

A key role of the hippocampal P3 in the attentional blink

Derner M¹⁺, Reber TP^{1,2+}, Faber J¹, Surges R¹, Mormann F^{1*}, Fell J^{1*}

¹ Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

² Faculty of Psychology, UniDistance Suisse, Schinerstrasse 18, 3900 Brig, Switzerland

*+ Equal contribution

16 Corresponding author: marlene.derner@ukbonn.de

18 **Abstract**

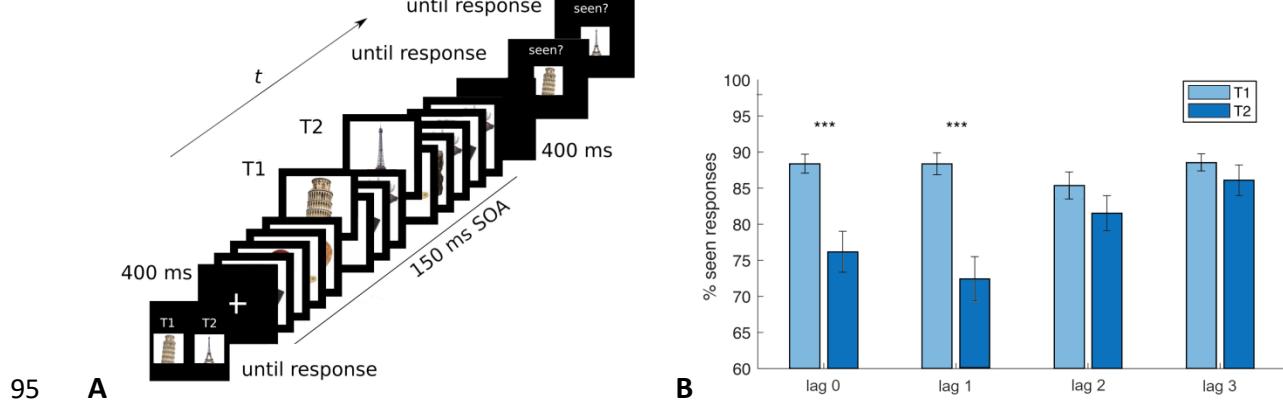
19 The attentional blink (AB) refers to an impaired identification of target stimuli (T2), which are
20 presented shortly after a prior target (T1) within a rapid serial visual presentation (RSVP)
21 stream. It has been suggested that the AB is related to a failed transfer of T2 into working
22 memory and that hippocampus (HC) and entorhinal (EC) cortex are regions crucial for this
23 transfer. Since the event-related P3 component has been linked to inhibitory processes, we
24 hypothesized that the hippocampal P3 elicited by T1 may impact on T2 processing within HC
25 and EC. To test this hypothesis, we reanalyzed microwire data from 21 patients, who
26 performed an RSVP task, during intracranial recordings for epilepsy surgery assessment
27 (Reber et al., 2017). We identified T1-related hippocampal P3 components in the local field
28 potentials (LFPs) and determined the temporal onset of T2 processing in HC/EC based on
29 single-unit response onset activity. In accordance with our hypothesis, T1-related single-trial
30 P3 amplitudes at the onset of T2 processing were clearly larger for unseen compared to seen
31 T2-stimuli. Moreover, increased T1-related single-trial P3 peak latencies were found for
32 T2[unseen] versus T2[seen] trials in case of lags 1 to 3, which was in line with our
33 predictions. In conclusion, our findings support inhibition models of the AB and indicate that
34 the hippocampal P3 elicited by T1 plays a central role in the AB.

35
36
37
38
39
40
41
42
43
44
45
46
47
48

49 **Word count (main text):** 1498

50 **Keywords:** Consciousness, working memory, single-unit recordings, local field potentials,
51 medial temporal lobe, P300

52 Introduction


53 Human visual attention has peculiar temporal limitations. The attentional blink (AB) refers to
54 a transient impairment in the perception of visual stimuli, which are presented in rapid
55 succession (Raymond et al., 1992). More precisely, the ability to identify and report a target
56 stimulus (T2) is reduced when it appears with a short delay (typically 150-500 ms) after a
57 prior target (T1). While numerous theories have been proposed to explain this phenomenon,
58 a controversial debate is still ongoing (Dux and Marois, 2009; Snir and Yeshurun, 2017). An
59 undisputed mechanistic account of the AB based on neurophysiological findings is yet
60 missing.

61 Inhibition models have proposed that the AB results from a suppressive mechanism
62 inhibiting the processing of stimuli occurring after target T1 (Raymond et al., 1992; Olivers et
63 al., 2007). The event-related P3 component is observed in target-detection tasks (Donchin,
64 1981; Picton, 1992) and has been linked to inhibitory processes (Elbert and Rockstroh, 1987;
65 Polich, 2007). The latency window of the P3 (typically 200-700ms) is well in line with the idea
66 that the P3 elicited by T1 interferes with T2 processing. Therefore, a central role of the T1-
67 related P3 in the AB has been proposed (McArthur et al., 1999; Fell et al., 2002). Indeed,
68 based on surface recordings moderate associations of the T1-related P3 with the AB have
69 been reported (e.g. Sergent et al., 2005). However, unambiguous evidence for a key role of
70 the T1-related P3 in the AB has been lacking.

71 When T2-stimuli are not seen, early T2-related sensory processing appears to be largely
72 intact, while the T2-related P3 is absent (Zivony and Lamy, 2022). Since the P3 has been
73 related to conscious perception and working memory updating (Donchin, 1981; Polich,
74 2007), this may indicate a failure to transfer T2-stimuli into working memory. It has been
75 suggested that the hippocampus (HC) is a major network hub for working memory
76 processing (Fell and Axmacher, 2011; Kaminski et al., 2017; Kornblith et al., 2017) and that
77 the entorhinal cortex (EC) represents its gateway (Fernández and Tendolkar, 2006). Based on
78 human single-neuron data, it indeed has been shown that T2-related hippocampal and
79 entorhinal population responses are markedly reduced for unseen versus seen T2-stimuli
80 (Reber et al., 2017). Therefore, we hypothesized that the T1-related mediotemporal lobe
81 (MTL)-P3, which is generated within the hippocampus (Halgren et al., 1980; Grunwald et al.,

82 1999), is a crucial factor in the AB due to its impact on hippocampal/entorhinal processing of
83 T2.

84 To investigate this hypothesis, we re-analyzed AB data recorded from 21 epilepsy patients
85 undergoing invasive seizure monitoring in preparation for resective neurosurgery (Reber et
86 al., 2017). In these patients mediotemporal depth electrodes and microwires had been
87 implanted for chronic seizure monitoring. During 40 experimental sessions patients
88 performed a rapid serial visual presentation (RSVP) task using images as stimuli (Figure 1A).
89 These images were individually determined in a preceding screening session based on
90 selective mediotemporal single-neuron responses. Behavioral data (Figure 1B) showed a
91 pronounced reduction of target detection for those T2-stimuli, which were presented 150
92 ms (lag 0) or 300 ms (lag 1) after T1. To test the above hypothesis, we asked whether T1-
93 related P3 amplitudes at the onset of hippocampal/entorhinal T2 processing allow to predict
94 whether T2-stimuli are consciously perceived.

95

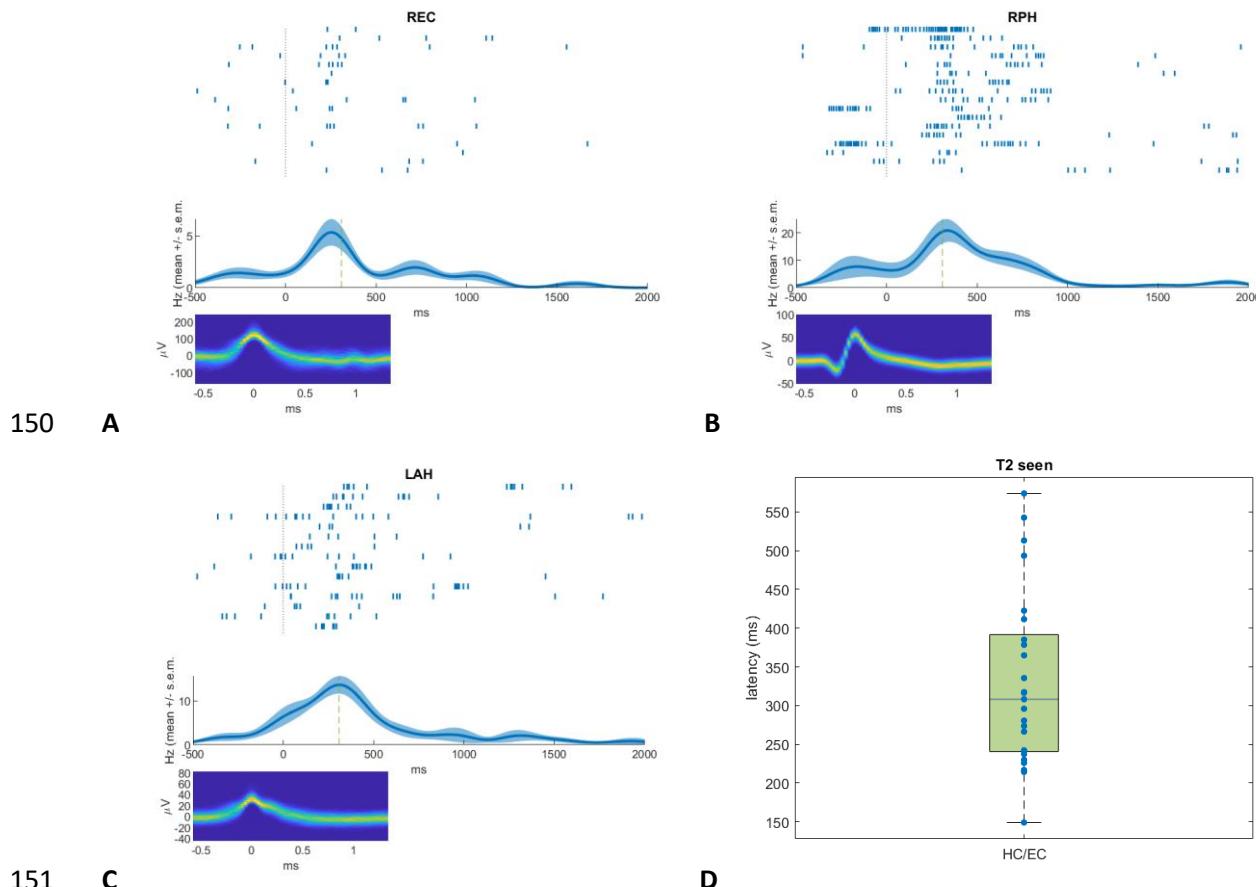
96 **Figure 1: Experimental paradigm and behavioral results**

97 (A) The sequence of events in an exemplary trial is shown from bottom left to top right. Eight
98 subject-specific stimuli were chosen prior to the main experiment based on selective single-
99 neuron responses in a preceding screening session. Subjects were asked to watch for two of
100 these eight stimuli among 14 images presented in a rapid serial visual presentation (RSVP)
101 sequence. The target stimulus that appeared first in the sequence is referred to as "T1" and
102 the one that appeared second is referred to as "T2". The lag between T1 and T2 images
103 varied from 0 to 3 (3 in the trial shown). The stimulus onset asynchrony (SOA) was usually
104 150 ms. After the RSVP stream, participants indicated with button presses whether they had
105 seen T1 and T2 or not (two separate queries). Trials were classified accordingly into T1/T2
106 seen and T1/T2 unseen.

107 (B) Average percentages of seen T1 and T2 images. Asterisks denote significant differences
108 between T1 and T2 (post-hoc pairwise T-tests after significant target x lag interaction in 2 x 4
109 repeated measures ANOVA; lag 0, lag 1: $p < 0.0001$); error bars depict standard errors of the
110 mean. Behavioral results indicate that T2-stimuli were less often reported to be seen than
111 T1-stimuli for lag 0 (150 ms after T1) and lag 1 (300 ms after T1).

112 The information displayed is concordant with the information displayed in figure 1 (A,B) of
113 Reber et al. (2017).

114 **Results**


115 In a first step, we estimated the time range of the onset of T2 processing within HC/EC based
116 on examination of single-unit response onset latencies. For this purpose, we determined the
117 firing latencies of stimulus-responsive units (see Reber et al., 2017) in HC/EC (n=26)
118 selectively responding to T2-stimuli for instances when T2-stimuli were seen (Figure 2). The
119 median of T2[seen]-related firing latencies across stimulus-responsive HC/EC units was 308.2
120 ms, and the 25%- and 75%-quartiles were 240.7 ms and 391.7 ms, respectively.

121 In a second step, we identified T1-related hippocampal P3 components in the local field
122 potentials (LFPs) recorded with the microwires. P3 components were visually scrutinized in
123 accordance with previous reports based on intracranial electroencephalogram recordings
124 (Halgren et al., 1980; Grunwald et al., 1999; Fell et al., 2005). More specifically, we searched
125 for pronounced components peaking between 300 and 600 ms and clearly protruding from
126 background activity. Because of the referencing scheme (see Materials and Methods) P3
127 identification was performed independent of polarity. A hippocampal P3 could be detected
128 in 16 of 21 patients and 28 of 40 sessions (peak latency (average \pm s.e.m.): 450.9 ± 8.5 ms;
129 absolute peak amplitude: 27.9 ± 3.1 μ V). In seven patients and 12 sessions, P3 components
130 were identified in both hemispheres, and in nine patients and 16 sessions in one
131 hemisphere. For each of these sessions and hemispheres, we chose the hippocampal
132 channel showing the most pronounced P3 resulting in 40 cases overall. Finally, for each of
133 these cases the microwire exhibiting the largest absolute P3 peak was selected (Figure 3).

134 As the central analysis, we performed a single-trial evaluation of T1-related LFPs for the 40
135 selected microwires (i.e. cases). LFP amplitudes were extracted at the time point of the
136 median of T2[seen]-related HC/EC firing latencies, factoring in the trial-specific lags between
137 T1 and T2. For each case, single-trial amplitudes were multiplied with the polarity sign (i.e.
138 $+1/-1$) of the T1-related P3. Across cases, averaged single-trial LFP amplitudes were
139 significantly larger for T2[unseen] versus T2[seen] trials (9.76 ± 2.65 vs. -6.35 ± 1.99 μ V; $p =$
140 0.00024, paired one-tailed T-test; Figure 4A). Within cases, single-trial LFP amplitudes were
141 significantly increased for T2[unseen] versus T2[seen] trials in 14 of 40 cases (unpaired one-
142 tailed T-tests, each $p < 0.05$). A binomial test indicated that this number is significantly above
143 chance level ($p = 4 \cdot 10^{-9}$). Moreover, average LFP amplitudes were calculated for the time
144 interval corresponding to the [25%-quartile; 75%-quartile] of T2[seen]-related HC/EC firing

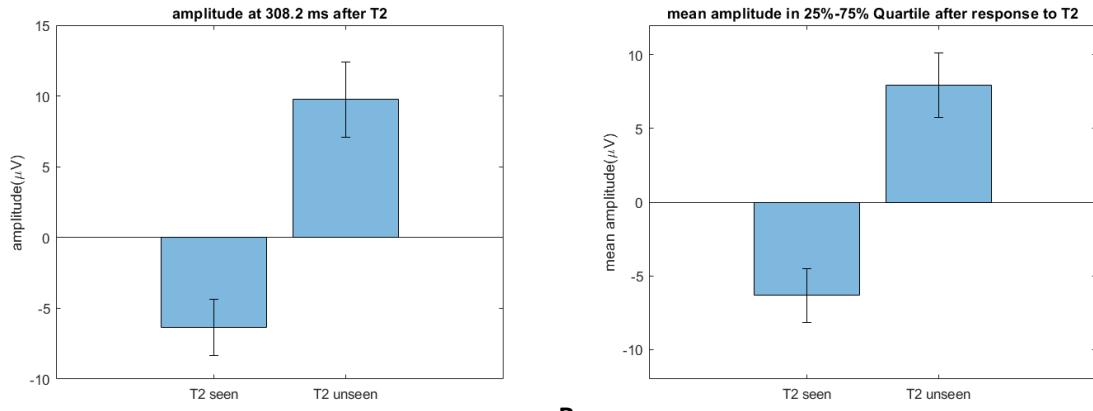

145 latencies. Again, averaged single-trial LFP amplitudes were significantly larger for T2[unseen]
146 versus T2[seen] trials across cases (7.93 ± 2.17 vs. $-6.33 \pm 1.80 \mu\text{V}$; $p = 0.00018$; Figure 4B).
147 Furthermore, in 19 of 40 cases single-trial LFP amplitudes were significantly increased for
148 T2[unseen] versus T2[seen] trials (binomial test, $p = 9 \cdot 10^{-15}$).

149

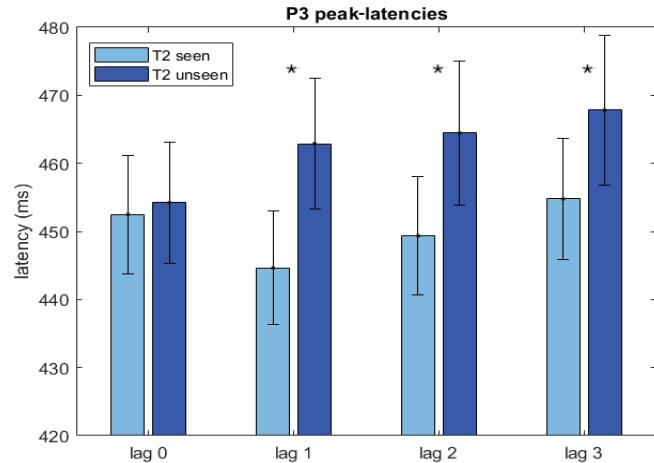
152 **Figure 2: Examples of selective single-neuron responses and response latency of HC/EC**
153 **neurons to seen T2-stimuli**

154 (A-C) Three example units selectively responding to subject-specific T2-stimuli. Top: Raster
155 plots of observed spike times relative to stimulus onset of T2 (vertical dotted line). Middle:
156 Mean instantaneous firing rates (Hz). Zero on the x-axis denotes stimulus onset. Vertical
157 dashed lines mark mean response latencies to T2[seen]. Bottom: Density plots of all spike
158 waveforms. The plots show 2-dimensional histograms of spike voltages over time. The color
159 code depicts the percentage of spikes (denominator: all spikes recorded for this unit) with
160 the specified voltage at the given time point. REC, right entorhinal cortex; RPH, right
161 posterior hippocampus; LAH, left anterior hippocampus. (D) Boxplot of firing latencies of
162 n=26 stimulus-responsive units in hippocampus (HC) and entorhinal cortex (EC) responding
163 to seen T2-stimuli. Blue dots mark the median response latency to T2[seen] stimuli in each
164 unit.

165


166

167 **Figure 3: Selection of loci/wires exhibiting T1-related P3 components and single-trial**
168 **analysis**


169 Left column: Two examples for selection of the locus/wire with the most prominent T1-
170 related P3 component (each wire in a different color). Mediotemporal P3 components in
171 local field potentials were visually identified. They were assumed to peak between 300 and
172 600 ms and to be clearly distinguishable from background activity. Because of the
173 referencing scheme the polarity of P3 components could either be positive or negative. For
174 each session and brain hemisphere, the hippocampal channel with the most pronounced P3
175 was chosen (here shown: RAH (right anterior hippocampus) and LAH (left anterior
176 hippocampus)). Finally, for each of these loci the microwire exhibiting the largest absolute
177 P3 peak was selected (here shown: wire 8 for RAH and wire 1 for LAH; peak latencies and
178 amplitudes are listed). The vertical lines mark the onset of stimulus T1; green boxes and
179 arrows the selected channels and wires.

180 Right column: Extraction of single-trial P3 peak latencies for four exemplary trials, each
181 categorized as T2[seen] or T2[unseen] trial. Single-trial P3 peaks are defined as the
182 maximum/minimum (according to the P3 polarity) amplitudes within +/-100ms around the
183 case-specific average P3 peak latency. Vertical lines mark the latencies of the average P3
184 peaks, grey areas the +/-100ms intervals and red dots the single-trial P3 peaks. Single-trial P3
185 peak latencies are listed in the upper right corners.

186

187 A

188 C

189 **Figure 4: Amplitudes of single-trial LFPs for T2[seen] versus T2[unseen] trials and T1-**
190 **related single-trial P3 peak-latencies**

191 (A) Single-trial LFP amplitudes across cases at the time point of the median of T2[seen]-
192 related firing latencies (mean and s.e.m. depicted). Single-trial amplitudes were multiplied
193 with the polarity sign (i.e. +1 or -1) of the T1-related average P3 component. (B) Mean
194 single-trial LFP amplitudes in the time interval corresponding to the [25% quartile; 75%
195 quartile] of T2[seen]-related firing latencies. (C) Average T1-related single-trial P3 peak
196 latencies for seen and unseen T2 images depending on the lag between T1 and T2. Asterisks
197 denote significant differences between T2[seen] and T2[unseen] (two-tailed T-test for lag 0,
198 one-tailed T-tests for lag 1, lag 2, lag 3); error bars depict standard errors of the mean.

199 We further asked, whether T1-related P3 peak latencies were different for unseen versus
200 seen trials depending on the lag between T1 and T2. For lag 0 (150 ms), the peak of the T1-
201 related P3 (average latency = 451 ms) typically occurred simultaneously to the onset of
202 T2[seen]-related HC/EC firing (median latency = 308 ms). For lags 1 to 3 (300 to 600 ms), only
203 P3 events with relatively long latencies might have an impact on T2-related HC/EC firing.
204 Therefore, we hypothesized that single-trial P3 peak-latencies would be larger for
205 T2[unseen] versus T2[seen] trials in case of lags 1 to 3, but would not differ in case of lag 0.
206 To test this hypothesis, we evaluated single-trial P3 peak latencies, taking into account case-
207 specific P3 polarities. More precisely, single-trial latencies of the maximum/minimum
208 amplitudes within +/-100ms around the case-specific P3 peak latencies were extracted
209 (provided P3 polarity was positive/negative, respectively; Figure 3). Indeed, P3 latencies
210 were increased for T2[unseen] versus T2[seen] trials for lags 1, 2 and 3 (one-tailed T-tests
211 across cases: $p = 0.0001$; $p = 0.0038$; $p = 0.0273$; Figure 4C). Moreover, P3 latencies did not
212 differ between T2[unseen] and T2[seen] trials for lag 0 (two-tailed T-test: $p = 0.65$).

213 **Discussion**

214 The present study reports the analysis of human LFP and action potential data recorded
215 during an AB paradigm. Whether T2-stimuli were seen or unseen clearly depended on the
216 amplitudes and latencies of the hippocampal P3 evoked by the T1-stimuli. These
217 dependencies were in line with the idea that the hippocampal P3 impacts on T2-related
218 processing within HC/EC and thereby may prevent conscious perception and transfer of T2-
219 stimuli into working memory. More generally, these findings are in accordance with models
220 suggesting that suppressive mechanisms inhibit the processing of stimuli presented after T1
221 (Raymond et al., 1992; Olivers et al., 2007), and with theories assuming a key role of the
222 hippocampus in conscious perception (Behrendt, 2013; Berlucci and Marzi, 2019).

223 The P3 component has been related to a decreased excitability of cortical networks
224 (Birbaumer et al., 1990; Elbert and Rockstroh, 1987). For instance, reaction times and
225 evoked potential amplitudes in response to probe stimuli were prolonged (Rockstroh et al.,
226 1992; Woodward et al., 1991) and startle reflexes were smaller (Schupp et al., 1994) after
227 target stimuli eliciting a large P3. However, only moderate links of the T1-related P3 to the
228 AB have been found based on surface recordings (McArthur et al., 1999; Sergent et al., 2005;
229 Shapiro et al., 2006; Kranczioch et al., 2007). This suggests that the surface-recorded P3,
230 which reflects contributions from several cortical generators (Soltani and Knight, 2000;
231 Polich, 2007), may not be sensitive enough to capture the interference of T1-related
232 processes with higher-order processing of T2-stimuli.

233 In conclusion, our data provide direct mechanistic evidence for the hypothesis that the
234 hippocampal P3 elicited by T1-stimuli plays a central role in the AB. Our findings are in
235 accordance with the theory that the hippocampal P3 interferes with processing of T2-stimuli
236 within HC/EC at the level of conscious perception and transfer into working memory.

237 **Materials and Methods**

238 *Participants*

239 Recordings from 21 epilepsy patients (12 male; mean age: 37.9 ± 10.9 years) undergoing
240 presurgical evaluation were re-analyzed (Reber et al. 2017). Mediotemporal depth
241 electrodes and microwires had been implanted for chronic seizure monitoring and
242 evaluation for epilepsy surgery. All patients gave informed written consent. The study
243 conformed to the guidelines of the Medical Institutional Review Board at the University of
244 Bonn (ethics votes Nr. 095/10 and 248/11).

245 *Experimental paradigm*

246 A standard laptop running the Psychophysics Toolbox (Brainard, 1997) under MATLAB
247 (MathWorks Inc.) was used for stimulus presentation. Subjects were asked to perform a
248 rapid serial visual presentation (RSVP) task (Figure 1). The stimulus set for each of the 40
249 experimental sessions consisted of eight subject-specific images that were chosen based on
250 selective mediotemporal single-neuron responses recorded in a preceding screening session
251 (Kornblith et al., 2017). Participants were instructed to watch for two of these eight stimuli
252 (T1 and T2) among 14 images presented in the RSVP sequence. At the beginning of each
253 trial, a screen showing T1 and T2 was presented, and perception was confirmed with a
254 button press. Then a fixation cross was presented for 400 ms, and thereafter the RSVP
255 sequence of the 14 images started. The default stimulus onset asynchrony (SOA) was 150 ms
256 (35 sessions), but was reduced to SOAs in the range of 100 to 135 ms (five sessions) in
257 patients with only few unseen trials in their first experimental session. After the RSVP
258 stream, there was a blank screen for 400 ms followed by two separate queries whether T1
259 and T2 had been seen or not.

260 Each session consisted of three runs of 72 trials each. The sequence of trials was randomized
261 within each run. The eight response-eliciting images were chosen to be either T1 or T2 an
262 equal number of times. To assess the false positive rate of seen reports, in 16 catch-trials per
263 run either only T2 (eight trials) or T1 and T2 (eight trials) were omitted. The position of T1
264 and T2 in the sequence was set pseudorandomly with the constraints that T1 position
265 ranged from 3rd to 5th, and that the lag between T1 and T2 varied from zero to three

266 intervening images. The remaining 12 positions were pseudorandomly filled with the
267 remaining six images with the constraint that identical images were not presented
268 successively.

269 *Data recording*

270 Recordings were obtained from a bundle of nine microwires (eight high-impedance
271 recording electrodes, one low-impedance reference, AdTech, Racine, WI) protruding from
272 the end of each depth electrode targeting hippocampus, entorhinal cortex, amygdala and
273 parahippocampal cortex. Within the hippocampus, sections corresponding to the anterior,
274 middle and posterior third were targeted: left/right anterior hippocampus (LAH/RAH:
275 21/20), left/right middle hippocampus (LMH/RMH: 17/13), left/right posterior hippocampus
276 (LPH/RPH: 7/5). The differential signal from the microwires was amplified using a Neuralynx
277 ATLAS system (Bozeman, MT), filtered between 0.1 and 9,000 Hz, and sampled at 32 kHz.
278 These recordings were stored digitally for further analysis. The number of recording
279 microwires per patient ranged from 32 to 96. Recording microwires were either referenced
280 against one of the reference microwires or in a bipolar scheme, depending on signal quality.
281 Signals were band-pass filtered between 300 and 3000 Hz. Spike detection and sorting was
282 performed as described previously (Quiroga et al., 2004; Mormann et al., 2011).

283 *Identification of stimulus-responsive neurons (for detailed description see Reber et al. 2017)*

284 Spike counts were obtained in overlapping 100-ms-bins within 0 to 1000 ms after stimulus
285 onset and compared to the baseline window ranging from -400 to 0 ms for each
286 presentation of an image. Based on the results of a Wilcoxon signed-rank test, the strength
287 of the responses of each unit with regard to increased firing was quantified. Raster plots of
288 unit responses with a p value < 0.001 were visually inspected by four experienced
289 electrophysiologists and rated as valid responses or not. The following analyses focused on a
290 subset of 26 stimulus-responsive neurons located in hippocampus and entorhinal cortex (see
291 Reber et al., 2017).

292 *Computation of instantaneous firing rates*

293 Z-scores of instantaneous firing rates were computed to compare neuronal firing across
294 conditions. Instantaneous firing rates were calculated by trialwise convolution of spike trains

295 with a Gaussian kernel (100 ms full width half maximum) and Z transformation of these
296 signals with the mean and standard deviation in a baseline interval from -500 ms to 0 ms
297 before stimulus onset across all target presentations (T1/T2). Normalized signals were
298 averaged per unit and condition.

299 *Estimation of Response Latencies*

300 Response latencies in a response period from 100 to 1000 ms after stimulus onset were
301 estimated with a Poisson-burst detection algorithm (Hanes et al., 1995; Mormann et al.,
302 2008) for units with a baseline firing rate above 2 Hz. For units with a lower baseline firing
303 rate, firing latencies were estimated as the first spike time. The median of these response
304 latencies across trials was calculated for the T2[seen] and T2[unseen] conditions for each
305 unit. Only units where latency values could be determined for at least two trials per
306 condition of interest (T2[seen], T2[unseen]) were included (25 of the 26 selected HC/EC
307 units). For further analysis, the median firing latency (308.2 ms), as well as the 25% and 75%
308 quartiles (240.7 ms; 391.7 ms) across stimulus-responsive units in hippocampus and
309 entorhinal cortex responding to T2[seen] stimuli were calculated.

310 *Identification of P3 components*

311 Analysis of local field potentials was performed in MATLAB using the FieldTrip toolbox
312 (Oostenveld et al., 2011). Trials were segmented from -1000 ms to 2500 ms with regard to
313 stimulus T1 onset and baseline-corrected with the baseline interval defined from -500 ms to
314 0 ms. Signals were bandpass-filtered from 1 to 30 Hz with a 2nd order Butterworth filter. To
315 avoid edge effects, the resulting signals were cut to the interval from -500 ms to 2000 ms.
316 Visual artifact rejection was performed and 4 % of all trials were discarded. Average local
317 field potentials were calculated across all T1[seen] trials and hippocampal P3 components
318 were visually identified. They were required to peak between 300 and 600 ms and to be
319 clearly distinguishable from background activity based on visual inspection. Because of the
320 referencing scheme the polarity of P3 components could either be positive or negative. For
321 each session, the hemisphere-specific hippocampal channel (AH, MH or PH) showing the
322 most pronounced P3 was chosen based on joint assessment of all microwires of each
323 channel (Figure 3). A hippocampal P3 could be identified in 16 of 21 patients (LAH/RAH:
324 11/7; LMH/RMH: 3/1; LPH/RPH: 3/1) and 28 of 40 sessions (LAH/RAH: 17/10; LMH/RMH:

325 5/3; LPH/RPH: 4/1). Finally, for each of these channels the microwire exhibiting the largest
326 absolute P3 peak was selected (Figure 3).

327 *Single-trial LFP amplitudes*

328 For each of the 40 selected microwires and each trial, LFP amplitudes were extracted at the
329 time point of the median of T2[seen]-related HC/EC firing latencies (308.2 ms) taking into
330 account the trial-specific lags between T1 and T2. The single-trial amplitudes were then
331 multiplied with the polarity sign (i.e. +1 or -1) of the T1-related average P3 component.
332 Additionally, LFP amplitudes were extracted in the time interval corresponding to the [25%
333 quartile; 75% quartile] of T2[seen]-related HC/EC firing latencies [240.7 ms; 391.7 ms]. These
334 amplitudes were averaged across the time interval and likewise multiplied with the polarity
335 sign. Across cases, the difference between averaged single-trial LFP amplitudes for T2
336 unseen versus seen trials was evaluated using a paired one-tailed T-test (hypothesis:
337 amplitude [T2 unseen] > amplitude [T2 seen]). Within cases, single-trial LFP amplitudes for
338 T2[unseen] versus T2[seen] trials were compared using unpaired one-tailed T-tests.
339 Moreover, binomial tests with probability 0.05 (alpha level of 5%) were conducted to
340 evaluate whether the number of cases with statistically significant increases of single-trial
341 LFP amplitudes for T2[unseen] versus T2[seen] trials was higher than expected by chance.

342 *Single-trial P3 peak-latencies*

343 Single-trial peak-latencies of T1-related P3 components were evaluated taking into account
344 case-specific P3 polarities. In detail, single-trial P3 peak latencies were extracted as the time
345 point of the maximum/minimum amplitude (according to the P3 polarity; positive:
346 maximum, negative: minimum) within +/-100 ms around the case-specific average P3 peak
347 latency (Figure 3). Single-trial peak latencies were categorized as related to T2[unseen] or
348 T2[seen] trials and to T1/T2 lags of 0, 1, 2 or 3 for further analysis.

349 **References**

350 Behrendt RP. 2013. Hippocampus and consciousness. *Reviews in the Neurosciences* **24**: 239-
351 266. doi: 10.1515/revneuro-2012-0088.

352

353 Berlucchi G, Marzi CA. 2019. Neuropsychology of consciousness: some history and a few new
354 trends. *Frontiers Psychology* **10**:50. doi: 10.3389/fpsyg.2019.00050.

355

356 Birbaumer N, Elbert T, Canavan AG, Rockstroh B. 1990. Slow potentials of the cerebral cortex
357 and behavior. *Physiological Reviews* **70**: 1-41. doi: 10.1152/physrev.1990.70.1.1.

358

359 Brainard DH. 1997. The psychophysics toolbox. *Spatial Vision* **10**, 433–436.

360

361 Dux PE, Marois R. 2009. How humans search for targets through time: a review of data and
362 theory from the attentional blink. *Attention, Perception, & Psychophysics* **71**: 1683-1700. doi:
363 10.3758/APP.71.8.1683

364

365 Donchin E. 1981. Surprise! ... Surprise? *Psychophysiology* **18**: 493-513. doi: 10.1111/j.1469-
366 8986.1981.tb01815.x.

367

368 Elbert T, Rockstroh B. 1987. Threshold regulation – a key to the understanding of the
369 combined dynamics of EEG and event-related potentials. *Journal of Psychophysiology* **4**: 317-
370 333.

371

372 Fell J, Axmacher N. 2011. The role of phase synchronization in memory processes. *Nature
Reviews Neuroscience* **12**: 105-118. doi: 10.1038/nrn2979.

374

375 Fell J, Köhling R, Grunwald T, Klaver P, Dietl T, Schaller C, Becker A, Elger CE, Fernández G.
376 2005. Phase-locking characteristics of limbic P3 responses in hippocampal sclerosis.
377 *Neuroimage* **24**: 980-989. doi: 10.1016/j.neuroimage.2004.11.010.

378

379 Fell J, Klaver P, Elger CE, Fernández G. 2002. Suppression of EEG gamma activity may cause
380 the attentional blink. *Consciousness and Cognition* **11**: 114-122. doi:
381 10.1006/ccog.2001.0536.

382

383 Fernandez G, Tendolkar I. 2006. The rhinal cortex: 'gatekeeper' of the declarative memory
384 system. *Trends in Cognitive Sciences* **10**: 358-362. doi: 10.1016/j.tics.2006.06.003.

385

386 Grunwald T, Beck H, Lehnertz K, Blümcke I, Pezer N, Kutas M, Kurthen M, Karakas M, Van
387 Roost D, Wiestler OD, Elger CE. 1999. Limbic P300s in temporal lobe epilepsy with and
388 without Ammon's horn sclerosis. *European Journal of Neuroscience* **11**: 1899-1906. doi:
389 10.1046/j.1460-9568.1999.00613.x.

390

391 Halgren E, Squires NK, Wilson CL, Rohrbaugh JW, Babb TL, Crandall PH. 1980. Endogenous
392 potentials generated in the human hippocampal formation and amygdala by infrequent
393 events. *Science* **210**: 803-805. doi: 10.1126/science.7434000.

394

395 Hanes DP, Thompson KG, Schall JD. 1995. Relationship of presaccadic activity in frontal eye
396 field and supplementary eye field to saccade initiation in macaque: Poisson spike train
397 analysis. *Experimental Brain Research* **103**: 85–96. doi: 10.1007/BF00241967.

398

399 Kaminski J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U. 2017. Persistently
400 active neurons in human medial frontal and medial temporal lobe support working memory.
401 *Nat Neurosci* **20**: 590-601. doi: 10.1038/nn.4509.

402

403 Kornblith S, Quiroga RD, Koch C, Fried I, Mormann F. 2017. Persistent single-neuron activity
404 during working memory in the human medial temporal lobe. *Current Biology* **27**: 1026-1032.
405 doi: 10.1016/j.cub.2017.02.013.

406

407 Kranczioch C, Debener S, Maye A, Engel AK. 2007. Temporal dynamics of access to
408 consciousness in the attentional blink. *Neuroimage* **37**: 947-955. doi:
409 10.1016/j.neuroimage.2007.05.044.

410

411 McArthur G, Budd T, Michie P. 1999. The attentional blink and P300. *Neuroreport* **26**: 3691-
412 3695. doi: 10.1097/00001756-199911260-00042.

413

414 Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, Tsuchiya N, Kraskov A,
415 Quiroga RQ, Adolphs R, Fried I, Koch C. 2011. A category-specific response to animals in the
416 right human amygdala. *Nature Neuroscience* **14**: 1247–1249. doi: 10.1038/nn.2899.

417

418 Mormann F, Kornblith S, Quiroga RQ, Kraskov A, Cerf M, Fried I, Koch C. 2008. Latency and
419 selectivity of single neurons indicate hierarchical processing in the human medial temporal
420 lobe. *Journal of Neuroscience* **28**: 8865–8872. doi: 10.1523/JNEUROSCI.1640-08.2008.

421

422 Olivers CNL, Van der Stigchel S, Hulleman J. 2007. Spreading the sparing: against a limited-
423 capacity account of the attentional blink. *Psychological Research* **71**: 126-139. doi:
424 10.1007/s00426-005-0029-z.

425

426 Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: Open Source Software for
427 Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. *Computational
428 Intelligence and Neuroscience* **2011**: 156869. doi:10.1155/2011/156869.

429

430 Picton TW. 1992. The P300 wave of the human event-related potential. *Journal of Clinical
431 Neurophysiology* **9**: 456-479. doi: 10.1097/00004691-199210000-00002.

432

433 Polich J. 2007. Updating P300: an integrative theory of P3a and P3b. *Clinical Neurophysiology*
434 **118**: 2128-2148. doi: 10.1016/j.clinph.2007.04.019.

435

436 Quiroga RQ, Nadasdy Z, Ben-Shaul Y. 2004. Unsupervised spike detection and sorting with
437 wavelets and superparamagnetic clustering. *Neural Computation* **16**: 1661–1687. doi:
438 10.1162/089976604774201631.

439

440 Raymond JE, Shapiro KL, Arnell KM. 1992. Temporary suppression of visual processing in an
441 RSVP task: an attentional blink? *Journal of Experimental Psychology: Human Perception and
442 Performance* **18**: 849-860. doi: 10.1037//0096-1523.18.3.849.

443

444 Reber TP, Faber J, Niediek J, Boström J, Elger CE, Mormann F. 2017. Single-neuron correlates
445 of conscious perception in the human medial temporal lobe. *Current Biology* **27**: 2991-2998.
446 doi: 10.1016/j.cub.2017.08.025.

447

448 Rockstroh B, Müller M, Cohen R, Elbert T. 1992. Probing the functional brain state during
449 P300-evocation. *Journal of Psychophysiology* **6**: 175-184.

450

451 Schupp HT, Lutzenberger W, Rau H, Birbaumer N. 1994. Positive shifts of event-related
452 potentials: a state of cortical disinhibition as reflected by the startle reflex probe.
453 *Electroencephalography and Clinical Neurophysiology* **90**: 135-144. doi: 10.1016/0013-
454 4694(94)90005-1.

455

456 Sergent C, Baillet S, Dehaene S. 2005. Timing of the brain events underlying access to
457 consciousness during the attentional blink. *Nature Neuroscience* **8**: 1391-1400. doi:
458 10.1038/nn1549.

459

460 Shapiro K, Schmitz F, Martens S, Hommel B, Schnitzler A. 2006. Resource sharing in the
461 attentional blink. *Neuroreport* **17**: 163-166. doi: 10.1097/01.wnr.0000195670.37892.1a.

462

463 Snir G, Yeshurun Y. 2017. Perceptual episodes, temporal attention, and the role of cognitive
464 control: lessons from the attentional blink. *Progress in Brain Research* **236**: 53-73. doi:
465 10.1016/bs.pbr.2017.07.008.

466

467 Soltani M, Knight RT. 2000. Neural origins of the P300. *Critical Reviews in Neurobiology* **14**:
468 199-224.

469

470 Woodward SH, Brown WS, Marsh JT, Dawson ME. 1991. Probing the time-course of the
471 auditory oddball P3 with secondary reaction time. *Psychophysiology* **28**: 609-618. doi:
472 10.1111/j.1469-8986.1991.tb01003.x.

473

474 Zivony A, Lamy D. 2022. What processes are disrupted during the attentional blink? An
475 integrative review of event-related potential research. *Psychonomic Bulletin & Review* **29**:
476 394-414. doi: 10.3758/s13423-021-01973-2.

477 **Conflicts of interest**

478 The authors declare that no financial or non-financial competing interests exist.

479 **Acknowledgements**

480 This work was supported by the German Research Foundation (DFG MO 930/4-2, SPP 2205,
481 SFB 1089).

482 **Data availability**

483 In accordance with the ethics approval given by the ethics committee of the Medical Faculty
484 of the University of Bonn and the guidelines of the German Research Foundation, pooled
485 spiking data, local field potential data and program code will be made publicly available to
486 researchers on a Github Online Repository. Further queries should be directly addressed to
487 the corresponding author via email.