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Abstract 

Inbred mouse strains reveal the molecular basis of mammalian traits and diseases, particularly 

recessive ones. We utilized mouse community curated resources to set up an automated screen 

to discover novel testable gene function hypotheses. Using 11,832 community contributed 

strain-differentiating experiments and trait presence/absence scoring, we searched for all 

experiments where strains can be split by their phenotypic values (e.g., high vs. low 

responders). Then, using 48 sequenced strains, we found one or more candidate gene for each 

experiment where homozygous high-impact variants (such as stopgain, frameshifts) segregate 

strains into these same binary grouping. Our approach rediscovered 212 known gene-

phenotype relationships, almost always highlighting potentially novel causal variants, as well as 

thousands of gene function hypotheses. To help find the most exciting hypotheses, we 

improved the state of the art in machine learning driven literature-based discovery (LBD). 

Reading on our top 3 ranked candidate genes per experiment reveals 80% of rediscovered 

relationships, compared to 5% reading at random. We proposed 1,842 novel gene-phenotype 

testable hypotheses using our approach. We built a web portal at aimhigh.stanford.edu to 

allow researchers to view all our testable hypotheses in detail. Our open-source code can be 

rerun as more sequenced strains and phenotyping experiments become available.   
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Introduction 

Mouse is one of the most widely used model organisms in genetics. Countless biomedical 

discoveries have been made initially with the mouse model1. Inbred laboratory mouse strains 

are populations of mice that have reached intra-strain genetic homogeneity from at least 20 

generations of sibling mating2,3. Through generations of inbreeding, each strain has developed 

unique variants and phenotypes. These carefully maintained populations of mice are expected 

to be homozygous in most genetic loci, helping expose many recessive inherited traits.   

 The mouse community has been accumulating a wide range of functional information 

about mouse genes gained from mouse model experiments. Mouse Genome Database4 (MGD) 

has been at the forefront of curating and organizing this data. They developed Mammalian 

Phenotype (MP) ontology5, which is a structured dictionary of terms that represent various 

phenotypes observed in mice. Having a controlled set of terms allows for easy and consistent 

comparisons across annotations.  

 Inbred mouse strains are often phenotypically and genotypically diverse6,7, and many 

experiments have been performed on these strains to measure their phenotypic diversity. 

Mouse Phenome Database8 (MPD) has curated and publicly released the results of thousands of 

such experiments deposited from various laboratories covering many different inbred strains. 

In addition, MGD has annotated naturally occurring phenotypes in multiple strains. These 

phenotypes vary widely, ranging from quantitative phenotypes such as time spent in a maze to 

categorical phenotypes such as coat color.  

 Here, we analyzed whole genome sequencing data of 48 mouse inbred strains in search 

of high-impact homozygous variants that segregate concordantly to each phenotypic measure. 

We then used annotations of causative genes established through knockout experiments to 

find previously known proof of principle gene-phenotype relationships in our set. To help 

propose the most exciting hypotheses from a set of novel candidates, we built a literature-

based discovery (LBD)9,10 classifier trained to predict future single-gene mouse knockout results 

from clues in the current literature. Our entire pipeline is outlined in Figure 1. Finally, we offer 

an easy-to-use web interface to display full details of our hypotheses at: aimhigh.stanford.edu.  
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Materials and Methods 

Mouse strains 

We used whole genome data of 48 inbred mouse strains in our analysis: C57BL/6J, 

129P2/OlaHsd, 129S1/SvImJ, 129S5/SvEvBrd, AKR/J, A/J, B10.D2-H2<d>/n2SnJ, BPL/1J, BPN/3J, 

BTBR T<+> Itpr3<tf>/J, BUB/BnJ, BALB/cJ, C3H/HeJ, C57BL/10J, C57BL/6NJ, C57BR/cdJ, C57L/J, 

C58/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LG/J, LP/J, MA/MyJ, NOD/ShiLtJ, 

NON/ShiLtJ, NOR/LtJ, NU/J, NZB/BlNJ, NZO/HlLtJ, NZW/LacJ, P/J, PL/J, RF/J, RHJ/LeJ, RIIIS/J, 

SEA/GnJ, SJL/J, SM/J, ST/bJ, SWR/J, TALLYHO/JngJ, RBF/DnJ, MRL/MpJ (Supplementary Table 1). 

Our reference strain is C57BL/6J (the “Black 6” mouse) and our reference genome assembly for 

all variant calls is GRCm38/mm10.  

Phenotype data 

Inbred mouse phenotype data 

Mouse Phenome Database (MPD)8 is a repository of experimental phenotypic data measured 

on various mouse inbred strains in different laboratories. We downloaded the 

animaldatapoints.csv.gz, strainmeans.csv.gz, and ontology_mappings.csv files on March 28, 

2022 from https://phenome.jax.org/downloads. We kept all experiments e when at least 6 of 

our 48 sequenced strains were phenotyped, and the reported trait is relevant for genetic 

dissection (e.g., we removed experiment MPD:36680 reporting “age of mice at testing”).  

In addition, 14 out of our 48 sequenced strains had at least 1 strain-specific, naturally 

occurring, spontaneous phenotype annotated in MGD4 (e.g., A/J mice spontaneously develop 

cochlear hair cell degeneration). For each phenotype, we labeled strains annotated with the 

phenotype 1 and strains not annotated with the phenotype 0. These phenotypes were added to 

experiments (Figure 1).  

Phenotype separation boundaries  

For each experiment e, we sought a phenotype separation boundary b that separates strains 

into two groups based on their phenotypic values. All strains used in the study are considered 

for the purpose of binarization, including strains that we do not have genomes for. Most MPD 
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experiments reported biological replicate values, but some reported only the average and the 

standard deviation across replicates. We handle these two cases separately: 

Experiments with replicate values: To remove any outliers, we discarded the top and 

bottom 25 percentile biological replicates for strains with more than 5 replicates. The strains 

were sorted by the average of the remaining biological replicates. Any boundary grouping that 

sorted strains into “left” vs “right” was recorded as separable if the following conditions were 

met: (1) the maximum replicate value in the “left” group is smaller than the minimum replicate 

value in the “right” group (2) the difference between the two values is greater than twice the 

average standard deviation of the two strains11 (Supplementary Figure 1). 

Experiments without replicate values: The strains were sorted by the reported average 

of the biological replicates. For every strain in the sorted order, we recorded a phenotype 

separation boundary between the strain and the next adjacent strain if: (1) the strain’s average 

value plus its standard deviation was less than the next strain’s average value minus its 

standard deviation; (2) the difference between these two values is greater than twice the 

average standard deviation of the two strains. 

This resulted in each experiment having zero, one, or multiple possible phenotype 

separation boundaries. Each boundary was considered independently in candidate gene 

matching.  

Genotype data 

Whole genome variant calling 

The raw reads of 48 strains were trimmed, filtered, and aligned to the reference genome 

(C57BL/6J, GRCm38/mm10) using Burrows-Wheeler Aligner (BWA)12 with default settings. Then 

the reads were realigned and recalibrated around indels using GATK(v3.6) 13 with default 

parameters. Single nucleotide polymorphisms (SNPs) and insertion or deletions (indels) 

discovery were performed using BCFtools (v1.9)14 command: “bcftools mpileup -a 

DP,AD,ADF,ADR,SP,INFO/AD -E -F0.25 -Q0 -p -m3 -d500”. Joint calling was performed on 47 

strains (against the reference C57BL/6J strain) using: “bcftools call -mv -f GQ,GP”. Indels were 

then left-aligned and normalized using: “bcftools norm -d none -s -m+indels”. Low quality 

variants were filtered out using: “bcftools view -i ‘MIN(FMT/DP)>3 & MIN(FMT/GQ)>20’” and 
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 “bcftools filter -g3 -G10”.  

Strain-specific variant filtering  

We used Phred quality scores15 to measure variant call quality per strain. We required that the 

most confident call be at least 100 times more likely than the second most confident call (i.e., 

Phred score difference of at least 20). We marked the variant call for the strain as inconclusive 

if the gap was smaller than 20. While inbred mice are bred to homogenize as many of their 

alleles as possible, we kept any high-quality heterozygous calls as heterozygous. 

Comparing and supplementing our sequencing data with a published dataset  

Mouse Genome Project (MGP)16 publishes various mouse genetic variations including SNPs and 

Indels from 37 of our 48 inbred strains. Using their FTP site, we downloaded their SNP and 

Indels VCF on March 04, 2021 (ftp://ftp-mouse.sanger.ac.uk/REL-2004-v7-

SNPs_Indels/mgp_REL2005_snps_indels.vcf.gz). All variants included had already gone through 

quality filtering. We applied the same Phred quality score filtering to find only the conclusive 

calls for each strain. After comparing the two sets, we replaced our inconclusive calls with 

MGP’s conclusive calls.  

Annotating variants with Ensembl VEP 

We annotated each variant using Ensembl Variant Effect Predictor (VEP)17. VEP tags each input 

variant with expected consequences of all relevant transcripts. We downloaded the newest 

version 102.0 for mm10 on February 24, 2021. To remove any ambiguous calls due to alignment 

orientation, we ran VEP using both left and right alignments on our mouse strain variant call 

format (VCF) files. We performed left alignment using GATK’s LeftAlignAndTrimVariants tool 

and the mm10 Fasta sequence file downloaded on March 01, 2021 from: 

https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromFa.tar.gz. GATK’s left 

alignment tool requires index and dictionary files for these Fasta files. We ran samtools faidx 

command to make the index files. We downloaded picard.jar version 2.25.4 from 

https://broadinstitute.github.io/picard/ on March 06, 2021 and ran the following command to 

make the dictionary files:  

java -jar picard.jar CreateSequenceDictionary R=chr*.fa O=chr*.dict 
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Then, using the sequence Fasta files with their index and dictionary files and our VCF files as 

inputs, we ran the following command to make left aligned VCF files: 

gatk LeftAlignAndTrimVariants -R chr*.fa -V chr*.vcf -o chr*_left_aligned.vcf 

We used the VEP Docker image to annotate our VCFs. We ran VEP once with our GATK left 

aligned VCF for left aligned annotations and once with our original VCF with VEP’s –

shift_genomic flag set to True for right aligned annotations.  

Gene set 

We built a gene set from GENCODE VM32 known genes downloaded from the UCSC Table 

Browser18 on March 01, 2021. We removed all transcripts that do not have a coding sequence 

that starts with a start codon (ATG) and ends with a stop codon (TAA, TAG, and TGA).  

Genes with high-impact variants  

We kept a variant if and only if it was tagged with a high-impact consequence to any transcript 

in our gene set by VEP using both left and right alignments (Supplementary Figure 2). High-

impact consequences defined in the VEP documentation are: transcript ablation, splice 

acceptor variant, splice donor variant, stop gained, frameshift variant, stop lost, start lost, and 

transcript amplification. VEP annotates each variant independently. To account for adjacent 

SNPs affecting the same codon, we performed a post processing step to check if the final amino 

acid resulting from the effect of all SNPs would indeed result in a high-impact change. Finally, 

we removed any high-impact variants in predicted genes, RIKEN genes, Olfactory and 

Vomeronasal genes. We represented all genes using NCBI gene IDs. 

Building candidate sets 

For each separable boundary b derived from the phenotypic experiment e, we searched for 

concordant genotype separations for each highly-impacted genes. We merged the genotypes 

per strain per gene g across transcripts and variants (Supplementary Figure 3): 

homozygous reference strain: has no homozygous or heterozygous high-impact 

alternate allele. 

homozygous alternate strain: has at least 1 homozygous high-impact alternate allele. 

heterozygous alternate strain: has at least 1 heterozygous high-impact alternate allele 

and no homozygous high-impact alternate allele. 
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inconclusive strain: has at least 1 inconclusive gap or low-quality allele that may be high-

impact and has no homozygous or heterozygous high-impact alternate allele. 

unsequenced strain: not one of our 48 sequenced strains. 

A candidate gene g is a match for experiment e with boundary b, if the following 

conditions are met: (1) all homozygous alternate strains and all homozygous reference strains 

are separated by b, (2) both sides of b have at least one homozygous strain, (3) there are at 

least 6 total homozygous strains between the two groups, and (4) all heterozygous alternate 

strains are on one side of b. Any unsequenced strains or inconclusive strains can appear on 

either side of b (Supplementary Figure 3). All matching experiment e, boundary b, gene g, (e, b, 

g) triplets form our trait-specific candidate set.   

Validating against known causative gene-phenotype relationships  

We searched for known gene-phenotype relationships in our candidate set as proof of principle 

to our approach. We used Mammalian Phenotype (MP)5, an ontology of phenotypes observed 

in mice, to find matches.  

 For each experiment e, we obtained one or more MP terms Φ𝑒, denoting the phenotype 

measured in e from the experiment source (MPD or MGD). For each gene g, we obtained a set 

of zero or more MP terms Φ𝑔, denoting the phenotype annotations supported by single gene 

knockouts from MGD. Φ𝑔 for all available genes were downloaded on April 26, 2021 through 

http://www.informatics.jax.org/downloads/reports/MGI_PhenoGenoMP.rpt.  

For each trait-specific candidate (e, b, g) we generated, we first asked whether 

|Φ𝑒 ∩ Φ𝑔| > 0, which implies a known causal relation between e and g. All such matches are 

listed in Table 1, and they represent cases where our candidate gene has already been shown 

to underlie the measured trait in experiment e.  

MP terms are organized in a hierarchical structure where a lower, more specific term 

(i.e., descendant terms, 𝐷(Φ)) is implied by its higher, more general term. Since the 

experiments measure a spectrum of phenotypes across different strains, they are often tagged 

with a more general term than the gene. As an example, the experiment MPD:22970 is tagged 

with “abnormal mean corpuscular volume (MP:0000226)”, whereas its candidate gene Foxp3 is 

tagged with the more specific descendant term “increased mean corpuscular volume 
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(MP:0002590)”. To benefit from this hierarchical structure, we also listed additional positive 

controls |Φ𝑒 ∩ 𝐷(Φ𝑔)| > 0 in Table 2. 

Literature-based discovery (LBD) classifier 

Motivation 

Encouragingly, over 200 gene-phenotype relationships from our trait-specific candidate sets 

were previously known (Figure 1). This indicates our method is effective in discovering true 

relationships. At the same time, thousands of our gene-phenotype hypotheses currently have 

no reported causative relationship, suggesting many exciting hypotheses yet to be discovered. 

Some of our experiments yielded very few novel candidate genes. Table 3 holds a 

sample of experiments with fewer than 10 candidate genes.  

The remaining experiments each have as many as 103 candidate genes. To build a small 

set with compelling evidence for further investigation, a researcher would need to carefully 

read literature on all candidate genes we matched in each experimental context. To mimic the 

process, we devised a supervised Machine Learning (ML) approach to predict which gene-

phenotype relationships would become true in a few years based on existing literature 

evidence. Briefly, we trained a ML classifier to learn patterns from literature up to year T0 to be 

predictive of gene-phenotype relationships that were discovered later at some time T1. We 

used the trained classifier to prioritize the most promising novel candidates for each mouse 

inbred strain experiment e (Supplementary Figure 4A). Exciting examples are shown in Table 4.   

MeSH-publication relationships  

We used PubMed, a database of over 33 million peer-reviewed biomedical publications, as our 

literature source. They key topics mentioned in PubMed papers are manually indexed using the 

Medical Subject Heading (MeSH) ontology19,20. These topics include functional annotations but 

not gene mentions. Similar to MP, MeSH is also organized in a hierarchical structure with 

descendant terms are implied in the ancestor terms. For example, “Microcephaly (D008831)” is 

a descendant of “Disease (D004194)”. MeSH term annotations per paper (in PubMed ID, or 

PMID) were downloaded from https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/ on April 12, 

2022.  
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Gene-publication relationships  

We downloaded mentions of genes in each PubMed abstract from Pubtator Central21. Pubtator 

Central21 is a natural language processing (NLP) tool that tags PubMed papers with recognized 

entities such as genes. The mappings between genes (in NCBI ID) and abstracts (in PMID) were 

downloaded using https://www.ncbi.nlm.nih.gov/research/pubtator-api/ on April 12, 2022.  

Publication graph 

To encode relatedness, we built a publication graph where a node is either a MeSH term or a 

gene. We extended an undirected edge between any two nodes (MeSH-gene, gene-gene, or 

MeSH-MeSH) if there is at least one paper that mentions them together (Supplementary Figure 

4B).  

Setting up the learning task 

Our supervised learning task requires a set of labeled examples (positive or negative) and a 

learning algorithm. Each example is represented by a set of scalar values (i.e., features).  

Single-gene knockout positive set 

We trained our ML classifier on positive examples derived from papers that describe the 

phenotypic impact discovered in single-gene mouse knockout (KO) experiments. A single-gene 

mouse knockout paper is tagged as a knockout of exactly one gene in MGD and tagged with a 

MeSH term, “Mice, Knockout (D018345)” in PubMed.  

We downloaded these papers from MGD’s MouseMine API 

(https://www.mousemine.org/mousemine/begin.do) on April 12, 2022. Each single-gene g KO 

paper was tagged with one or more phenotype MeSH terms m to build a set of (g, m) pairs. 

Given all the literature evidence at time T0, we aim to predict which (g, m) pairs would be 

discovered at some later time T1 (Supplementary Figure 4A, C). 

Building retrospective single KO train and test sets 

To propose plausible (g, m) pairs for future discovery, we used the open discovery “ABC” 

method22,23. For a node A in our graph, we found nodes, C, that are linked at T0 by one or more 

intermediary node B (i.e., A-B and C-B edges) to A but have no direct A-C link. All A-C links are 

candidates for discovery at T1. To perform retrospective analysis, we built a time-specific 
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publication graph using papers published up to T0 and compared it against a publication graph 

at T0 + 5 (Supplementary Figure 4C).  

We used two publication graphs to train our model: the 2010 graph (i.e., T0) and the 

2015 (i.e., T0 + 5) graph. We found (g, m) pairs mapped to single-gene knockout publications 

published between (2010, 2015]. We discarded a (g, m) pair if any of the following was true: (1) 

g and m were directly linked in the 2010 graph, (2) either g or m were not found in the 2010 

graph, or (3) g and m did not share an intermediate node in the 2010 graph. The remaining 

pairs are our positive examples.  

We added negative examples (i.e., (g, m) pair not discovered by 2015) for each MeSH 

term m that is part of at least 1 positive example. A (g, m) pair is a negative example if the 

following conditions were met: (1) g is a mouse protein-coding gene from our gene set found in 

the 2010 graph, (2) g shares at least 1 intermediate node with m in the 2010 graph, and (3) g 

does not have a direct link to m in the 2010 and the 2015 graph. 

 We repeated the same operations with the 2015 graph and the 2020 graph to test our 

algorithm (Supplementary Figure 4A, Figure 2A).  

Open discovery resulted in thousands of negative examples for each positive example 

(see results), making ranking the positive examples on top a challenging task.  

Building rediscovered test set and candidate hypothesis prediction set 

Because we matched genomic signatures to phenotypic separations, our actual sets of 

candidate genes are orders of magnitude smaller. To assess the performance of our algorithm 

on our set of novel hypotheses, we applied it to our set of rediscovered hypotheses 

(Supplementary Figure 4A, Figure 2B). Then we applied the method to our novel candidates to 

prioritize the most exciting hypotheses (Table 4). 

Since PubMed uses MeSH terms to annotate papers, we mapped each phenotypic 

experiment e to zero or more MeSH terms m that denote the phenotype measured in e. 

 From our rediscovered test set (Tables 1 and 2, see Figure 1), we selected a set of 

experiment e and boundary b that has at least 10 candidate genes. From this set, we searched 

for positive (g, m) pairs where g and m only shared intermediate nodes in 2015 but were 
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directly linked in the 2020 graph. All non-positive (g, m) pairs from the same experiment e and 

boundary b were labeled negative (Supplementary Figure 4A, Rediscovered single KO test set).  

 Finally, our candidate hypothesis prediction set contained novel (g, m) pairs that as of 

July 2022 have no known relationship in MP or MeSH (Supplementary Figure 4A, Candidate 

hypothesis prediction set).  

Classifier features  

We used the publication graph to provide the classifier a set of features (i.e., clues) that 

represent each gene g, MeSH term m, (g, m) pairs in our sets.  

We used the appropriate time-specific publication graphs to build these features. For 

example, we used the 2010 graph to build features to predict relationship status in 2015.  

We first define these terms for node u and v (MeSH term or gene) in our publication 

graph to help explain each feature: 

 Neighbors of u: 𝑁(𝑢) =  𝑠𝑒𝑡 𝑜𝑓 nodes directly connected to u  

 Degree of u:  𝑑(𝑢) = |𝑁(𝑢)|   

 Publications of u: 𝑝(𝑢) =  publications that mention 𝑢 

 Weight of an edge connecting u and v: 𝑤(𝑢, 𝑣) =  ∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑢) ∩ 𝑝(𝑣)
𝑖  

 Paper score of i: 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖) =  
1

𝐺(𝑖)
 , 𝐺(𝑖) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛 𝑖  

The following features are used in our classifier: 

Degree of the gene: 𝑑(𝑔) (number of nodes directly connected to g) 

Common neighbor24: |𝑁(𝑔) ∩ 𝑁(𝑚)| (number of nodes directly connected to g and m)  

Adamic Adar25: ∑
1

log (𝑑(𝑛))

𝑁(𝑔) ∩ 𝑁(𝑚)
𝑛  (sum over the inverse log of number of nodes 

directly connected to shared neighbors of g and m ) 

Preferential attachment24: 𝑑(𝑔) ∗ 𝑑(𝑚) (number nodes directly connected to g times 

number nodes directly connected to m) 

Gene publications: ∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑔)
𝑖  

Human ortholog link: The weight of the edge between m and g’s human ortholog. 

Orthologous relationships are defined by Ensembl 102, latest version with mm10, downloaded 

from http://nov2020.archive.ensembl.org/biomart/martview/ on September 3, 2021. If there 
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were multiple orthologs then the average value is used, and if there is no direct edge or there is 

no human ortholog in the graph then we assign (-1).  

BITOLA confidence26: ∑
𝑤(𝑚,𝑛)

∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑚)
𝑖

∗
𝑤(𝑛,𝑔)

∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑛)
𝑖

𝑁(𝑔) ∩ 𝑁(𝑚)
𝑛  

Reverse BITOLA confidence: ∑
𝑤(𝑚,𝑛)

∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑛)
𝑖

∗
𝑤(𝑛,𝑔)

∑ 𝑝𝑎𝑝𝑒𝑟 𝑠𝑐𝑜𝑟𝑒(𝑖)
𝑝(𝑔)
𝑖

𝑁(𝑔) ∩ 𝑁(𝑚)
𝑛  

MeSH term’s gene neighbors: the number of genes directly mentioned with m. 

Mean expression: find top 5 anatomical entities (i.e., descendant MeSH terms of 

“Anatomy (D000715)” such as “Brain (D001921)”) that are most often co-mentioned with m. 

Then take the average of the Adamic Adar scores between the top 5 anatomical entities and g.  

Classifier model 

We used a Gradient Boosting Tree Classifier27 to assign scores to each example. The score is a 

number ranging from 0 to 1, and a higher number indicates the example is more likely to be 

positive. Gradient Boosting Trees is a supervised method which means it is presented with a 

large number of labeled examples (i.e., training set) and it learns to distinguish the two labels 

by minimizing the final entropy. It is an ensemble method that involves a series of decision 

trees that are iteratively constructed to optimize the performance on hard-to-classify training 

examples. In each iteration, any examples that were misclassified (a positive example classified 

as negative, or vice versa) have a higher chance of being selected in the next iteration so that 

the decision trees can learn to classify them correctly. We used a Gradient Boosting Tree 

Classifier implementation contained in the python package sci-kit learn v0.18.1.  

The Gradient Boosting Tree function F of input x in stage m (value of the output at the 

stage m) is calculated using the formula below:  

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝛼𝛾𝑚ℎ𝑚(𝑥) 

𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿 (𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛼𝛾ℎ𝑚(𝑥𝑖)) 

𝑛

𝑖=1

 

where m is a value that is chosen to minimize the loss function and gets multiplied to a decision 

tree hm.  is a hyperparameter that represents the learning rate which controls how much each 

tree contributes to the output. 

Existing methods and baselines 
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We compared our classifier’s performance against 8 existing methods. We used 6 non-learning-

based methods: Common neighbor (CN)24, Adamic Adar (AA)25, Jaccard coefficient (JC)28, 

BITOLA confidence (BC)26, Gene publications (GP), and Linking Term Count with Average 

Minimum Weight (LTC-AMW)29.  

We also used 2 learning-based methods: Random Forest approach described in Kastrin 

et al.24 and neural LBD by Crichton et al.22. The non-learning-based methods’ scores were 

calculated for the retrospective single KO set, and the learning-based methods were trained 

and tested using the same inputs as our LBD classifier. 

Model evaluation 

Performance is measured by how often a gene with a causative relationship to the measured 

trait is ranked at or near the top.  

 We have a set of candidate genes per each phenotype MeSH term m in the 

retrospective single KO test set and per each experiment e, MeSH term m, and boundary b in 

the rediscovered test set. We reported the rank of the causative gene g within the group of 

candidate (positive and negative) genes (Figure 2). 

Explaining our predictions using supporting literature evidence  

To facilitate follow up researcher evaluations of our highest-ranking hypotheses, we sought to 

highlight each pair of phenotype-candidate gene with a curated list of papers that helps support 

our predictions. 

 We first selected up to three most relevant intermediate nodes (MeSH term or gene) 

linking the phenotype MeSH term and the hypothesis gene using the BITOLA confidence score. 

Then, we reported the most recent paper that mentions the evidence terms and the hypothesis 

gene. If there are multiple papers published in the same year, we picked the paper with the 

highest paper score (Supplementary Figure 5). 
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Results 

The workflow of our results is shown in Figure 1.  

Phenotype data 

Inbred mouse phenotype data 

11,783 measurements were downloaded from MPD. We kept 4,939 measurements after 

removing any experiment that did not use at least 6 of our sequenced strains (Supplementary 

Table 1). 610 of them were not expected to be genotypically relevant (e.g., reporting mouse 

age at time of experiment). The remaining 4,329 measurements were used for candidate gene 

selection. Along with 49 additional experiments we created for presence/absence trait MGD 

reported across 14 of our strains (see Methods).  

Phenotype separation boundaries  

4,110 suitable MPD cases were reported in biological replicate values and the remaining 219 

cases were only reported in average, standard deviation, and number of replicates used.  

729 suitable MPD cases had at least one phenotypically separable boundary 

(Supplementary Figure 1). 49 experiments we added were separated by the absence/presence 

of the MP term. In total, we found 1,133 phenotype separation boundaries in 778 experiments.  

Genotype data 

Whole genome variant calling 

We kept 23,230,042 SNPs and indels among 48 mouse inbred strains after discarding any 

variant that failed to meet the quality threshold (Supplementary Figure 2). 

Strain-specific variant filtering  

Using Phred-quality scores to filter strain-specific calls, 1.51-12.1% of SNPs and indels had 

inconclusive calls per each of the 47 strains (excluding the reference strain). Through 

generations of sibling mating, inbred mice are expected to have largely homogenized alleles. 

Indeed, we found that only 0.18-0.75% of our variant calls were high quality heterozygous.  
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Comparing and supplementing our sequencing data with a published dataset  

We found that 742,480,455 or 99.9% of our 743,170,690 conclusive allele calls in the 

overlapping 37 strains were supported by the MGP data (732,135,280 or 98.5% identical and 

10,345,175 or 1.4% inconclusive by MGP). 

 5,812,957 (23.3%) of 24,925,741 calls we called inconclusive were called conclusively by 

MGP. After supplementing with MGP, our final calls in 47 strains include 817,092,836 (74.8%) 

homozygous reference, 232,498,308 (21.3%) homozygous alternate, 6,039,276 (0.6%) 

heterozygous, and 36,181,554 (3.3%) inconclusive calls. 

Gene set 

Our gene set contained 50,527 transcripts of 21,713 unique protein coding genes. In our 

downstream analysis, we only considered VEP’s variant consequences that affect the 

transcripts in our gene set.  

Genes with high-impact variants  

We identified 2,178 transcripts for 1,409 genes with at least 1 high-impact variant in at least 

one non-reference inbred mouse strain (Supplementary Figure 2). A high-impact variant can be 

either homozygous or heterozygous for one, or even two different high-impact alleles (e.g., 1/2 

where 1 and 2 both represent high-impact alternate allele).  

Building candidate sets 

Each of 1,133 separable phenotypic boundaries, was compared to our 1,409 highly-impacted 

genes to build a candidate gene-phenotype set (Supplementary Figure 3 and Methods). A total 

of 906 phenotype separations in 718 unique experiments had at least 1 candidate gene with an 

average of 17.53, a median of 12, a minimum of 1, and a maximum of 103 candidate genes per 

phenotype separation.  

Previously reported causative gene-phenotype relationships  

We downloaded 296,254 gene markers to phenotype relationships (33,010 markers and 10,741 

MP terms) from MGD4. We mapped the gene markers to NCBI gene IDs in our gene set and kept 

only gene-phenotype relationships unambiguously mapped to 1 gene. The resulting set 

included 190,623 single gene-phenotype relationships among 10,054 MP terms and 12,551 

protein-coding mouse genes.  
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Candidate genes previously linked to the measured phenotypes 

Exact Match  

We found 22 gene-phenotype relationships where the gene and the experiment were tagged 

with the same MP term suggesting our approach (Figure 1) picked the correct gene to explain 

the experiment (Table 1). Interestingly, in only one of the cases, the high-impact variant we 

found had an MGD record of causing the measured phenotype. In all other cases, depending on 

the completeness of MGD, we may be the first to report the strain(s) specific potentially 

causative variant(s). 

 For example, DBA/2J mice had elevated red blood cell counts compared to 10 other 

strains (MPD:22903). 33 candidate genes fit this phenotype separation and only 1 gene, Cd33, is 

known to cause the same phenotype, Abnormal erythrocyte cell number (MP:0001586). DBA/2J 

uniquely has a stop gain mutation (GRCm38/mm10 chr7:43528894) in Cd33 that may explain 

abnormally high red blood cells in this strain but missing in MGD.   

 Full details of all cases are available at aimhigh.stanford.edu (Supplementary Figure 6). 

Descendant match  

There were 190 gene-phenotype relationships where the gene was mapped in MGD to a more 

specific (descendant) MP term of the experiment phenotype. These are shown in Table 2. Only 

one high-impact variant is known in MGD, and other variant-phenotype relationships may be 

novel. Full details of all cases are available at aimhigh.stanford.edu (Supplementary Figure 6).  

 As an example, MPD:1903 measured non-HDL cholesterol levels in 14 mouse strains and 

found abnormally high non-HDL cholesterol level in NZB/BINJ mice. This experiment is tagged 

with Abnormal circulating non-HDL cholesterol level (MP:0020151). Among 41 candidate genes 

that contained a unique high-impact variant in NZB/BINJ, Prlhr is the only gene annotated with 

a matching descendant phenotype term, Increased circulating LDL cholesterol level 

(MP:0000182). There is a potentially causative stop gain mutation (GRCm38/mm10 

chr19:60467194) in NZB/BINJ not found in any other strains, and this variant is not recorded in 

MGD.  
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Literature-based discovery (LBD) classifier 

MeSH-publication relationships  

We downloaded a vocabulary of 29,405 MeSH terms tagging 28,726,608 of 33,425,447 papers 

published between 1902 and 2022 for a total of 303,924,223 MeSH term m, publication pub (in 

PMID), (m, pub) pairs. 

Gene-publication relationships  

We downloaded 177,518 genes from 3,478 species mentioned in 6,661,514 papers published 

up to 2022, for a total of 14,632,626 gene g, publication pub, (g, pub) pairs. 

Publication graph 

The full 2022 graph used to featurize our candidate hypothesis prediction set (Supplementary 

Figure 4A) has 79,306,096 edges. Nodes have 48 median direct neighbors and the density of the 

graph, a ratio of number of edges present over the maximum number of possible edges in our 

graph, is 0.004.  

Single-gene knockout positive set 

We downloaded 117,438 papers that contain the “Null/Knockout” attribute and are linked to 

exactly 1 gene. 61,403 papers describe a phenotype measured indicated by tagged disease 

MeSH terms about 8,268 unique mouse protein-coding genes.  

Building retrospective single KO train and test sets 

For the retrospective single KO train set, the labels of each gene g, MeSH term m, (g, m) pairs 

(i.e., positive for relationships defined by a single-gene knockout paper and negative for 

unknown relationships) were derived from single-gene mouse knockout papers that were 

published between 2011 and 2015, inclusive (Supplementary Figure 4A). This set consisted of 

1,619 positive edges and 2,516,571 negative edges for 568 MeSH phenotypes (2.9 positive and 

4,421.7 negative mouse genes per MeSH term on average). 

For the retrospective single KO test set, we used single-gene mouse knockout papers 

that were published between 2016 and 2020, inclusive. This set consisted of 1,130 positive 

edges and 2,586,932 negative edges for 469 MeSH phenotypes (2.4 positive and 5515.8 

negative mouse genes per MeSH term on average). 
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Building rediscovered test set and candidate hypothesis prediction set 

We mapped 906 phenotype groupings to 170 unique MeSH terms. 47 phenotypes such as 

“KRTAP14, spectral counts, hair proteomics (MPD: 49233)” were not mapped because they 

lacked a suitable MeSH term.  

In our rediscovered test set, we found 41 positive (g, m) pairs with at least 10 candidate 

genes whose direct relationship was established after 2015, with a total of 898 negative pairs. 

Per experimental boundary, there were 24.1 candidates and only 1.1 of them came true after 

2015 on average. Note that our phenotype-genotype matching (Figure 1 and Supplementary 

Figure 3) results in a significantly reduced candidate hypotheses compared to the literature-

based, open discovery “ABC” method22,23 used in the above sets.  

In our candidate hypothesis prediction set, we found 13,652 novel (g, m) pairs whose 

experiment had at least 10 candidate genes and no known relationship to the measured trait. 

Per experimental boundary, there were an average of 24.7, a minimum of 10 and a maximum 

of 103 candidate genes. 

Classifier performance 

Open discovery is useful in automatically generating hypotheses10,22, but this approach resulted 

a very large candidate hypotheses set (thousands of negative examples for each positive 

example). In Figure 2A, we show that on this exceptionally difficult task, our AIMHIGH classifier 

beats 8 existing methods. For example, in the retrospective single KO test set  

it ranks the positive edge in the top 10 among over 5,000 candidate genes in 34 out of 469 

MeSH terms (7.4%) compared to 2.6% by the next best method, BITOLA confidence26.  

We tested AIMHIGH on a secondary test set to assess how it would perform on a set 

with more realistic candidate sizes. Figure 2B shows this using our rediscovered test set. After 

2015, predicted from the 2015 graph it ranked the positive gene among top 3 in 79.5% of the 

cases compared to the expected 4.8% if we ranked all hypotheses randomly (Figure 2B).  

Novel hypotheses 

Novel cases with few candidates  

1,092 gene-phenotype relationships from our inbred strain analysis did not have a known 

explanation and had fewer than 10 candidate genes per phenotype boundary. In such cases, all 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2022. ; https://doi.org/10.1101/2022.08.07.503105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.07.503105
http://creativecommons.org/licenses/by-nd/4.0/


 20 

candidates can be reviewed closely in search of enticing hypotheses for testing. 17 such gene-

phenotype relationships with at least 4 homozygous allele strains in the smaller phenotype 

group are shown in Table 3. Full details for all 1,092 relationships are available on at 

aimhigh.stanford.edu (Supplementary Figure 6).   

 For example, 7 strains showed low respiratory exchange ratio (RER) compared to 6 

other measured strains (MPD:9214, MPD:9215, MPD:9216). RER is the ratio between carbon 

dioxide produced through metabolic process and oxygen consumed. Lower RER indicates higher 

fitness level and higher muscle’s ability to get energy30. Only 1 candidate gene was found to 

match this phenotype split, Eif1ad16, eukaryotic translation initiation factor 1A domain 

containing 16. Among the 7 strains in the lower group, 4 strains (A/J, AKR/J, FVB/NJ, and SJL/J) 

had a homozygous frameshift mutation, 2 strains (BTBR T<+> Itpr3<tf>/J and C3H/HeJ) had 

inconclusive calls, and 1 strain (129S1/SvImJ) had a heterozygous mutation in this gene. All 

strains in the higher group had homozygous reference alleles except LP/J which had an 

inconclusive call. Eif1ad16 is currently not associated with any phenotypes in MGD. However, 

the eukaryotic translation initiation factor family are key regulators of translation initiation, and 

genes in this family have been suggested to initiate protein synthesis during recovery after 

resistance training31. We hypothesize that the strains high-impact variant in Eif1ad16 have 

faster muscle protein metabolism indicated by lower RER. 

LBD classifier’s top-ranked predictions  

Inspired by our rediscovered test set, we focus on the top 3 candidates predicted by AIMHIGH 

in all cases where 10 or more candidate genes exist. We found 750 most promising novel gene-

phenotype hypotheses. A few examples are shown in Table 4 and discussed below.  

 MPD:5608 measured median current to trigger psychomotor seizure. C57BL/6J showed 

the highest resistance compared to 8 other phenotyped strains. 6 of the 8 strains were 

sequenced and all shared the same frameshift variant in Brain expressed, associated with 

Nedd4, 1 (Bean1) gene. Our classifier ranked this gene above all other 22 other candidate 

genes. Bean1 is expressed in the central nervous system32,33, and the paralog of Nedd4 has 

been linked to susceptibility to seizure34.   
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 A fear test after exposing mice to nicotine showed that A/J mice were less sensitive to 

nicotine effects compared to 7 other strains (MPD:47141). 30 candidate genes fit this 

phenotype split. Our classifier ranked Gfra2 highest on the list. Promising evidence showed that 

cholinergic neurons are activated by nicotine35, and Gfra2 is required for the survival of 

cholinergic neurons36,37.  

 MPD:11012 measured diastema to pogonion distance. C57BL/6J and C57BL/10J had 

longer distances than all other the measured strains. These two also were the only strains 

phenotyped that had the homozygous reference allele in Smad6. There were 68 candidate 

genes that fit this phenotype split, but the classifier ranked this gene highest. Encouragingly, 

MGD has recorded that Smad6 is expressed in the mandible, and this gene has been shown to 

be correlated with malocclusion38.    

 Hundreds of similar leads can be found at aimhigh.stanford.edu (Supplementary Figure 

6). 

Interactive web interface  

aimhigh.stanford.edu holds an easy-to-use web interface for users to view all of our findings in 

detail. There are four webpages corresponding to Tables 1-4. See Supplementary Figure 6. 
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Discussion 

We present AIMHIGH, an automated approach (detailed in Figure 1) to suggest gene-phenotype 

testable hypotheses from community-contributed multi-strain phenotypic experiments and 

multiple strain genomes. By automatically finding one or more candidate gene whose high-

impact variants split concordantly with the phenotypic measurement splits, we rediscovered 

hundreds of experimentally proven gene-phenotype relationships, validating our approach. 

Nearly all variants we highlighted in the context of these known gene functions are not found in 

MGD. More excitingly, we made thousands of potentially novel gene function hypotheses in 

experiments where we none of the matched candidates are already known to cause the 

measured phenotype.  

We developed a machine learning approach that leverages existing literature to 

highlight a handful of most promising gene candidates among 10 or more such candidates. Our 

approach relies on relatedness of the millions of peer-reviewed papers indexed by PubMed and 

annotated by MeSH and PubTator Central. We started by improving the state of the art in 

literature-based open discovery, working with an extremely challenging set of thousands of 

candidate genes for every gene function hypothesis where only few were validated 5 years 

from our prediction time. We purposefully chose a relatively long time-period so that seemingly 

new discoveries will not simply be from those papers archived, or conference abstract 

announced at the time we make our predictions. 

We then see again the power of our candidate building approach, which reduced the 

number of candidate genes per phenotype by two orders of magnitude compared to literature-

based search. We show that even on the set without a known causative gene, one may only 

need to read on our top 3 highest ranked candidates per unexplained experiment to find the 

most plausible hypotheses. 

 Our goal throughout the screen is to avoid false positive predictions. Conservatively, we 

only screened for high-impact variants that are more likely to impact the protein function. 

Variants that can be left shifted or right shifted to provide an alternative, less impactful, 

interpretation are discarded, and more. 
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In the future, one can consider ways to extend our approach to lower impact variants 

such as non-synonymous substitutions (most of which have only a modest effect on gene 

function) and to structural variants (whose impact may often be high, but whose confident 

calling is challenging). Likewise, one can consider extending from the binary split we make into 

ones with more states, though the mapping of multi phenotypic groups to observed genomic 

changes becomes more challenging. 

To encourage our colleagues to discover novel biology using our exciting predictions, we 

built a web portal at aimhigh.stanford.edu, which houses all of our rediscovered and novel 

predictions. Our code is also open sourced, so that anyone can rerun it as is, with new 

sequenced strains, additional phenotypic experiments, presence/absence traits or newly 

published literature strengthening our inference and deriving novel testable hypotheses. 

Data and code availability 

Data and code will be available upon publication at https://github.com/bejerano-

lab/AIMHIGH.git. 
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Figures & Tables 

Supplementary Table 1.  48 strain names used in this project along with their MGI strain ID, 

Jackson lab catalogue number, MPD strain ID, and where these strains were sequenced.  
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Figure 1. 

 

 

Figure 1. Paper overview. Grey boxes (e.g., Table S1, Fig 2) indicate illustrations and results 

accompanying each step. (A) For every experiment with multi-strain data in Mouse Phenome 
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Database (MPD) and strain-specific presence/absence phenotypes annotated by Mouse 

Genome Database (MGD), we automatically sought trait values that would partition all 

measured strains into two groups. For each such phenotypic split, we sought one or more 

mouse gene with a matching genotypic split, using only the high-impact genomic variants that 

likely severely modify protein products. Each such match constitutes a trait explaining, possibly 

novel, hypothesis made by our approach. (B) Next, we used MGD known gene function 

annotations to find hundreds of gene function hypotheses we made that have already been 

successfully validated by single gene knockout experiments. In all but two such cases, even 

when the gene level function was already known, the high-impact variant(s) we discover in 

different strain genomes was not annotated in MGD. Encouragingly, we have thousands of 

additional gene function hypotheses for phenotypic experiments, suggesting rich grounds for 

novel gene function discovery. To aid with searching literature evidence for the most plausible 

candidate, we built a novel Literature-Based Discovery (LBD) framework. Finally, a web portal 

was developed to support easy browsing of all of our results. 
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Supplementary Figure 1. 

   

 

Supplementary Figure 1. Phenotype separation. We first sort strains by average intra-strain 

phenotype value. Then we consider each boundary (n-1 if n is the number of phenotyped 

strains) to see if it is separable. To be separable, the right group’s minimum must be larger than 

the left group’s maximum (i.e., the gap is positive), and the sum of the standard deviations of 

the two strains flanking the boundary must be smaller than the gap size itself. (A) An example 

separable boundary between strain 1-3 and strain 4. (B) An example of a non-separable 

boundary.  
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Supplementary Figure 2. 

 
Supplementary Figure 2. High-impact genomic variants. Using reference strain, C57BL/6J 

(MGI:000664), we called variants in 47 mouse strains (Supplementary Table 1). After filtering 

for quality, our calls were 98.5% identical to Mouse Genome Project (MGP) calls for strains that 

were available in MGP. We used their higher quality calls to augment ours, and then used 

Ensembl Variant Effect Predictor (VEP) to retain only high-impact variants such as stop gain or 

loss. Variants with more than one alignment were kept only if both alignments resulted in high-

impact variants. Finally, we filtered out variants in large families of predicted and smell 

associated genes (see methods). The resulting set of high-quality candidate genes were 

matched against any phenotypic separation in Figure 1A.  
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Supplementary Figure 3. 

 

 

Supplementary Figure 3. Phenotype-genotype matchings. (A) Left: An example experiment is 

found (automatically) to separate strains 1-2 from strains 3-8. Note that because the unit of 

measurement is arbitrary, calls of high/low, gain/loss are replaced simply by (L)eft and (R)right. 

Right: We tried to match four genes to the phenotype split. Gene 1 is a mismatch because of 

high-impact homozygous alternate calls in both groups (strains 1, 2, and 7). Gene 2 is a 

mismatch because of high-impact heterozygous alternate calls in both groups (strains 1 and 3). 

Gene 3 is a match (note that sequencing or genotyping strain 8 or a conclusive call in strain 3 
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can revoke the match). Gene 4 is also a match. (B)  How gene 3 from (A) would be shown in our 

web interface (Figure S6).  
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Table 1. Known gene functions successfully rediscovered by our approach. In all shown cases, 

the candidate gene listed is already known to cause the experimental phenotype. However, 

only in the first (Pde6b) is the high-impact variant we found documented in MGD. See all details 

at aimhigh.stanford.edu (Supplementary Figure 6).   
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Table 2. Additional known gene functions successfully rediscovered by our approach. In Table 

1, the gene annotated function was identical to the experimental term. Here, the gene 

annotated function is a descendant term of the experimental term. For example, the 

experiment was tagged with abnormal body weight while its candidate gene, Pax5, is annotated 

with decreased body weight. Because of the large number of matches, we aggregated results 

by the experimental term. See all details of each match at aimhigh.stanford.edu 

(Supplementary Figure 6).  
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Table 3. A sampler of novel hypotheses with few candidate genes. Many of our novel 

hypotheses have very few matching candidate genes per experiment. A handful is shown here. 

All matches with fewer than 10 candidate genes per experiment are available at 

aimhigh.stanford.edu (Supplementary Figure 6).  
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Supplementary Figure 4. 

 

Supplementary Figure 4. A machine learning framework to highlight our most promising novel 

testable hypotheses. (A) The classifier learns from examples in the retrospective single KO train 

set (i) to distinguish gene-phenotype relationships that became known in literature against 

gene-phenotype relationships that remained unknown (see methods). Performance of the 

classifier is measured on the retrospective single KO test set (ii) and our rediscovered test set 

(iii). Finally, the verified classifier is applied on our candidate hypothesis prediction set (iv) to 

prioritize the most promising candidates. (B) Each entity in the publication graph is either a 

MeSH term or Pubtator Central’s gene entity. For each paper, we obtained its MeSH tags, gene 

tags, and publication date. Undirected edges are extended between all MeSH terms and genes 

that are discussed in the same paper. (C) The retrospective sets are built using the open 

discovery framework on time-specific publication graphs (see methods). In the example, at time 

T0, the MeSH term shown is (only) indirectly linked to two candidate genes. By T0 + 5 years, only 

Gene1 was shown to be directly related (potentially causative) to the term. In the language of 

panel A, X = ((MeSH, Gene1), (MeSH, Gene2) and Y = ((+),(-)). 
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Table 4. A sampler cases where our classifier (Figure 1B) singles out biologically exciting 

candidate genes. All novel hypotheses, including our classifier’s top-ranking genes and 

supporting literature are shown at aimhigh.stanford.edu (Supplementary Figure 6). 
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Figure 2. 

 

Figure 2. Predicting which gene function hypotheses would be proven over a 5-year period. (A) 

Our machine learning classifier performance on an open discovery set built from mouse single 

gene knockout papers, where on average out of 5515.8 candidate genes, only 2.4 genes are 

verified over the next 5 years (see Methods). While this task is difficult for all 8 approaches, 

AIMHIGH clearly improves the state of the art. (B) By matching phenotypic separation with 

genotypic separation (Figure 1 and Supplementary Figure 3), we greatly reduce the search 

space for each trait. When we apply our classifier to known cases in our set (Tables 1 and 2) 

with at least 10 candidate genes discovered over the same 5 year period, we see that the 
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causative gene ranks in top 3 in nearly 80% of cases (compared to 4.8% if 3 candidate genes are 

picked at random), suggesting that reading (or even directly testing) a handful of our top-

ranked novel candidate genes may be highly effective in discovering novel biology. See 

Methods for more on all 8 tested approaches. 
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Supplementary Figure 5.  

 

Supplementary Figure 5. Explaining our classifier’s predictions using supporting literature. We 

ranked all intermediate nodes linking the phenotype term and the highlighted hypothesis gene 

using BITOLA confidence (see Methods). At the top would be intermediate terms most often 

co-mentioned with both phenotype and gene and therefore, possibly important in linking the 

two. For each evidence terms, our portal shows (Supplementary Figure 6) the most recent 

paper that mentions both term and gene. 
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Supplementary Figure 6. 

 

Supplementary Figure 6. Roadmap of our web interface. We made all of our hypotheses 

available at aimhigh.stanford.edu. Each manuscript table (1-4) has a corresponding home page, 

formatted identically. The user can follow the purple instructions in each table to view details 

about each hypothesis, which include a phenotype plot with our derived boundary and a 

matching genotype plot. When applicable in Table 3 and Table 4, intermediate nodes and 

representative papers that may help evaluate the novel gene function hypothesis are also 

presented. In Table 4, our classifier result plot is also shown, with the selected gene hypothesis 

shown in red. Each page also has external links to the original data source (e.g., MPD and MGD) 

to aid in further evaluation.  
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