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Abstract

Inbred mouse strains reveal the molecular basis of mammalian traits and diseases, particularly
recessive ones. We utilized mouse community curated resources to set up an automated screen
to discover novel testable gene function hypotheses. Using 11,832 community contributed
strain-differentiating experiments and trait presence/absence scoring, we searched for all
experiments where strains can be split by their phenotypic values (e.g., high vs. low
responders). Then, using 48 sequenced strains, we found one or more candidate gene for each
experiment where homozygous high-impact variants (such as stopgain, frameshifts) segregate
strains into these same binary grouping. Our approach rediscovered 212 known gene-
phenotype relationships, almost always highlighting potentially novel causal variants, as well as
thousands of gene function hypotheses. To help find the most exciting hypotheses, we
improved the state of the art in machine learning driven literature-based discovery (LBD).
Reading on our top 3 ranked candidate genes per experiment reveals 80% of rediscovered
relationships, compared to 5% reading at random. We proposed 1,842 novel gene-phenotype

testable hypotheses using our approach. We built a web portal at aimhigh.stanford.edu to

allow researchers to view all our testable hypotheses in detail. Our open-source code can be

rerun as more sequenced strains and phenotyping experiments become available.
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Introduction

Mouse is one of the most widely used model organisms in genetics. Countless biomedical
discoveries have been made initially with the mouse model®. Inbred laboratory mouse strains
are populations of mice that have reached intra-strain genetic homogeneity from at least 20
generations of sibling mating®3. Through generations of inbreeding, each strain has developed
unique variants and phenotypes. These carefully maintained populations of mice are expected
to be homozygous in most genetic loci, helping expose many recessive inherited traits.

The mouse community has been accumulating a wide range of functional information
about mouse genes gained from mouse model experiments. Mouse Genome Database* (MGD)
has been at the forefront of curating and organizing this data. They developed Mammalian
Phenotype (MP) ontology®, which is a structured dictionary of terms that represent various
phenotypes observed in mice. Having a controlled set of terms allows for easy and consistent
comparisons across annotations.

Inbred mouse strains are often phenotypically and genotypically diverse®?, and many
experiments have been performed on these strains to measure their phenotypic diversity.
Mouse Phenome Database® (MPD) has curated and publicly released the results of thousands of
such experiments deposited from various laboratories covering many different inbred strains.
In addition, MGD has annotated naturally occurring phenotypes in multiple strains. These
phenotypes vary widely, ranging from quantitative phenotypes such as time spent in a maze to
categorical phenotypes such as coat color.

Here, we analyzed whole genome sequencing data of 48 mouse inbred strains in search
of high-impact homozygous variants that segregate concordantly to each phenotypic measure.
We then used annotations of causative genes established through knockout experiments to
find previously known proof of principle gene-phenotype relationships in our set. To help
propose the most exciting hypotheses from a set of novel candidates, we built a literature-
based discovery (LBD)>'° classifier trained to predict future single-gene mouse knockout results
from clues in the current literature. Our entire pipeline is outlined in Figure 1. Finally, we offer

an easy-to-use web interface to display full details of our hypotheses at: aimhigh.stanford.edu.
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Materials and Methods

Mouse strains

We used whole genome data of 48 inbred mouse strains in our analysis: C57BL/6J,
129P2/0OlaHsd, 129S1/SvimlJ, 129S5/SvEvBrd, AKR/J, A/J, B10.D2-H2<d>/n2SnJ, BPL/1J, BPN/3J,
BTBR T<+> Itpr3<tf>/J, BUB/BnJ, BALB/cJ, C3H/Hel, C57BL/10J, C57BL/6NJ, C57BR/cdJ, C57L/J,
C58/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HLJ, LG/J, LP/J, MA/MyJ, NOD/ShiLtJ,
NON/ShilLt), NOR/LtJ, NU/J, NZB/BINJ, NZO/HILt), NZW/LacJ, P/J, PL/J, RF/J, RHJ/Lel, RIIIS/J,
SEA/GnJ, SIL/J, SM/J, ST/bJ, SWR/J, TALLYHO/IngJ, RBF/DnJ, MRL/MpJ (Supplementary Table 1).
Our reference strain is C57BL/6J (the “Black 6” mouse) and our reference genome assembly for

all variant calls is GRCm38/mm10.
Phenotype data

Inbred mouse phenotype data

Mouse Phenome Database (MPD)2 is a repository of experimental phenotypic data measured
on various mouse inbred strains in different laboratories. We downloaded the
animaldatapoints.csv.gz, strainmeans.csv.gz, and ontology_mappings.csv files on March 28,

2022 from https://phenome.jax.org/downloads. We kept all experiments e when at least 6 of

our 48 sequenced strains were phenotyped, and the reported trait is relevant for genetic
dissection (e.g., we removed experiment MPD:36680 reporting “age of mice at testing”).

In addition, 14 out of our 48 sequenced strains had at least 1 strain-specific, naturally
occurring, spontaneous phenotype annotated in MGD* (e.g., A/J mice spontaneously develop
cochlear hair cell degeneration). For each phenotype, we labeled strains annotated with the
phenotype 1 and strains not annotated with the phenotype 0. These phenotypes were added to
experiments (Figure 1).

Phenotype separation boundaries
For each experiment e, we sought a phenotype separation boundary b that separates strains
into two groups based on their phenotypic values. All strains used in the study are considered

for the purpose of binarization, including strains that we do not have genomes for. Most MPD
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experiments reported biological replicate values, but some reported only the average and the
standard deviation across replicates. We handle these two cases separately:

Experiments with replicate values: To remove any outliers, we discarded the top and
bottom 25 percentile biological replicates for strains with more than 5 replicates. The strains
were sorted by the average of the remaining biological replicates. Any boundary grouping that
sorted strains into “left” vs “right” was recorded as separable if the following conditions were
met: (1) the maximum replicate value in the “left” group is smaller than the minimum replicate
value in the “right” group (2) the difference between the two values is greater than twice the
average standard deviation of the two strains! (Supplementary Figure 1).

Experiments without replicate values: The strains were sorted by the reported average
of the biological replicates. For every strain in the sorted order, we recorded a phenotype
separation boundary between the strain and the next adjacent strain if: (1) the strain’s average
value plus its standard deviation was less than the next strain’s average value minus its
standard deviation; (2) the difference between these two values is greater than twice the
average standard deviation of the two strains.

This resulted in each experiment having zero, one, or multiple possible phenotype
separation boundaries. Each boundary was considered independently in candidate gene

matching.
Genotype data

Whole genome variant calling

The raw reads of 48 strains were trimmed, filtered, and aligned to the reference genome
(C57BL/6J, GRCm38/mm10) using Burrows-Wheeler Aligner (BWA)'? with default settings. Then
the reads were realigned and recalibrated around indels using GATK(v3.6) 13 with default
parameters. Single nucleotide polymorphisms (SNPs) and insertion or deletions (indels)
discovery were performed using BCFtools (v1.9)* command: “bcftools mpileup -a
DP,AD,ADF,ADR,SP,INFO/AD -E -F0.25 -Q0 -p -m3 -d500”. Joint calling was performed on 47
strains (against the reference C57BL/6J strain) using: “bcftools call -mv -f GQ,GP”. Indels were
then left-aligned and normalized using: “bcftools norm -d none -s -m+indels”. Low quality

variants were filtered out using: “bcftools view -i ‘MIN(FMT/DP)>3 & MIN(FMT/GQ)>20"" and
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“bcftools filter -g3 -G10”.

Strain-specific variant filtering

We used Phred quality scores® to measure variant call quality per strain. We required that the
most confident call be at least 100 times more likely than the second most confident call (i.e.,
Phred score difference of at least 20). We marked the variant call for the strain as inconclusive
if the gap was smaller than 20. While inbred mice are bred to homogenize as many of their

alleles as possible, we kept any high-quality heterozygous calls as heterozygous.

Comparing and supplementing our sequencing data with a published dataset

Mouse Genome Project (MGP)'® publishes various mouse genetic variations including SNPs and
Indels from 37 of our 48 inbred strains. Using their FTP site, we downloaded their SNP and
Indels VCF on March 04, 2021 (ftp://ftp-mouse.sanger.ac.uk/REL-2004-v7-
SNPs_Indels/mgp_REL2005_snps_indels.vcf.gz). All variants included had already gone through
quality filtering. We applied the same Phred quality score filtering to find only the conclusive
calls for each strain. After comparing the two sets, we replaced our inconclusive calls with

MGP’s conclusive calls.

Annotating variants with Ensembl VEP

We annotated each variant using Ensembl Variant Effect Predictor (VEP)’. VEP tags each input
variant with expected consequences of all relevant transcripts. We downloaded the newest
version 102.0 for mm10 on February 24, 2021. To remove any ambiguous calls due to alignment
orientation, we ran VEP using both left and right alignments on our mouse strain variant call
format (VCF) files. We performed left alignment using GATK’s LeftAlignAndTrimVariants tool
and the mm10 Fasta sequence file downloaded on March 01, 2021 from:

https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromFa.tar.gz. GATK’s left

alignment tool requires index and dictionary files for these Fasta files. We ran samtools faidx
command to make the index files. We downloaded picard.jar version 2.25.4 from

https://broadinstitute.github.io/picard/ on March 06, 2021 and ran the following command to

make the dictionary files:

java -jar picard.jar CreateSequenceDictionary R=chr*.fa O=chr*.dict
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Then, using the sequence Fasta files with their index and dictionary files and our VCF files as
inputs, we ran the following command to make left aligned VCF files:

gatk LeftAlignAndTrimVariants -R chr*.fa -V chr*.vcf -o chr*_left_aligned.vcf
We used the VEP Docker image to annotate our VCFs. We ran VEP once with our GATK left
aligned VCF for left aligned annotations and once with our original VCF with VEP’s —

shift_genomic flag set to True for right aligned annotations.

Gene set
We built a gene set from GENCODE VM32 known genes downloaded from the UCSC Table
Browser!® on March 01, 2021. We removed all transcripts that do not have a coding sequence

that starts with a start codon (ATG) and ends with a stop codon (TAA, TAG, and TGA).

Genes with high-impact variants

We kept a variant if and only if it was tagged with a high-impact consequence to any transcript
in our gene set by VEP using both left and right alignments (Supplementary Figure 2). High-
impact consequences defined in the VEP documentation are: transcript ablation, splice
acceptor variant, splice donor variant, stop gained, frameshift variant, stop lost, start lost, and
transcript amplification. VEP annotates each variant independently. To account for adjacent
SNPs affecting the same codon, we performed a post processing step to check if the final amino
acid resulting from the effect of all SNPs would indeed result in a high-impact change. Finally,
we removed any high-impact variants in predicted genes, RIKEN genes, Olfactory and

Vomeronasal genes. We represented all genes using NCBI gene IDs.

Building candidate sets
For each separable boundary b derived from the phenotypic experiment e, we searched for
concordant genotype separations for each highly-impacted genes. We merged the genotypes
per strain per gene g across transcripts and variants (Supplementary Figure 3):
homozygous reference strain: has no homozygous or heterozygous high-impact
alternate allele.
homozygous alternate strain: has at least 1 homozygous high-impact alternate allele.
heterozygous alternate strain: has at least 1 heterozygous high-impact alternate allele

and no homozygous high-impact alternate allele.
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inconclusive strain: has at least 1 inconclusive gap or low-quality allele that may be high-
impact and has no homozygous or heterozygous high-impact alternate allele.

unsequenced strain: not one of our 48 sequenced strains.

A candidate gene g is a match for experiment e with boundary b, if the following
conditions are met: (1) all homozygous alternate strains and all homozygous reference strains
are separated by b, (2) both sides of b have at least one homozygous strain, (3) there are at
least 6 total homozygous strains between the two groups, and (4) all heterozygous alternate
strains are on one side of b. Any unsequenced strains or inconclusive strains can appear on
either side of b (Supplementary Figure 3). All matching experiment e, boundary b, gene g, (e, b,

g) triplets form our trait-specific candidate set.

Validating against known causative gene-phenotype relationships

We searched for known gene-phenotype relationships in our candidate set as proof of principle
to our approach. We used Mammalian Phenotype (MP)>, an ontology of phenotypes observed
in mice, to find matches.

For each experiment e, we obtained one or more MP terms ®,, denoting the phenotype
measured in e from the experiment source (MPD or MGD). For each gene g, we obtained a set
of zero or more MP terms @, denoting the phenotype annotations supported by single gene
knockouts from MGD. @ for all available genes were downloaded on April 26, 2021 through

http://www.informatics.jax.org/downloads/reports/MGI PhenoGenoMP.rpt.

For each trait-specific candidate (e, b, g) we generated, we first asked whether
|P, N Dy| > 0, which implies a known causal relation between e and g. All such matches are
listed in Table 1, and they represent cases where our candidate gene has already been shown
to underlie the measured trait in experiment e.

MP terms are organized in a hierarchical structure where a lower, more specific term
(i.e., descendant terms, D(®)) is implied by its higher, more general term. Since the
experiments measure a spectrum of phenotypes across different strains, they are often tagged
with a more general term than the gene. As an example, the experiment MPD:22970 is tagged
with “abnormal mean corpuscular volume (MP:0000226)”, whereas its candidate gene Foxp3 is

tagged with the more specific descendant term “increased mean corpuscular volume


http://www.informatics.jax.org/downloads/reports/MGI_PhenoGenoMP.rpt
https://doi.org/10.1101/2022.08.07.503105
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.07.503105; this version posted August 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(MP:0002590)”. To benefit from this hierarchical structure, we also listed additional positive

controls |®, N D(P,4)| > 0in Table 2.
Literature-based discovery (LBD) classifier

Motivation

Encouragingly, over 200 gene-phenotype relationships from our trait-specific candidate sets
were previously known (Figure 1). This indicates our method is effective in discovering true
relationships. At the same time, thousands of our gene-phenotype hypotheses currently have
no reported causative relationship, suggesting many exciting hypotheses yet to be discovered.

Some of our experiments yielded very few novel candidate genes. Table 3 holds a
sample of experiments with fewer than 10 candidate genes.

The remaining experiments each have as many as 103 candidate genes. To build a small
set with compelling evidence for further investigation, a researcher would need to carefully
read literature on all candidate genes we matched in each experimental context. To mimic the
process, we devised a supervised Machine Learning (ML) approach to predict which gene-
phenotype relationships would become true in a few years based on existing literature
evidence. Briefly, we trained a ML classifier to learn patterns from literature up to year Ty to be
predictive of gene-phenotype relationships that were discovered later at some time T:. We
used the trained classifier to prioritize the most promising novel candidates for each mouse

inbred strain experiment e (Supplementary Figure 4A). Exciting examples are shown in Table 4.

MeSH-publication relationships

We used PubMed, a database of over 33 million peer-reviewed biomedical publications, as our
literature source. They key topics mentioned in PubMed papers are manually indexed using the
Medical Subject Heading (MeSH) ontology'®?°. These topics include functional annotations but
not gene mentions. Similar to MP, MeSH is also organized in a hierarchical structure with
descendant terms are implied in the ancestor terms. For example, “Microcephaly (D008831)” is
a descendant of “Disease (D004194)”. MeSH term annotations per paper (in PubMed ID, or
PMID) were downloaded from https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/ on April 12,
2022.
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Gene-publication relationships

We downloaded mentions of genes in each PubMed abstract from Pubtator Central?!. Pubtator
Central®! is a natural language processing (NLP) tool that tags PubMed papers with recognized
entities such as genes. The mappings between genes (in NCBI ID) and abstracts (in PMID) were

downloaded using https://www.ncbi.nlm.nih.gov/research/pubtator-api/ on April 12, 2022.

Publication graph
To encode relatedness, we built a publication graph where a node is either a MeSH term or a
gene. We extended an undirected edge between any two nodes (MeSH-gene, gene-gene, or
MeSH-MeSH) if there is at least one paper that mentions them together (Supplementary Figure
4B).
Setting up the learning task
Our supervised learning task requires a set of labeled examples (positive or negative) and a
learning algorithm. Each example is represented by a set of scalar values (i.e., features).
Single-gene knockout positive set
We trained our ML classifier on positive examples derived from papers that describe the
phenotypic impact discovered in single-gene mouse knockout (KO) experiments. A single-gene
mouse knockout paper is tagged as a knockout of exactly one gene in MGD and tagged with a
MeSH term, “Mice, Knockout (D018345)” in PubMed.

We downloaded these papers from MGD’s MouseMine API

(https://www.mousemine.org/mousemine/begin.do) on April 12, 2022. Each single-gene g KO

paper was tagged with one or more phenotype MeSH terms m to build a set of (g, m) pairs.
Given all the literature evidence at time Ty, we aim to predict which (g, m) pairs would be
discovered at some later time T; (Supplementary Figure 4A, C).

Building retrospective single KO train and test sets

To propose plausible (g, m) pairs for future discovery, we used the open discovery “ABC”
method?%?3. For a node A in our graph, we found nodes, C, that are linked at Tp by one or more
intermediary node B (i.e., A-B and C-B edges) to A but have no direct A-C link. All A-C links are

candidates for discovery at T;. To perform retrospective analysis, we built a time-specific

10
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publication graph using papers published up to Tp and compared it against a publication graph
at To+ 5 (Supplementary Figure 4C).

We used two publication graphs to train our model: the 2010 graph (i.e., To) and the
2015 (i.e., To+ 5) graph. We found (g, m) pairs mapped to single-gene knockout publications
published between (2010, 2015]. We discarded a (g, m) pair if any of the following was true: (1)
g and m were directly linked in the 2010 graph, (2) either g or m were not found in the 2010
graph, or (3) g and m did not share an intermediate node in the 2010 graph. The remaining
pairs are our positive examples.

We added negative examples (i.e., (g, m) pair not discovered by 2015) for each MeSH
term m that is part of at least 1 positive example. A (g, m) pair is a negative example if the
following conditions were met: (1) g is a mouse protein-coding gene from our gene set found in
the 2010 graph, (2) g shares at least 1 intermediate node with m in the 2010 graph, and (3) g
does not have a direct link to m in the 2010 and the 2015 graph.

We repeated the same operations with the 2015 graph and the 2020 graph to test our
algorithm (Supplementary Figure 4A, Figure 2A).

Open discovery resulted in thousands of negative examples for each positive example

(see results), making ranking the positive examples on top a challenging task.

Building rediscovered test set and candidate hypothesis prediction set
Because we matched genomic signatures to phenotypic separations, our actual sets of
candidate genes are orders of magnitude smaller. To assess the performance of our algorithm
on our set of novel hypotheses, we applied it to our set of rediscovered hypotheses
(Supplementary Figure 4A, Figure 2B). Then we applied the method to our novel candidates to
prioritize the most exciting hypotheses (Table 4).

Since PubMed uses MeSH terms to annotate papers, we mapped each phenotypic
experiment e to zero or more MeSH terms m that denote the phenotype measured in e.

From our rediscovered test set (Tables 1 and 2, see Figure 1), we selected a set of
experiment e and boundary b that has at least 10 candidate genes. From this set, we searched

for positive (g, m) pairs where g and m only shared intermediate nodes in 2015 but were

11
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directly linked in the 2020 graph. All non-positive (g, m) pairs from the same experiment e and
boundary b were labeled negative (Supplementary Figure 4A, Rediscovered single KO test set).

Finally, our candidate hypothesis prediction set contained novel (g, m) pairs that as of
July 2022 have no known relationship in MP or MeSH (Supplementary Figure 4A, Candidate
hypothesis prediction set).
Classifier features
We used the publication graph to provide the classifier a set of features (i.e., clues) that
represent each gene g, MeSH term m, (g, m) pairs in our sets.

We used the appropriate time-specific publication graphs to build these features. For
example, we used the 2010 graph to build features to predict relationship status in 2015.

We first define these terms for node u and v (MeSH term or gene) in our publication
graph to help explain each feature:

Neighbors of u: N(u) = set of nodes directly connected to u

Degree of u: d(u) = |N(u)|

Publications of u: p(u) = publications that mention u

Weight of an edge connecting u and v: w(u, v) = Z?(u) np)

paper score(i)
1

Paper score of i: paper score(i) = ¢

,G(i) = number of gene mentioned ini

The following features are used in our classifier:
Degree of the gene: d(g) (number of nodes directly connected to g)

Common neighbor?*: [N(g) N N(m)| (humber of nodes directly connected to g and m)

Adamic Adar?>: zﬁ(g) N N(m) m (sum over the inverse log of number of nodes

directly connected to shared neighbors of g and m)

Preferential attachment?*: d(g) * d(m) (number nodes directly connected to g times
number nodes directly connected to m)

Gene publications: Zf(g) paper score(i)

Human ortholog link: The weight of the edge between m and g’s human ortholog.
Orthologous relationships are defined by Ensembl 102, latest version with mm10, downloaded

from http://nov2020.archive.ensembl.org/biomart/martview/ on September 3, 2021. If there
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were multiple orthologs then the average value is used, and if there is no direct edge or there is

no human ortholog in the graph then we assign (-1).

N(g) N N(m) w(m,n) " w(ng)
n

BITOLA confidence?®: ), D) P

paper score(i) paper score(i)

Reverse BITOLA confidence: Zﬁ(g) nNem S p‘zg;?core o * P w.g)

paper score(i)

MeSH term’s gene neighbors: the number of genes directly mentioned with m.

Mean expression: find top 5 anatomical entities (i.e., descendant MeSH terms of
“Anatomy (D000715)” such as “Brain (D001921)”) that are most often co-mentioned with m.
Then take the average of the Adamic Adar scores between the top 5 anatomical entities and g.
Classifier model
We used a Gradient Boosting Tree Classifier?’ to assign scores to each example. The score is a
number ranging from 0 to 1, and a higher number indicates the example is more likely to be
positive. Gradient Boosting Trees is a supervised method which means it is presented with a
large number of labeled examples (i.e., training set) and it learns to distinguish the two labels
by minimizing the final entropy. It is an ensemble method that involves a series of decision
trees that are iteratively constructed to optimize the performance on hard-to-classify training
examples. In each iteration, any examples that were misclassified (a positive example classified
as negative, or vice versa) have a higher chance of being selected in the next iteration so that
the decision trees can learn to classify them correctly. We used a Gradient Boosting Tree
Classifier implementation contained in the python package sci-kit learn v0.18.1.

The Gradient Boosting Tree function F of input x in stage m (value of the output at the

stage m) is calculated using the formula below:

Fm(x) = Fm—l(x) + a)/mhm(x)

n
Y = argming > L 5 Fua (8) + @i (60)

i=1
where ymis a value that is chosen to minimize the loss function and gets multiplied to a decision
tree hm. a is a hyperparameter that represents the learning rate which controls how much each
tree contributes to the output.

Existing methods and baselines
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We compared our classifier’s performance against 8 existing methods. We used 6 non-learning-
based methods: Common neighbor (CN)?*, Adamic Adar (AA)%, Jaccard coefficient (JC)%,
BITOLA confidence (BC)?®, Gene publications (GP), and Linking Term Count with Average
Minimum Weight (LTC-AMW)?°,

We also used 2 learning-based methods: Random Forest approach described in Kastrin
et al.2* and neural LBD by Crichton et al.?2. The non-learning-based methods’ scores were
calculated for the retrospective single KO set, and the learning-based methods were trained
and tested using the same inputs as our LBD classifier.

Model evaluation
Performance is measured by how often a gene with a causative relationship to the measured
trait is ranked at or near the top.

We have a set of candidate genes per each phenotype MeSH term m in the
retrospective single KO test set and per each experiment e, MeSH term m, and boundary b in
the rediscovered test set. We reported the rank of the causative gene g within the group of
candidate (positive and negative) genes (Figure 2).

Explaining our predictions using supporting literature evidence

To facilitate follow up researcher evaluations of our highest-ranking hypotheses, we sought to
highlight each pair of phenotype-candidate gene with a curated list of papers that helps support
our predictions.

We first selected up to three most relevant intermediate nodes (MeSH term or gene)
linking the phenotype MeSH term and the hypothesis gene using the BITOLA confidence score.
Then, we reported the most recent paper that mentions the evidence terms and the hypothesis
gene. If there are multiple papers published in the same year, we picked the paper with the

highest paper score (Supplementary Figure 5).
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Results
The workflow of our results is shown in Figure 1.
Phenotype data

Inbred mouse phenotype data

11,783 measurements were downloaded from MPD. We kept 4,939 measurements after
removing any experiment that did not use at least 6 of our sequenced strains (Supplementary
Table 1). 610 of them were not expected to be genotypically relevant (e.g., reporting mouse
age at time of experiment). The remaining 4,329 measurements were used for candidate gene
selection. Along with 49 additional experiments we created for presence/absence trait MGD

reported across 14 of our strains (see Methods).

Phenotype separation boundaries
4,110 suitable MPD cases were reported in biological replicate values and the remaining 219
cases were only reported in average, standard deviation, and number of replicates used.

729 suitable MPD cases had at least one phenotypically separable boundary
(Supplementary Figure 1). 49 experiments we added were separated by the absence/presence

of the MP term. In total, we found 1,133 phenotype separation boundaries in 778 experiments.
Genotype data

Whole genome variant calling

We kept 23,230,042 SNPs and indels among 48 mouse inbred strains after discarding any
variant that failed to meet the quality threshold (Supplementary Figure 2).

Strain-specific variant filtering

Using Phred-quality scores to filter strain-specific calls, 1.51-12.1% of SNPs and indels had
inconclusive calls per each of the 47 strains (excluding the reference strain). Through
generations of sibling mating, inbred mice are expected to have largely homogenized alleles.

Indeed, we found that only 0.18-0.75% of our variant calls were high quality heterozygous.
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Comparing and supplementing our sequencing data with a published dataset
We found that 742,480,455 or 99.9% of our 743,170,690 conclusive allele calls in the
overlapping 37 strains were supported by the MGP data (732,135,280 or 98.5% identical and
10,345,175 or 1.4% inconclusive by MGP).

5,812,957 (23.3%) of 24,925,741 calls we called inconclusive were called conclusively by
MGP. After supplementing with MGP, our final calls in 47 strains include 817,092,836 (74.8%)
homozygous reference, 232,498,308 (21.3%) homozygous alternate, 6,039,276 (0.6%)
heterozygous, and 36,181,554 (3.3%) inconclusive calls.
Gene set
Our gene set contained 50,527 transcripts of 21,713 unique protein coding genes. In our
downstream analysis, we only considered VEP’s variant consequences that affect the
transcripts in our gene set.
Genes with high-impact variants
We identified 2,178 transcripts for 1,409 genes with at least 1 high-impact variant in at least
one non-reference inbred mouse strain (Supplementary Figure 2). A high-impact variant can be
either homozygous or heterozygous for one, or even two different high-impact alleles (e.g., 1/2

where 1 and 2 both represent high-impact alternate allele).

Building candidate sets

Each of 1,133 separable phenotypic boundaries, was compared to our 1,409 highly-impacted
genes to build a candidate gene-phenotype set (Supplementary Figure 3 and Methods). A total
of 906 phenotype separations in 718 unique experiments had at least 1 candidate gene with an
average of 17.53, a median of 12, a minimum of 1, and a maximum of 103 candidate genes per

phenotype separation.

Previously reported causative gene-phenotype relationships

We downloaded 296,254 gene markers to phenotype relationships (33,010 markers and 10,741
MP terms) from MGD*. We mapped the gene markers to NCBI gene IDs in our gene set and kept
only gene-phenotype relationships unambiguously mapped to 1 gene. The resulting set
included 190,623 single gene-phenotype relationships among 10,054 MP terms and 12,551

protein-coding mouse genes.
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Candidate genes previously linked to the measured phenotypes

Exact Match

We found 22 gene-phenotype relationships where the gene and the experiment were tagged
with the same MP term suggesting our approach (Figure 1) picked the correct gene to explain
the experiment (Table 1). Interestingly, in only one of the cases, the high-impact variant we
found had an MGD record of causing the measured phenotype. In all other cases, depending on
the completeness of MGD, we may be the first to report the strain(s) specific potentially
causative variant(s).

For example, DBA/2J mice had elevated red blood cell counts compared to 10 other
strains (MPD:22903). 33 candidate genes fit this phenotype separation and only 1 gene, Cd33, is
known to cause the same phenotype, Abnormal erythrocyte cell number (MP:0001586). DBA/2)
uniquely has a stop gain mutation (GRCm38/mm10 chr7:43528894) in Cd33 that may explain
abnormally high red blood cells in this strain but missing in MGD.

Full details of all cases are available at aimhigh.stanford.edu (Supplementary Figure 6).

Descendant match
There were 190 gene-phenotype relationships where the gene was mapped in MGD to a more
specific (descendant) MP term of the experiment phenotype. These are shown in Table 2. Only

one high-impact variant is known in MGD, and other variant-phenotype relationships may be

novel. Full details of all cases are available at aimhigh.stanford.edu (Supplementary Figure 6).

As an example, MPD:1903 measured non-HDL cholesterol levels in 14 mouse strains and
found abnormally high non-HDL cholesterol level in NZB/BINJ mice. This experiment is tagged
with Abnormal circulating non-HDL cholesterol level (MP:0020151). Among 41 candidate genes
that contained a unique high-impact variant in NZB/BINJ, Prlhr is the only gene annotated with
a matching descendant phenotype term, Increased circulating LDL cholesterol level
(MP:0000182). There is a potentially causative stop gain mutation (GRCm38/mm10
chr19:60467194) in NZB/BINJ not found in any other strains, and this variant is not recorded in
MGD.
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Literature-based discovery (LBD) classifier

MeSH-publication relationships
We downloaded a vocabulary of 29,405 MeSH terms tagging 28,726,608 of 33,425,447 papers
published between 1902 and 2022 for a total of 303,924,223 MeSH term m, publication pub (in
PMID), (m, pub) pairs.
Gene-publication relationships
We downloaded 177,518 genes from 3,478 species mentioned in 6,661,514 papers published
up to 2022, for a total of 14,632,626 gene g, publication pub, (g, pub) pairs.
Publication graph
The full 2022 graph used to featurize our candidate hypothesis prediction set (Supplementary
Figure 4A) has 79,306,096 edges. Nodes have 48 median direct neighbors and the density of the
graph, a ratio of number of edges present over the maximum number of possible edges in our
graph, is 0.004.
Single-gene knockout positive set
We downloaded 117,438 papers that contain the “Null/Knockout” attribute and are linked to
exactly 1 gene. 61,403 papers describe a phenotype measured indicated by tagged disease
MeSH terms about 8,268 unique mouse protein-coding genes.
Building retrospective single KO train and test sets
For the retrospective single KO train set, the labels of each gene g, MeSH term m, (g, m) pairs
(i.e., positive for relationships defined by a single-gene knockout paper and negative for
unknown relationships) were derived from single-gene mouse knockout papers that were
published between 2011 and 2015, inclusive (Supplementary Figure 4A). This set consisted of
1,619 positive edges and 2,516,571 negative edges for 568 MeSH phenotypes (2.9 positive and
4,421.7 negative mouse genes per MeSH term on average).

For the retrospective single KO test set, we used single-gene mouse knockout papers
that were published between 2016 and 2020, inclusive. This set consisted of 1,130 positive
edges and 2,586,932 negative edges for 469 MeSH phenotypes (2.4 positive and 5515.8

negative mouse genes per MeSH term on average).
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Building rediscovered test set and candidate hypothesis prediction set

We mapped 906 phenotype groupings to 170 unique MeSH terms. 47 phenotypes such as
“KRTAP14, spectral counts, hair proteomics (MPD: 49233)” were not mapped because they
lacked a suitable MeSH term.

In our rediscovered test set, we found 41 positive (g, m) pairs with at least 10 candidate
genes whose direct relationship was established after 2015, with a total of 898 negative pairs.
Per experimental boundary, there were 24.1 candidates and only 1.1 of them came true after
2015 on average. Note that our phenotype-genotype matching (Figure 1 and Supplementary
Figure 3) results in a significantly reduced candidate hypotheses compared to the literature-
based, open discovery “ABC” method?%23 used in the above sets.

In our candidate hypothesis prediction set, we found 13,652 novel (g, m) pairs whose
experiment had at least 10 candidate genes and no known relationship to the measured trait.
Per experimental boundary, there were an average of 24.7, a minimum of 10 and a maximum
of 103 candidate genes.

Classifier performance

Open discovery is useful in automatically generating hypotheses'®?2, but this approach resulted
a very large candidate hypotheses set (thousands of negative examples for each positive
example). In Figure 2A, we show that on this exceptionally difficult task, our AIMHIGH classifier
beats 8 existing methods. For example, in the retrospective single KO test set

it ranks the positive edge in the top 10 among over 5,000 candidate genes in 34 out of 469
MeSH terms (7.4%) compared to 2.6% by the next best method, BITOLA confidence?.

We tested AIMHIGH on a secondary test set to assess how it would perform on a set
with more realistic candidate sizes. Figure 2B shows this using our rediscovered test set. After
2015, predicted from the 2015 graph it ranked the positive gene among top 3 in 79.5% of the

cases compared to the expected 4.8% if we ranked all hypotheses randomly (Figure 2B).

Novel hypotheses

Novel cases with few candidates
1,092 gene-phenotype relationships from our inbred strain analysis did not have a known

explanation and had fewer than 10 candidate genes per phenotype boundary. In such cases, all
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candidates can be reviewed closely in search of enticing hypotheses for testing. 17 such gene-
phenotype relationships with at least 4 homozygous allele strains in the smaller phenotype
group are shown in Table 3. Full details for all 1,092 relationships are available on at

aimhigh.stanford.edu (Supplementary Figure 6).

For example, 7 strains showed low respiratory exchange ratio (RER) compared to 6
other measured strains (MPD:9214, MPD:9215, MPD:9216). RER is the ratio between carbon
dioxide produced through metabolic process and oxygen consumed. Lower RER indicates higher
fitness level and higher muscle’s ability to get energy3°. Only 1 candidate gene was found to
match this phenotype split, Eiflad16, eukaryotic translation initiation factor 1A domain
containing 16. Among the 7 strains in the lower group, 4 strains (A/J, AKR/J, FVB/NJ, and SJL/J)
had a homozygous frameshift mutation, 2 strains (BTBR T<+> Itpr3<tf>/) and C3H/HelJ) had
inconclusive calls, and 1 strain (12951/SvimJ) had a heterozygous mutation in this gene. All
strains in the higher group had homozygous reference alleles except LP/J which had an
inconclusive call. Eiflad16 is currently not associated with any phenotypes in MGD. However,
the eukaryotic translation initiation factor family are key regulators of translation initiation, and
genes in this family have been suggested to initiate protein synthesis during recovery after
resistance training3!. We hypothesize that the strains high-impact variant in Eiflad16 have
faster muscle protein metabolism indicated by lower RER.

LBD classifier’s top-ranked predictions

Inspired by our rediscovered test set, we focus on the top 3 candidates predicted by AIMHIGH
in all cases where 10 or more candidate genes exist. We found 750 most promising novel gene-
phenotype hypotheses. A few examples are shown in Table 4 and discussed below.

MPD:5608 measured median current to trigger psychomotor seizure. C57BL/6J showed
the highest resistance compared to 8 other phenotyped strains. 6 of the 8 strains were
sequenced and all shared the same frameshift variant in Brain expressed, associated with
Nedd4, 1 (Beanl) gene. Our classifier ranked this gene above all other 22 other candidate
genes. Beanl is expressed in the central nervous system3%33, and the paralog of Nedd4 has

been linked to susceptibility to seizure3*.
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A fear test after exposing mice to nicotine showed that A/J mice were less sensitive to
nicotine effects compared to 7 other strains (MPD:47141). 30 candidate genes fit this
phenotype split. Our classifier ranked Gfra2 highest on the list. Promising evidence showed that
cholinergic neurons are activated by nicotine3?, and Gfra2 is required for the survival of
cholinergic neurons3637,

MPD:11012 measured diastema to pogonion distance. C57BL/6J and C57BL/10J had
longer distances than all other the measured strains. These two also were the only strains
phenotyped that had the homozygous reference allele in Smad6. There were 68 candidate
genes that fit this phenotype split, but the classifier ranked this gene highest. Encouragingly,
MGD has recorded that Smadé6 is expressed in the mandible, and this gene has been shown to

be correlated with malocclusion38.

Hundreds of similar leads can be found at aimhigh.stanford.edu (Supplementary Figure

6).
Interactive web interface

aimhigh.stanford.edu holds an easy-to-use web interface for users to view all of our findings in

detail. There are four webpages corresponding to Tables 1-4. See Supplementary Figure 6.
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Discussion

We present AIMHIGH, an automated approach (detailed in Figure 1) to suggest gene-phenotype
testable hypotheses from community-contributed multi-strain phenotypic experiments and
multiple strain genomes. By automatically finding one or more candidate gene whose high-
impact variants split concordantly with the phenotypic measurement splits, we rediscovered
hundreds of experimentally proven gene-phenotype relationships, validating our approach.
Nearly all variants we highlighted in the context of these known gene functions are not found in
MGD. More excitingly, we made thousands of potentially novel gene function hypotheses in
experiments where we none of the matched candidates are already known to cause the
measured phenotype.

We developed a machine learning approach that leverages existing literature to
highlight a handful of most promising gene candidates among 10 or more such candidates. Our
approach relies on relatedness of the millions of peer-reviewed papers indexed by PubMed and
annotated by MeSH and PubTator Central. We started by improving the state of the art in
literature-based open discovery, working with an extremely challenging set of thousands of
candidate genes for every gene function hypothesis where only few were validated 5 years
from our prediction time. We purposefully chose a relatively long time-period so that seemingly
new discoveries will not simply be from those papers archived, or conference abstract
announced at the time we make our predictions.

We then see again the power of our candidate building approach, which reduced the
number of candidate genes per phenotype by two orders of magnitude compared to literature-
based search. We show that even on the set without a known causative gene, one may only
need to read on our top 3 highest ranked candidates per unexplained experiment to find the
most plausible hypotheses.

Our goal throughout the screen is to avoid false positive predictions. Conservatively, we
only screened for high-impact variants that are more likely to impact the protein function.
Variants that can be left shifted or right shifted to provide an alternative, less impactful,

interpretation are discarded, and more.
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In the future, one can consider ways to extend our approach to lower impact variants
such as non-synonymous substitutions (most of which have only a modest effect on gene
function) and to structural variants (whose impact may often be high, but whose confident
calling is challenging). Likewise, one can consider extending from the binary split we make into
ones with more states, though the mapping of multi phenotypic groups to observed genomic
changes becomes more challenging.

To encourage our colleagues to discover novel biology using our exciting predictions, we

built a web portal at aimhigh.stanford.edu, which houses all of our rediscovered and novel

predictions. Our code is also open sourced, so that anyone can rerun it as is, with new
sequenced strains, additional phenotypic experiments, presence/absence traits or newly

published literature strengthening our inference and deriving novel testable hypotheses.

Data and code availability

Data and code will be available upon publication at https://github.com/bejerano-

lab/AIMHIGH.git.
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Figures & Tables

Supplementary Table 1. 48 strain names used in this project along with their MGl strain ID,

Jackson lab catalogue number, MPD strain ID, and where these strains were sequenced.

Strain name MG strain ID  |Jackson catalogue MPD strain ID  |Source
C57BL/6) MGI:3028467 (664 7 Reference
BE10.02-H2d/n25n) MGI:2161770 |462 NfA Stanford

BPLS1) MGI:2164247  |3006 19 Stanford

BPN/3J MGI:2162661 (3004 27 Stanford

CE/f] MGI:2159757 657 25 Stanford

MAS Nyl MGI:2159846 (677 20 Stanford
MRL/Mpl MGI:2160037 (486 58 Stanford
NON/ShiLtl MGI:2163530 (2423 34 Stanford
NOR/LLI MGI:2162087 [2050 106 Stanford

NU/JI MGI:2161860 (2019 127 Stanford

P/l MG|:2159762 679 55 Stanford

PL/) MG|:2159749  (BBO 14 Stanford
REBF/DnJ MGI:2161383  |726 33 Stanford
RHI/Lel MGI:2162860 [1591 187 Stanford

RINS/) MGI:2159809 [6B3 26 Stanford

SWR/I MGI:2180845 (GBS 12 Stanford
TALLYHO/Ingl MGI:3511696 (5314 46 Stanford

BTBR T<+> Itpr3<tf=/] |MGI1:2162761 |2282 1 Stanford/Sanger
BUB/Bn MGI:2159907 |653 24 Stanford/Sanger
DBASLI MGI:2159759  |670 65 Stanford/Sanger
FVB/NI MGI:2163709 |1800 9 Stanford/Sanger
KK HII MGI:2161953 2106 hE:3 Stanford/Sanger
LG/1 MGI:2159748 |675 78 Stanford/Sanger
NZB/BINI MGI:2180844 |6B4 11 Stanford/Sanger
NZW/Lacl MGI:2159914 (1058 36 Stanford/Sanger
RF/1 MG|:2159750 |6B2 74 Stanford/Sanger
SIL) MGI:2159739  |6BE 17 Stanford/Sanger
SM/) MGI:2159787 |6ET EYE Stanford/Sanger
129p2/OlaHsd MG1:2164147  |N/A 834 Sanger
12951/5vim) MGI:3037980 2448 3 Sanger

12955/ 5vEvBrd MGI:3487126 |N/A 62 Sanger

Afl MGI:2159747 (646 4 Sanger

AKR/] MGI:2159745 (648 15 Sanger

BALB/cl MGI:2159737 (651 5 Sanger

C3H/Hel MGI:2159741 (659 B Sanger

CS7BL 100 MGI:2159754  [BBS 38 Sanger
CS57BL/BNJ MGI:3056279 (5304 182 Sanger
CS57BR/cd) MG1:2159792 (667 32 Sanger

C57L1 MG|:2159746 (668 37 Sanger

C58/1 MGI:2159755  |669 28 Sanger

CBAJ) MGI:2159756 |656 16 Sanger

DBAS2) MGI:2684685 |671 8 Sanger

1/Lnd MGI:2159844 (674 30 Sanger

(1] MGI:2159761 (676 10 Sanger
NOD/ShiLtl MGI:2162056 [1976 13 Sanger
NZOfHILt MGI:2173835 (2105 122 Sanger

SEASGRI MGI:2159763 (644 29 Sanger

ST/bl MGI:2159751 |GBB 69 Sanger
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Figure 1. Paper overview. Grey boxes (e.g., Table S1, Fig 2) indicate illustrations and results

accompanying each step. (A) For every experiment with multi-strain data in Mouse Phenome
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Database (MPD) and strain-specific presence/absence phenotypes annotated by Mouse
Genome Database (MGD), we automatically sought trait values that would partition all
measured strains into two groups. For each such phenotypic split, we sought one or more
mouse gene with a matching genotypic split, using only the high-impact genomic variants that
likely severely modify protein products. Each such match constitutes a trait explaining, possibly
novel, hypothesis made by our approach. (B) Next, we used MGD known gene function
annotations to find hundreds of gene function hypotheses we made that have already been
successfully validated by single gene knockout experiments. In all but two such cases, even
when the gene level function was already known, the high-impact variant(s) we discover in
different strain genomes was not annotated in MGD. Encouragingly, we have thousands of
additional gene function hypotheses for phenotypic experiments, suggesting rich grounds for
novel gene function discovery. To aid with searching literature evidence for the most plausible
candidate, we built a novel Literature-Based Discovery (LBD) framework. Finally, a web portal

was developed to support easy browsing of all of our results.
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Supplementary Figure 1.
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Supplementary Figure 1. Phenotype separation. We first sort strains by average intra-strain
phenotype value. Then we consider each boundary (n-1 if n is the number of phenotyped
strains) to see if it is separable. To be separable, the right group’s minimum must be larger than
the left group’s maximum (i.e., the gap is positive), and the sum of the standard deviations of
the two strains flanking the boundary must be smaller than the gap size itself. (A) An example
separable boundary between strain 1-3 and strain 4. (B) An example of a non-separable

boundary.
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Supplementary Figure 2.

Our joint
48 strains calling 88,803,648 SNP/Indels | Fittering 23,230,042 SNP/Indels
(1 reference + 47 inbred strains) across strains across strains
against MGP
MGP joint 98.5% i
MGP released Stralns calling (732,135,280 calls over the available strains) Re?'?(:e our lOW'qUallty calls
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(2,178 transcripts)

Supplementary Figure 2. High-impact genomic variants. Using reference strain, C57BL/6)
(MGI:000664), we called variants in 47 mouse strains (Supplementary Table 1). After filtering
for quality, our calls were 98.5% identical to Mouse Genome Project (MGP) calls for strains that
were available in MGP. We used their higher quality calls to augment ours, and then used
Ensembl Variant Effect Predictor (VEP) to retain only high-impact variants such as stop gain or
loss. Variants with more than one alignment were kept only if both alignments resulted in high-
impact variants. Finally, we filtered out variants in large families of predicted and smell
associated genes (see methods). The resulting set of high-quality candidate genes were

matched against any phenotypic separation in Figure 1A.
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Supplementary Figure 3.
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Supplementary Figure 3. Phenotype-genotype matchings. (A) Left: An example experiment is
found (automatically) to separate strains 1-2 from strains 3-8. Note that because the unit of
measurement is arbitrary, calls of high/low, gain/loss are replaced simply by (L)eft and (R)right.
Right: We tried to match four genes to the phenotype split. Gene 1 is a mismatch because of
high-impact homozygous alternate calls in both groups (strains 1, 2, and 7). Gene 2 is a
mismatch because of high-impact heterozygous alternate calls in both groups (strains 1 and 3).

Gene 3 is a match (note that sequencing or genotyping strain 8 or a conclusive call in strain 3
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can revoke the match). Gene 4 is also a match. (B) How gene 3 from (A) would be shown in our

web interface (Figure S6).
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Table 1. Known gene functions successfully rediscovered by our approach. In all shown cases,

the candidate gene listed is already known to cause the experimental phenotype. However,

only in the first (Pde6b) is the high-impact variant we found documented in MGD. See all details

at aimhigh.stanford.edu (Supplementary Figure 6).

it of matching Experiment phenotype Experimentally |Gene disrupted homozygous | Candidate variant in GRCm38,/mml0 MGD variant 1D
experiments validated strains coordinate (consegquence)
candidate gene
2 retinal degeneration Pdedb BUB/BnJ, C3H/Hel, CBASY, chir5: 10842 1265:C>A [stop gain) MGI: 1856373
FVB/NI, NON/Shilt, PL/,
SILFN, SWRS
1 cochlear hair cell degeneration Adgrvl Afl chr13:81351510:C>T [splice_donor], Mot found
chrl3:81444533:G>A (stop_gain),
chri3: 81523726 AC>A (frameshift)
q abnormal hair shaft morphology Ahr C3H Hel, DBASL), MREL/Mp), |chrl2:35500681:A>G (stop_loss) Mot found
NOD/Shilt), N2W/Lac)
25 abmormal locomator behavior Cacnala WOD/Shilth chri: B356862 G (start_loss) Mot found
1 abnormal physiclogical response to Cacnala MODShilt) chrl: 84356862 G2 (start_loss) Mot found
wenoblotic
1 oormeal opacity Codcl 78 C3H Hel chrif: 21811524: AT=A (frameshift) Mot found
1 abnormal erythrocyte cell number Cdi3 DRAS2Z) chrF:43532167:G=A (stop_gain), Mot foumnd
chr? 435288590 C>T [stop_gain)
1 abnormal lver monphology Cwcd? MW Lac) chird: T3 T95: C>T (splice_donor), Mot foumnd
chrd: TTAR1458: A6 [stop_loss)
2 abnormal behavioral response to Discl FVB N chirf: 125135466: AACCAGGCTOCCTTCCAGGTGE | Mot found
xenobiotic AGCC=A [frameshift)
1 abnormal lver monphology Ghel FVEBNI chrl&: FO529016: C>CT (frameshift) Mot found
3 abnormal lecomotor behavior GpraT Af), BALB(c), C3H Hel, CBAS), |chrg: 256668%8: A>T (stop_gain} Mot found
DBEAS2)
1 abnormal physiclogical response to 1 MZW/Lac) chril:53612566:A>G (stop_loss) Mot found
wenobiotic
2 abmormal gait Park? C3H/Hel, MON/SShilt chird: 150897 300: T>L (splice_acceptor) Not found
1 abnormal physiological response to Park? NOD/Shilt) chird: 150897304: T>C [splice_acoeptor) Mot found
wenobiotic
[ abnormal gait Pptl 12951 Sviml, C3H/Hel, chirdl: 12728405662 T>L [stop_loss) Mot found
C5TBLS10), DBAJ2), SMJ)
1 centrally nucleated skeletal muscle Tin2 s chri6TI2A8T2:T=L [start_lloss) Mot found
fibers
1 abnormal physiological response to T MW fLac) chirl: 182972448: TC>T (frameshift) Mot foumnd
xenobiotic
1 increased ciroulating trighyoeride level | TS TALLYHO Ing) chirl: 182972448: TC>T [frameshift) Mot foumnd
1 increased circulating cholesterol level | ThS TALLYHO Ing) chirl: 18297 2448: TC>T (frameshift) Mot found
1 insulin resistance Ths TALLYHO/ Ing) chrl: 18297 2448: TC=>T [frameshift) Not found
1 increased ciroulating insulin level Ths TALLYHO Ing) chrl: 182972448 TC>T [frameshift) Mot found
1 increased body welght Ties TALLYHO fing) chrl: 18297 2448: TC=T (frameshift) Mot found

35


http://aimhigh.stanford.edu/
https://doi.org/10.1101/2022.08.07.503105
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.07.503105; this version posted August 7, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Table 2. Additional known gene functions successfully rediscovered by our approach. In Table

1, the gene annotated function was identical to the experimental term. Here, the gene

annotated function is a descendant term of the experimental term. For example, the

experiment was tagged with abnormal body weight while its candidate gene, Pax5, is annotated

with decreased body weight. Because of the large number of matches, we aggregated results

by the experimental term. See all details of each match at aimhigh.stanford.edu

(Supplementary Figure 6).

it of matching Experiment mapped validated candid itof chil mapped Exper valida genes
expariments mammalian phenotype (MP) expariments mammalian phenotypea (MP)
term term
1 abnormal adipose tissue Npyér, Rxfpd, Tex261 El abnormal hippocampal Draxin
amount commissure morphology
36 abnonmal anxiety-related Arvl, Cokbr, Discl, Fam168a, Myo3a, Nirk2, Ptpra, 2 abnormal kidney size Oca?
response Rnfl03, Skci2a5, Spatal, Tas2riod
1 abnormal behaviar Collla2 2 abnormal lean body mass Fam168a, Npyér, Tex261
3 abnormal behawvioral response Cckbr, Skc12a5 a abnormal Hivep2, Skcdda3, 2fp629
to xenobiotic leaming/memaryfconditicning
15 abnormal body weight A, Adam17, Arvl, Cftr, Dym, Foxpd, Gfra2, Gne, Itgblbpl, 1 abnormal leuk ocyte cell Alpk3, Ptpnl3
Marchf, Npyér, Mirk2, Park T, Pax5, Pik3cg, Ptpnl3d, number
Rhobth3, Rfpd, Sirt3, Skc12a5, Sptbnd, Sgstm, Theld,
Zfyvelé
4 abnormal bone mineral Cfapbl, Mavs, 2c3hld 4 abnarmal liver maorphaology Ldha, Npy6r, Ocal, Prmt?, Rhbdd3, Saa3, TS
content
5 abnormal bome mineral density Park?¥ 2 abnormal liver physiclogy Regl, Rhbdd3
1 abnormal bone strctune: Cdhi23, Cfapél 116 abnormal locomaotor behavior | A, Adgrb2, Arv1, Beanl, Coklbr, Cftr, Dhor?, Discl, DixS,
Foxp3, Fto, Gdi2, Hivep2, Macrod2, Myo3a, Meb, Nisch,
Ntrk2, Opnd, Pax5, PdiimS, Ptpra, Ptprg, Rwdd3, Ske12a5,
Snapcl, Spthnd, Tirc, Trh, Trpm3, Tryd, 2fp629, Zfyvelds
2 abnormal calcium ion Pik3cg 1 abnormal lung compliance Cftr
homeostasis
2 abnarmal cincula ting alkaline Hpfl 2 abnormal ymphocyte cell Dock8, H2-DMa, Rnfg
phosphatase lavel number
1 abmnormal cincula ting calcium Slitrka [ abnormal mean corpuscular Cleci0a, I23r
level hemoglobin
a4 abmonmal ciroulating Atad2b, Cacfdl, CdcaB, Dym, Nisch, Prihr, Tctn3 2 abnormal mean conpuscular Ptpra, Sox13
cholesterol level hemaoghobin concentration
8 abmormal circulating HOL Cdca8, Dym, Prihr, Tctn3, Tex261, Uspll 5 abnormal mean conpuscular CleclOa, Foxp3
cholesterol level volume
2 abnormal circulating non-HOL Prihr, Uspll 7 abnormal motor Rnfl03, Spg2l, Zswimé
cholestercl level ceordination/balance
2 abnormal circulating Almsl, Cacfdl, Dym 1 abnormal neutrophil cell Tirs
trighyceride level number
6 abnormal corpus callosum Diraxin 1 abnormal oxygen consumption Sgstml
maorphology
[ abnormal erandofacial bome 5lc32a10, Tmem107 1 abnormal percent body Phnonl.
monphaology fat/body weight
12 abnormal cramiofacial Cdhi23, Cftr, Ocal, Rps19, Skc38a10, Tmem107, Vezfl, a ‘abnormal physiclogical A, Cd20%a, Dock2, Gpra 7, 11237, |p6k2, Mucd
monphology Zcihcl response to xenobiotic
2 abnormal depression-related Adgrhi2, Discl 2 abnormal postnatal Npy 1r, Npy6r, Racfipd, Tex261
behavior growthy/'weight/body size
2 abnormal erythrocyte cell Clecl0a, Stxll 2 abnormal response to novelty Crym, 2fp629
number
1 abnormal erythrocyte Ptpra 1 abnormal reticulocyte cell Ldha, Nmnat3
maorphology number
28 abnarmal exploration in a new Cededb, Crym, Discl, 2p629 1 abnormal skeletal muscle fiber Tin2
anvironment maorphology
1 abnormal food intake Cekbr, Sgstml 3 abnormal survival Gfral, Smadé, Srsfl0, Veafl
3 abnormal grip strength Ghel, Lypdsh, Parkd 1 abnormal total tisswe mass Npy 1r
1 abnormal hearing physiology Atad2b 1 cardiovascular system ColllaZ, Msda3
phenatype
a4 abnormal heart rate Gbel, Gtpbpl0, Pdha3 1 increased circulating glecose Laptmda
level
i abnormal hematocrit Ttcdda
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Table 3. A sampler of novel hypotheses with few candidate genes. Many of our novel
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hypotheses have very few matching candidate genes per experiment. A handful is shown here.

All matches with fewer than 10 candidate genes per experiment are available at

aimhigh.stanford.edu (Supplementary Figure 6).

(1918.m.4)

Description (Experiment & Gene disrupted homozygous strains |# strains in the smaller |Candidate genes
phenotype Split ID) homozygous group

mandible, diastema to pogonion Afl, DBAJS2], FYB/NJ, SILf) 4 Deptor
(11012£.3)

respiratory exchange ratio, 3 day test, |A/fl, AKR/], FVB/NJ, SIL/] 4 Eifladlf

daily (9214.m.1), respiratory exchange

ratio, 3 day test, light (9215.m.1),

respiratory exchange ratio, 3 day test,

dark (9216.m.1)

total phospholipid (plasma), baseline MNZB/BIM, SILY, SM/J, SWR/I 4 Etnkl
(1910.m.5)

percentage of large HDL particles (10-13 |A/fl, BALB/cl, DBA/2], NZB/BIN, 4 Ghplil

nm) (plasma), fold change (1926.m.5) SWR/J

percentage of large HDL particles (10-13 |BALB/cl, DBA/2], NZB/BINJ, SM/] 4 H2-ebl

nm) (plasma), fold change (1926.m.&)

non-HOL cholesterol (plasma non-HOL), [AJ], NZB/BIMNI, SIL/1, SWRYI 4 H2-t23
baseline (1903 f.2)

percentage of large HDL particles (10-13 |A/J, BALB/cl, DBA/2J, NZB/BINI 4 Ketd16

nm) (plasma), fold change (1926.m.5)

one-cell embryos, percentage of IVF dish |A/], DBA/2J, FVB/N), NOD/Shiltl 4 He, Hmen2
cells (19312.f.1)

volumetric bone mineral density 12951/Svimd, BALB/c), C3H/Hel, 4 Nudt?, Zfpd 46
(vBMD), whole left femur (17202.m.2), |NZB/BINJ, SIL/]

cortical thickness of left femur, pQCT

(17219.m.2)

cortical shell volumetric bone mineral 12951,/Sviml, BALB/cl, C3IH/Hel, 4 Cd1d2, Gnrhr, Pld5
density (vBMD), whole left femur NZB/BINI

(17203.m.1), cross sectional volumetric

bone mineral density (vBMD), right

femur mid-diaphysis (17204.m.2)

HOL phospholipid {plasma), fold change [Af], AKR/], BALB/cl, DBA/S2], NZB/BINI 4 Ercl, Pik3c2g, Trim30b,

Xrocce
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Supplementary Figure 4.
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Supplementary Figure 4. A machine learning framework to highlight our most promising novel
testable hypotheses. (A) The classifier learns from examples in the retrospective single KO train
set (i) to distinguish gene-phenotype relationships that became known in literature against
gene-phenotype relationships that remained unknown (see methods). Performance of the
classifier is measured on the retrospective single KO test set (ii) and our rediscovered test set
(iii). Finally, the verified classifier is applied on our candidate hypothesis prediction set (iv) to
prioritize the most promising candidates. (B) Each entity in the publication graph is either a
MeSH term or Pubtator Central’s gene entity. For each paper, we obtained its MeSH tags, gene
tags, and publication date. Undirected edges are extended between all MeSH terms and genes
that are discussed in the same paper. (C) The retrospective sets are built using the open
discovery framework on time-specific publication graphs (see methods). In the example, at time
To, the MeSH term shown is (only) indirectly linked to two candidate genes. By To+ 5 years, only
Genel was shown to be directly related (potentially causative) to the term. In the language of

panel A, X = ((MeSH, Genel), (MeSH, Gene2) and Y = ((+),(-)).
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Table 4. A sampler cases where our classifier (Figure 1B) singles out biologically exciting

candidate genes. All novel hypotheses, including our classifier’s top-ranking genes and

supporting literature are shown at aimhigh.stanford.edu (Supplementary Figure 6).

11012 (f)

Gene (NCBI ID)|Consequence |MPD Experiment Gene disturbed Mapped |Candidate's Evidence (PMID)

description (MPD ID) |homozygous strains |MeSH term |classifier rank
(term 1D)

Beanl (65115) |Frameshift median critical current]|12951/Sviml, Afl, Seizures 1 out of 23 Beanl1, brain expressed,

(CC50) for AKR/J, CS57L/), CBA/), |(D012640) associated with Nedd4, 1, is

psychomotor seizure, |SWR/) expressed in various regions of

transcorneal the central nervous system

stimulation (5608 (f)) (26235621, 26637796). Neddd's
paralog Nedd4l has been linked
to increase susceptibility to
seizures (33722745)

Gfra2 (14586) |Stop gain effects of acute and AJ) Substance |1 out of 30 Expressed in central nervous
chronie nicotine on withdrawal system (24952961, 9452475).
fear conditioning, syndrome Important for the survival of
percent immobility in (D013375) cholinergic neurons (15234349).
altered context Nicotine activates cholinergic
chamber (47141 (m)) neurons (31554960)

Smad6 (17130) |Frameshift mandible, diastema to |12951/Sviml, Afl, Mandible |1 out of 68 Expressed in Mandible
pogonion (11012 (m), |C3H/Hel, CBA/L, SIL/] |(DO08334) (11231077), SNPs in human

ortholog have been shown to be
correlated to malocclusions
(33068497)
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Figure 2. Predicting which gene function hypotheses would be proven over a 5-year period. (A)
Our machine learning classifier performance on an open discovery set built from mouse single
gene knockout papers, where on average out of 5515.8 candidate genes, only 2.4 genes are
verified over the next 5 years (see Methods). While this task is difficult for all 8 approaches,
AIMHIGH clearly improves the state of the art. (B) By matching phenotypic separation with
genotypic separation (Figure 1 and Supplementary Figure 3), we greatly reduce the search
space for each trait. When we apply our classifier to known cases in our set (Tables 1 and 2)

with at least 10 candidate genes discovered over the same 5 year period, we see that the
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causative gene ranks in top 3 in nearly 80% of cases (compared to 4.8% if 3 candidate genes are
picked at random), suggesting that reading (or even directly testing) a handful of our top-
ranked novel candidate genes may be highly effective in discovering novel biology. See

Methods for more on all 8 tested approaches.
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Supplementary Figure 5.
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BITOLA confidence
[ MeSH term Intermediate2 Hypothesis
gene
A . c

2. For the top 3 nodes, list
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Supplementary Figure 5. Explaining our classifier’s predictions using supporting literature. We
ranked all intermediate nodes linking the phenotype term and the highlighted hypothesis gene
using BITOLA confidence (see Methods). At the top would be intermediate terms most often
co-mentioned with both phenotype and gene and therefore, possibly important in linking the
two. For each evidence terms, our portal shows (Supplementary Figure 6) the most recent

paper that mentions both term and gene.
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aimhigh.stanford.edu
(home page)

&

4, View additional Info (—
through external links D

* MPD experiment page

* MGD strain description page

* MP term description page

* MGD phenotype reference page

* UCSC genome browser

Phenotype plot .
f List of matched ‘I —

experiments ' Genotype plot i 2
view details ... [NV :
' details 2
Ll e S e |
i - evidence > .

N 1. Select an ,' . - i

TN il

Table 1 view details page
T 3. View additional info
Uist of matched ' . through external links
experiments b Phenotype plot + MPD experiment page
- doklls + MGD strain description page
______ = * MP term description page
' * MGD phenotype reference page
: Genotype plot " *  UCSC genome browser
1. Select an ’
experiment
Table 2 Table 2 view details page
candidategenepage \ [/ .-
l grnpage “ List of matched % .
e | || ey | e
' '
View ' 1 details
Table 2 home View ! —:""‘ bomoeen -
1 View ' =
1. Select a candidate gene 1 e pe plot
ith the ph 2. Select an
W o phenctype experiment
L
Table 3 view details page
............. 3. View additional info
[ List of matched % Phenotype plot . through external links
H experiments H + MPD experiment page
1 ' 2. Show * MGD strain description page
: View details ... 1 details s ot == e « MP term description page
Table 3 home | View o - ype p i + MGD phenctype reference page
| View ! * UCSC genome browser
' * PubMed references
Si
T ~ =" candidate gene ~ "~ S0CS
Novel Table 4 view details page
3. View additional info
through external links
MPD experiment page

MGD strain description page
MP term description page
MGD phenotype reference page
UCSC genome browser

PubMed references

Supplementary Figure 6. Roadmap of our web interface. We made all of our hypotheses

available at aimhigh.stanford.edu. Each manuscript table (1-4) has a corresponding home page,

formatted identically. The user can follow the purple instructions in each table to view details

about each hypothesis, which include a phenotype plot with our derived boundary and a
matching genotype plot. When applicable in Table 3 and Table 4, intermediate nodes and
representative papers that may help evaluate the novel gene function hypothesis are also
presented. In Table 4, our classifier result plot is also shown, with the selected gene hypothesis
shown in red. Each page also has external links to the original data source (e.g., MPD and MGD)

to aid in further evaluation.
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