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14  Abstract (250 words)
15 Vvascular Endothelial Cells (EC) plasticity is key to homeostasis and its disruption is a hallmark of
16 diseases such as cancer, atherosclerosis, and diabetes. The EC lineage has evolved to address in
17 parallel sensor and actuator functions. This ability is reflected in remarkable phenotypical
18 heterogeneity of EC across different tissues, within the same tissue, and within the same vascular
19 bed as demonstrated by single cell image analysis and transcriptomics studies. However, how the
20  molecular signalling dynamics in EC could generate and maintain such heterogeneity in different
21 contexts is still largely unexplored. Recently we reported that confluent EC have spatially
22  heterogeneous NOTCH signalling pathway (NSP) levels in vitro as confirmed from analysis of
23  available OMICS databases. Here, we show that spatial heterogeneity of NSP levels is a feature of
24 aortic murine endothelia in vivo and recapitulated by human EC in culture despite absence of
25  signalling from mural cells. We study lateral induction and inhibition, cis-interactions and signalling,
26  and target genes autoregulation in NSP. Using mathematical models and experimental observations
27  we report that NSP dynamics can generate stable, periodic, and asynchronous oscillations of the NSP
28  target HESL. Importantly, we observe that cell contact dependent NSP signal oscillations is the most
29 likely parsimonious mechanistic hypothesis justifying observed spatial heterogeneity in endothelia.
30 We propose that NSP is sufficient to enable individual EC in monolayers to acquire different
31 phenotypes dynamically explaining robustness of quiescent endothelia in performing parallel
32  functions.
33
34 Introduction
35  Endothelial cells (EC) compose the inner lining of all blood and lymphatic vessels in the human body
36  and they are phenotypically heterogeneous across different tissues. EC phenotypic heterogeneity is
37 an evolutionarily conserved feature emerging early during embryonic development (Aird, 2007a,
38  2007b). Disruption of EC homeostasis is a recognised hallmark of diseases such as cancer and
39 atherosclerosis and EC are primary targets for pharmacological interventions due to their key role at
40 the interface between blood and all tissues (Potente et al., 2011; Simmons et al., 2005). Previous in
41  vivo studies (Lee et al., 2022; McCarron et al., 2019) have shown that EC in large vessels have
42  heterogeneous phenotypes (e.g., differential Ca++ sensitivity). We have previously demonstrated the
43  value of measuring images of cultured EC to assess phenotypical and intracellular signalling
44  heterogeneity in endothelial monolayers using our EC profiling tool (ECPT)(Chesnais et al., 2022).
45  Our work using ECPT has established that quiescent EC within the same monolayer in vitro display
46  heterogeneous levels of NICD (second messenger of NOTCH Signalling Pathway, NSP) and HES1
47  (NSP target gene), echoing results obtained in cancer cells (Sabherwal et al., 2021).
48  Establishing mechanistic links between signalling pathways such as NOTCH and heterogeneous EC
49  phenotypes is key to improve our understanding of EC biology, to develop more effective drugs and
50 increase predictability of treatments outcome (Zhou et al., 2022). For example NSP has been
51 implicated in both atherosclerotic plaques formation and regression (Kong et al., 2022; Vieceli Dalla
52 Segaetal, 2019).
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53  Previous work in vivo, in vitro and in silico has defined a framework to elucidate emerging NOTCH-
54  dependent phenotypes. The current hypothesis is that mechanisms of lateral induction (LId) and
55 lateral inhibition (LIb, trans-interactions) as well as ligand-receptors interactions in the same cell (cis-
56 interactions, Cl) (Boareto et al., 2016; Chesnais et al., 2022) coexist to induce differential signalling
57 levels (e.g., levels of HES1) and phenotypes. Beyond the well-known stable alternating spatial
58 patterns in NSP observed in several contexts (e.g., developing mouse retina neuroepithelium)
59  (Formosa-Jordan et al., 2013), temporal oscillations in NSP (levels of NICD or NSP target genes)
60 have been predicted in silico and observed experimentally (Marinopoulou et al., 2021; Sabherwal et
61 al., 2021; Ubezio et al., 2016) The current mechanistic hypothesis is that NSP levels oscillations may
62  result from cell autonomous negative autoregulation of HES1 transcription (Hirata et al., 2002). HES1
63 is a well-established NSP target gene in EC which differential expression regulates functions such as
64  cell proliferation and inter-cellular junctional stability (Bentley et al., 2014; Fang et al., 2017
65 Fernandez-Martin et al.,, 2012). In several biological contexts, variations in the levels of NSP in
66  neighbouring cells determines differential cell fates and EC constitutively express NOTCH ligands and
67  receptors independently from NSP(Curry et al., 2006). NSP is key to tip cell selection and tip-stalk cell
68  crosstalk during VEGF induced neo-angiogenesis (Jakobsson et al., 2010, 2009). However, the
69  spatio-temporal dynamics of NOTCH signalling in “stable” (non-proliferative, non-migratory) EC
70  monolayers (i.e., endothelia) is poorly understood. In mathematical formalisation, a negative
71  autoregulatory loop can only oscillate in the presence of significant delays in regulation; else, negative
72  autoregulation leads to stable graded expression. Delays could result from transcription factor's
73 nuclear import dynamics, transcriptional/translational delay or the inclusion of additional intermediate
74 factors in the signalling chain. However, HES1 appears to act as a simple direct auto-inhibitor without
75  intermediate factors.

76  Our previous results show that HES1 is repressed in few cells within a confluent EC monolayer
77  suggesting that these cells could be licensed for proliferation (Chesnais et al., 2022). Furthermore,
78 these results suggest a non-stable NSP dynamics in EC monolayers paralleling results from
79  angiogenic EC (Ubezio et al., 2016) and breast cancer cell lines (Sabherwal et al., 2021).

80 Directly measuring HES1 dynamics in primary EC to verify this hypothesis is currently challenging.
81  However, multi scale models calibrated on experimental data enable a qualitative evaluation of
82  hypotheses on the dynamic of cellular systems signalling when direct experimental measures are
83 inaccessible.

84  Here, to establish a mechanistic link between NSP levels and acquisition of differential phenotypes in
85 EC we firstly aimed to confirm that spatial heterogeneity of NSP is also appreciable in vivo. Then we
86  aimed to evaluate in silico whether NSP alone is in principle sufficient to generate such heterogeneity
87  inspace and time. We used time course experiment where we inhibited NSP in human umbilical vein
88 and human aortic EC (HUVEC and HAOEC) and measured time variations in nuclear NOTCH1 and
89 HES1 at single cell and population levels by ECPT. We used experimental cell maps and
90 corresponding data to calibrate a novel spatialised multi scale model (SMSM) of NSP encompassing
91 LIb, LId, CI, and HES1 autoregulation. Finally, we used our SMSM to evaluate whether and under
92  which conditions synthetic data reproduce the spatial distributions of NOCTH signal observed in vitro
93  and in vivo.

94
95 Results

96 Nuclear HES1 have heterogeneous intensities in murine aortic EC.

97  We first set to address whether NSP levels heterogeneity (NSH) we previously measured in vitro is a

98 feature of endothelia in vivo where NSP might be affected by co-signalling from mural cells (Baeten

99  and Lilly, 2017). To evaluate whether endothelia in vivo demonstrated spatial NSH we performed en
100 face stainings of murine aortas as described before (Hakanpaa et al., 2015). Fig.1A shows a
101  representative image of murine aortic endothelium. HES1 immunostaining (yellow) shows
102  heterogeneity in intensity of signal especially, the presence of few EC with low- or high-signal like
103  observed in vitro (Fig 1C). Fig. 1B (green trace) shows single-cell quantification of HES1 intensities
104  across 3 images taken from 3 independent samples confirming heterogeneous distribution of HES1
105 intensities across aortic monolayers. Black and red overlay traces in Fig. 1B and maps in Fig. 1C
106  correspond to measures in HAOEC and HUVEC monolayers demonstrating that in vitro data
107  qualitatively resemble in vivo scenario.
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108 Overall, these results demonstrate NSH in murine aortic endothelia and that the mechanisms
109  underpinning observed heterogeneity are preserved in vitro despite absence of signalling from mural
110 cells. These results strongly suggest that the molecular mechanisms driving NSH are predominantly
11% intrinsic to EC validating EC cultures as models to investigate them in a controlled experimental
11 setup.

113 To investigate the underlying molecular dynamics driving NSH in endothelia we developed a
114  computational framework encompassing established and hypothesised rules driving NSP dynamics.
115  we calibrated our framework with experimental data and cell maps from standardised in vitro EC
116  cultures and we explored which hypotheses could reproduce experimental data in silico.

117  Creation and calibration of a spatialised multiscale model of NOTCH signalling in EC

118 Assuming that NOTCH signalling is sufficient to generate the heterogeneous maps we observed in
119  vitro and in vivo, then NSH could emerge either due to generation of multiple stable phenotypes or
120 alternatively instable, oscillating ones as reported previously (Hirata et al., 2002; Marinopoulou et al.,
121  2021; Sabherwal et al., 2021; Shimojo et al., 2008; Yoshioka-Kobayashi et al., 2020). To evaluate
122  these hypotheses in the context of EC monolayers we built a spatialised multiscale cellular model of
123  NSP including Lateral Inhibition (LIb) and Lateral Induction (LId) as described in previous work
124  (Boareto et al., 2016; Sprinzak et al., 2010). We based our sub cellular Proteins/Gene Regulatory
125  Network (P/GRN) model on previous frameworks (Boareto et al., 2015) following similar deterministic
126 formalism and expanded it to include productive cis interactions (Cl) (Nandagopal et al., 2019) (Fig.
127  2A) and HES1 autoregulation (Monk, 2003). We started assigning previously established values to all
128 model parameters (e.g., production degradation rates of receptors, ligands second messengers and
129 TF). We embedded the P/GRN model in a spatialised context using either regular cell dispositions
130 (square lattice of identical cells) or experimentally derived cell maps (Fig 2B).

131 The timescale of NSP transduction can be affected by contextual/phenotype-dependent factors. To
132  further specify our P/GRN model to EC we experimentally timed degradation of NICD and HES1 in
133  cultured EC. To this aim, we timed the variations in nuclear NOTCH and HES1 signal in EC upon
134  exposure to the gamma secretase inhibitor DAPT. DAPT limits NOTCH signal transduction by
135 inhibiting cleavage of internalised NOTCH receptors to produce the second messenger NICD (Fig.
136 2A). We measured nuclear NOTCH1 and HES1 in EC monolayers exposed to DAPT for different
137  times using the ECPT (Fig. 2C)(Chesnais et al., 2022). Fig. 2C shows normalised plots for relative
138 NICD and HES1 intensities (1/KS-distance from cumulative control condition) in HUVEC and HAOEC
139  populations upon treatment with DAPT. These results demonstrate that half maximal NICD inhibition
140 in our experimental conditions is achieved in 1 hour in HUVEC and in 4 hours in HAOEC which is
141  coherent with higher intrinsic signalling in the latter (Chesnais et al., 2022; Luo et al., 2020). Long
142  term DAPT treatment (24h) resulted in further NICD inhibition in HAOEC but not in HUVEC (Fig 2C).
143  Overall, these results demonstrate that cellular NICD degrades at fast rate (minutes) in line with
144  previous models and data (Boareto et al., 2015; Hirata et al., 2002; Marinopoulou et al., 2021).
145  Furthermore, our results highlight that the net effects of NSP perturbation are unsurprisingly cell
146  phenotype specific. Similarly, we estimated the time scale of HES1 inhibition in the same cells. The
147  plot in Fig 2C shows that half maximal inhibition of HES1 in HUVEC is achieved in one hour
148  paralleling NICD results. However, HES1 levels in HAOEC were only affected at later times >6 hours
149  upon DAPT exposure. Overall, results in HUVEC closely mirror previous results using different
150 experimental systems suggesting that the underlying NOCTH dynamics investigated in previous
151  works is paralleled in EC (Boareto et al., 2015; Monk, 2003; Nandagopal et al., 2019; Yoshioka-
152 Kobayashi et al., 2020). Using these results and reference parameters defined in previous work we
153  set the granularity of our simulation to 5 minutes/MCS and manually calibrated NICD and HES1
154 production/degradation rates in our model to match these results. Our estimates largely reflect
155  previously established results suggesting that the core NOTCH molecular machinery has similar
156 characteristic timescale in EC as in other cell types (Boareto et al., 2015; Monk, 2003).

157 In silico analysis of NOTCH signalling in EC monolayers reveals highly dynamic scenarios

158 To evaluate the qualitative responses of our calibrated model against selected parameters and to
159 validate it against previous models, we performed a coarse-grained parameter scan. We started from
160 regular cell dispositions and subsequently expanding the results to experimental cell maps (SFig. 1
161 and Fig. 3A). Analysis of parameter scan data revealed that our model can generate several
162 qualitatively different scenarios under different parameter settings. Fig. 3A shows density distributions
163  corresponding to synthetic data for HES1 pooled from 10 independent runs under indicated
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164  parameters (bD4, bN1 and Vmax J1 and N4 all set to 1) demonstrating a strong influence of the
165 parameter cr (regulating the strength of Cl) on the qualitative output of the model. Plots in Fig. 3A are
166  derived from runs employing experimental cell maps however very similar results were obtained with
167  regular cell dispositions (SFig. 1). Fig. 3A shows snapshots of cell maps and time tracking data
168 corresponding to five possible scenarios occurring under different parameter settings as indicated (in
169  represented scenarios all parameters are set to default values, 0 for OFF state or 1 for ON state
170  except cr and delay). In absence of Lid mechanism (no production of Jagged 1) the model predicts
171  generation of stable checkerboard patterns with alternating high/low phenotypes (Fig. 3Bi).
172  Furthermore, differently from previous models and our own data using regular cell dispositions
173  (Boareto et al., 2015) and SFig. 1), we could observe emergence of intermediate phenotypes due to
174  differential contact between cells. Introduction of Lid (production of Jagged 1) and moderate Cl (cr<
175 0.05) favoured the emergence of stable intermediate phenotypes (Fig. 3A ii, iii) similarly to regular cell
176  dispositions (SFig. 1) and in line with previous data (Boareto et al., 2015). Finally, introduction of
177  sustained CI (cr = 0.05-0.1) caused cells to oscillate between high and low phenotypes (Fig. 3B)
178  similarly to regular cell dispositions (SFig. 1). The oscillations were periodic, and their character
179  period and amplitude were sensitive to variation in the simulation parameters we considered
180 especially cr and delay in HES1 processing. Taken together our results qualitatively reproduce
181  previously described behaviours and extend the analysis to non-regular cell dispositions. Our data
182  show that introduction of asymmetric signalling between neighbouring cells can produce intermediate
183  phenotypes independently from Lid and Cl mechanisms. Furthermore, our data show for the first time
184  that sustained CI (extent of Cl ~ extent of TI) can in principle produce oscillatory phenotypes in a cell
185 monolayer with either regular or irregular cell dispositions (SFig. 1 and Fig. 3Biv). In a purely LIb
186  mechanism without Cl, the checkboard pattern emerges due to asymmetry in DIl4 expression in
187  neighbouring cells which is stable because repressed receiver cells cannot signal through DIl4.
188 Introducing CI can break this symmetry because signalling sender cells can auto-repress DLL4 via ClI
189 becoming an intermediate sender-receiver cells (SFig. 2). We initially hypothesized that oscillations
190 could also in principle emerge due to an autoregulatory feedback loop with delay in the TF HES1 as
191  previously reported (Hirata et al., 2002) and included this aspect as described in methods. However,
192  our simulations failed to reproduce robust HES1 oscillation by cell-autonomous autoregulatory
193  feedback using previously described parameters and instead produced short-lived oscillations which
194  dampened after few MCS (Fig. 3Av).

195  Overall, our observations in silico suggest that in the context of EC (cell monolayers constitutively
196 expressing NSP ligands and receptors) oscillatory behaviours of NSP are in principle possible and
197 likely due to cell-contact dependent mechanisms rather than cell-autonomous TF autoregulation.
198  Furthermore, our results highlight a key role of cell shapes, dispositions, and spatial relationships in
199  producing different qualitative response of NSP.

200 Heterogeneous HES1 in monolayers implies oscillatory phenotypes of individual EC

201  To evaluate whether any of our theoretical prediction scenarios could reproduce experimental data we
202  performed a fine-grained parameter scan over our set of selected parameters and compared each
203  result against experimental data (Table 1, Methods). To facilitate a fine-grained parameter scan while
204  maintaining the total number of simulations reasonably low we implemented a random walk search
205 followed by iterative optimisation as described in methods and SFig. 3. Fig. 4A shows scatterplots of
206  all simulations in our parameter scan demonstrating that under certain parameter sets our model was
207 able to produce results closely resembling experimental data (positive hits hereafter, KS D<0.1,
208  green-yellow dots).

209  Fig. 4Ai and ii show that positive hits were restricted in a relatively narrow region of possible bD4, bN1
210 and J1 values (basal or inducible production rates of DIl4, NOTCH1 and Jagl respectively) which
211  correspond to physiologic ranges as per model's specifications (table 1 and methods).

212  Scatterplot in Fig. 4Aiii demonstrate that positive hits were only possible when cr parameter was
213  bigger than ~ 0.05 corresponding to sustained Cl and typically producing solution encompassing
214  oscillations in HES1, the best solutions were obtained with cr values in the 0.06-0.07 range.
215  Scatterplot in Fig. 4Aiv demonstrate that, in our model, delay in the HES1 autoregulatory feedback
216  doesn't have a major impact on fitness to experimental data, top solutions (D<0.07) were possible
217  with either unrealistically high (>60 min) or negligible delay values. Fig. 4B shows simulation results
218  corresponding to one representative positive hit scenario with KS D= 0.08 (Fig. 4C). Fig 4B i show a
219  snapshot cell map of HES1 levels at MCS 180 (18h) of the simulation which is qualitatively similar to
220  experimental cell maps in Fig 1C. Fig 4B ii and iii show timeseries plots of HES1 levels of the same
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221  simulation and representing traces corresponding to all cell in the simulation (i) or three randomly
222  selected cells (iii). Annotations in Fig 4B iii highlights period of oscillations of 4-6h which was a typical
223  result among many of the positive hits analysed and matching previously reported experimental data
224  (Ubezio et al., 2016). None of the positive hit scenarios had stable NSP levels suggesting that
225  oscillating NSP levels might be a key feature of quiescent endothelia.

226  Overall, our results strongly suggest that NSP is in principle sufficient to generate endothelial NSH we
227 observed in vitro and in vivo. Furthermore, the underlying mechanism generating HES1 spatial
228  heterogeneity in EC monolayers is likely to encompass oscillations in the TF in individual cells as also
229  suggested by previous results (Ubezio et al., 2016). Differently from previous hypotheses which also
230 related to different biological context, our model does not support cell-autonomous mechanisms as
231  origin of HES1 oscillations prompting us to verify this hypothesis experimentally.

232 Oscillatory behaviour of HES1 in EC is likely mediated by cell-contact dependent mechanisms

233  To verify whether HES1 oscillations in EC predicted by our model are cell-contact dependent we
234  measured HES1 expression in sparse EC with minimal EC-EC contact. We hypothesized that
235  heterogeneity produced by cell-contact dependent oscillations should be lost in isolated cells. Instead,
236 if we could observe significant heterogeneity in isolated cells, it would directly imply that oscillations
237  are generated by cell-autonomous mechanisms. Fig. 4E shows plots density distributions of HES1 in
238  sparse cells (S, red traces) compared to confluent cells (C, black traces) and showing that HES1
239  expression in sparse cells was homogeneously high and low HES1 expressing cells were absent. Fig.
240  4F shows representative immunofluorescence on sparse and confluent cells demonstrating absence
241  of HES 1 heterogeneity in isolated cells. Notably, NOTCH1 immunostaining in sparse cells displayed
242  active signalling as shown by nuclear NOTCHA1 intracellular domain (punctuated peri and intra-nuclear
243  stain) demonstrating signalling in absence of cell contact. These results suggest that spatial
244  heterogeneity in HES1 levels is lost in sparse cells and that potential oscillations are mediated by cell
245  contact. Furthermore, since both nuclear NOTCH1 and HES1 signals were invariably high in sparse
246  cells, as also previously reported (Curry et al., 2006), we can support a hypothesis where productive
247  ClI mediates sustained HES1 production. We conclude that oscillations in EC monolayers predicted
248  computationally and supported by experimental evidence are likely cell-contact dependent and, within
249  our computational model, dependent on ClI.

250
251 Discussion

252  EC heterogeneity across tissues, within the same tissue and even within the same vascular bed is a
253  reflection of plasticity and how the EC lineage has evolved to address several different sensor and
254  actuator functions in a highly parallel fashion (McCarron et al., 2019, 2017).

255  Transcriptomic profiling of EC from different tissues and organs reveals similar NSP levels
256  heterogeneity (NSH) in EC within the same vascular bed (Kalucka et al., 2020). Our recent results
257  show that confluent EC derived from the same vascular bed (Chesnais et al., 2022) and cultured in
258  vitro have spatially heterogeneous levels of NSP.

259  Here we confirm that NSH is a feature of endothelia in vivo. Our results using en face staining of
260  murine aortas reveal heterogeneous levels of the transcription factor HES1 in vivo following similar
261 patterns to those observed in vitro. These results highlight for the first time HES1 spatial
262  heterogeneity in endothelia in vivo. Comparative analysis of our in vitro and in vivo data (Fig. 1B)
263  confirms that NSH is preserved in vitro despite absence of concurrent signalling by perivascular cells
264  and therefore enable us to use controlled in vitro experiments to unravel the causes of such
265  heterogeneity.

266 It is challenging to measure the dynamics of endogenous NSP in human EC in vitro due to the
267  absence of suitable gene promoter tracking systems. We have previously established the ECPT to
268 enable high content single cell analyses of EC monolayers including spatial information. To
269  understand whether the dynamics of NSP in EC is sufficient to generate heterogeneous levels of NSP
270  downstream target genes, we present here a computational framework to evaluate the underlying
271  molecular dynamics of NSP.

272  Many details of NSP dynamics have been previously elucidated using a host of experimental and
273  computational methods (Boareto et al., 2015; Nandagopal et al., 2019; Sprinzak et al., 2010) allowing
274  us to build a (parsimonious) set of possible and previously validated hypotheses. Overall, the
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275  dynamics of NOTCH signalling (excluding concurrent regulation by other signalling pathways) can be
276  represented by five potential mechanisms: Lateral inhibition (Lib), lateral induction (Lid), productive or
277  inhibitory interactions in cis (Cl) and negative TF autoregulation (Fig. 2A)(Hirata et al., 2002).

278  To practically test alternative hypotheses, we encapsulated these mechanisms into a deterministic
279  SMSM. Preliminary exploration of our SMSM revealed potential qualitative responses of NSP
280 including emergent cell-contact mediated oscillations in TF (HES1) levels (Fig. 3 and SFig. 1).
281  Oscillations in NOTCH downstream genes have been implicated and demonstrated in several
282  biological context including somitogenesis and sensory organs development (Ferjentsik et al., 2009;
283 Jiang et al., 2000). However, the standing hypothesis in the field is that such oscillations are
284  associated with autoregulation of downstream TF such as HES1 rather than cell contact dependent
285  mechanisms (Sturrock et al., 2011). Our SMSM reproduced very closely all other previously reported
286  results including emergence of stable extreme and intermediate phenotypes (Boareto et al., 2015)
287 and short-lived oscillation due to TF autoregulation (Fig. 3B). Nonetheless, we could not find
288  parameters combinations for our SMSM which were able to generate self-sustained TF oscillations
289  via TF autoregulation.

290 We reasoned that an EC specific transcription profile could affect the pace of NSP transduction which
291 was previously estimated using transgene-mediated expression of ligands, receptors, and pathway
292  reporters in NOTCH-inactive cell lines (LeBon et al., 2014; Nandagopal et al., 2019, 2018; Sprinzak et
293 al, 2010). Time course experiments of EC exposed to the NOTCH inhibitor DAPT allowed us to
294  estimate the characteristic timescale of signal transduction operating in different EC which are
295  encapsulated by production and degradation parameters of key components in our ODE system.
296  Overall, our experimental and in silico data closely aligned with previous estimates (Monk, 2003)
297  providing further validation for our SMSM. Interestingly, results with HAOEC (Fig. 2C) points out at
298  additional regulatory mechanisms which might encompass higher basal signalling in HAOEC as
299  previously shown (Chesnais et al., 2022), which would lead to lesser sensitivity to DAPT at the
300 concentration used in our experiment (and thus delayed inhibition). However, NSP-independent HES1
301 transcription has also been demonstrated (Curry et al., 2006) and it is likely to contribute to the net
302 effects observed. Our experimental data show that both hypotheses are probably acting in concert as
303 we can observe many EC with high HES1 intensity in both HUVEC and HAOEC monolayers upon
304  long exposure with DAPT supporting the concept of NSP-independent HES1 transcription. At the
305 same time, the NICD response in HUVEC was faster than in HAGEC (Fig. 2C), as NICD cleavage is
306  upstream and independent from HES1, the simplest hypothesis to justify this effect is more abundant
307 intrinsic NICD production in HAOEC as previously shown (Chesnais et al., 2022).

308  After calibration and validation of our SMSM we proceeded to evaluate whether any of the
309 hypotheses was able to reproduce experimental data. To estimate fitting to experimental data we
310 employed the Kolmogorov—Smirnov statistics. We used distribution of signal intensities in a cell map
311  to build the empirical cumulative distribution functions (ECDF). The KS test was useful to exclude unfit
312  hypotheses allowing us to test sufficiency of our SMSM to reproduce experimental data. After
313  performing an exhaustive fine-grained parameter scan using an adaptive random search algorithm,
314  we found several scenarios which were closely reproducing experimental data (Fig. 4A, KS D<0.06).
315 Interestingly, all in silico results pointed at the importance of Cl whereby all positive hits had cr values
316 (affecting potency of ClI) in the ~0.06-0.1 range corresponding to sustained Cl. Importantly, the value
317  of delay parameter involved in TF autoregulation (HES1 in our case) didn't show similar weight in
318  determining data fitting although some top positive hits (KS D<0.05) had delay values corresponding
319 to~15 min as previously estimated (Sturrock et al., 2011).

320 Detailed analysis of positive hits confirmed that these invariably corresponded to simulations
321  predicting stable, periodic and asynchronous oscillations in HES1 and reproduced several previously
322 reported experimental data including period of oscillations (~4-6 h) (Ubezio et al., 2016) and delay
323  between NICD and HES 1 expression of ~20 minutes (Fig. 4B-D)(Curry et al., 2006).

324  We cannot rule out that cell-autonomous mechanisms can underpin HES1 oscillations only by
325  analysis our SMSM because we implemented simple HES1 autoregulation as a sole hypothesis while
326  further regulation layers not captured by our SMSM might be involved. For example, it is established
327  that NSP oscillations during somitogenesis are driven by WNT and FGF signalling pathways (Carrieri
328  and Dale, 2016). We therefore attempted to answer the question experimentally. We reasoned that, in
329 the case cell-autonomous mechanisms underpin HES1 oscillations in EC we should observe
330 heterogeneous levels of HES1 in cells cultured as sparse cells (absence of cell-cell contact). Our
331  experiments using sparse EC cultures demonstrated that heterogeneity in NSP levels is lost under
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332 these conditions (Fig. 4E-F) and therefore strongly supports the hypothesis that oscillations are
333  dependent on cell-cell interactions. These experiments also showed that NICD is actively transduced
334  in absence of cell-cell contact confirming that Cl in the same cell are sufficient to transduce NSP.

335 In the absence of other mechanisms, Cl-mediated HES1 asynchronous oscillations are necessary
336 and sufficient to generate spatially heterogeneous patterns of HES1 in simulated EC monolayer.
337  Attempting extension to experimental data, we cannot rule-out different mechanisms than that
338  proposed here to justify heterogeneity in NOTCH signalling. In fact, even our specific implementation
339  of Cl might represent a bias towards a specific but possibly not sufficiently general hypothesis.
340  However, within these limitations our proposed mechanism is the most parsimonious model currently
341 able to justify ours and other's data regarding NSH in EC monolayers and warranting further
342  experimental investigations.

343  Firstly, our results further support the idea that EC in the same monolayer acquire differential
344  phenotypes and that these can be used by homogeneous cells (in terms of lineage) to exert
345  differential functions in a highly parallel fashion. In this sense, emergent phenotypes and local EC
346  connectivity have been already associated with endothelial plasticity, diversity of functions and
347  robustness to perturbations (Chesnais et al., 2022; Lee et al., 2022; McCarron et al., 2019).

348  Secondly, our results strongly suggest that EC phenotypes can be modulated dynamically in
349 timeframes of hours. This implies that each individual EC could in principle exert different sensor
350 (ions, hormones, exogenous molecules), actuator (immune cells adhesion, solute trafficking), or
351 maintenance (proliferation) functions at different moments in time while the overall balance of possible
352 responses across the whole endothelium remains constant. We argue that implementing such
353  heterogeneity dynamically (as we suggest) rather than with stable (fixed) phenotypes renders the
354  endothelium more robust to perturbations. For example, if specific EC subtypes are lost due to a
355  pathogenic insult the remaining cells could easily replace the lost ones by proliferation without loss of
356 function and without need for specific EC precursors/stem (Chesnais et al., 2022; McCarron et al.,
357  2019).

358  Finally, our data strongly suggests that the dynamics of NOTCH signalling in EC contains non-
359 linearities dependent on molecular, geometrical, and spatial constraints which introduce challenges in
360 predicting these dynamics in living organism and thus understanding the dose-effects responses of
361  pathway modulator drugs.

362 In conclusion, in the present work we offer a framework for the default state of EC in healthy
363 monolayers. A vast amount of research is ongoing to understand and exploit molecular mechanisms
364  underpinning EC functions in the context of physiologic (wound healing), defective (diabetes) or
365  pathologic (cancer) angiogenesis characterised by rapid changes in spatial relations between EC.
366  The consequences of the hypotheses raised and developed have implications in designing how to
367  perturb these mechanisms to treat diseases.

368
369  Materials and Methods
370  Cell culture

371  Allin vitro data shown in the present work has been generated as described previously (Chesnais et
372  al., 2022). Briefly, HAOECs and HUVECs (PromoCell) were plated on 10 pg/ml fibronectin
373  (Promocell)-coated flasks, grown in EGMV2 medium (Promocell), detached with accutase (Thermo
374  Fisher Scientific, Waltham, MA), and used by passage 5. For experiments, 4x10* ECs per well were
375 seeded for confluent experiments and 1x10° ECs per well for sparse experiments in fibronectin-
376  coated 96-well plates (uClear, Greiner). Cells were cultured for 24h for sparse and 96h for confluent
377  under basal conditions (EGMV2, Promocell) or treated with DAPT (5uM, Tocris bioscience, UK).

378  Immunostaining and image acquisition

379  Cells were fixed with 2% paraformaldehyde in phosphate-buffered saline (PBS) for 10 min at room
380 temperature. Cells were blocked 1 h with PBS supplemented with 1% fetal bovine serum (FBS) and
381  permeabilised with 0.1% Triton X-100. Cells were then incubated for 1 h at room temperature with
382  primary antibodies against CDH5 (VE-cadherin; Novusbio NB600- 1409, lug/ml final), NOTCH1
383  (Abcam, ab194122, Alexa Fluor 647- conjugated, 1 pg/ml final) and Hes1 (Abcam, ab119776, 1 ug/ml
384 final). Plates were washed and incubated 1 h with 1 pg/ml secondary Alexa Fluor 488-conjugated and
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385  Alexa Fluor 555-conjugated antibody (Thermo Fisher Scientific), Hoechst 33342 (1 pg/ml, Sigma). We
386  obtained the images with an Operetta CLS system (PerkinElmer, Waltham, MA) equipped with a 40x
387  water immersion lens (NA 1.1).

388

389  En face preparation and whole mount staining of mouse aorta

390  For en face preparation of aortas, 2—8-month-old mice (C57BL/6J, Jax Strain 000664) euthanised for
391 standard colony maintenance under Schedule 1 methods were used. For preparation and
392  immunostaining, we used an adaptation of a previously established protocol (Hakanpaa et al., 2015).
393 In brief, upon euthanasia animals were immediately perfused with PBS by intracardial injection and
394  subsequently perfusion fixed by injection of 2% PFA-PBS. Dissected aortas were fixed for additional
395  171h by immersion in 2% PFA-PBS, washed extensively with PBS and blocked with FBS (5% FBS +
396  0.01% Triton-X) overnight at 4°C. Immunostaining was performed after permeabilization (0.1% Triton-
397 X for 10minutes at RT) using primary antibodies diluted in blocking solution (VE-Cadherin, #14-1441-
398 82, 5 uyg/ml final and HES1, #PA5-28802, 5 pg/ml final, Thermo Fisher Scientific) for 48h at 4°C,
399 followed by extensive washing using blocking solution at RT. Aortas were then incubated with Alexa
400  Fluor 488-conjugated and Alexa Fluor 555-conjugated antibody (Thermo Fisher Scientific) and
401  Hoechst 33342, for 24h at 4°C, washed and mounted on a coverslip with Mowiol (Sigma-Aldrich). The
402  aortas were imaged, and z-stacks were obtained using a Leica Sp8 confocal microscope with a 40X
403  air objective.

404 Image and data analysis

405  Analysis of images obtained in this study has been done with ECPT (endothelial cells profiling tool)
406  (Chesnais et al., 2022).

407  Spatial model of cell monolayers in Compucell 3D

408  The multicellular spatialised model of EC monolayers was developed using a cellular Potts model
409 formalism (CPM, or Glazier-Graner-Hogeweg model (Swat et al., 2012) using the software
410  Compucell3D (CC3D version 4.2.5, www.compucell3d.org,). Cell maps were imported as .piff files.

411  Generation of cell maps

412  To generate cell maps extracted from in vitro experiments we used our high content image analysis
413  platform (Chesnais et al., 2022) and developed custom imageJ and R scripts to generate .piff files
414  which can be inputted in CC3D.

415 CC3D model modules

416  We implemented a CC3D model including five “steppables”: Input/output, SBML solver, Visualisation,
417  Cell Initialisation and Delta/Notch neighbour interactions. The Antimony code encoding the ODE
418 model and call to all steppables are included as additional modules. The first four steppables are
419  standard CC3D modules and extensive documentation on how to setup such modules is available on
420  the CC3D website and manuals. The fifth stoppable, NDJ_Interactions, is dedicated to evaluating
421 neighbours’ interactions as described in results. The module calculates contact areas (CA) between
422  each cell and its neighbour's CA is then factored when calculating amount of trans interactions
423  between individual pairs of cells at each MCS thus linking cell shape and disposition with extent of
424  NOTCH signalling.

425  Ordinary Differential Equations model of NOTCH signalling

426  We developed the mathematical framework of NOTCH signalling as an ordinary differential equations
427  (ODE) system as proposed previously (Boareto et al., 2015; Sprinzak et al., 2010) and encoding a
428  hybrid protein/gene regulatory network (P/GRN) using the Tellurium package and the Antimony
429  language (SBML compatible). We assumed a well-stirred bioreactor cell model where we explicitly
430 encoded and carefully calibrated time delays in selected reactions and otherwise assumed that
431 reaction steady state would be reached in a time scale smaller than our individual MCS (5 minutes).

432  We firstly drafted laws for production of DII4, Notchi, Jagl and Notch4 and downstream target genes
433  Hesl and Hey1/2 which can modulate production of the above.
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434  For all production laws we used Hill functions which have been previously shown to recapitulate the
435  dynamics of TF mediated gene expression and protein production in the NOTCH pathway (Boareto et
436  al., 2015; Sprinzak et al., 2010):

437
438  For positive regulation (Hp):

A \P
430 © oyt

()
440 Q)
441  For negative regulation (Hn):
442 LR @

dac ( R )”
14—
ko5

443  For competitive regulation (Hc):

h
sy

dt - h h

{m:) )
445  Were Vm is the maximal production rate of the molecule S, bPR represent the basal production rate,
446 A or R represents the concentration of regulatory transcription factor (A for Activator, R for
447  Repressor), kos represents the concentration of TF exerting half maximal effect and h is the Hill
448  coefficient widely used to represent cooperativity and dimerization processes (HES1 functions as
449  homo/hetero-dimer) and previously shown to appropriately reproduce the mechanisms discussed in

450  this work (Boareto et al., 2015). For degradation laws and productive/non-productive cis interactions
451  we used mass action functions.

452  Mass action (Ma):

(2a)

as
453 E = kd(p)S (3)
454  Where kq or alternatively k, represent degradation or production rates respectively.

455  The full model for species production is as follows:
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460 HES 1 production in absence of autoregulatory feedback:
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463  Where rd4 and rj1 are the amount of “Reacted” ligand which is consumed in cis and trans
464  dimerization events leading to the production of cleaved Notch intracellular domains, the second
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465  messengers of Notch signal transduction. Rd4 and rj1 are calculated in the CC3D environment while
466 rnl and rn4 are calculated via a Hill function parallel to Eqs 10 and 11 below (Hp of tmdn or tmjn
467  respectively). All the other species abbreviations as per Table 1.

468

469  NICD production

470 Eq 8 and 9 (Hesl and Hey1/2 production) depends on the two species NICD and N4ICD which
471 represent the second messengers (notch intracellular domain, NICD) of Notchl and Notch4
472  respectively. Production laws for NICD and N4ICD use transit parameters as inputs (tmDN, tmJN).
473 tmDN and tmJN are calculated in the CC3D environment from the interactions in cis and trans of
474 relevant ligands and factoring differential adhesion between neighbouring cells. The laws governing
475 tmDN and tmJN calculations are discussed below. This is the key interaction point between CC3D
476  python and Antimony/SBML codes allowing to account for spatial disposition and differential contact
477  between cells. NICD and N4ICD production laws are shown in eq 10 and 11.

478
dnicd <M)
479 7:;: =VMnica % — nicd * kdpicq (10)
(%)
dnéicd <t’:nin>h
480 dt = anq-iCd H:.—nijnh —néicd * kdn4icd (11)
ko5

481 Cis interactions

482  Previous models (Boareto et al., 2015) have only accounted for cis-inhibitory effects whereby
483  membrane interactions of Notch ligands with receptors lead to dampening of the signalling by limiting
484  ligands available for productive trans interactions. In our model we also included productive cis
485 interactions which have been recently demonstrated (Nandagopal et al., 2019) and supported by our
486  own data (Isolated cells).

487  Non-productive competitive cis- interaction (cJN) between Jaggedl and Notchl follows a mass action
488  law limited by the lesser abundant of the two proteins as follows:

4389 d;]:l = (min(j1,n1) ) * kpjn — cjn * kd ., (12

490  Where min(j1, nl) is the minimum value among j1 and nl in the same cell.

491  Productive cis interactions (cdn) between DII4 and Notchl follows a similar law but differently from
492  cjn, cdn, it can be converted in an active specie (cadn) participating in NICD production as follows:

493 L2 = (min(d4,n1)) * kpean (13)

at

494 % =cdn * kpcadn — cadn * kdcadn (14)

495  The law for NICD production including productive cis interactions becomes:

(tmdn+cadn n
dnicd _ ko3 .
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1 -
( kos )

497  The k, parameter for production of cjn and cdn is not fixed but dependent from a scaling parameter
498 inversely proportional to trans interaction (tmdn, tmjn) to capture a reported concept whether strength
499  of cis interaction is inversely proportional to strength of cell adhesion and consequent trans
500 interactions (Zhou et al., 2022).
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502 HESL1 autoregulation
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503 We implemented the reported HES1 autoregulatory mechanism in our model as a competition
504  mechanism between NICD and HES1. To encode delay, required to produce oscillations according to
505 previous reports, we explicitly included an intermediate species in the HES1 processing chain. No
506 intermediate factor has been reported in the literature so far, therefore we assumed that the delay is
507 caused by nuclear import/export of involved species as previously suggested. The production law for
508 HES1 including autoregulation becomes

nicd
509 L= pPRyy +Vimy, —mE:Oi) — —h1*kdy, 8.1)
1+(’60.5) +(m)
510 % = inl « kpyy — Al * kdps (15)

511  Where ihl (inactive HES1) represent inactive species such as mRNA and cytoplasmic protein before
512 nuclear import. Therefore, active hl production is delayed by a scaling factor (kpny) in the first term of
513 15.

514  The full Antimony version of the model is included in supplementary material and provided as a
515  working Tellurium script. The Tellurium script can be used to test a single cell model where tmDN,
516 tmJN, Rd4, Rjl1 (and all the other parameters in the simulations can be modulated. The model as
517  described has steady states solutions for all parameter ranges used in this study (SFig. 1B). Full
518  parameter list and corresponding values are provided in tablel.

519 cCalculation of trans interactions (DeltaNotchNeighborSteppable)

520 As discussed above, tmDN and tmJN (and corresponding Rd4 and Rj1 in eq 4 and 6) parameters are
521  calculated in the CC3D python environment and then inputted into the Antimony/SBML model at each
522  MCS. In brief, tmDN and tmJN are calculated by evaluating amount of contact between each cell and
523  each of its neighbours and trading the relevant ligands. To account for competition between DII4 and
524  Jaggedl for Notchl receptor we imposed a partitioning parameter (kpDJ, calculated each MCS)
525  which is proportional to DIl4 concentration and inversely proportional to Jagged 1 concentration. It is
526  established that also the strength of Jaggedl affinity for Notchl is modulated dynamically by
527  posttranslational modifications (Zhou et al., 2022) and to capture this possibility we imposed a further
528  weighting parameter (KJC). However, analysis of this level of Notch signalling modulation was outside
529 the scope of the present work and the KJC parameter has been fixed to 1 (equal affinities of DIl4 and
530 Jagged 1) in all our simulations shown in results.

531  Statistical analysis

532  All data wrangling and statistical analyses were performed in R Studio using the Tidyverse package
533  except the KS test performed runtime for random sampling experiments as discussed below.

534  To implement a random search algorithm searching parameter sets fitting our experimental data we
535 firstly modified our model to work as a black-box function accepting parameters sets as inputs and
536  returning a metrics of data fit as output. As data fit metrics we used the KS distance as implemented
537  inthe numpy library, experimental data were randomly sampled from our database in R and stored in
538 a file accessible to the simulation while synthetic ones were collected runtime. To run the random
539 search, we developed a Python script which randomly sampled the parameter space with a latin
540 hypercube sampling strategy, instantiated individual simulations for each sample, collected and
541  compared results and then iteratively optimised the results according to the schematics in SFig. 3. We
542  repeated the procedure 100 times for a total of >30000 simulations. Average runtime of all simulation
543  was ~20s/simulation (each simulation running for 150 MCS ~ 15 hours) on a Mac Book Pro 2019 (8-
544 cores Intel i9, 2.3GhZ, 64Mb RAM).
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677  Captions to Figures
678  Fig 1: HES1 is spatially heterogeneous in endothelia

679 A) Confocal images of murine aortic endothelium immunostained for CDH5 (green) and
680 HES1(Yellow). DNA was counterstained with Hoechst (Blue). Each image corresponds to maximal
681  projection of a 20um confocal stack. B) Density distribution plot of normalised HES1 intensities
682  corresponding to mEC in aortic endothelium (green trace), HUVEC (red trace) and HAOEC (black
683 trace). C) Representative HES1 maps obtained by ECPT analysis of HUVEC and HAoEC at baseline
684  or treated with DAPT 5uM for 6 or 24 hours. Colour scale represents normalised HES1 intensities.

685
686  Fig 2: Multiscale model of NOTCH signalling in EC monolayers

687 A) Schematic depicting the molecular interactions captured in our SMSM. a- productive Trans
688 Interaction (TI) of DII4-NOTCH1, b- productive/non-productive Cis Interaction of DIl4-NOTCH1, c-
689  non-productive Cl Jagl-NOTCH1, d- non-productive Tl Jagl-NOTCH1, e- HES1 autoregulation. B)
690  Schematic representing interactions between regularly disposed square cells compared to irregular
691 disposition of irregular polygonal cells. In the former, total available ligand/receptors are shared
692  equally with neighbours. In the latter, differential membrane contact area leads to different extent of
693  shared ligands/receptors with neighbours. X;.4% amounts of ligands/receptors shared by the central
694  cell (i.e., a fraction proportional to shared area with different neighbours). N;,% amounts of
695 ligand/receptors shared with central cell (i.e., a fraction dependent on each neighbour’s interactions
696  with its own other neighbours). C) Box plots of multiple (individual images) KS distance measures
697  from reference ECDF (Untreated cells, grey) for HUVEC and HAOEC, either untreated or treated with
698  DAPT for the indicated number of hours (green boxes). # p<0.01 against control (CT, untreated cells,
699  grey boxes).

700

701 Fig 3: In silico analysis of NOTCH signalling in EC monolayers reveals highly dynamic
702  scenarios

703  A) Density distribution plots corresponding to synthetic data under indicated cr and delay parameters
704  (for bD4, bN1. J1=1). Red traces indicate kernel density estimates corresponding to accumulated
705  results from 10 independent simulations. Grey traces indicate kernel density estimates of individual
706  simulations. (ii-v) indicates corresponding representations in B. B) Representative maps (left panels)
707  and timeseries (mid panel, all cells or 3 selected cells right panels) for the indicated conditions (- =
708  OFF, + = ON).

709

710  Fig 4: Heterogeneous HES1 in monolayers implies oscillatory phenotypes of individual EC
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711  A) Scatter dot plots representing results of a fine-grained parameter scan across bD4, bN1, J1, cr,
712  and delay parameters as indicated in individual plots. Colour scale correspond to KS distance values
713  against reference ECDFs (Experimental data for HUVEC and HAOEC), green/yellow dots KS D<0.06.
714  B). Representative cell map (i) and HES1 time series (all cells, ii and three random cells, iii).

715  Annotations in iii indicate distance between successive peaks in timeseries of corresponding colour
716  and approximate length in hours (1h = 10 MCS). C) ECDFs corresponding to representative

717  simulation in B (black trace) compared with experimental data (HUVEC, red trace) and corresponding
718 KS D value. D) Zoom in of time series for one random cell for simulation in B showing NICD (ni, green
719  trace) and HES1 (hes, red trace). Delay between onset of NICD and HES1 is approximately 20

720  minutes (4-5 MCS). E) Density distribution estimates of HES1 intensities in confluent (black trace) or
721  sparse (red trace) EC (HUVEC or HAOEC as indicated). F) Representative fluorescence images

722  (Nuclei, Hoechst, NOTCH1 and HES1 as indicated) of sparse or confluent EC (HUVEC or HAOEC as
723  indicated).

724
725  Supplementary Fig 1: SMSM validation with regularly shaped and distributed cells.

726  A) Representative maps (left panels) and timeseries for all cells (right panel) for the indicated
727  conditions (- = OFF, + = ON, cr=0 or as indicated in individual panels). B) Time series traces for 3
728 random cells illustrating the qualitative effect of increasing cr, Cr values>0.1 were not considered
729  biologically plausible considering the other parameters in our SMSM and corresponding simulations
730  were not analysed further in the present work.

731
732  Supplementary Fig 2.: Periodic oscillations in cell neighbourhoods are asynchronous

733  Representative time series (left panel) and corresponding map (right panel) of NSP signalling in a
734  neighbourhood of six cells under the parameter setup of Fig 4B. Colour of dots in right panels

735  correspond to colour of traces in left panel. The red trace corresponds to the central cell in the

736  neighbourhood. In a typical scenario, the signal in different neighbouring cells can be synchronised to
737  the central cell in phase (blue trace) or anti-phase (yellow, pink traces). However, signal dynamics is
738  typically asynchronous in several cells (orange, white and green traces). Scenarios encompassing full
739  synchronisation with central cell either in phase or anti-phase are not observed under physiologically
740  relevant parameter setups.

741
742  Supplementary Fig 3. Random search strategy for fine-grain parameter scan

743  A) Schematics of the strategy employed in parameter scan. ECPT measurements and maps, and
744  Random Walk (RW) or Parameter Scan (PS) inputs are fed to a black box CC3D caller. The black box
745  includes all modules of the SMSM and one additional module performing KS test runtime. The output
746  of this function is the KS distance and/or time series data corresponding to simulation parameters. B)
747 Random walk sequence. St 1: Sample definitions. Mid value (m) and range (r) for the selected
748  parameters are provided as user input. St 2: Latin Hypercube Sampling is performed on selected
749  parameters to generate a sample set of desired size (i=100), Each sample is used as input for the
750 CC3D Caller (CC) retuning a corresponding KS distance metrics between synthetic data and
751  reference data (D;). St 3: Crossing and mutation. Top 2 results from St 2 are selected and their input
752  parameters (for example, x for T1 and y for T2) crossed k times to produce a new generation (NG)
753  with k elements. X or y are assigned randomly to each KG, and they are also mutated to an user
754  defined extent (1/5 for results shown in this manuscript). Individual simulations are then run for each
755 individual element of the new generation. St 4: The top result from St 3 (either T1 or NGy) is used as
756  basis to generate a more focussed sample definition (m = Topp, r=r/2) and inputted as new iteration to
757 St 2. Iterations number (x) and other parameters are all user defined and we used values indicated in
758  figure for the results shown in the manuscript.
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