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 2 

Abstract 28 

COVID-19 mRNA vaccines induce protective adaptive immunity against SARS-CoV-2 in most 29 

individuals, but there is wide variation in levels of vaccine-induced antibody and T-cell responses. 30 

However, factors associated with this inter-individual variation remain unclear. Here, using a 31 

systems biology approach based on multi-omics analyses of human blood and stool samples, we find 32 

that baseline expression of AP-1 transcription factors, FOS and ATF3, is inversely correlated with 33 

BNT162b2 mRNA vaccine-induced T-cell responses. FOS expression is associated with 34 

transcription modules related to baseline immunity, but it is negatively associated with those related 35 

to T-cell activation upon BNT162b2 mRNA stimulation. Interestingly, the gut microbial 36 

fucose/rhamnose degradation pathway is positively correlated with FOS and ATF3 expression and 37 

inversely correlated with BNT162b2-induced T-cell responses. Taken together, these results 38 

demonstrate that baseline expression of AP-1 genes, which is associated with the gut microbial 39 

fucose/rhamnose degradation pathway, is a key negative correlate of BNT162b2-induced T-cell 40 

responses.  41 

 42 

 43 
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Introduction 56 

Vaccines containing mRNA encoding SARS-CoV-2 spike antigen, such as Pfizer BNT162b2, can 57 

effectively protect people against COVID-191-6. Innate immune sensing of BNT162b2 mRNA by 58 

cytosolic RNA sensors immediately after vaccination is required for subsequent activation of spike-59 

specific T-cell and antibody responses7. A second dose of BNT162b is sufficient to induce detectable 60 

spike-specific antibody and T-cell responses in most individuals, but levels of adaptive immune 61 

responses vary widely among individuals8,9. Although inter-individual variation in BNT162b2-62 

induced adaptive immunity is associated with several parameters, such as SARS-CoV-2 infection 63 

history, age, sex, and ethnicity9-11, the cause of this variation remains largely unknown, 64 

Recent studies focused on systems biological understanding of human vaccine responses 65 

provide important insight into factors associated with inter-individual variation in vaccine-induced 66 

adaptive immunity12-14. Immune states represented by the composition of immune cells and gene 67 

expression profiles in individuals are highly variable, plausibly due to genetic diversity and 68 

environmental factors such as gut microbial flora15-17. Through comprehensive analysis of immune 69 

states of blood cells at baseline and early vaccine responses, specific immune cell populations and 70 

transcripts have been identified as correlates of antibody or T-cell responses induced by vaccination 71 

against influenza virus, hepatitis B virus, and malaria18-22. Moreover, other studies reveal that gut 72 

microbiota is also associated with vaccine-induced adaptive immunity23-25. Importantly, these factors 73 

can be predictors of vaccine responses and may be potential therapeutic targets to improve vaccine 74 

responses26,27. However, the variability of immune states and gut microbes that is associated with 75 

COVID-19 mRNA vaccine responses remains unclear. In this study, using a systems biology 76 

approach, we demonstrate that BNT162b2-induced human adaptive immune responses are 77 

associated with specific immune and gut microbial parameters.  78 

 79 

Results 80 

Study design  81 

In this study, we used a systems biology approach based on multi-omics analyses of human blood 82 

and stool samples. 96 healthy subjects participated in this study (Supplementary Fig. 1), and data 83 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2022. ; https://doi.org/10.1101/2022.08.08.503075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503075
http://creativecommons.org/licenses/by-nd/4.0/


 4 

from 95 participants who received two doses of BNT162b2 at a three- to four-week interval were 84 

analyzed (data from one participant who was not able to receive the second dose in a timely manner 85 

due to severe side effects from the first dose were excluded from the analysis). We collected 86 

participant blood samples at five time points (T1-T5) before and after administration of BNT162b2 87 

(Fig. 1). To evaluate the level of vaccine-induced adaptive immunity, we measured the SARS-CoV-2 88 

spike-specific antibody response in plasma and the T-cell response in peripheral blood mononuclear 89 

cells (PBMCs). We further used PBMCs for construction of profiles of immune cell populations 90 

(cytometry by time of flight (CyTOF) analysis) and mRNA expression (bulk RNA-seq analysis). In 91 

addition, to analyze the gut microbiome, we collected stool samples from all subjects once during 92 

the participation period (Fig. 1). Through these analyses, we sought to identify immune cell 93 

populations, transcripts, and commensal microbial taxa and functions associated with vaccine-94 

induced antibody and T-cell responses.  95 

 96 

Inter-individual variation in vaccine-induced adaptive immunity 97 

We first evaluated inter-individual variation in vaccine-induced adaptive immunity by measuring 98 

SARS-CoV-2 spike-specific immunoglobulin G (IgG) antibody in plasma and interferon (IFN)-γ-99 

producing T cells in PBMCs by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked 100 

immunospot (ELISpot) assay, respectively. We detected an increase in spike-specific antibody and T-101 

cell responses on Day 41±3 after the second dose (T5) in all subjects, but there were significant 102 

inter-individual differences in response magnitude (Fig. 2a, b). Subjects who were seropositive for 103 

SARS-CoV-2 at baseline (T1) tended to show higher antibody and T-cell responses induced by 104 

vaccination. To remove the effect of immunological memory induced by SARS-CoV-2 infection on 105 

vaccine-induced adaptive immunity, in subsequent analyses we focused on 86 subjects who were 106 

seronegative for SARS-CoV-2 at baseline. Consistent with previous reports, we observed gender-107 

associated differences in antibody and T-cell responses (Fig. 2c, d) and an age-related decline of 108 

vaccine-induced antibody responses, but not T-cell responses (Fig. 2e, f). There was no detectable 109 

correlation between vaccine-induced antibody and T-cell responses (Fig. 2g). We also measured T-110 

cell responses against four human common cold coronaviruses (HCoV-OC43, 229E, NL63, and 111 
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HKU1) and found that BNT162b2 vaccination increased the frequency of T cells specific for these 112 

HCoVs (Supplementary Fig. 2). Furthermore, there was a significant correlation between T-cell 113 

responses against SARS-CoV-2 and these HCoVs (Fig. 2h), indicating that BNT162b2 can induce 114 

cross-reactive T cells to HCoVs. Taken together, these results indicate that there are significant inter-115 

individual differences in antibody and T-cell responses elicited by vaccination with BNT162b2. 116 

 117 

Immune cell populations associated with BNT162b2-induced adaptive immunity 118 

To identify cell populations associated with BNT162b2-induced adaptive immune responses, we 119 

next performed CyTOF analysis of PBMCs collected at baseline (T1) and after vaccination (T2-T5). 120 

Unsupervised dimension reduction and clustering using t-distributed stochastic neighbor embedding 121 

(t-SNE) separated PMBCs into 16 major clusters corresponding to subsets of T cells, B cells, natural 122 

killer (NK) cells, and monocytes (Fig. 3a). We then compared the frequency of immune cell 123 

populations in high- vs low-antibody responders (top 20 vs bottom 20 subjects in antibody titers at 124 

T5 among 86 baseline seronegative subjects). This analysis revealed that there were significant 125 

differences in the frequency of naïve CD8+ T cells and memory CD4+ T cells in high- vs low-126 

antibody responders (Fig. 3b). There was a significant positive correlation between the frequency of 127 

these cells and vaccine-induced antibody responses (Supplementary fig. 3a), but data adjusted for 128 

age and sex did not show such correlations (Fig. 3b). Consistent with previous reports28-30, we 129 

observed an age-related decline of naïve CD8+ T cells (Supplementary Fig. 3b), confirming that 130 

aging is the confounding factor affecting both the frequency of naïve CD8+ T cells and antibody 131 

responses. 132 

    A comparative analysis of frequencies of immune cell populations in high- vs low-T-cell 133 

responders (top 20 vs bottom 20 subjects in T-cell responses at T5 among 86 baseline seronegative 134 

subjects) showed that the frequency of monocytes was higher in high-T-cell responders than in low 135 

responders, while the frequency of several T cell subsets showed the opposite trend, at T5 (Day 41±3 136 

after the second dose) (Fig. 3c). There was a significant correlation between these cell populations 137 

and T-cell responses at T5 in the analysis with adjustments for age and sex (Fig. 3c, d). In time 138 

course analysis, we observed vaccine-induced increase and decrease in the frequency of monocytes 139 
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in high-T-cell responders (only at T5) and in low-T-cell responders (from T2 to T5), respectively 140 

(Fig. 3e and Supplementary Fig. 3c). Thus, the frequency of monocytes, which changes in the 141 

vaccine response, is a positive correlate of vaccine-induced T-cell responses      142 

 143 

Transcripts associated with BNT162b2-induced adaptive immunity 144 

To construct gene expression profiles of PBMCs at baseline and during vaccine response, we 145 

performed bulk RNA-seq analysis of PBMCs at T1 (baseline) and T4 (Day 8±2 after the second 146 

dose). Of the 86 baseline seronegative subjects, sequence data from 80 (at T1) and 78 (at T4) 147 

subjects passed quality control. This analysis revealed that vaccination altered expression of 2296 148 

genes at T4 (Supplementary Fig. 4a). Gene set enrichment analysis (GSEA) revealed that a blood 149 

transcription module (BTM) related to plasma cells and B cells was upregulated after vaccination 150 

(Supplementary Fig. 4b).  151 

To identify biological pathways associated with BNT162b2-induced adaptive immunity, we 152 

next performed GSEA on a ranked gene list based on the correlation with vaccine-induced antibody 153 

or T-cell responses. This revealed that a BTM related to the activator protein 1 (AP-1) transcription 154 

network was positively and negatively associated with antibody responses (Fig. 4a) and T-cell 155 

responses (Fig. 4b), respectively. Furthermore, a comparison between high and low responders in 156 

vaccine-induced antibody and T-cell responses showed that 1 gene (at T4) and 130 genes (53 genes 157 

at T1 and 77 genes at T4) were differentially expressed (log2 FC > 0.5, adjusted p < 0.05) in high- vs 158 

low-antibody responders (Supplementary Fig. 4c) and in high- vs low-T-cell responders (Fig. 4c), 159 

respectively. Notably, consistent with the GSEA result, AP-1 transcription factors, such as FOS, 160 

FOSB, and JUN were highly expressed in low-T-cell responders (Fig. 4c).  161 

Gene regulatory network analysis of differentially expressed genes (DEGs) between high- and 162 

low-T-cell responders identified FOS, JUN, and MEF2D, which were highly expressed in low-T-cell 163 

responders, as potential regulators for many DEGs (Fig. 4d). Baseline expression of FOS and 164 

MEF2D, but not JUN, was inversely correlated with the vaccine-induced T-cell responses in the 165 

analysis with adjustments for age and sex (Fig. 4e). Given the correlation between FOS and T cell 166 

responses, we assessed whether this is the case for other AP-1 family genes and found that 167 
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expression of ATF3 and FOSB was inversely correlated with T-cell responses (Fig. 4f). Thus, we 168 

identified baseline expression of a subset of AP-1 genes FOS, FOSB, and ATF3 as negative 169 

correlates of vaccine-induced T-cell responses.  170 

     Next, we sought to investigate whether transcriptomic signatures related to innate immune 171 

responses are associated with BNT162b2-induced adaptive immunity. To this end, we performed 172 

bulk RNA-seq analysis of PBMCs stimulated with BNT162b2 mRNA for 6 h ex vivo, because 173 

relatively large time lags in our blood sampling did not allow us to evaluate dynamic gene 174 

expression in BNT162b2-induced innate immunity. BNT162b2 mRNA stimulation upregulated 175 

genes related to type I interferon (IFN) responses (Supplementary Fig. 4d, e). GSEA revealed that a 176 

BTM related to type I IFN responses was negatively and positively associated with antibody 177 

responses (Fig. 4g) and T-cell responses (Fig. 4h), respectively. Consistent with this, qPCR analysis 178 

showed that IFNB1 expression was significantly higher in high-T-cell responders than low 179 

responders (Fig. 4i). These data suggest that expression of type I IFN genes in the early innate 180 

immune response is positively associated with BNT162b2-induced T-cell responses.  181 

 182 

Baseline FOS expression is negatively associated with early T-cell responses to BNT162b2 183 

mRNA 184 

To investigate whether and how baseline expression of AP-1 transcription factors is associated with 185 

early vaccine response, we performed single-cell RNA-seq (scRNA-seq) analysis of PBMCs of 186 

subjects who exhibited high or low FOS expression in the bulk RNA-seq analysis (high- and low-187 

FOS subjects, n=4 each) in the absence or presence of ex vivo stimulation with BNT162b2 mRNA. 188 

This experimental setting allowed us to evaluate the association between FOS and other genes 189 

expression at baseline and in early innate immune response (6 and 16 h after BNT162b2 mRNA 190 

stimulation) in specific cell populations (Fig. 5a). Unsupervised clustering identified 9 major 191 

immune cell populations whose frequencies were comparable between high- and low-FOS subjects 192 

(Fig. 5b). BNT162b2 mRNA stimulation upregulated genes related to RIG-I-like receptor signaling 193 

and type-I IFN response, particularly in the monocyte population (Fig. 5c and Supplementary Fig. 194 

5a). 195 
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We found that FOS was expressed all over the immune cell populations that we detected in 196 

unsupervised clustering analysis, with the highest expression in CD14+ monocytes, in the absence of 197 

BNT162b2 mRNA stimulation (Fig. 5d). As expected, FOS expression was significantly higher in 198 

high-FOS subjects than low-FOS subjects (Fig. 5d). However, FOS expression was significantly 199 

reduced in response to BNT162b2 mRNA stimulation in most PBMC subpopulations (Fig. 5d and 200 

Supplementary Fig. 5b). To investigate genes associated with baseline FOS expression in each 201 

cluster, we next performed GSEA on a ranked gene list based on fold changes in expression between 202 

high- and low-FOS subjects. This showed that GO terms related to baseline immunity, such as 203 

chemotaxis in CD14+ monocytes, the tumor necrosis factor (TNF) signaling pathway in CD4+ T 204 

cells, and the Toll-like receptor signaling pathway in CD8+ T cells, were associated with high-FOS 205 

subjects at baseline (Fig. 5e and Supplementary Fig. 5c). In contrast, upon BNT162b2 mRNA 206 

stimulation, GO terms related to T cell activation, such as response to IFN-γ in CD4+ T cells and 207 

responses to virus in CD8+ T cells, were associated with low-FOS subjects (Fig. 5e and 208 

Supplementary Fig. 5c). Taken together, these results indicate that FOS expression is positively 209 

associated with expression of genes related to baseline immune cell activity, but it is negatively 210 

associated with that related to T cell activation upon BNT162b2 mRNA stimulation.  211 

 212 

Gut microbes associated with BNT162b2-induced adaptive immunity 213 

To assess the association between commensal gut microbes and vaccine-induced adaptive immunity, 214 

we next performed 16S ribosomal RNA gene sequencing analysis using stool samples of subjects. 215 

There was no difference in Shannon’s diversity index in high- vs low-antibody responders and in 216 

high- vs low-T-cell responders (Supplementary Fig. 6a). Linear discriminant analysis effect size 217 

(LEfSe) analysis identified 23 taxa and 11 taxa that were differentially enriched in high- vs low-218 

antibody responders and in high- vs low-T-cell responders, respectively (Fig. 6a, b). However, there 219 

were no significant correlations between these taxa and vaccine-induced antibody or T cell responses 220 

in analysis with adjustments for age, sex, and stool sampling timing (Supplementary Fig. 6b, c).  221 

We next searched for functions of gut microbiota that are associated with vaccine-induced 222 
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adaptive immunity using a metagenome prediction tool, phylogenetic investigation of communities 223 

by reconstruction of unobserved states (PICRUSt2). This analysis revealed that the fucose/rhamnose 224 

degradation pathway of gut microbiota was inversely correlated with vaccine-induced T-cell 225 

responses (Supplementary Fig. 6d). Partial correlation analysis confirmed that the correlation 226 

between the fucose/rhamnose degradation pathway and T-cell responses was independent of age, 227 

sex, and fecal sampling timing (Fig. 6c). The fucose/rhamnose degradation pathway converts fucose 228 

to lactaldehyde, which in turn is converted to (S)-1,2-propanediol or pyruvate (Fig. 6d). Among 229 

enzymes involved in this pathway, abundances of genes encoding L-fucose mutarotase and L-230 

fuculokinase were significantly higher in microbiomes of low-T-cell responders (Fig. 6e and 231 

Supplementary Fig. 6e). Furthermore, we found that Blautia, which was enriched in low-T-cell 232 

responders (Fig. 6b), was a dominant taxon that encodes L-fucose mutarotase (Supplementary Fig. 233 

6f, g). Taken together, these data indicate that the gut microbial fucose/rhamnose degradation 234 

pathway is a negative correlate of vaccine-induced T-cell responses.  235 

 236 

The gut microbial fucose/rhamnose degradation pathway is associated with AP-1 expression  237 

Finally, we investigated whether the gut microbial fucose/rhamnose degradation pathway is 238 

associated with baseline expression of transcription factors that we identified as correlates of 239 

vaccine-induced T-cell responses. This showed that the gut microbial fucose/rhamnose degradation 240 

pathway was positively correlated with baseline FOS, FOSB, and ATF3 expression in PBMCs (Fig. 241 

7a-d). The fucose/rhamnose degradation pathway generates (S)-1,2-propanediol and pyruvate, which 242 

in turn leads to generation of short-chain fatty acids (SCFAs) (Fig. 7e). SCFAs derived from 243 

intestinal bacteria contribute to modulating host immune responses by inducing colonic regulatory T 244 

cell differentiation31-33. Furthermore, SCFAs induce production of prostaglandin E2 (PGE2), which 245 

upregulates AP-1 expression34. Therefore, we assessed whether SCFAs promote PGE2 expression in 246 

PBMCs. This showed that SCFAs, but not (S)-1,2-propanediol, significantly increased expression of 247 

COX2 (Fig. 7f), which encodes an enzyme catalyzing production of prostaglandins. Furthermore, 248 

prostaglandin E2 (PGE2) treatment enhanced expression of FOS in PBMCs (Fig. 7g). These results 249 

suggest a potential functional link from the gut microbial fucose/rhamnose degradation pathway to 250 
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AP-1 gene expression in PBMCs.  251 

 252 

Discussion 253 

In this study, we identified various human immune cell populations and transcripts as well as gut 254 

bacterial taxa and functional pathways that are associated with BNT162b2-induced vaccine 255 

responses using a systems biology approach. Notably, the baseline transcription module related to 256 

the AP-1 transcription factor network was positively associated with BNT162b2-induced antibody 257 

response and negatively associated with T-cell responses. Consistent with this, the T cell response 258 

was inversely correlated with baseline expression of AP-1 genes (FOS, FOSB, and ATF3). 259 

Furthermore, the gut microbial fucose/rhamnose pathway was inversely correlated with T-cell 260 

responses. These findings advance our understanding of the contribution of immune and microbial 261 

factors to inter-individual variations in vaccine-induced adaptive immunity.  262 

     This study provides new insight into the role of AP-1 genes in vaccine-induced T-cell 263 

responses. We observed that AP-1 expression in PBMCs rapidly decreased upon ex vivo stimulation 264 

with BNT162b2 mRNA, which is consistent with a recent report that expression of AP-1 genes such 265 

as FOS and ATF3 was diminished in CD14+ monocytes by BNT162b2 vaccination35. Interestingly, 266 

the AS3-adjuvanted H5N1 pre-pandemic influenza vaccine also induces a decrease of AP-1 genes 267 

expression in monocytes through epigenetic silencing, which likely inhibits AP-1-regulated cytokine 268 

expression36. However, how the difference in baseline AP-1 expression affects vaccine response 269 

remains unknown. We found that FOS expression, which is inversely correlated with vaccine-270 

induced T-cell responses, is positively associated with transcription modules related to baseline 271 

activity of CD14+ monocytes and T cells. Furthermore, baseline FOS expression is negatively 272 

associated with transcription modules related to T cell activation upon BNT162b2 mRNA 273 

stimulation ex vivo. These data suggest that baseline expression of FOS and other AP-1 factors in T 274 

cells and/or FOS-dependent control of baseline immune cell activity may inhibit T-cell activation 275 

mediated by mRNA vaccines.  276 

     Our results suggest a novel functional link between the gut microbial fucose/rhamnose 277 

degradation pathway and the host immune system. The fucose/rhamnose degradation pathway can 278 
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promote generation of SCFAs by several mechanisms, including cross-feeding of (S)-1,2-279 

propanediol, a metabolic end-product of this pathway, between gut commensal bacteria resulting in 280 

production of propionate37. SCFAs have immunomodulatory functions, such as promoting mucosal 281 

Treg generation31-33. Given these, our finding suggests that fucose/rhamnose degradation may result 282 

in an increase of SCFAs, which in turn facilitates Treg generation, thereby inhibiting vaccine-283 

induced T-cell responses. Furthermore, our data suggest that SCFAs upregulate PGE2 production 284 

through upregulation of COX2 expression, which in turn upregulates FOS expression in PBMCs. 285 

Future studies will need to further explore the clinical significance and molecular mechanisms of 286 

interactions between the fucose/rhamnose pathway and vaccine-induced T-cell responses. 287 

     Our CyTOF analysis revealed a significant difference in the frequency of monocytes on Day 288 

41 after the second dose between low- and high-T-cell responders. We observed a decrease of 289 

monocytes for at least two months after BNT162b2 vaccination in low-T-cell responders, but not in 290 

high responders. Conversely, there was an increase of monocytes between Days 8 and 41 after the 291 

second dose only in high-T-cell responders. These observations indicate remarkable heterogeneity in 292 

monocyte response induced by BNT162b2 vaccination. Infection and vaccination can affect 293 

monocyte development, homeostasis, and migration, thereby altering the frequency of monocytes in 294 

the blood38,39. Interestingly, vaccination with BCG, AS3-adjuvanted H5N1 pre-pandemic influenza 295 

(H5N1+AS03) vaccine, or HIV vaccine induces innate memory monocytes that provide protection 296 

against non-related36,40 and related viruses41. Epigenetic changes induced by H5N1+AS03 are 297 

maintained in monocytes for at least 6 months, suggesting a long-lasting trained immunity36. 298 

Accordingly, it would be interesting to assess whether BNT162b2-induced changes in monocyte 299 

frequency are associated with memory monocyte generation and whether this affects host defense.  300 

     This study successfully identified multiple correlates of BNT162b2-induced adaptive 301 

immunity, but several shortcomings in the sampling scheme and experimental design may have 302 

prevented identification of other correlates. First, the relatively small sample size and the ethnic and 303 

geographic bias of participants in this study may have limited identification of correlates of adaptive 304 

immune responses. This may be one of the reasons why several enterobacterial taxa correlated with 305 

BNT162b2-induced antibody responses were identified in another study25, but not in our study. 306 
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Second, time lags in blood sampling over several days may have impeded identification of correlates 307 

of adaptive immunity that change dynamically in short time windows, such as genes induced by 308 

innate immunity. However, this issue was partly addressed by our RNA-seq analysis of PBMCs 309 

stimulated with BNT162b2 mRNA ex vivo. Third, we used the level of IFN-γ-secreting T cells as an 310 

indicator of T-cell responses for simple and accurate measurement by ELISpot assay, but analysis of 311 

CD4+ and CD8+ effector T cell subsets may be more informative. Fourth, high-throughput, scRNA-312 

seq analysis and higher resolution of cell phenotyping by CyTOF will be required for a more 313 

comprehensive understanding of inter-individual variations of vaccine-induced adaptive immunity.  314 

     In summary, we discovered several new immune and microbial parameters at baseline and in 315 

the vaccine response that are associated with BNT162b2-induced antibody and T-cell responses, 316 

which provide insight into mechanisms of inter-individual variation in adaptive immunity. Our data 317 

suggest a key role of baseline AP-1 expression and the gut microbial fucose/rhamnose degradation 318 

pathway in inter-individual variation in mRNA vaccine-induced T-cell responses. Future studies 319 

should address the potential of these factors as baseline predictors of vaccine outcome and as 320 

therapeutic targets to improve vaccine responses.  321 

 322 

Methods 323 

Subjects 324 

The study was approved by the Okinawa Institute of Science and Technology, Graduate University 325 

(OIST) human subjects ethics committee (application HSR-2021–001). Ninety-six Japanese healthy 326 

volunteers (42 men and 53 women; average age, 52.4 ± 14.9 years; age range: 20–81 years) were 327 

recruited in Okinawa, Japan, between May 2021 and August 2021. All participants provided 328 

informed written consent. 25 mL of peripheral blood was collected at each sampling. Stool samples 329 

were also collected from all participants once during the participation period.  330 

 331 

PBMCs and plasma collection 332 

Blood samples were collected in heparin-coated tubes (TERUMO; VP-H100K). PBMCs and plasma 333 

were separated using Leucosep tubes pre-filled with Ficoll-Paque Plus (Greiner; 163288), as 334 
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previously described42. Briefly, 25 mL of blood and 12 mL of AIM-V medium (Thermo; 12055091) 335 

were added to Leucosep tubes and centrifuged at 1,000 g at room temperature for 10 min, and the 336 

upper yellowish plasma solution and the white layer containing PBMCs were collected. PBMCs 337 

were then washed twice with 22 mL of AIM-V medium with centrifugation at 600 g (for the first 338 

wash) or 400 g (for the second wash) for 7 min. PBMC pellets were resuspended in 500 μL of CTL 339 

test medium (Cellular Technology Limited (CTL); CTLT-010). Fresh PBMCs were used for IFN-340 

γ ELISpot assays. Plasma was collected and stored at -20℃, and PBMCs were stored in liquid 341 

nitrogen until use. 342 

 343 

SARS-CoV-2 antibody ELISA 344 

Anti-SARS-CoV-2 spike IgG ELISA assays were performed as previously described43,44 with minor 345 

modifications. Briefly, 96-well plates were coated with 2-4 µg/mL HexaPro45 spike protein overnight 346 

at 4˚C. Concentration was adjusted as necessary to optimize positive control signal reproducibility 347 

across protein purification batches. After blocking with 200 µL of PBST plus 3% milk, prepared 348 

serial dilutions of sera in PBST plus 1% milk were transferred to ELISA plates. Antibody incubation 349 

steps were carried out in an incubator at 20 ˚C. All other steps were carried out as described 350 

previously43. For data analysis, the background value was set at an OD492 of 0.2 AU, and the 351 

endpoint titer was calculated using Prism 7 (GraphPad). 352 

 353 

IFN-γ ELISpot assay 354 

Peptide pools for SARS-CoV-2 S (JPT; PM-WCPV-S-1), HCoV-OC43 (GSC; PR30011), HCoV-355 

NL63 (JER; PM-NL63-S-1), HCoV-229E (GSC; RP30010), and HCoV-HKU1 (JER; PM-HKU1-S-356 

1) proteins dissolved in DMSO (500 μg/mL) were used for cell stimulation. IFN-γ ELISpot assays 357 

were performed using Human IFN-γ Single-Color Enzymatic ELISpot kits (CTL; hIFNgp-2 M), 358 

according to the manufacturer's instructions. Briefly, freshly isolated PBMCs (2.5 × 105 cells per 359 

well) were stimulated with 1 µg/mL peptide solutions for each SARS-CoV-2 protein for 18 h. For 360 

each sample analysis, negative controls (cells treated with equimolar amounts of DMSO) and 361 

positive controls (cells treated with 20 ng/mL phorbol 12-myristate 13-acetate (PMA) and 362 
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100 ng/mL ionomycin) were included. After incubation, plates were washed and developed with 363 

detection reagents included in the kits. Spots were counted using a CTL ImmunoSpot S6 Analyzer. 364 

Antigen-specific spot counts were determined by subtracting background spot counts in a negative 365 

control well from wells treated with peptide pools.  366 

 367 

CyTOF immunophenotyping 368 

Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in TexMACS 369 

Medium (Miltenyi Biotec). Cells were then treated with DNase I (100 U/mL) in the presence of 5 370 

mM MgCl2 for 15 min, centrifuged and resuspended in staining buffer, followed by barcoding with 371 

different combinations of Maxpar human anti-CD45 antibodies labeled with 106Cd, 110Cd, 111Cd, 372 

112Cd, 113Cd, or 114Cd. (Fluidigm). 18-20 barcoded PBMC samples were pooled (1 x 105 373 

cells/sample) and immunostained using a Maxpar Direct Immune Profiling Assay kit (Fluidigm) 374 

according to the manufacturer’s protocol. PBMC samples were washed three times with Cell 375 

Acquisition Solution (CAS) or CAS plus buffer (Fluidigm) and resuspended in the same buffer 376 

containing a 1/10 dilution of EQ beads (Fluidigm). Samples were analyzed (an average of 5 x 104 377 

events/sample) with a Helios mass cytometer system (Fluidigm).  378 

 379 

CyTOF data analysis 380 

FCS files were normalized using EQ beads and concatenated. Then the files were de-barcoded using 381 

the barcode key file (Key_Cell-ID_20-Plex_Pd.csv) in the Fluidigm acquisition software (v. 382 

6.7.1014). Clean-up gates for live single cells and elimination of non-cell signals were manually 383 

conducted using the web-plat software, Cytobank (v.9.1). To correct batch effects across CyTOF 384 

runs, signal intensities were normalized using cyCombine46. Data were analyzed using a previously 385 

described R-based pipeline47. In brief, data were imported and transformed for analysis using the 386 

read.flowSet function from the flowCore package48 and the prepData with option (cofactor = 5) 387 

function from the CATALYST (https://github.com/HelenaLC/CATALYST) package, respectively. 388 

Clustering was based on the fastPG49 algorithm with default parameters. These clusters were 389 

visualized using t-SNE and subsequently annotated based on protein markers expression.  390 
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 391 

Bulk-RNA seq 392 

Cryopreserved PBMCs were thawed and centrifuged for 5 min at 440 g, and total RNA was isolated 393 

using Isospin cell and tissue RNA kit (Nippon Gene) or an RNAdvance v2 kit (Beckman Coulter) 394 

according to manufacturer instructions and quantified with an RNA HS Assay Kit (Thermo Fisher) 395 

and a Qubit Flex Fluorometer (Thermo Fisher). For transcriptome analysis, 10 ng of RNA were used 396 

for library preparation with a QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina 397 

(Lexogen) according to the manufacturer’s protocol for low-input RNA samples. To generate single-398 

nucleotide polymorphism (SNP) calls for several donors whose samples were analyzed by scRNA-399 

seq, cDNA libraries were prepared from 500 ng of RNA using a Collibri Stranded RNA Library prep 400 

Kit (Thermo Fisher) according to the manufacturer’s protocol for degraded RNA samples. Libraries 401 

were quantified with a Qubit 1x dsDNA HS Assay Kit (Thermo Fisher) and a Qubit Flex 402 

Fluorometer (Thermo Fisher), and quality was assessed using D1000 ScreenTape and High 403 

Sensitivity D5000 ScreenTape with a Tapestation 2200 (Agilent). Pooled libraries were sequenced 404 

on a Novaseq 6000 instrument (Illumina) with 1x100-bp reads for transcritome analysis and 2x150-405 

bp reads for generation of SNP calls at the Sequencing Section at OIST.  406 

 407 

Bulk RNAseq data processing 408 

To evaluate data quality, we applied FastQC (v.0.11.9) 409 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were further processed to remove 410 

adaptor and low-quality sequences using Trimmomatic50 (v.0.39) software with the options 411 

(SLIDINGWINDOW:4:20 LEADING:20 TRAILING:20 MINLEN:20 HEADCROP:12). To align 412 

reads to the GRCh38 reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file 413 

downloaded from Ensembl), we used HISAT251 (v.2.2). We counted the number of reads 414 

overlapping the genes in GENCODE (v.30) reference transcriptome annotations using featureCounts 415 

from Subread52 (v.2.0.1) with flags (-s 1 -t gene). The samples with fewer than 300,000 total reads 416 

were excluded from the analysis. To detect differentially expressed genes between the high- and 417 

low- Ab or T-cell responders, we first filtered transcripts with an average read count of less than 5 418 
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and analyzed statistical significance with the Wald test using DESeq253 (v.1.34.0). Gene set 419 

enrichment analysis based on blood transcriptional module (BTM), Kyoto Encyclopedia of Genes 420 

and Genomes (KEGG), and Gene Ontology collection (GO) was performed using the 421 

clusterProfiler54 package (v.4.2.2). To predict regulators that explain the observed differential 422 

transcriptional program between the two groups, we used iRegulon55 (v.1.3) through the Cytoscape 423 

(v.3.9.1) visualization tool. Analysis was performed on the putative regulatory region of 20 kb 424 

centered around the transcription start site using default settings. 425 

 426 

SNP calling 427 

Sequencing reads were adaptor- and quality-trimmed and then aligned to the human genome using 428 

the Hisat2 aligner. SNP calls were generated using a previously published protocol56. In brief, we 429 

used SAMtools57 (v.1.12) to remove duplicates (command markdup). Then, we applied the 430 

BEDtools58 (v.2.26.0) intersect to identify and remove SNPs in imprinted genes 431 

(http://www.geneimprint.org/ accessed: 3 January 2022) and SNPs in repeats (RepeatMasker 432 

annotation downloaded from the UCSC Genome Browser). Genotypes were obtained with 433 

SAMtools mpileup with options (-A -q 4 -t AD, DP) and BCFtools59 (v.1.11-1) call (with options -m 434 

--O b -f GQ), using uniquely mapped reads. We used VCFtools60 (v.0.1.16-2) to select SNPs with a 435 

depth ≥ 10 with options (-minDP 10) and a genotype quality ≥ 20 with options (-minGQ 20). 436 

 437 

Ex vivo PBMC stimulation with BNT162b2 mRNA  438 

The BNT162b2 cDNA sequence, including 5' and 3' untranslated regions61, was synthesized by IDT 439 

and cloned into pCDNA3.1 (Thermo Fisher). Using PCR-amplified BNT162b2 cDNA with an 440 

upstream T7 promoter as a template, in vitro transcription of BNT162b2 mRNA was performed with 441 

a HiScribe T7 ARCA mRNA Kit with tailing (NEB) with 2.5 mM N1-Methylpseudouridine-5'-442 

triphosphate nucleoside analog (TriLink BioTechnologies) instead of unmodified UTP. BNT162b2 443 

mRNA was purified using a Monarch RNA cleanup kit (NEB) and dissolved in nuclease-free water.  444 

    Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in 445 

TexMACS Medium (Miltenyi Biotec). PBMCs were seeded into a 96-well plate (106 cells/well) and 446 
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stimulated by transfection with BNT162b2 mRNA (200 ng/well) using Lipofectamine 447 

MessengerMAX (Thermo Fisher) according to the manufacturer’s instructions. Cells were harvested 448 

6 or 16 h after mRNA transfection. 449 

 450 

scRNA-seq 451 

PBMCs unstimulated or stimulated with BNT162b2 mRNA for 6 h or 16 h were used for analysis. 452 

Cells from 8 subjects were pooled in equal numbers and resuspended in ice-cold PBS with 0.04% 453 

BSA at a final concentration of 1000 cells/µL. Single-cell suspensions were then loaded on the 10X 454 

Genomics Chromium Controller with a loading target of 20,000 cells. Libraries were generated 455 

using a Chromium Next GEM Single Cell 5′ v2 (Dual Index) Reagent Kit according to the 456 

manufacturer’s instructions. A Quantitative PCR Bio-Rad T100 Thermal Cycler (Biorad) was used 457 

for a reverse transcription reaction. All libraries were quality controlled using a Tapestation (Agilent) 458 

and quantified using a Qubit Fluorometr (ThermoFisher). Libraries were pooled and sequenced on 459 

an Illumina NovaSeq platform (Illumina) using the following sequencing parameters: read1-26-460 

cycle, i7-10, i5-10, read2-90 with a sequencing target of 20,000 reads per cell RNA library. 461 

 462 

scRNA-seq data analysis  463 

The CellRanger Single-Cell Software Suite (10x Genomics) was used to perform barcode processing 464 

and transcript counting after alignment to the GRCh38 reference genome with default parameters. 465 

To match single cells in the 10x RNAseq data to each donor and identify doublets, we used the 466 

software package demuxlet62, which uses variable SNPs between pooled individuals. To further 467 

analyze scRNAseq data, we used the Seurat63 R package. Cells expressing >5% mitochondrial gene 468 

counts or expressing less than 500 genes were discarded using the subset function. Then, the 469 

NormalizeData and FindVariableFeatures functions were applied to each dataset before 470 

FindIntegrationAnchors, IntegrateData and ScaleData were called to combine and scale the data. 471 

Unsupervised clustering was applied in each dataset as follows: (i) The top variant genes selected by 472 

FindVariableFeatures were used as input for principal components analysis (PCA) to reflect major 473 

biological variation in the data. (ii) The top 15 principal components were used for t-SNE 474 
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dimensional reduction with the RunTSNE function and unsupervised clustering. Specifically, the 475 

FindClusters function was used to cluster cells. (iii) After cell clusters were determined, marker 476 

genes for each cluster were identified by the FindAllMarkers function with default parameters. The 477 

AddModuleScore function was used to calculate the module score in each cell. Plots of expression of 478 

specific transcripts were created using the FeaturePlot function. To find differentially expressed 479 

genes between high- and low-FOS groups, we used the FindMarkers function with the MAST 480 

algorithm64. Gene set enrichment analysis based on BTM, KEGG, and GO was performed using the 481 

clusterProfiler R package. 482 

 483 

16S rRNA gene sequencing 484 

DNA was extracted from stool samples using QIAmp Fast DNA Stool Mini Kit (Qiagen). 16S rRNA 485 

V3 and V4 regions were amplified by PCR using Kapa Hifi Hotstart Ready Mix (KAPA Biosystems) 486 

with an amplicon PCR primer set (Forward: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG 487 

AGA CAG CCT ACG GGN GGC WGC AG-3’, Reverse: 5’-GTC TCG TGG GCT CGG AGA TGT 488 

GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3’). The PCR condition was: 95oC 489 

for 3 min, followed by 25 cycles of 95 oC for 30 sec, 55oC for 30 sec, and 72 oC for 30 sec, and then 490 

72 oC for 5 min. PCR products were purified by AMpure XP beads (Beckman). Purified DNA was 491 

further amplified by PCR using Kapa Hifi Hotstart Ready Mix with Nextra XT Index Primers from 492 

Nextra XT Index Kit (Illumina). The PCR condition was: 95oC for 3 min, followed by 8 cycles of 95 493 

oC for 30 sec, 55oC for 30 sec, and 72 oC for 30 sec, and then 72 oC for 5 min. After purification with 494 

AMpure XP beads, library DNA was quantified using a Qubit 1x dsDNA HS Assay Kit. Samples 495 

were sequenced on an Illumina Miseq with 2x300bp reads at the Sequencing Section at OIST 496 

 497 

16S rRNA gene sequencing data analysis 498 

FASTQ files were analyzed using the QIIME2 pipeline65 (QIIME2 version 2020.2). After 499 

conversion to the qza format, sequence data were demultiplexed and summarized using QIIME2 500 

paired-end-demux. Then, sequences were trimmed and denoised with the dada2 plugin for QIIME2. 501 

Taxonomy was assigned using a naïve Bayes-fitted classifier trained on the SILVA_132 reference 502 
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database (SSURef_NR99_132_SILVA) with the feature-classifier plugin for QIIME2. The 503 

phylogenetic tree for diversity analysis was reconstructed using QIIME2 align-to-tree-mafft-fasttree. 504 

Diversity analysis was performed with QIIME2 core-metrics-phylogenetic. PICRUSt266 was used to 505 

determine predicted functions of bacterial communities. Comparisons of bacterial taxon abundance 506 

were performed with LEfSe67 using default parameters. In LEfSe analysis, reads assigned to the 507 

mitochondrial and chloroplast genomes were filtered out. In addition, taxa detected in less than 10% 508 

of participants (n = 86) or in less than 10% of a subset of participants (n = 40, top 20 and bottom 20 509 

antibody or T cell responders) were excluded from the analysis. 510 

 511 

Treatment of PBMCs with SCFA and PGE2) 512 

Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in TexMACS 513 

Medium (Miltenyi Biotec). PBMCs were seeded into a 96-well plate (106 cells/well) and treated with 514 

SCFAs (mixture of 0.6 mM acetate (Sigma-Aldrich), 0.2 mM propionate (Sigma-Aldrich), and 0.2 515 

mM butyrate (Sigma-Aldrich), 10 mM (S)-1, 2-Propanediol (Tokyo Chemical Industry), or 10 µM 516 

Prostaglandin E2 (Nacalai tesque). Cells were harvested at 18 h after treatment. 517 

 518 

RNA isolation and qPCR 519 

cDNA was synthesized using ReverTra Ace qPCR RT Kit (Toyobo) using 200 ng of total RNA in a 520 

10-µL volume. cDNA samples were diluted 4-fold by adding 30 µL sterile nuclease-free water and 521 

10 µL of cDNA were used for PCR reactions. PCR was carried out using KAPA SYBR FAST qPCR 522 

Kit Master Mix (KAPA BIOSYSTEMS, KK4602) and primer sets (Supplementary Table 1) on a 523 

StepOnePlus Real-Time PCR System (Applied Biosystems). 524 

 525 

Statistical analysis 526 

Statistical details for each experiment are included in the figure legends. Wilcoxon rank-sum tests 527 

and Wilcoxon signed-rank tests were performed using R (v.4.1.2) or GraphPad Prism (v.9.1.0). 528 

Correlation and partial correlation analyses were performed using Spearman’s correlation tests in the 529 

stats R package (v.4.1.2). For partial correlation tests, we removed the effects of age, gender, and 530 
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fecal sampling timing from each dataset. P-values were corrected using Benjamini–Hochberg false 531 

discovery rate (FDR) for multiple comparisons.  532 

 533 

Data availability  534 

The scRNA-seq, bulk RNA-seq, and 16S rRNA gene sequencing data that support the finding of this 535 

study have been deposited to DDBJ database under accession numbers DRA014613, DRA014614, 536 

and DRA014615, respectively. Any other relevant data are available from the corresponding 537 

author upon reasonable request.  538 
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Fig. 2. Inter-individual variations in BNT162b2-induced adaptive immunity in our cohort. 
(a) Anti-SARS-CoV-2 spike IgG endpoint titers in plasma at T1 and T5 were measured using ELISA (n = 95). (b) IFN-γ-secreting T cells specific 
for SARS-CoV-2 spike in PBMCs at T1 and T5 were measured with ELISpot assays (n = 95). SFU, spot-forming unit. (c, d) BNT162b2-induced 
antibody responses (anti-SARS-CoV-2 spike IgG endpoint titers at T5) (c) and T-cell responses (IFN-γ-secreting T cells specific for SARS-CoV-2 
spike in PBMCs at T5) (d) in male (n = 40) and female (n = 46) subjects. (a-d) p values were calculated by Wilcoxon rank-sum tests (* p < 0.05, ** 
p < 0.01, *** p < 0.001). (e, f) Correlation analysis between age and BNT162b2-induced antibody responses (e) or T-cell responses (f). (g) Correla-
tion analysis between BNT162b2-induced antibody responses and T-cell responses. (h) Heat map showing correlations between vaccine-induced T 
cell responses against SARS-CoV-2 and HCoVs. (e-h) Correlations were analyzed by Spearman's correlation. p values were corrected with 
Benjamini–Hochberg FDR correction for multiple tests. Spearman’s rho coefficient and p values are indicated in the plots or in the heat map cells 
(** p < 0.01, *** p < 0.001).  
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Fig. 4. Transcripts associated with BNT162b2-induced adaptive immunity. (a-e) Transcriptomes of PBMCs isolated from baseline seronegative 
subjects (n = 86) at time points T1 and T4 were analyzed by bulk RNA-seq. (a, b) GSEA on a ranked gene list based on the spearman’s correlation 
coefficient between RNA expression and vaccine-induced antibody (Ab) responses (a) or T-cell responses (b) (n = 86). Immune-related BTM, GO, and 
KEGG pathways are shown in red. (c) Scatter plots showing DEGs (log2 FC > 0.5, adjusted p < 0.05) between high- (n = 18 at T1, n = 19 at T4) and 
low- (n = 19 at T1, n = 18 at T4) T-cell responders. Red and blue dots indicate DEGs that were highly expressed in high- and low-T-cell responders, 
respectively. N.S., not significant. (d) Gene regulatory network analysis of DEGs between high- and low-T-cell responders. (e) Scatter plots showing 
correlations between vaccine-induced T-cell responses and expression of FOS and MEF2D. (f) Heat map showing correlations between vaccine-induced 
T-cell responses and expression of AP-1 genes (n = 86). (e, f) Partial correlation analyses with adjustments for age and sex were performed with 
Spearman's correlation tests with Benjamini–Hochberg FDR correction (* p < 0.05). (g-i) PBMCs isolated from baseline seronegative subjects (n = 86) 
were stimulated with BTN162b2 mRNA for 6 h and analyzed by RNA-seq followed by GSEA on a ranked gene list based on the spearman’s correlation 
coefficient between RNA expression and vaccine-induced antibody responses (g) or T-cell responses (h). Immune-related BTM, GO, and KEGG 
pathways are shown in red. (i) IFNB1 mRNA expression in high- (n=18) and low- (n=16) T-cell responders was analyzed by qPCR. The p value was 
calculated with Wilcoxon signed rank test (** p < 0.01). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2022. ; https://doi.org/10.1101/2022.08.08.503075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503075
http://creativecommons.org/licenses/by-nd/4.0/


a b

CD4+ T cells
CD8+ T cells
NK cells
CD14+ monocytes
B cells
CD8+ naive T cells
CD16+ monocytes
Platelets
Dendritic cells

−25

0

25

−40 −20 0 20 40
t-SNE dim. 1

t-S
N

E 
di

m
. 2

RIG-I-like
 (M68)

Type I IFN
 (M127)

c

High-FOS subjects Low-FOS subjects
Unstimulated

d e Module score

→Single cell RNA-sequencing

Stimulated with BNT162b2 mRNA for 16h

PBMCs

BNT162b2 mRNA transfection

0

2

4

6

FO
S

 e
xp

re
ss

io
n 

le
ve

l

CD4+  T ce
lls

CD8+  T ce
lls

NK ce
lls

CD14+  monocyt
es
B ce

lls

CD8+  naive
 T ce

lls

CD16+  monocyt
es

Platelets

Dendritic
 ce

lls

0

2

4

6

FO
S

 e
xp

re
ss

io
n 

le
ve

l

***
*** ***

***
***

***
***

Associated with Low-FOS subjects High-FOS subjects

Normalized enrichment score

Cell chemotaxis (GO)
Skeletal muscle cell differentiation (GO)

Response to purine containing compound (GO)
Parathyroid hormone synthesis, secretion and action (KEGG)

Response to oxygen containing compound (GO)
Regulation of DNA templated transcription in response to stress (GO)

Cellular response to external stimulus (GO)
Response to calcium ion (GO)

Positive regulation of response to wounding (GO)
Ribosome assembly (GO)

Osteoclast differentiation (KEGG)
TNF signaling pathway (KEGG)

Regulation of protein modification process (GO)

Toll−like receptor signaling pathway (KEGG)
Response to BMP (GO)

Immune response regulating signaling pathway (GO)
Rheumatoid arthritis (KEGG)

Locomotory behavior (GO)
Multi-multicellular organism process (GO)

Osteoclast differentiation (KEGG)
Parathyroid hormone synthesis, secretion and action (KEGG)

Cytokine−cytokine receptor interaction (KEGG)
Response to fungus (GO)

−3 −2 −1 0 1 2 3

CD14+ Monocytes

CD4+ T cells

CD8+ T cells

Enriched in T cells (I) (BTM:M7.0)
Enriched in NK cells (I) (BTM:M7.2)

Natural killer cell mediated cytotoxicity (KEGG)

Developmental growth (GO)
Cytoskeleton organization (GO)

Response to interferon gamma (GO)
Myeloid cell homeostasis (GO)

Antigen processing and presentation (GO)
Immune response (GO)

Carbohydrate catabolic process (GO)

Involved in interspecies interaction between organisms (GO)
Response to virus (GO)  

−3 −2 −1 0 1 2
Normalized enrichment score

CD14+ Monocytes

CD4+ T cells

CD8+ T cells

Unstimulated

Stimulated with 
BNT162b2 mRNA for 16h

Baseline FOS expression

Cells were 
harvested 
6 or 16 h 
after mRNA 
transfection

High &
CD4+ T cells
CD8+ T cells

NK cells
CD14+ monocytes

B cells
CD8+ naive T cells
CD16+ monocytes

Platelets
Dendritic cells

CD4+  T ce
lls

CD8+  T ce
lls

NK ce
lls

CD14+  monocyt
es
B ce

lls

CD8+  naive
 T ce

lls

CD16+  monocyt
es

Platelets

Dendritic
 ce

lls

Low

Figure 5

0 6 16 0 6 16

0.00.5 0.00.51.00.00.51.01.5

Hours post BNT162b2 
mRNA stimulation

Fig. 5. Baseline FOS expression is negatively associated with early T-cell responses to BNT162b2 mRNA. PBMCs isolated from subjects who 
exhibited high or low FOS expression in the bulk RNA-seq analysis (high and low FOS subjects, n = 4 each) were unstimulated or stimulated with 
BNT162b2 mRNA for 6 or 16 h, followed by scRNA-seq analysis. (a) Schematic illustrating the experimental design of scRNA-seq of high- and 
low-FOS subjects. (b) t-SNE visualization of scRNA-seq data of unstimulated PBMCs. Data from all eight subjects (high and low FOS subjects, n 
= 4 each) were pooled and visualized. (c) Module score analysis of genes differentially expressed between immune cell populations stimulated with 
BNT162b2 mRNA and unstimulated populations. (d) Violin plots showing expression of FOS in PBMCs unstimulated (upper panel) and stimulated 
with BNT162b2 mRNA for 16 h (lower panel). FOS expression levels in each immune cell population were compared between high- and low-FOS 
subjects (n = 4 each). p values were calculated with Wilcoxon rank-sum tests with Benjamini–Hochberg FDR correction (*** p < 0.001). (e) GSEA 
on a ranked gene list based on the fold change in expression in CD14+ monocytes, CD4+ T cells, and CD8+ T cells unstimulated or stimulated with 
BNT162b2 mRNA for 16 h between high- and low-FOS subjects. Immune-related BTM, GO, and KEGG pathways are shown in red. 
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Fig. 6. Gut microbes associated with BNT162b2-induced adaptive immunity. Microbiomes of stool samples were analyzed by 16S ribosomal 
RNA gene sequencing (n = 86). (a, b) LEfSe analysis of gut microbes that were differentially abundant in high- vs low-antibody (Ab) responders 
(a) and in high- vs low-T-cell responders (b) (n = 20 each). o, order; f, family; g, genus; s, species; UC, unclassified. (c) Scatter plot showing a 
correlation between the gut microbial fucose/rhamnose degradation pathway and vaccine-induced T-cell responses (n = 86). Partial correlation 
analysis with adjustments for age, sex, and stool sampling timing was performed with Spearman's correlation tests. (d) Schematic showing the 
fucose/rhamnose degradation pathway. Metabolites and enzymes involved in the pathway are shown in red and blue, respectively. (e) Analysis of 
the abundance of predicted gene copies for L-fucose mutarotase and L-fuculokinase in high- and low-T-cell responders (n = 20 each). p values were 
calculated with the Wilcoxon rank-sum tests with Benjamini–Hochberg FDR correction (** p < 0.01).  
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Fig. 7. The gut microbial fucose/rhamnose degradation pathway is associated with AP-1 expression. (a) Heat map showing the correlation 
between the gut microbial fucose/rhamnose degradation pathway and transcription factors associated with BNT162b2-induced T-cell responses (n 
= 86). (b-d) Scatter plots showing the correlation between the gut microbial fucose/rhamnose degradation pathway and baseline expression of ATF3 
(b), FOS (c), and FOSB (d) (n = 86). (a-d) Partial correlation analyses with adjustments for age, sex, and stool sampling timing were performed 
with Spearman's correlation tests with Benjamini–Hochberg FDR correction (* p < 0.05, ** p < 0.01, *** p < 0.001). (e) Schematic showing the 
production of SCFAs from the fucose/rhamnose degradation pathway. SCFAs are shown in red. (f) qPCR analysis of COX2 mRNA levels in PBMCs 
untreated or treated with (S)-1,2-propanediol or SCFAs for 18 h (n = 6). p values were calculated using the Friedman test followed by Dunn's 
multiple comparison test (* p < 0.05). (g) qPCR analysis of FOS mRNA levels in PBMCs untreated or treated with PGE2 for 18 h (n = 8). The p 
value was calculated with the Wilcoxon signed rank test (* p < 0.05).  
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