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Abstract

COVID-19 mRNA vaccines induce protective adaptive immunity against SARS-CoV-2 in most
individuals, but there is wide variation in levels of vaccine-induced antibody and T-cell responses.
However, factors associated with this inter-individual variation remain unclear. Here, using a
systems biology approach based on multi-omics analyses of human blood and stool samples, we find
that baseline expression of AP-1 transcription factors, FOS and ATF3, is inversely correlated with
BNT162b2 mRNA vaccine-induced T-cell responses. FOS expression is associated with
transcription modules related to baseline immunity, but it is negatively associated with those related
to T-cell activation upon BNT162b2 mRNA stimulation. Interestingly, the gut microbial
fucose/rhamnose degradation pathway is positively correlated with FOS and ATF3 expression and
inversely correlated with BNT162b2-induced T-cell responses. Taken together, these results
demonstrate that baseline expression of AP-1 genes, which is associated with the gut microbial
fucose/rhamnose degradation pathway, is a key negative correlate of BNT162b2-induced T-cell

responses.
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56  Introduction

57 Vaccines containing mRNA encoding SARS-CoV-2 spike antigen, such as Pfizer BNT162b2, can
58  effectively protect people against COVID-19'-. Innate immune sensing of BNT162b2 mRNA by
59  cytosolic RNA sensors immediately after vaccination is required for subsequent activation of spike-
60  specific T-cell and antibody responses’. A second dose of BNT162b is sufficient to induce detectable
61 spike-specific antibody and T-cell responses in most individuals, but levels of adaptive immune

62 responses vary widely among individuals®®. Although inter-individual variation in BNT162b2-

63  induced adaptive immunity is associated with several parameters, such as SARS-CoV-2 infection
64  history, age, sex, and ethnicity®!!, the cause of this variation remains largely unknown,

65 Recent studies focused on systems biological understanding of human vaccine responses

66  provide important insight into factors associated with inter-individual variation in vaccine-induced
67  adaptive immunity'*'4, Immune states represented by the composition of immune cells and gene
68  expression profiles in individuals are highly variable, plausibly due to genetic diversity and

69  environmental factors such as gut microbial flora'>-17

. Through comprehensive analysis of immune
70  states of blood cells at baseline and early vaccine responses, specific immune cell populations and
71  transcripts have been identified as correlates of antibody or T-cell responses induced by vaccination
72 against influenza virus, hepatitis B virus, and malaria'®-?2, Moreover, other studies reveal that gut
73 microbiota is also associated with vaccine-induced adaptive immunity?*-2>. Importantly, these factors
74 can be predictors of vaccine responses and may be potential therapeutic targets to improve vaccine
75  responses’®?’. However, the variability of immune states and gut microbes that is associated with
76  COVID-19 mRNA vaccine responses remains unclear. In this study, using a systems biology

77  approach, we demonstrate that BNT162b2-induced human adaptive immune responses are

78  associated with specific immune and gut microbial parameters.

79

80  Results

81 Study design

82 In this study, we used a systems biology approach based on multi-omics analyses of human blood

83 and stool samples. 96 healthy subjects participated in this study (Supplementary Fig. 1), and data
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84  from 95 participants who received two doses of BNT162b2 at a three- to four-week interval were

85  analyzed (data from one participant who was not able to receive the second dose in a timely manner

86 due to severe side effects from the first dose were excluded from the analysis). We collected

87  participant blood samples at five time points (T1-T5) before and after administration of BNT162b2

88  (Fig. 1). To evaluate the level of vaccine-induced adaptive immunity, we measured the SARS-CoV-2

89  spike-specific antibody response in plasma and the T-cell response in peripheral blood mononuclear

90  cells (PBMCs). We further used PBMCs for construction of profiles of immune cell populations

91 (cytometry by time of flight (CyTOF) analysis) and mRNA expression (bulk RNA-seq analysis). In

92  addition, to analyze the gut microbiome, we collected stool samples from all subjects once during

93 the participation period (Fig. 1). Through these analyses, we sought to identify immune cell

94  populations, transcripts, and commensal microbial taxa and functions associated with vaccine-

95  induced antibody and T-cell responses.

96

97  Inter-individual variation in vaccine-induced adaptive immunity

98  We first evaluated inter-individual variation in vaccine-induced adaptive immunity by measuring

99  SARS-CoV-2 spike-specific immunoglobulin G (IgG) antibody in plasma and interferon (IFN)-y-
100 producing T cells in PBMCs by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked
101 immunospot (ELISpot) assay, respectively. We detected an increase in spike-specific antibody and T-
102 cell responses on Day 41+3 after the second dose (T5) in all subjects, but there were significant
103 inter-individual differences in response magnitude (Fig. 2a, b). Subjects who were seropositive for
104  SARS-CoV-2 at baseline (T1) tended to show higher antibody and T-cell responses induced by
105  vaccination. To remove the effect of immunological memory induced by SARS-CoV-2 infection on
106 vaccine-induced adaptive immunity, in subsequent analyses we focused on 86 subjects who were
107  seronegative for SARS-CoV-2 at baseline. Consistent with previous reports, we observed gender-
108  associated differences in antibody and T-cell responses (Fig. 2¢, d) and an age-related decline of
109  wvaccine-induced antibody responses, but not T-cell responses (Fig. 2e, f). There was no detectable
110 correlation between vaccine-induced antibody and T-cell responses (Fig. 2g). We also measured T-

111 cell responses against four human common cold coronaviruses (HCoV-OC43, 229E, NL63, and
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112 HKUI) and found that BNT162b2 vaccination increased the frequency of T cells specific for these
113 HCoVs (Supplementary Fig. 2). Furthermore, there was a significant correlation between T-cell

114 responses against SARS-CoV-2 and these HCoVs (Fig. 2h), indicating that BNT162b2 can induce
115  cross-reactive T cells to HCoVs. Taken together, these results indicate that there are significant inter-
116  individual differences in antibody and T-cell responses elicited by vaccination with BNT162b2.

117

118  Immune cell populations associated with BNT162b2-induced adaptive immunity

119 To identify cell populations associated with BNT162b2-induced adaptive immune responses, we
120 next performed CyTOF analysis of PBMCs collected at baseline (T1) and after vaccination (T2-T5).
121  Unsupervised dimension reduction and clustering using t-distributed stochastic neighbor embedding
122 (t-SNE) separated PMBCs into 16 major clusters corresponding to subsets of T cells, B cells, natural
123 killer (NK) cells, and monocytes (Fig. 3a). We then compared the frequency of immune cell

124  populations in high- vs low-antibody responders (top 20 vs bottom 20 subjects in antibody titers at
125  T5 among 86 baseline seronegative subjects). This analysis revealed that there were significant

126 differences in the frequency of naive CD8" T cells and memory CD4" T cells in high- vs low-

127 antibody responders (Fig. 3b). There was a significant positive correlation between the frequency of
128  these cells and vaccine-induced antibody responses (Supplementary fig. 3a), but data adjusted for
129 age and sex did not show such correlations (Fig. 3b). Consistent with previous reports®$-3°, we

130  observed an age-related decline of naive CD8" T cells (Supplementary Fig. 3b), confirming that

131  aging is the confounding factor affecting both the frequency of naive CD8" T cells and antibody

132 responses.

133 A comparative analysis of frequencies of immune cell populations in high- vs low-T-cell

134 responders (top 20 vs bottom 20 subjects in T-cell responses at T5 among 86 baseline seronegative
135 subjects) showed that the frequency of monocytes was higher in high-T-cell responders than in low
136 responders, while the frequency of several T cell subsets showed the opposite trend, at T5 (Day 41+3
137  after the second dose) (Fig. 3c). There was a significant correlation between these cell populations
138  and T-cell responses at T5 in the analysis with adjustments for age and sex (Fig. 3¢, d). In time

139 course analysis, we observed vaccine-induced increase and decrease in the frequency of monocytes
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in high-T-cell responders (only at T5) and in low-T-cell responders (from T2 to T5), respectively
(Fig. 3e and Supplementary Fig. 3c). Thus, the frequency of monocytes, which changes in the

vaccine response, is a positive correlate of vaccine-induced T-cell responses

Transcripts associated with BNT162b2-induced adaptive immunity

To construct gene expression profiles of PBMCs at baseline and during vaccine response, we
performed bulk RNA-seq analysis of PBMCs at T1 (baseline) and T4 (Day 8+2 after the second
dose). Of the 86 baseline seronegative subjects, sequence data from 80 (at T1) and 78 (at T4)
subjects passed quality control. This analysis revealed that vaccination altered expression of 2296
genes at T4 (Supplementary Fig. 4a). Gene set enrichment analysis (GSEA) revealed that a blood
transcription module (BTM) related to plasma cells and B cells was upregulated after vaccination
(Supplementary Fig. 4b).

To identify biological pathways associated with BNT162b2-induced adaptive immunity, we
next performed GSEA on a ranked gene list based on the correlation with vaccine-induced antibody
or T-cell responses. This revealed that a BTM related to the activator protein 1 (AP-1) transcription
network was positively and negatively associated with antibody responses (Fig. 4a) and T-cell
responses (Fig. 4b), respectively. Furthermore, a comparison between high and low responders in
vaccine-induced antibody and T-cell responses showed that 1 gene (at T4) and 130 genes (53 genes
at T1 and 77 genes at T4) were differentially expressed (log2 FC > 0.5, adjusted p < 0.05) in high- vs
low-antibody responders (Supplementary Fig. 4c) and in high- vs low-T-cell responders (Fig. 4c),
respectively. Notably, consistent with the GSEA result, AP-1 transcription factors, such as FOS,
FOSB, and JUN were highly expressed in low-T-cell responders (Fig. 4c).

Gene regulatory network analysis of differentially expressed genes (DEGs) between high- and
low-T-cell responders identified FOS, JUN, and MEF2D, which were highly expressed in low-T-cell
responders, as potential regulators for many DEGs (Fig. 4d). Baseline expression of FOS and
MEF2D, but not JUN, was inversely correlated with the vaccine-induced T-cell responses in the
analysis with adjustments for age and sex (Fig. 4e). Given the correlation between FOS and T cell

responses, we assessed whether this is the case for other AP-1 family genes and found that
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expression of ATF3 and FOSB was inversely correlated with T-cell responses (Fig. 4f). Thus, we
identified baseline expression of a subset of AP-1 genes FOS, FOSB, and ATF3 as negative
correlates of vaccine-induced T-cell responses.

Next, we sought to investigate whether transcriptomic signatures related to innate immune
responses are associated with BNT162b2-induced adaptive immunity. To this end, we performed
bulk RNA-seq analysis of PBMCs stimulated with BNT162b2 mRNA for 6 h ex vivo, because
relatively large time lags in our blood sampling did not allow us to evaluate dynamic gene
expression in BNT162b2-induced innate immunity. BNT162b2 mRNA stimulation upregulated
genes related to type I interferon (IFN) responses (Supplementary Fig. 4d, ). GSEA revealed that a
BTM related to type I IFN responses was negatively and positively associated with antibody
responses (Fig. 4g) and T-cell responses (Fig. 4h), respectively. Consistent with this, qPCR analysis
showed that /FNB1 expression was significantly higher in high-T-cell responders than low
responders (Fig. 41). These data suggest that expression of type I IFN genes in the early innate

immune response is positively associated with BNT162b2-induced T-cell responses.

Baseline FOS expression is negatively associated with early T-cell responses to BNT162b2
mRNA

To investigate whether and how baseline expression of AP-1 transcription factors is associated with
early vaccine response, we performed single-cell RNA-seq (scRNA-seq) analysis of PBMCs of
subjects who exhibited high or low FOS expression in the bulk RNA-seq analysis (high- and low-
FOS subjects, n=4 each) in the absence or presence of ex vivo stimulation with BNT162b2 mRNA.
This experimental setting allowed us to evaluate the association between FOS and other genes
expression at baseline and in early innate immune response (6 and 16 h after BNT162b2 mRNA
stimulation) in specific cell populations (Fig. 5a). Unsupervised clustering identified 9 major
immune cell populations whose frequencies were comparable between high- and low-FOS subjects
(Fig. 5b). BNT162b2 mRNA stimulation upregulated genes related to RIG-I-like receptor signaling
and type-I IFN response, particularly in the monocyte population (Fig. 5S¢ and Supplementary Fig.

5a).
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196 We found that FOS was expressed all over the immune cell populations that we detected in
197  unsupervised clustering analysis, with the highest expression in CD14" monocytes, in the absence of
198  BNT162b2 mRNA stimulation (Fig. 5d). As expected, FOS expression was significantly higher in
199  high-FOS subjects than low-FOS subjects (Fig. 5d). However, FOS expression was significantly
200  reduced in response to BNT162b2 mRNA stimulation in most PBMC subpopulations (Fig. 5d and
201 Supplementary Fig. 5b). To investigate genes associated with baseline FOS expression in each

202 cluster, we next performed GSEA on a ranked gene list based on fold changes in expression between
203  high- and low-FOS subjects. This showed that GO terms related to baseline immunity, such as

204  chemotaxis in CD14* monocytes, the tumor necrosis factor (TNF) signaling pathway in CD4* T

205  cells, and the Toll-like receptor signaling pathway in CD8" T cells, were associated with high-FOS
206  subjects at baseline (Fig. 5¢ and Supplementary Fig. 5¢). In contrast, upon BNT162b2 mRNA

207 stimulation, GO terms related to T cell activation, such as response to IFN-y in CD4" T cells and
208  responses to virus in CD8" T cells, were associated with low-FOS subjects (Fig. 5e and

209  Supplementary Fig. 5¢). Taken together, these results indicate that FOS expression is positively

210  associated with expression of genes related to baseline immune cell activity, but it is negatively

211 associated with that related to T cell activation upon BNT162b2 mRNA stimulation.

212

213 Gut microbes associated with BNT162b2-induced adaptive immunity

214 To assess the association between commensal gut microbes and vaccine-induced adaptive immunity,
215  we next performed 16S ribosomal RNA gene sequencing analysis using stool samples of subjects.

216 There was no difference in Shannon’s diversity index in high- vs low-antibody responders and in

217 high- vs low-T-cell responders (Supplementary Fig. 6a). Linear discriminant analysis effect size

218 (LEfSe) analysis identified 23 taxa and 11 taxa that were differentially enriched in high- vs low-

219  antibody responders and in high- vs low-T-cell responders, respectively (Fig. 6a, b). However, there
220  were no significant correlations between these taxa and vaccine-induced antibody or T cell responses
221 in analysis with adjustments for age, sex, and stool sampling timing (Supplementary Fig. 6b, c).

222 We next searched for functions of gut microbiota that are associated with vaccine-induced


https://doi.org/10.1101/2022.08.08.503075
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.08.503075; this version posted August 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

223 adaptive immunity using a metagenome prediction tool, phylogenetic investigation of communities
224 by reconstruction of unobserved states (PICRUSt2). This analysis revealed that the fucose/rhamnose
225  degradation pathway of gut microbiota was inversely correlated with vaccine-induced T-cell

226  responses (Supplementary Fig. 6d). Partial correlation analysis confirmed that the correlation

227  between the fucose/rhamnose degradation pathway and T-cell responses was independent of age,
228  sex, and fecal sampling timing (Fig. 6¢). The fucose/rhamnose degradation pathway converts fucose
229  to lactaldehyde, which in turn is converted to (S)-1,2-propanediol or pyruvate (Fig. 6d). Among

230 enzymes involved in this pathway, abundances of genes encoding L-fiucose mutarotase and L-

231 fuculokinase were significantly higher in microbiomes of low-T-cell responders (Fig. 6e and

232 Supplementary Fig. 6¢). Furthermore, we found that Blautia, which was enriched in low-T-cell

233 responders (Fig. 6b), was a dominant taxon that encodes L-ficose mutarotase (Supplementary Fig.
234  6f, g). Taken together, these data indicate that the gut microbial fucose/rhamnose degradation

235  pathway is a negative correlate of vaccine-induced T-cell responses.

236

237  The gut microbial fucose/rhamnose degradation pathway is associated with AP-1 expression
238  Finally, we investigated whether the gut microbial fucose/rhamnose degradation pathway is

239  associated with baseline expression of transcription factors that we identified as correlates of

240  vaccine-induced T-cell responses. This showed that the gut microbial fucose/rhamnose degradation
241  pathway was positively correlated with baseline FOS, FOSB, and ATF3 expression in PBMCs (Fig.
242 7a-d). The fucose/rhamnose degradation pathway generates (S)-1,2-propanediol and pyruvate, which
243 inturn leads to generation of short-chain fatty acids (SCFAs) (Fig. 7¢). SCFAs derived from

244  intestinal bacteria contribute to modulating host immune responses by inducing colonic regulatory T
245 cell differentiation’!-33, Furthermore, SCFAs induce production of prostaglandin E2 (PGE2), which
246  upregulates AP-1 expression®*. Therefore, we assessed whether SCFAs promote PGE2 expression in
247  PBMCs. This showed that SCFAs, but not (S)-1,2-propanediol, significantly increased expression of
248  COX2 (Fig. 7f), which encodes an enzyme catalyzing production of prostaglandins. Furthermore,
249  prostaglandin E2 (PGE2) treatment enhanced expression of FOS in PBMCs (Fig. 7g). These results

250  suggest a potential functional link from the gut microbial fucose/rhamnose degradation pathway to
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AP-1 gene expression in PBMCs.

Discussion

In this study, we identified various human immune cell populations and transcripts as well as gut
bacterial taxa and functional pathways that are associated with BNT162b2-induced vaccine
responses using a systems biology approach. Notably, the baseline transcription module related to
the AP-1 transcription factor network was positively associated with BNT162b2-induced antibody
response and negatively associated with T-cell responses. Consistent with this, the T cell response
was inversely correlated with baseline expression of AP-1 genes (FOS, FOSB, and ATF3).
Furthermore, the gut microbial fucose/rhamnose pathway was inversely correlated with T-cell
responses. These findings advance our understanding of the contribution of immune and microbial
factors to inter-individual variations in vaccine-induced adaptive immunity.

This study provides new insight into the role of AP-1 genes in vaccine-induced T-cell
responses. We observed that AP-1 expression in PBMCs rapidly decreased upon ex vivo stimulation
with BNT162b2 mRNA, which is consistent with a recent report that expression of AP-1 genes such
as FOS and ATF3 was diminished in CD14" monocytes by BNT162b2 vaccination®>. Interestingly,
the AS3-adjuvanted H5SN1 pre-pandemic influenza vaccine also induces a decrease of AP-1 genes
expression in monocytes through epigenetic silencing, which likely inhibits AP-1-regulated cytokine
expression®®. However, how the difference in baseline AP-1 expression affects vaccine response
remains unknown. We found that FOS expression, which is inversely correlated with vaccine-
induced T-cell responses, is positively associated with transcription modules related to baseline
activity of CD14" monocytes and T cells. Furthermore, baseline FOS expression is negatively
associated with transcription modules related to T cell activation upon BNT162b2 mRNA
stimulation ex vivo. These data suggest that baseline expression of FOS and other AP-1 factors in T
cells and/or FOS-dependent control of baseline immune cell activity may inhibit T-cell activation
mediated by mRNA vaccines.

Our results suggest a novel functional link between the gut microbial fucose/rhamnose

degradation pathway and the host immune system. The fucose/rhamnose degradation pathway can

10
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promote generation of SCFAs by several mechanisms, including cross-feeding of (S)-1,2-
propanediol, a metabolic end-product of this pathway, between gut commensal bacteria resulting in
production of propionate?’. SCFAs have immunomodulatory functions, such as promoting mucosal
Treg generation3!33. Given these, our finding suggests that fucose/rhamnose degradation may result
in an increase of SCFAs, which in turn facilitates Treg generation, thereby inhibiting vaccine-
induced T-cell responses. Furthermore, our data suggest that SCFAs upregulate PGE2 production
through upregulation of COX2 expression, which in turn upregulates FOS expression in PBMCs.
Future studies will need to further explore the clinical significance and molecular mechanisms of
interactions between the fucose/rhamnose pathway and vaccine-induced T-cell responses.

Our CyTOF analysis revealed a significant difference in the frequency of monocytes on Day
41 after the second dose between low- and high-T-cell responders. We observed a decrease of
monocytes for at least two months after BNT162b2 vaccination in low-T-cell responders, but not in
high responders. Conversely, there was an increase of monocytes between Days 8 and 41 after the
second dose only in high-T-cell responders. These observations indicate remarkable heterogeneity in
monocyte response induced by BNT162b2 vaccination. Infection and vaccination can affect
monocyte development, homeostasis, and migration, thereby altering the frequency of monocytes in
the blood**3°. Interestingly, vaccination with BCG, AS3-adjuvanted H5N1 pre-pandemic influenza
(H5N1+ASO03) vaccine, or HIV vaccine induces innate memory monocytes that provide protection
against non-related**° and related viruses*'. Epigenetic changes induced by H5N1+AS03 are
maintained in monocytes for at least 6 months, suggesting a long-lasting trained immunity?°.
Accordingly, it would be interesting to assess whether BNT162b2-induced changes in monocyte
frequency are associated with memory monocyte generation and whether this affects host defense.

This study successfully identified multiple correlates of BNT162b2-induced adaptive
immunity, but several shortcomings in the sampling scheme and experimental design may have
prevented identification of other correlates. First, the relatively small sample size and the ethnic and
geographic bias of participants in this study may have limited identification of correlates of adaptive
immune responses. This may be one of the reasons why several enterobacterial taxa correlated with

BNT162b2-induced antibody responses were identified in another study?*, but not in our study.

11


https://doi.org/10.1101/2022.08.08.503075
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.08.503075; this version posted August 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

made available under aCC-BY-ND 4.0 International license.

Second, time lags in blood sampling over several days may have impeded identification of correlates
of adaptive immunity that change dynamically in short time windows, such as genes induced by
innate immunity. However, this issue was partly addressed by our RNA-seq analysis of PBMCs
stimulated with BNT162b2 mRNA ex vivo. Third, we used the level of IFN-y-secreting T cells as an
indicator of T-cell responses for simple and accurate measurement by ELISpot assay, but analysis of
CD4* and CD8" effector T cell subsets may be more informative. Fourth, high-throughput, sScRNA-
seq analysis and higher resolution of cell phenotyping by CyTOF will be required for a more
comprehensive understanding of inter-individual variations of vaccine-induced adaptive immunity.

In summary, we discovered several new immune and microbial parameters at baseline and in
the vaccine response that are associated with BNT162b2-induced antibody and T-cell responses,
which provide insight into mechanisms of inter-individual variation in adaptive immunity. Our data
suggest a key role of baseline AP-1 expression and the gut microbial fucose/rhamnose degradation
pathway in inter-individual variation in mRNA vaccine-induced T-cell responses. Future studies
should address the potential of these factors as baseline predictors of vaccine outcome and as

therapeutic targets to improve vaccine responses.

Methods

Subjects

The study was approved by the Okinawa Institute of Science and Technology, Graduate University
(OIST) human subjects ethics committee (application HSR-2021-001). Ninety-six Japanese healthy
volunteers (42 men and 53 women; average age, 52.4 + 14.9 years; age range: 20-81 years) were
recruited in Okinawa, Japan, between May 2021 and August 2021. All participants provided
informed written consent. 25 mL of peripheral blood was collected at each sampling. Stool samples

were also collected from all participants once during the participation period.

PBMC:s and plasma collection
Blood samples were collected in heparin-coated tubes (TERUMO; VP-H100K). PBMCs and plasma

were separated using Leucosep tubes pre-filled with Ficoll-Paque Plus (Greiner; 163288), as

12


https://doi.org/10.1101/2022.08.08.503075
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.08.503075; this version posted August 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

335  previously described*?. Briefly, 25 mL of blood and 12 mL of AIM-V medium (Thermo; 12055091)
336 were added to Leucosep tubes and centrifuged at 1,000 g at room temperature for 10 min, and the
337  upper yellowish plasma solution and the white layer containing PBMCs were collected. PBMCs
338  were then washed twice with 22 mL of AIM-V medium with centrifugation at 600 g (for the first
339  wash) or 400 g (for the second wash) for 7 min. PBMC pellets were resuspended in 500 puL of CTL
340  test medium (Cellular Technology Limited (CTL); CTLT-010). Fresh PBMCs were used for IFN-
341 vy ELISpot assays. Plasma was collected and stored at -20°C, and PBMCs were stored in liquid

342 nitrogen until use.

343

344  SARS-CoV-2 antibody ELISA

345  Anti-SARS-CoV-2 spike IgG ELISA assays were performed as previously described*** with minor
346  modifications. Briefly, 96-well plates were coated with 2-4 pg/mL HexaPro* spike protein overnight
347  at4°C. Concentration was adjusted as necessary to optimize positive control signal reproducibility
348  across protein purification batches. After blocking with 200 pL of PBST plus 3% milk, prepared
349  serial dilutions of sera in PBST plus 1% milk were transferred to ELISA plates. Antibody incubation
350  steps were carried out in an incubator at 20 °C. All other steps were carried out as described

351  previously®. For data analysis, the background value was set at an OD492 of 0.2 AU, and the

352 endpoint titer was calculated using Prism 7 (GraphPad).

353

354  IFN-y ELISpot assay

355  Peptide pools for SARS-CoV-2 S (JPT; PM-WCPV-S-1), HCoV-OC43 (GSC; PR30011), HCo V-
356  NL63 (JER; PM-NL63-S-1), HCoV-229E (GSC; RP30010), and HCoV-HKU1 (JER; PM-HKU1-S-
357 1) proteins dissolved in DMSO (500 pg/mL) were used for cell stimulation. IFN-y ELISpot assays
358  were performed using Human IFN-y Single-Color Enzymatic ELISpot kits (CTL; hIFNgp-2 M),
359 according to the manufacturer's instructions. Briefly, freshly isolated PBMCs (2.5 x 103 cells per
360  well) were stimulated with 1 ug/mL peptide solutions for each SARS-CoV-2 protein for 18 h. For
361  each sample analysis, negative controls (cells treated with equimolar amounts of DMSO) and

362 positive controls (cells treated with 20 ng/mL phorbol 12-myristate 13-acetate (PMA) and

13
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100 ng/mL ionomycin) were included. After incubation, plates were washed and developed with
detection reagents included in the kits. Spots were counted using a CTL ImmunoSpot S6 Analyzer.
Antigen-specific spot counts were determined by subtracting background spot counts in a negative

control well from wells treated with peptide pools.

CyTOF immunophenotyping

Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in TexMACS
Medium (Miltenyi Biotec). Cells were then treated with DNase I (100 U/mL) in the presence of 5
mM MgCl, for 15 min, centrifuged and resuspended in staining buffer, followed by barcoding with
different combinations of Maxpar human anti-CD45 antibodies labeled with 106Cd, 110Cd, 111Cd,
112Cd, 113Cd, or 114Cd. (Fluidigm). 18-20 barcoded PBMC samples were pooled (1 x 10°
cells/sample) and immunostained using a Maxpar Direct Immune Profiling Assay kit (Fluidigm)
according to the manufacturer’s protocol. PBMC samples were washed three times with Cell
Acquisition Solution (CAS) or CAS plus buffer (Fluidigm) and resuspended in the same buffer
containing a 1/10 dilution of EQ beads (Fluidigm). Samples were analyzed (an average of 5 x 10*

events/sample) with a Helios mass cytometer system (Fluidigm).

CyTOF data analysis

FCS files were normalized using EQ beads and concatenated. Then the files were de-barcoded using
the barcode key file (Key Cell-ID_20-Plex Pd.csv) in the Fluidigm acquisition software (v.
6.7.1014). Clean-up gates for live single cells and elimination of non-cell signals were manually
conducted using the web-plat software, Cytobank (v.9.1). To correct batch effects across CyTOF
runs, signal intensities were normalized using cyCombine*. Data were analyzed using a previously
described R-based pipeline’. In brief, data were imported and transformed for analysis using the
read.flowSet function from the flowCore package*® and the prepData with option (cofactor = 5)
function from the CATALY ST (https://github.com/HelenaLC/CATALY ST) package, respectively.
Clustering was based on the fastPG* algorithm with default parameters. These clusters were

visualized using t-SNE and subsequently annotated based on protein markers expression.
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391

392  Bulk-RNA seq

393  Cryopreserved PBMCs were thawed and centrifuged for 5 min at 440 g, and total RNA was isolated
394  using Isospin cell and tissue RNA kit (Nippon Gene) or an RNAdvance v2 kit (Beckman Coulter)
395  according to manufacturer instructions and quantified with an RNA HS Assay Kit (Thermo Fisher)
396  and a Qubit Flex Fluorometer (Thermo Fisher). For transcriptome analysis, 10 ng of RNA were used
397  for library preparation with a QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina

398  (Lexogen) according to the manufacturer’s protocol for low-input RNA samples. To generate single-
399  nucleotide polymorphism (SNP) calls for several donors whose samples were analyzed by scRNA-
400  seq, cDNA libraries were prepared from 500 ng of RNA using a Collibri Stranded RNA Library prep
401  Kit (Thermo Fisher) according to the manufacturer’s protocol for degraded RNA samples. Libraries
402  were quantified with a Qubit 1x dSDNA HS Assay Kit (Thermo Fisher) and a Qubit Flex

403  Fluorometer (Thermo Fisher), and quality was assessed using D1000 ScreenTape and High

404  Sensitivity D5000 ScreenTape with a Tapestation 2200 (Agilent). Pooled libraries were sequenced
405  on a Novaseq 6000 instrument (Illumina) with 1x100-bp reads for transcritome analysis and 2x150-
406  bp reads for generation of SNP calls at the Sequencing Section at OIST.

407

408  Bulk RNAseq data processing

409  To evaluate data quality, we applied FastQC (v.0.11.9)

410  (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were further processed to remove

411 adaptor and low-quality sequences using Trimmomatic®® (v.0.39) software with the options

412 (SLIDINGWINDOW:4:20 LEADING:20 TRAILING:20 MINLEN:20 HEADCROP:12). To align
413 reads to the GRCh38 reference genome (Homo_sapiens.GRCh38.dna.primary assembly.fa file

414 downloaded from Ensembl), we used HISAT23! (v.2.2). We counted the number of reads

415  overlapping the genes in GENCODE (v.30) reference transcriptome annotations using featureCounts
416  from Subread® (v.2.0.1) with flags (-s 1 -t gene). The samples with fewer than 300,000 total reads
417  were excluded from the analysis. To detect differentially expressed genes between the high- and

418  low- Ab or T-cell responders, we first filtered transcripts with an average read count of less than 5
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and analyzed statistical significance with the Wald test using DESeq2°? (v.1.34.0). Gene set
enrichment analysis based on blood transcriptional module (BTM), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Gene Ontology collection (GO) was performed using the
clusterProfiler>* package (v.4.2.2). To predict regulators that explain the observed differential
transcriptional program between the two groups, we used iRegulon’ (v.1.3) through the Cytoscape
(v.3.9.1) visualization tool. Analysis was performed on the putative regulatory region of 20 kb

centered around the transcription start site using default settings.

SNP calling

Sequencing reads were adaptor- and quality-trimmed and then aligned to the human genome using
the Hisat2 aligner. SNP calls were generated using a previously published protocol*®. In brief, we
used SAMtools®” (v.1.12) to remove duplicates (command markdup). Then, we applied the
BEDtools*® (v.2.26.0) intersect to identify and remove SNPs in imprinted genes
(http://www.geneimprint.org/ accessed: 3 January 2022) and SNPs in repeats (RepeatMasker
annotation downloaded from the UCSC Genome Browser). Genotypes were obtained with
SAMtools mpileup with options (-A -q 4 -t AD, DP) and BCFtools* (v.1.11-1) call (with options -m
--O b -f GQ), using uniquely mapped reads. We used VCFtools® (v.0.1.16-2) to select SNPs with a

depth > 10 with options (-minDP 10) and a genotype quality > 20 with options (-minGQ 20).

Ex vivo PBMC stimulation with BNT162b2 mRNA
The BNT162b2 cDNA sequence, including 5' and 3' untranslated regions®!, was synthesized by IDT
and cloned into pPCDNA3.1 (Thermo Fisher). Using PCR-amplified BNT162b2 cDNA with an
upstream T7 promoter as a template, in vitro transcription of BNT162b2 mRNA was performed with
a HiScribe T7 ARCA mRNA Kit with tailing (NEB) with 2.5 mM N1-Methylpseudouridine-5'-
triphosphate nucleoside analog (TriLink BioTechnologies) instead of unmodified UTP. BNT162b2
mRNA was purified using a Monarch RNA cleanup kit (NEB) and dissolved in nuclease-free water.
Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in

TexMACS Medium (Miltenyi Biotec). PBMCs were seeded into a 96-well plate (10° cells/well) and
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447  stimulated by transfection with BNT162b2 mRNA (200 ng/well) using Lipofectamine

448  MessengerMAX (Thermo Fisher) according to the manufacturer’s instructions. Cells were harvested
449 6 or 16 h after mRNA transfection.

450

451 scRNA-seq

452 PBMCs unstimulated or stimulated with BNT162b2 mRNA for 6 h or 16 h were used for analysis.
453  Cells from 8 subjects were pooled in equal numbers and resuspended in ice-cold PBS with 0.04%
454  BSA at a final concentration of 1000 cells/uL. Single-cell suspensions were then loaded on the 10X
455  Genomics Chromium Controller with a loading target of 20,000 cells. Libraries were generated

456  using a Chromium Next GEM Single Cell 5’ v2 (Dual Index) Reagent Kit according to the

457  manufacturer’s instructions. A Quantitative PCR Bio-Rad T100 Thermal Cycler (Biorad) was used
458  for a reverse transcription reaction. All libraries were quality controlled using a Tapestation (Agilent)
459  and quantified using a Qubit Fluorometr (ThermoFisher). Libraries were pooled and sequenced on
460  an Illumina NovaSeq platform (Illumina) using the following sequencing parameters: read1-26-

461  cycle, i7-10, i5-10, read2-90 with a sequencing target of 20,000 reads per cell RNA library.

462

463  scRNA-seq data analysis

464  The CellRanger Single-Cell Software Suite (10x Genomics) was used to perform barcode processing
465  and transcript counting after alignment to the GRCh38 reference genome with default parameters.
466  To match single cells in the 10x RNAseq data to each donor and identify doublets, we used the

467  software package demuxlet®?, which uses variable SNPs between pooled individuals. To further

468  analyze scRNAseq data, we used the Seurat® R package. Cells expressing >5% mitochondrial gene
469  counts or expressing less than 500 genes were discarded using the subset function. Then, the

470  NormalizeData and FindVariableFeatures functions were applied to each dataset before

471  FindIntegrationAnchors, IntegrateData and ScaleData were called to combine and scale the data.
472 Unsupervised clustering was applied in each dataset as follows: (i) The top variant genes selected by
473  FindVariableFeatures were used as input for principal components analysis (PCA) to reflect major

474  biological variation in the data. (ii) The top 15 principal components were used for t-SNE
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dimensional reduction with the RunTSNE function and unsupervised clustering. Specifically, the
FindClusters function was used to cluster cells. (iii) After cell clusters were determined, marker
genes for each cluster were identified by the FindAllMarkers function with default parameters. The
AddModuleScore function was used to calculate the module score in each cell. Plots of expression of
specific transcripts were created using the FeaturePlot function. To find differentially expressed
genes between high- and low-FOS groups, we used the FindMarkers function with the MAST
algorithm®. Gene set enrichment analysis based on BTM, KEGG, and GO was performed using the

clusterProfiler R package.

16S rRNA gene sequencing

DNA was extracted from stool samples using QIAmp Fast DNA Stool Mini Kit (Qiagen). 16S rRNA
V3 and V4 regions were amplified by PCR using Kapa Hifi Hotstart Ready Mix (KAPA Biosystems)
with an amplicon PCR primer set (Forward: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG
AGA CAG CCT ACG GGN GGC WGC AG-3’, Reverse: 5°-GTC TCG TGG GCT CGG AGA TGT
GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3°). The PCR condition was: 95°C
for 3 min, followed by 25 cycles of 95 °C for 30 sec, 55°C for 30 sec, and 72 °C for 30 sec, and then
72 °C for 5 min. PCR products were purified by AMpure XP beads (Beckman). Purified DNA was
further amplified by PCR using Kapa Hifi Hotstart Ready Mix with Nextra XT Index Primers from
Nextra XT Index Kit (Illumina). The PCR condition was: 95°C for 3 min, followed by 8 cycles of 95
°C for 30 sec, 55°C for 30 sec, and 72 °C for 30 sec, and then 72 °C for 5 min. After purification with
AMpure XP beads, library DNA was quantified using a Qubit 1x dsSDNA HS Assay Kit. Samples

were sequenced on an [llumina Miseq with 2x300bp reads at the Sequencing Section at OIST

16S rRINA gene sequencing data analysis

FASTQ files were analyzed using the QIIME2 pipeline®® (QIIME2 version 2020.2). After
conversion to the qza format, sequence data were demultiplexed and summarized using QIIME2
paired-end-demux. Then, sequences were trimmed and denoised with the dada2 plugin for QIIME2.

Taxonomy was assigned using a naive Bayes-fitted classifier trained on the SILVA 132 reference
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database (SSURef NR99 132 SILVA) with the feature-classifier plugin for QIIME2. The
phylogenetic tree for diversity analysis was reconstructed using QIIME2 align-to-tree-mafft-fasttree.
Diversity analysis was performed with QIIME2 core-metrics-phylogenetic. PICRUSt2%¢ was used to
determine predicted functions of bacterial communities. Comparisons of bacterial taxon abundance
were performed with LEfSe®” using default parameters. In LEfSe analysis, reads assigned to the
mitochondrial and chloroplast genomes were filtered out. In addition, taxa detected in less than 10%
of participants (n = 86) or in less than 10% of a subset of participants (n = 40, top 20 and bottom 20

antibody or T cell responders) were excluded from the analysis.

Treatment of PBMCs with SCFA and PGE2)

Cryopreserved PBMCs were thawed, centrifuged for 5 min at 440 g, and resuspended in TexMACS
Medium (Miltenyi Biotec). PBMCs were seeded into a 96-well plate (10° cells/well) and treated with
SCFAs (mixture of 0.6 mM acetate (Sigma-Aldrich), 0.2 mM propionate (Sigma-Aldrich), and 0.2
mM butyrate (Sigma-Aldrich), 10 mM (S)-1, 2-Propanediol (Tokyo Chemical Industry), or 10 uM

Prostaglandin E2 (Nacalai tesque). Cells were harvested at 18 h after treatment.

RNA isolation and qPCR

cDNA was synthesized using ReverTra Ace qPCR RT Kit (Toyobo) using 200 ng of total RNA in a
10-pL volume. cDNA samples were diluted 4-fold by adding 30 pL sterile nuclease-free water and
10 puL of cDNA were used for PCR reactions. PCR was carried out using KAPA SYBR FAST qPCR
Kit Master Mix (KAPA BIOSYSTEMS, KK4602) and primer sets (Supplementary Table 1) on a

StepOnePlus Real-Time PCR System (Applied Biosystems).

Statistical analysis

Statistical details for each experiment are included in the figure legends. Wilcoxon rank-sum tests
and Wilcoxon signed-rank tests were performed using R (v.4.1.2) or GraphPad Prism (v.9.1.0).
Correlation and partial correlation analyses were performed using Spearman’s correlation tests in the

stats R package (v.4.1.2). For partial correlation tests, we removed the effects of age, gender, and
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fecal sampling timing from each dataset. P-values were corrected using Benjamini—-Hochberg false

discovery rate (FDR) for multiple comparisons.

Data availability

The scRNA-seq, bulk RNA-seq, and 16S rRNA gene sequencing data that support the finding of this

study have been deposited to DDBJ database under accession numbers DRA014613, DRA014614,

and DRA014615, respectively. Any other relevant data are available from the corresponding

author upon reasonable request.
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Figure Legends Fig. 1. Study design. Schematic diagram showing blood and stool sample collection and analysis performed
in this study. Samples from 95 subjects who received two doses of BNT162b2 at 3—4-week intervals were analyzed.
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Fig. 2. Inter-individual variations in BNT162b2-induced adaptive immunity in our cohort.

(a) Anti-SARS-CoV-2 spike IgG endpoint titers in plasma at T1 and T5 were measured using ELISA (n = 95). (b) IFN-y-secreting T cells specific
for SARS-CoV-2 spike in PBMCs at T1 and T5 were measured with ELISpot assays (n = 95). SFU, spot-forming unit. (¢, d) BNT162b2-induced
antibody responses (anti-SARS-CoV-2 spike IgG endpoint titers at TS) (¢) and T-cell responses (IFN-y-secreting T cells specific for SARS-CoV-2
spike in PBMCs at TS) (d) in male (n = 40) and female (n = 46) subjects. (a-d) p values were calculated by Wilcoxon rank-sum tests (* p < 0.05, **
p<0.01, ¥** p<0.001). (e, f) Correlation analysis between age and BNT162b2-induced antibody responses (e) or T-cell responses (f). (g) Correla-
tion analysis between BNT162b2-induced antibody responses and T-cell responses. (h) Heat map showing correlations between vaccine-induced T
cell responses against SARS-CoV-2 and HCoVs. (e-h) Correlations were analyzed by Spearman's correlation. p values were corrected with
Benjamini—Hochberg FDR correction for multiple tests. Spearman’s rho coefficient and p values are indicated in the plots or in the heat map cells
(**p<0.01, *** p<0.001).
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Fig. 3. Immune cell populations associated with BNT162b2-induced adaptive immunity. Immune cell populations in PBMCs isolated from
baseline seronegative subjects (n = 86) at time points T1-T5 were analyzed with CyTOF. (a) t-SNE visualization of CyTOF data of PBMCs at T1
(n=86). Types of immune cell populations were annotated based on expression of their marker proteins. TEMRA, terminally differentiated effector
memory. NK, natural killer. (b, ¢) Left heat map showing differences in the frequency of immune cell populations in high- vs low-antibody (Ab)
responders (b) or in high- vs low-T-cell responders (¢) (n = 20 each). Right heat map showing the correlation between the frequency of immune cell
populations and vaccine-induced antibody responses (b) or T-cell responses (¢) (n = 86). p values in left panels were calculated by Wilcoxon
rank-sum tests with Benjamini—-Hochberg FDR correction (* p < 0.05, ** p <0.01, *** p < 0.001). (d) Scatter plot showing a correlation between
the frequency of CD14" monocytes at TS and vaccine-induced T-cell responses. (b-d) Partial correlation analyses with adjustments for age and sex
were performed with Spearman's correlation tests with Benjamini—-Hochberg FDR correction (* p < 0.05, ** p <0.01, *** p <0.001). (e) Kinetics
of the frequency of CD14" monocytes in PBMCs during vaccine response. High-T-cell responders (upper panel, n = 20) and low-T-cell responders
(lower panel, n = 20) were analyzed. p values were calculated with Wilcoxon signed rank tests with Benjamini-Hochberg FDR correction (** p <
0.01, *** p<0.0001).
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Fig. 4. Transcripts associated with BNT162b2-induced adaptive immunity. (a-e) Transcriptomes of PBMCs isolated from baseline seronegative
subjects (n = 86) at time points T1 and T4 were analyzed by bulk RNA-seq. (a, b) GSEA on a ranked gene list based on the spearman’s correlation
coefficient between RNA expression and vaccine-induced antibody (Ab) responses (a) or T-cell responses (b) (n = 86). Inmune-related BTM, GO, and
KEGG pathways are shown in red. (¢) Scatter plots showing DEGs (log2 FC > 0.5, adjusted p < 0.05) between high- (n =18 at T1, n = 19 at T4) and
low- (n =19 at T1, n = 18 at T4) T-cell responders. Red and blue dots indicate DEGs that were highly expressed in high- and low-T-cell responders,
respectively. N.S., not significant. (d) Gene regulatory network analysis of DEGs between high- and low-T-cell responders. (e) Scatter plots showing
correlations between vaccine-induced T-cell responses and expression of FOS and MEF2D. (f) Heat map showing correlations between vaccine-induced
T-cell responses and expression of AP-1 genes (n = 86). (e, f) Partial correlation analyses with adjustments for age and sex were performed with
Spearman's correlation tests with Benjamini—Hochberg FDR correction (* p < 0.05). (g-i) PBMCs isolated from baseline seronegative subjects (n = 86)
were stimulated with BTN162b2 mRNA for 6 h and analyzed by RNA-seq followed by GSEA on a ranked gene list based on the spearman’s correlation
coefficient between RNA expression and vaccine-induced antibody responses (g) or T-cell responses (h). Immune-related BTM, GO, and KEGG
pathways are shown in red. (i) ZJFNBI mRNA expression in high- (n=18) and low- (n=16) T-cell responders was analyzed by gPCR. The p value was
calculated with Wilcoxon signed rank test (** p <0.01).
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Fig. 5. Baseline FOS expression is negatively associated with early T-cell responses to BNT162b2 mRNA. PBMCs isolated from subjects who
exhibited high or low FOS expression in the bulk RNA-seq analysis (high and low FOS subjects, n = 4 each) were unstimulated or stimulated with
BNT162b2 mRNA for 6 or 16 h, followed by scRNA-seq analysis. (a) Schematic illustrating the experimental design of scRNA-seq of high- and
low-FOS subjects. (b) t-SNE visualization of scRNA-seq data of unstimulated PBMCs. Data from all eight subjects (high and low FOS subjects, n
= 4 each) were pooled and visualized. (¢) Module score analysis of genes differentially expressed between immune cell populations stimulated with
BNT162b2 mRNA and unstimulated populations. (d) Violin plots showing expression of FOS in PBMCs unstimulated (upper panel) and stimulated
with BNT162b2 mRNA for 16 h (lower panel). FOS expression levels in each immune cell population were compared between high- and low-FOS
subjects (n = 4 each). p values were calculated with Wilcoxon rank-sum tests with Benjamini—-Hochberg FDR correction (*** p < 0.001). (¢) GSEA
on a ranked gene list based on the fold change in expression in CD14* monocytes, CD4™ T cells, and CD8™ T cells unstimulated or stimulated with
BNT162b2 mRNA for 16 h between high- and low-FOS subjects. Immune-related BTM, GO, and KEGG pathways are shown in red.
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Fig. 6. Gut microbes associated with BNT162b2-induced adaptive immunity. Microbiomes of stool samples were analyzed by 16S ribosomal
RNA gene sequencing (n = 86). (a, b) LEfSe analysis of gut microbes that were differentially abundant in high- vs low-antibody (Ab) responders
(a) and in high- vs low-T-cell responders (b) (n = 20 each). o, order; f, family; g, genus; s, species; UC, unclassified. (¢) Scatter plot showing a
correlation between the gut microbial fucose/rhamnose degradation pathway and vaccine-induced T-cell responses (n = 86). Partial correlation
analysis with adjustments for age, sex, and stool sampling timing was performed with Spearman's correlation tests. (d) Schematic showing the
fucose/rhamnose degradation pathway. Metabolites and enzymes involved in the pathway are shown in red and blue, respectively. (e) Analysis of
the abundance of predicted gene copies for L-fucose mutarotase and L-fuculokinase in high- and low-T-cell responders (n = 20 each). p values were
calculated with the Wilcoxon rank-sum tests with Benjamini-Hochberg FDR correction (** p <0.01).
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Fig. 7. The gut microbial fucose/rhamnose degradation pathway is associated with AP-1 expression. (a) Heat map showing the correlation
between the gut microbial fucose/rhamnose degradation pathway and transcription factors associated with BNT162b2-induced T-cell responses (n
= 86). (b-d) Scatter plots showing the correlation between the gut microbial fucose/rhamnose degradation pathway and baseline expression of ATF3
(b), FOS (¢), and FOSB (d) (n = 86). (a-d) Partial correlation analyses with adjustments for age, sex, and stool sampling timing were performed
with Spearman's correlation tests with Benjamini-Hochberg FDR correction (* p < 0.05, ** p < 0.01, *** p < 0.001). (e) Schematic showing the
production of SCFAs from the fucose/rhamnose degradation pathway. SCFAs are shown in red. (f) qPCR analysis of COX2 mRNA levels in PBMCs
untreated or treated with (S)-1,2-propanediol or SCFAs for 18 h (n = 6). p values were calculated using the Friedman test followed by Dunn's
multiple comparison test (* p < 0.05). (g) qPCR analysis of FOS mRNA levels in PBMCs untreated or treated with PGE2 for 18 h (n = 8). The p

value was calculated with the Wilcoxon signed rank test (* p < 0.05).
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