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Abstract 
The amyloid-tau-neurodegeneration (ATN) framework has led to an increased focus on 
Alzheimer’s disease (AD) biomarkers. The cost and invasiveness of obtaining biomarkers via 
cerebrospinal fluid has motivated efforts to develop sensitive blood-based biomarkers. Although 
AD is highly heritable, the biometric genetic and environmental etiology of blood-based 
biomarkers has never been explored. We therefore, analyzed plasma beta-amyloid (Aβ40, 
Aβ42, Aβ42/40), total tautau (t-tautau), and neurofilament light (NFL) biomarkers in a sample of 
1,050 men aged 60 to 73 years (m=68.2, SD=2.5) from the Vietnam Era Twin Study of Aging 
(VETSA). Unlike Aβ and tautau, NFL does not define AD; however, as a biomarker of 
neurodegeneration it serves as the N component in the ATN framework. Univariate estimates 
suggest that familial aggregation in Aβ42, Aβ42/40, t-tau, and NFL is entirely explained by 
additive genetic influences accounting for 40%-58% of the total variance. All remaining variance 
is associated with unshared or unique environmental influences. For Aβ40, a additive genetic 
(31%), shared environmental (44%), and unshared environmental (25%) influences contribute to 
the total variance. In the more powerful multivariate analysis of Aβ42, Aβ40, t-tau, and NFL, 
heritability estimates range from 32% to 58%. Aβ40 and Aβ42 are statistically genetically 
identical (rg = 1.00, 95%CI = 0.92,1.00) and are also moderately environmentally correlated (re = 
0.66, 95%CI = 0.59, 0.73). All other genetic and environmental associations were non-
significant or small. Our results suggest that plasma biomarkers are heritable and that Aβ40 and 
Aβ42 share the same genetic influences, whereas the genetic influences on plasma t-tau and 
NFL are mostly unique and uncorrelated with plasma Aβ in early old-age men.  
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Introduction 
Alzheimer’s disease (AD) is the most costly disease in the U.S. [80], particularly in terms of the 
years of life lost and the years lived with disability [29].  With the failure of recent drug trials and 
recognition that the disease process in AD begins decades before dementia onset, there is now 
widespread consensus that early identification is key to preventing or slowing disease 
progression [16, 19, 22-24]. The protracted prodromal period in AD also calls for a focus on earlier 
identification with regard to cognitive decline, mild cognitive impairment (MCI), and preclinical 
signs of AD [19, 23, 24, 32].  Arguably, addressing early risk factors could be a step toward the 
“ounce of prevention” that would be “worth a pound of cure.” Estimates are that a 5-year delay 
of the dementia phase of AD would reduce the number of cases by half [24].  Moreover, the 
public health impact of such delays will only grow in the next decade with the increasing number 
of 65 to 75-year-olds [25]. 
 
Biomarkers are central to the definition of AD [59] and given the increasing emphasis placed on 
detecting earlier those individuals who are at risk, plasma-based biomarkers have come under 
increasing attention. The advantages of plasma biomarkers include accessibility and 
affordability. Unfortunately, only a fraction of brain protein enters the bloodstream making 
biomarkers difficult to measure. Moreover, dilution, degradation, or metabolism introduces 
variance unrelated to AD-related brain changes that is difficult to control. These factors might 
limit the predictive validity of biomarkers earlier in life [37, 51, 66]. Fortunately, innovative 
developments relying on ultrasensitive immunoassays and novel mass spectrometry techniques 
have begun to show promise in terms of leveraging plasma biomarkers to measure beta-
amyloid (Aβ40, Aβ42, and the Aβ42/40 ratio) and tau, the two hallmark pathologies of AD, and 
neurodegeneration (tau and neurofilament light proteins) [37, 51, 66].  
 
Amyloidosis may offer predictive validity in terms of AD pathophysiology. For example, low 
plasma Aβ levels may identify adults with MCI and AD [13, 35, 38, 39] including cases 8 to 15 years 
before dementia onset [15, 18, 27, 28, 36, 38].  Nakamura et al. [60] have reported robust correlations 
between plasma biomarkers and areas of high Aβ deposition in the brain. Levels of plasma 
Aβ40, Aβ42, and the Aβ42/40 ratio are all significantly correlated with cerebrospinal fluid (CSF) 
Aβ when analyses are based on AD cases and controls, subjects with MCI and subjective 
cognitive decline (SCD) [43]. Levels of Aβ42 and the Aβ42/40 ratio from plasma are also 
significantly correlated with amyloid positron emission tomography (PET) standardized uptake 
value ratio when examined across all cases (SCD, MCI, and AD) [43]. We note, however, that 
findings regarding plasma Aβ are equivocal; several reports have shown either no association 
between Aβ biomarkers and AD pathophysiology or mixed findings depending on the particular 
Aβ marker [44, 53, 63, 69]. For example, Janelidze et al. [43] reported that APOE-ε4 carriers show 
significantly lower levels of Aβ42 (p < 0.001), Aβ40 (p = 0.009) and a lower Aβ42/40 ratio in 
plasma compared to non-carriers. However, when analyzed within individual diagnostic groups, 
plasma Aβ42 was decreased in APOE-ε4 carriers in controls and individuals with SCD, but not 
among those with either MCI or AD. Plasma biomarkers might prove to be a useful tool for 
monitoring synaptic degeneration and AD pathophysiology [66] or for screening individuals in the 
prodromal stages of AD [43, 74, 75]. 
 
Tau proteins are a group of six highly soluble protein isoforms produced by alternative splicing 
from the MAPT gene [3, 4]. In AD patients, tau loses the ability to bind to microtubules and 
therefore its normal role of keeping the cytoskeleton well-organized is no longer effective [26] and 
is abnormally hyperphosphorylated but without ubiquitin reactivity [49]. Associations between 
plasma tau and AD pathophysiology have, however, yielded equivocal results. For example, 
individual studies have reported either no association between plasma and CSF t-tau [63] or 
elevated but nonsignificant associations, e.g., between plasma and PET t-tau in AD dementia 
patients [59]. Fiandaca et al. [40] found that combining plasma phosphorylated tau (p-tau) and 
Aβ42 yielded a 96% sensitivity for differentiating AD and MCI groups from cognitively normal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.09.503234doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503234
http://creativecommons.org/licenses/by-nc-nd/4.0/


The genetics of blood-based AD biomarkers... 
 

older adults. Olsson et al.’s [44] meta-analysis of 231 reports found that plasma t-tau was 
significantly associated with AD. T-tau has been used as a marker of general 
neurodegeneration whereas p-tau is considered to reflect the formation of neurofibrillary tangles 
[77].  
 
Plasma and CSF NFL concentrations have been shown to be highly correlated (r = 0.59 to 0.89) 
[41, 48]. Plasma NFL is significantly increased in individuals with MCI and patients with AD 
dementia when compared to controls [48]. Plasma NFL significantly correlates with functional 
scores in patients with behavioral variant frontotemporal dementia and the functional 
performance of patients with AD and MCI [62]. Baseline levels of NFL are also higher in patients 
with MCI and AD dementia compared to controls [70].  
 
Mattsson et al. [70] have argued that plasma NFL is a noninvasive biomarker linked to 
neurodegeneration in patients with AD. Likewise, Preische et al. [76] have argued that because 
changes in plasma NFL predict disease progression and brain neurodegeneration during the 
early pre-symptomatic stages of familial AD [76], NFL’s utility as an AD biomarker is supported 
[76]. In contrast, Blennow and Zetterberg’s [66] review argued that plasma NFL is not a feature 
specific to AD, but is found in many neurodegenerative disorders, and thus should only be 
employed as a screening tool for subjects with cognitive disturbance to rule out 
neurodegeneration. In any case, as a biomarker of neurodegeneration, NFL can be a useful 
indicator of the N component of the ATN framework. 

 
While research using improved mass spectrometry techniques to test the validity of plasma 
biomarkers continues [66], remarkably little is known about the genetic and environmental 
etiology of these biomarkers or their sources of covariation. We are aware of small-sampled 
genome-wide association studies examining CSF Aβ or tau-protein species [17, 46, 54, 72, 81], 
plasma Aβ [34], plasma NFL [58], plasma tau [45] and one whole-exome sequence-based 
association study [50] examining Aβ42/40. However, given the small sample sizes none of these 
molecular reports reported either SNP heritability or genetic correlations between biomarkers. 
We are unaware of any twin studies that have examined the etiology of either CSF or plasma-
based AD biomarkers. Another limitation is that biomarker studies typically rely on elderly adult 
samples, or clinically ascertained subjects (e.g., from memory clinics), individuals with high 
SES, or cross-sectional comparisons between AD cases and controls that can be confounded 
by genetic and environmental differences.  
 
We addressed these limitations by exploring the genetic etiology of AD plasma biomarkers in a 
large community-dwelling sample of early old-age male twins from whom we obtained blood-
plasma. Our specific aims included estimating i) the standardized contribution of genetic and 
environmental influences in Aβ40, Aβ42, Aβ42/40, t-tau and NFL, and ii), the genetic and 
environmental correlations between them. To the extent that plasma-based biomarkers are 
unreliable, the expectation is that individual differences will be largely explained by random 
environmental variance that includes measurement error. However, if plasma-based biomarkers 
are indeed capturing reliable variation, there may be significant familial aggregation in the form 
of either genetic or shared environmental influences.  
 
Materials and methods  
Subjects 
The Vietnam Era Twin Study of Aging (VETSA) is a longitudinal study of cognitive and brain 
aging and risk for Alzheimer’s disease in a national US sample of community-dwelling men [31]. 
The present study comprised those who participated in the third assessment wave when plasma 
biomarkers were examined. Briefly, Wave 1 took place between 2001 and 2007 [12] (mean 
age=55.9, SD=2.4, range=51.1 to 60.7). Wave 2 occurred approximately 5.5 years later (mean 
age=61.7, SD=2.5, range=56.0 to 67.0). Wave 3 occurred a further 5.7 years later (mean 
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age=67.6, SD=2.5, range=61.4 to 73.3). All twin pairs were concordant for US military service at 
some time between 1965 and 1975. However, nearly 80% reported no combat experience. The 
sample is 88.3% white, 5.3% African-American, 3.4% Hispanic, and 3.0% “other” participants. 
Based on data from the US National Center for Health Statistics, the sample is very similar to 
American men in their age range with respect to health, education, and lifestyle characteristics 
[14]. Written informed consent was obtained from all participants. The University of California San 
Diego and Boston University ethics committees approved the study.  Study protocols were 
identical at each site. 
 
Biomarker data 
Primary analyses focused on plasma-derived Aβ40, Aβ42, Aβ42/40, NFL and t-tau (p-tau was 
not available). All Wave 3 samples were collected under fasting conditions. Subjects began 
fasting at 9:00 pm the night before testing. The following morning between 8:00 am and 8:15 
am, blood samples were acquired, frozen and stored at -80°C. Commercial kits were used to 
perform the biomarker concentration analysis. The Simoa Human Neurology 3-plex A (N3PA) 
Immunoassay was used to measure Aβ40, Aβ42, and t-tau, while the Simoa NF-light assay was 
used to measure NFL. Standard exclusion criteria included hemolysis, subjects with mean NFL 
> 100, mean t-tau > 80, mean Aβ42/40 > 0.20, or a coefficient of variance > 20%. All biomarker 
assays were performed in Dr. Rissman’s laboratory at the University of California, San Diego. 
 
Among subjects with complete biomarker data, 14.6%, 79.9%, and 5.5% were assessed in 
Boston, San Diego, and in their hometowns, respectively. A total of 80% of twin pairs were 
assessed on the same day. The average storage time between collection and processing was 
1.9 years (SD=0.72).  
 
The effects on each biomarker of age at assessment, testing site, storage time, ethnicity, and 
whether or not twins pairs were assessed on the same day were estimated and removed using 
the umx_residualize() function within the umx software package [65]. All scores were then log-
transformed in R4.0.3 [61] to reduce skewness prior to our model fitting. Results from 
umx_residualize() revealed that prior to residualization, age at blood draw was not associated 
with Aβ40, Aβ42, and tau. It was however, linked to higher NFL (b = 26.12, t = 2.823, p = 
0.005). In terms of location, San Diego subjects had significantly higher levels of Aβ40 (b = 
88.45, t = 8.592, p < 0.001) and Aβ42 (b = 4.71, t = 10.897, p < 0.001). Longer storage time was 
significantly related to lower Aβ40 (b = -1560.39, t = -5.006, p < 0.001), and Aβ42 (b = -49.34, t 
= -3.808, p < 0.001) and higher t-tau levels (b = 18.40, t = 3.186, p = 0.001). Finally, neither self-
reported ethnicity nor being concordant for assessment day (number of days measured apart) 
were associated with individual differences in any of the biomarkers.  
 
Statistical Analyses 
The OpenMx2.9.9.1 software package [21] in R3.4.1 [61] was used to estimate twin pair correlations 
and to fit univariate and multivariate genetic twin models [7]. 
 

Figure 1 
 
Univariate analyses 
In univariate twin analyses, the total variation in each biomarker was decomposed into additive 
genetic (A), shared or common environmental (C), and unshared or unique environmental (E) 
variance components (see Figure 1). This approach is referred to as the ‘ACE’ variance 
component model. The decomposition is achieved by exploiting the expected genetic and 
environmental correlations between monozygotic (MZ) and dizygotic (DZ) twin pairs. MZ twin 
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pairs are genetically identical, whereas DZ twin pairs share, on average, half of their genes. 
Therefore, the MZ and DZ twin pair correlations for the additive genetic effects are fixed to 
rA=1.0 and rA=0.5 respectively. The modelling assumes that the sharing of environmental effects 
(C) is equal in MZ and DZ twin pairs (rC=1.0), while unshared environmental effects (E) are by 
definition uncorrelated and include measurement error. 

 
Multivariate analyses to test competing theories 
This univariate method was extended to the multivariate case to estimate the significance of 
genetic and environmental influences within and shared between each of the biomarkers. To 
provide a reference for contrasting competing genetic and environmental models, we first fitted 
a multivariate ACE ‘correlated factors’ model [79] (Figure 2) before successively dropping the A 
and C components of variance to determine the best overall fit to the data.  
 

Figure 2 
Model fit 
For the univariate and multivariate analyses, we determined the most likely sources of variance 
by fitting three additional sub-models in which the i) C, ii) A, and iii) C and A influences were 
fixed to zero. In other words, we tested the statistical likelihood of the AE, CE, and E models, 
respectively. The significance of the A, C and E parameters was determined using the change 
in the minus two Log-Likelihood (D-2LL). Under certain regularity conditions, the D-2LL is 
asymptotically distributed as chi-squared with degrees of freedom equal to the difference in the 
number of free parameters in the two models. The determination of the best-fitting model was 
also based on the optimal balance of complexity and explanatory power by using Akaike’s 
Information Criterion (AIC) [2].  
 
Results  
Table 1 shows the numbers of complete and incomplete twins by zygosity for each biomarker.  
 

Table 1 
 
Testing the assumption of mean and variance homogeneity 
Prior to the twin modelling of the combined MZ and DZ twin data we tested the assumption of 
mean and variance homogeneity for each biomarker using the residualized data. 
Supplementary Table S1 shows all mean and variance parameter estimates for the fully 
saturated and the constrained homogeneity models. As shown in Supplementary Table S2, 
constraining the means and variances to be equal within twin pairs and across zygosity resulted 
in a significant change in chi-square for Aβ40 and t-tau using a Bonferroni corrected p-value of 
p=0.01. Efforts to transform these two biomarkers or eliminate outliers using the Winsorize, 
Interquartile Range, and Box-Cox procedures did not alter this pattern of results. This was likely 
due to the small numbers of complete and incomplete twin pairs within each zygosity group. 
Notwithstanding this limitation, all subsequent analyses proceeded under the assumption of 
mean variance homogeneity for each biomarker. 
 
Strength of association 
The phenotypic correlations and their 95% confidence intervals are shown in Table 2. Since 
Aβ42/40 is a linear function of Aβ42 and Aβ40, correlations between each of the Aβ biomarkers 
and the ratio were not calculated. Of note was the very high phenotypic correlation between 
Aβ40 and Aβ42. Both the Aβ42 and t-tau and the Aβ40 and t-tau correlations were not 
significant, and although the correlation between Aβ42/40 and t-tau was significant it was very 
small. The three Aβ biomarker correlations with NLF were significant but small. Likewise, the 
association between t-tau and NFL was significant but small.  
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Table 2 
Twin pair correlations 
Table 2 also shows the twin pair correlations by zygosity for each biomarker. When familial 
aggregation is entirely attributable to shared family environments, the MZ and DZ twin pair 
correlations are expected to be statistically equivalent. In contrast, when familial aggregation is 
driven entirely by additive genetic factors, DZ twin pair correlations will be ½ the size (or less in 
the presence of genetic non-additivity) the MZ twin pair correlations.  
 
For Aβ40, the DZ twin pair correlation was greater than ½ the MZ correlation suggesting a 
combination of additive genetic and shared environmental factors driving familial aggregation. 
For all remaining biomarkers, the DZ twin pair correlations were approximately ½ their MZ twin 
pair counterparts. This pattern of correlations is consistent with the hypothesis that additive 
genetic factors alone explain familial aggregation, while all remaining variance is attributable to 
aspects of the environment unshared between siblings.  
 
Univariate analyses 
Table 3 summarizes the best fitting univariate models. Detailed model fitting results are shown 
in Supplementary Table S3. 
 

Table 3 
 
Aβ40  
Based on the lowest AIC and the significant changes in the D-2LL associated with the AE, CE 
and E sub-models, the full ACE model was identified as the best fitting. Consistent with the 
pattern of MZ and DZ twin pair correlations, familial aggregation was associated with a 
combination of additive genetic  (31%) and shared environmental (44%) influences accounting 
for three quarters of the total variance in this biomarker.  
 
Aβ42 
Based on the lowest Akaike’s Information Criterion (AIC) and a non-significant change in D-2LL,  
the AE sub-model was chosen as the best fitting. Here, familial aggregation could be entirely 
explained by additive genetics alone, which in turn accounted 49% of all individual differences in 
this biomarker. 
 
Aβ42/40 
Similar to Aβ42, the AE sub-model again provided the best fit to the data with additive genetic 
variance accounting for 40% of the total variance in this biomarker.  
 
t-tau 
The AE sub-model did not deteriorate significantly when all shared environmental effects (C) 
were removed. This model also yielded the lowest AIC value. Here, familial aggregation was 
entirely explained by additive genetics alone, which accounted for 58% of the total variance in 
this biomarker. 
 
NFL 
The AE sub-model again provided the best fit to the data, with additive genetic influences 
accounting for all familial aggregation, which in turn explained 55% of all individual differences 
in this biomarker. 
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Multivariate analyses 
Multivariate analyses were next used to estimate the size and significance of the genetic and 
environmental influences within and between the four biomarkers (Aβ42, Aβ40, t-tau and NFL). 
The Aβ42/40 biomarker was not modelled since this ratio measure is a linear combination of 
Aβ42 and Aβ40. As shown in Table 4, the AE, CE and E sub-models all deteriorated 
significantly when compared to the full ACE model.  
 

Table 4 
 
Under the best fitting ACE model, the shared environmental factor correlations (rc) between 
either t-tau or NFL and the two Aβ biomarkers were undefined i.e., empirically under-identified. 
This can arise when ‘C’ influences on one or more traits are estimated to be zero. Therefore, 
based on the twin pair correlations and the univariate results, we removed all ‘C’ influences from 
t-tau and NFL before re-running. This model, labeled ‘ACE2’ in Tables 4-5, provided the best 
overall fit to the data as judged by the non-significant change in chi-square and marginally 
lowest AIC.  
 

Table 5 
 
Under ‘ACE2’, familial aggregation in Aβ40 was explained by a combination of additive genetic 
(41%) and shared environmental (34%) influences (see Table 5). We note, however, that these 
‘C’ influences were non-significant. Next, familial aggregation in Aβ42 was explained by a 
combination of significant additive genetic (32%) and shared environmental (39%) influences. 
For t-tau and NFL, familial aggregation was entirely explained by additive genetic influences 
ranging 55% to 58%. For all four biomarkers, all remaining sources of variation were explained 
by unshared environmental influences including measurement error.  
 

Table 6 
 

Table 6 summarizes the multivariate genetic and environmental correlations between the four 
biomarkers based on the ACE2 best fitting model. Genetically, Aβ40 and Aβ42 were statistically 
identical (r = 1.00). All other genetic factor correlations were significant but small: Aβ40 
correlated negatively with t-tau (ra = -0.19); Aβ42 correlated positively with NFL (ra = 0.21); while 
t-tau and NFL correlated positively (ra = 0.21). The shared environmental factor correlation 
between Aβ40 and Aβ42 was non-significant. In terms of unshared environmental correlations, 
there was a moderate correlation between Aβ40 and Aβ42 (re = 0.66). Neither of the Aβ 
biomarker shared any significant ‘E’ influences with t-tau. In contrast, there were significant but 
small positive environmental correlations between each of the Aβ biomarkers and NFL ranging 
from re = 0.28 to re = 0.38. Finally, there was a significant but small unshared environmental 
correlation between t-tau and NFL (re = 0.18).  
 
Discussion 
To our knowledge, this is the first study examining the genetic and environmental etiology of 
AD-related biomarkers in blood plasma. We estimated the relative contribution of genetic and 
environmental influences on five biomarkers using biometrical genetic twin models. Our 
univariate modelling revealed significant familial aggregation attributable to additive genetic and 
shared environmental influences. Additive genetics explained 31% to 58% of the total variances 
in Aβ40, Aβ42, Aβ42/40, t-tau and NFL. The univariate analyses also revealed that shared 
environmental influences explained 44% of the total variance in Aβ40. We then employed the 
statistically more powerful multivariate twin analyses to explore the role of genetic and 
environmental influences within and between the biomarkers. Shared environmental effects  
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explained 34% to 39% of the total variance in Aβ biomarkers, but were non-significant in Aβ40. 
Additive genetics explained 32% to 41% of the variance in Aβ42 and Aβ40 respectively. In 
contrast, familial aggregation in t-tau and NFL was entirely explained by additive genetic 
influences, which accounted for over one-half of the total variance ranging 55% to 58%. Thus, 
individual differences in AD-related plasma biomarkers are substantial and can be explained by 
varying combinations of genetic and shared environmental influences. 
 
The multivariate analyses revealed noteworthy genetic and environmental correlations between 
the plasma biomarkers. For instance, the genetic correlation between Aβ40 and Aβ42 
biomarkers, which are the two most predominant species of Aβ in humans [33], suggest that their 
genetic influences are identical. Indeed, the very high genetic correlation is commensurate with 
the fact that Aβ42 is only two amino acids longer than Aβ40, and can be distinguished by the 
presence of an Ile–Ala dipeptide at the C-terminal end of an otherwise identical 40 amino acid 
peptide [1, 33]. Despite our results, Aβ42 has been shown to be more strongly linked to AD 
pathology than is Aβ40[8-10]. In vitro findings have shown how Aβ42 has higher fibril nucleation 
and elongation rates, as well as larger oligomers and more toxic assemblies than Aβ40 [33]. We 
speculate that a lower genetic correlation might be observed in CSF, or that independent 
genetic influences might be detectable in neuronally derived Aβ40 and Aβ42, or at later stages 
of AD progression.  
 
According to the amyloid cascade hypothesis [5, 6], Aβ aggregation drives the accumulation of 
tau tangles, resulting in synaptic dysfunction, neurodegeneration and progression to cognitive 
decline. If Aβ aggregation causally impacts t-tau via genetic mechanisms, then significant 
genetic covariance between the Aβ and t-tau biomarkers should be observed. Our results lend 
partial support to this model; the genetic correlation (rg) between t-tau and Aβ42 was significant, 
and although the Aβ40 and t-tau rg was non-significant, the upper bound 95% confidence 
interval was +0.30. Given the Aβ4240 is a linear function of Aβ40 and Aβ42, we ran a post-hoc 
tri-variate analysis of Aβ4240, t-tau and NFL to validate this trend. Here, the genetic correlation 
between Aβ4240 and t-tau was small and non-significant with a low upper bound (rg = 0.05 
[95%CI = -0.14,0.06]). In contrast, the rg between Aβ4240 was NFL was larger and significant 
(rg = 0.29 [95%CI = 0.12,0.44]). Also noteworthy was that NFL having the highest heritability 
point estimate (58%). NFL is a marker of axonal damage [11] and plasma NFL has been 
significantly linked to neurodegeneration [70, 85]. Our ongoing fourth wave follow-up assessment 
(which is collecting both t- and p-tau) will reveal if the genetic correlations between the Aβs and 
tau (p- and t-tau) or the Aβs and NFL increase and reach significance when the mean age of the 
sample is projected to be 74 years.  
 
In terms of random environmental influences unshared between siblings, these effects 
explained less than one-half of the standardized variance in each biomarker. As mentioned 
previously, ‘E’ effects necessarily include measurement error. Therefore, the multivariate 
unshared environmental correlations will also capture correlated measurement errors. If the 
assay contributed to similar measurement errors across biomarkers, then provided the 
measurement errors were uncorrelated between siblings, this would have resulted in more 
uniform unshared environmental correlations. Despite Aβ40, Aβ42 and t-tau each being 
measured on the same N3PA assay, the pattern of unshared environmental correlations was 
not uniform. For instance, there was a moderate significant re between Aβ40 and Aβ42 versus 
small non-significant correlations between the Aβ biomarkers and t-tau. Regarding the unshared 
environmental correlations between NFL and the three other biomarkers, we caution against 
over-interpreting the significance of the small unshared environmental correlations since the 
overall magnitude of their phenotypic associations was small (see Table 2). It is possible that 
the observed pattern of unshared environmental correlations arose, in part, from differential 
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rates of dilution, degradation, or metabolism effecting the biomarkers after entering the 
bloodstream, which could have introduced additional variance unshared between siblings. 
 
We also note the discrepancy between the univariate and multivariate variance components for 
the Aβ biomarkers. When estimating univariate variance components, information is derived 
solely from the within-trait cross-twin covariance structure. In contrast, the multivariate variance 
component estimates rely upon additional information from the cross-twin cross-trait 
covariances. Inspection of the multivariate phenotypic cross-twin cross-trait correlations (See 
Supplementary Table S4) reveals that both DZ Aβ cross-twin cross-trait correlations were 
greater than ½ their MZ Aβ cross-twin cross-trait correlations. This is consistent with the shared 
environmental influences on the Aβ biomarkers observed in the multivariate results. Given the 
increased power of multivariate twin models and the use of the correlated factors model to 
obtain the correct Type 1 error rate [79], the univariate Aβ42 results (Table 2) may represent 
outliers when compared to the multivariate data. 
 
Broadly, our findings have implications in terms of the ATN framework  
[42, 57] that relies on imaging and CSF biomarkers divided into three binary classes: Aβ 
biomarkers (A); tau pathology (T); biomarkers measuring neurodegeneration or neuronal injury 
(N). Notwithstanding the limitations of this approach [55, 56, 78], this framework was intended to be 
flexible in terms of adding either new biomarkers or entire classes of new biomarkers [57]. Our 
demonstration of significant heritability and genetic covariance suggests that that the inclusion 
of plasma biomarkers within the ATN framework may be warranted. Indeed, Koycheva’s meta-
analysis of 83 phenotypic studies highlighted the validity of ATN plasma biomarkers (when 
measured using ultrasensitive techniques) to differentiate significantly between AD patients and 
controls [83]. Of course, practical implementation would require agreed upon positivity cutoffs for 
plasma biomarkers. Our next step will be to determine the degree to which the genetic and 
environmental variances in our plasma biomarkers can reliably predict individual differences in 
MCI and risk of AD. 
 
It is important to note that the correlations between Aβ and t-tau were positive.  This may seem 
rather counterintuitive given that, like CSF Aβ, lower plasma Aβ levels are generally considered 
to be more pathological [52][68]. However, pattern is consistent with results based on at least 4 
independent samples that have revealed a quadratic association between CSF Aβ in cognitively 
normal adults [52][68], whereby the association is younger or cognitively normal individuals ( 
inverted-U pattern suggests an early increase in CSF Aβ production followed later by a 
sequestration in amyloid plaques, while CSF tau increases throughout). In our largely 
cognitively normal sample with a mean age of only 68, most individuals may be on the 
rising/lower side of the inverted-U curve for plasma Aβ.  As such, we might expect the 
correlations between Aβ and tau to switch from positive to negative in the next wave of the 
study. 
 
Limitations  
Our results should be interpreted in the context of potential limitations.  
 
First, we explored only a limited number of plasma biomarkers on existing arrays. Although we 
plan to obtain them from remaining samples, we did not have measures of p-tau. Three p-tau 
isoforms (181, 217, and 231) have, for example, been shown to predict amyloidosis and 
progression to AD [82]. The genetic etiology of these isoforms remains undetermined including 
their covariance with the Aβ and NFL biomarkers.  As noted, t-tau is not generally considered as 
good an indicator of neurofibrillary tangles as p-tau, so it is probably not the ideal marker of T in 
the ATN framework.  On the other hand, t-tau and p-tau are very highly correlated.  
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Second, because between-group differences are likely to be complex [86], our results may not 
generalize to women or to other ancestral groups. Due in part to their greater longevity, women 
are disproportionately affected by AD in terms of both disease prevalence and severity [30]. 
Therefore, it is unclear to what extent there are sex differences in the means and variance 
components of these plasma-based biomarkers in similarly aged women, and whether such 
differences translate into different outcomes. Regarding ancestral differences, African 
Americans are at greater risk of developing AD compared to Caucasians [64, 84]. In terms of 
specific biomarkers, African-Americans have lower levels of CSF tau that appear to be 
unrelated to neurodegeneration [47, 67, 71], and when compared to Caucasians, African-Americans 
with the APOE-ε4 risk allele also have lower CSF t-tau and p-tau181 [71]. Therefore, it is 
plausible that the genetic and environmental etiologies of the plasma biomarkers differ between 
ancestral groups. Only by ascertaining larger and ancestrally varied samples can we begin to 
test hypotheses regarding important group differences, including the generalizability and validity 
of the overall ATN framework.  
 
These above limitations are offset by notable strengths. Among subjects with biomarker data, 
the mean level of education was 13.99 years (SD=2.08), which is similar to the general 
population for this age cohort. This is particularly important because low education is a known 
risk factor for AD [20]. Additionally, some large biomarker studies have exclusion criteria for 
several health conditions, whereas the VETSA is a community-dwelling sample that does not 
exclude for these reasons. Therefore, the sample may also be more representative of at least 
men in their age group with respect to health factors. 
 
Conclusion 
To our knowledge, this is the first study to explore the genetic and environmental influences in 
plasma AD-related biomarkers. In community-dwelling men at average age 68 years, these 
biomarkers are heritable.  Genetic influences were associated with 32% to 41% of the variance 
in the Aβ biomarkers and over one-half of the variance in t-tau and NFL. The presence of ‘C’ in 
Aβ40 or Aβ42 implies that the impact of being reared together may be persistent in terms of 
influencing biomarker levels in early old age. Although the biomarkers examined here were not 
brain-derived, changes in plasma biomarkers occur at much the same time as their CSF 
counterparts [73], and are proving to be useful for screening individuals in the prodromal stages 
of AD [43, 74, 75]. Future analyses should explore the sources of genetic and environmental 
covariance between plasma biomarkers, MCI, and risk of AD. 
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rC=1

rA=1 or 0.5

Biomarker
Twin 1

E C A

Figure 1. Univariate variance decomposition to 
estimate the relative contribution of genetic & 
environmental influences in each biomarker.

Biomarker
Twin 1

A C E

Note: A = additive genetic, C = common or shared 
environmental, & E = unshared environmental influences. 
rC = correlation of 1 for MZ and DZ twin pairs. rA = 1 or 0.5 
for  MZ & DZ twin pairs respectively.

1 1 1 1 1 1
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Aβ40 Aβ42 t-Tau

A1 A2 A3

E1 E2 E3

NFL

A4

E4

1 1 1 1

1 1 1 1

Figure 2. Multivariate correlated liabilities model to 
estimate the sources of genetic & environmental 
variances and covariances between the Aβ40, Aβ42, 
t-Tau & Neurofilament Light (NFL) biomarkers.

Note: A1-A4 & E1-E4 denote latent additive genetic & non-
shared environmental risk factors for the 5 biomarkers. Latent 
shared environmental factors not shown for brevity. Double-
head arrows denote variances & covariances within & 
between latent factors.
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Tables 
 
Table 1. Descriptive statistics including numbers of complete twin pairs & singletons for each of 
the five bio-markers by zygosity. 
 
   Monozygotic   Dizygotic  

  N  Complete Singletons  Complete  Singletons 
1. Aβ40  1015  240 109  159 108 
2. Aβ42 998  237 104  157 106 
3. Aβ42/40 998  237 104  157 106 
4. t-tau 963  213 132  142 121 
5. NFL 1052  257 100  171 96 
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Table 2. Pairwise polyserial phenotypic correlations & their standard errors between the five bio-markers along with the monozygotic 
(rMZ) & dizygotic (rDZ) twin pair correlations (including 95% confidence intervals). 
 
 Phenotypic correlations (95%CIs)  Twin pair correlations*  

1 2 3 4 5  rMZ (95%CIs) rDZ (95%CIs) 
1. Aβ40  1       0.75 (0.68, 0.80) 0.59 (0.43, 0.70) 
2. Aβ42 0.88 ( 0.86, 0.89) 1      0.49 (0.39, 0.58) 0.27 (0.10, 0.42) 
3. Aβ42/40 - - 1     0.39 (0.27, 0.49) 0.26 (0.08, 0.41) 
4. t-tau -0.08 (-0.14, -0.01) 0.06 (-0.01, 0.12) 0.08 (0.01, 0.10) 1    0.60 (0.49, 0.67) 0.24 (0.09, 0.37) 
5. NFL 0.21 ( 0.15,  0.27) 0.28 ( 0.22, 0.34) 0.20 (0.16, 0.21) 0.17 (0.11, 0.23) 1   0.55 (0.46, 0.62) 0.27 (0.11, 0.42) 
Note: *Twin pair correlations calculated under the assumption of mean and variance homogeneity. 
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Table 3. Standardized estimates of the additive genetic (A), shared (C) & unshared (E) 
environmental influences (including 95% confidence intervals) under the best fitting univariate 
models. 
 
 A C E 
1. Aβ40  0.31 (0.09, 0.63) 0.44 (0.11, 0.64) 0.25 (0.20, 0.32) 
2. Aβ42 0.49 (0.40, 0.58) - 0.51 (0.42, 0.60) 
3. Aβ42/40 0.40 (0.29, 0.50) - 0.60 (0.50, 0.71) 
4. t-tau 0.58 (0.48, 0.67) - 0.42 (0.33, 0.52) 
5. NFL 0.55 (0.46, 0.62) - 0.45 (0.38, 0.54) 
Note: A = additive genetic, C = common or shared environment, E = unshared environment. Detailed 
model fitting results are shown in Supplementary Table S3.  
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Table 4. Multivariate model fitting comparisons between the reference ACE and the AE, CE, E 
and ACE2 nested sub-models. The best fitting model in bold font. 
 

Model ep -2LL df D-2LL Ddf p AIC 
ACE 34 18503.65 3994        18571.65 

AE 24 18522.46 4004 18.81 10 0.0428 18570.46 
CE 24 18563.76 4004 60.11 10 <0.001 18611.76 

E 14 18839.07 4014 335.42 20 <0.001 18867.07 
ACE2 27 18514.86 4001 11.21 7 0.1296 18568.86 

Note: A = additive genetic, C = common or shared environment, E = unshared environment,  
ACE2 = all ‘C’ influences dropped from t-tau and NFL, ep = number of estimated parameters, -2LL = 
-2 x log-likelihood, D-2LL = change in -2 x log-likelihood, Ddf = change in degrees of freedom, AIC = 
Akaike Information Criteria. 
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Table 5. Standardized estimates of the additive genetic & unshared environmental influences for the multivariate ACE and better 
fitting ACE2 model.  
 

Model A (95%CI) C (95%CI) E (95%CI) 
1. AB40 0.41 (0.19, 0.78) 0.34 (-0.02, 0.56) 0.24 (0.20, 0.31) 
2. AB42 0.32 (0.10, 0.65) 0.39 ( 0.07, 0.60) 0.29 (0.23, 0.36) 
3. t-tau 0.55 (0.47, 0.63) 0.00 ( 0.00, 0.00) 0.45 (0.37, 0.53) 
4. NFL 0.58 (0.48, 0.67) 0.00 ( 0.00, 0.00) 0.42 (0.33, 0.52) 
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Table 6. Additive genetic, shared & unshared (or unique) environmental latent factor correlations based on the best fitting 
multivariate ‘ACE2’ model.   
 

Genetic correlations 
 Aβ40 Aβ42 t-tau NFL 
Aβ40  1.00 

   

Aβ42  1.00 ( 0.92, 1.00) 1.00 
  

t-tau   0.12 (-0.05, 0.30)  0.21 ( 0.02, 0.45) 1.00 
 

NFL -0.19 (-0.41,-0.02) -0.12 (-0.38, 0.09)  0.18 ( 0.03, 0.32) 1.00 
Shared environmental correlations 

     
 Aβ40 Aβ42 t-tau NFL 
Aβ40  1.00    
Aβ42  0.91 (-1.00, 1.00) 1.00   
t-tau - - 1.00  
NFL - - - 1.00 

Unshared environmental correlations 
     
 Aβ40 Aβ42 t-tau NFL 
Aβ40  1.00    
Aβ42  0.66 ( 0.59, 0.73) 1.00   
t-tau  0.05 (-0.09, 0.19)  0.13 ( 0.00, 0.27) 1.00  
 NFL  0.38 ( 0.26, 0.48)  0.28 ( 0.17, 0.39)  0.18 ( 0.04, 0.30) 1.00 
 
 Additive genetic correlations 
 Aβ4240 t-tau NFL 
Aβ4240 1   
t-tau  0.05 (-0.14,0.06) 1 

 

NFL 0.29 ( 0.12,0.44) 0.18 ( 0.03,0.32) 1 
  

Unshared environmental correlations 
 Aβ4240 t-tau NFL 
Aβ42 1   
t-tau 0.11 ( 0.07,0.12) 1  
 NFL 0.14 ( 0.13,0.25) 0.17 ( 0.04,0.30) 1 
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Supplementary Table S1. Monozygotic (MZ) and dizygotic (DZ) sample sizes, means, variances and covariances for i) the fully 
saturated model with 10 parameters and ii) the restricted mean and variance homogeneity model with 4 parameters.  
 
   Fully saturated model  

10 parameters (4 means + 4 variances + 2 covariances) per 
biomarker 

 Mean & variance homogeneity model 
4 parameters (1 mean + 1 variance + 2 covariances) per biomarker 

    Variances & covariances   Variances & covariances  
N  Means (SE) Twin1 Twin2  Means (SE) Twin1 Twin2 

1. Aβ40  
 

 
   

 
   

MZ Twin 1 294  54.22 (0.29) 27.63 (23.51 - 32.77) 
 

 

54.61 (0.16) 

17.96 (16.15 - 20.06) 
 

MZ Twin 2 295  54.66 (0.26) 19.87 (16.35 - 24.04) 21.68 (17.92 - 26.42)  13.39 (11.31 - 15.68) 17.96 (16.15 - 20.06) 
DZ Twin 1 216  54.75 (0.22) 10.12 (8.38 - 12.41) 

 
 17.96 (16.15 - 20.06) 

 

DZ Twin 2 210  54.85 (0.20)  2.37 (0.37 -  4.40)  8.85 ( 7.35 - 10.78)  10.62 ( 7.27 - 13.46) 17.96 (16.15 - 20.06) 
2. Aβ42 

 
 

   
 

   

MZ Twin 1 286  22.46 (0.19) 10.40 (8.86 - 12.30) 
 

 

22.59 (0.11) 

 8.86 (8.08 - 9.75) 
 

MZ Twin 2 292  22.77 (0.17)  5.06 (3.74 -  6.56)  9.11 (7.74 - 10.84)   4.35 (3.31 - 5.42)  8.86 (8.08 - 9.75) 
DZ Twin 1 213  22.53 (0.19)  7.98 (6.62 -  9.73) 

 
  8.86 (8.08 - 9.75) 

 

DZ Twin 2 207  22.58 (0.19)  1.85 (0.63 -  3.17)  7.46 (6.20 -  9.10)   2.42 (0.85 - 3.87)  8.86 (8.08 - 9.75) 
3. Aβ42/40 

 
 

   
 

   

MZ Twin 1 286  20.41 (0.00)  0.0020 (0.0017 -  0.0024) 
 

 

20.41 (0.00) 

 0.0017 (0.0015 - 0.0018) 
 

MZ Twin 2 292  20.41 (0.00)  0.0008 (0.0005 -  0.0011)  0.0017 (0.0036 -  0.0021)   0.0007 (0.0004 - 0.0009)  0.0017 (0.0015 - 0.0018) 
DZ Twin 1 213  20.41 (0.00)  0.0014 (0.0012 -  0.0017) 

 
  0.0017 (0.0015 - 0.0018) 

 

DZ Twin 2 207  20.41 (0.00)  0.0003 (0.0001 -  0.0005) 0.0014 (0.0014 - 0.0038)   0.0004 (0.0001 - 0.0007)  0.0017 (0.0015 - 0.0018) 
4. t-tau 

 
 

   
 

   

MZ Twin 1 271  22.90 (0.05)  0.81 (0.69 -  0.97) 
 

 

22.97 (0.04) 

 1.21 (1.10 - 1.34) 
 

MZ Twin 2 287  22.93 (0.06)  0.49 (0.36 -  0.64)  1.10 (0.94 -  1.31)   0.72 (0.57 - 0.87)  1.21 (1.10 - 1.34) 
DZ Twin 1 205  23.00 (0.09)  1.56 (1.29 -  1.90) 

 
  1.21 (1.10 - 1.34) 

 

DZ Twin 2 200  23.07 (0.08)  0.42 (0.16 -  0.70)  1.41 (1.16 -  1.73)   0.29 (0.11 - 0.46)  1.21 (1.10 - 1.34) 
5. NFL 

 
 

   
 

   

MZ Twin 1 303  23.52 (0.31) 29.91 (25.57 - 35.30) 
 

 

23.46 (0.18) 

25.73 (23.50 - 28.28) 
 

MZ Twin 2 311  23.73 (0.28) 15.57 (12.16 - 19.53) 24.71 (21.19 - 29.04)  14.15 (11.40 - 17.05) 25.73 (23.50 - 28.28) 
DZ Twin 1 219  23.44 (0.36) 28.22 (23.50 - 34.29) 

 
 25.73 (23.50 - 28.28) 

 

DZ Twin 2 219  23.13 (0.30)  6.17 ( 2.41 - 10.21) 19.51 (16.26 - 23.70)   7.07 ( 2.72 - 11.13) 25.73 (23.50 - 28.28) 
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Supplementary Table S2. Change in model fit associated with the comparison between a fully 
saturated model with 10 parameters per biomarker (4 means, 4 variances and 2 covariances) 
and a ‘mean and variance homogeneity’ model with just 4 parameters (1 mean, 1 variance and 
2 covariances). Also shown are the Comparative fit index (CFI), Tucker Lewis index (TLI), and 
Root Mean Square Error of Approximation (RMSEA) statistics for the constrained 4-parameter 
‘mean and variance homogeneity’ model. The CFI, TLI and RMSEA were derived using the 
mxRefModels option in OpenMx.  
  

D-2LL Ddf p CFI TLI RMSEA 
1. Aβ40  95.84 6 <0.001 0.23 0.74 0.13 
2. Aβ42 10.73 6 0.097 0.93 0.98 0.03 
3. Aβ42/40 11.84 6 0.066 0.85 0.95 0.03 
4. t-tau 30.47 6 <0.001 0.63 0.88 0.07 
5. NFL 15.52 6 0.017 0.90 0.97 0.04 
Note: D-2LL = change in -2 x log-likelihood, Ddf = change in degrees of freedom.
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Supplementary Table S3. Univariate model fitting comparisons & the standardized estimates of the additive genetic (A), shared (C) 
& unshared (E) environmental influences (including 95% confidence intervals) under the competing ACE, AE, CE & E models. Best 
fitting model in bold font. 
 
 Model ep -2LL df D-2LL Ddf p AIC  A C E 

1. Aβ40 
ACE 4 5548.60 1011    5556.60   0.31 (0.09, 0.63) 0.44 (0.11, 0.64) 0.25 (0.20, 0.32) 
AE 3 5554.58 1012 5.98 1 0.0145 5560.58   0.74 (0.67, 0.79) - 0.26 (0.21, 0.33) 
CE 3 5556.47 1012 7.88 1 0.0050 5562.47   - 0.69 (0.62, 0.75) 0.31 (0.25, 0.38) 
E 2 5659.29 1013 110.70 2 0.0000 5663.29   - - 1.00 

2. Aβ42 

ACE 4 4931.92 994    4939.92   0.43 (0.08, 0.82) 0.06 (-0.31, 0.36) 0.51 (0.43, 0.61) 
AE 3 4932.03 995 0.11 1 0.7450 4938.03   0.49 (0.40, 0.58) - 0.51 (0.42, 0.60) 
CE 3 4937.98 995 6.06 1 0.0139 4943.98   - 0.41 (0.32, 0.50) 0.59 (0.50, 0.68) 
E 2 4999.80 996 67.88 2 0.0000 5003.80   - - 1.00 

3. Aβ42/40 

ACE 4 -3600.06 994    -3592.06   0.26 (-0.11, 0.67) 0.13 (-0.24, 0.44) 0.61 (0.51, 0.73) 
AE 3 -3599.56 995 0.50 1 0.4780 -3593.56   0.40 (0.29, 0.50) - 0.60 (0.50, 0.71) 
CE 3 -3544.23 995 55.83 1 0.0000 -3538.23   - 0.17 (-0.08, 0.64) 0.83 (0.36, 1.08) 
E 2 -3418.32 996 181.74 2 0.0000 -3414.32   - - 1.00 

4. t-tau 

ACE 4 2816.08 959    2824.08   0.72 (0.39, 1.05) -0.12 (-0.42, 0.16) 0.40 (0.33, 0.51) 
AE 3 2816.76 960 0.68 1 0.4091 2822.76   0.58 (0.48, 0.67) - 0.42 (0.33, 0.52) 
CE 3 2834.65 960 18.57 1 0.0000 2840.65   - 0.41 (0.31, 0.49) 0.59 (0.51, 0.69) 
E 2 2887.80 961 71.72 2 0.0000 2891.80   - - 1.00 

5. NFL 

ACE 4 6295.86 1048    6303.86   0.55 (0.23, 0.91) 0.00 (-0.34, 0.29) 0.45 (0.38, 0.53) 
AE 3 6295.86 1049 0.00 1 0.9969 6301.86   0.55 (0.46, 0.62) - 0.45 (0.38, 0.54) 
CE 3 6307.87 1049 12.01 1 0.0005 6313.87   - 0.46 (0.37, 0.53) 0.54 (0.47, 0.63) 
E 2 6395.86 1050 100.00 2 0.0000 6399.86   - - 1.00 

Note: ep = number of estimated parameters, -2LL = -2 x log-likelihood, D-2LL = change in -2 x log-likelihood, Ddf = change in degrees of freedom, 
AIC = Akaike Information Criteria. 
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Supplementary Table S4. Full Information Maximum Likelihood multivariate phenotypic polyserial correlations based on the full 
multivariate ACE model. Phenotypic MZ and DZ twin pair correlations are below and above the diagonal respectively. MZ and DZ 
cross-twin cross-trait correlations are shaded. All correlations were calculated under the assumption of mean and variance 
homogeneity within twin-pairs within variable.  
 
 1. 2. 3. 4. 5. 6. 7. 8. 
1. Twin 1 Aβ40  1.00 0.89 0.19 -0.10 0.58 0.54 0.09 -0.12 
2. Twin 1 Aβ42  0.89 1.00 0.20 -0.02 0.54 0.56 0.07 -0.14 
3. Twin 1 t-tau  0.19 0.20 1.00 0.18 0.09 0.07 0.28 0.10 
4. Twin 1 NFL -0.10 -0.02 0.18 1.00 -0.12 -0.14 0.10 0.25 
5. Twin 2 Aβ40  0.75 0.72 0.06 -0.11 1.00 0.89 0.19 -0.10 
6. Twin 2 Aβ42 0.72 0.72 0.10 -0.05 0.89 1.00 0.20 -0.02 
7. Twin 2 t-tau 0.06 0.10 0.55 0.10 0.19 0.20 1.00 0.18 
8. Twin 2 NFL -0.11 -0.05 0.10 0.60 -0.10 -0.02 0.18 1.00 
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