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  13 

Abstract (250 words) 14 

Vascular Endothelial Cells (EC) plasticity is key to homeostasis and its disruption is a hallmark of 15 
diseases such as cancer, atherosclerosis, and diabetes. The EC lineage has evolved to address in 16 
parallel sensor and actuator functions. This ability is reflected in remarkable phenotypical 17 
heterogeneity of EC across different tissues, within the same tissue, and within the same vascular 18 
bed as demonstrated by single cell image analysis and transcriptomics studies. However, how the 19 
molecular signalling dynamics in EC could generate and maintain such heterogeneity in different 20 
contexts is still largely unexplored. Recently we reported that confluent EC have spatially 21 
heterogeneous NOTCH signalling pathway (NSP) levels in vitro as confirmed from analysis of 22 
available OMICS databases. Here, we show that spatial heterogeneity of NSP levels is a feature of 23 
aortic murine endothelia in vivo and recapitulated by human EC in culture despite absence of 24 
signalling from mural cells. We study lateral induction and inhibition, cis-interactions and signalling, 25 
and target genes autoregulation in NSP. Using mathematical models and experimental observations 26 
we report that NSP dynamics can generate stable, periodic, and asynchronous oscillations of the NSP 27 
target HES1. Importantly, we observe that cell contact dependent NSP signal oscillations is the most 28 
likely parsimonious mechanistic hypothesis justifying observed spatial heterogeneity in endothelia. 29 
We propose that NSP is sufficient to enable individual EC in monolayers to acquire different 30 
phenotypes dynamically explaining robustness of quiescent endothelia in performing parallel 31 
functions. 32 

 33 

Introduction 34 

Endothelial cells (EC) compose the inner lining of all blood and lymphatic vessels in the human body 35 
and they are phenotypically heterogeneous across different tissues. EC phenotypic heterogeneity is 36 
an evolutionarily conserved feature emerging early during embryonic development (Aird, 2007a, 37 
2007b). Disruption of EC homeostasis is a recognised hallmark of diseases such as cancer and 38 
atherosclerosis and EC are primary targets for pharmacological interventions due to their key role at 39 
the interface between blood and all tissues (Potente et al., 2011; Simmons et al., 2005). Previous in 40 
vivo studies (Lee et al., 2022; McCarron et al., 2019) have shown that EC in large vessels have 41 
heterogeneous phenotypes (e.g., differential Ca++ sensitivity). We have previously demonstrated the 42 
value of measuring images of cultured EC to assess phenotypical and intracellular signalling 43 
heterogeneity in endothelial monolayers using our EC profiling tool (ECPT)(Chesnais et al., 2022). 44 
Our work using ECPT has established that quiescent EC within the same monolayer in vitro display 45 
heterogeneous levels of NICD (second messenger of NOTCH Signalling Pathway, NSP) and HES1 46 
(NSP target gene), echoing results obtained in cancer cells (Sabherwal et al., 2021).  47 

Establishing mechanistic links between signalling pathways such as NOTCH and heterogeneous EC 48 
phenotypes is key to improve our understanding of EC biology, to develop more effective drugs and 49 
increase predictability of treatments outcome (Zhou et al., 2022). For example NSP has been 50 
implicated in both atherosclerotic plaques formation and regression (Kong et al., 2022; Vieceli Dalla 51 
Sega et al., 2019). 52 
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Previous work in vivo, in vitro and in silico has defined a framework to elucidate emerging NOTCH-53 
dependent phenotypes. The current hypothesis is that mechanisms of lateral induction (LId) and 54 
lateral inhibition (LIb, trans-interactions) as well as ligand-receptors interactions in the same cell (cis-55 
interactions, CI) (Boareto et al., 2016; Chesnais et al., 2022) coexist to induce differential signalling 56 
levels (e.g., levels of HES1) and phenotypes. Beyond the well-known stable alternating spatial 57 
patterns in NSP observed in several contexts (e.g., developing mouse retina neuroepithelium) 58 
(Formosa-Jordan et al., 2013), temporal oscillations in NSP (levels of NICD or NSP target genes) 59 
have been predicted in silico and observed experimentally (Marinopoulou et al., 2021; Sabherwal et 60 
al., 2021; Ubezio et al., 2016) The current mechanistic hypothesis is that NSP levels oscillations may 61 
result from cell autonomous negative autoregulation of HES1 transcription (Hirata et al., 2002). HES1 62 
is a well-established NSP target gene in EC which differential expression regulates functions such as 63 
cell proliferation and inter-cellular junctional stability (Bentley et al., 2014; Fang et al., 2017; 64 
Fernández-Martín et al., 2012). In several biological contexts, variations in the levels of NSP in 65 
neighbouring cells determines differential cell fates and EC constitutively express NOTCH ligands and 66 
receptors independently from NSP(Curry et al., 2006). NSP is key to tip cell selection and tip-stalk cell 67 
crosstalk during VEGF induced neo-angiogenesis (Jakobsson et al., 2010, 2009). However, the 68 
spatio-temporal dynamics of NOTCH signalling in “stable” (non-proliferative, non-migratory) EC 69 
monolayers (i.e., endothelia) is poorly understood.  In mathematical formalisation, a negative 70 
autoregulatory loop can only oscillate in the presence of significant delays in regulation; else, negative 71 
autoregulation leads to stable graded expression. Delays could result from transcription factor’s 72 
nuclear import dynamics, transcriptional/translational delay or the inclusion of additional intermediate 73 
factors in the signalling chain. However, HES1 appears to act as a simple direct auto-inhibitor without 74 
intermediate factors.  75 

Our previous results show that HES1 is repressed in few cells within a confluent EC monolayer 76 
suggesting that these cells could be licensed for proliferation (Chesnais et al., 2022). Furthermore, 77 
these results suggest a non-stable NSP dynamics in EC monolayers paralleling results from 78 
angiogenic EC (Ubezio et al., 2016) and breast cancer cell lines (Sabherwal et al., 2021).  79 

Directly measuring HES1 dynamics in primary EC to verify this hypothesis is currently challenging. 80 
However, multi scale models calibrated on experimental data enable a qualitative evaluation of 81 
hypotheses on the dynamic of cellular systems signalling when direct experimental measures are 82 
inaccessible.  83 

Here, to establish a mechanistic link between NSP levels and acquisition of differential phenotypes in 84 
EC we firstly aimed to confirm that spatial heterogeneity of NSP is also appreciable in vivo. Then we 85 
aimed to evaluate in silico whether NSP alone is in principle sufficient to generate such heterogeneity 86 
in space and time. We used time course experiment where we inhibited NSP in human umbilical vein 87 
and human aortic EC (HUVEC and HAOEC) and measured time variations in nuclear NOTCH1 and 88 
HES1 at single cell and population levels by ECPT. We used experimental cell maps and 89 
corresponding data to calibrate a novel spatialised multi scale model (SMSM) of NSP encompassing 90 
LIb, LId, CI, and HES1 autoregulation. Finally, we used our SMSM to evaluate whether and under 91 
which conditions synthetic data reproduce the spatial distributions of NOCTH signal observed in vitro 92 
and in vivo.  93 

 94 

Results  95 

Nuclear HES1 have heterogeneous intensities in murine aortic EC. 96 

We first set to address whether NSP levels heterogeneity (NSH) we previously measured in vitro is a 97 
feature of endothelia in vivo where NSP might be affected by co-signalling from mural cells (Baeten 98 
and Lilly, 2017). To evaluate whether endothelia in vivo demonstrated spatial NSH we performed en 99 
face stainings of murine aortas as described before (Hakanpaa et al., 2015). Fig.1A shows a 100 
representative image of murine aortic endothelium. HES1 immunostaining (yellow) shows 101 
heterogeneity in intensity of signal especially, the presence of few EC with low- or high-signal like 102 
observed in vitro (Fig 1C). Fig. 1B (green trace) shows single-cell quantification of HES1 intensities 103 
across 3 images taken from 3 independent samples confirming heterogeneous distribution of HES1 104 
intensities across aortic monolayers. Black and red overlay traces in Fig. 1B and maps in Fig. 1C 105 
correspond to measures in HAoEC and HUVEC monolayers demonstrating that in vitro data 106 
qualitatively resemble in vivo scenario.  107 
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Overall, these results demonstrate NSH in murine aortic endothelia and that the mechanisms 108 
underpinning observed heterogeneity are preserved in vitro despite absence of signalling from mural 109 
cells. These results strongly suggest that the molecular mechanisms driving NSH are predominantly 110 
intrinsic to EC validating EC cultures as models to investigate them in a controlled experimental 111 
setup.  112 

To investigate the underlying molecular dynamics driving NSH in endothelia we developed a 113 
computational framework encompassing established and hypothesised rules driving NSP dynamics. 114 
We calibrated our framework with experimental data and cell maps from standardised in vitro EC 115 
cultures and we explored which hypotheses could reproduce experimental data in silico. 116 

Creation and calibration of a spatialised multiscale model of NOTCH signalling in EC 117 

Assuming that NOTCH signalling is sufficient to generate the heterogeneous maps we observed in 118 
vitro and in vivo, then NSH could emerge either due to generation of multiple stable phenotypes or 119 
alternatively instable, oscillating ones as reported previously (Hirata et al., 2002; Marinopoulou et al., 120 
2021; Sabherwal et al., 2021; Shimojo et al., 2008; Yoshioka-Kobayashi et al., 2020). To evaluate 121 
these hypotheses in the context of EC monolayers we built a spatialised multiscale cellular model of 122 
NSP including Lateral Inhibition (LIb) and Lateral Induction (LId) as described in previous work 123 
(Boareto et al., 2016; Sprinzak et al., 2010). We based our sub cellular Proteins/Gene Regulatory 124 
Network (P/GRN) model on previous frameworks (Boareto et al., 2015) following similar deterministic 125 
formalism and expanded it to include productive cis interactions (CI) (Nandagopal et al., 2019) (Fig. 126 
2A) and HES1 autoregulation (Monk, 2003). We started assigning previously established values to all 127 
model parameters (e.g., production degradation rates of receptors, ligands second messengers and 128 
TF). We embedded the P/GRN model in a spatialised context using either regular cell dispositions 129 
(square lattice of identical cells) or experimentally derived cell maps (Fig 2B).  130 

The timescale of NSP transduction can be affected by contextual/phenotype-dependent factors. To 131 
further specify our P/GRN model to EC we experimentally timed degradation of NICD and HES1 in 132 
cultured EC. To this aim, we timed the variations in nuclear NOTCH and HES1 signal in EC upon 133 
exposure to the gamma secretase inhibitor DAPT. DAPT limits NOTCH signal transduction by 134 
inhibiting cleavage of internalised NOTCH receptors to produce the second messenger NICD (Fig. 135 
2A). We measured nuclear NOTCH1 and HES1 in EC monolayers exposed to DAPT for different 136 
times using the ECPT (Fig. 2C)(Chesnais et al., 2022). Fig. 2C shows normalised plots for relative 137 
NICD and HES1 intensities (1/KS-distance from cumulative control condition) in HUVEC and HAoEC 138 
populations upon treatment with DAPT. These results demonstrate that half maximal NICD inhibition 139 
in our experimental conditions is achieved in 1 hour in HUVEC and in 4 hours in HAoEC which is 140 
coherent with higher intrinsic signalling in the latter (Chesnais et al., 2022; Luo et al., 2020). Long 141 
term DAPT treatment (24h) resulted in further NICD inhibition in HAoEC but not in HUVEC (Fig 2C). 142 
Overall, these results demonstrate that cellular NICD degrades at fast rate (minutes) in line with 143 
previous models and data (Boareto et al., 2015; Hirata et al., 2002; Marinopoulou et al., 2021). 144 
Furthermore, our results highlight that the net effects of NSP perturbation are unsurprisingly cell 145 
phenotype specific.  Similarly, we estimated the time scale of HES1 inhibition in the same cells. The 146 
plot in Fig 2C shows that half maximal inhibition of HES1 in HUVEC is achieved in one hour 147 
paralleling NICD results. However, HES1 levels in HAoEC were only affected at later times >6 hours 148 
upon DAPT exposure. Overall, results in HUVEC closely mirror previous results using different 149 
experimental systems suggesting that the underlying NOCTH dynamics investigated in previous 150 
works is paralleled in EC (Boareto et al., 2015; Monk, 2003; Nandagopal et al., 2019; Yoshioka-151 
Kobayashi et al., 2020). Using these results and reference parameters defined in previous work we 152 
set the granularity of our simulation to 5 minutes/MCS and manually calibrated NICD and HES1 153 
production/degradation rates in our model to match these results. Our estimates largely reflect 154 
previously established results suggesting that the core NOTCH molecular machinery has similar 155 
characteristic timescale in EC as in other cell types (Boareto et al., 2015; Monk, 2003). 156 

In silico analysis of NOTCH signalling in EC monolayers reveals highly dynamic scenarios  157 

To evaluate the qualitative responses of our calibrated model against selected parameters and to 158 
validate it against previous models, we performed a coarse-grained parameter scan. We started from 159 
regular cell dispositions and subsequently expanding the results to experimental cell maps (SFig. 1 160 
and Fig. 3A). Analysis of parameter scan data revealed that our model can generate several 161 
qualitatively different scenarios under different parameter settings. Fig. 3A shows density distributions 162 
corresponding to synthetic data for HES1 pooled from 10 independent runs under indicated 163 
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parameters (bD4, bN1 and Vmax J1 and N4 all set to 1) demonstrating a strong influence of the 164 
parameter cr (regulating the strength of CI) on the qualitative output of the model. Plots in Fig. 3A are 165 
derived from runs employing experimental cell maps however very similar results were obtained with 166 
regular cell dispositions (SFig. 1). Fig. 3A shows snapshots of cell maps and time tracking data 167 
corresponding to five possible scenarios occurring under different parameter settings as indicated (in 168 
represented scenarios all parameters are set to default values, 0 for OFF state or 1 for ON state 169 
except cr and delay). In absence of LId mechanism (no production of Jagged 1) the model predicts 170 
generation of stable checkerboard patterns with alternating high/low phenotypes (Fig. 3Bi). 171 
Furthermore, differently from previous models and our own data using regular cell dispositions 172 
(Boareto et al., 2015) and SFig. 1), we could observe emergence of intermediate phenotypes due to 173 
differential contact between cells. Introduction of LId (production of Jagged 1) and moderate CI (cr< 174 
0.05) favoured the emergence of stable intermediate phenotypes (Fig. 3A ii, iii) similarly to regular cell 175 
dispositions (SFig. 1) and in line with previous data (Boareto et al., 2015). Finally, introduction of 176 
sustained CI (cr = 0.05-0.1) caused cells to oscillate between high and low phenotypes (Fig. 3B) 177 
similarly to regular cell dispositions (SFig. 1). The oscillations were periodic, and their character 178 
period and amplitude were sensitive to variation in the simulation parameters we considered 179 
especially cr and delay in HES1 processing. Taken together our results qualitatively reproduce 180 
previously described behaviours and extend the analysis to non-regular cell dispositions. Our data 181 
show that introduction of asymmetric signalling between neighbouring cells can produce intermediate 182 
phenotypes independently from LId and CI mechanisms. Furthermore, our data show for the first time 183 
that sustained CI (extent of CI ~ extent of TI) can in principle produce oscillatory phenotypes in a cell 184 
monolayer with either regular or irregular cell dispositions (SFig. 1 and Fig. 3Biv). In a purely LIb 185 
mechanism without CI, the checkboard pattern emerges due to asymmetry in Dll4 expression in 186 
neighbouring cells which is stable because repressed receiver cells cannot signal through Dll4. 187 
Introducing CI can break this symmetry because signalling sender cells can auto-repress DLL4 via CI 188 
becoming an intermediate sender-receiver cells (SFig. 2). We initially hypothesized that oscillations 189 
could also in principle emerge due to an autoregulatory feedback loop with delay in the TF HES1 as 190 
previously reported (Hirata et al., 2002) and included this aspect as described in methods. However, 191 
our simulations failed to reproduce robust HES1 oscillation by cell-autonomous autoregulatory 192 
feedback using previously described parameters and instead produced short-lived oscillations which 193 
dampened after few MCS (Fig. 3Av).  194 

Overall, our observations in silico suggest that in the context of EC (cell monolayers constitutively 195 
expressing NSP ligands and receptors) oscillatory behaviours of NSP are in principle possible and 196 
likely due to cell-contact dependent mechanisms rather than cell-autonomous TF autoregulation. 197 
Furthermore, our results highlight a key role of cell shapes, dispositions, and spatial relationships in 198 
producing different qualitative response of NSP.  199 

Heterogeneous HES1 in monolayers implies oscillatory phenotypes of individual EC  200 

To evaluate whether any of our theoretical prediction scenarios could reproduce experimental data we 201 
performed a fine-grained parameter scan over our set of selected parameters and compared each 202 
result against experimental data (Table 1, Methods). To facilitate a fine-grained parameter scan while 203 
maintaining the total number of simulations reasonably low we implemented a random walk search 204 
followed by iterative optimisation as described in methods and SFig. 3. Fig. 4A shows scatterplots of 205 
all simulations in our parameter scan demonstrating that under certain parameter sets our model was 206 
able to produce results closely resembling experimental data (positive hits hereafter, KS D<0.1, 207 
green-yellow dots).  208 

Fig. 4Ai and ii show that positive hits were restricted in a relatively narrow region of possible bD4, bN1 209 
and J1 values (basal or inducible production rates of Dll4, NOTCH1 and Jag1 respectively) which 210 
correspond to physiologic ranges as per model’s specifications (table 1 and methods).  211 

Scatterplot in Fig. 4Aiii demonstrate that positive hits were only possible when cr parameter was 212 
bigger than ~ 0.05 corresponding to sustained CI and typically producing solution encompassing 213 
oscillations in HES1, the best solutions were obtained with cr values in the 0.06-0.07 range. 214 
Scatterplot in Fig. 4Aiv demonstrate that, in our model, delay in the HES1 autoregulatory feedback 215 
doesn’t have a major impact on fitness to experimental data, top solutions (D<0.07) were possible 216 
with either unrealistically high (>60 min) or negligible delay values. Fig. 4B shows simulation results 217 
corresponding to one representative positive hit scenario with KS D= 0.08 (Fig. 4C). Fig 4B i show a 218 
snapshot cell map of HES1 levels at MCS 180 (18h) of the simulation which is qualitatively similar to 219 
experimental cell maps in Fig 1C. Fig 4B ii and iii show timeseries plots of HES1 levels of the same 220 
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simulation and representing traces corresponding to all cell in the simulation (ii) or three randomly 221 
selected cells (iii). Annotations in Fig 4B iii highlights period of oscillations of 4-6h which was a typical 222 
result among many of the positive hits analysed and matching previously reported experimental data 223 
(Ubezio et al., 2016). None of the positive hit scenarios had stable NSP levels suggesting that 224 
oscillating NSP levels might be a key feature of quiescent endothelia. 225 

Overall, our results strongly suggest that NSP is in principle sufficient to generate endothelial NSH we 226 
observed in vitro and in vivo. Furthermore, the underlying mechanism generating HES1 spatial 227 
heterogeneity in EC monolayers is likely to encompass oscillations in the TF in individual cells as also 228 
suggested by previous results (Ubezio et al., 2016).  Differently from previous hypotheses which also 229 
related to different biological context, our model does not support cell-autonomous mechanisms as 230 
origin of HES1 oscillations prompting us to verify this hypothesis experimentally. 231 

Oscillatory behaviour of HES1 in EC is likely mediated by cell-contact dependent mechanisms 232 

To verify whether HES1 oscillations in EC predicted by our model are cell-contact dependent we 233 
measured HES1 expression in sparse EC with minimal EC-EC contact. We hypothesized that 234 
heterogeneity produced by cell-contact dependent oscillations should be lost in isolated cells. Instead, 235 
if we could observe significant heterogeneity in isolated cells, it would directly imply that oscillations 236 
are generated by cell-autonomous mechanisms. Fig. 4E shows plots density distributions of HES1 in 237 
sparse cells (S, red traces) compared to confluent cells (C, black traces) and showing that HES1 238 
expression in sparse cells was homogeneously high and low HES1 expressing cells were absent. Fig. 239 
4F shows representative immunofluorescence on sparse and confluent cells demonstrating absence 240 
of HES 1 heterogeneity in isolated cells. Notably, NOTCH1 immunostaining in sparse cells displayed 241 
active signalling as shown by nuclear NOTCH1 intracellular domain (punctuated peri and intra-nuclear 242 
stain) demonstrating signalling in absence of cell contact. These results suggest that spatial 243 
heterogeneity in HES1 levels is lost in sparse cells and that potential oscillations are mediated by cell 244 
contact. Furthermore, since both nuclear NOTCH1 and HES1 signals were invariably high in sparse 245 
cells, as also previously reported (Curry et al., 2006), we can support a hypothesis where productive 246 
CI mediates sustained HES1 production. We conclude that oscillations in EC monolayers predicted 247 
computationally and supported by experimental evidence are likely cell-contact dependent and, within 248 
our computational model, dependent on CI. 249 

 250 

Discussion 251 

EC heterogeneity across tissues, within the same tissue and even within the same vascular bed is a 252 
reflection of plasticity and how the EC lineage has evolved to address several different sensor and 253 
actuator functions in a highly parallel fashion (McCarron et al., 2019, 2017).  254 

Transcriptomic profiling of EC from different tissues and organs reveals similar NSP levels 255 
heterogeneity (NSH) in EC within the same vascular bed (Kalucka et al., 2020). Our recent results 256 
show that confluent EC derived from the same vascular bed (Chesnais et al., 2022) and cultured in 257 
vitro have spatially heterogeneous levels of NSP.  258 

Here we confirm that NSH is a feature of endothelia in vivo. Our results using en face staining of 259 
murine aortas reveal heterogeneous levels of the transcription factor HES1 in vivo following similar 260 
patterns to those observed in vitro. These results highlight for the first time HES1 spatial 261 
heterogeneity in endothelia in vivo. Comparative analysis of our in vitro and in vivo data (Fig. 1B) 262 
confirms that NSH is preserved in vitro despite absence of concurrent signalling by perivascular cells 263 
and therefore enable us to use controlled in vitro experiments to unravel the causes of such 264 
heterogeneity. 265 

It is challenging to measure the dynamics of endogenous NSP in human EC in vitro due to the 266 
absence of suitable gene promoter tracking systems. We have previously established the ECPT to 267 
enable high content single cell analyses of EC monolayers including spatial information. To 268 
understand whether the dynamics of NSP in EC is sufficient to generate heterogeneous levels of NSP 269 
downstream target genes, we present here a computational framework to evaluate the underlying 270 
molecular dynamics of NSP. 271 

Many details of NSP dynamics have been previously elucidated using a host of experimental and 272 
computational methods (Boareto et al., 2015; Nandagopal et al., 2019; Sprinzak et al., 2010) allowing 273 
us to build a (parsimonious) set of possible and previously validated hypotheses. Overall, the 274 
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dynamics of NOTCH signalling (excluding concurrent regulation by other signalling pathways) can be 275 
represented by five potential mechanisms: Lateral inhibition (Lib), lateral induction (Lid), productive or 276 
inhibitory interactions in cis (CI) and negative TF autoregulation (Fig. 2A)(Hirata et al., 2002).  277 

To practically test alternative hypotheses, we encapsulated these mechanisms into a deterministic 278 
SMSM. Preliminary exploration of our SMSM revealed potential qualitative responses of NSP 279 
including emergent cell-contact mediated oscillations in TF (HES1) levels (Fig. 3 and SFig. 1). 280 
Oscillations in NOTCH downstream genes have been implicated and demonstrated in several 281 
biological context including somitogenesis and sensory organs development (Ferjentsik et al., 2009; 282 
Jiang et al., 2000). However, the standing hypothesis in the field is that such oscillations are 283 
associated with autoregulation of downstream TF such as HES1 rather than cell contact dependent 284 
mechanisms (Sturrock et al., 2011). Our SMSM reproduced very closely all other previously reported 285 
results including emergence of stable extreme and intermediate phenotypes (Boareto et al., 2015) 286 
and short-lived oscillation due to TF autoregulation (Fig. 3B). Nonetheless, we could not find 287 
parameters combinations for our SMSM which were able to generate self-sustained TF oscillations 288 
via TF autoregulation. 289 

We reasoned that an EC specific transcription profile could affect the pace of NSP transduction which 290 
was previously estimated using transgene-mediated expression of ligands, receptors, and pathway 291 
reporters in NOTCH-inactive cell lines (LeBon et al., 2014; Nandagopal et al., 2019, 2018; Sprinzak et 292 
al., 2010). Time course experiments of EC exposed to the NOTCH inhibitor DAPT allowed us to 293 
estimate the characteristic timescale of signal transduction operating in different EC which are 294 
encapsulated by production and degradation parameters of key components in our ODE system. 295 
Overall, our experimental and in silico data closely aligned with previous estimates (Monk, 2003) 296 
providing further validation for our SMSM. Interestingly, results with HAoEC (Fig. 2C) points out at 297 
additional regulatory mechanisms which might encompass higher basal signalling in HAoEC as 298 
previously shown (Chesnais et al., 2022), which would lead to lesser sensitivity to DAPT at the 299 
concentration used in our experiment (and thus delayed inhibition). However, NSP-independent HES1 300 
transcription has also been demonstrated (Curry et al., 2006) and it is likely to contribute to the net 301 
effects observed. Our experimental data show that both hypotheses are probably acting in concert as 302 
we can observe many EC with high HES1 intensity in both HUVEC and HAoEC monolayers upon 303 
long exposure with DAPT supporting the concept of NSP-independent HES1 transcription. At the 304 
same time, the NICD response in HUVEC was faster than in HAoEC (Fig. 2C), as NICD cleavage is 305 
upstream and independent from HES1, the simplest hypothesis to justify this effect is more abundant 306 
intrinsic NICD production in HAoEC as previously shown (Chesnais et al., 2022).  307 

After calibration and validation of our SMSM we proceeded to evaluate whether any of the 308 
hypotheses was able to reproduce experimental data. To estimate fitting to experimental data we 309 
employed the Kolmogorov–Smirnov statistics. We used distribution of signal intensities in a cell map 310 
to build the empirical cumulative distribution functions (ECDF). The KS test was useful to exclude unfit 311 
hypotheses allowing us to test sufficiency of our SMSM to reproduce experimental data. After 312 
performing an exhaustive fine-grained parameter scan using an adaptive random search algorithm, 313 
we found several scenarios which were closely reproducing experimental data (Fig. 4A, KS D<0.06). 314 
Interestingly, all in silico results pointed at the importance of CI whereby all positive hits had cr values 315 
(affecting potency of CI) in the ~0.06-0.1 range corresponding to sustained CI. Importantly, the value 316 
of delay parameter involved in TF autoregulation (HES1 in our case) didn’t show similar weight in 317 
determining data fitting although some top positive hits (KS D<0.05) had delay values corresponding 318 
to ~15 min as previously estimated (Sturrock et al., 2011).  319 

Detailed analysis of positive hits confirmed that these invariably corresponded to simulations 320 
predicting stable, periodic and asynchronous oscillations in HES1 and reproduced several previously 321 
reported experimental data including period of oscillations (~4-6 h) (Ubezio et al., 2016) and delay 322 
between NICD and HES 1 expression of ~20 minutes (Fig. 4B-D)(Curry et al., 2006).  323 

We cannot rule out that cell-autonomous mechanisms can underpin HES1 oscillations only by 324 
analysis our SMSM because we implemented simple HES1 autoregulation as a sole hypothesis while 325 
further regulation layers not captured by our SMSM might be involved. For example, it is established 326 
that NSP oscillations during somitogenesis are driven by WNT and FGF signalling pathways (Carrieri 327 
and Dale, 2016). We therefore attempted to answer the question experimentally. We reasoned that, in 328 
the case cell-autonomous mechanisms underpin HES1 oscillations in EC we should observe 329 
heterogeneous levels of HES1 in cells cultured as sparse cells (absence of cell-cell contact). Our 330 
experiments using sparse EC cultures demonstrated that heterogeneity in NSP levels is lost under 331 
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these conditions (Fig. 4E-F) and therefore strongly supports the hypothesis that oscillations are 332 
dependent on cell-cell interactions. These experiments also showed that NICD is actively transduced 333 
in absence of cell-cell contact confirming that CI in the same cell are sufficient to transduce NSP. 334 

In the absence of other mechanisms, CI-mediated HES1 asynchronous oscillations are necessary 335 
and sufficient to generate spatially heterogeneous patterns of HES1 in simulated EC monolayer. 336 
Attempting extension to experimental data, we cannot rule-out different mechanisms than that 337 
proposed here to justify heterogeneity in NOTCH signalling. In fact, even our specific implementation 338 
of CI might represent a bias towards a specific but possibly not sufficiently general hypothesis. 339 
However, within these limitations our proposed mechanism is the most parsimonious model currently 340 
able to justify ours and other’s data regarding NSH in EC monolayers and warranting further 341 
experimental investigations.  342 

Firstly, our results further support the idea that EC in the same monolayer acquire differential 343 
phenotypes and that these can be used by homogeneous cells (in terms of lineage) to exert 344 
differential functions in a highly parallel fashion. In this sense, emergent phenotypes and local EC 345 
connectivity have been already associated with endothelial plasticity, diversity of functions and 346 
robustness to perturbations (Chesnais et al., 2022; Lee et al., 2022; McCarron et al., 2019).  347 

Secondly, our results strongly suggest that EC phenotypes can be modulated dynamically in 348 
timeframes of hours. This implies that each individual EC could in principle exert different sensor 349 
(ions, hormones, exogenous molecules), actuator (immune cells adhesion, solute trafficking), or 350 
maintenance (proliferation) functions at different moments in time while the overall balance of possible 351 
responses across the whole endothelium remains constant. We argue that implementing such 352 
heterogeneity dynamically (as we suggest) rather than with stable (fixed) phenotypes renders the 353 
endothelium more robust to perturbations. For example, if specific EC subtypes are lost due to a 354 
pathogenic insult the remaining cells could easily replace the lost ones by proliferation without loss of 355 
function and without need for specific EC precursors/stem (Chesnais et al., 2022; McCarron et al., 356 
2019). 357 

Finally, our data strongly suggests that the dynamics of NOTCH signalling in EC contains non-358 
linearities dependent on molecular, geometrical, and spatial constraints which introduce challenges in 359 
predicting these dynamics in living organism and thus understanding the dose-effects responses of 360 
pathway modulator drugs.  361 

In conclusion, in the present work we offer a framework for the default state of EC in healthy 362 
monolayers. A vast amount of research is ongoing to understand and exploit molecular mechanisms 363 
underpinning EC functions in the context of physiologic (wound healing), defective (diabetes) or 364 
pathologic (cancer) angiogenesis characterised by rapid changes in spatial relations between EC. 365 
The consequences of the hypotheses raised and developed have implications in designing how to 366 
perturb these mechanisms to treat diseases. 367 

 368 

Materials and Methods  369 

Cell culture  370 

All in vitro data shown in the present work has been generated as described previously (Chesnais et 371 
al., 2022). Briefly, HAoECs and HUVECs (PromoCell) were plated on 10 μg/ml fibronectin 372 
(Promocell)-coated flasks, grown in EGMV2 medium (Promocell), detached with accutase (Thermo 373 
Fisher Scientific, Waltham, MA), and used by passage 5. For experiments, 4×104 ECs per well were 374 
seeded for confluent experiments and 1×103 ECs per well for sparse experiments in fibronectin-375 
coated 96-well plates (μClear, Greiner). Cells were cultured for 24h for sparse and 96h for confluent 376 
under basal conditions (EGMV2, Promocell) or treated with DAPT (5μM, Tocris bioscience, UK). 377 

Immunostaining and image acquisition 378 

Cells were fixed with 2% paraformaldehyde in phosphate-buffered saline (PBS) for 10 min at room 379 
temperature. Cells were blocked 1 h with PBS supplemented with 1% fetal bovine serum (FBS) and 380 
permeabilised with 0.1% Triton X-100. Cells were then incubated for 1 h at room temperature with 381 
primary antibodies against CDH5 (VE-cadherin; Novusbio NB600- 1409, 1μg/ml final), NOTCH1 382 
(Abcam, ab194122, Alexa Fluor 647- conjugated, 1 μg/ml final) and Hes1 (Abcam, ab119776, 1 μg/ml 383 
final). Plates were washed and incubated 1 h with 1 μg/ml secondary Alexa Fluor 488-conjugated and 384 
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Alexa Fluor 555-conjugated antibody (Thermo Fisher Scientific), Hoechst 33342 (1 μg/ml, Sigma). We 385 
obtained the images with an Operetta CLS system (PerkinElmer, Waltham, MA) equipped with a 40× 386 
water immersion lens (NA 1.1).  387 

 388 

En face preparation and whole mount staining of mouse aorta 389 

For en face preparation of aortas, 2–8-month-old mice (C57BL/6J, Jax Strain 000664) euthanised for 390 
standard colony maintenance under Schedule 1 methods were used. For preparation and 391 
immunostaining, we used an adaptation of a previously established protocol (Hakanpaa et al., 2015). 392 
In brief, upon euthanasia animals were immediately perfused with PBS by intracardial injection and 393 
subsequently perfusion fixed by injection of 2% PFA–PBS.  Dissected aortas were fixed for additional 394 
1�h by immersion in 2% PFA–PBS, washed extensively with PBS and blocked with FBS (5% FBS + 395 
0.01% Triton-X) overnight at 4°C. Immunostaining was performed after permeabilization (0.1% Triton-396 
X for 10minutes at RT) using primary antibodies diluted in blocking solution (VE-Cadherin, #14-1441-397 
82, 5 μg/ml final and HES1, #PA5-28802, 5 μg/ml final, Thermo Fisher Scientific) for 48h at 4°C, 398 
followed by extensive washing using blocking solution at RT. Aortas were then incubated with Alexa 399 
Fluor 488-conjugated and Alexa Fluor 555-conjugated antibody (Thermo Fisher Scientific) and 400 
Hoechst 33342, for 24h at 4°C, washed and mounted on a coverslip with Mowiol (Sigma-Aldrich). The 401 
aortas were imaged, and z-stacks were obtained using a Leica Sp8 confocal microscope with a 40X 402 
air objective. 403 
Image and data analysis 404 
Analysis of images obtained in this study has been done with ECPT (endothelial cells profiling tool) 405 
(Chesnais et al., 2022). 406 

Spatial model of cell monolayers in Compucell 3D 407 

The multicellular spatialised model of EC monolayers was developed using a cellular Potts model 408 
formalism (CPM, or Glazier-Graner-Hogeweg model (Swat et al., 2012) using the software 409 
Compucell3D (CC3D version 4.2.5, www.compucell3d.org,). Cell maps were imported as .piff files. 410 

Generation of cell maps 411 

To generate cell maps extracted from in vitro experiments we used our high content image analysis 412 
platform (Chesnais et al., 2022) and developed custom imageJ and R scripts to generate .piff files 413 
which can be inputted in CC3D. 414 

CC3D model modules 415 

We implemented a CC3D model including five “steppables”: Input/output, SBML solver, Visualisation, 416 
Cell Initialisation and Delta/Notch neighbour interactions. The Antimony code encoding the ODE 417 
model and call to all steppables are included as additional modules. The first four steppables are 418 
standard CC3D modules and extensive documentation on how to setup such modules is available on 419 
the CC3D website and manuals. The fifth stoppable, NDJ_Interactions, is dedicated to evaluating 420 
neighbours’ interactions as described in results. The module calculates contact areas (CA) between 421 
each cell and its neighbour’s CA is then factored when calculating amount of trans interactions 422 
between individual pairs of cells at each MCS thus linking cell shape and disposition with extent of 423 
NOTCH signalling.   424 

Ordinary Differential Equations model of NOTCH signalling 425 

We developed the mathematical framework of NOTCH signalling as an ordinary differential equations 426 
(ODE) system as proposed previously (Boareto et al., 2015; Sprinzak et al., 2010) and encoding a 427 
hybrid protein/gene regulatory network (P/GRN) using the Tellurium package and the Antimony 428 
language (SBML compatible). We assumed a well-stirred bioreactor cell model where we explicitly 429 
encoded and carefully calibrated time delays in selected reactions and otherwise assumed that 430 
reaction steady state would be reached in a time scale smaller than our individual MCS (5 minutes). 431 

We firstly drafted laws for production of Dll4, Notch1, Jag1 and Notch4 and downstream target genes 432 
Hes1 and Hey1/2 which can modulate production of the above. 433 
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For all production laws we used Hill functions which have been previously shown to recapitulate the 434 
dynamics of TF mediated gene expression and protein production in the NOTCH pathway (Boareto et 435 
al., 2015; Sprinzak et al., 2010): 436 

 437 

For positive regulation (Hp): 438 
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For negative regulation (Hn): 441 
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For competitive regulation (Hc): 443 
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Were Vm is the maximal production rate of the molecule S, bPR represent the basal production rate, 445 
A or R represents the concentration of regulatory transcription factor (A for Activator, R for 446 
Repressor), k0.5 represents the concentration of TF exerting half maximal effect and h is the Hill 447 
coefficient widely used to represent cooperativity and dimerization processes (HES1 functions as 448 
homo/hetero-dimer) and previously shown to appropriately reproduce the mechanisms discussed in 449 
this work (Boareto et al., 2015). For degradation laws and productive/non-productive cis interactions 450 
we used mass action functions.  451 

Mass action (Ma): 452 
��
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Where kd or alternatively kp represent degradation or production rates respectively. 454 

The full model for species production is as follows: 455 
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HES 1 production in absence of autoregulatory feedback: 460 
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Where rd4 and rj1 are the amount of “Reacted” ligand which is consumed in cis and trans 463 
dimerization events leading to the production of cleaved Notch intracellular domains, the second 464 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.06.503043doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.06.503043
http://creativecommons.org/licenses/by-nc-nd/4.0/


messengers of Notch signal transduction. Rd4 and rj1 are calculated in the CC3D environment while 465 
rn1 and rn4 are calculated via a Hill function parallel to Eqs 10 and 11 below (Hp of tmdn or tmjn 466 
respectively). All the other species abbreviations as per Table 1. 467 

 468 

NICD production 469 

Eq 8 and 9 (Hes1 and Hey1/2 production) depends on the two species NICD and N4ICD which 470 
represent the second messengers (notch intracellular domain, NICD) of Notch1 and Notch4 471 
respectively. Production laws for NICD and N4ICD use transit parameters as inputs (tmDN, tmJN). 472 
tmDN and tmJN are calculated in the CC3D environment from the interactions in cis and trans of 473 
relevant ligands and factoring differential adhesion between neighbouring cells. The laws governing 474 
tmDN and tmJN calculations are discussed below. This is the key interaction point between CC3D 475 
python and Antimony/SBML codes allowing to account for spatial disposition and differential contact 476 
between cells. NICD and N4ICD production laws are shown in eq 10 and 11.   477 

 478 
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Cis interactions 481 

Previous models (Boareto et al., 2015) have only accounted for cis-inhibitory effects whereby 482 
membrane interactions of Notch ligands with receptors lead to dampening of the signalling by limiting 483 
ligands available for productive trans interactions. In our model we also included productive cis 484 
interactions which have been recently demonstrated (Nandagopal et al., 2019) and supported by our 485 
own data (Isolated cells). 486 

Non-productive competitive cis- interaction (cJN) between Jagged1 and Notch1 follows a mass action 487 
law limited by the lesser abundant of the two proteins as follows: 488 
����

�� � ������1, �1� � 	 ����� � ��� 	 �����                    (12) 489 

Where min(j1, n1) is the minimum value among  j1 and n1 in the same cell. 490 

Productive cis interactions (cdn) between Dll4 and Notch1 follows a similar law but differently from 491 
cjn, cdn, it can be converted in an active specie (cadn) participating in NICD production as follows: 492 
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The law for NICD production including productive cis interactions becomes: 495 
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The kp parameter for production of cjn and cdn is not fixed but dependent from a scaling parameter 497 
inversely proportional to trans interaction (tmdn, tmjn) to capture a reported concept whether strength 498 
of cis interaction is inversely proportional to strength of cell adhesion and consequent trans 499 
interactions (Zhou et al., 2022). 500 
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HES1 autoregulation 502 
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We implemented the reported HES1 autoregulatory mechanism in our model as a competition 503 
mechanism between NICD and HES1. To encode delay, required to produce oscillations according to 504 
previous reports, we explicitly included an intermediate species in the HES1 processing chain. No 505 
intermediate factor has been reported in the literature so far, therefore we assumed that the delay is 506 
caused by nuclear import/export of involved species as previously suggested. The production law for 507 
HES1 including autoregulation becomes 508 
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Where ih1 (inactive HES1) represent inactive species such as mRNA and cytoplasmic protein before 511 
nuclear import. Therefore, active h1 production is delayed by a scaling factor (kph1) in the first term  of 512 
15. 513 

The full Antimony version of the model is included in supplementary material and provided as a 514 
working Tellurium script. The Tellurium script can be used to test a single cell model where tmDN, 515 
tmJN, Rd4, Rj1 (and all the other parameters in the simulations can be modulated. The model as 516 
described has steady states solutions for all parameter ranges used in this study (SFig. 1B). Full 517 
parameter list and corresponding values are provided in table1. 518 

Calculation of trans interactions (DeltaNotchNeighborSteppable) 519 

As discussed above, tmDN and tmJN (and corresponding Rd4 and Rj1 in eq 4 and 6) parameters are 520 
calculated in the CC3D python environment and then inputted into the Antimony/SBML model at each 521 
MCS. In brief, tmDN and tmJN are calculated by evaluating amount of contact between each cell and 522 
each of its neighbours and trading the relevant ligands. To account for competition between Dll4 and 523 
Jagged1 for Notch1 receptor we imposed a partitioning parameter (kpDJ, calculated each MCS) 524 
which is proportional to Dll4 concentration and inversely proportional to Jagged 1 concentration. It is 525 
established that also the strength of Jagged1 affinity for Notch1 is modulated dynamically by 526 
posttranslational modifications (Zhou et al., 2022) and to capture this possibility we imposed a further 527 
weighting parameter (KJC). However, analysis of this level of Notch signalling modulation was outside 528 
the scope of the present work and the KJC parameter has been fixed to 1 (equal affinities of Dll4 and 529 
Jagged 1) in all our simulations shown in results. 530 

Statistical analysis 531 

All data wrangling and statistical analyses were performed in R Studio using the Tidyverse package 532 
except the KS test performed runtime for random sampling experiments as discussed below.  533 

To implement a random search algorithm searching parameter sets fitting our experimental data we 534 
firstly modified our model to work as a black-box function accepting parameters sets as inputs and 535 
returning a metrics of data fit as output. As data fit metrics we used the KS distance as implemented 536 
in the numpy library, experimental data were randomly sampled from our database in R and stored in 537 
a file accessible to the simulation while synthetic ones were collected runtime. To run the random 538 
search, we developed a Python script which randomly sampled the parameter space with a latin 539 
hypercube sampling strategy, instantiated individual simulations for each sample, collected and 540 
compared results and then iteratively optimised the results according to the schematics in SFig. 3. We 541 
repeated the procedure 100 times for a total of >30000 simulations. Average runtime of all simulation 542 
was ~20s/simulation (each simulation running for 150 MCS ~ 15 hours) on a Mac Book Pro 2019 (8-543 
cores Intel i9, 2.3GhZ, 64Mb RAM). 544 
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 676 

Captions to Figures 677 

Fig 1: HES1 is spatially heterogeneous in endothelia 678 

A) Confocal images of murine aortic endothelium immunostained for CDH5 (green) and 679 
HES1(Yellow). DNA was counterstained with Hoechst (Blue). Each image corresponds to maximal 680 
projection of a 20µm confocal stack. B) Density distribution plot of normalised HES1 intensities 681 
corresponding to mEC in aortic endothelium (green trace), HUVEC (red trace) and HAoEC (black 682 
trace). C) Representative HES1 maps obtained by ECPT analysis of HUVEC and HAoEC at baseline 683 
or treated with DAPT 5µM for 6 or 24 hours. Colour scale represents normalised HES1 intensities. 684 

 685 

Fig 2: Multiscale model of NOTCH signalling in EC monolayers 686 

A) Schematic depicting the molecular interactions captured in our SMSM. a- productive Trans 687 
Interaction (TI) of Dll4-NOTCH1, b- productive/non-productive Cis Interaction of Dll4-NOTCH1, c- 688 
non-productive CI Jag1-NOTCH1, d- non-productive TI Jag1-NOTCH1, e- HES1 autoregulation. B) 689 
Schematic representing interactions between regularly disposed square cells compared to irregular 690 
disposition of irregular polygonal cells. In the former, total available ligand/receptors are shared 691 
equally with neighbours. In the latter, differential membrane contact area leads to different extent of 692 
shared ligands/receptors with neighbours. X1-4% amounts of ligands/receptors shared by the central 693 
cell (i.e., a fraction proportional to shared area with different neighbours). N1-4% amounts of 694 
ligand/receptors shared with central cell (i.e., a fraction dependent on each neighbour’s interactions 695 
with its own other neighbours). C) Box plots of multiple (individual images) KS distance measures 696 
from reference ECDF (Untreated cells, grey) for HUVEC and HAoEC, either untreated or treated with 697 
DAPT for the indicated number of hours (green boxes). # p<0.01 against control (CT, untreated cells, 698 
grey boxes). 699 

 700 

Fig 3: In silico analysis of NOTCH signalling in EC monolayers reveals highly dynamic 701 
scenarios  702 

A) Density distribution plots corresponding to synthetic data under indicated cr and delay parameters 703 
(for bD4, bN1. J1=1). Red traces indicate kernel density estimates corresponding to accumulated 704 
results from 10 independent simulations. Grey traces indicate kernel density estimates of individual 705 
simulations. (ii-v) indicates corresponding representations in B. B) Representative maps (left panels) 706 
and timeseries (mid panel, all cells or 3 selected cells right panels) for the indicated conditions (- = 707 
OFF, + = ON).    708 

 709 

Fig 4: Heterogeneous HES1 in monolayers implies oscillatory phenotypes of individual EC 710 
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A) Scatter dot plots representing results of a fine-grained parameter scan across bD4, bN1, J1, cr, 711 
and delay parameters as indicated in individual plots. Colour scale correspond to KS distance values 712 
against reference ECDFs (Experimental data for HUVEC and HAoEC), green/yellow dots KS D<0.06. 713 
B). Representative cell map (i) and HES1 time series (all cells, ii and three random cells, iii). 714 
Annotations in iii indicate distance between successive peaks in timeseries of corresponding colour 715 
and approximate length in hours (1h = 10 MCS). C) ECDFs corresponding to representative 716 
simulation in B (black trace) compared with experimental data (HUVEC, red trace) and corresponding 717 
KS D value. D) Zoom in of time series for one random cell for simulation in B showing NICD (ni, green 718 
trace) and HES1 (hes, red trace). Delay between onset of NICD and HES1 is approximately 20 719 
minutes (4-5 MCS). E) Density distribution estimates of HES1 intensities in confluent (black trace) or 720 
sparse (red trace) EC (HUVEC or HAoEC as indicated). F) Representative fluorescence images 721 
(Nuclei, Hoechst, NOTCH1 and HES1 as indicated) of sparse or confluent EC (HUVEC or HAoEC as 722 
indicated).    723 

 724 

Supplementary Fig 1: SMSM validation with regularly shaped and distributed cells. 725 

A) Representative maps (left panels) and timeseries for all cells (right panel) for the indicated 726 
conditions (- = OFF, + = ON, cr=0 or as indicated in individual panels). B) Time series traces for 3 727 
random cells illustrating the qualitative effect of increasing cr, Cr values>0.1 were not considered 728 
biologically plausible considering the other parameters in our SMSM and corresponding simulations 729 
were not analysed further in the present work.  730 

 731 

Supplementary Fig 2.: Periodic oscillations in cell neighbourhoods are asynchronous 732 

Representative time series (left panel) and corresponding map (right panel) of NSP signalling in a 733 
neighbourhood of six cells under the parameter setup of Fig 4B. Colour of dots in right panels 734 
correspond to colour of traces in left panel. The red trace corresponds to the central cell in the 735 
neighbourhood. In a typical scenario, the signal in different neighbouring cells can be synchronised to 736 
the central cell in phase (blue trace) or anti-phase (yellow, pink traces). However, signal dynamics is 737 
typically asynchronous in several cells (orange, white and green traces). Scenarios encompassing full 738 
synchronisation with central cell either in phase or anti-phase are not observed under physiologically 739 
relevant parameter setups.  740 

 741 

Supplementary Fig 3. Random search strategy for fine-grain parameter scan  742 

A) Schematics of the strategy employed in parameter scan. ECPT measurements and maps, and 743 
Random Walk (RW) or Parameter Scan (PS) inputs are fed to a black box CC3D caller. The black box 744 
includes all modules of the SMSM and one additional module performing KS test runtime. The output 745 
of this function is the KS distance and/or time series data corresponding to simulation parameters.  B) 746 
Random walk sequence. St 1: Sample definitions. Mid value (m) and range (r) for the selected 747 
parameters are provided as user input. St 2: Latin Hypercube Sampling is performed on selected 748 
parameters to generate a sample set of desired size (i=100), Each sample is used as input for the 749 
CC3D Caller (CC) retuning a corresponding KS distance metrics between synthetic data and 750 
reference data (Di). St 3: Crossing and mutation. Top 2 results from St 2 are selected and their input 751 
parameters (for example, x for T1 and y for T2) crossed k times to produce a new generation (NG) 752 
with k elements. X or y are assigned randomly to each KGk and they are also mutated to an user 753 
defined extent (r/5 for results shown in this manuscript). Individual simulations are then run for each 754 
individual element of the new generation. St 4: The top result from St 3 (either T1 or NGk) is used as 755 
basis to generate a more focussed sample definition (m = TopD, r=r/2) and inputted as new iteration to 756 
St 2. Iterations number (x) and other parameters are all user defined and we used values indicated in 757 
figure for the results shown in the manuscript. 758 
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