group ($P<0.05$; Fig 3A, D), and there was no statistical difference in the protein
135 expression of the control group compared with the healthy serum group.

136 **IL-22 mediates the biological function of HTFs cells**

137 To further investigate that IL-22 regulates the proliferation and activation of HTF cells,
138 IL-22 antibody were used to conduct rescue experiment. After adding IL-22 antibody, the
139 proliferative capacity of HTF cells was reduced in patients' serum compared with the
140 health serum group, which was like that in control group (Fig 4A). Furthermore, shown in
141 figure 4B in the IL-22 antibody group cell cycle from the G1 phase to the S phase was
142 inhibited compared to the serum-only group, and reaching the like those in the control
143 group. Moreover, the IL-22RA1 protein expression in the IL-22 antibody group was
144 significantly lower than that in the patients' serum group ($P<0.05$; Fig 4C) and like that in
145 control group. In addition, the protein expressions of α -SMA in the IL-22 antibody group
146 were significantly lower than those in the patient's serum treated group ($P<0.05$; Fig 4C).
147 Taken together, these results suggest that the expression of IL-22RA1 is elevated in HTFs
148 treated with patients' serum, IL-22 antibody could rescue the IL-22 biology function so
149 that IL-22 mediated HTFs proliferation and activation directly.

150 **IL-22 exerts its function by binding to IL-22RA1**

151 To test whether IL-22 transmits intracellular signals through IL-22RA1, IL-22RA1 was
152 knocked down or overexpressed in HTFS cells, then subsequently stimulated with IL-22.
153 Fig5A shown the transfection efficiency of siR-IL22RA1 and IL-22RA1. The expressions of

154 IL-22RA1 and α -SMA in the siR-IL-22RA1 group were significantly lower than those in the
155 siR-NC group ($P<0.05$). In addition, the expressions of IL-22RA1 and α -SMA in the
156 IL-22RA1 overexpression group were significantly higher than those in the NC group
157 ($P<0.05$; Figure 5B). These results indicated that the transfection experiments were
158 successful. Compared with siR-NC and NC groups, IL-22-induced proliferation was
159 inhibited in siR-IL-22RA1 group, but increased in IL-22RA1 overexpression group.
160 Compared with the siR-NC group and the NC group, the proportion of S-phase cells in the
161 siR-IL-22RA1 group decreased, while the proportion of S-phase cells in the IL-22RA1
162 overexpression group increased ($P<0.05$; Figure 5C). The results indicated that IL-22
163 exerts its biological function through IL-22RA1.

164 **IL-22/IL-22RA1 regulates the proliferation and activation of HTFs via the STAT3
165 signaling pathway**

166 To further investigate the mechanism of IL-22RA1 regulates IL-22 functions of fibroblasts,
167 this study investigated the effect of STAT3 signaling pathway inhibitor BAY (2 μ M) on
168 HTFS cells. Addition of BAY to the IL-22RA1 overexpression group reduced IL-22-induced
169 proliferation of HTFS cells ($P<0.05$; Figure 6A). Moreover, the addition of BAY limited the
170 effect of IL-22 on α -SMA expression ($P<0.05$; Figure 6B). From flow cytometry analysis,
171 the results showed that cells treated with BAY reduced the effect of IL-22 on the proportion
172 of cells transitioning from G1 to S phase ($P<0.05$; Figure 6C). Overall, these results
173 suggest that IL-22 may regulate the proliferation and expression of α -SMA proteins in
174 HTFS cells via the STAT3 signaling pathway.
175 Furthermore, IL-22 induced STAT3 phosphorylation in HTFs cells. A time course study

176 showed that IL-22-induced STAT3 phosphorylation increased over time, but from the 72h
177 time point, STAT3 phosphorylation was seen to decrease (Fig. 6D). To further show the
178 role of IL-22RA1 in IL-22 signaling, we investigated the effect of IL-22-induced STAT3
179 phosphorylation using anti-IL-22 antibody, siR-IL-22RA1 and IL-22RA1. As shown in
180 Figure 6E, HTFs were inhibited IL-22-induced STAT3 phosphorylation by 56% and 83%
181 under anti-IL-22 antibody and siR-IL-22RA1 treatments, respectively. Phosphorylation of
182 STAT3 was increased under IL-22RA1 transfection.

183 **Discussion**

184 Several factors play a role in filter tract scarring, including the proliferation of fibroblasts,
185 the imbalance of ECM synthesis and degradability, as well as cytokine
186 production(Gajda-Derylo et al., 2019). In various tissues, IL-22 stimulates inflammatory
187 responses, wound healing, and tissue regeneration(Saxton et al., 2021). Previous studies
188 suggest that acinar cells of the lacrimal gland in dry eye mice secrete IL-22, which inhibits
189 IL-17-mediated inflammation of the ocular surface(Ji et al., 2017). Th22 cells, $\alpha\beta$ Th, and
190 $\gamma\delta$ T cells are widely present in the conjunctiva, and IL-22 production benefits the healing
191 of ocular surface wounds. By applying an anti-IL-22 antibody in a mouse corneal epithelial
192 injury model, corneal cell divisions can be significantly reduced by 52%(Yoon et al., 2018).
193 In addition, the expression of IL-22 is upregulated in the inflammatory phase of wound
194 healing in IL-22 knockout mice whose wounds were undergoing abnormal granulation
195 tissue formation, extracellular matrix protein production, and delayed skin wound
196 healing(McGee et al., 2013). There is evidence that IL-22 plays a role in wound healing
197 and tissue regeneration.

198 Glaucoma patients' HTFs cells express high levels of IL-22RA1 and this expression
199 increases with scarring. In fibroblasts, IL-22 binds to IL-22RA1, activates downstream
200 STAT3 phosphorylation, and triggers the expression of fibronectin and collagen. In
201 psoriatic dermal fibroblasts, IL-22 binds to IL-22RA1 and stimulates the activation of the
202 JAK/STAT pathway, resulting in increased production of extracellular matrix, fibronectin,
203 and collagen(Zheng et al., 2007). Both IL-20 and IL-22 are members of the IL-10 family. In
204 trabecular cells of glaucoma patients, IL-20 binds to the receptor IL-20 receptor A and
205 participates in extracellular matrix remodeling through the JAK/STAT signaling pathway,
206 leading to increased intraocular pressure(Keller et al., 2014).

207 In this study, STAT3 inhibitors blocked the IL-22/IL-22RA1 signaling pathway's effect on
208 HTFs cell proliferation and a-SMA production. HTFs cells induced STAT3 phosphorylation
209 in response to IL-22, thereby directly linking the function of IL-22RA1. Furthermore, both
210 overexpression and blockade experiments demonstrated the requirement for IL-22RA1 for
211 STAT3 phosphorylation. These results suggest that IL-22/IL-22RA1 may promote
212 fibroblast proliferation and activation through the STAT3 signaling pathway in the process
213 of post-surgery filtration tract tissue fibrosis. The accurate mechanism is not completely
214 understood and requires further investigation.

215 Due to high postoperative fibrosis and failure rates of glaucoma filtration surgery, new
216 drugs and treatments continue to be of interest to improve glaucoma surgical patient
217 outcomes. Rare information reported about IL-22 in glaucoma, so that this study protrudes
218 novel direction anti-fibrosis mechanism after surgery. Due to secretion of IL-22 detectable
219 in serum, in the further IL-22 could be considered as a marker to protect and instruct

220 postoperative treatment.

221

222 **Materials and methods**

223 **Patient and tissue collection**

224 Serum and fascia tissue were collected from 31 glaucoma patients (GP group) and 19

225 strabismus patients as control patient group (CP group) from November 2021 to March

226 2022 in Changsha Aier Eye Hospital. The criteria for selecting patients were: GP group

227 included glaucoma patients who treated with trabeculectomy surgery already and due to

228 scar formation, the intraocular pressure was uncontrolled; CP group included strabismus

229 patients without other ocular diseases; all patients with no immune diseases, for example

230 ulcerative colitis, atopic dermatitis and rheumatoid arthritis, no recent history of acute

231 infection in the past month. Peripheral blood (5 ml) of all the patients was collected from

232 median cubital veins. By centrifuging at 600 x g and 4°C for 5 min, serum was separated

233 for ELISA test and incubating cells. The fascia tissue samples were snap-frozen in liquid

234 nitrogen and then stored at -80 °C for further use. All procedures conducted in this study

235 were performed in compliance with rules described in the Declaration of Helsinki. All

236 patients provided their written informed consent prior to surgery and tissue collection.

237 The study protocol was approved by the Human Ethics Committee of Changsha Aier Eye

238 Hospital. (Changsha, China)

239 **Measurement of serum cytokine level**

240 The level of IL-22 in the patients' serum were measured by ELISA kits (Quantikine ELISA

241 kits, R&D Systems; Minneapolis, MN, USA). The absorbance of each well was measured

242 with a microplate reader (Multiskan FC, Thermo Fisher Scientific, Waltham, MA, USA) set
243 to 450 nm, with the wavelength correction set to 540 nm.

244 **Cells culture**

245 HTFs were isolated from individuals undergoing strabismus surgery who had no history of
246 conjunctival disease or use of topical ocular medication as previously described(Zhao et
247 al., 2019). The HTFs were cultured in Dulbecco's Modified Eagle Medium supplemented
248 with 10% (v/v) fetal bovine serum (Hyclone Laboratories, Logan, UT, USA) and 1%
249 streptomycin-penicillin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) in a
250 humidified atmosphere at 37 °C with 5% CO₂. HTFs cultured in above medium says as
251 complete medium group (CM group). Passages 4–6 were used for further experiments.
252 Prior to each experiment, the cells were allowed to reach a sub-confluent status (~80%
253 confluence); after which, they were cultured in serum-free medium for 24 h.
254 To investigate the effect of patient serum on HTFs, serum from GP group or CP group was
255 mixed with medium at a ratio of 1:10 to treat HTFs cells. For IL-22 experiments, cells were
256 exposed to different dose-course or time-course of human IL-22 (Peprotech, Rocky Hill,
257 NJ, USA). In order to study the rescue effecting, cells were treated with human IL-22
258 antibody (1:800, ab133545, Abcam, Cambridge, United Kingdom).

259 **Cell Transfection**

260 The nucleotide sequences that encoded for IL22RA1 were amplified via PCR performed
261 with the following primers: F, 5'-GGGGTACCATGAGGACGCTGCTGACCATCTTGA-3'; R,
262 5'-CCGCTCGAGTCAGGACTCCCCTGCACAGTCAGG-3'. Those sequences were then
263 subcloned into the KpnI and Xhol sites of a pcDNA 3.0 vector. An empty pcDNA 3.0 vector

264 was used as a control. siRNA-NC, siR-IL-22RA1 were obtained from GenePharma
265 (Suzhou, China). HTFs were seeded into the wells of six-well plates and cultured to ~80%
266 confluence. Transfections were performed using Lipofectamine 3000 (Thermo Fisher
267 Scientific, Waltham, MA, USA) as described in the manufacturer's instructions.

268 **Flow cytometry**

269 According to the manufacturer's manual, flow cytometry performed cell cycle analysis.
270 First, preparation cell with DNA Reagent kit (BD Biosciences, San Jose, CA, USA). In
271 briefly, the harvested cells were incubated in sequence with solutions. Then, the cells
272 were analyzed using a flow cytometer and ModFit software (v3.2; Verity Software House,
273 Inc.). Each experiment was repeated three times.

274 **Cell viability assay**

275 Cell viability was measured by a Cell Counting Kit-8 (CCK8) (Lianke Bio, Hangzhou,
276 Zhejiang, China) according to manufacturer's instructions. In brief, cells were seeded at a
277 density of 1×10^4 cells/well in a 96-well plate triplicated. After the cells with specified
278 treatment, a CCK8 working reagent was gently added to each well, and then placed in a
279 37 °C incubator for 2 h. Finally, the absorbance of each well at 450 nm was measured with
280 a microplate reader (Multiskan FC, Thermo Fisher Scientific, Waltham, MA, USA).

281 **RNA extraction and PCR analysis**

282 RNA was extracted from HTFs cells using Trizol reagent (Invitrogen, Thermo Fisher
283 Scientific, Waltham, MA, USA). PowerUP SYBR Green Master Mix kit (Thermo Fisher
284 Scientific, Waltham, MA, USA) was used to detect mRNA expression of IL-22 (F
285 5'-CAACAGGCTAAGCACATGTCATATT-3'; R 5'-TCTCTCCACTCTCTCCAAGCTTT-3'),

286 IL-22RA1 (F 5'-CCTGATGTGACCTGTATCTCAA-3', R
287 5'-GGTCAGGcCGAAGAACTCATATT-3'), α -SMA (F
288 5'-GAGACCACCTACAACAGCATCAT-3', R 5'-GCCGATCCACACCGAGTATT-3') and
289 GAPDH (F 5'- GGAGTCCACTGGCGTCTTCA-3', R
290 5'-GTCATGAGTCCTCCACGATACC -3') according to the manufacturer's protocol.

291 Resulting data were analyzed using the comparative cycle threshold (Ct) method. The
292 target gene cycle thresholds were adjusted relative to a calibrator (normalized Ct value
293 obtained from control groups) and expressed as $2^{-\Delta\Delta Ct}$ (Applied Biosystems User
294 Bulletin no. 2: Rev B "Relative Quantitation of Gene Expression").

295 **Protein preparation and Western blot analysis.**

296 Total protein was lysed by cold RIPA buffer. Then, a BCA assay kit (Thermo Fisher
297 Scientific, Waltham, MA, U.S.A) measured the protein concentration of the supernatant.
298 For Western blot experiments, IL-22 antibody (1:800, AF782, R&D Systems; Minneapolis,
299 MN, USA), IL-22RA1 antibody (1:800, ab5984, Abcam, Cambridge, United Kingdom),
300 α -SMA antibody (1:1000, ab28052, Abcam, Cambridge, United Kingdom), STAT3
301 antibody (1:800, ab68153, Abcam, Cambridge, United Kingdom) and p-STAT3 antibody
302 (1:800, ab267373, Abcam, Cambridge, United Kingdom) was used to detect certain
303 protein respectively, while β -actin antibody (1:5000, ab8227, Abcam, Cambridge, United
304 Kingdom) was used as a 1:5,000 dilution to determine β -actin protein abundance. Next
305 the membrane was incubated with HRP-conjugated goat anti- rabbit or goat anti- mouse
306 secondary antibodies. ECL Ultra Western HRP kit (Thermo Fisher Scientific, Waltham, MA,
307 U.S.A) was used to detect areas of luminescence, and the relative-staining intensity of

308 each protein band was quantitated using ImageJ software (Ver. 6.0, Media Cybernetics,
309 Inc., Rockville, MD, USA). A ratio of IL-22, IL-22RA1, STAT3, p-STAT3 and α -SMA protein
310 intensity over β -actin protein intensity was used to quantify protein expression.

311 **Tissue histological observation and immunohistochemistry staining**

312 Tissues fixed in 10% formalin were embedded in paraffin and sectioned.
313 Eight-micrometer-thick sections were cut and stained. Briefly, IL-22RA1 or α -SMA was
314 incubated with tissue sections at a 1:200 dilution overnight. The tissue slides were
315 subsequently incubated with secondary antiserum (Alexa Fluor 647 goat anti-rabbit IgG;
316 Alexa Fluor 567 goat anti-mouse IgG Molecular F Probes, Eugene, OR, USA) at 1:400
317 dilution.

318 Immunofluorescent staining of fibroblasts cells was performed on micro-coverslips in
319 12-well tissue culture plates. Cells were serum-starved for 24 hours and then treated with
320 patients' serum medium or 20 ng/mL recombinant IL-22 for 24h. Cells were washed and
321 fixed in 4% formaldehyde, then stained with IL-22RA1 or α -SMA following incubated with
322 required secondary antibodies. Their nuclei were stained with DAPI. Image acquisition
323 was performed using a Zeiss confocal microscope or an upright Zeiss microscope with
324 Axiovision software.

325 **Statistical analyses**

326 All experiments were performed in triplicate, and the data were analyzed using SPSS
327 Software (Version 23.0, IBM Corp, Armonk, NY, USA). Results are presented as the mean
328 \pm SD. Differences between groups were analyzed by using the t-test or ANOVA followed
329 by the Tukey test. For all statistical tests, P-values < 0.05 were regarded as statistically

330 significant

331

332

333 **Acknowledgments**

334 We wish to acknowledge the excellent facility of Aier Eye Institute. Opinions,

335 interpretations.

336 **Competing interests**

337 The authors declare no conflict of interest.

338 **Funding information:**

339 National Natural Science Foundation of China (Grant No. 81970801 to XD), Hunan

340 Province research and development plan funding projects in key areas (Grant No.

341 2020SK2133 to XD). Science and Technology Foundation of Changsha, Hunan, China

342 (Grant No. kh1801229 to XD), Natural Science Foundation of Hunan Province, China

343 (Grant No. 2019JJ40001 to XD) and Science and Technology Foundation of Aier Eye

344 Hospital Group, China (Grant No. AR1906D1 , AM1906D2 to XD and Aier Glaucoma

345 Research Institute).

346 **References**

347 Arshad, T., Mansur, F., Palek, R., Manzoor, S., and Liska, V. (2020). A Double Edged Sword

348 Role of Interleukin-22 in Wound Healing and Tissue Regeneration. *Front Immunol* *11*, 2148.

349 Caprioli, J., and Varma, R. (2011). Intraocular pressure: modulation as treatment for glaucoma.

350 *Am J Ophthalmol* *152*, 340-344 e342.

351 Dong, Y., Hu, C., Huang, C., Gao, J., Niu, W., Wang, D., Wang, Y., and Niu, C. (2021).

- 352 Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve
- 353 Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral
- 354 Ischemia-Reperfusion Injury. *Mediators Inflamm* 2021, 6621296.
- 355 Gajda-Derylo, B., Stahnke, T., Struckmann, S., Warsow, G., Birke, K., Birke, M.T., Hohberger,
- 356 B., Rejdak, R., Fuellen, G., and Junemann, A.G. (2019). Comparison of cytokine/chemokine
- 357 levels in aqueous humor of primary open-angle glaucoma patients with positive or negative
- 358 outcome following trabeculectomy. *Biosci Rep* 39.
- 359 Ji, Y.W., Mittal, S.K., Hwang, H.S., Chang, E.J., Lee, J.H., Seo, Y., Yeo, A., Noh, H., Lee, H.S.,
- 360 Chauhan, S.K., *et al.* (2017). Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular
- 361 mucosal inflammation. *Mucosal Immunol* 10, 1202-1210.
- 362 Kang, J.M., and Tanna, A.P. (2021). Glaucoma. *Med Clin North Am* 105, 493-510.
- 363 Kasahara, M., and Shoji, N. (2021). Effectiveness and limitations of minimally invasive
- 364 glaucoma surgery targeting Schlemm's canal. *Jpn J Ophthalmol* 65, 6-22.
- 365 Keller, K.E., Yang, Y.F., Sun, Y.Y., Sykes, R., Gaudette, N.D., Samples, J.R., Acott, T.S., and
- 366 Wirtz, M.K. (2014). Interleukin-20 receptor expression in the trabecular meshwork and its
- 367 implication in glaucoma. *J Ocul Pharmacol Ther* 30, 267-276.
- 368 Laroche, D., Nkrumah, G., and Ng, C. (2019). Real-World Retrospective Consecutive Study of
- 369 Ab Interno XEN 45 Gel Stent Implant with Mitomycin C in Black and Afro-Latino Patients with
- 370 Glaucoma: 40% Required Secondary Glaucoma Surgery at 1 Year. *Middle East Afr J*
- 371 *Ophthalmol* 26, 229-234.
- 372 McGee, H.M., Schmidt, B.A., Booth, C.J., Yancopoulos, G.D., Valenzuela, D.M., Murphy, A.J.,
- 373 Stevens, S., Flavell, R.A., and Horsley, V. (2013). IL-22 promotes fibroblast-mediated wound

374 repair in the skin. *J Invest Dermatol* **133**, 1321-1329.

375 Saxton, R.A., Henneberg, L.T., Calafiore, M., Su, L., Jude, K.M., Hanash, A.M., and Garcia,

376 K.C. (2021). The tissue protective functions of interleukin-22 can be decoupled from

377 pro-inflammatory actions through structure-based design. *Immunity* **54**, 660-672 e669.

378 Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., and Cheng, C.Y. (2014). Global

379 prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic

380 review and meta-analysis. *Ophthalmology* **121**, 2081-2090.

381 Wolk, K., and Sabat, R. (2006). Interleukin-22: a novel T- and NK-cell derived cytokine that

382 regulates the biology of tissue cells. *Cytokine Growth Factor Rev* **17**, 367-380.

383 Yoon, C.H., Lee, D., Jeong, H.J., Ryu, J.S., and Kim, M.K. (2018). Distribution of

384 Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue. *Korean J*

385 *Ophthalmol* **32**, 147-153.

386 Zada, M., Pattamatta, U., and White, A. (2018). Modulation of Fibroblasts in Conjunctival

387 Wound Healing. *Ophthalmology* **125**, 179-192.

388 Zhao, Y., Zhang, F., Pan, Z., Luo, H., Liu, K., and Duan, X. (2019). LncRNA NR_003923

389 promotes cell proliferation, migration, fibrosis, and autophagy via the

390 miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts. *Cell Death Dis* **10**,

391 594.

392 Zheng, Y., Danilenko, D.M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J., and

393 Ouyang, W. (2007). Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal

394 inflammation and acanthosis. *Nature* **445**, 648-651.

395 **Figure legends**

396 Figure1 A Content of IL-22 in serum from healthy patients (CP group) and patients with
397 postsurgical scar (GP group), determined by ELISA. *P<0.05, as indicated. B Expression
398 of IL-22 mRNA in tissue in control group and patients with postsurgical scar group.
399 RT-PCR was performed to determine mRNA expression. *P<0.05, as indicated. C
400 Expression of IL-22 protein in tissue in control group and patients with postsurgical scar
401 group. Western blot was performed to determine IL-22 protein expression. *P<0.05, as
402 indicated.

403 Figure2 A Expression of IL-22RA1 mRNA in tissue from control group and patients with
404 postsurgical scar. RT-PCR was performed to determine IL-22RA1 and α -SMA mRNA
405 expression. *P<0.05, as indicated. B Expression of IL-22RA1 and α -SMA protein in tissue
406 from control group and patients with postsurgical scar. Western blot was performed to
407 determine protein expression. *P<0.05, as indicated. C IL-22RA1 and α -SMA localization
408 in human tissues. Red: IL-22RA1; Green: α -SMA; Blue: DAPI.

409 Figure3 A Expression of IL-22RA1 mRNA in untreated HTFs cells and cells treated with
410 complete medium, healthy or patient serum for 24 h. PCR was performed to determine
411 IL-22RA1 mRNA expression. *P<0.05, as indicated. B Comparison of cell viability was
412 measured by the MTT assay. HTFs cells incubated with complete medium, healthy or
413 patient serum for 12,24,48,72h. All experiments were performed at least three times and
414 results are presented as the means \pm SD. *P <0.05, as indicated. C Flow cytometry
415 analysis for cell cycle distribution of HTFs cells incubated with complete medium, healthy
416 or patient serum. The result of one representative assay from three similar independent
417 experiments is shown *P<0.05 vs. Health serum group of the same cell cycle phase. D

418 Expression of IL-22RA1 and α -SMA protein in HTFs cells treated with complete medium,
419 healthy or patient serum. Western blot was performed to determine protein expression.

420 *P<0.05, as indicated. E IL-22RA1 and α -SMA localization in HTF cells. Red: IL-22RA1;
421 Green: α -SMA; Blue: DAPI.

422 Figure4 A Comparison of cell viability was measured by the CCK-8 assay. HTFs cells
423 incubated complete medium, in patient serum with/without IL-22 anti-body for
424 12,24,48,72h. All experiments were performed at least three times and results are
425 presented as the means \pm SD. *P <0.05, as indicated. B Flow cytometry analysis for cell
426 cycle distribution of HTFs cells incubated with complete medium, in patient serum
427 with/without IL-22 anti-body. The result of one representative assay from three similar
428 independent experiments is shown *P<0.05 vs. Health serum group of the same cell cycle
429 phase. C Expression of IL-22RA1 and α -SMA protein in HTFs cells treated with complete
430 medium, in patient serum with/without IL-22 anti-body. Western blot was performed to
431 determine protein expression. *P<0.05, as indicated.

432 Figure5 A Transfection efficiency of siR-IL22RA1 and IL-22RA1. *P<0.05 *P<0.05 vs.
433 siR-NC; $^{\#}$ P<0.05 vs. NC. B Effect of IL-22RA1 knockdown or overexpression on
434 expression of IL-22R1, α -SMA proteins in HTFs cells transfected with siR-IL-22R1, siR-NC,
435 an IL-22R1 overexpression plasmid or an NC plasmid, incubated with patients' serum.
436 Western blotting was performed to determine the levels of protein expression. *P<0.05 vs.
437 siR-NC; $^{\#}$ P<0.05 vs. NC. C Flow cytometry analysis for cell cycle distribution of HTFs
438 cells transfected with siR-IL-22R1, siR-NC, an IL-22R1 overexpression plasmid or an NC
439 plasmid, incubated with patients' serum. The result of one representative assay from three

440 similar independent experiments is shown *P<0.05 vs. siR-NC; #P<0.05 vs. NC.

441 Figure6 A Comparison of cell viability was measured by the CCK-8 assay. HTFs cells

442 were transfected with an IL-22R1 overexpression plasmid with/without BAY, an NC

443 plasmid, incubated with patients' serum for 12,24,48,72h. All experiments were performed

444 at least three times and results are presented as the means \pm SD. B Expression of

445 IL-22RA1 and α -SMA protein in HTFs cells transfected with an IL-22R1 overexpression

446 plasmid with/without BAY, an NC plasmid, incubated with patients' serum. Western blot

447 was performed to determine protein expression. *P<0.05, as indicated. C Flow cytometry

448 analysis for cell cycle distribution in HTFs cells transfected with an IL-22R1

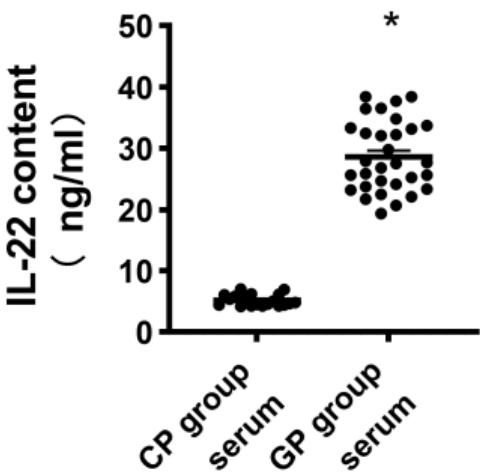
449 overexpression plasmid with/without BAY, an NC plasmid, The result of one

450 representative assay from three similar independent experiments is shown *P<0.05 vs.

451 siR-NC; #P<0.05 vs. NC. D STAT3 phosphorylation induced by IL-22 in HTFs. Cells were

452 cultured with IL-22 for 12, 24, 48, and 72 h. P-STAT3 and STAT3 protein levels were

453 assessed by Western blot analysis. E HTFs cells were stimulated or not for 30 min with


454 IL-22HTFs. Then, cells were incubated with either anti-IL-22RA1 antibody, or transfected

455 with siR-IL-22RA1, IL-22RA1. P-STAT3 and STAT3 protein levels were assessed by

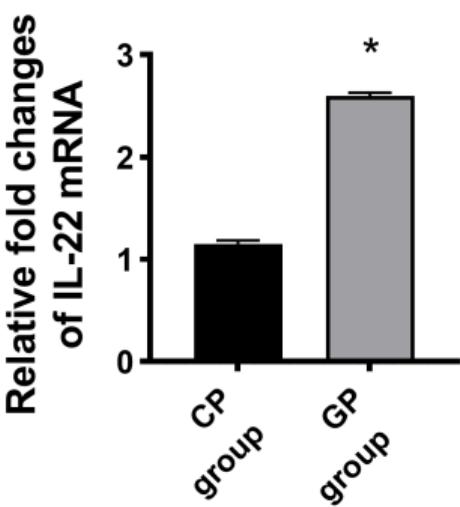

456 Western blot analysis.

Fig1

A

B

C

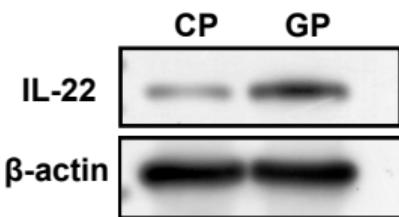
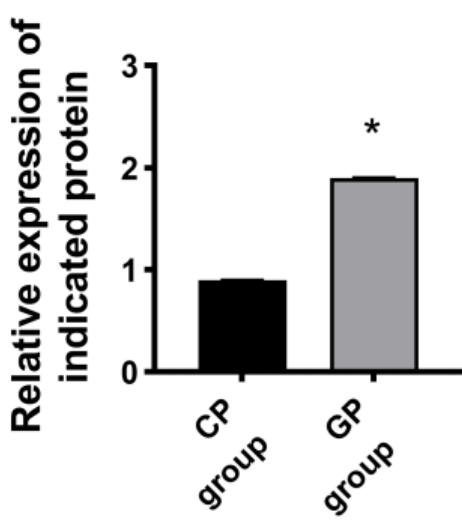



Figure 1 A Content of IL-22 in serum from healthy patients (CP group) and patients with postsurgical scar (GP group), determined by ELISA. *P<0.05, as indicated. B Expression of IL-22 mRNA in tissue in control group and patients with postsurgical scar group. RT-PCR was performed to determine mRNA expression. *P<0.05, as indicated. C Expression of IL-22 protein in tissue in control group and patients with postsurgical scar group. Western blot was performed to determine IL-22 protein expression. *P<0.05, as indicated.

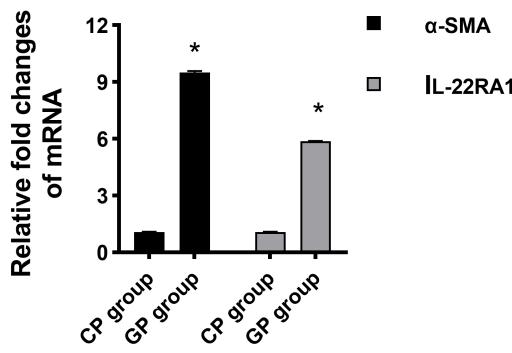
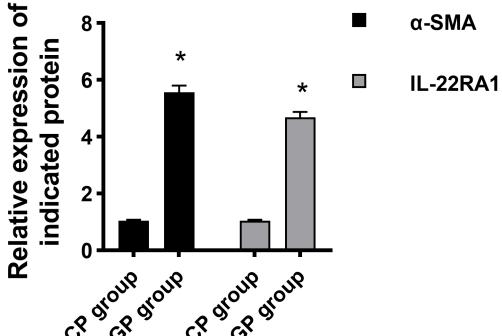
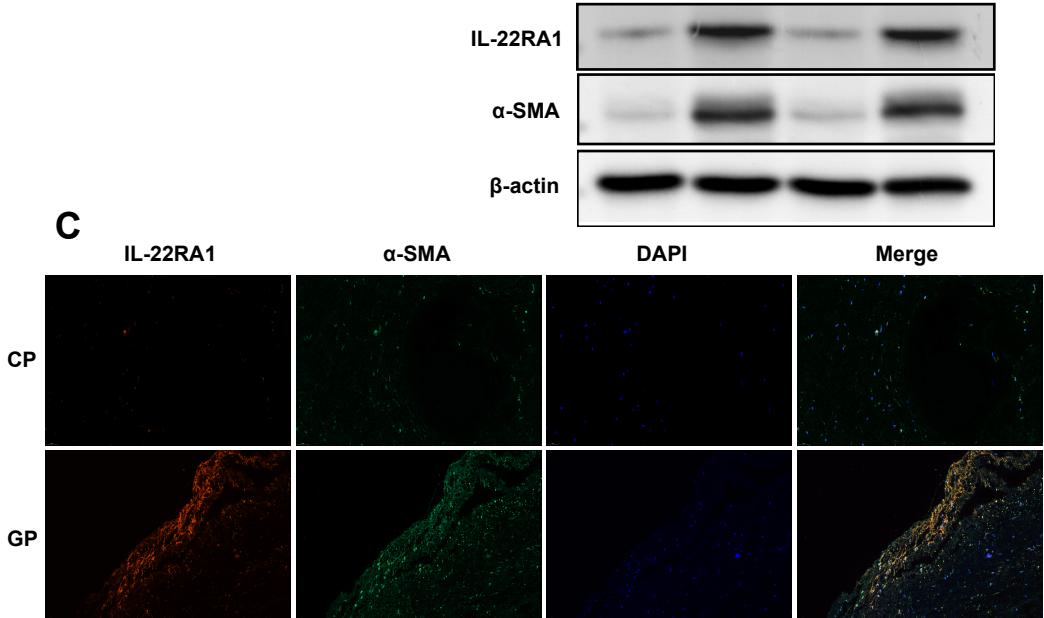



Fig2**A****B****C**

Figure2 A Expression of IL-22RA1 mRNA in tissue from control group and patients with postsurgical scar. RT-PCR was performed to determine IL-22RA1 and α -SMA mRNA expression. *P<0.05, as indicated. B Expression of IL-22RA1 and α -SMA protein in tissue from control group and patients with postsurgical scar. Western blot was performed to determine protein expression. *P<0.05, as indicated. C IL-22RA1 and α -SMA localization in human tissues. Red: IL-22RA1; Green: α -SMA; Blue: DAPI.

Fig3

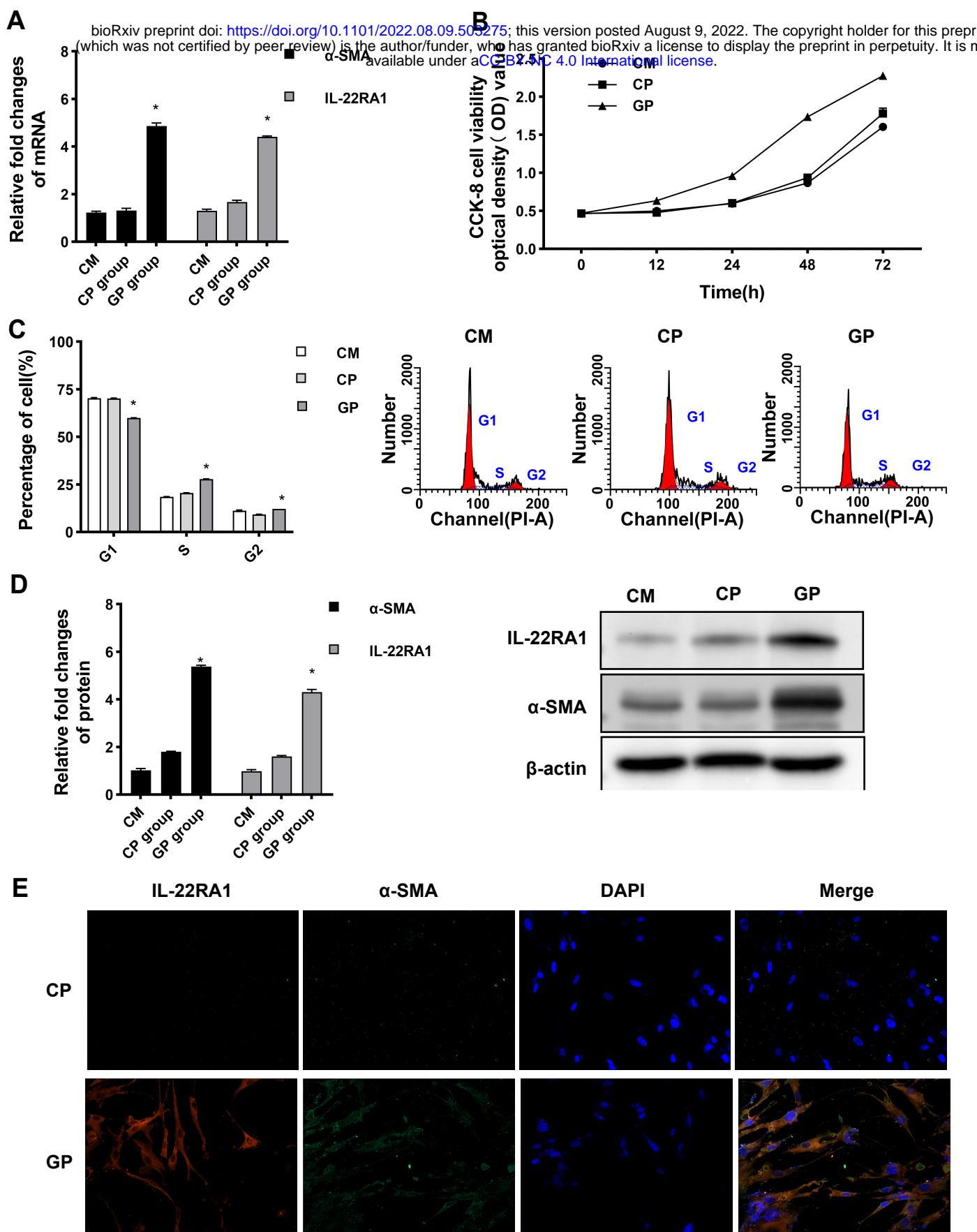
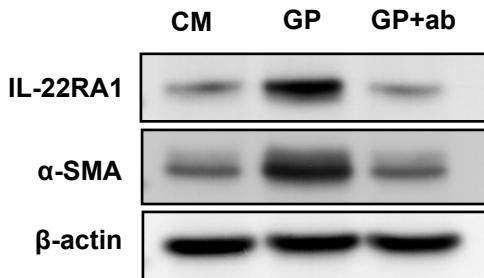
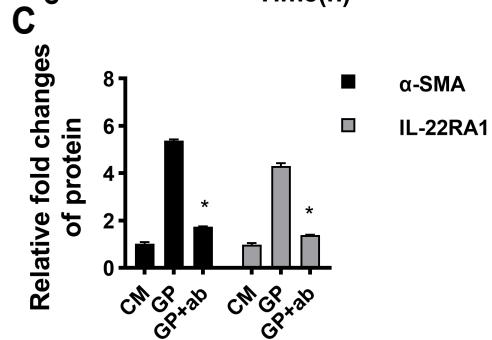
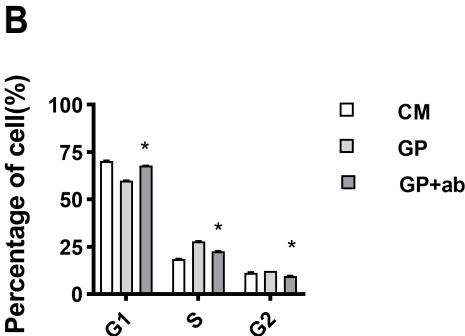
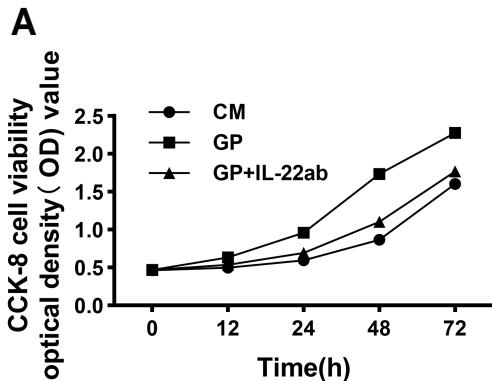
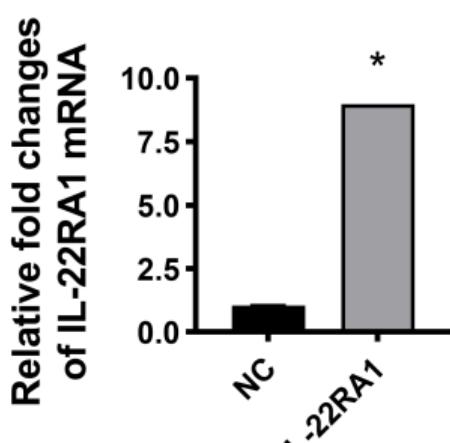
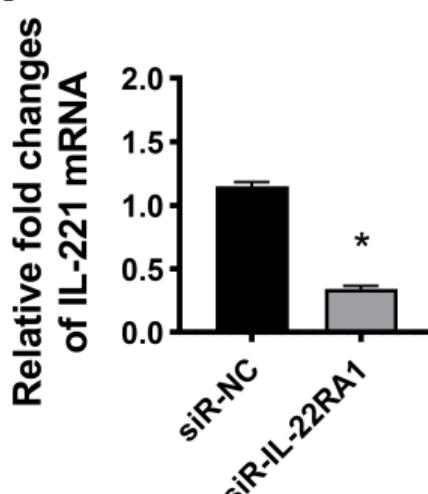


Figure3 A Expression of IL-22RA1 mRNA in untreated HTFs cells and cells treated with complete medium, healthy or patient serum for 24 h. PCR was performed to determine IL-22RA1 mRNA expression. *P<0.05, as indicated. B Comparison of cell viability was measured by the MTT assay. HTFs cells incubated with complete medium, healthy or patient serum for 12,24,48,72h. All experiments were performed at least three times and results are presented as the means \pm SD. *P <0.05, as indicated. C Flow cytometry analysis for cell cycle distribution of HTFs cells incubated with complete medium, healthy or patient serum. The result of one representative assay from three similar independent experiments is shown *P<0.05 vs. Health serum group of the same cell cycle phase. D Expression of IL-22RA1 and α-SMA protein in HTFs cells treated with complete medium, healthy or patient serum. Western blot was performed to determine protein expression. *P<0.05, as indicated. E IL-22RA1 and α-SMA localization in HTF cells. Red: IL-22RA1; Green: α-SMA; Blue: DAPI.

Fig4

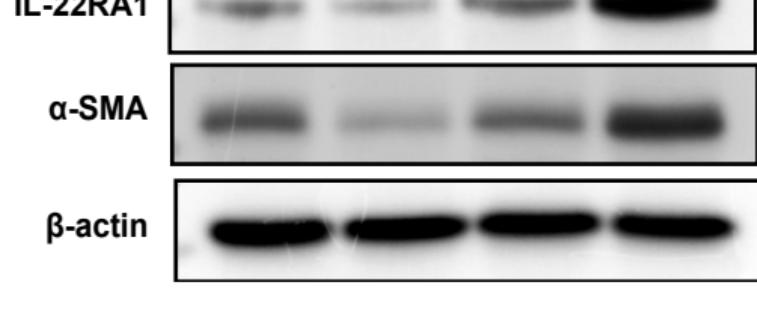
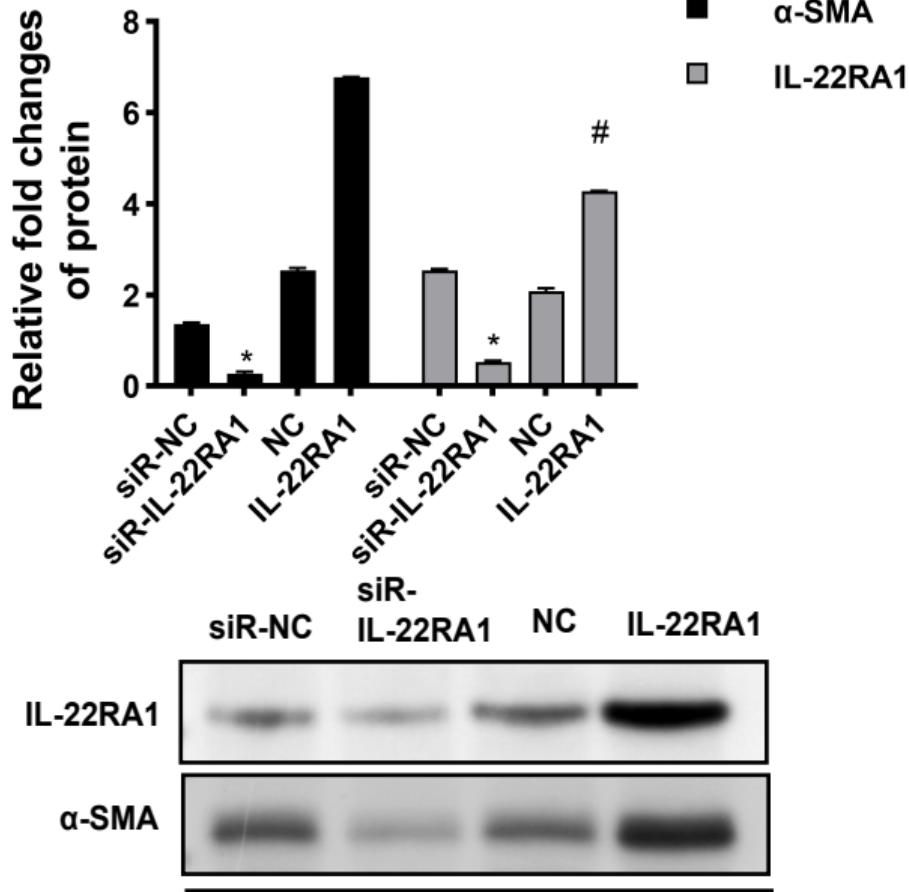


Figure4 A Comparison of cell viability was measured by the CCK-8 assay. HTFs cells incubated complete medium, in patient serum with/without IL-22 anti-body for 12,24,48,72h. All experiments were performed at least three times and results are presented as the means \pm SD. *P <0.05, as indicated. B Flow cytometry analysis for cell cycle distribution of HTFs cells incubated with complete medium, in patient serum with/without IL-22 anti-body. The result of one representative assay from three similar independent experiments is shown *P<0.05 vs. Health serum group of the same cell cycle phase. C Expression of IL-22RA1 and α -SMA protein in HTFs cells treated with complete medium, in patient serum with/without IL-22 anti-body. Western blot was performed to determine protein expression. *P<0.05, as indicated.

Fig5

A

B

C

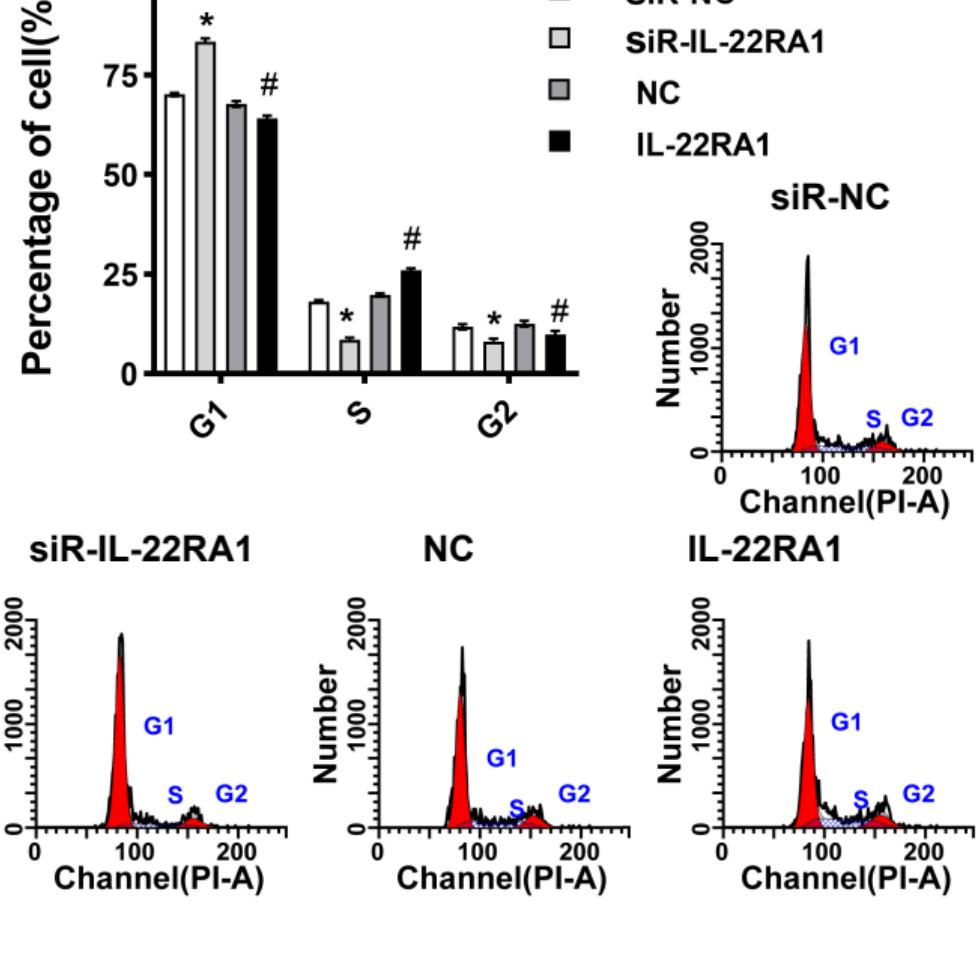


Figure5 A Transfection efficiency of siR-IL22RA1 and IL-22RA1. *P<0.05 #P<0.05 vs. siR-NC; #P<0.05 vs. NC. B Effect of IL-22RA1 knockdown or overexpression on expression of IL-22R1,α-SMA proteins in HTFs cells transfected with siR-IL-22R1, siR-NC, an IL-22R1 overexpression plasmid or an NC plasmid, incubated with patients' serum. Western blotting was performed to determine the levels of protein expression. *P<0.05 vs. siR-NC; #P<0.05 vs. NC. C Flow cytometry analysis for cell cycle distribution of HTFs cells transfected with siR-IL-22R1, siR-NC, an IL-22R1 overexpression plasmid or an NC plasmid, incubated with patients' serum. The result of one representative assay from three similar independent experiments is shown *P<0.05 vs. siR-NC; #P<0.05 vs. NC.

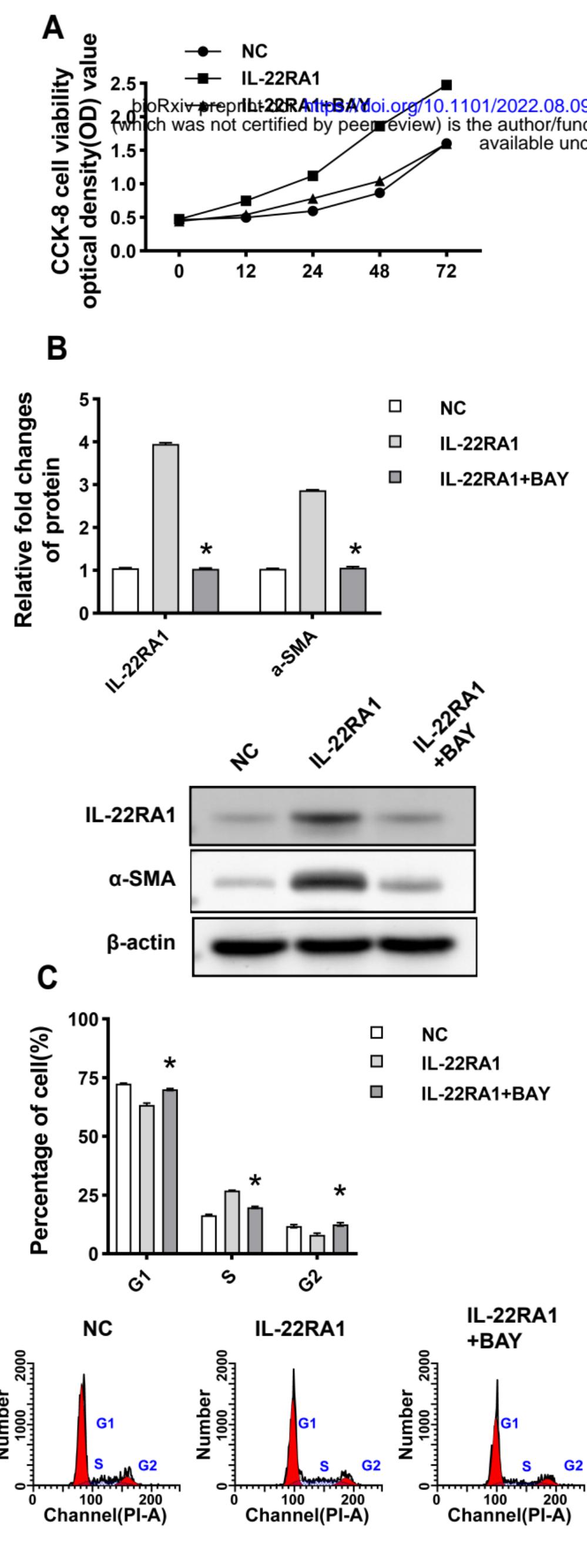
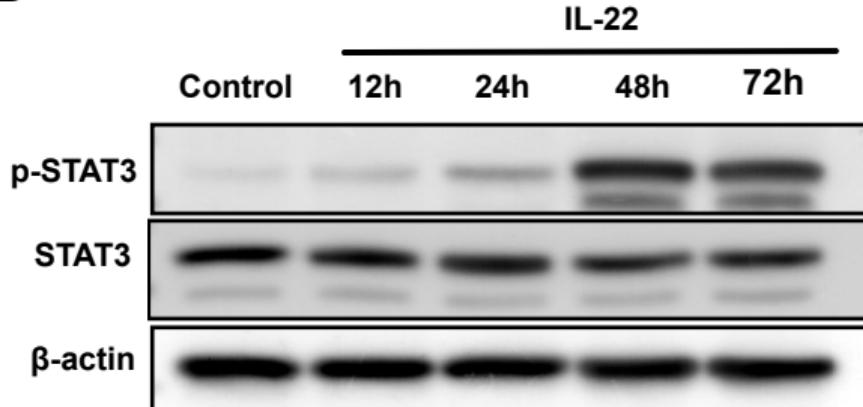


Fig6

Figure6 A Comparison of cell viability was measured by the CCK-8 assay. HTFs cells were transfected with an IL-22R1 overexpression plasmid with/without BAY, an NC plasmid, incubated with patients' serum for 12,24,48,72h. All experiments were performed at least three times and results are presented as the means \pm SD. B Expression of IL-22RA1 and α -SMA protein in HTFs cells transfected with an IL-22R1 overexpression plasmid with/without BAY, an NC plasmid, incubated with patients' serum. Western blot was performed to determine protein expression.

*P<0.05, as indicated. C Flow cytometry analysis for cell cycle distribution in HTFs cells transfected with an IL-22R1 overexpression plasmid with/without BAY, an NC plasmid, The result of one representative assay from three similar independent experiments is shown *P<0.05 vs. si-NC; #P<0.05 vs. NC.

Fig6

D

E

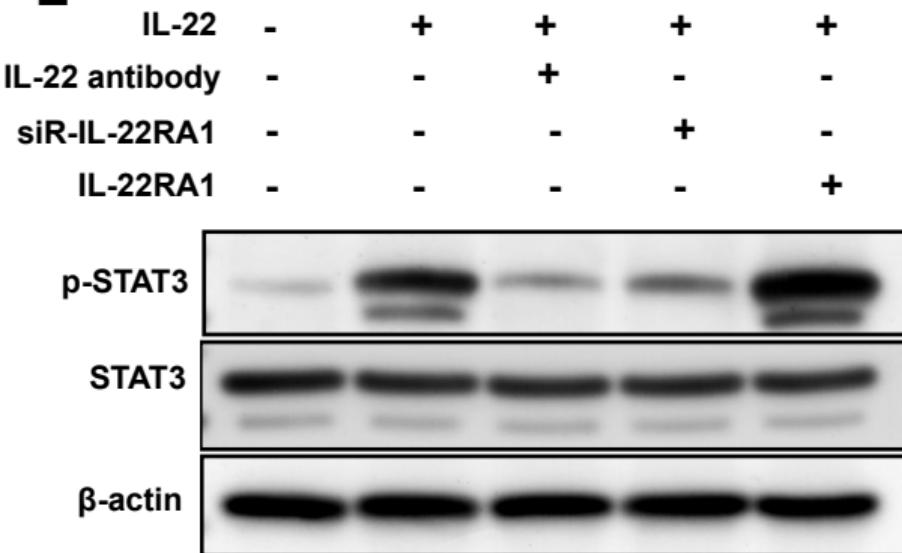


Figure6 D STAT3 phosphorylation induced by IL-22 in HTFs. Cells were cultured with IL-22 for 12, 24, 48, and 72 h. P-STAT3 and STAT3 protein levels were assessed by Western blot analysis. E HTFs cells were stimulated or not for 30 min with IL-22HTFs. Then, cells were incubated with either anti-IL-22RA1 antibody, or transfected with siR-IL-22RA1, IL-22RA1. P-STAT3 and STAT3 protein levels were assessed by Western blot analysis.