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ABSTRACT 
 
Long-read sequencing technologies have improved significantly since their emergence. Their 
read lengths, potentially spanning entire transcripts, is advantageous for reconstructing 
transcriptomes. Existing long-read transcriptome assembly methods are primarily reference-
based and to date, there is little focus on reference-free transcriptome assembly. We introduce 
RNA-Bloom2, a reference-free assembly method for long-read transcriptome sequencing data. 
Using simulated datasets and spike-in control data, we show that the transcriptome assembly 
quality of RNA-Bloom2 is competitive to those of reference-based methods. Furthermore, RNA-
Bloom2 requires 27.0 to 80.6% of the peak memory and 3.6 to 10.8% of the total wall-clock 
runtime of a competing reference-free method. Finally, we showcase RNA-Bloom2 in 
assembling a transcriptome sample of Picea sitchensis (Sitka spruce). Since our method does not 
rely on a reference, it sets up the groundwork for large-scale comparative transcriptomics where 
high-quality draft genome assemblies are not readily available. 
 
 
INTRODUCTION 
 
RNA sequencing (RNA-seq) has become the standard method for gene/transcript discovery, 
transcriptome profiling, and isoform expression quantification. Since the dawn of high-
throughput short-read sequencing technologies, transcriptome assemblies have enabled discovery 
of novel isoforms1, identification of foreign RNAs2, intra-species gene-fusion transcripts3 and 
inter-species chimeric transcripts4,5, and guided scaffolding6 and annotation of draft genome 
assemblies. Such applications have been key in enhancing our understanding of genome biology 
and etiology and progression of various diseases. 
 
Pacific Biosciences of California, Inc. (PacBio, Menlo Park, CA) and Oxford Nanopore 
Technologies PLC (ONT, Oxford, UK) have been offering long-read sequencing technologies 
commercially since 2011 and 2014, respectively. Both sequencing technologies have improved 
significantly since their emergence to yield increased read length, base accuracy, and 
throughput8. In particular, ONT’s MinION devices are small and portable, thus having the 
potential to allow rapid sequencing and downstream analyses9. Moreover, nanopore sequencing 
enables direct RNA (dRNA) sequencing without the need to generate complementary DNA 
(cDNA) libraries10. On the other hand, PacBio’s single-molecule-real-time (SMRT) sequencing 
provides circular consensus sequencing (CCS) to produce reads that have a lower base error rate 
than that of ONT reads11. As a result, the number of computational methods designed for 
processing and analyzing long-read sequencing data is growing rapidly8. 
 
Compared to Illumina short-read sequencing technologies, long reads are noisier but are several 
orders of magnitude longer, making them able to span through multiple exons and even capture 
full-length transcripts in some instances, thus simplifying the transcriptome assembly problem. 
However, existing transcriptome assemblers, such as StringTie212, are predominantly reference-
based where transcripts are derived from spliced-alignment of reads against the reference 
genome. Genome annotations contain rich information about gene structures that may be utilized 
for guiding reference-based transcriptome assembly; some examples include: refinement of 
spliced-alignment based on known splice junctions, inference of transcript strand based on 
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annotated gene orientation, and resolution for antisense transcripts based on known transcription 
start and end sites. Consequently, a subclass of reference-based assemblers, such as FLAIR13, 
require a genome annotation in addition to the reference genome for accurate isoform 
reconstruction.  
 
Reference-free assembly of transcriptomes is especially valuable when there is no available 
reference genome or the reference genome is still at the draft stage, which may not fully support 
reference-based assembly of all transcripts in a given transcriptome sequencing sample. In 
general, long-read reference-free genome assembly algorithms such as wtdbg214 (also known as 
Redbean) are not suitable for transcriptome data because they cannot reconstruct alternative 
isoforms and they typically assume a uniform sequencing depth, which is practically nonexistent 
in transcriptomic data due to varying transcript expression levels. Reference-free assembly 
methods typically rely on read-to-read mapping, whereas reference-based methods rely on read-
to-reference alignments. Since read-to-read mapping is much more resource-intensive than read-
to-reference alignment, reference-free methods tend to have a much higher computational cost 
than reference-based methods. To find wider applications, reference-free assembly algorithms 
need to overcome the challenges in managing computational resources. 
 
Sequence clustering-based assembly follows the divide-and-conquer paradigm and thus it 
requires less resources than methods that align all reads against each other. RATTLE15 is an 
example of such a method, and to the best of our knowledge, it is the only reference-free 
transcriptome assembler that can assemble transcripts solely from long-read sequencing data. 
RATTLE clusters input reads into isoform-based (or gene-based) groupings and derives 
consensus sequences from each read cluster to reconstruct full-length transcripts. Nevertheless, 
clustering accuracy is an important factor in the assembly quality and computational 
performance. A lenient clustering criterion would create few but large read clusters, resulting in 
slow runtime, high peak memory, and aggregation of reads from too many genes. A stringent 
clustering criterion, on the other hand, would create many small clusters, potentially resulting in 
insufficient aggregation of reads and incomplete transcript reconstruction. 
 
Digital normalization16, also known as in silico read normalization, is a simple but effective 
method to improve the computational performance of reference-free assemblers by reducing the 
number of overrepresented reads, such as those of high-expressed transcripts, based on the 
saturation of k-mers in the reads. In contrast to naive subsampling, digital normalization is better 
at preserving low-expression transcripts. However, it has been primarily utilized for the assembly 
of short-read RNA-seq data17,18. With the introduction of strobemers19 as a mismatch and indel 
tolerant alternative to k-mers, digital normalization with strobemers should be highly applicable 
to transcriptome assembly of noisy long reads. 
 
Here we present RNA-Bloom2, the successor to our short-read transcriptome assembly tool, 
RNA-Bloom20, that extends support for reference-free transcriptome assembly of bulk RNA long 
sequencing reads. RNA-Bloom2 offers both memory- and time-efficient assembly by utilizing 
digital normalization of long reads with strobemers. Our benchmarking shows that RNA-Bloom2 
requires 27.0 to 80.6% of the peak memory and 3.6 to 10.8% of the total wall-clock runtime of 
RATTLE. In simulated datasets, RNA-Bloom2 has 0.1 to 5.8% higher recall and 0.3 to 1.0% 
lower misassembly rates than RATTLE and it has the lowest false-discovery rates in five out of 
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six samples. In experimental datasets, RNA-Bloom2 has the highest recall, up to 9.0% higher 
than the next best method, and the lowest misassembly rates, tying with FLAIR, in two out of 
three sequencing platforms. Finally, we showcase RNA-Bloom2 in assembling a transcriptome 
sample of Picea sitchensis (Sitka spruce), without using a genomic reference. 
 
 
RESULTS 
 
Reference-free transcriptome assembly with RNA-Bloom2 
 
RNA-Bloom2’s six-stage workflow for the reference-free transcriptome assembly of long reads 
is summarized in Fig. 1. In stage one, long reads are corrected for errors in an alignment-free 
approach based on a Bloom filter de Bruijn graph of k-mers derived from input reads. Short 
reads can be optionally provided to aid in the error correction of long reads. In stage two, the set 
of corrected reads is digitally normalized with strobemers, such that overrepresented reads are 
removed to yield a target read depth. Stages one and two are highly integrated to reduce input-
output operations. Since only a portion of corrected reads would be retained by digital 
normalization, stage one is not meant to exhaustively correct all errors in the reads and is instead 
intended to be fast and memory-efficient. In stage three, reads in the normalized set are 
overlapped against each other to identify low-depth regions in the reads to be trimmed or split. In 
stage four, trimmed reads are overlapped against each other to generate an overlap graph where 
reads on each unambiguous path are assembled into a “unitig”. In stage five, the unitigs, which 
may still contain errors, are polished using the alignments of corrected reads from stage one. In 
stage six, the polished unitigs are aligned against each other to generate an overlap graph where 
transcripts are derived based on the length-normalized read depth of the unitigs. If the reads are 
produced by the cDNA sequencing protocol, sequences containing potential poly(A) tails are 
identified in order to prune the overlap graphs in stages four and six. A more detailed description 
of each stage is provided in the Methods section. 
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Fig. 1. RNA-Bloom2 assembly workflow overview. 
The long-read assembly workflow of RNA-Bloom2 consists of six stages: (1) error correction 
with long reads (orange rectangle) and optionally with short reads (grey rectangle), (2) digital 
normalization, (3) trimming and splitting, (4) unitig assembly, (5) unitig polishing, and (6) 
transcript assembly. 
 
Alignment-free error correction and digital normalization demonstrates utility in multiple 
data types 
 
We evaluated the effectiveness of the error correction and digital normalization stages of RNA-
Bloom2 using experimental data. We selected one mouse dataset from the Long-read RNA-Seq 
Genome Annotation Assessment Project (LRGASP) Consortium21 containing the matching 
sequencing data for ONT cDNA, ONT dRNA, PacBio CCS, and Illumina reads of the same 
biological sample (Supplementary Table 1). ONT dRNA and PacBio CCS reads do not contain 
adapters, but ONT cDNA reads and Illumina reads are trimmed for adapters with Pychopper22 
and Trimmomatic23, respectively (Supplementary Method 1). Out of the three long-read 
samples, the ONT cDNA sample has the largest number of sequencing reads (13,127,667 reads) 
but the lowest read alignment rate (78.66%) against the combined reference genome for mouse 
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GRCm39 and Lexogen’s Spike-In RNA Variant (SIRV) transcripts24. Compared to the ONT 
cDNA sample, the ONT dRNA and PacBio CCS samples have only one-sixth of the reads 
(2,153,439 reads and 2,144,172 reads, respectively) but higher read alignment rates (95.58% and 
95.49%, respectively) against the reference genome. The Illumina sample has 40,225,298 read 
pairs (2 × 100 nucleotides (nt)) and is only used for the hybrid error correction of the long reads 
in RNA-Bloom2. 
 
We first assess both methods of alignment-free error correction in RNA-Bloom2: (i) using only 
long reads, and (ii) using a hybrid of long and short reads. We investigated the nucleotide base 
error rates of the reads before and after error correction (Supplementary Table 2); error rates 
are measured by Trans-NanoSim25 (Supplementary Method 2). The error rates of the reads 
before error correction in the ONT dRNA, ONT cDNA, and PacBio CCS samples are 12.17%, 
7.18%, and 1.96%, respectively. Long-read-only error correction has reduced the error rates to 
10.28%, 4.03%, and 1.35% for the ONT dRNA, ONT cDNA, and PacBio CCS samples, 
respectively. As expected, hybrid error correction has resulted in even lower error rates of 
6.55%, 3.51%, and 1.34% for the ONT dRNA, ONT cDNA, and PacBio CCS samples, 
respectively. Long-read-only error correction has the largest reduction (-3.15%) in the error rate 
in the ONT cDNA sample, whereas hybrid error correction has the largest reduction (-5.62%) in 
the error rate in the ONT dRNA sample. 
 
We next investigated the percentage of reads remaining after digital normalization and the 
percentage of input reads aligned to the final assembly (Supplementary Table 3, 
Supplementary Method 3). For assemblies with long-read-only error correction, 48.15%, 
3.76%, and 11.66% of reads remained after digital normalization in the ONT dRNA, ONT 
cDNA, and PacBio CCS samples, respectively. For assemblies with hybrid error correction, 
38.80%, 3.53%, and 11.63% of reads remained after digital normalization in the ONT dRNA, 
ONT cDNA, and PacBio CCS samples, respectively. The ONT dRNA assemblies have the 
highest percentages of reads remaining after digital normalization. This is likely due to the much 
higher error rate in the reads, which limits the number of matching strobemers among the reads. 
Despite the fact that a substantial proportion of reads are removed by digital normalization, 97.44 
to 97.54% and 95.04 to 95.16% of input reads are still able to align to the final assemblies for the 
ONT dRNA and PacBio CCS samples, respectively. Although 73.52 to 74.02% of input reads 
aligned the final assembly for the ONT cDNA sample, it is important to note that only 78.66% of 
reads in the sample were aligned against the reference genome. These results confirm that digital 
normalization in RNA-Bloom2 is effective in removing overrepresented reads from long-read 
transcriptome sequencing data. 
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Assembly benchmarking with simulated datasets 
 
We benchmarked the assembly quality and the computational performance of RNA-Bloom2 on 
simulated data. We prepared two mouse simulated datasets with Trans-NanoSim25 for the cDNA 
and dRNA sequencing protocols model on experimental ONT data (See Methods). To 
investigate the effect of sequencing depth, we subsampled each dataset to 2, 10, and 18 million 
reads, resulting in a total of six sets of reads for our benchmarking experiments. The features of 
the simulated datasets are presented in Supplementary Table 4. Compared to the cDNA dataset, 
the dRNA dataset has a higher error rate, longer N50 read length, and fewer simulated 
transcripts. 
 
We compared RNA-Bloom2 against three other transcriptome assembly tools designed for long 
reads: RATTLE, StringTie2, and FLAIR. RATTLE is the only other reference-free method, 
whereas StringTie2 and FLAIR are entirely reference-based. In addition, all FLAIR assemblies 
were guided by the reference transcriptome annotation in conjunction with the associated 
reference genome. Since reference-based methods are expected to perform better than reference-
free methods, StringTie2 and FLAIR serve as the gold-standard for evaluating the performance 
of RNA-Bloom2 and RATTLE. All assembly methods were run with 48 threads using the same 
compute nodes with the exception of FLAIR and RATTLE for the assemblies of the 18 million-
read sets, which were reprocessed on a high-memory machine after failing the initial runs. 
Commands for all methods and computing hardware are documented in Supplementary 
Method 6. 
 
The computational performance of all four assembly methods is summarized in Fig. 2 and 
Supplementary Tables 5, 6. StringTie2 has the fastest runtimes and consistently low peak-
memory usage for all datasets. FLAIR has the worst peak-memory usages and RATTLE has the 
worst total runtimes. As expected, reference-based assemblers are faster than reference-free 
assemblers. RNA-Bloom2 has the lowest memory usage for the 2 million-read cDNA dataset. 
The peak memory usage and total runtimes of RATTLE are 1.24 to 3.70 and 9.22 to 28.12 times 
of those of RNA-Bloom2, respectively. Both RNA-Bloom2 and RATTLE require a higher peak-
memory usage in assembling the dRNA datasets than the cDNA datasets, possibly due to the 
higher error rate and higher N50 read length of the dRNA datasets. However, the peak memory 
of RNA-Bloom2 for the dRNA datasets did not increase exponentially with respect to the 
number of input reads. This suggests that the digital normalization stage in RNA-Bloom2 is 
effective in reducing the number of reads because the number of transcripts in the 10 million-
read set and the 18 million-read set only differs by 210 (Supplementary Table 4). 
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Fig. 2. Computational performance on simulated datasets. 
All assemblers were run with 48 threads and assemblies were generated for 2, 10, and 18 million 
simulated reads of cDNA and dRNA samples. Peak memory usage was measured in GB, and 
runtime was measured in wall-clock hours. Both axes are in logarithmic scale. For StringTie2 
and FLAIR, performance figures include read alignment and generation of indexed BAM files. 
 
We evaluated the assembly quality in the simulated datasets based on the metrics described in 
Table 1. The assembly evaluation procedure is described in the Methods section. The 
benchmarking results are presented in Fig 3. 
 

Metric Definition 
Complete reconstruction Truth set transcript reconstructed at least 95% in length 
Partial reconstruction Truth set transcript reconstructed between 0 and 95% in length 
Missing reconstruction Truth set transcript with no detectable reconstruction 
True positive Truth set transcript with complete or partial reconstruction 
False positive Reference transcript not in the truth set 

Misassembly 
Incorrectly assembled sequence with segments from one or more 
reference transcripts 

Intragenic misassembly 
Incorrectly assembled sequence with segments from reference transcripts 
of the same gene 

Intergenic misassembly 
Incorrectly assembled sequence with segments from reference transcripts 
of different genes 

Recall Percentage of truth set transcripts reconstructed. 
False discovery rate = False positives / (False positives + True positives) 
Misassembly rate = Misassemblies / (Misassemblies + True positives) 
Table 1. Transcriptome assembly quality assessment metrics. 
These metrics are intended for sequencing data with a known ground truth where true-positives 
and false-positives can be easily discerned. The truth set transcripts are either the set of simulated 
transcripts or the set of spike-in transcripts in real data. 
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Fig. 3. Assembly quality evaluation of simulated datasets. 
(A) Recall is measured with respect to transcription reconstruction levels. (B) False discovery 
rate is measured based on false positive transcripts detected. (C) Misassembly rate is determined 
based on the number of intergenic and intragenic misassemblies detected. 
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The trends for recall are similar for both simulated cDNA and dRNA datasets (Fig. 3A). RNA-
Bloom2 has higher percentages (+0.1 to +5.8%) of complete reconstruction than RATTLE in all 
simulated samples. The largest difference is observed in the 18 million-read cDNA sample, 
whereas the smallest difference is observed in the 2 million-read dRNA sample. RNA-Bloom2 
also has lower percentages (–4.3 to –7.1%) of missing transcripts than RATTLE in all samples. 
Second to FLAIR, RNA-Bloom2 has the second smallest percentages of missing transcripts 
(29.6 to 55.3% for cDNA sets and 20.3 to 44.2% for dRNA sets). For all cDNA samples, 
StringTie2 has the highest percentages of complete reconstruction (28.2 to 40.7%) but the 
smallest percentages of partial reconstruction (5.3 to 5.8%) for all three dataset sizes. StringTie2 
has the highest percentage of missing transcripts in all cDNA (53.6 to 66.5%) and dRNA (37.3 to 
54.4%) samples. StringTie2 and FLAIR are tied for having the highest percentage of complete 
reconstruction (40.9%) for the 2 million-read dRNA sample. FLAIR has the highest percentage 
of complete reconstruction (55.0%) for the 10 million-read dRNA sample. RNA-Bloom2 has the 
highest percentage of complete reconstruction (60.4%) for the 18 million-read dRNA sample. 
 
We further investigated assembly recall with respect to transcript expression levels. We assigned 
simulated transcripts to expression quartiles: low, medium-low, medium-high, and high. The 
expression-stratified assembly recall results for simulated cDNA and dRNA datasets are 
presented in Supplementary Fig. 1 and 2, respectively. StringTie2 has the most complete 
reconstruction in the medium-high (32.0 to 55.3%) and high expression (74.8 to 80.3%) cDNA 
quartiles. FLAIR has the most complete reconstruction in the medium-low (14.6 to 33.2%) and 
low (3.8 to 16.0%) expression cDNA quartiles. RNA-Bloom2 was second, behind StringTie2, in 
the high expression cDNA quartile (63.3 to 75.5%). In the high expression dRNA quartile, RNA-
Bloom2 has the most complete reconstruction in the 18 million-read sample (88.2%), while 
StringTie2 has the most complete reconstruction in the 2 and 10 million-read samples (86.5% 
and 87.5%, respectively). In the medium-high expression dRNA quartile, RNA-Bloom2 has the 
most complete reconstruction in the 10 and 18 million-read samples (69.6% and 73.8%, 
respectively), while StringTie2 has the most complete reconstruction in the 2 million-read 
sample (57.5%). FLAIR has the most complete reconstruction in all sample sizes in the medium-
low (30.6 to 55.1%) and low expression (9.6 to 43.9%) dRNA quartiles. 
 
We also evaluated the false-discovery rates (FDR) and misassembly rates (Fig. 3B, C) for the 
four assemblers. In all simulated samples, RNA-Bloom2 has lower FDR (–0.1 to –0.3% for 
cDNA sets, –0.2 to –0.4% for dRNA sets) than RATTLE, and StringTie2 has the highest FDR 
(0.5 to 1.3% for cDNA sets, 0.5 to 1.4% for dRNA sets) except it was tied with RATTLE in the 
2-million read dRNA sample (0.5%). RNA-Bloom2 has the lowest FDR in all simulated cDNA 
samples (0.3 to 0.5%). In the simulated dRNA dataset, FLAIR has the lowest FDR (0.2%) in the 
2 million-read sample while RNA-Bloom2 has the lowest FDR in the 10 and 18 million-read 
samples (0.4% and 0.5%, respectively). RNA-Bloom2 has higher intergenic misassembly rates 
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and lower intragenic misassembly rates than RATTLE, but the combined misassembly rates are 
lower (–0.5 to –1.0% in cDNA sets, –0.3 to –0.4% in dRNA sets) in RNA-Bloom2 assemblies. 
FLAIR has no detectable misassemblies in all samples, while StringTie2 has the highest 
misassembly rates for intergenic misassembly (3.0 to 4.2% for cDNA sets, 2.0 to 3.2% for dRNA 
sets), intragenic misassembly (2.1 to 3.1% for both cDNA and dRNA sets), and combined (5.2 to 
7.3% for cDNA sets, 4.1 to 6.3% for dRNA sets).  
 
Assembly benchmarking with spike-in control data 
 
In addition to simulated data, we also benchmarked the four assembly methods on experimental 
sequencing data of known sequences. We selected one mouse dataset from the LRGASP 
Consortium containing the matching sequencing data for ONT cDNA, ONT dRNA, and PacBio 
CCS of the same biological sample. The sequencing samples for this dataset were spiked with 
Lexogen’s Spike-In RNA Variant (SIRV) transcripts24 containing 92 External RNA Control 
Consortium (ERCC) spike-ins, 69 SIRV isoforms, and 15 long SIRVs. We extracted the reads 
corresponding to the spike-ins (See Methods) for assembly benchmarking and the features of the 
spike-in datasets are summarized in Supplementary Table 7. The PacBio CCS sample has the 
longest N50 read length (2,460 nt) and the lowest error rate (2.03%). The ONT cDNA sample 
has the shortest N50 read length (712 nt) but the highest number of reads (n=404,783). The ONT 
dRNA sample has the fewest reads (n=26,814) and the highest error rate (11.01%). 
 
We evaluated the assembly quality of the spike-in samples based on the metrics described in 
Table 1, and the benchmarking results are presented in Fig. 4. For all three samples, RNA-
Bloom2 has the smallest percentage of missing reconstruction. RNA-Bloom2 also has the 
highest percentages of complete reconstruction in both ONT samples (63.6% for cDNA sample, 
46.6% for dRNA sample), and it is tied with FLAIR in the PacBio CCS sample (63.1%) (Fig. 
4A). Unlike what we observed with the simulated datasets, there are no results for false 
discovery rate in the spike-in data because all reference spike-in transcripts are true positives. 
Misassembly rates are measured based on only intragenic misassemblies because intergenic 
misassemblies are not found (Fig. 4B). FLAIR has the lowest misassembly rates in all samples 
and it is tied with RNA-Bloom2 for having zero misassembly rates in the ONT dRNA and 
PacBio CCS samples. StringTie2, RNA-Bloom2, and RATTLE have the highest misassembly 
rates in the ONT dRNA (10.1%), ONT cDNA (9.0%), and PacBio CCS (12.0%) samples, 
respectively. The high misassembly rates in RNA-Bloom2, RATTLE, and StringTie2 for the 
ONT cDNA sample is likely a result of the low N50 read length. 
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Fig. 4. Assembly quality evaluation of spike-in control datasets. 
(A) Recall and (B) misassembly rates were evaluated for each assembly method on spike-in 
control data generated from three sequencing technologies: ONT direct RNA, ONT cDNA, and 
PacBio CCS. The spike-in control data were extracted from a mouse dataset from the LRGASP 
Consortium. 
 
Reference-free assembly of a Sitka spruce transcriptome 
 
The Sitka spruce (Picea sitchensis) is a large, evergreen, and long-living conifer species native to 
the Pacific Northwest in North America. Although a 20 Gbp draft genome assembly is publicly 
available26, its scaffold N50 length is 56.8 kbp, which reflects the draft stage of this short-read 
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genome assembly. In particular, the Sitka spruce’s alternative splicing pattern has not been fully 
investigated. Since conifers are known for their long introns27,28, the fragmented draft genome 
would highly limit the effectiveness of reference-based transcriptome assembly methods. Thus, it 
is a valuable use case to illustrate the utility of reference-free transcriptome assembly methods. 
Using RNA-Bloom2 and RATTLE, we assembled RNA-seq data from mixed tissue (young 
needle, bark, xylem, and mature needle) cDNA sampled from a Sitka spruce Q903 spruce 
weevil-susceptible individual, originated from Haida Gwaii, British Columbia, Canada (53.917, -
132.083). The cDNA sample was sequenced on a ONT MinION device (R9.4 flow cell) and the 
reads are basecalled with Guppy (See Methods and Supplementary Method 7). A total of 
1,323,043 ONT reads with N50 read length of 1,543 nt remained after adapter-trimming with 
Porechop30. We also performed an additional RNA-Bloom2 assembly with hybrid error 
correction using Illumina paired-end RNA-seq data from a previous study29. 
 
First, we measured the completeness of single-copy orthologs with BUSCO31 for the adapter-
trimmed ONT reads, the two RNA-Bloom2 assemblies, and the RATTLE assembly 
(Supplementary Method 7). BUSCO provides a quantitative assessment of expected gene 
content for each set of transcript sequences, and the results are summarized in Supplementary 
Table 8. The RNA-Bloom2 assembly with hybrid error correction has the highest percentage of 
complete BUSCO and the lowest percentages of fragmented and missing BUSCO. Specifically, 
the complete BUSCO has improved from 73.4% in the adapter-trimmed reads to 87.6% in the 
RNA-Bloom2 assembly, whereas the percentages of fragmented and missing BUSCO in the 
reads (7.7% and 18.9%) have reduced by half after assembly with RNA-Bloom2 (3.4% and 
9.0%). On the other hand, the RNA-Bloom2 assembly with long-read-only error correction has a 
higher percentage of complete BUSCO and lower percentages of fragmented and missing 
BUSCO than the input reads and the RATTLE assembly. Compared to the reads, the RATTLE 
assembly has a lower percentage of complete BUSCO and higher percentages fragmented and 
missing BUSCO. 
 
We have selected the RNA-Bloom2 assembly with hybrid error correction for further analyses. 
This transcriptome assembly has a total of 68,514 transcripts, where 98.95% of adapter-trimmed 
reads were aligned to the transcriptome assembly with minimap232 (Supplementary Method 3). 
We also aligned the assembled transcripts against the draft genome with minimap2 
(Supplementary Table 9). A total of 66,866 (97.59%) assembled transcripts were aligned to the 
draft genome. Of these aligned transcripts, 21,423 (32.04%) transcripts have at least one split-
alignments. Since split-alignments on a high-quality genomic reference typically indicate 
incorrectly assembled transcripts, we compared these split-alignments of assembled transcripts to 
STAR33 alignments of the Illumina paired-end RNA-seq data against the draft genome. We 
found that 13,376 (62.44%) transcripts with split-alignments contain at least one split supported 
by at least one STAR alignment (Supplementary Method 7). This suggests that these transcripts 
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were correctly assembled and the majority of split-alignments is likely a result of fragmented 
genic regions in the draft genome. 
 
To understand the gene structure of transcripts contained in the genomic scaffolds, we supplied 
the RNA-Bloom2 assembly with hybrid error correction as full-length RNA sequences to 
PASA34 to create a transcript structure annotation based on the draft genome. It is important to 
note that this annotation produced by PASA is only a partial representation of the Sitka spruce 
transcriptome due to fragmented genic regions. PASA generated an annotation consisting of 
15,222 genes, 18,991 transcripts, 58,049 unique exons, 37,090 unique introns, and 19,079 
poly(A) tails (Fig. 5A). There are more poly(A) tails than transcripts because PASA collapses 
transcripts with alternative polyadenylation. Overall, 95.7% of splice junctions from the PASA 
annotation overlaps with splice junctions in the Illumina paired-end RNA-seq data reported by 
STAR. We also tallied the frequencies of unique exons, introns, and transcripts per gene (Fig. 
5B). On average, each gene has 3.8 exons, 2.4 introns, 1.2 transcripts. 59.12% genes contain 2 or 
more exons, and 16.1% genes contain at least 2 expressed transcripts. A maximum of 55 exons, 
53 introns, 13 transcripts are observed per gene. 
 
We calculated the length distributions of exons, introns, transcripts, genes, and poly(A) tails 
based on the output files from PASA (Fig. 5C). Exon lengths range from 10 to 18,115 nt with a 
primary peak at 116 nt and a slightly shorter secondary peak at 518 nt. Intron lengths range from 
21 to 206,268 nt with a primary peak at 113 nt and a much shorter secondary peak at 25,474 nt. 
10.3% of introns are longer than 10,000 bp, which is in congruence with the long intron 
characteristic of conifers. Likely as a result of long introns, gene lengths range from 115 to 
364,125 nt with a primary peak at 1,865 nt and a secondary peak at 45,120 nt. Transcript lengths 
range from 115 to 18,115 nt with a peak at 1,863 nt, which is nearly identical to the peak gene 
length. Poly(A) tail length ranges between 10 to 104 nt long with a primary peak at 21 nt and a 
shorter secondary peak at 50 nt. The bimodal poly(A) tail length distribution is also observed in 
Arabidopsis seeding transcriptomes35. 
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Fig. 5. Distributions of feature lengths and feature counts per gene for the Sitka spruce 
transcriptome. 
(A) Total counts of exons, introns, transcripts, gene, and poly(A) tails. (B) The frequency of per-
gene counts of exons, introns, and transcripts. The vertical “Frequency” axis is presented in 
logarithmic scale. (C) The length distributions of exons, introns, transcripts, genes, and poly(A) 
tails. The horizontal “Length” axis is presented in logarithmic scale. The vertical axis is scaled to 
the maximum value for each feature. The minimum and maximum values are indicated at both 
tails of the distributions. Peak values on the distributions are superimposed on the vertical dotted 
lines.  
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We also investigated alternative splicing events in the assembled transcripts. PASA reports nine 
types of alternative splicing events (Fig. 6): spliced intron, retained intron, alternate acceptor, 
alternate donor, alternate exon, retain exon, skipped exon, starts in intron, and ends in intron. 
Spliced intron is the most common event (27.5%), followed by retained intron (24.3%). Retained 
intron and spliced intron are the most frequently co-occurring event types. Transcripts involving 
3 or more event types are detected but are much rarer. 
 

 
Fig. 6. Alternative splicing events in the Sitka spruce transcriptome. 
Nine types of alternative splicing events are presented as they are defined in PASA and depicted 
by connected grey and orange rectangles in the top-left diagram. The exons, introns, or splice-
junctions involved in each event type are highlighted in orange. The pie chart presents the 
relative proportions of all event types in the PASA annotation. The horizontal bar chart in the 
UpSet plot shows the total number of transcripts containing each event type. The vertical bar 
chart in the UpSet plot shows the number of transcripts containing single event types and co-
occurring event types, which are indicated by single dots and connected dots in the matrix, 
respectively. 
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Finally, we applied the EnTAP pipeline36 to produce protein sequence translation and functional 
annotation for the RNA-Bloom2 assembly (Supplementary Method 7). Using the functional 
annotation and similarity search to known spruce protein sequences, we have identified the 
following putative peptides: 15 terpene synthases (TPS), including 10 monoterpene synthases 
and seven diterpene synthases, 100 cytochrome P450 (CYP) peptides from 55 different 
subfamilies, and 17 NAM/ATAF/CUC (NAC) transcription factors from six different 
subfamilies. TPS, CYP, and NAC are gene families known for their contribution to constitutive 
and induced resistance to damage by the spruce weevils29,37,38. 
 
 
DISCUSSION 
 
The rapid improvements to long-read sequencing technologies present a significant challenge to 
reference-free transcriptome assembly methods. As the throughput of long-read sequencers 
continues to increase, larger sequencing datasets are produced and thereby increasing the 
sequence assembly and analysis computational challenge. RNA-Bloom2 addresses this by digital 
normalization with strobemers. In our benchmarking with simulated data and spike-in control 
data, we showed that the computational performance and the assembly quality of RNA-Bloom2 
significantly surpasses those of RATTLE, a previous reference-free transcriptome assembler that 
relies on clustering of long reads. In particular, RATTLE has total wall-clock runtimes over nine 
times that of RNA-Bloom2. Therefore, digital normalization with strobemers, within the RNA-
Bloom2 assembly workflow, was a successful application of the concept in assembly of long-
read sequencing data, and it was a superior alternative to clustering-based reference-free 
assembly. 
 
We note that reference-based assembly methods tend to run much faster than reference-free 
methods, but their overall assembly quality varies depending on the metric used. In simulated 
data, StringTie2 has better recall than reference-free methods, but it has higher false discovery 
rates and misassembly rates. FLAIR, on the other hand, has the lowest misassembly rates, 
possibly due to guidance from the reference annotation. It is important to note that StringTie2 
does not strictly require a reference annotation in addition to the reference genome, but FLAIR 
requires both reference annotation and reference genome. Therefore, the application of FLAIR is 
mainly limited to discovery of novel isoforms while StringTie2 only requires a good quality 
reference genome. 
 
As good quality reference annotations are not always readily available, transcriptome assembly 
methods must manage the lack of known transcription start and end sites, which are crucial in 
distinguishing the orientation of transcripts and discerning transcripts from antisense overlapping 
genes. Unlike direct RNA-sequencing, this is a major challenge for cDNA sequencing data, 
where the strand of reads cannot always be safely assumed. RNA-Bloom2 overcomes this 
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problem by identifying potential poly(A) tail-containing reads. In addition, RNA-Bloom2 filters 
edges in its overlap graph based on read counts of each edge and its incident nodes, thus 
removing false overlaps between sequences. The positive effects of these solutions in RNA-
Bloom2 are supported by the relatively low false discovery rates and misassembly rates of RNA-
Bloom2 in our benchmarking experiments. 
 
In our analyses of the Sitka spruce transcriptome, we illustrated that RNA-Bloom2 assemblies 
have higher BUSCO completeness than input reads and a RATTLE assembly. We note that a 
portion of our assembled transcripts have split-alignments across genome scaffolds, but the 
majority of them are supported by paired-end short reads. We expect that a transcript-informed 
targeted gene reconstruction39, using a long-read reference-free transcriptome assembly by RNA-
Bloom2, may significantly improve discovery of new splice isoforms and the annotation of 
genes. 
 
In summary, we illustrated the performance of RNA-Bloom2 with respect to state-of-the-art 
long-read transcriptome assembly methods, highlighting the strengths and weaknesses of each. 
We showed that RNA-Bloom2 is suitable for both ONT and PacBio sequencing technologies and 
it is competitive to reference-based methods. We expect RNA-Bloom2 to be scalable to 
increasing volumes of long-read data, and we anticipate RNA-Bloom2 will facilitate the gene 
annotation and transcriptome analyses of many species to be investigated. 
 
 
METHODS 
 
Alignment-free error correction 
 
We have modified the error correction routine for short reads in RNA-Bloom to support error 
correction in long reads. First, k-mers and their multiplicities in the input reads are stored in a 
Bloom filter de Bruijn graph. Reads are then split into fixed-length tiles (default: 500 nt) that are 
evaluated independently of each other. To account for varying transcript expression levels, a 
multiplicity threshold is dynamically determined (Supplementary Fig. 3) within each tile to 
identify “weak” and “solid” k-mers, which have multiplicities lower and higher than or equal to 
the threshold, respectively. Weak k-mers represent potentially erroneous regions in the read 
while solid k-mers represent error-free regions in the read. To avoid introducing incorrect edits to 
the read, weak k-mers are replaced with an alternative path of solid k-mers in the de Bruijn graph 
only if this path shares a high sequence identity (default: 70%) as the target region spanned by 
the weak k-mers. The tiling nature of this routine ensures that more refined multiplicity 
thresholds are set for sub-regions in the read. The error correction process for each read may be 
repeated for additional iterations if at least one tile were modified in the previous iteration. In 
each successive iteration, the tiling positions are shifted by half a tile length to allow errors at tile 
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boundaries in the previous iteration to be corrected. After error correction is completed for the 
read, k-mers from all neighboring tiles are joined together and are assembled into an edited read 
sequence. 
 
Digital normalization with strobemers 
 
Digital normalization is intended to reduce the overall read depth to a much lower target depth 
(default: 3) by identifying the minimal longest reads set (MLRS) supporting the target depth. 
Digital normalization reduces the computational resource requirements of subsequent stages and 
it is most effective in reducing the number of reads for high-expressed transcripts, which are the 
main culprit for long runtimes and high memory usage in read-to-read alignments. The read 
depths represented by the MLRS are approximated by multiplicities of strobemers, which is an 
error-tolerant alternative to k-mers for sequence comparison. Three variants of strobemers have 
been introduced in previous work19: minstrobes, randstrobes, and hybridstrobes. In RNA-
Bloom2, we used randstrobes of order three because it was shown to perform favorably on 
transcriptome data. Strobemer multiplicities are tracked by a counting Bloom filter, which is 
populated as reads are added to the MLRS. 
 
Digital normalization begins by first sorting the input reads by their length in descending order. 
Only one read is evaluated at a time to maintain proper tracking of read depth in the MLRS. A 
read is designated as represented by the MLRS if nearly the entire read (default threshold of 50 
nt from the read extremities) contains overlapping strobemers with multiplicities at or above the 
target depth (Supplementary Fig. 4). A read is designated as not represented by the MLRS if it 
has a region not containing any strobemers with multiplicities at or above the target depth. Each 
non-represented read is added to the MLRS and its strobemer multiplicities (that are lower than 
the target depth) would be incremented by one before the next read is evaluated. Represented 
reads are not included in the MLRS and their strobemer multiplicities are not incremented. 
 
Read trimming and splitting 
 
RNA-Bloom2 relies on minimap2 for overlapping reads against each other to identify 
sufficiently covered regions of each read. By default, the minimum required read depth for long-
read assembly is set to three in RNA-Bloom2; a sufficiently covered region of a read must 
overlap with at least two other reads. Insufficiently covered head and tail regions of the reads are 
trimmed. Reads containing insufficiently covered middle region(s) are potentially chimera 
artifacts and thus are split into shorter sub-sequences (Supplementary Fig. 5). Completely 
contained reads are removed. 
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Unitig assembly 
 
Trimmed reads are overlapped against each other with minimap2 to construct an overlap graph 
where the vertices and edges are reads and their overlaps, respectively. As was done in the read 
trimming stage, contained reads are removed. If the input data is strand-specific (i.e. ONT 
dRNA), only alignments on the same strand are retained and the overlap graph would only 
contain vertices for the forward strand. If the input data is not strand-specific (i.e. ONT cDNA), 
then vertices for both strands are created in the overlap graph and the overlap graph is pruned 
based on whether each read contains poly(A) tail or poly(T) head (Supplementary Fig. 6). The 
overlap graph is simplified by removing transitive edges. Unitigs are derived by assembling 
reads along unambiguous paths in the overlap graph. 
 
Unitig polishing 
 
Although alignment-free error correction has been performed on the reads that were used to 
generate unitigs, there are still residual base errors that can be polished using an alignment-based 
approach. Output reads from the error correction stage are aligned to the unitigs with minimap2. 
To avoid unintentional removal of short alternatively spliced exons during polishing, only 
alignments with large indels (default: > 50 nt) or low sequence identity (default: < 70%) are 
removed. The filtered alignments are passed to Racon40 for polishing the unitigs. 
 
Transcript assembly 
 
An overlap graph of polished unitigs is constructed based on minimap2 overlaps between 
polished unitigs. Reusing the read alignments from the unitig polishing stage, the overlap graph 
is annotated with: (i) length-normalized read counts for the unitigs, and (ii) the number of reads 
spanning across the unitig overlaps. 
 
If the input data is not strand-specific, then the overlap graph is pruned as it was done in unitig 
assembly and the read alignments are also examined for poly-A tail reads that are aligned to the 
unitigs. The unitigs are reoriented based on the poly-A tail read alignment orientations and the 
overlap graph is filtered accordingly (Supplementary Fig. 6). This procedure is crucial in 
discerning transcripts originating from overlapping genes on opposite strands of the 
chromosome. In addition, edges in the overlap graph are filtered by applying a binomial test on 
the number of reads supporting the edge with respect to the normalized read counts of the 
incident vertices. 
 
After all filtering on the overlap graph has been performed, vertices are sorted by their read 
counts in descending order. Each vertex serves as the seed for a bidirectional greedy extension 
path with each extension choosing the neighbor vertex with the highest read count. Greedy 
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extension terminates upon reaching either a dead-end, a cycle, or a vertex with a read count of 
zero. The reads along this path are assembled into a transcript. All vertices along this path would 
be flagged from seeding new extension paths, and their read counts are decremented by the 
minimum read count in the path. Transcript assembly is complete when all vertices have been 
visited. 
 
Benchmark dataset simulation 
 
We used Trans-NanoSim v3.1.0 to simulate ONT cDNA and dRNA datasets based on the mouse 
ENSEMBL annotation for GRCm39. Mouse samples ENCFF232YSU and ENCFF349BIN from 
the LRGASP Consortium were selected for training Trans-NanoSim sequencing profiles for 
cDNA and dRNA data, respectively. Sequencing adapters were trimmed from raw reads using 
Pychopper v2.5.022 (Supplementary Method 1). Since no adapters were detected in the dRNA 
data, the raw reads were supplied to Trans-NanoSim for training the dRNA profile. On the 
contrary, adapters were found in the cDNA data; the adapter-trimmed “full-length” and 
“rescued” reads, as defined by Pychopper, were supplied to Trans-NanoSim for training the 
cDNA profile. We discarded all simulated reads defined as “unaligned” by Trans-NanoSim and 
we subsample the “aligned” simulated reads to 2, 10, 18 million reads using seqtk41. All software 
command parameters are documented in Supplementary Method 4. 
 
Spike-in control reads extraction 
 
Using minimap2 2.24-r1122, reads from three replicates for each platform were aligned against 
the hybrid reference genome of mouse and spike-ins provided by LRGASP. Only reads that are 
aligned uniquely to ERCC and SIRV sequences are kept (Supplementary Method 5). 
 
Transcriptome assembly benchmarking 
 
The command parameters for each assembler are documented in Supplementary Method 6. For 
the simulated datasets, transcriptome assemblies are aligned against the mouse ENSEMBL 
reference transcriptome with minimap2. The output alignment PAF files are processed with our 
in-house Python script `tns_eval.py`, which is available at https://github.com/bcgsc/rnaseq_utils. 
Only alignment segments of at least 150 nt in length, at least 90% sequence identity, and at most 
indels of 70-nt in length are considered. The ground truth transcript set is determined using the 
transcript identifiers in the simulated read names. Since not all known transcripts were simulated, 
the truth set is a subset of the ENSEMBL annotation. Any transcripts that are not in the truth set 
are designated as false-positives. If an assembled sequence aligns equally well to both a truth set 
transcript and a false-positive transcript, the assembled sequence would be assigned to the truth 
set instead of the false-positive. Any assembled sequences that have split-alignments to more 
than one transcript are designated as misassemblies. 
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For the spike-in datasets, transcriptome assemblies are aligned against the ERCC and SIRV 
sequences with minimap2. Since the ground truth transcript set is identical to the spike-in 
annotated transcripts, there are no false-positives. However, misassemblies are still detected as it 
was done for the simulated datasets. 
 
Sitka spruce transcriptome analysis 
 
All software command parameters are documented in Supplementary Method 7. The ONT 
cDNA reads were basecalled with Guppy v5.0.15. Since there are non-standard adapter and 
primer sequences, we used Porechop instead of Pychopper. We assembled the adapter-trimmed 
reads with RNA-Bloom2 v2.0.0 and short-read RNA-seq samples from previous work29 were 
also included only for error correction of the ONT reads. The transcriptome completeness was 
benchmarked with BUSCO v5.3.231 and the embryophyte core gene set (odb10). The resulting 
RNA-Bloom2 assembly was supplied to PASA v2.5.234 for gene structure annotation, using 
minimap2 for transcriptome alignments against the draft genome. The figure for alternative 
splicing was generated with UpSetR42. The transcriptome assembly was annotated with EnTAP 
v0.10.8-beta36 using TransDecoder v5.3.043 for protein sequence translation. Functional 
annotation was assigned based on Swiss-prot plant proteins44, UniRef90 gene clusters45, 
embryophyte orthologs from OrthoDB1046 and high-quality proteins derived from NCBI RefSeq 
9947. We performed the annotation of TPS, CYP and NAC through a BLASTP search against 
target spruce protein sequences reported previously29,37,38, with minimum match of 95% identity 
and 90% query coverage. 
 
 
SUPPLEMENTARY DATA 
 
Simulated data used for benchmarking experiments is available at 
https://datadryad.org/stash/share/wtllL942eRij03GuEKvKTwEV6Kxl7Ia4Eus8lTu5TEM. 
 
 
DATA AND SOFTWARE AVAILABILITY 
 
The rebasecalled Nanopore sequencing data for the Sitka spruce cDNA sample has been 
deposited in the Sequence Read Archive (SRA) with run accession SRR19510936. 
 
RNA-Bloom2 is implemented in Java and it is publicly available under GPLv3 license on 
GitHub at https://github.com/bcgsc/RNA-Bloom. The scripts we wrote to analyze our results are 
also publicly available on GitHub at https://github.com/bcgsc/rnaseq_utils. 
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