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ABSTRACT

Long-read sequencing technologies have improved significantly since their emergence. Their
read lengths, potentially spanning entire transcripts, is advantageous for reconstructing
transcriptomes. Existing long-read transcriptome assembly methods are primarily reference-
based and to date, there islittle focus on reference-free transcriptome assembly. We introduce
RNA-Bloom2, areference-free assembly method for long-read transcriptome sequencing data.
Using smulated datasets and spike-in control data, we show that the transcriptome assembly
quality of RNA-Bloom2 is competitive to those of reference-based methods. Furthermore, RNA-
Bloom2 requires 27.0 to 80.6% of the peak memory and 3.6 to 10.8% of the total wall-clock
runtime of a competing reference-free method. Finally, we showcase RNA-Bloom2 in
assembling a transcriptome sample of Picea sitchensis (Sitka spruce). Since our method does not
rely on areference, it sets up the groundwork for large-scale comparative transcriptomics where
high-quality draft genome assemblies are not readily available.

INTRODUCTION

RNA sequencing (RNA-seq) has become the standard method for gene/transcript discovery,
transcriptome profiling, and isoform expression quantification. Since the dawn of high-
throughput short-read sequencing technologies, transcriptome assemblies have enabled discovery
of novel isoforms', identification of foreign RNAS, intra-species gene-fusion transcripts® and
inter-species chimeric transcripts™, and guided scaffolding® and annotation of draft genome
assemblies. Such applications have been key in enhancing our understanding of genome biology
and etiology and progression of various diseases.

Pacific Biosciences of California, Inc. (PacBio, Menlo Park, CA) and Oxford Nanopore
Technologies PLC (ONT, Oxford, UK) have been offering long-read sequencing technologies
commercially since 2011 and 2014, respectively. Both sequencing technol ogies have improved
significantly since their emergenceto yield increased read length, base accuracy, and
throughput®. In particular, ONT’s MinlON devices are small and portable, thus having the
potential to allow rapid sequencing and downstream analyses’. Moreover, nanopore sequencing
enables direct RNA (dRNA) sequencing without the need to generate complementary DNA
(cDNA) libraries™. On the other hand, PacBio’s single-molecule-real-time (SMRT) sequencing
provides circular consensus sequencing (CCYS) to produce reads that have alower base error rate
than that of ONT reads'™. As aresult, the number of computational methods designed for
processing and analyzing long-read sequencing datais growing rapidly®.

Compared to Illumina short-read sequencing technologies, long reads are noisier but are several
orders of magnitude longer, making them able to span through multiple exons and even capture
full-length transcripts in some instances, thus ssmplifying the transcriptome assembly problem.
However, existing transcriptome assemblers, such as StringTie2*, are predominantly reference-
based where transcripts are derived from spliced-alignment of reads againgt the reference
genome. Genome annotations contain rich information about gene structures that may be utilized
for guiding reference-based transcriptome assembly; some examples include: refinement of
spliced-alignment based on known splice junctions, inference of transcript strand based on
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annotated gene orientation, and resolution for antisense transcripts based on known transcription
start and end sites. Consequently, a subclass of reference-based assemblers, such as FLAIR™,
require a genome annotation in addition to the reference genome for accurate isoform
reconstruction.

Reference-free assembly of transcriptomes is especially valuable when thereis no available
reference genome or the reference genomeis still at the draft stage, which may not fully support
reference-based assembly of all transcriptsin a given transcriptome sequencing sample. In
general, long-read reference-free genome assembly algorithms such as wtdbg2™ (also known as
Redbean) are not suitable for transcriptome data because they cannot reconstruct alternative
isoforms and they typically assume auniform sequencing depth, which is practically nonexistent
in transcriptomic data due to varying transcript expression levels. Reference-free assembly
methods typically rely on read-to-read mapping, whereas reference-based methods rely on read-
to-reference alignments. Since read-to-read mapping is much more resource-intensive than read-
to-reference alignment, reference-free methods tend to have a much higher computational cost
than reference-based methods. To find wider applications, reference-free assembly algorithms
need to overcome the challenges in managing computational resources.

Sequence clustering-based assembly follows the divide-and-conquer paradigm and thus it
requires less resources than methods that align all reads against each other. RATTLE™ isan
example of such amethod, and to the best of our knowledge, it isthe only reference-free
transcriptome assembler that can assembl e transcripts solely from long-read sequencing data.
RATTLE clustersinput reads into isoform-based (or gene-based) groupings and derives
consensus sequences from each read cluster to reconstruct full-length transcripts. Nevertheless,
clustering accuracy is an important factor in the assembly quality and computational
performance. A lenient clustering criterion would create few but large read clusters, resulting in
slow runtime, high peak memory, and aggregation of reads from too many genes. A stringent
clustering criterion, on the other hand, would create many small clusters, potentially resulting in
insufficient aggregation of reads and incomplete transcript reconstruction.

Digital normalization'®, also known as in silico read normalization, is asimple but effective
method to improve the computational performance of reference-free assemblers by reducing the
number of overrepresented reads, such as those of high-expressed transcripts, based on the
saturation of k-mersin the reads. In contrast to naive subsampling, digital normalization is better
at preserving low-expression transcripts. However, it has been primarily utilized for the assembly
of short-read RNA-seq data'’*®. With the introduction of strobemers™ as amismatch and indel
tolerant alternative to k-mers, digital normalization with strobemers should be highly applicable
to transcriptome assembly of noisy long reads.

Here we present RNA-Bloom2, the successor to our short-read transcriptome assembly tool,
RNA-Bloom®, that extends support for reference-free transcriptome assembly of bulk RNA long
sequencing reads. RNA-Bloom2 offers both memory- and time-efficient assembly by utilizing
digital normalization of long reads with strobemers. Our benchmarking shows that RNA-Bloom?2
requires 27.0 to 80.6% of the peak memory and 3.6 to 10.8% of the total wall-clock runtime of
RATTLE. In simulated datasets, RNA-Bloom2 has 0.1 to 5.8% higher recall and 0.3 to 1.0%
lower misassembly rates than RATTLE and it has the lowest false-discovery rates in five out of

Page 3 of 26


https://doi.org/10.1101/2022.08.07.503110
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.07.503110; this version posted August 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

six samples. In experimental datasets, RNA-Bloom?2 has the highest recall, up to 9.0% higher
than the next best method, and the lowest misassembly rates, tying with FLAIR, in two out of
three sequencing platforms. Finally, we showcase RNA-Bloom2 in assembling a transcriptome
sample of Picea sitchensis (Sitka spruce), without using a genomic reference.

RESULTS

Refer ence-free transcriptome assembly with RNA-Bloom2

RNA-Bloom2’s six-stage workflow for the reference-free transcriptome assembly of long reads
issummarized in Fig. 1. In stage one, long reads are corrected for errorsin an alignment-free
approach based on a Bloom filter de Bruijn graph of k-mers derived from input reads. Short
reads can be optionally provided to aid in the error correction of long reads. In stage two, the set
of corrected readsis digitally normalized with strobemers, such that overrepresented reads are
removed to yield a target read depth. Stages one and two are highly integrated to reduce input-
output operations. Since only a portion of corrected reads would be retained by digital
normalization, stage oneis not meant to exhaustively correct all errorsin the reads and isinstead
intended to be fast and memory-efficient. In stage three, reads in the normalized set are
overlapped against each other to identify low-depth regionsin the reads to be trimmed or split. In
stage four, trimmed reads are overlapped against each other to generate an overlap graph where
reads on each unambiguous path are assembled into a*“unitig”. In stage five, the unitigs, which
may still contain errors, are polished using the alignments of corrected reads from stage one. In
stage six, the polished unitigs are aligned against each other to generate an overlap graph where
transcripts are derived based on the length-normalized read depth of the unitigs. If the reads are
produced by the cDNA sequencing protocol, sequences containing potential poly(A) taills are
identified in order to prune the overlap graphsin stages four and six. A more detailed description
of each stage is provided in the M ethods section.

Page 4 of 26


https://doi.org/10.1101/2022.08.07.503110
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.07.503110; this version posted August 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

| long reads | short reads 1. Error Correction 4. Unitig Assembly

I
]
RNA-Bloom2 ' >0 >0>00>0 -0
! o« *-0-0
1. Error Correction ; o o-0+-0
— corrected reads "

\ 4
*>~0>0
*-0>0-0-0>0 *-0>0

2. Digital Normalization

*

hormalized reads 2. Digital Normalization 5. Unitig Polishing

3. Trimming & Splitting

|

rimmed reads — * * + * * *
4. Unitig Assembly ', '
I
unitigs — I
5. Unitig Polishing 3. Trimming & Splitting 6. Transcript Assembly
; ! o .‘. °
alignments polished unitigs - -
A
| | c-
6. Transcript Assembly 'r "
—] ——— —-g— o~0-0
| transcripts | -0

Fig. 1. RNA-Bloom2 assembly wor kflow overview.

The long-read assembly workflow of RNA-Bloom2 consists of six stages: (1) error correction
with long reads (orange rectangle) and optionally with short reads (grey rectangle), (2) digital
normalization, (3) trimming and splitting, (4) unitig assembly, (5) unitig polishing, and (6)
transcript assembly.

Alignment-free error correction and digital nor malization demonstrates utility in multiple
data types

We evaluated the effectiveness of the error correction and digital normalization stages of RNA-
Bloom2 using experimental data. We selected one mouse dataset from the Long-read RNA-Seq
Genome Annotation Assessment Project (LRGASP) Consortium? containing the matching
sequencing datafor ONT cDNA, ONT dRNA, PacBio CCS, and Illumina reads of the same
biological sample (Supplementary Table 1). ONT dRNA and PacBio CCS reads do not contain
adapters, but ONT cDNA reads and Illumina reads are trimmed for adapters with Pychopper®
and Trimmomatic®, respectively (Supplementary Method 1). Out of the three long-read
samples, the ONT cDNA sample has the largest number of sequencing reads (13,127,667 reads)
but the lowest read alignment rate (78.66%) against the combined reference genome for mouse
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GRCmM39 and Lexogen’ s Spike-In RNA Variant (SIRV) transcripts™. Compared to the ONT
cDNA sample, the ONT dRNA and PacBio CCS samples have only one-sixth of the reads
(2,153,439 reads and 2,144,172 reads, respectively) but higher read alignment rates (95.58% and
95.49%, respectively) against the reference genome. The Illumina sample has 40,225,298 read
pairs (2 x 100 nucleotides (nt)) and is only used for the hybrid error correction of the long reads
in RNA-Bloom2.

We first assess both methods of alignment-free error correction in RNA-Bloom2: (i) using only
long reads, and (ii) using a hybrid of long and short reads. We investigated the nucleotide base
error rates of the reads before and after error correction (Supplementary Table 2); error rates
are measured by Trans-NanoSim? (Supplementary Method 2). The error rates of the reads
before error correction in the ONT dRNA, ONT cDNA, and PacBio CCS samples are 12.17%,
7.18%, and 1.96%, respectively. Long-read-only error correction has reduced the error rates to
10.28%, 4.03%, and 1.35% for the ONT dRNA, ONT cDNA, and PacBio CCS samples,
respectively. As expected, hybrid error correction has resulted in even lower error rates of
6.55%, 3.51%, and 1.34% for the ONT dRNA, ONT cDNA, and PacBio CCS samples,
respectively. Long-read-only error correction has the largest reduction (-3.15%) in the error rate
inthe ONT cDNA sample, whereas hybrid error correction has the largest reduction (-5.62%) in
the error rate in the ONT dRNA sample.

We next investigated the percentage of reads remaining after digital normalization and the
percentage of input reads aligned to the final assembly (Supplementary Table 3,
Supplementary Method 3). For assemblies with long-read-only error correction, 48.15%,
3.76%, and 11.66% of reads remained after digital normalization in the ONT dRNA, ONT
cDNA, and PacBio CCS samples, respectively. For assemblies with hybrid error correction,
38.80%, 3.53%, and 11.63% of reads remained after digital normalization in the ONT dRNA,
ONT cDNA, and PacBio CCS samples, respectively. The ONT dRNA assemblies have the
highest percentages of reads remaining after digital normalization. Thisislikely due to the much
higher error rate in the reads, which limits the number of matching strobemers among the reads.
Despite the fact that a substantial proportion of reads are removed by digital normalization, 97.44
t0 97.54% and 95.04 to 95.16% of input reads are still ableto align to the final assemblies for the
ONT dRNA and PacBio CCS samples, respectively. Although 73.52 to 74.02% of input reads
aligned the final assembly for the ONT cDNA sample, it isimportant to note that only 78.66% of
reads in the sample were aligned against the reference genome. These results confirm that digital
normalization in RNA-Bloom2 is effective in removing overrepresented reads from long-read
transcriptome sequencing data.
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Assembly benchmar king with smulated datasets

We benchmarked the assembly quality and the computational performance of RNA-Bloom2 on
simulated data. We prepared two mouse simulated datasets with Trans-NanoSim? for the cDNA
and dRNA sequencing protocols model on experimental ONT data (See M ethods). To
investigate the effect of sequencing depth, we subsampled each dataset to 2, 10, and 18 million
reads, resulting in atotal of six sets of reads for our benchmarking experiments. The features of
the smulated datasets are presented in Supplementary Table 4. Compared to the cDNA dataset,
the dRNA dataset has a higher error rate, longer N50 read length, and fewer simulated
transcripts.

We compared RNA-Bloom2 against three other transcriptome assembly tools designed for long
reads: RATTLE, StringTie2, and FLAIR. RATTLE isthe only other reference-free method,
whereas StringTie2 and FLAIR are entirely reference-based. In addition, all FLAIR assemblies
were guided by the reference transcriptome annotation in conjunction with the associated
reference genome. Since reference-based methods are expected to perform better than reference-
free methods, StringTie2 and FLAIR serve as the gold-standard for evaluating the performance
of RNA-Bloom2 and RATTLE. All assembly methods were run with 48 threads using the same
compute nodes with the exception of FLAIR and RATTLE for the assemblies of the 18 million-
read sets, which were reprocessed on a high-memory machine after failing the initial runs.
Commands for all methods and computing hardware are documented in Supplementary
Method 6.

The computational performance of all four assembly methods is summarized in Fig. 2 and
Supplementary Tables5, 6. StringTie2 has the fastest runtimes and consistently low peak-
memory usage for all datasets. FLAIR has the worst peak-memory usages and RATTLE hasthe
worst total runtimes. As expected, reference-based assemblers are faster than reference-free
assemblers. RNA-Bloom?2 has the lowest memory usage for the 2 million-read cDNA dataset.
The peak memory usage and total runtimes of RATTLE are 1.24 to 3.70 and 9.22 to 28.12 times
of those of RNA-Bloom2, respectively. Both RNA-Bloom2 and RATTLE require a higher peak-
memory usage in assembling the dRNA datasets than the cDNA datasets, possibly due to the
higher error rate and higher N50 read length of the dRNA datasets. However, the peak memory
of RNA-Bloom2 for the dRNA datasets did not increase exponentially with respect to the
number of input reads. This suggests that the digital normalization stage in RNA-Bloom2 is
effective in reducing the number of reads because the number of transcriptsin the 10 million-
read set and the 18 million-read set only differs by 210 (Supplementary Table 4).
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Fig. 2. Computational performance on simulated datasets.

All assemblers were run with 48 threads and assemblies were generated for 2, 10, and 18 million
simulated reads of cONA and dRNA samples. Peak memory usage was measured in GB, and
runtime was measured in wall-clock hours. Both axes are in logarithmic scale. For StringTie2
and FLAIR, performance figures include read alignment and generation of indexed BAM files.

We evaluated the assembly quality in the ssmulated datasets based on the metrics described in
Table 1. The assembly evaluation procedure is described in the M ethods section. The
benchmarking results are presented in Fig 3.

Metric Definition

Complete reconstruction Truth set transcript reconstructed at least 95% in length

Partial reconstruction Truth set transcript reconstructed between 0 and 95% in length
Missing reconstruction Truth set transcript with no detectable reconstruction

True positive Truth set transcript with complete or partial reconstruction
False positive Reference transcript not in the truth set

Incorrectly assembled sequence with segments from one or more
reference transcripts

Incorrectly assembled sequence with segments from reference transcripts
of the same gene

Incorrectly assembled sequence with segments from reference transcripts
of different genes

Misassembly

Intragenic misassembly

Intergenic misassembly

Recall Percentage of truth set transcripts reconstructed.
False discovery rate = False positives / (False positives + True positives)
Misassembly rate = Misassemblies/ (Misassemblies + True positives)

Table 1. Transcriptome assembly quality assessment metrics.

These metrics are intended for sequencing data with a known ground truth where true-positives
and false-positives can be easily discerned. The truth set transcripts are either the set of simulated
transcripts or the set of spike-in transcriptsin real data.
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Fig. 3. Assembly quality evaluation of simulated datasets.
(A) Recall is measured with respect to transcription reconstruction levels. (B) False discovery
rate is measured based on false positive transcripts detected. (C) Misassembly rate is determined
based on the number of intergenic and intragenic misassemblies detected.
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Thetrends for recall are similar for both ssimulated cDNA and dRNA datasets (Fig. 3A). RNA-
Bloom2 has higher percentages (+0.1 to +5.8%) of complete reconstruction than RATTLE in all
simulated samples. The largest difference is observed in the 18 million-read cDNA sample,
whereas the smallest differenceis observed in the 2 million-read dRNA sample. RNA-Bloom?2
also has lower percentages (—4.3 to —7.1%) of missing transcriptsthan RATTLE in all samples.
Second to FLAIR, RNA-Bloom2 has the second smallest percentages of missing transcripts
(29.6 t0 55.3% for cDNA sets and 20.3 to 44.2% for dRNA sets). For all cDNA samples,
StringTie2 has the highest percentages of complete reconstruction (28.2 to 40.7%) but the
smallest percentages of partial reconstruction (5.3 to 5.8%) for all three dataset sizes. StringTie2
has the highest percentage of missing transcriptsin all cDNA (53.6 to 66.5%) and dRNA (37.3to
54.4%) samples. StringTie2 and FLAIR aretied for having the highest percentage of complete
reconstruction (40.9%) for the 2 million-read dRNA sample. FLAIR has the highest percentage
of complete reconstruction (55.0%) for the 10 million-read dRNA sample. RNA-Bloom?2 has the
highest percentage of complete reconstruction (60.4%) for the 18 million-read dRNA sample.

We further investigated assembly recall with respect to transcript expression levels. We assigned
simulated transcripts to expression quartiles: low, medium-low, medium-high, and high. The
expression-stratified assembly recall results for smulated cONA and dRNA datasets are
presented in Supplementary Fig. 1 and 2, respectively. StringTie2 has the most complete
reconstruction in the medium-high (32.0 to 55.3%) and high expression (74.8 to 80.3%) cDNA
guartiles. FLAIR has the most complete reconstruction in the medium-low (14.6 to 33.2%) and
low (3.8 to 16.0%) expression cDNA quartiles. RNA-Bloom2 was second, behind StringTie2, in
the high expression cDNA quartile (63.3 to 75.5%). In the high expression dRNA quartile, RNA-
Bloom2 has the most complete reconstruction in the 18 million-read sample (88.2%), while
StringTie2 has the most complete reconstruction in the 2 and 10 million-read samples (86.5%
and 87.5%, respectively). In the medium-high expression dRNA quartile, RNA-Bloom2 has the
most complete reconstruction in the 10 and 18 million-read samples (69.6% and 73.8%,
respectively), while StringTie2 has the most complete reconstruction in the 2 million-read
sample (57.5%). FLAIR has the most complete reconstruction in all sample sizes in the medium-
low (30.6 to 55.1%) and low expression (9.6 to 43.9%) dRNA quartiles.

We also evaluated the false-discovery rates (FDR) and misassembly rates (Fig. 3B, C) for the
four assemblers. In all simulated samples, RNA-Bloom2 has lower FDR (-0.1 to —0.3% for
CDNA sets, —0.2 to —0.4% for dRNA sets) than RATTLE, and StringTie2 has the highest FDR
(0.5t01.3% for cDNA sets, 0.5t0 1.4% for dRNA sets) except it was tied with RATTLE in the
2-million read dRNA sample (0.5%). RNA-Bloom2 hasthe lowest FDR in all simulated cDNA
samples (0.3 to 0.5%). In the simulated dRNA dataset, FLAIR has the lowest FDR (0.2%) in the
2 million-read sample while RNA-Bloom2 has the lowest FDR in the 10 and 18 million-read
samples (0.4% and 0.5%, respectively). RNA-Bloom?2 has higher intergenic misassembly rates
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and lower intragenic misassembly rates than RATTLE, but the combined misassembly rates are
lower (—0.5t0 —1.0% in cDNA sets, —0.3 t0 —0.4% in dRNA sets) in RNA-Bloom2 assemblies.
FLAIR has no detectable misassemblies in al samples, while StringTie2 has the highest
misassembly rates for intergenic misassembly (3.0 to 4.2% for cDNA sets, 2.0 to 3.2% for dRNA
sets), intragenic misassembly (2.1 to 3.1% for both cDNA and dRNA sets), and combined (5.2 to
7.3% for cDNA sets, 4.1 t0 6.3% for dRNA sets).

Assembly benchmar king with spike-in control data

In addition to simulated data, we also benchmarked the four assembly methods on experimental
sequencing data of known sequences. We sel ected one mouse dataset from the LRGASP
Consortium containing the matching sequencing datafor ONT cDNA, ONT dRNA, and PacBio
CCS of the same biological sample. The sequencing samples for this dataset were spiked with
Lexogen’s Spike-In RNA Variant (SIRV) transcripts®* containing 92 External RNA Control
Consortium (ERCC) spike-ins, 69 SIRV isoforms, and 15 long SIRV's. We extracted the reads
corresponding to the spike-ins (See M ethods) for assembly benchmarking and the features of the
spike-in datasets are summarized in Supplementary Table 7. The PacBio CCS sample has the
longest N50 read length (2,460 nt) and the lowest error rate (2.03%). The ONT cDNA sample
has the shortest N50 read length (712 nt) but the highest number of reads (n=404,783). The ONT
dRNA sample has the fewest reads (n=26,814) and the highest error rate (11.01%).

We evaluated the assembly quality of the spike-in samples based on the metrics described in
Table 1, and the benchmarking results are presented in Fig. 4. For al three samples, RNA-
Bloom2 has the smallest percentage of missing reconstruction. RNA-Bloom?2 also has the
highest percentages of complete reconstruction in both ONT samples (63.6% for cDNA sample,
46.6% for dRNA sample), and it istied with FLAIR in the PacBio CCS sample (63.1%) (Fig.
4A). Unlike what we observed with the simulated datasets, there are no results for false
discovery rate in the spike-in data because all reference spike-in transcripts are true positives.
Misassembly rates are measured based on only intragenic misassemblies because intergenic
misassemblies are not found (Fig. 4B). FLAIR has the lowest misassembly ratesin all samples
and it istied with RNA-Bloom?2 for having zero misassembly ratesin the ONT dRNA and
PacBio CCS samples. StringTie2, RNA-Bloom2, and RATTLE have the highest misassembly
ratesin the ONT dRNA (10.1%), ONT cDNA (9.0%), and PacBio CCS (12.0%) samples,
respectively. The high misassembly rates in RNA-Bloom2, RATTLE, and StringTie2 for the
ONT cDNA sampleislikely aresult of the low N50 read length.
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Fig. 4. Assembly quality evaluation of spike-in control datasets.

(A) Recall and (B) misassembly rates were evaluated for each assembly method on spike-in
control data generated from three sequencing technologies. ONT direct RNA, ONT cDNA, and
PacBio CCS. The spike-in control data were extracted from a mouse dataset from the LRGASP
Consortium.

Reference-free assembly of a Sitka spruce transcriptome
The Sitka spruce (Picea sitchenss) isalarge, evergreen, and long-living conifer species native to

the Pacific Northwest in North America. Although a 20 Gbp draft genome assembly is publicly
available®, its scaffold N50 length is 56.8 kbp, which reflects the draft stage of this short-read
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genome assembly. In particular, the Sitka spruce’ s alternative splicing pattern has not been fully
investigated. Since conifers are known for their long introns®”?, the fragmented draft genome
would highly limit the effectiveness of reference-based transcriptome assembly methods. Thus, it
isavaluable use caseto illustrate the utility of reference-free transcriptome assembly methods.
Using RNA-Bloom2 and RATTLE, we assembled RNA-seq data from mixed tissue (young
needle, bark, xylem, and mature needle) cDNA sampled from a Sitka spruce Q903 spruce
weevil-susceptible individual, originated from Haida Gwaii, British Columbia, Canada (53.917, -
132.083). The cDNA sample was sequenced on a ONT MinlON device (R9.4 flow cell) and the
reads are basecalled with Guppy (See M ethods and Supplementary Method 7). A total of
1,323,043 ONT reads with N50 read length of 1,543 nt remained after adapter-trimming with
Porechop®. We also performed an additional RNA-Bloom?2 assembly with hybrid error
correction using Illumina paired-end RNA-seq data from a previous study®.

First, we measured the completeness of single-copy orthologs with BUSCO™ for the adapter-
trimmed ONT reads, the two RNA-Bloom2 assemblies, and the RATTLE assembly
(Supplementary Method 7). BUSCO provides a quantitative assessment of expected gene
content for each set of transcript sequences, and the results are summarized in Supplementary
Table 8. The RNA-Bloom2 assembly with hybrid error correction has the highest percentage of
complete BUSCO and the lowest percentages of fragmented and missing BUSCO. Specifically,
the complete BUSCO has improved from 73.4% in the adapter-trimmed reads to 87.6% in the
RNA-Bloom2 assembly, whereas the percentages of fragmented and missing BUSCO in the
reads (7.7% and 18.9%) have reduced by half after assembly with RNA-Bloom?2 (3.4% and
9.0%). On the other hand, the RNA-Bloom2 assembly with long-read-only error correction has a
higher percentage of complete BUSCO and lower percentages of fragmented and missing
BUSCO than the input reads and the RATTLE assembly. Compared to the reads, the RATTLE
assembly has alower percentage of complete BUSCO and higher percentages fragmented and
missing BUSCO.

We have selected the RNA-Bloom2 assembly with hybrid error correction for further analyses.
This transcriptome assembly has atotal of 68,514 transcripts, where 98.95% of adapter-trimmed
reads were aligned to the transcriptome assembly with minimap2* (Supplementary Method 3).
We also aligned the assembled transcripts against the draft genome with minimap2
(Supplementary Table 9). A total of 66,866 (97.59%) assembled transcripts were aligned to the
draft genome. Of these aligned transcripts, 21,423 (32.04%) transcripts have at |east one split-
alignments. Since split-alignments on a high-quality genomic reference typically indicate
incorrectly assembled transcripts, we compared these split-alignments of assembled transcripts to
STAR® dignments of the Illumina paired-end RNA-seq data against the draft genome. We
found that 13,376 (62.44%) transcripts with split-alignments contain at least one split supported
by at least one STAR alignment (Supplementary Method 7). This suggests that these transcripts
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were correctly assembled and the majority of split-alignmentsislikely aresult of fragmented
genic regions in the draft genome.

To understand the gene structure of transcripts contained in the genomic scaffolds, we supplied
the RNA-Bloom?2 assembly with hybrid error correction as full-length RNA sequences to
PASA* to create a transcript structure annotation based on the draft genome. It is important to
note that this annotation produced by PASA isonly a partial representation of the Sitka spruce
transcriptome due to fragmented genic regions. PASA generated an annotation consisting of
15,222 genes, 18,991 transcripts, 58,049 unique exons, 37,090 unique introns, and 19,079
poly(A) tails (Fig. 5A). There are more poly(A) tails than transcripts because PASA collapses
transcripts with alternative polyadenylation. Overall, 95.7% of splice junctions from the PASA
annotation overlaps with splice junctions in the Illumina paired-end RNA-seq data reported by
STAR. We also tallied the frequencies of unique exons, introns, and transcripts per gene (Fig.
5B). On average, each gene has 3.8 exons, 2.4 introns, 1.2 transcripts. 59.12% genes contain 2 or
more exons, and 16.1% genes contain at least 2 expressed transcripts. A maximum of 55 exons,
53 introns, 13 transcripts are observed per gene.

We calculated the length distributions of exons, introns, transcripts, genes, and poly(A) tails
based on the output files from PASA (Fig. 5C). Exon lengths range from 10 to 18,115 nt with a
primary peak at 116 nt and a slightly shorter secondary peak at 518 nt. Intron lengths range from
21 t0 206,268 nt with aprimary peak at 113 nt and a much shorter secondary peak at 25,474 nt.
10.3% of introns are longer than 10,000 bp, which is in congruence with the long intron
characteristic of conifers. Likely as aresult of long introns, gene lengths range from 115 to
364,125 nt with aprimary peak at 1,865 nt and a secondary peak at 45,120 nt. Transcript lengths
range from 115 to 18,115 nt with a peak at 1,863 nt, which is nearly identical to the peak gene
length. Poly(A) tail length ranges between 10 to 104 nt long with a primary peak at 21 nt and a
shorter secondary peak at 50 nt. The bimodal poly(A) tail length distribution is also observed in
Arabidopsis seeding transcriptomes™.
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Fig. 5. Distributions of featur e lengths and feature counts per genefor the Sitka spruce
transcriptome.

(A) Total counts of exons, introns, transcripts, gene, and poly(A) tails. (B) The frequency of per-
gene counts of exons, introns, and transcripts. The vertical “Frequency” axisis presented in
logarithmic scale. (C) The length distributions of exons, introns, transcripts, genes, and poly(A)
tails. The horizontal “Length” axisis presented in logarithmic scale. The vertical axisis scaled to
the maximum value for each feature. The minimum and maximum values are indicated at both
tails of the distributions. Peak values on the distributions are superimposed on the vertical dotted
lines.
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We also investigated alternative splicing events in the assembled transcripts. PASA reports nine
types of alternative splicing events (Fig. 6): spliced intron, retained intron, alternate acceptor,
alternate donor, alternate exon, retain exon, skipped exon, startsin intron, and endsin intron.
Spliced intron is the most common event (27.5%), followed by retained intron (24.3%). Retained
intron and spliced intron are the most frequently co-occurring event types. Transcripts involving
3 or more event types are detected but are much rarer.
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Fig. 6. Alternative splicing eventsin the Sitka spruce transcriptome.

Nine types of alternative splicing events are presented as they are defined in PASA and depicted
by connected grey and orange rectangles in the top-left diagram. The exons, introns, or splice-
junctions involved in each event type are highlighted in orange. The pie chart presentsthe
relative proportions of all event typesin the PASA annotation. The horizontal bar chart in the
UpSet plot shows the total number of transcripts containing each event type. The vertical bar
chart in the UpSet plot shows the number of transcripts containing single event types and co-
occurring event types, which are indicated by single dots and connected dots in the matrix,
respectively.
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Finally, we applied the EnTAP pipeline® to produce protein sequence transation and functional
annotation for the RNA-Bloom2 assembly (Supplementary M ethod 7). Using the functional
annotation and similarity search to known spruce protein sequences, we have identified the
following putative peptides. 15 terpene synthases (TPS), including 10 monoterpene synthases
and seven diterpene synthases, 100 cytochrome P450 (CY P) peptides from 55 different
subfamilies, and 17 NAM/ATAFCUC (NAC) transcription factors from six different
subfamilies. TPS, CYP, and NAC are gene families known for their contribution to constitutive
and induced resistance to damage by the spruce weevil "%,

DISCUSSION

The rapid improvements to long-read sequencing technologies present a significant challenge to
reference-free transcriptome assembly methods. As the throughput of long-read sequencers
continues to increase, larger sequencing datasets are produced and thereby increasing the
segquence assembly and analysis computational challenge. RNA-Bloom2 addresses this by digital
normalization with strobemers. In our benchmarking with simulated data and spike-in control
data, we showed that the computational performance and the assembly quality of RNA-Bloom?2
significantly surpasses those of RATTLE, a previous reference-free transcriptome assembler that
relies on clustering of long reads. In particular, RATTLE hastotal wall-clock runtimes over nine
times that of RNA-Bloom2. Therefore, digital normalization with strobemers, within the RNA-
Bloom2 assembly workflow, was a successful application of the concept in assembly of long-
read sequencing data, and it was a superior aternative to clustering-based reference-free
assembly.

We note that reference-based assembly methods tend to run much faster than reference-free
methods, but their overall assembly quality varies depending on the metric used. In ssimulated
data, StringTie2 has better recall than reference-free methods, but it has higher false discovery
rates and misassembly rates. FLAIR, on the other hand, has the lowest misassembly rates,
possibly due to guidance from the reference annotation. It isimportant to note that StringTie2
does not gtrictly require a reference annotation in addition to the reference genome, but FLAIR
requires both reference annotation and reference genome. Therefore, the application of FLAIR is
mainly limited to discovery of novel isoforms while StringTie2 only requires a good quality
reference genome.

As good quality reference annotations are not always readily available, transcriptome assembly
methods must manage the lack of known transcription start and end sites, which are crucial in
distinguishing the orientation of transcripts and discerning transcripts from antisense overlapping
genes. Unlike direct RNA-sequencing, thisisamajor challenge for cDNA sequencing data,
where the strand of reads cannot always be safely assumed. RNA-Bloom2 overcomes this
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problem by identifying potential poly(A) tail-containing reads. In addition, RNA-Bloom2 filters
edgesin its overlap graph based on read counts of each edge and its incident nodes, thus
removing false overlaps between sequences. The positive effects of these solutionsin RNA-
Bloom2 are supported by the relatively low false discovery rates and misassembly rates of RNA-
Bloom2 in our benchmarking experiments.

In our analyses of the Sitka spruce transcriptome, we illustrated that RNA-Bloom2 assemblies
have higher BUSCO completeness than input reads and a RATTLE assembly. We note that a
portion of our assembled transcripts have split-alignments across genome scaffolds, but the
majority of them are supported by paired-end short reads. We expect that a transcript-informed
targeted gene reconstruction®, using a long-read reference-free transcriptome assembly by RNA-
Bloom2, may significantly improve discovery of new splice isoforms and the annotation of
genes.

In summary, we illustrated the performance of RNA-Bloom2 with respect to state-of-the-art
long-read transcriptome assembly methods, highlighting the strengths and weaknesses of each.
We showed that RNA-Bloom2 is suitable for both ONT and PacBio sequencing technologies and
it is competitive to reference-based methods. We expect RNA-Bloom2 to be scalable to
increasing volumes of long-read data, and we anticipate RNA-Bloom2 will facilitate the gene
annotation and transcriptome analyses of many species to be investigated.

METHODS
Alignment-free error correction

We have modified the error correction routine for short readsin RNA-Bloom to support error
correction in long reads. First, k-mers and their multiplicities in the input reads are stored in a
Bloom filter de Bruijn graph. Reads are then split into fixed-length tiles (default: 500 nt) that are
evaluated independently of each other. To account for varying transcript expression levels, a
multiplicity threshold is dynamically determined (Supplementary Fig. 3) within each tileto
identify “weak” and “solid” k-mers, which have multiplicities lower and higher than or equal to
the threshold, respectively. Weak k-mers represent potentially erroneous regionsin the read
while solid k-mers represent error-free regionsin the read. To avoid introducing incorrect edits to
the read, weak k-mers are replaced with an aternative path of solid k-mersin the de Bruijn graph
only if this path shares a high sequence identity (default: 70%) as the target region spanned by
the weak k-mers. Thetiling nature of this routine ensures that more refined multiplicity
thresholds are set for sub-regionsin the read. The error correction process for each read may be
repeated for additional iterationsif at least one tile were modified in the previous iteration. In
each successive iteration, the tiling positions are shifted by half atile length to allow errors at tile
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boundaries in the previous iteration to be corrected. After error correction is completed for the
read, k-mers from all neighboring tiles are joined together and are assembled into an edited read
sequence.

Digital normalization with strobemers

Digital normalization isintended to reduce the overall read depth to a much lower target depth
(default: 3) by identifying the minimal longest reads set (MLRS) supporting the target depth.
Digital normalization reduces the computational resource regquirements of subsequent stages and
it ismost effective in reducing the number of reads for high-expressed transcripts, which are the
main culprit for long runtimes and high memory usage in read-to-read alignments. The read
depths represented by the MLRS are approximated by multiplicities of strobemers, which isan
error-tolerant alternative to k-mers for sequence comparison. Three variants of strobemers have
been introduced in previous work®: minstrobes, randstrobes, and hybridstrobes. In RNA-
Bloom?2, we used randstrobes of order three because it was shown to perform favorably on
transcriptome data. Strobemer multiplicities are tracked by a counting Bloom filter, which is
populated as reads are added to the MLRS.

Digital normalization begins by first sorting the input reads by their length in descending order.
Only oneread is evaluated at atime to maintain proper tracking of read depth in the MLRS. A
read is designated as represented by the MLRS if nearly the entire read (default threshold of 50
nt from the read extremities) contains overlapping strobemers with multiplicities at or above the
target depth (Supplementary Fig. 4). A read is designated as not represented by the MLRSif it
has a region not containing any strobemers with multiplicities at or above the target depth. Each
non-represented read is added to the MLRS and its strobemer multiplicities (that are lower than
the target depth) would be incremented by one before the next read is evaluated. Represented
reads are not included in the MLRS and their strobemer multiplicities are not incremented.

Read trimming and splitting

RNA-Bloom2 relies on minimap2 for overlapping reads against each other to identify
sufficiently covered regions of each read. By default, the minimum required read depth for long-
read assembly is set to three in RNA-Bloom?2; a sufficiently covered region of aread must
overlap with at least two other reads. Insufficiently covered head and tail regions of the reads are
trimmed. Reads containing insufficiently covered middle region(s) are potentially chimera
artifacts and thus are split into shorter sub-sequences (Supplementary Fig. 5). Completely
contained reads are removed.
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Unitig assembly

Trimmed reads are overlapped against each other with minimap2 to construct an overlap graph
where the vertices and edges are reads and their overlaps, respectively. As was donein the read
trimming stage, contained reads are removed. If the input datais strand-specific (i.e. ONT
dRNA), only alignments on the same strand are retained and the overlap graph would only
contain vertices for the forward strand. If the input datais not strand-specific (i.e. ONT cDNA),
then vertices for both strands are created in the overlap graph and the overlap graph is pruned
based on whether each read contains poly(A) tail or poly(T) head (Supplementary Fig. 6). The
overlap graph is simplified by removing transgitive edges. Unitigs are derived by assembling
reads along unambiguous paths in the overlap graph.

Unitig polishing

Although alignment-free error correction has been performed on the reads that were used to
generate unitigs, there are till residua base errors that can be polished using an alignment-based
approach. Output reads from the error correction stage are aligned to the unitigs with minimap2.
To avoid unintentional removal of short alternatively spliced exons during polishing, only
alignments with large indels (default: > 50 nt) or low sequence identity (default: < 70%) are
removed. The filtered alignments are passed to Racon™ for polishing the unitigs.

Transcript assembly

An overlap graph of polished unitigs is constructed based on minimap2 overlaps between
polished unitigs. Reusing the read alignments from the unitig polishing stage, the overlap graph
is annotated with: (i) length-normalized read counts for the unitigs, and (ii) the number of reads
spanning across the unitig overlaps.

If the input datais not strand-specific, then the overlap graph is pruned as it was done in unitig
assembly and the read alignments are also examined for poly-A tail reads that are aligned to the
unitigs. The unitigs are reoriented based on the poly-A tail read alignment orientations and the
overlap graph isfiltered accordingly (Supplementary Fig. 6). Thisprocedureis crucial in
discerning transcripts originating from overlapping genes on opposite strands of the
chromosome. In addition, edges in the overlap graph are filtered by applying a binomial test on
the number of reads supporting the edge with respect to the normalized read counts of the
incident vertices.

After al filtering on the overlap graph has been performed, vertices are sorted by their read

counts in descending order. Each vertex serves as the seed for abidirectional greedy extension
path with each extension choosing the neighbor vertex with the highest read count. Greedy

Page 20 of 26


https://doi.org/10.1101/2022.08.07.503110
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.07.503110; this version posted August 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

extension terminates upon reaching either a dead-end, a cycle, or a vertex with aread count of
zero. The reads along this path are assembled into a transcript. All vertices along this path would
be flagged from seeding new extension paths, and their read counts are decremented by the
minimum read count in the path. Transcript assembly is complete when all vertices have been
visited.

Benchmar k dataset ssmulation

We used Trans-NanoSim v3.1.0 to simulate ONT cDNA and dRNA datasets based on the mouse
ENSEMBL annotation for GRCm39. Mouse samples ENCFF232Y SU and ENCFF349BIN from
the LRGA SP Consortium were selected for training Trans-NanoSim sequencing profiles for
cDNA and dRNA data, respectively. Sequencing adapters were trimmed from raw reads using
Pychopper v2.5.0% (Supplementary Method 1). Since no adapters were detected in the dRNA
data, the raw reads were supplied to Trans-NanoSim for training the dRNA profile. On the
contrary, adapters were found in the cDNA data; the adapter-trimmed “full-length” and
“rescued” reads, as defined by Pychopper, were supplied to Trans-NanoSim for training the
cDNA profile. We discarded all ssmulated reads defined as “unaligned” by Trans-NanoSim and
we subsample the “aligned” simulated readsto 2, 10, 18 million reads using seqtk™. All software
command parameters are documented in Supplementary Method 4.

Spike-in control reads extraction

Using minimap2 2.24-r1122, reads from three replicates for each platform were aligned against
the hybrid reference genome of mouse and spike-ins provided by LRGASP. Only reads that are
aligned uniquely to ERCC and SIRV sequences are kept (Supplementary Method 5).

Transcriptome assembly benchmarking

The command parameters for each assembler are documented in Supplementary Method 6. For
the simulated datasets, transcriptome assemblies are aligned against the mouse ENSEMBL
reference transcriptome with minimap2. The output alignment PAF files are processed with our
in-house Python script “tns_eval.py’, which isavailable at https.//github.com/bcgsc/rnaseq_utils.
Only alignment segments of at least 150 nt in length, at least 90% sequence identity, and at most
indels of 70-nt in length are considered. The ground truth transcript set is determined using the
transcript identifiers in the smulated read names. Since not all known transcripts were simulated,
the truth set is a subset of the ENSEMBL annotation. Any transcripts that are not in the truth set
are designated as false-positives. If an assembled sequence aligns equally well to both a truth set
transcript and a false-positive transcript, the assembled sequence would be assigned to the truth
set instead of the false-positive. Any assembled sequences that have split-alignments to more
than one transcript are designated as misassemblies.
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For the spike-in datasets, transcriptome assemblies are aligned againgt the ERCC and SIRV
seguences with minimap2. Since the ground truth transcript set isidentical to the spike-in
annotated transcripts, there are no false-positives. However, misassemblies are still detected asit
was done for the simulated datasets.

Sitka sprucetranscriptome analysis

All software command parameters are documented in Supplementary Method 7. The ONT
cDNA reads were basecalled with Guppy v5.0.15. Since there are non-standard adapter and
primer sequences, we used Porechop instead of Pychopper. We assembled the adapter-trimmed
reads with RNA-Bloom2 v2.0.0 and short-read RNA-seq samples from previous work® were
also included only for error correction of the ONT reads. The transcriptome completeness was
benchmarked with BUSCO v5.3.2*! and the embryophyte core gene set (odb10). The resulting
RNA-Bloom2 assembly was supplied to PASA v2.5.2* for gene structure annotation, using
minimap2 for transcriptome alignments against the draft genome. The figure for alternative
splicing was generated with UpSetR*. The transcriptome assembly was annotated with EnTAP
v0.10.8-beta® using TransDecoder v5.3.0* for protein sequence translation. Functional
annotation was assigned based on Swiss-prot plant proteins™, UniRef90 gene clusters®,
embryophyte orthologs from OrthoDB10* and high-quality proteins derived from NCBI RefSeq
99*. We performed the annotation of TPS, CY P and NAC through a BLASTP search against
target spruce protein sequences reported previously?>*¥, with minimum match of 95% identity
and 90% query coverage.

SUPPLEMENTARY DATA

Simulated data used for benchmarking experimentsis available at
https://datadryad.org/stash/share/wtl L 942eRij03GUEKVK TWEYV 6K xI 7184Eus8I TUSTEM.

DATA AND SOFTWARE AVAILABILITY

The rebasecalled Nanopore sequencing data for the Sitka spruce cDNA sample has been
deposited in the Sequence Read Archive (SRA) with run accession SRR19510936.

RNA-Bloom2 isimplemented in Javaand it is publicly available under GPLv3 license on
GitHub at https://github.com/bcgsc/RNA-Bloom. The scripts we wrote to analyze our results are
also publicly available on GitHub at https.//github.com/bcgsc/rnaseq_utils.
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