

1 **Pink1-mediated mitophagy in the endothelium releases proteins**
2 **encoded by mitochondrial DNA and activates neutrophil responses**

3
4 Priyanka Gajwani¹, Li Wang^{2,3}, Shubhi Srivastava^{2,3}, Zijing Ye^{2,3}, Young-Mee Kim^{2,3}, Sarah
5 Krantz^{1,2}, Dong-Mei Wang¹, Chinnaswamy Tiruppathi¹, Peter T. Toth^{1,4} Jalees Rehman^{1,2,3,5}.

6
7 ¹Department of Pharmacology and Regenerative Medicine, University of Illinois College of
8 Medicine, Chicago, IL 60612, USA

9 ²Division of Cardiology, Department of Medicine, University of Illinois College of Medicine,
10 Chicago, IL 60612, USA

11 ³Department of Biochemistry and Molecular Genetics, The University of Illinois College of
12 Medicine, Chicago, IL 60607.

13 ⁴Research Resources Core, University of Illinois at Chicago, Chicago, IL 60612, USA

14 ⁵University of Illinois Cancer Center, Chicago, IL 60612, USA

15
16 *Please address correspondence to:
17
18 Jalees Rehman (jalees@uic.edu)
19 Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine
20 900 South Ashland Ave (MC 669), Chicago, IL, 60607
21 Phone: (312) 996-5552, Fax: (312) 996-1225

22
23 **Author Contributions:** The study was conceived and supervised by J.R. The experiments were
24 designed, performed, and analyzed by P.G., L.W., S.S., Z.Y, Y.M.K., D.M.W, S.K., C.T., P.T.T.
25 and J.R. The initial manuscript draft was written by P.G. and J.R. All authors reviewed the
26 manuscript and provided feedback and revisions.

27 **Competing Interest Statement:** The authors declare no competing interests.

28 **Keywords:** Mitophagy, Mitochondria, Inflammation, Endothelial cells, Formylated proteins,
29 Formyl Peptide Receptors, Neutrophils, Host defense

30

31 **Abstract**

32 Given their ancient evolutionary origins, eukaryotic mitochondria possess multiple vestiges of their
33 prokaryotic ancestors. One such factor is the N-terminal formylation of proteins encoded by
34 mitochondrial DNA. N-formylated proteins are also released by bacteria and trigger activation of
35 immune cells such as neutrophils. Growing evidence indicate that circulating levels of
36 mitochondrial formyl proteins are elevated in the serum of patients with excessive inflammatory
37 responses and trigger neutrophil activation like their bacterial counterparts. However, the cellular
38 source of these proteins, and the mechanism by which they are released into the circulation is
39 not known. In this study, we have identified vascular endothelial cells as a source of mitophagy
40 induced release of formyl proteins in response to inflammatory mediators in vitro. Mechanistically,
41 endothelial mitophagy required activation of the Pink1 pathway. Using liposomal delivery of
42 sgRNA targeting Pink1 in mice expressing endothelial-specific Cas9, we developed a mouse
43 model in which Pink1 is specifically depleted in the endothelium. Deletion of endothelial Pink1
44 was remarkably protective in endotoxin-induced lung inflammation, resulting in reduced neutrophil
45 infiltration and significantly reduced death in mice. We thus propose that endothelial cells
46 upregulate pro-inflammatory mitophagy in response to inflammation, leading to release of
47 mitochondrial formyl peptides and detrimental neutrophil recruitment into the lung.

48

49 **Introduction**

50 Vascular endothelial cells lining the blood vessels are the first point of contact for circulating
51 immune cells that transmigrate into a tissue and therefore endothelial cells play a critical role in
52 regulating immune response(Kolaczkowska and Kubes 2013, Amersfoort, Eelen et al. 2022).
53 Through the modulation of vascular permeability, expression of surface markers and secretion of
54 signaling factors, endothelial cells recruit and direct immune cells such as neutrophils to infected
55 tissues (Pober and Sessa 2007, Muller 2016, Al-Soudi, Kaaij et al. 2017, Filippi 2019). Thus,
56 endothelial function is an important determinant of the rate and extent of inflammatory activation.
57 Recent studies of endothelial function suggest a critical role for endothelial metabolism driving
58 endothelial migration and angiogenesis (De Bock, Georgiadou et al. 2013, De Bock, Georgiadou
59 et al. 2013). The role of mitochondria in endothelial function is less clear, primarily because
60 endothelial metabolism studies have focused on glycolytic pathways which predominantly drive
61 ATP production in endothelial cells (Davidson and Duchen 2007, De Bock, Georgiadou et al.
62 2013, De Bock, Georgiadou et al. 2013). However, beyond ATP production, endothelial
63 mitochondria serve as important signaling organelles, through the control of ROS, NO and Ca^{2+}
64 signaling(Quintero, Colombo et al. 2006, Kluge, Fetterman et al. 2013, Tiku, Tan et al. 2020).
65 Endothelial mitochondria undergo depolarization in response to inflammatory mediators such as
66 the cytokine $\text{TNF}\alpha$ (Chen, Reece et al. 1999, Corda, Laplace et al. 2001) but the underlying
67 molecular mechanisms and impact on host defense need to be defined.

68 In response to depolarization, damaged mitochondria are typically sequestered away from the
69 rest of the mitochondrial pool and targeted to the lysosomes for degradation through the process
70 of mitochondrial autophagy referred to as mitophagy(Onishi, Yamano et al. 2021). Mitophagy
71 most often occurs through the Pink1/Parkin pathway, which results in the ubiquitination of
72 damaged mitochondria that are then engulfed by an autophagosome and transported to the
73 lysosome(Palikaras, Lionaki et al. 2018, Ng, Wai et al. 2021). Intriguingly, the global deletion of
74 Parkin leads to reduced endothelial inflammatory activation suggesting a pro-inflammatory role
75 for mitophagy (Letsiou, Sammani et al. 2017). Several recent studies have suggested that
76 mitochondria and mitochondrial damage associated molecular patterns (DAMPs) are actively
77 released by cells in response to inflammatory and other stimuli(Zhang, Raoof et al. 2010,
78 Dorward, Lucas et al. 2017, D'Acunzo, Pérez-González et al. 2021), and can promote pro-
79 inflammatory responses (Puhm, Afonyushkin et al. 2019).

80 Given their endosymbiont evolutionary origin, mitochondria contain several remnants of their
81 prokaryotic ancestors which may trigger immune responses in mammalian organisms (Zhang,
82 Raoof et al. 2010). Proteins encoded by mitochondrial DNA are translated in the mitochondria by
83 ribosomes that resemble prokaryotic translation machinery and differ from their nuclear-encoded
84 counterparts because the initiating methionine contains an additional N-formyl group (Tucker,
85 Hershman et al. 2011). Bacterial peptides and proteins contain N-formyl groups which are
86 recognized by mammalian immune cells and initiate inflammatory activation (Bloes, Kretschmer
87 et al. 2015), but interestingly endogenous mitochondrial formylated proteins that are released by
88 mammalian cells can also bind to formyl peptide receptors on the surface of innate immune cells,
89 inducing activation and transmigration(Rongvaux 2018). While this phenomenon has been long
90 noted in sterile injury due to physical trauma(McDonald, Pittman et al. 2010), mitochondrial
91 formylated proteins have also been observed in the serum of patients with sepsis which are
92 characterized by excessive immune responses, suggesting that mitochondrial formyl-protein
93 release may also occur during inflammatory injury(Wenceslau, McCarthy et al. 2015, Kwon, Suh

94 et al. 2021, Yuan, Zeng et al. 2021), although it is not known which cell types release these
95 DAMPs and which signaling pathways trigger the release.

96 In this study, we observed that endothelial cells in the lung upregulate mitophagy in response to
97 the systemic delivery of the bacterial endotoxin lipopolysaccharide (LPS) *in vivo*. The
98 inflammatory mediator TNF α , which is released by immune cells in response to LPS induces
99 mitophagy through the Pink1/Parkin pathway. Mice with endothelial-specific depletion of Pink1
100 using targeted CRISPR/Cas9 editing in mouse lungs using liposomal delivery exhibited improved
101 survival to LPS-induced endotoxemia and reduced neutrophil invasion into the lungs. These data
102 suggest that endothelial Pink1-mediated mitophagy acts as a pro-inflammatory amplification
103 pathway that could be targeted to reduce excessive inflammatory responses.

104

105 **Results**

106 **Endotoxemic inflammation induces mitophagy in lung vascular endothelial cells**

107 Since inflammation induces mitochondrial depolarization in endothelial cells(Corda, Laplace et al.
108 2001), we first sought to determine whether inflammation induced mitophagy in the vasculature
109 *in vivo*. We evaluated *in vivo* mitophagy using the mitophagy reporter MitoKeima mice(Sun, Malide
110 et al. 2017). MitoKeima mice globally express the biosensor MitoKeima, which distinguishes
111 between cytosolic mitochondria at neutral pH and lysosomal mitochondria, “mitolysosomes”, that
112 are at an acidic pH. To label the vascular system, mice were retro-orbitally injected with a
113 fluorescently labeled lectin that specifically binds to mouse endothelial cells - Isolectin-B4
114 conjugated to DyLight 647. Ex vivo imaging by confocal microscopy revealed regions of high and
115 low mitophagy in the whole lung tissue (**Figure 1A, Figure 1 – figure supplement 1**). To
116 distinguish between endothelial and non-endothelial mitophagy, we generated an image analysis
117 “mask” based on the endothelial Isolectin-B4 channel and applied it to determine the ratio of
118 Acidic:Neutral mitoKeima. A 3D reconstruction of lung vascular mitophagy generated using Imaris
119 image analysis software showed that this method accurately isolates the ratiometric MitoKeima
120 signal from the endothelium, while excluding the surrounding tissue (**Figure 1B**).

121 We applied this method to quantify mitophagy in the lungs of mice injected with the bacterial
122 endotoxin Lipopolysaccharide (LPS). MitoKeima mice were injected with LPS (8mg/kg, i.p.) to
123 induce endotoxemic inflammation, and lungs were isolated and imaged 6 hours post-LPS
124 injection. Compared to PBS-injected control mice, LPS-injected mice had an approximately 30%
125 increase in endothelial mitophagy (**Figure 1C, D**). Mitophagy in the whole lung did not
126 significantly change (**Figure 1E**). Thus, these results indicate that systemic inflammation induced
127 by LPS specifically induces mitophagy in the lung vasculature.

128

129 **Live cell imaging of mitophagy induced by the inflammatory mediator TNF α**

130 The inflammatory mediator TNF α is secreted by monocytes in response to infection and LPS-
131 induced inflammation and is a major regulator of inflammatory activation of endothelial cells(Sethi
132 and Hotamisligil 2021). We thus hypothesized that TNF α was the mediator of LPS-induced
133 endothelial mitophagy observed *in vivo*. Primary human lung microvascular endothelial cells
134 (HLMVECs) were transduced to express MitoKeima and treated with TNF α over a time course of
135 6 hours to monitor mitophagy.

136 Mitophagy was quantified as the ratio of acidic mitochondria/total mitochondria as analyzed by
137 confocal microscopy. TNF α significantly induced mitophagy in HLMVECs within 3 hours (**Figure**
138 **2A,B**).

139 To understand the dynamics of TNF α induced mitolysosomes, we imaged the time course of live
140 TNF α treated HLMVECs expressing Mitokeima. However, due to the high degree of noise present
141 in high resolution images of mitolysosomes, we performed image de-noising using the deep-
142 learning algorithm Noise2Void(Krull, Buchholz et al. 2019). Noise2Void is a denoising technique
143 which does not require an additional data set for training and can be trained on experimental
144 images. Denoising significantly improved Mitokeima imaging, allowing the time lapse visualization
145 of interactions between mitolysosomes and cytoplasmic mitochondria (**Figure 2C**) in HLMVECs
146 treated with TNF α . Movies of these cells show that TNF α induced mitolysosomes make several
147 prolonged contacts with cytoplasmic mitochondria, lasting several minutes (**Figure 2D**,
148 **Supplemental Movie 1**).

149

150 **Pink1 mediates TNF α -induced endothelial mitophagy**

151 We next sought to determine whether the Pink1/Parkin pathway, which is a major mitophagy
152 initiating pathway in multiple cell types(McWilliams and Muqit 2017) mediated mitophagy in
153 endothelial cells. In healthy, polarized mitochondria, Pink1 is inserted into the outer mitochondrial
154 membrane, where it is cleaved by mitochondrial proteases, and degraded (Matsuda, Sato et al.
155 2010, Yamano and Youle 2013). However, when mitochondria are depolarized, Pink1 is stabilized
156 and recruits the E3 ubiquitin ligase Parkin to ubiquitinate the outer mitochondrial membrane.
157 Parkin mediated ubiquitination serves as the initiating signal for mitophagy(Lazarou, Sliter et al.
158 2015). Thus, stabilization of Pink1 indicates the activation of this pathway. HLMVECs treated with
159 TNF α had significantly increased Pink1 protein levels within 1 hour, which was sustained over 24
160 hours after treatment (**Figure 3A, B**). This stabilization of Pink1 indicates that TNF α activates
161 mitophagy through the Pink1/Parkin pathway.

162 As mitophagy serves an important role in mitochondrial quality control, we examined whether
163 TNF α -induced Pink1 mitophagy impacted the metabolic efficiency of endothelial mitochondria. To
164 investigate the role of Pink-1 mediated mitophagy in mitochondrial metabolism we downregulated
165 the cellular level of Pink-1 through shRNA (**Figure 3C**). We performed a Seahorse Analyzer
166 mitochondrial stress test, measuring oxygen consumption as an indicator of mitochondrial
167 oxidative phosphorylation (**Figure 3D**). In the mitochondrial stress test, HLMVECs treated with
168 TNF α for 3 hours had reduced basal oxygen consumption, however this decrease was not
169 dependent on Pink1 depletion (**Figure 3E**). These data suggest that TNF α -induced Pink1-
170 mediated mitophagy does not significantly impact endothelial mitochondrial metabolism.

171

172 **Endothelial Pink1 exacerbates endotoxemia induced death**

173 To understand the importance of endothelial Pink1-induced mitophagy in inflammation, we used
174 a CRISPR/Cas9 approach to specifically delete endothelial Pink1 in vivo. We generated mice that
175 express Cas9 specifically in endothelial cells by crossing knock-in Cas9 mice(Platt, Chen et al.
176 2014) with mice expressing Cre under the endothelial specific CDH5 (VE-Cadherin) promoter
177 (provided by Dr. Ralf Adams). Plasmid containing sgRNA against Pink1 was encapsulated in

178 cationic liposome, a formulation that has previously been employed to deliver genes to the lung
179 endothelium via an intravenous route as the lung endothelium is the first microvascular bed
180 encountered by intravenously injected liposomes (Liu, Zhang et al. 2019). Intravenous injection
181 of Pink1 sgRNA containing liposomes led to deletion of Pink1 specifically in the Cas9 expressing
182 endothelium (Pink1^{EC-/-} mice) (**Figure 4A**). Administration of liposome encapsulated Pink1 sgRNA
183 resulted in an approximately 80% reduction in lung endothelial Pink1 in Cas9-expressing mice
184 compared to age-matched wildtype C57 mice (WT mice) (**Figure 4 B,C**), but did not affect Pink1
185 expression in non-endothelial cells (**Figure 4D**).

186 To determine whether endothelial Pink1 plays a role in determining inflammatory outcome, we
187 first examined the survival of Pink1^{EC-/-} mice in response to LPS-endotoxemia. WT and Pink1^{EC-/-}
188 mice were injected with LPS (8mg/kg, i.p.) and survival was monitored over 7 days. Pink1^{EC-/-}
189 mice displayed significantly improved survival compared to WT mice (**Figure 4E**). This strong pro-
190 survival effect of EC-specific Pink1 deletion shows that endothelial Pink1 is a key mediator of pro-
191 inflammatory activation and mortality role in LPS mediated endotoxemia. Furthermore, as shown
192 in **Figure 4E**, the protective effect of Pink1^{EC-/-} manifested early on, with the majority of the WT
193 mice dying on the first day following LPS administration. The early timing of this protective effect
194 suggests that endothelial Pink1 is involved in aggravating inflammatory injury, as opposed to
195 inhibiting pathways involved in lung regeneration.

196 We reasoned that endothelial Pink1 may increase inflammatory injury by increasing LPS-induced
197 vascular permeability. To assess whether Pink1^{EC-/-} mice had altered endothelial characteristics,
198 we determined the extent of lung edema, as measured by lung wet-to-dry weight ratio, and
199 vascular permeability as measured by permeability to Evans Blue-conjugated Albumin (EBA), in
200 LPS injected WT and Pink1^{EC-/-} mice. Deletion of endothelial Pink1 did not affect vascular
201 permeability to EBA (**Figure 4 – figure supplement 1A**), nor did it affect loss of the endothelial
202 adherens junction protein VE-Cadherin, which is an important regulator of endothelial barrier
203 function (**Figure 4 – figure supplement 1B**). Additionally, Pink1^{EC-/-} did not alter LPS-induced
204 lung edema (**Figure 4 – figure supplement 2**) Thus, although endothelial Pink1 mediates
205 inflammatory lung injury, this is likely not due to direct effects on the lung vascular barrier integrity.

206

207 **Endothelial Pink1 increases neutrophil recruitment and activation in the lung**

208 Given the strong protective effect of endothelial Pink1 deletion in inflammatory injury, and the
209 limited effect on endothelial barrier function, we hypothesized that endothelial Pink1 induces
210 inflammatory injury by acting on the recruitment of immune cells such as neutrophils which are
211 key mediators of lung injury and death in endotoxemia-induced inflammatory lung injury (Hayashi,
212 Means et al. 2003, Nathan 2006, Bachmaier, Stuart et al. 2022). Neutrophils are recruited into
213 the lung 2-24 hours following systemic delivery of LPS where they are early drivers of
214 inflammation induced tissue injury (Matute-Bello, Frevert et al. 2008, Zemans and Matthay 2017).
215 We thus measured the effect of endothelial Pink1 deletion on LPS induced infiltration of
216 neutrophils into the lung. WT and Pink1^{EC-/-} mice were injected with LPS (8mg/kg, i.p.) and lungs
217 harvested 6 and 24 hours post-LPS injection. CD45 and Ly6G were used as markers to
218 differentiate the neutrophil population in whole lung samples. The number of CD45+Ly6G+
219 neutrophils was measured by flow cytometry and normalized to the total number of cells in the
220 lung. Pink1^{EC-/-} mice had significantly reduced neutrophil infiltration at 6 hours compared to their
221 age-matched control counterparts (**Figure 5A,B**). Interestingly, this difference appeared only at 6

222 hours but did not persist at 24 hours. To further establish the importance of endothelial Pink1 in
223 neutrophil-mediated immune response, we measured the activation of neutrophils infiltrated in
224 lungs due to LPS induced inflammation, using CD11b as a marker for activated neutrophils.
225 CD11b expression in CD45+Ly6G+ cells showed that neutrophil activation was compromised in
226 Pink1^{EC-/-} mice at 24 hours (**Figure 5C,D**). These results suggest that early neutrophil recruitment
227 is important for effective neutrophil activation, and that both processes are sensitive to Pink1^{EC-/-}.
228 The decreased early neutrophil recruitment also resulted in significantly reduced levels of the pro-
229 inflammatory cytokine IL-1 β in the lung (**Figure 5E,F**).

230 One possible mechanism through which endothelial cells may alter neutrophil recruitment is
231 through expression of the adhesion molecule ICAM-1, which is involved in neutrophil adhesion
232 and transmigration into the lung(Yang, Froio et al. 2005). Thus, we measured ICAM-1 levels in
233 the CD31+ endothelial cells of WT and Pink1^{EC-/-} mice injected with LPS for 6 hours. LPS induced
234 similar activation of ICAM-1 in control and Pink1^{EC-/-} mice (**Figure 5 – figure supplement 1**),
235 suggesting that changes in neutrophil recruitment are independent of endothelial ICAM-1
236 expression.

237

238 **Endothelial cells release mitochondrial formylated peptides in response to inflammation**

239 We next examined alternative pathways through which endothelial mitochondria may interact with
240 neutrophils. Besides interaction with adhesion molecules, Neutrophil recruitment is also heavily
241 regulated by activation of formyl peptide receptors (FPR), which recognize bacterial proteins that
242 contain an additional formyl group on the initiating methionine(Dorward, Lucas et al. 2015).
243 However, given the endosymbiont origins of mitochondria and expression of N-formylated
244 proteins by mitochondria which can activate pro-inflammatory FPRs on the surface of neutrophils,
245 we investigated the activation of the Erk pathway which is a key signaling pathway downstream
246 of FPR activation in neutrophils (Dorward, Lucas et al. 2015, Zhang, Liu et al. 2016, Dorward,
247 Lucas et al. 2017). Thus, we hypothesized that endothelial mitochondria were a source of
248 inflammation induced formyl peptide release, leading to increased neutrophil recruitment. To
249 determine whether formyl peptides were among the factors released by endothelial cells, we
250 looked for presence of formylated proteins in the cell culture medium. The mitochondrial protein
251 ND6 is one of the thirteen proteins encoded in the mitochondrial DNA and is thus often used as
252 an indicator for the presence of mitochondrial formylated proteins(Gabl, Sundqvist et al. 2018,
253 Kwon, Suh et al. 2021). We thus performed an ELISA to measure relative ND6 levels in the cell
254 culture medium of HLMVECs treated with TNF α or the mitochondrial uncoupler and mitophagy
255 inducer FCCP. Both TNF α and FCCP induced a ~30% increase in ND6 levels released by
256 endothelial cells (**Figure 6A,B**).

257 To compare the ability of mitochondrial formylated peptides to activate Erk signaling in neutrophils
258 to bacterial formylated peptides, we exposed neutrophils to purified bacterial formyl peptides
259 (fMLP) and human mitochondrial formyl peptides (fMIT). fMIT refers to an N-formylated peptide
260 made of the first 6 amino acids of human ND6. HL-60 derived neutrophils (referred to as HL-60)
261 were treated with fMLP and fMIT for 10 minutes and generated an approximately equal increase
262 in Erk phosphorylation (**Figure 6C,D**). We next determined whether factors released by activated
263 endothelial cells led to a similar phosphorylation of Erk in neutrophils. Endothelial cells were
264 treated with either TNF α or the mitophagy inducer FCCP. 24 hours later, cell culture medium was
265 collected, filtered, and added to HL-60 cells for 10 minutes (**Figure 6E**). TNF α , and notably also

266 FCCP mediated mitophagy in endothelial cells caused the release of factors into the cell culture
267 medium that activated Erk phosphorylation in neutrophils (**Figure 6F,G**).

268 **Discussion:**

269 In this study, we uncovered a novel pro-inflammatory role of Pink1-mediated mitophagy in
270 endothelial cells. Inflammatory activation induced mitophagy in endothelial cells, both *in vitro* and
271 in an *in vivo* endotoxin model of lung injury that is characterized by excessive endothelial
272 inflammation and influx of neutrophils (Bachmaier, Toya et al. 2007, Kolaczkowska and Kubes
273 2013, Zhang, Gao et al. 2022). The observed endothelial mitophagy was mediated by Pink1
274 activation. Deletion of Pink1 in endothelial cells *in vivo* resulted in increased survival in endotoxin-
275 injected mice and significantly reduced neutrophil recruitment and activation in the lung. Lastly,
276 we found that in response to both inflammation- and FCCP-induced mitochondrial stress,
277 endothelial cells released ND6, a formylated mitochondrial protein and potent recruiter of
278 neutrophils (**Figure 7**).

279 Lung endothelial cells displayed increased mitophagy in response to inflammatory mediators both
280 *in vivo* and *in vitro*, as visualized using the mitophagy biosensor Mitokeima. Mitokeima has been
281 previously used to examine whole lung mitophagy, making it difficult to ascertain the role of
282 endothelial mitophagy. Thus, to measure mitophagy specifically in the endothelium, we developed
283 a method to isolate the endothelial Mitokeima signal from the rest of the lung in whole-organ
284 imaging. By employing this method, we found that LPS significantly induced mitophagy in the
285 mouse lung vascular endothelium. The inflammatory mediator TNF α , which is generated by
286 immune cells in response to LPS, induced mitophagy in primary human lung endothelial cells. We
287 used the deep-learning denoising algorithm Noise2Void(Krull, Buchholz et al. 2019) to allow for
288 the visualization of interactions between mitochondria in the endothelial cytoplasm with
289 mitochondria-containing lysosomes, suggesting that TNF α induces stable mitochondrial-
290 lysosome contacts. These inter-organellar contacts have been implicated in transferring
291 metabolites, altering Ca $^{2+}$ signaling, and inducing mitochondrial fission(Wong, Ysselstein et al.
292 2018, Wong, Kim et al. 2019, Peng, Wong et al. 2020).

293 Using an endothelial-specific Cas9 mouse, and lysosomal delivery of Pink1 sgRNA, we were able
294 to generate mice that lacked Pink1 specifically in endothelial cells, circumventing the confounding
295 effects of global mitophagy knockouts. A surprising finding of this study was that deletion of Pink1
296 in endothelial cells drastically reduced endotoxin-induced death in mice, indicating a pro-
297 inflammatory role of endothelial Pink1. By contrast, mitophagy in other immune cells is typically
298 associated with reduced inflammatory activation(Harris, Deen et al. 2018, Sliter, Martinez et al.
299 2018), such as in macrophages where mitophagy is linked to reduced inflammasome activation
300 and IL-1 β production(Zhong, Umemura et al. 2016). Thus, mitophagy appears to have uniquely
301 detrimental consequences in inflamed endothelial cells. This pro-inflammatory cost of endothelial
302 mitophagy may thus provide an explanation as to why endothelial cells have a relatively small
303 share of mitochondria compared to other cell types, with mitochondria taking up only 2-3% of
304 endothelial cytoplasm(Kluge, Fetterman et al. 2013). Deletion of endothelial Pink1 significantly
305 reduced LPS-induced neutrophil recruitment to the lung and subsequent IL-1 β production. As the
306 first immune cells to respond to inflammatory signals, neutrophils determine the extent of
307 inflammatory injury(Cho, Guo et al. 2012, Kim and Luster 2015). Besides damage to the
308 vasculature, neutrophils also induce injury in the lung epithelium, leading to alveolar damage and
309 impaired surfactant production. Excessive recruitment and activation of neutrophils is thus
310 negatively correlated with survival(Abraham 2003, Williams and Chambers 2014).

311 Recruitment of neutrophils by endothelial cells is partly controlled by expression of the adhesion
312 molecule ICAM-1. However, we did not observe any impact of Pink1 deletion on endothelial
313 ICAM-1 expression. We thus sought alternative explanation for how deletion of a mitochondrial
314 protein may alter neutrophil recruitment. We found that endothelial cells release mitochondrially-
315 encoded proteins, such as ND6, in response to inflammatory stimulus. These formylated proteins
316 have been shown to be elevated in patient serum during sepsis, where higher amounts of
317 circulating ND6 are correlated with higher mortality(Kwon, Suh et al. 2021). Although there are
318 multiple possible sources of these formyl peptides, it is possible that a large proportion is derived
319 from endothelial cells in systemic inflammatory conditions such as sepsis and LPS-induced
320 endotoxemia. The link between mitophagy and release of mitochondrial DAMPs may on the
321 surface appear to be an inverse one, as mitophagy generally reduces mitochondrial stress.
322 However, several recent studies have pointed to mitochondrial stress triggering the release of
323 mitochondrial fragments through the autophagic machinery. For instance, mitochondria in acidic
324 lysosomes, or mitoysosomes, are released by dopaminergic neurons and astrocytes through
325 lysosome exocytosis following Flunarizine-induced Parkinsonism(Bao, Zhou et al. 2022).
326 Similarly, cardiomyocytes release mitochondria and mitochondrial fragments in an autophagy-
327 dependent manner during cardiac stress(Nicolás-Ávila, Lechuga-Vieco et al. 2020).

328 The inflammation induced release of formylated peptides brings up an intriguing question
329 regarding the relationship between mitochondria, which are evolutionary endosymbionts, and
330 their eukaryotic hosts. Despite the ancient origins of our dependence on mitochondria, why are
331 mitochondria still recognized as foreign by the immune system? Formylation of mitochondrial
332 proteins is required for their function, as deletion of formyl-transferase leads to decreased
333 efficiency of oxidative phosphorylation(Tucker, Hershman et al. 2011, Arguello, Köhrer et al.
334 2018). Perhaps inflammatory activation by formyl-peptides plays a role in host defense. The
335 increased mortality correlated with higher ND6 levels in sepsis patients(Kwon, Suh et al. 2021)
336 suggests that in the setting of hyperinflammation such as lung injury, the pro-inflammatory
337 detrimental effects may override other potential host defense benefits such as amplified activation
338 of inflammatory pathways. Mammalian immune systems may have evolved neutrophil sensing of
339 mitochondrial formylated peptides released by the endothelium as a means of activating
340 neutrophils even before neutrophils come into direct contact with bacteria and their formylated
341 proteins. Such “prepping” of neutrophils when they transmigrate across the endothelial barrier by
342 mitochondrial formylated peptides could be an essential determinant of subsequent bacterial
343 elimination by neutrophils. However, our work suggests that there may be a need to prevent such
344 prepping when the excessive inflammation and activation of neutrophils such as in the case of
345 inflammatory lung injury becomes an even bigger liability than the benefits of amplified neutrophil
346 activity.

347

348 Materials and Methods

349 **Materials:** Human recombinant TNF α was obtained from R&D Systems (Cat# 210-TA-020).
350 Antibodies against Pink1 (6946S), p44/42 MAPK (Total Erk) (4695S) and phospho-p44/42 MAPK
351 (p-Erk)(Thr202/Tyr204) (4370S) were obtained from Cell Signaling Technologies. β -Actin (SC-
352 47778 HRP) and VE-Cadherin (sc-9989) antibodies were from SantaCruz Biotechnology. IL-1 β
353 antibody (MM425B) was obtained from Thermo Fisher Scientific. LPS, FCCP, Oligomycin and
354 Antimycin A were obtained from Millipore Sigma. Griffonia Simplicifolia Lectin I (GSL
355 I) Isolectin B4, DyLight® 649 was obtained from Vector Labs (Cat# DL-1208-5). Fluorescent

356 conjugated antibodies for flow cytometry were obtained from Biolegend - BV421-CD31 (102423),
357 PE-CD54 (ICAM-1) (116108), APC-CD45 (103112), BV421-Ly6G (127627), PE-CD11b (101207),
358 Bv421 Isotype Control (400259), APC Isotype Control (400612) and PE Isotype Control (400608).
359 Purified fMLP (Formyl-Met-Leu-Phe) was obtained from Abcam (Cat# ab141806), and fMIT
360 (Formyl-Met-Met-Tyr-Ala-Leu-Phe) was obtained from Phoenix Pharmaceuticals (Cat# 005-48).

361 **Cell Culture:** Primary human lung microvascular endothelial cells (HLMVECs) (Cell Applications
362 Cat# 540-05a) were cultured in flasks coated with 0.2% gelatin, using Endothelial Basal Medium
363 2 (Lonza Cat# CC-3156) supplemented with 10% FBS (Hyclone) and Microvascular Endothelial
364 Growth Medium growth factor kits (Lonza Cat# CC-4147). HLMVECs between passages 5 and 9
365 were used for experiments. HEK293T cells were cultured in DMEM (Corning) supplemented with
366 10% FBS and 1% Pen-Strep (Corning). HL-60 cells were cultured in RPMI media (Corning)
367 containing glutamine and supplemented with 10% FBS and 1% Pen-Strep and differentiated to
368 neutrophil-like cells by supplementing media with 1.3% DMSO for 5-6 days.

369 **Virus Generation:** Lentivirus for Mitokeima, Pink1-shRNA (Sigma Cat# TRCN0000199446) and
370 Control-shRNA (Sigma Cat# SHC016) was generated by co-transfected the lentiviral plasmids in
371 HEK293T cells with VSV-G (the envelop expressing plasmid, addgene, #12259), psPax2 (the
372 virus packaging plasmid, addgene, #12260) using JetPrime transfection reagent (Polyplus) as per
373 the manufacturer's protocol. Cell culture supernatant was collected 48 and 72 hours after
374 transfection, and viral particles were precipitated using Lenti-X concentrator (Takara Bio) following
375 the manufacturer's protocol. HLMVECs were transduced with lentivirus in media containing
376 4ug/mL Polybrene (Santa Cruz Biotechnology), and expression was observed 2-4 days following
377 infection.

378 **Immunofluorescence and confocal microscopy:** HLMVECs expressing Mitokeima were plated
379 on gelatin-coated glass-bottom dishes (Matek) 24 hours prior to visualization. Cells were treated
380 as indicated and imaged live using a Zeiss Laser Scanning 710 BIG microscope equipped with a
381 Plan-Aprochromat 63x/1.40 Oil DIC objective (Zeiss) and GaAsP and PMT detectors, at 37°C
382 with 5% CO₂. Mitophagy was calculated as the percentage of mitolysosome area compared to
383 total mitochondria (mitolysosomes + cytoplasmic mitochondria). To generate movies, cells were
384 imaged using 3x zoom for 10-20 minutes at 15 second intervals. Representative images movies
385 were de-noised using the Noise2Void algorithm.

386 For ex vivo imaging, Mitokeima mice (obtained from Dr. Toren Finkel's lab) were injected with
387 LPS (8mg/kg, i.p.) 6 hours prior to analysis. 30 minutes prior to lung collection, anesthetized
388 mitokeyma mice aged 6-8 weeks were injected with 50 µg of Isolectin B4 (in 100 µL of PBS) retro-
389 orbitally to stain the mouse endothelium. At the indicated time, the mouse lung was perfused with
390 PBS and suspended in HBSS for tissue imaging. Lungs were transferred to glass-bottomed
391 dishes in HBSS and imaged whole by confocal microscope. Images were quantified by generating
392 a mask based on Isolectin B4 staining for the endothelium. The mask was applied to a ratiometric
393 mask of cytoplasmic (Excitation: 488nm) to lysosomal (Excitation 560nm) mitokeyma. The image
394 was thresholded and the area of mitophagy was quantified. 10-20 fields of view were quantified
395 per lung, 4 mouse lungs per group, from 3 independent experiments.

396 **Western blotting:** *In vitro* samples were lysed using cell lysis buffer (50 mM HEPES pH7.5,
397 120 mM NaCl, 5 mM EDTA, 10 mM Na pyrophosphate, 50 mM NaF, 1 mM Na₃VO₄, 1% Triton X-
398 100) supplemented with protease (Cat# 78430, ThermoFisher Scientific) and phosphatase
399 inhibitor (Cat# 524625, Millipore Sigma) cocktails. For mouse lung tissue samples, the post-caval

400 lobe was flash frozen in dry ice immediately after harvesting. On thawing, tissue was
401 homogenized (NextAdvance Bullet Blender) in lysis buffer to extract protein. Western blotting was
402 performed as previously described, using 1:1000 dilution for all antibodies except β -actin (1:5000).
403 Western blots were imaged using an iBright CL1500 machine (Thermo Fisher).

404 **Mitochondrial Stress Test:** Pink1 shRNA: Control, non-targeting (Millipore Sigma, SHC016) and
405 Pink1 (Millipore Sigma, TRCN0000199446, Seq: GAAGGCCACCATGCCTACATTG) shRNA were
406 obtained in a pLKO.1 backbone and used to generate lentivirus. 4 days following infection,
407 HLMVECs were subjected to a Seahorse mitochondrial stress test (Agilent), following the
408 manufacturer's recommendations. An equal number of Pink1 and Control shRNA infected cells
409 were plated onto a Seahorse 96 well cell culture plate. The following day, cells were washed, and
410 media was changed to Seahorse XF Base Media, supplemented with 10mM D-Glucose (Sigma),
411 1mM Pyruvate (Sigma) and 2mM Glutamine (Glutamax, Gibco), containing TNF α or PBS.
412 Mitochondrial stress test was performed 3 hours following treatment.

413 **fMLP and fMIT treatment of HL-60 cells:** After differentiation in 1.3% DMSO, HL-60 cells were
414 serum starved in RPMI media containing glutamine, supplemented with 0.1% FBS (RPMI-SFM)
415 for 2 hours. 500K cells were then treated with either DMSO, 10nM fMLP or 10nM fMIT for 10
416 minutes. Cells were then spun down and lysed for analysis of Erk and phospho-Erk by western
417 blot.

418 **Treating HL-60 cells with endothelial conditioned media:** HLMVECs were plated on gelatin
419 coated plates and allowed to grow to confluence overnight. Cells were then serum starved in
420 EBM2 media supplemented with 0.1% FBS and treated with 10ng/ μ l TNF α or 10 μ M FCCP or left
421 untreated for 24 hours. The following day differentiated HL-60 cells were serum starved in RPMI-
422 SFM for 2 hours. HL-60 cells were spun down and resuspended in endothelial conditioned media
423 that had been passed through a 0.44 μ m syringe filter. 10 minutes later, cells were spun down and
424 lysed for analysis of Erk and phospho-Erk by western blot.

425 **Detecting ND6 in endothelial culture medium:** HLMVECs were treated with either TNF α or
426 FCCP for 24 hours. Cell culture medium was collected and filtered through 0.45 μ m filters to
427 remove cell debris, and flash frozen in dry ice. ND6 was detected in samples using an ELISA kit
428 (MyBiosource, MBS936598) as per manufacturer's protocol, using undiluted media samples.
429 Absorbance at 450nm was measured using a FlexStation III plate reader (Molecular Devices).
430 Samples were normalized to untreated controls.

431 **Animal Procedures:** All animal procedures were performed in accordance with guidelines by the
432 UIC Animal Care and Use Committee. For retro-orbital injection, mice were anesthetized with 2%
433 isoflurane inhalation at flow rate of 0.6 liter/min. For endpoint experiments, mice were
434 anesthetized with intraperitoneal administration of a mixture of Ketamine (100mg/Kg), Xylazine
435 (2mg/Kg) and acepromazine (2 mg/Kg) in saline solution.

436 **DNA/liposome preparation and *in vivo* gene transfer to generate endothelial-specific Pink1**
437 **knockout mice:** Cas9-VEcre mice and pGC-Pink1 sgRNAs were used to generate EC-specific
438 Pink1 knockout mice. Cas9-VEcre were generated by breeding Cas9 (Jackson Labs 026175) and
439 VE-Cre (Jackson Labs, 006137) mice. Mice positive for both Cas9 fl/fl and VE-Cre were used in
440 experiments. Age-matched C57/bl6 mice (Jackson, 000664) were used as controls. Pink1
441 sgRNAs were designed and cloned to pGS plasmid (Genscript, #1
442 GCTGGTCCCGGCAAGCCGCG, #2 CAAGCGCGTGTGACCCAC). Liposomes were freshly
443 made using DDAB and cholesterol as described(Orrington-Myers, Gao et al. 2006). Briefly, a

444 mixture of DDAD and cholesterol was dissolved in chloroform, a lipid layer was formed in an
445 evaporator (Model R-124, Rotavapor) and 5% glucose solution was added to the flask to dissolve
446 the lipid form. Multilamellar liposomes were formed via sonication for 60 min and passed through
447 a 0.22 μ m filter. 45 μ g pGS-pink1 sgRNAs were gently mixed with liposome. A total volume 150
448 μ L of the mixture was injected in either Cas9-VECre mice or C57 mice via retro-orbital injection.
449 4 days later, mice were treated with LPS at 8 mg/Kg body weight via intraperitoneal injection,
450 using PBS as a vehicle control. Tissues were harvested for experiments at the indicated times.
451 Depletion of Pink1 was confirmed by western blot.

452 **Evans Blue Albumin (EBA) Assay and wet/dry ratio to measure lung endothelial
453 permeability and edema:** 45 minutes prior to lung collection, anesthetized mice aged 6-8 weeks
454 were retro-orbitally injected with 100 μ L of 40mg/mL EBA (20 mg/Kg). At the indicated times, the
455 lungs were perfused with 10ml of PBS at 5ml/min. The whole lungs were removed and weighed.
456 The whole lungs in PBS were grinded and an equal volume of formamide was added to extract
457 the EBA at 60°C overnight. The mixture was centrifuged at 5000xg for 30 min, and the absorbance
458 of supernatants at OD620 and OD740 were measured. OD740 was used to exclude residual
459 blood contamination, and the corrected A620 was calculated using the equation
460 A620(corrected)=A620-1.426*A740+0.03. A calibration curve was generated using EBA, and was
461 used to calculate the amount of EBA leaked into the lung normalized to mouse body weight.

462 For wet/dry ratio, the lungs were harvested without perfusion, the weight was measured. The
463 tubes containing the lungs were dried at 60°C oven for 3 days and weighed. The ratio of wet/dry
464 lung weight was then calculated.

465 **Flow Cytometry Analysis:** Mouse lungs were perfused and harvested after LPS, or PBS
466 treatment as described. Lung tissue was minced with a scissor and digested in 4mL Collagenase
467 type 1 (1mg/mL) for 45 minutes at 37°C with gentle shaking. The tissue suspension was passed
468 through an 18G needle 5 times, every 15 minutes during the digestion process. Following
469 digestion, the resulting suspension was passed through a disposable 40 μ m strainer to remove
470 undigested clumps. Cells were then washed with suspension buffer (PBS + 0.5% BSA + 2 mM
471 EDTA + 4.5 mg/mL D-glucose) and resuspended in RBC Lysis Buffer (Biolegend 420301) for one
472 minute at room temperature to remove red blood cells. Cells were washed with suspension buffer,
473 and then blocked using TruStain FcX™ (anti-mouse CD16/32) antibody (Biolegend, 101319) in
474 Cell Stain Buffer (Biolegend 420201) for 10 minutes at 4°C. Antibodies were added at a dilution
475 of 1:100 in the combinations described, and cells incubated at 4°C for 30 minutes with gentle
476 shaking. Cells were fixed in 2% Fixation buffer (Biolegend 420801) for 10 minutes, washed and
477 then analyzed by flow cytometry. For measurement of endothelial ICAM-1 expression, ICAM-1
478 mean fluorescent intensity was measured in CD31+ cells. To quantify neutrophil infiltration in the
479 lung, the percent of CD45+ Ly6G+ cells was measured by flow cytometry. Total number of cells
480 in the lung was calculated manually using a hemocytometer to convert the percent neutrophils to
481 the total number of neutrophils in the lung. Mean fluorescent intensity of CD11b in CD45+Ly6G+
482 cells was measured to indicate neutrophil activation.

483 **Statistical Analysis:** Western blot band intensity and confocal microscopy images were
484 quantified using ImageJ. Brightness and contrast of confocal microscopy images were adjusted
485 for representative purposes only. Data is presented as mean \pm SEM with significance levels
486 expressed as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. All statistical analysis was
487 performed using GraphPad Prism 8, by one-way ANOVA, with Holm-Sidak corrections for multiple
488 comparisons, except where mentioned.

489

490 **Acknowledgements**

491 This project was supported by NIH grant P01HL060678, 5R01HL152515-02 and 5R01HL149300-
492 03 and AHA grant 18PRE34070092. We thank Dr. Ralf Adams for providing the VE-cadherin Cre
493 mice. All schematic diagrams were created using Biorender.com.

494

495 **Figure Legends**

496 **Figure 1: Lung vascular endothelial cells initiate mitophagy in response to endotoxemic**

497 **inflammation.** Mice expressing the mitophagy biosensor Mitokeima were injected with Isolectin

498 B4, to label endothelial cells. Lungs were harvested and perfused, and mitophagy was visualized

499 in the whole, unsectioned lung by confocal microscopy **(A)**. A 3D mask of the endothelium was

500 constructed and used to isolate the Mitokeima acidic/neutral ratio specifically in endothelial cells

501 **(B)**. Scale Bar: 10 μ m. Using this method, mitophagy was measured in an endotoxemia model of

502 inflammation. Lungs from Mitokeima mice were visualized 6 hours post i.p. LPS injection (8mg/kg)

503 **(C)**. Endothelial **(D)** and whole lung **(E)** mitophagy was measured by calculating the ratio of acidic

504 to neutral Mitokeima (n=4 mice, 10-20 fields of view per mouse). Statistical significance between

505 PBS and LPS treated mice was evaluated by t-test Source data for (D) and (E) available in Figure

506 1 Source Data 1.

507 **Figure 2: TNF α induces endothelial mitophagy within 3 hours.** HLMVECs expressing

508 mitokeima were treated with the inflammatory mediator TNF α (10ng/mL), and mitophagy

509 visualized at 1-, 3- and 6-hours post TNF α exposure, with representative images at 0 and 3 hours

510 **(A)**. Mitophagy was calculated by measuring the ratio of acidic mitochondria to total mitochondrial

511 area in each visual field **(B)**. n=3 independent experiments. Source data for (B) provided in Figure

512 2 Source Data 1. To better visualize mitokeima in endothelial cells, images and movies were

513 denoised using the Noise2Void denoising algorithm. Representative images of a cell treated with

514 TNF α for 3 hours show that denoising reveals interactions between cytoplasmic mitochondria and

515 mitolysosomes **(C)**. Interactions between cytoplasmic and lysosomal mitochondria persist over

516 several minutes **(D)**.

517 **Figure 3: Pink1 mediates TNF α -induced endothelial mitophagy, but not mitochondrial**

518 damage. HLMVECs were treated with TNF α for 0.5-24 hours, and Pink1 protein levels were

519 measured by western blot **(A)** and quantified **(B)**. Statistical analysis between baseline and each

520 timepoint was done by t-test. The impact of TNF α -Pink1 mitophagy on endothelial metabolism

521 was determined by performing a Seahorse mitochondrial stress test **(C)**, measuring the oxygen

522 consumption rate with and without shRNA mediated deletion of Pink1 **(D)**. Basal respiration rate

523 was plotted. Representative graphs are shown. Original western blot images provided in Figure

524 3 Source Data 1. Source Data for (B) (D) and (E) available in Figure 3 Source Data 2.

525 **Figure 4: Deletion of endothelial Pink1 protects against endotoxin induced death.** Mice

526 were bred to express Cas9 in cells expressing Cre recombinase under a VE-Cadherin promoter,

527 ensuring Cas9 expression specifically in endothelial cells. sgRNA against Pink1 was delivered to

528 Cas9 expressing, or control C57 mice aged 8-12 weeks by retro-orbital i.v. injection of sgRNA

529 containing liposomes **(A)**, leading to a ~80% knockdown in endothelial cells but not in non-

530 endothelial cells **(B-D)**. Statistical significance between Control and Pink1^{EC-/-} groups was

531 analyzed by t-test. N=3-4 mice per group. Control and $\text{Pink1}^{\text{EC-/-}}$ mice were injected with LPS
532 (8mg/kg), and survival was monitored over 7 days (**E**). n=10 male and 10 female mice per group.
533 Uncropped western blot images for (B) available in Figure 4 Source Data 1. Source Data for (C)
534 and (D) provided in Figure 4 Source Data 2.

535 **Figure 5: Endothelial Pink1 increases neutrophil recruitment and activation in the lung.**
536 Control (WT) and endothelial specific Pink1 knock out ($\text{Pink1}^{\text{EC-/-}}$) mice were injected with LPS
537 (8mg/kg). 6- and 24- hours later, lungs were perfused and harvested, and analyzed for the number
538 of infiltrated Ly6G+ neutrophils by flow cytometry (**A,B**). Neutrophil activation was measured by
539 CD11b expression on Ly6G+ cells (**C,D**). n=3-6 mice per group. IL1- β levels in the whole lung
540 were measured by western blot (**E-F**). n=2 mice for PBS, and n=3 mice for LPS treated groups.
541 Statistical significance between IL-1 β levels in Control and $\text{Pink1}^{\text{EC-/-}}$ was determined by t-test.
542 Source Data for (A), (B), (C), (D) and (F) provided in Figure 5 Source Data 1. Original western
543 blot image for (E) available in Figure 5 Source Data 2.

544 **Figure 6: Endothelial cells release mitochondrial formylated peptides in response to**
545 **inflammation and mitochondrial damage.** HLMVECs were treated with TNF α or FCCP for 24
546 hours. Cell culture media was collected, filtered and analyzed for the presence of ND6 by ELISA
547 (**A,B**). n=3 independent experiments. HL60s were treated with bacterial formyl-peptide fMLP
548 (10nM) or human mitochondrial formyl-peptide fMIT (10nM) for 10 minutes. Cells were lysed and
549 analyzed for Erk phosphorylation by western blot (**C,D**). n=4 independent experiments. Statistical
550 analysis was performed by One-way ANOVA, with Holms-Sidak test for multiple comparisons.
551 HLMVECs were treated TNF α or FCCP or DMSO for 24 hours. Media (EC-untreated, EC-TNF α ,
552 EC-FCCP) was collected and filtered to remove cell debris. Conditioned media was used to
553 resuspend serum-starved HL-60 derived neutrophils (HL-60) for 10 minutes before cells were
554 lysed and analyzed for phosphorylation of Erk (**E,F**). Statistical analysis was performed using
555 One-way ANOVA with Kruskal-Wallace test for multiple comparisons. n=3 independent
556 experiments. Original Data for (B), (D) and (G) available in Figure 6 Source Data 1. Uncropped
557 western blot images for (C) and (F) provided in Figure 6 Source Data 2.

558 **Figure 7: Inflammation induced endothelial mitophagy releases formylated proteins to**
559 **enhance inflammation.** In response to inflammatory stimulus, Pink1 is activated in endothelial
560 cells, leading to mitophagy and release of mitochondrial proteins such as ND6 which contain a
561 formylated methionine (fMet) at the N-terminus. Bacteria, which share a prokaryotic ancestor with
562 mitochondria, also produce and release N-formyl proteins. Both mitochondrial and bacterial N-
563 formyl proteins activate neutrophils through formyl peptide receptors (FPRs), leading to increased
564 Erk phosphorylation and increased recruitment. Excessive neutrophil recruitment leads to
565 increased aberrant inflammation.

566

567 **Figure Supplement Legends**

568 **Figure 1 - figure supplement 1: Ex vivo visualization of Mitokeima in the mouse lung.**
569 Representative images of lungs from Mitokeima mice injected with Isolectin B4 (IB4) to visualize
570 the endothelium (magenta). Relative intensities of neutral, cytoplasmic mitochondria (green) and
571 acidic, lysosomal mitochondria (red) are compared to identify regions of lower mitophagy
572 (expanded inset a), and higher mitophagy (expanded inset b).

573

574 **Figure 4 - figure supplement 1: Endothelial Pink1 does not alter lung permeability.** Control
575 and Pink1^{EC-/-} mice were injected with LPS (8mg/kg), or PBS as a control. Mice were injected with
576 Evans Blue Albumin (EBA), and lungs perfused and harvested 12-14 hours post injection. EBA in
577 the lungs was quantified (**A**). n=3-4 mice per group. VE-Cadherin levels were measured in lungs
578 6 hours following LPS injection by western blot. β -Actin was measured as a loading control. n=2-
579 3 mice per group.

580 **Figure 4 - figure supplement 2: Endothelial Pink1 does not regulate lung edema.** Control
581 and Pink1^{EC-/-} mice were injected with LPS (8mg/kg), or PBS as a control. 6 hours following LPS
582 injection, lungs were harvested and weighed. Following drying at 60°C, lungs were weighed
583 again, and the wet-to-dry ratio was calculated as a measure of lung edema. n=5 mice per group.
584 Statistical significance was measured by t-test.

585

586 **Source Data Legends**

587 **Figure 1 – Source Data 1**

588 Spreadsheet containing the original source data for the calculation of mitophagy in figure 1 D and
589 E.

590

591 **Figure 2 – Source Data 1**

592 Spreadsheet containing the original source data for quantification of mitophagy in figure 2 B.

593

594 **Figure 3 – Source Data 1**

595 Uncropped western blot images for figures 3 A and C.

596

597 **Figure 3 - Source Data 2**

598 Spreadsheet containing source data for figure 3 B, D and E.

599

600 **Figure 4 – Source Data 1**

601 Uncropped western blot images for figure 4 B.

602

603 **Figure 4 – Source Data 2**

604 Spreadsheet containing source data for figure 4 C, D, supplementary figure 1 A, and
605 supplementary figure 2.

606

607 **Figure 4 – Source Data 3**

608 Uncropped western blot images for figure 4 supplementary figure 1 B.

609

610 **Figure 5 – Source Data 1**

611 Spreadsheet containing source data for figure 5 A, B, C, D, F, and supplementary figure 1.

612

613 **Figure 5 – Source Data 2**

614 Uncropped western blot images for figure 5 E.

615

616 **Figure 6 – Source Data 1**

617 Spreadsheet containing source data for figure 6 B, D and G.

618

619 **Figure 6 – Source Data 2**

620 Uncropped western blot images for figure 6 C and F.

621

622 **References**

623 Abraham, E. (2003). "Neutrophils and acute lung injury." *Critical Care Medicine* **31**(4).

624 Al-Soudi, A., M. H. Kaaij and S. W. Tas (2017). "Endothelial cells: From innocent bystanders to active
625 participants in immune responses." *Autoimmunity Reviews* **16**(9): 951-962.

626 Amersfoort, J., G. Eelen and P. Carmeliet (2022). "Immunomodulation by endothelial cells — partnering
627 up with the immune system?" *Nature Reviews Immunology*.

628 Arguello, T., C. Köhrer, U. L. RajBhandary and C. T. Moraes (2018). "Mitochondrial methionyl N-
629 formylation affects steady-state levels of oxidative phosphorylation complexes and their organization into
630 supercomplexes." *Journal of Biological Chemistry* **293**(39): 15021-15032.

631 Bachmaier, K., A. Stuart, A. Singh, A. Mukhopadhyay, S. Chakraborty, Z. Hong, L. Wang, Y. Tsukasaki, M.
632 Maienschein-Cline, B. B. Ganesh, P. Kanteti, J. Rehman and A. B. Malik (2022). "Albumin Nanoparticle
633 Endocytosing Subset of Neutrophils for Precision Therapeutic Targeting of Inflammatory Tissue Injury."
634 *ACS Nano* **16**(3): 4084-4101.

635 Bachmaier, K., S. Toya, X. Gao, T. Triantafillou, S. Garrean, G. Y. Park, R. S. Frey, S. Vogel, R. Minshall, J. W.
636 Christman, C. Tiruppathi and A. B. Malik (2007). "E3 ubiquitin ligase Cblb regulates the acute inflammatory
637 response underlying lung injury." *Nature Medicine* **13**(8): 920-926.

638 Bao, F., L. Zhou, R. Zhou, Q. Huang, J. Chen, S. Zeng, Y. Wu, L. Yang, S. Qian, M. Wang, X. He, S. Liang, J. Qi,
639 G. Xiang, Q. Long, J. Guo, Z. Ying, Y. Zhou, Q. Zhao, J. Zhang, D. Zhang, W. Sun, M. Gao, H. Wu, Y. Zhao, J.
640 Nie, M. Li, Q. Chen, J. Chen, X. Zhang, G. Pan, H. Zhang, M. Li, M. Tian and X. Liu (2022). "Mitolysosome
641 exocytosis, a mitophagy-independent mitochondrial quality control in flunarizine-induced parkinsonism-
642 like symptoms." *Science Advances* **8**(15): eabk2376.

643 Bloes, D. A., D. Kretschmer and A. Peschel (2015). "Enemy attraction: bacterial agonists for leukocyte
644 chemotaxis receptors." *Nature Reviews Microbiology* **13**(2): 95-104.

645 Chen, K. H., L. M. Reece and J. F. Leary (1999). "Mitochondrial glutathione modulates TNF-alpha-induced
646 endothelial cell dysfunction." *Free Radic Biol Med* **27**(1-2): 100-109.

647 Cho, J. S., Y. Guo, R. I. Ramos, F. Hebron, S. B. Plaisier, C. Xuan, J. L. Granick, H. Matsushima, A. Takashima,
648 Y. Iwakura, A. L. Cheung, G. Cheng, D. J. Lee, S. I. Simon and L. S. Miller (2012). "Neutrophil-derived IL-1 β
649 is sufficient for abscess formation in immunity against *Staphylococcus aureus* in mice." *PLoS Pathog* **8**(11):
650 e1003047.

651 Corda, S., C. Laplace, E. Vicaut and J. Duranteau (2001). "Rapid reactive oxygen species production by
652 mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide." *Am J
653 Respir Cell Mol Biol* **24**(6): 762-768.

654 D'Acunzo, P., R. Pérez-González, Y. Kim, T. Hargash, C. Miller, M. J. Alldred, H. Erdjument-Bromage, S. C.
655 Penikalapati, M. Pawlik, M. Saito, M. Saito, S. D. Ginsberg, T. A. Neubert, C. N. Goulbourne and E. Levy
656 (2021). "Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in
657 Down syndrome." *Science Advances* **7**(7): eabe5085.

658 Davidson, S. M. and M. R. Duchen (2007). "Endothelial Mitochondria." *Circulation Research* **100**(8): 1128-
659 1141.

660 De Bock, K., M. Georgiadou and P. Carmeliet (2013). "Role of endothelial cell metabolism in vessel
661 sprouting." *Cell Metab* **18**(5): 634-647.

662 De Bock, K., M. Georgiadou, S. Schoors, A. Kuchnio, B. W. Wong, A. R. Cantelmo, A. Quaegebeur, B.
663 Ghesquière, S. Cauwenberghs, G. Eelen, L. K. Phng, I. Betz, B. Tembuyser, K. Brepoels, J. Welti, I. Geudens,
664 I. Segura, B. Cruys, F. Bifari, I. Decimo, R. Blanco, S. Wyns, J. Vangindertael, S. Rocha, R. T. Collins, S. Munck,
665 Daelemans, H. Imamura, R. Devlieger, M. Rider, P. P. Van Veldhoven, F. Schuit, R. Bartrons, J. Hofkens,
666 P. Fraisl, S. Telang, R. J. Deberardinis, L. Schoonjans, S. Vinckier, J. Chesney, H. Gerhardt, M. Dewerchin
667 and P. Carmeliet (2013). "Role of PFKFB3-driven glycolysis in vessel sprouting." *Cell* **154**(3): 651-663.

668 Dorward, D. A., C. D. Lucas, G. B. Chapman, C. Haslett, K. Dhaliwal and A. G. Rossi (2015). "The role of
669 formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute
670 inflammation." *Am J Pathol* **185**(5): 1172-1184.

671 Dorward, D. A., C. D. Lucas, M. K. Doherty, G. B. Chapman, E. J. Scholefield, A. Conway Morris, J. M. Felton,
672 T. Kipari, D. C. Humphries, C. T. Robb, A. J. Simpson, P. D. Whitfield, C. Haslett, K. Dhaliwal and A. G. Rossi
673 (2017). "Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1
674 signalling in acute respiratory distress syndrome." *Thorax* **72**(10): 928-936.

675 Filippi, M.-D. (2019). "Neutrophil transendothelial migration: updates and new perspectives." *Blood*
676 **133**(20): 2149-2158.

677 Gabl, M., M. Sundqvist, A. Holdfeldt, S. Lind, J. Mårtensson, K. Christenson, T. Marutani, C. Dahlgren, H.
678 Mukai and H. Forsman (2018). "Mitocryptides from Human Mitochondrial DNA-Encoded Proteins
679 Activate Neutrophil Formyl Peptide Receptors: Receptor Preference and Signaling Properties." *The Journal
680 of Immunology* **200**(9): 3269-3282.

681 Harris, J., N. Deen, S. Zamani and M. A. Hasnat (2018). "Mitophagy and the release of inflammatory
682 cytokines." *Mitochondrion* **41**: 2-8.

683 Hayashi, F., T. K. Means and A. D. Luster (2003). "Toll-like receptors stimulate human neutrophil function." *Blood*
684 **102**(7): 2660-2669.

685 Kim, N. D. and A. D. Luster (2015). "The role of tissue resident cells in neutrophil recruitment." *Trends in
686 Immunology* **36**(9): 547-555.

687 Kluge, M. A., J. L. Fetterman and J. A. Vita (2013). "Mitochondria and endothelial function." *Circ Res* **112**(8):
688 1171-1188.

689 Kolaczkowska, E. and P. Kubes (2013). "Neutrophil recruitment and function in health and inflammation." *Nat Rev Immunol* **13**(3): 159-175.

690 Krull, A., T.-O. Buchholz and F. Jug (2019). Noise2void-learning denoising from single noisy images.
691 Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

692 Kwon, W. Y., G. J. Suh, Y. S. Jung, S. M. Park, S. Oh, S. H. Kim, A. R. Lee, J. Y. Kim, H. Kim, K. A. Kim, Y. Kim,
693 B. C. Kim, T. Kim, K. S. Kim, K. Itagaki and C. J. Hauser (2021). "Circulating mitochondrial <i>N</i>-formyl
694 peptides contribute to secondary nosocomial infection in patients with septic shock." *Proceedings of the
695 National Academy of Sciences* **118**(17): e2018538118.

696 Lazarou, M., D. A. Sliter, L. A. Kane, S. A. Sarraf, C. Wang, J. L. Burman, D. P. Sideris, A. I. Fogel and R. J.
697 Youle (2015). "The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy." *Nature*
698 **524**(7565): 309-314.

699 Letsiou, E., S. Sammani, H. Wang, P. Belvitch and S. M. Dudek (2017). "Parkin regulates lipopolysaccharide-
700 induced proinflammatory responses in acute lung injury." *Translational Research* **181**: 71-82.

701 Liu, M., L. Zhang, G. Marsboom, A. Jambusaria, S. Xiong, P. T. Toth, E. V. Benevolenskaya, J. Rehman and
702 A. B. Malik (2019). "Sox17 is required for endothelial regeneration following inflammation-induced
703 vascular injury." *Nat Commun* **10**(1): 2126.

704 Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C. A. Gautier, Y. S. Sou, S. Saiki, S. Kawajiri, F. Sato, M.
705 Kimura, M. Komatsu, N. Hattori and K. Tanaka (2010). "PINK1 stabilized by mitochondrial depolarization
706 recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy." *J Cell Biol* **189**(2):
707 211-221.

708 Matute-Bello, G., C. W. Frevert and T. R. Martin (2008). "Animal models of acute lung injury." *Am J Physiol
709 Lung Cell Mol Physiol* **295**(3): L379-399.

710 McDonald, B., K. Pittman, G. B. Menezes, S. A. Hirota, I. Slaba, C. C. Waterhouse, P. L. Beck, D. A. Muruve
711 and P. Kubes (2010). "Intravascular danger signals guide neutrophils to sites of sterile inflammation." *Science*
712 **330**(6002): 362-366.

713 McWilliams, T. G. and M. M. K. Muqit (2017). "PINK1 and Parkin: emerging themes in mitochondrial
714 homeostasis." *Current Opinion in Cell Biology* **45**: 83-91.

716 Muller, W. A. (2016). "Transendothelial migration: unifying principles from the endothelial perspective." *717 Immunol Rev* **273**(1): 61-75.

718 Nathan, C. (2006). "Neutrophils and immunity: challenges and opportunities." *Nature Reviews 719 Immunology* **6**(3): 173-182.

720 Ng, M. Y. W., T. Wai and A. Simonsen (2021). "Quality control of the mitochondrion." *Dev Cell* **56**(7): 881-721 905.

722 Nicolás-Ávila, J. A., A. V. Lechuga-Vieco, L. Esteban-Martínez, M. Sánchez-Díaz, E. Díaz-García, D. J. 723 Santiago, A. Rubio-Ponce, J. L. Li, A. Balachander, J. A. Quintana, R. Martínez-de-Mena, B. Castejón-Vega, 724 A. Pun-García, P. G. Través, E. Bonzón-Kulichenko, F. García-Marqués, L. Cussó, N. A-González, A. 725 González-Guerra, M. Roche-Molina, S. Martin-Salamanca, G. Crainiciuc, G. Guzmán, J. Larrazabal, E. 726 Herrero-Galán, J. Alegre-Cebollada, G. Lemke, C. V. Rothlin, L. J. Jimenez-Borreguero, G. Reyes, A. Castrillo, 727 M. Desco, P. Muñoz-Cánores, B. Ibáñez, M. Torres, L. G. Ng, S. G. Priori, H. Bueno, J. Vázquez, M. D. 728 Cordero, J. A. Bernal, J. A. Enríquez and A. Hidalgo (2020). "A Network of Macrophages Supports 729 Mitochondrial Homeostasis in the Heart." *Cell* **183**(1): 94-109.e123.

730 Onishi, M., K. Yamano, M. Sato, N. Matsuda and K. Okamoto (2021). "Molecular mechanisms and 731 physiological functions of mitophagy." *Embo J* **40**(3): e104705.

732 Orrington-Myers, J., X. Gao, P. Kouklis, M. Broman, A. Rahman, S. M. Vogel and A. B. Malik (2006). 733 "Regulation of lung neutrophil recruitment by VE-cadherin." *Am J Physiol Lung Cell Mol Physiol* **291**(4): 734 L764-771.

735 Palikaras, K., E. Lionaki and N. Tavernarakis (2018). "Mechanisms of mitophagy in cellular homeostasis, 736 physiology and pathology." *Nat Cell Biol* **20**(9): 1013-1022.

737 Peng, W., Y. C. Wong and D. Krainc (2020). "Mitochondria-lysosome contacts regulate mitochondrial 738 Ca(2+) dynamics via lysosomal TRPML1." *Proc Natl Acad Sci U S A* **117**(32): 19266-19275.

739 Platt, R. J., S. Chen, Y. Zhou, M. J. Yim, L. Swiech, H. R. Kempton, J. E. Dahlman, O. Parnas, T. M. Eisenhaure, 740 M. Jovanovic, D. B. Graham, S. Jhunjhunwala, M. Heidenreich, R. J. Xavier, R. Langer, D. G. Anderson, N. 741 Hacohen, A. Regev, G. Feng, P. A. Sharp and F. Zhang (2014). "CRISPR-Cas9 knockin mice for genome 742 editing and cancer modeling." *Cell* **159**(2): 440-455.

743 Pober, J. S. and W. C. Sessa (2007). "Evolving functions of endothelial cells in inflammation." *Nature 744 Reviews Immunology* **7**(10): 803-815.

745 Puhm, F., T. Afonyushkin, U. Resch, G. Obermayer, M. Rohde, T. Penz, M. Schuster, G. Wagner, A. F. 746 Rendeiro, I. Melki, C. Kaun, J. Wojta, C. Bock, B. Jilma, N. Mackman, E. Boilard and C. J. Binder (2019). 747 "Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I 748 IFN and TNF Responses in Endothelial Cells." *Circ Res* **125**(1): 43-52.

749 Quintero, M., S. L. Colombo, A. Godfrey and S. Moncada (2006). "Mitochondria as signaling organelles in 750 the vascular endothelium." *Proceedings of the National Academy of Sciences* **103**(14): 5379-5384.

751 Rongvaux, A. (2018). "Innate immunity and tolerance toward mitochondria." *Mitochondrion* **41**: 14-20.

752 Sethi, J. K. and G. S. Hotamisligil (2021). "Metabolic Messengers: tumour necrosis factor." *Nature 753 Metabolism* **3**(10): 1302-1312.

754 Sliter, D. A., J. Martinez, L. Hao, X. Chen, N. Sun, T. D. Fischer, J. L. Burman, Y. Li, Z. Zhang, D. P. Narendra, 755 H. Cai, M. Borsche, C. Klein and R. J. Youle (2018). "Parkin and PINK1 mitigate STING-induced 756 inflammation." *Nature* **561**(7722): 258-262.

757 Sun, N., D. Malide, J. Liu, Rovira, II, C. A. Combs and T. Finkel (2017). "A fluorescence-based imaging 758 method to measure in vitro and in vivo mitophagy using mt-Keima." *Nat Protoc* **12**(8): 1576-1587.

759 Tiku, V., M.-W. Tan and I. Dikic (2020). "Mitochondrial Functions in Infection and Immunity." *Trends in 760 Cell Biology* **30**(4): 263-275.

761 Tucker, Elena J., Steven G. Hershman, C. Köhrer, Casey A. Belcher-Timme, J. Patel, Olga A. Goldberger, J. 762 Christodoulou, Jonathon M. Silberstein, M. McKenzie, Michael T. Ryan, Alison G. Compton, Jacob D. Jaffe, 763 Steven A. Carr, Sarah E. Calvo, Uttam L. RajBhandary, David R. Thorburn and Vamsi K. Mootha (2011).

764 "Mutations in *MTFMT* Underlie a Human Disorder of Formylation Causing Impaired
765 Mitochondrial Translation." *Cell Metabolism* **14**(3): 428-434.

766 Wenceslau, C. F., C. G. McCarthy, T. Szasz, S. Goulopoulou and R. C. Webb (2015). "Mitochondrial N-formyl
767 peptides induce cardiovascular collapse and sepsis-like syndrome." *American journal of physiology. Heart*
768 *and circulatory physiology* **308**(7): H768-H777.

769 Williams, A. E. and R. C. Chambers (2014). "The mercurial nature of neutrophils: still an enigma in ARDS?"
770 *American Journal of Physiology-Lung Cellular and Molecular Physiology* **306**(3): L217-L230.

771 Wong, Y. C., S. Kim, W. Peng and D. Krainc (2019). "Regulation and Function of Mitochondria-Lysosome
772 Membrane Contact Sites in Cellular Homeostasis." *Trends Cell Biol* **29**(6): 500-513.

773 Wong, Y. C., D. Ysselstein and D. Krainc (2018). "Mitochondria-lysosome contacts regulate mitochondrial
774 fission via RAB7 GTP hydrolysis." *Nature* **554**(7692): 382-386.

775 Yamano, K. and R. J. Youle (2013). "PINK1 is degraded through the N-end rule pathway." *Autophagy* **9**(11):
776 1758-1769.

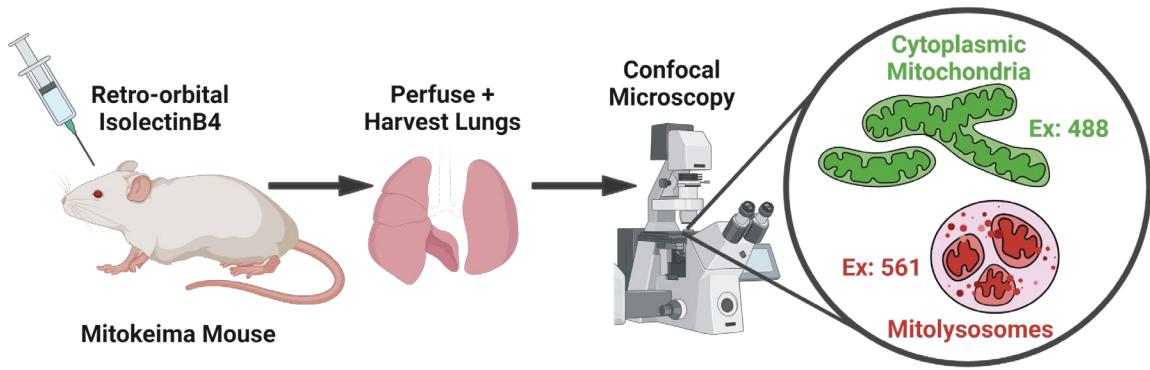
777 Yang, L., R. M. Froio, T. E. Sciuto, A. M. Dvorak, R. Alon and F. W. Luscinskas (2005). "ICAM-1 regulates
778 neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under
779 flow." *Blood* **106**(2): 584-592.

780 Yuan, Z. C., N. Zeng, L. Liu, T. Wang, L. Q. Dai, H. Wang, Z. J. Zeng, Y. F. Cao, Y. F. Zhou, D. Xu, Y. C. Shen
781 and F. Q. Wen (2021). "Mitochondrial Damage-Associated Molecular Patterns Exacerbate Lung Fluid
782 Imbalance Via the Formyl Peptide Receptor-1 Signaling Pathway in Acute Lung Injury." *Crit Care Med*
783 **49**(1): e53-e62.

784 Zemans, R. L. and M. A. Matthay (2017). "What drives neutrophils to the alveoli in ARDS?" *Thorax* **72**(1):
785 1-3.

786 Zhang, E. R., S. Liu, L. F. Wu, S. J. Altschuler and M. H. Cobb (2016). "Chemoattractant concentration-
787 dependent tuning of ERK signaling dynamics in migrating neutrophils." *Sci Signal* **9**(458): ra122.

788 Zhang, L., S. Gao, Z. White, Y. Dai, A. B. Malik and J. Rehman (2022). "Single-cell transcriptomic profiling
789 of lung endothelial cells identifies dynamic inflammatory and regenerative subpopulations." *JCI Insight*
790 **7**(11).


791 Zhang, Q., M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki and C. J. Hauser (2010).
792 "Circulating mitochondrial DAMPs cause inflammatory responses to injury." *Nature* **464**(7285): 104-107.

793 Zhong, Z., A. Umemura, E. Sanchez-Lopez, S. Liang, S. Shalapour, J. Wong, F. He, D. Boassa, G. Perkins,
794 Syed R. Ali, Matthew D. McGeough, Mark H. Ellisman, E. Seki, Asa B. Gustafsson, Hal M. Hoffman, Maria T.
795 Diaz-Meco, J. Moscat and M. Karin (2016). "NF- κ B Restricts Inflammasome Activation via
796 Elimination of Damaged Mitochondria." *Cell* **164**(5): 896-910.

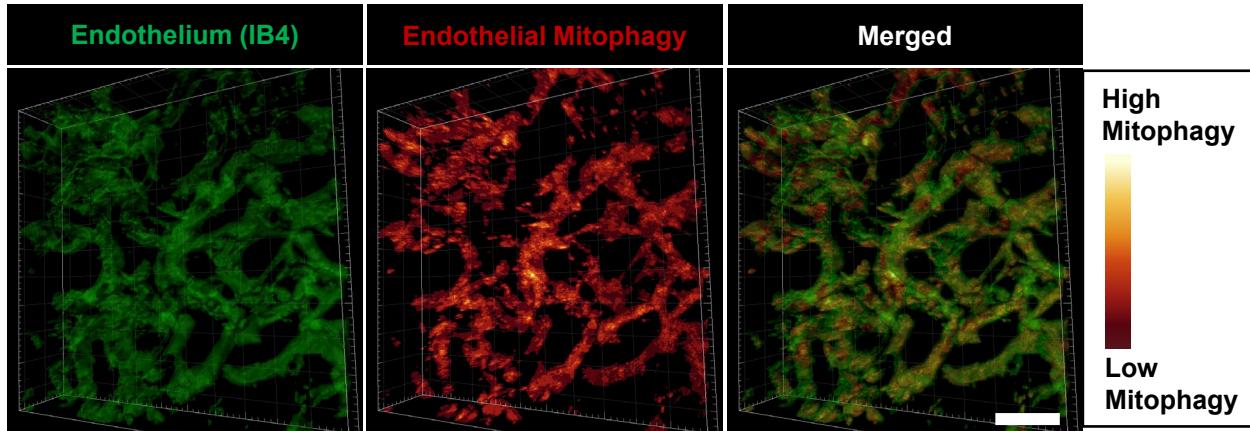

797

Figure 1

A

B

C

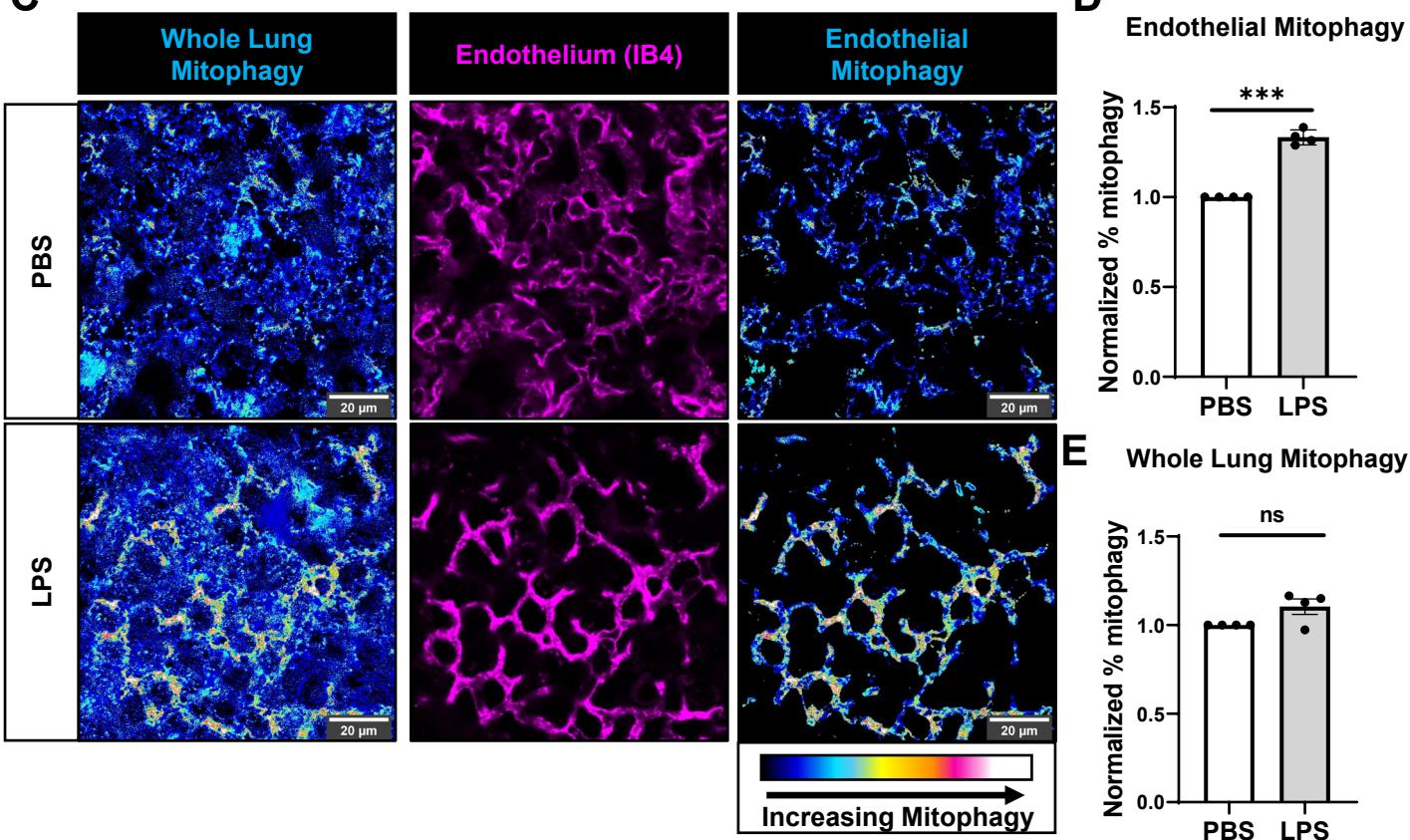
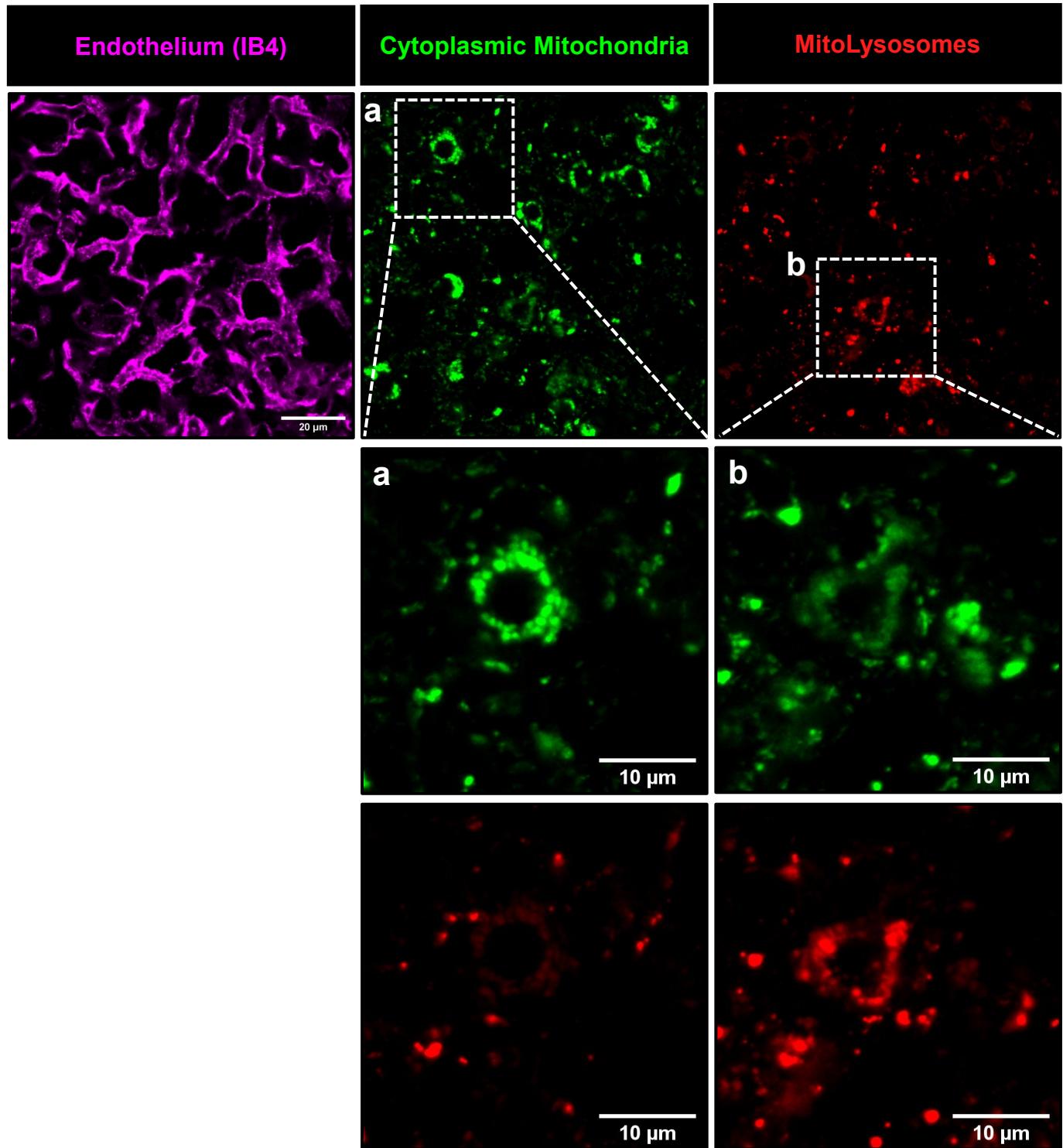
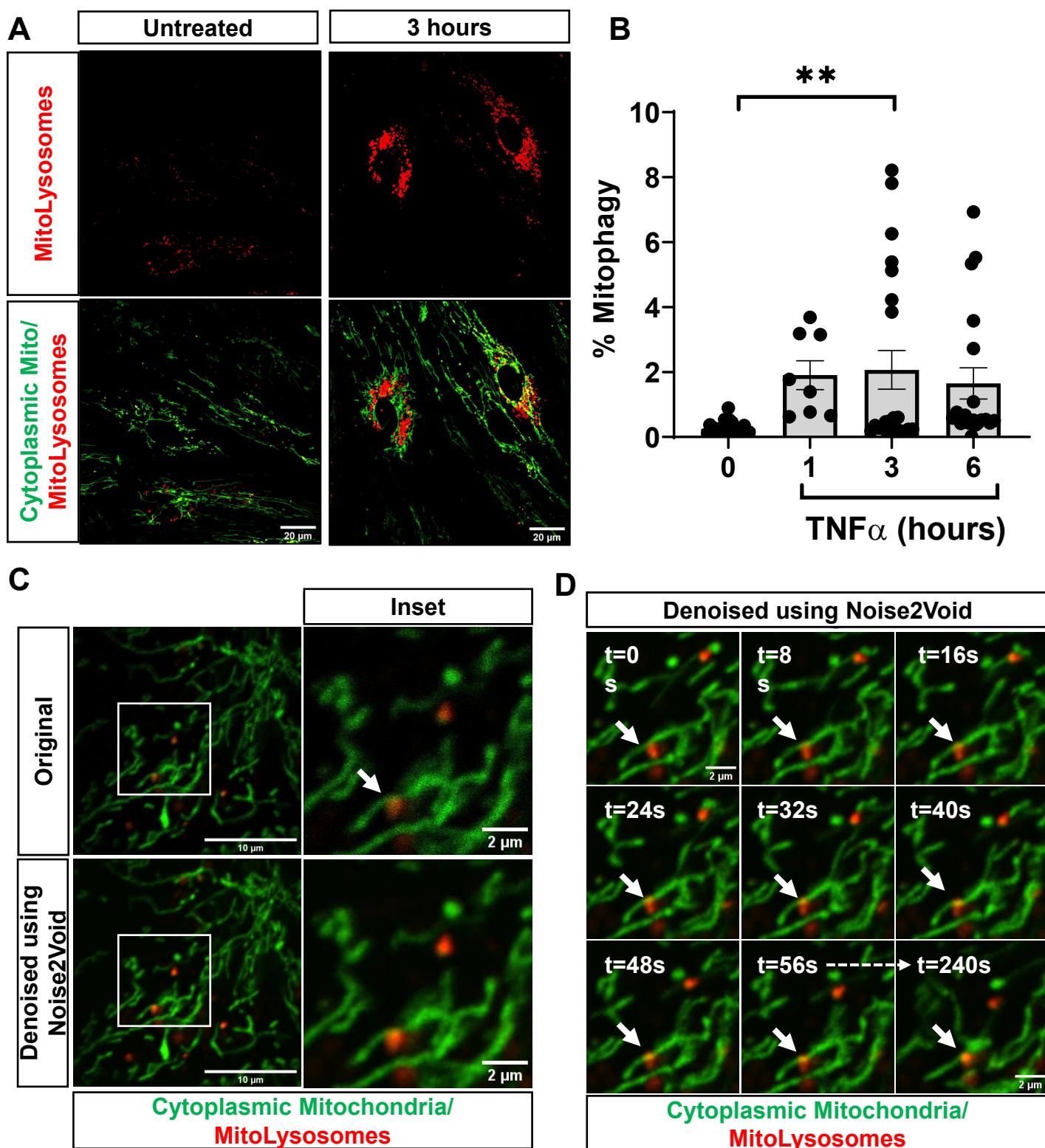
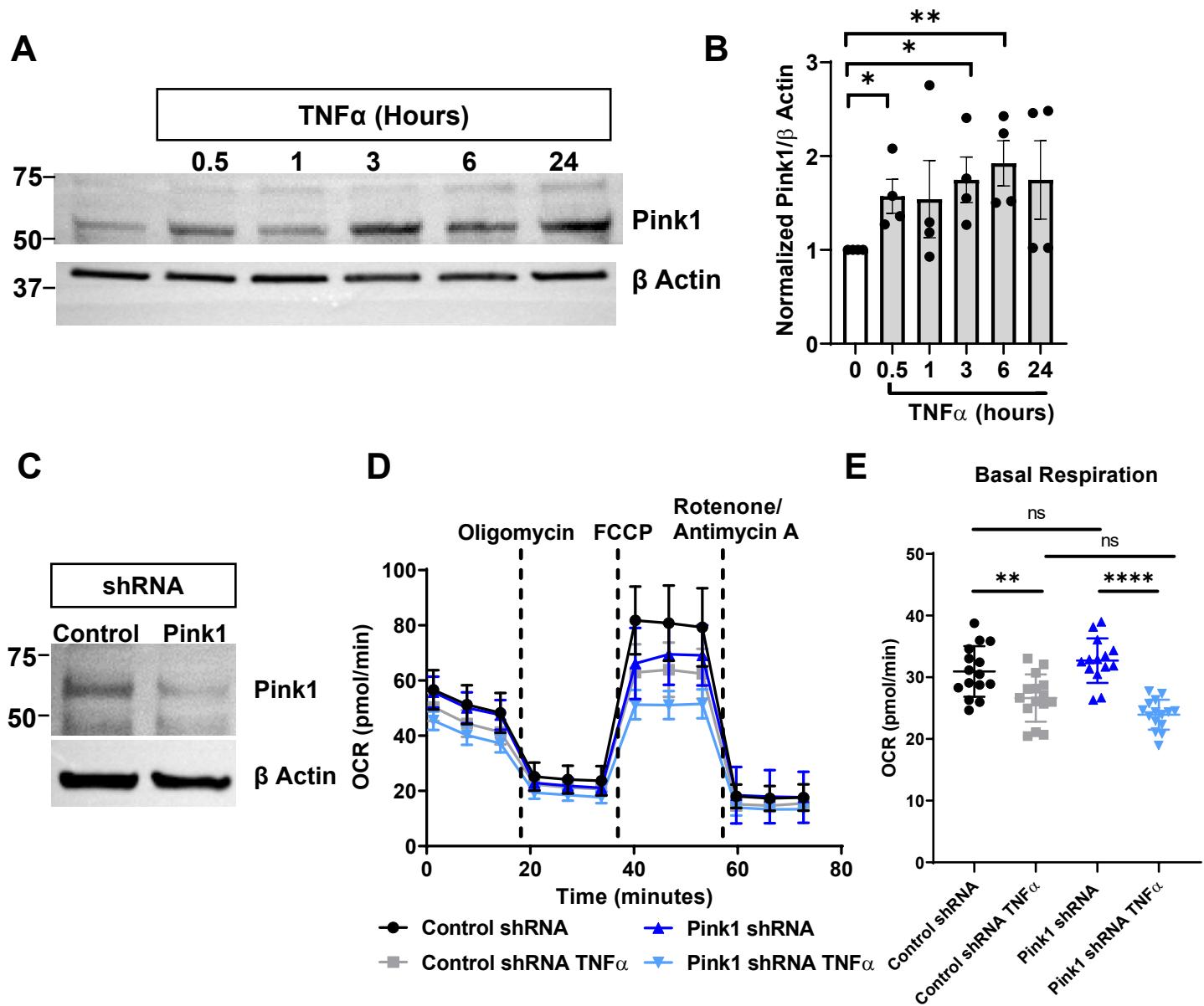




Figure 1 – Supplementary Figure 1


Whole Mouse Lungs

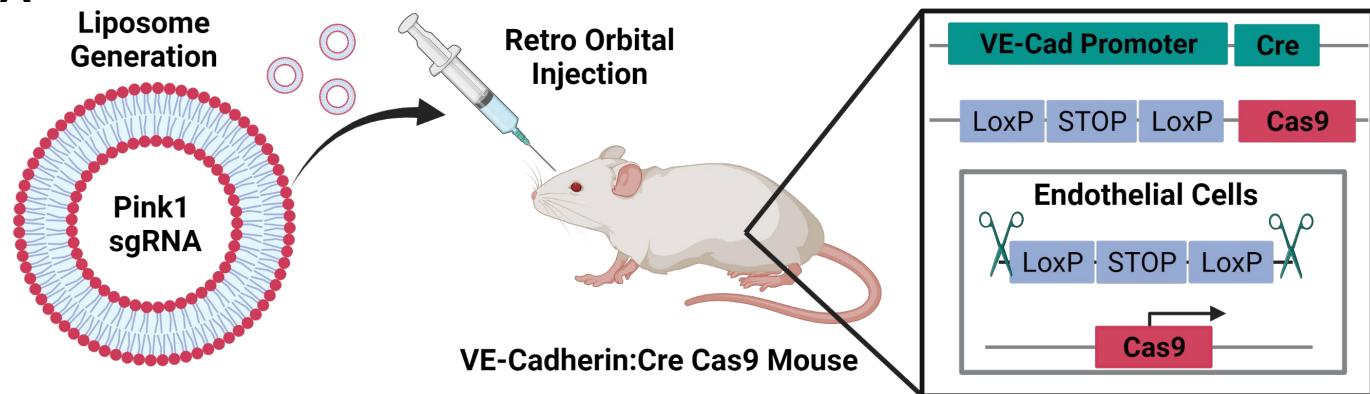
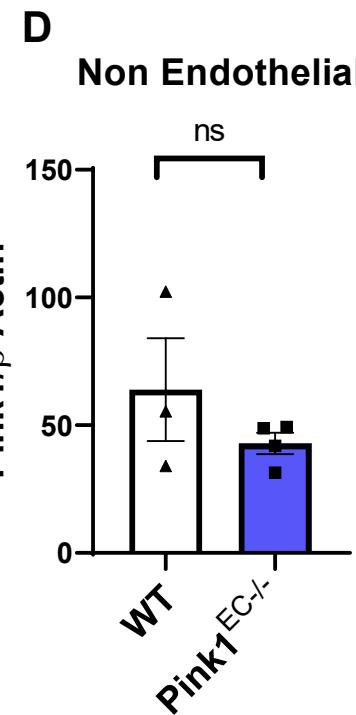
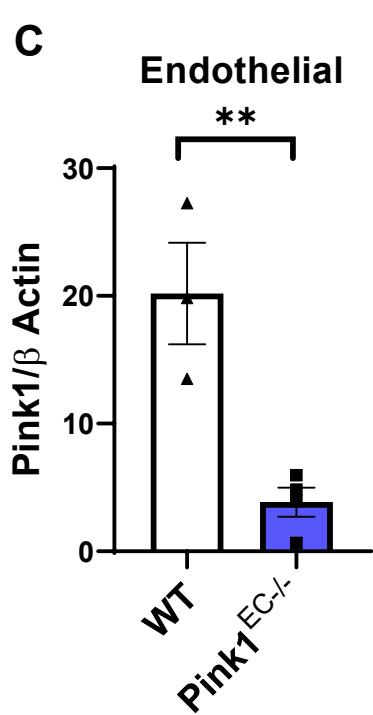
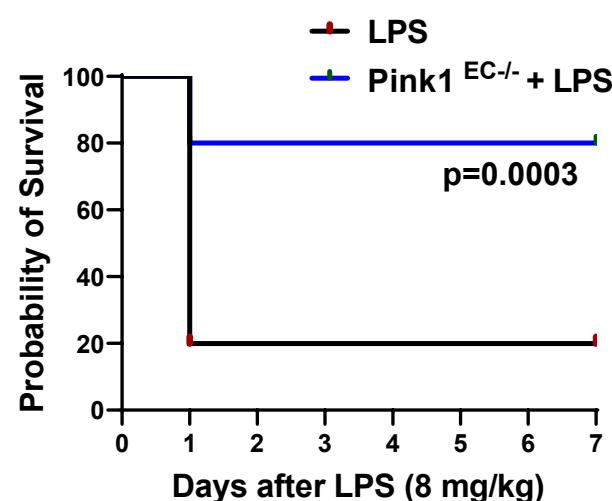





Figure 2

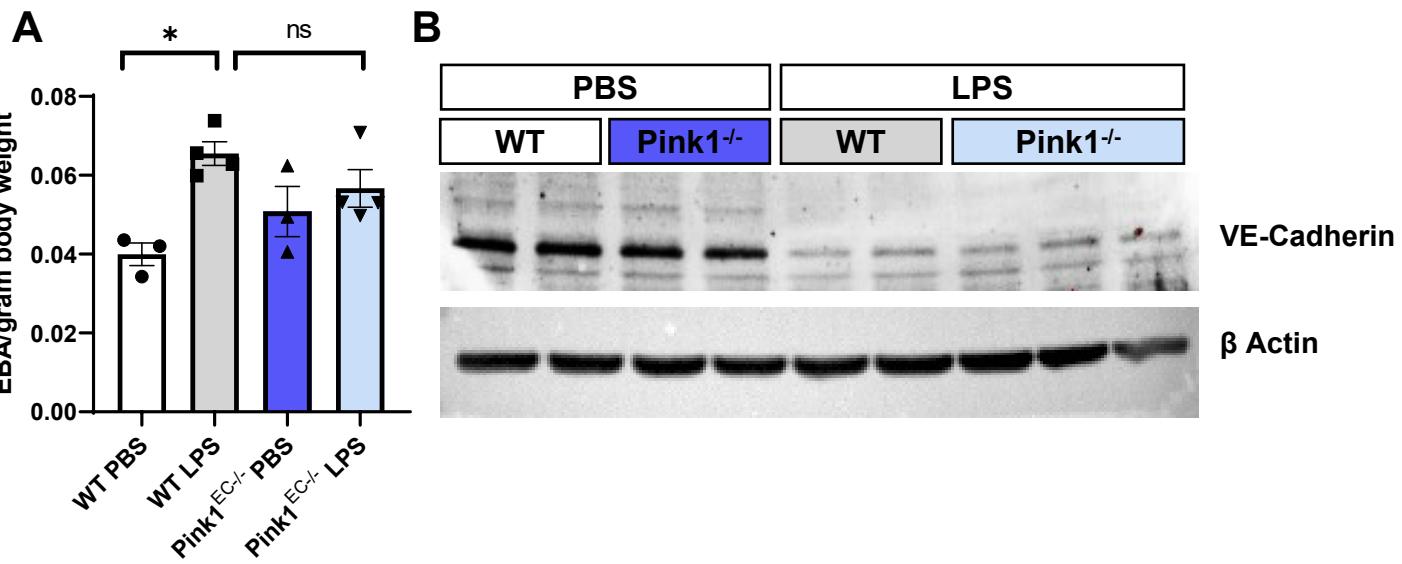
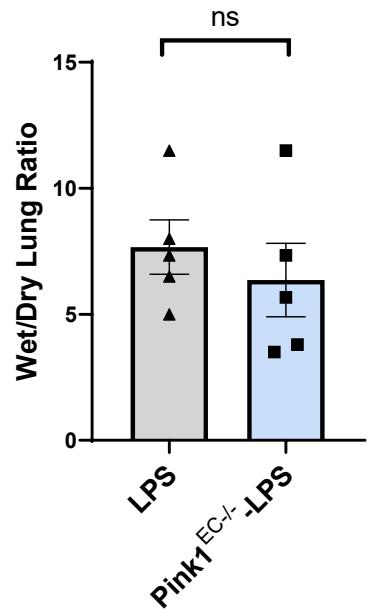


Figure 3



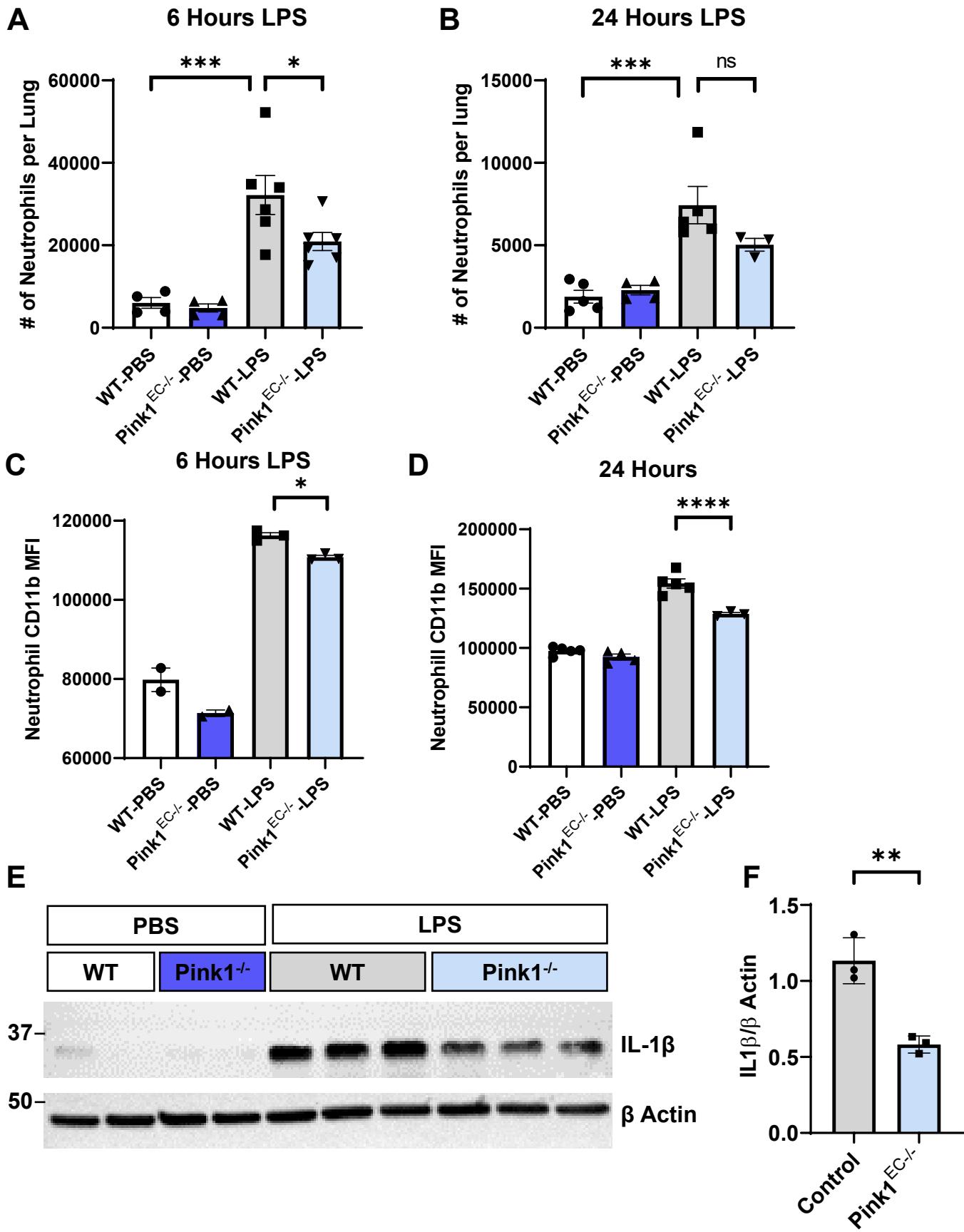
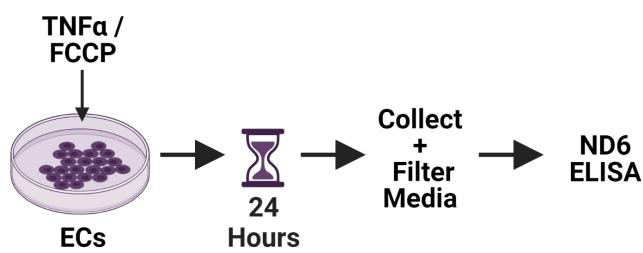
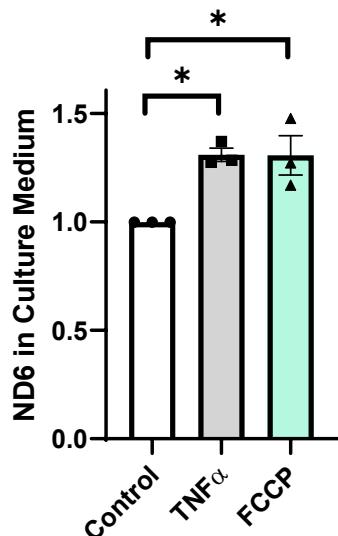
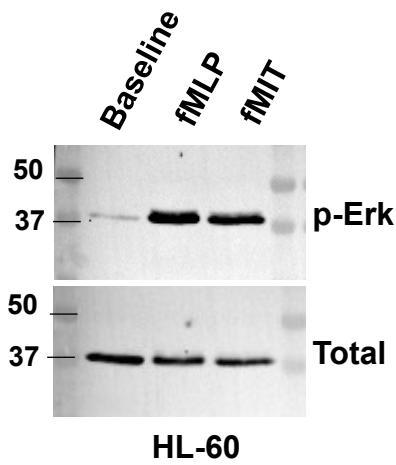
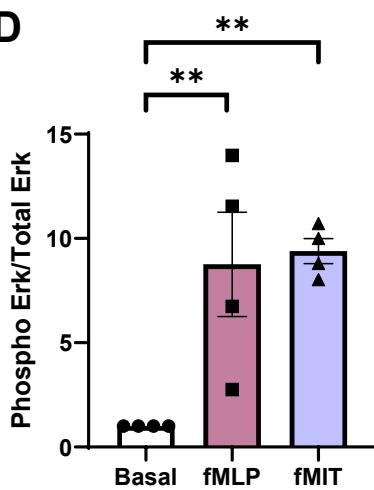
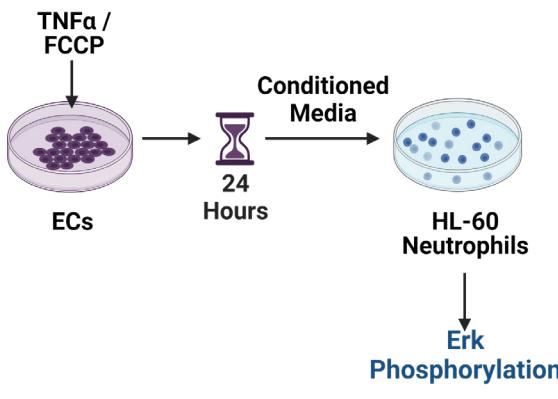
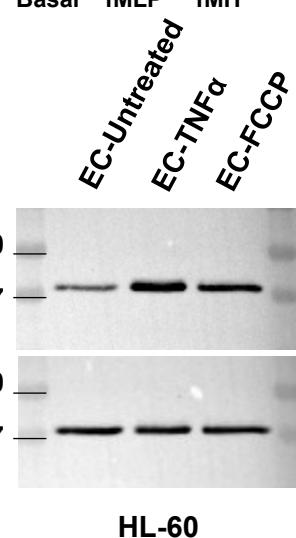
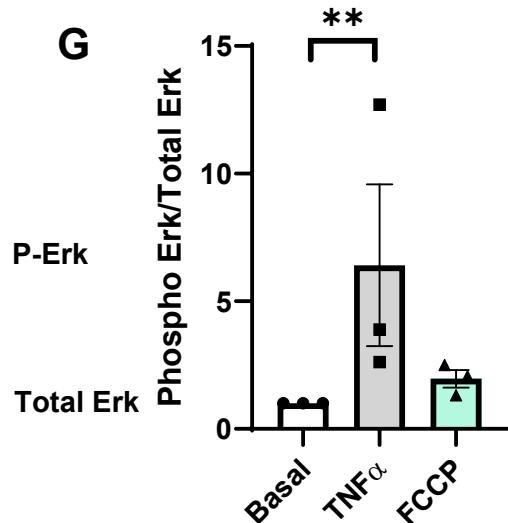

Figure 4**A****B****C****E**

Figure 4 – Supplementary Figure 1










Figure 4 – Supplementary Figure 2

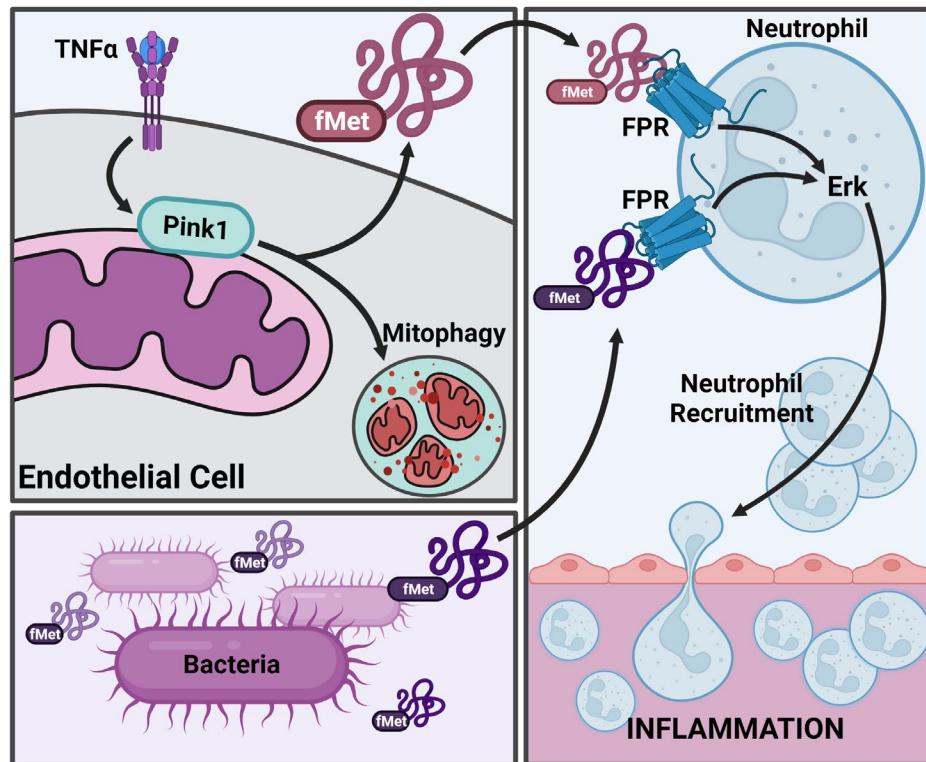

Figure 5

Figure 5 – Supplementary Figure 1

Figure 6**A****B****C****D****E****F****G**

Figure 7

