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• Here, we conduct a comprehensive survey of the confounding impact of population 

stratification in large-scale imaging studies. 

• Morphological features from structural imaging appear to be more susceptible to the 

confounding effects of population stratification than do functional imaging features.  

• The population stratification tends to inflates the association strengths between the 

variable of interest and imaging features. 

• When the variable of interest is highly colinear with the population stratification, such as 

income levels, brain associations cannot be differentiated and may be misattributed as 

mediating effects.  

• It is critical to account for population stratification in imaging analyses.  
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Abstract      

Magnetic resonance imaging (MRI) studies of the human brain are now attaining larger sample 

sizes with more diverse samples. However, population stratification, a key factor driving 

heterogeneity and confounding of associations, is seldom accounted for in neuroimaging 

analyses. To investigate this issue, we assessed the impact of population stratification on 

multimodal imaging measures using baseline data from the Adolescent Brain Cognitive 

Development (ABCD) StudySM (n = 10,748). Given this sociodemographically diverse sample, 

which broadly reflects the population composition of the United States, we performed a thorough 

evaluation of the impact of population stratification on derived neuroimaging metrics across five 

different imaging modalities: task functional MRI (task fMRI), resting state functional MRI 

(rsMRI), diffusion tensor images (DTI), restricted spectrum images (RSI), and structural T1 MRI 

(sMRI).  We used parental income level as an example to highlight the impact of population 

stratification in confounding brain-wide associations. We show that derived metrics from 

structural images have up to three times more signal related to population stratification than do 

functional images. Controlling for population stratification in statistical models leads to a 

substantial reduction in the association strength between variables of interests and imaging 

measures, indicating the scale of potential bias. Moreover, because of unequal access to 

resources (such as income) across ancestral groups in United States, population stratification 

effects on imaging features may bias associations between parental income levels and imaging 

features, as we demonstrate. Our results provide a guide for researchers to critically examine the 

impact of population stratification and to assist in avoiding spurious brain-behavior associations.  
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1. Introduction 

            Magnetic resonance imaging (MRI) has become an essential tool for measuring 

neuroanatomical and functional variation of the human brain. Structural and functional imaging 

derived features have been used for understanding brain-behavioral associations (Bernanke J et 

al., 2022), neurodevelopment (Bethlehem RAI et al., 2022), and the purported impact of 

environmental exposures on the brain (Marshall AT et al., 2020). Although effect sizes and test-

retest reliability of MRI features have recently been critically examined (Dick et al. 2021; 

Kennedy JT et al., 2022; Marek S et al., 2022), the internal validity of associations based on 

neuroimaging features has seldom been discussed. In particular, brain-behavior associations are 

susceptible to a well-known confound in genetic studies, population stratification, especially 

given that, as neuroimaging studies have become larger, they are beginning to include more 

diverse and heterogeneous samples. 

 Population stratification is defined as heterogeneity driven by sub-populations due to 

differences in genetic ancestral background (Tanaka H et al., 2021). Variation in genetic ancestry 

is largely explained by population history (Hartl & Clark, 2007) and can be correlated with 

cultural and social identities (Novembre et al., 2008). Ancestral features in the human genome 

often correlate with social and physical environments, despite the absence of any actual causal 

relationships (Price et al.,2006). To appropriately account for this, it is considered best practice 

to control for population stratification in genome-wide association studies (GWAS’s), reducing 

false positives driven by the potential correlation between genetic ancestry and social and 

physical environments (Dehghan A, 2018). However, to date high-profile brain-wide association 

studies still treat the potential confounding impact of population stratification as a secondary 

issue, if at all (Marek S et al., 2022).  
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 Associations between genetic ancestry and structural imaging features have been reported 

in the literature. The shape of cortical folding, measured by structural T1 images, was shown to 

be associated with genetic ancestry across four major continental groups in a large-scale imaging 

cohort of the US, despite no evident associations with the functionally relevant measures among 

participants (Fan et al., 2015). Intra-cranial volume and total surface area have been shown to 

significantly associate with genetic clines within European cohorts (Bakken et al., 2011), 

indicating that structural imaging measures can be sensitive to even fine-level variation in the 

population substructure. However, there has been no in-depth investigation into the relationship 

between population stratification and multi-modal imaging measures. For example, it is currently 

unclear the degree to which population stratification associates with neuroimaging features 

beyond metrics derived from structural T1 images, such as microstructural integrity from 

diffusion-weight images, task-related variations in the BOLD signal, and resting state functional 

connectivity.  

 Furthermore, population stratification is often correlated with environmental disparities 

between individuals (e.g., due to structural racism), disparities which may be associated with 

unequal outcomes or which may have neurodevelopmental consequences on brain structure and 

function. Many studies have reported that socioeconomic disparities (e.g., parental income) 

influence brain development and cognitive functioning (Hackman & Farah, 2009; Taylor et al., 

2020; Hackman et al., 2021). In particular, parental income was significantly associated with 

cortical thickness and total surface area (Noble et al., 2015). Poverty has also been linked to 

structural differences in several areas of the brain (e.g., cortical thickness, white and cortical gray 

matter volume, hippocampal size and amygdala volumes) and associated with learning and 

cognitive abilities among children (McLoyd, 1998; Luby et al., 2013; Lawson et al., 2013; Hair 

et al., 2015; Merz et al., 2020). Living in poor neighborhoods has been associated with high risk 
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of exposure to environmental toxins in addition to differences in total brain volumes and cortical 

surface measures (Marshall et al., 2020).  

            Population stratification can bias imaging analyses in several ways. First, a given imaging 

feature may associate with population stratification due to cranial morphology without any 

functional consequences. If population stratification also correlates with the variable of interest, 

such as parental income, morphological imaging features would be found to be associated with 

the variable of interest despite no true effect existing between images and the outcome of interest 

(Figure 1a, pure confounding effect). Second, there may be an actual (non-zero) association 

between the variable of interest and the neuroimaging features, but the estimated relationship 

may be biased upwards or downwards due to conflation of true effect and population 

stratification (Figure 1b, inflated estimation driven by confounds). Third, population 

stratification and the outcome of interest may be so correlated that its effects cannot be 

differentiated in an observational study (Figure 1c, misattribute as mediations).  

             As more imaging studies strive to enroll participants from diverse backgrounds and 

reach population-relevant scales, understanding the impact of population stratification on 

variability in neuroimaging metrics becomes increasingly important. To raise the awareness of 

this issue, we critically examined the aforementioned three possible confounding scenarios in 

imaging analyses using the large-scale, ancestrally, and socioeconomically diverse participants 

from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study. Based on the ABCD 

Study® data, we show that population stratification has stronger associations with structural 

measures than with functional measures derived from MRI. Furthermore, we demonstrate that 

population stratification can significantly bias associations between parental income and brain 

imaging features, regardless of the imaging modality. The strong correlations between 

population stratification and income in this observational study makes many of the effects 
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between ancestral features and structural metrics impossible to be differentiate from the true 

effects of the income differences.  Using this example, we illustrate the importance of 

confounding effects due to population stratification and to caution researchers analyzing and 

interpreting results from brain-behavioral associations in diverse samples about this important 

source of confounding bias. 

 

 

2. Methods 

2.1. ABCD data  

             The ABCD Study® is a longitudinal study that recruited n=11,878 healthy children aged 

9-10 years old at baseline. Participants have a high degree of socio-economic and demographic 

diversity, broadly reflecting the US population in this age group (Dick et al, 2021). The ABCD 

Study will follow their development of for ten years with yearly in-person assessments. Data are 

released publicly on an annual basis via the National Institute of Mental Health Data Archive 

(NDA, https://data-archive.nimh.nih.gov/abcd). In this study, we excluded individuals who have 

missing information due to ascertainment missingness (missing demographics info), imaging 

acquisition problems (missing imaging region-of-interest measurements), and genotyping data 

failures (cannot infer population stratifications). The resulting sample of 9,694 individuals was 

used in these analyses. Demographic characteristics can be found in the Table 1.  

2.2. Measures 

2.2.1 Metrics for population stratification 
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                    ABCD participants were genotyped on using the Affymetrix smokescreen array 

(Baurley et al., 2016). After basic quality controls (success rate of genotype calls and overall 

missingness rate under 10%), 516,598 genetic variants were placed into fastStructure to infer 

population stratification (Raj et al., 2014). Based on information criteria, the best fitting model 

for the ABCD sample indicates four major population groups: African ancestry, Native 

American ancestry, East Asian ancestry, and European ancestry. Proportion of genetic ancestry 

for each population groups was coded in genetic ancestry factors (GAFs) for each participant, 

with values between 0 and 1. As these factors typically represent confounds due to gene by 

environment correlation, we label these components as Pop1 (African), Pop2 (Native American), 

Pop3 (East Asian), and Pop 4 (European) in analyses to emphasize they are not meant to be 

interpreted out of context. Because the proportions across all four GAFs sum to unity and Pop4 

has the largest number of average proportions, we dropped the Pop4 in all of our analytic 

models, treating it as the reference category. 

2.2.2. Multimodal Imaging Measures 

             The multimodal imaging features used in this report are derived region-of-interest (ROI) 

measures from NDA data release 3.0. Neuroimaging data were harmonized across 21 sites and 

processed by the ABCD Data Analysis Informatics and Resource Center (DAIRC) and the 

ABCD Image Acquisition Workgroup (Hagler et al., 2019). Derived ROI measures were 

obtained from the five MRI modalities available in the ABCD data release: 1) structural T1 MRI 

(sMRI, including cortical surface derived measures in Desikan atlas as surface area, surface 

thickness, sulcal depth, and subcortical volumes); 2) diffusion tensor images (DTI, including 

fractional anisotropy and mean diffusivity across major fiber tracts); 3) restricted spectrum 

images (RSI, normalized restricted isotropic and restricted anisotropic across both cortices, 
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subcortical regions, and major fiber tracts). 4) task functional MRI (task fMRI, average BOLD 

signal consists of contrasts from the N-Back task, Monetary Incentive Decision task, and Stop-

Signal Response task in Desikan Atlas); and 5) resting state functional MRI (rsMRI, derived 

connectivity measures across Gordon’s parcellation and subcortical regions, summarized in 

network partitions (Gordon et al., 2017)).  Based on these selection criteria, there were a total 

6,641 multimodal measures used in this study, where the number of features for each modality 

were: 1) 1,184 sMRI; 2) 2,376 DTI; 3) 1,754 RSI; 4) 891 task fMRI; and 5) 436 rsMRI. Details 

of the imaging acquisition, processing pipelines, and quality control metrics leading to the 

release of the ABCD imaging dataset on NDA can be found in prior publications (Hagler et al., 

2019; Casey BJ et al., 2018).  

 

2.3. Statistical Analysis 

             We examined three possible confounding scenarios, as illustrated in Figure 1. In the first 

scenario, we quantified the maximum amount of confounding population stratification could give 

arise to, assuming there were no true effects of the variable of interest on the imaging measures 

(Figure 1a). Here, we performed Likelihood Ratio Tests (LRTs) to investigate whether GAFs 

were associated with imaging measures. Models included the fixed effects of sex at birth, age, 

scanner serial numbers, and GAFs (Pop1-Pop3), compared to a base model without including 

GAFs. All models controlled for family membership via random effects. Variance explained was 

computed based on the differences in the pseudo-R2 from the LRT of the full model vs. the base 

model.   

             In the second scenario, we assessed how much effects could be inflated by population 

stratification, using parental income at baseline as an example (Figure 1b). The total parental 
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income reported by the guardians during the first assessment. We again fit two linear mixed 

models, one with and the other without controlling GAFs. Both models included fixed effects of 

sex at birth, age, parental income, and scanner serial number. We assessed the confounding 

impact of GAFs on the association between parental income and brain measures by comparing 

the proportion of “significant” (p < .05) parental income regression coefficients of these two 

models and by the percentage changes of the coefficients after inclusion of GAFs. All analyses 

again controlled for family membership via random effects. 

             In the third scenario, we assessed how much associations of GAFs with brain measures 

carry over to parental income demonstrating the difficulty in differentiating effects of population 

stratification from those of the variable of interest (Figure 1c). To achieve this goal, we use 

mediation analysis (Imai K et al., 2010) to compute the proportion of the effect from GAFs to 

imaging measures explained by the covariation of GAFs with parental income levels. Note, 

while we use the methods of mediation, we are not positing a causal model; rather, we are 

estimating “carry over” effects, computed using these same methods. Thus, we use parental 

income as an example and interpret the effects computed from the mediating model into 1) the 

effect of GAFs on ROIs after partialling out the effect of parental income and also 2) the effect 

of GAFs on ROIs carries through by parental income. As before, all mediation models control 

for age, sex, the serial number of the imaging device, and family membership. 

             To evaluate the likelihood that we would find significant associations for a given 

imaging modality, we first calculated the proportion of ROIs reaching a nominal significance 

threshold (p-value < 0.05) of effect of GAFs on ROIs, effect of GAFs on ROIs after partialling 

out the effect of parental income, and the effect of GAFs on ROIs carries through by parental 

income. In order to compare differences between each imaging modality, we used task fMRI as 
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the reference category, since it consistently has the lowest proportion of ROIs reaching the 

nominal significance threshold. We then computed the risk ratio (RR) for significance for each 

modality, i.e., the ratio of the probability of reaching nominal significance threshold given the 

imaging modality, representing how much more or less likely that modality is to pass the 

nominal 0.05 significance threshold than the reference imaging modality. We choose the task 

fMRI as the reference. RR allows for intuitive comparison of the sensitivity of each imaging 

modality for different ancestral backgrounds. We estimated 95% confidence intervals of RR via 

10,000 bootstrapping iterations, repeatedly sampling participants with replacement. Mixed 

models and mediation analysis were implemented using the R lme4 and mediation packages 

(Tingley et al., 2014). 

 

3. Results 

3.1 Pure Confounding Effect 

             Table 2 displays the percentage of significant associations and the distribution of the 

variance explained (R2) of GAFs with ROIs across the five imaging modalities; sMRI had the 

highest significance rate (87.8%) with GAFs, follow by structural connectivity measures 

(DTI=80.9% and RSI=69.1%). Functional measures had lowest significance rate (rsMRI =59.3% 

and task fMRI =25.2%). The distribution of the variance explained is consistent with the 

significance rates, as the sMRI has a higher variance explained than other imaging modalities.  

3.2 Inflated Estimation Driven by Confounds 

             In ABCD cross-sectional samples, GAFs were significantly associated with parental 

income (Pop1: b=-2.58, p-value <0.000; Pop2: b=-3.01, p-value <0.000; Pop3: b=0.07, p-value 
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=0.838) with a Nagelkerke Pseudo-R2 of 0.332. Given the strong associations between 

population stratification and parental income, we used parental income as an example of how 

much population stratification can bias imaging analyses. Table 3 shows the percentage of 

significant tests of parental income regression before and after controlling GAFs, and the 

percentage coefficient change after controlling for GAFs (difference in association coefficients 

with the coefficient before controlling for GAFs as the denominator). The percentage of 

significant associations of parental income with ROIs were markedly lower after controlling for 

GAFs for all imaging modalities (Table 3), but especially for sMRI (median percentage 

coefficient change of 52%), followed by structural connectivity measures (DTI=41.3%; 

RSI=33.6%), and rsMRI (38.0%). Task fMRI had the lowest coefficient changes (18.8%). 

3.3 The misattributed mediations 

             In the third scenarios, we decomposed the correlated effects of parental income and 

GAFs on ROIs. The left column of Table 4 shows the significance proportions of misattributed 

mediation effects of GAFs on ROIs by parental income, using average causal mediation 

estimation model, and also displays the proportion of variance misattributed among the 

significant ROIs. sMRI had highest significance rate (50.8%) of ROIs carryover by parental 

income follow by DTI (35.0%), RSI, rsMRI (34.4%) and task fMRI (27.7%). Among ROIs 

which has significant associations with parental income, RSI (median =24.8%) has the largest 

proportion of carryover effects in general and follow by sMRI (median =23.3%), DTI (median 

=21.7%), and rsMRI (median =21.8%). Task fMRI, on the other hand, has the least 

(median=13.2%). These results reflect the volume of the carryover effect when the effect of 

GAFs travel with parental income. The significance rates across imaging modalities in the 

analyses 1 to 3 are summarized in the Figure 2.  
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3.4. The risk of finding spurious associations  

To more formally assess the qualitative trends for each modality in the proportion of 

ROIs reaching a nominal significance threshold and for a more intuitive observation, we 

compared the other four imaging modalities against task fMRI to assess the proportion of ROIs 

reaching a nominal significance threshold by calculating their risk ratios (RR) of finding 

associations. In Figure 3, all four imaging modalities (sMRI, DTI, RSI, rsMRI) show the 

increased likelihood (RR > 1) of finding associations compared to task fMRI. The ranking (in 

order of likelihood of finding significance) was 1) sMRI; 2) DTI; 3) RSI; 4) rsMRI; and 5) task 

fMRI. After partialling out parental income, the association with GAFs (orange) for Pop1 and 

Pop2 were all stronger than the total association with GAFs (green). Additionally, sMRI had the 

strongest association both with i) GAFs after partialling out the parental income (orange, Pop1 = 

4.7; Pop2 = 6.9; Pop3 = 5.1, Figure 3, Supplemental Table 1) and ii) GAFs carried through 

parental income (purple, Pop1 = 4.3; Pop2 = 5.2, Figure 3, Supplemental Table 2), having at 

least four times likely to be claimed as significant comparing to task fMRI. Moreover, sMRI is 

the only imaging modality with stronger association through parental income than overall 

association (green, Pop1 = 3.2; Pop2 = 4.9, Figure 3, Supplemental Table 1). 

 

5. Discussion 

             Our results show that structural T1 imaging measurements exhibited the strongest 

associations with population stratification in terms of magnitude and probability of significant 

associations in the ABCD Study sample. Functional brain measures, especially task fMRI, 

showed limited or negligible associations with population stratification. This reaffirms previous 

conjectures that the impact of population stratification on imaging measures is attributable to 
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differences in the morphological features with little to no functional relevance (Fan et al., 2015). 

Analyses on the connectivity measures show the same trend, as the functional connectivity have 

much weaker association signals than the structural connectivity (DTI and RSI).  

 Recent reports on shared genetic loci between structural imaging measures and cranial 

features have indicated shared molecular origins, driven by the closely coordinated 

developmental processes of ectoderm and neural ectoderm (Naqvi et al., 2021). This suggests 

that structural measures from neuroimaging may be particularly susceptible to the confounding 

effects of population stratification. Given that over 90% of structural ROIs are associated with 

GAFs and highly likely to lead to misattribution of the impact of variable of interests, any 

analysis using structural images should seriously consider the biasing impact of population 

stratification.   

 Although most evident in sMRI associations, the confounding and carryover effects of 

population stratification are ubiquitous across imaging modalities. As illustrated in our example 

analyses with the parental income using ABCD data, median changes of regression coefficients 

between parental income and imaging ROIs before and after controlling for population 

stratification are 18.8%, 38.0%, 33.6%, 41.3%, and 51.9% for imaging features from task fMRI, 

rsfMRI, RSI, DTI, and structural T1 MRI, respectively. The median proportion of significant 

carryover effects range between 13.2% to 23.3%, indicating non-negligible conflation between 

population stratification and parental income levels. This makes the interpretation on the brain-

behavioral associations challenging, as controlling population stratification can take away some 

proportion of the true associations of the parental income, yet the correlation of parental income 

with population stratification makes it impossible to differentiate true effects and confounds. 

 Our analyses do not comprehensively demonstrate the potential causes underlying the 

association of population stratification and neuroimaging metrics.  Given the broad interest on 
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the social determinants of variability in neuroimaging metrics (Noble et al., 2015; Gonzalez et 

al., 2020), there is a need to conduct bias analyses on the impact of population stratification on 

brain-behavior associations of interest to determine to extent to which this may confound effects 

detected.  Researchers should be thoughtful when considering which covariates to include in any 

given analyses and be able to motivate the choices with theoretical and meaningful rationales. 

 This study has several limitations. First, we analyzed ROI-level data and contrasted 

between imaging modalities. We did not emphasize whether specific ROIs were more 

susceptible to population stratification across different modalities and dig into finer resolutions 

beyond these anatomically defined regions. Moreover, it is possible to construct a multivariate 

model that is highly predictive of population stratification despite weak associations at the 

individual ROI level, which emphasizes that population stratification may have small but 

distributed effects across the brain (Altmann & Mourao-Miranda, 2019). In this paper we 

focused on providing an overview of the associations rather than providing a general modeling 

strategy to account for confounding relationships between brain features and population 

stratification. Second, for simplicity we used a very rough definition of parental income (i.e., 

total parental income reported by the guardians during the first assessment) in our analyses. 

There are several components of socioeconomic status, such as parental education, parent 

occupation and income-to-needs. Parental income does not fully represent the effect of 

socioeconomic status on the development of children's brain structure. Third, we used GAFs to 

represent the population stratification, yet there are other measures of population structure, such 

as using genetic principal components (Patterson et al., 2006). Nevertheless, controlling for 

GAFs or for the first several genetic PCs typically give consistent results. We chose GAFs for 

the ease of presentation. Finally, we did not perform a full set of bias analyses to examine when 

and how population stratification can become a confounder or collider. While we believe formal 
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bias analyses are critical, bias analyses are scenario/context specific, depending on which 

variables are used and which hypotheses are being tested.  

 Taken together, our results reveal the necessity for taking population stratification 

seriously in neuroimaging research.  Given associations between population structure, self-

declared race and ethnicity, and health disparities, it is imperative that these potential 

relationships are thoughtfully considered by researchers in the context of their analyses to avoid 

spurious brain-behavior associations especially where these may be stigmatizing for minority 

groups. These findings provide a valuable reference for future neuroimaging analyses using 

large-scale, diverse samples. 
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Table legends 

 

Table 1. Summary of ABCD baseline demographics in this study.  
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Table 2. Pseudo-R2 of Likelihood Ratio Test to investigate how much improvement with 

GAFs in the model, among the significant ROIs. 

 

Table 3. Parental income regression coefficients percentage change from the regression 

model change due to GAFs, among the significant ROIs. 

 

Table 4. Description of proportion of mediated in association between neuroimaging and 

GAFs through Parental income for each ROIs, among the significant ROIs. 

 

 

 

 

 

 

Figure legends 

 

Figure 1. Three roles of the population structure between income and imaging measures. 

Figure 1a. Pure confounding effect. Assuming imaging feature is associated with population 

stratification and the variable of interest in the study is correlate to population stratification. 

Under the circumstances, the imaging feature can be found to be associated with income despite 

no actual causal relationships. 

Figure 1b. Inflated estimation driven by confounds. Assuming the variable of interest in the 

study has effect on imaging feature, imaging feature is associated with population stratification, 

and the variable of interest in the study is also correlate to population stratification. The 
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estimation of the relationship between variable of interest and imaging feature is biased due to 

the conflation of true effect and population stratification. 

Figure 1c. The misattributed mediations. Assuming population stratification and the variable 

of interest can be so intertwined. The true effect of variable of interest and confounding effect of 

population stratification are not differentiable. The effect of population stratification would mask 

the true associations involved the variable of interest and over-attribute the source of variations 

to the population stratification. 

 

Figure 2. Proportion of ROIs passed nominal significance threshold in mediation analysis, 

stratified by MRI category and genetic ancestry factors. These three panels show the 

proportion of ROIs passed nominal significance threshold in association between neuroimaging 

and GAFs, association between neuroimaging and GAFs after partialing out the effect of parental 

income and association between neuroimaging and GAFs through parental income (from left to 

right). The color of the bar represented the genetic ancestry; Green: Pop1; Orange: Pop2; Purple: 

Pop3. 

* Pop4 was not estimable in the average causal mediation effect due to small sample size 

limitation.  

 

Figure 3. The RR and 95%CI of ROIs passed nominal significance threshold in mediation 

analysis (referenced to task fMRI). All four imaging modalities (sMRI, DTI, RSI, and rsMRI) 

were referenced to task fMRI and calculating relative risk (RR) and 95%CI of ROIs passed 

nominal significance threshold in mediation analysis stratified by genetic ancestry factors. The 

mean of RR and its 95% confidence interval were shown in the bar plots. The green bar 

represented the mean and the 95% confidence interval of RR of association between 
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neuroimaging and GAFs; The purple bar represented the mean and the 95% confidence interval 

of RR of association between neuroimaging and GAFs through parental income; the orange bar 

represented the mean and the 95% confidence interval of RR of association between 

neuroimaging and GAFs after partial out the effect of parental income. 

* Pop4 was not estimable in the average causal mediation effect due to small sample size 

limitation.  
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Table 1. Summary of ABCD baseline demographics in this study.  

 

 N (%) Mean (SD) 

Age 9,694 9.92 (0.6) 

Sex   

Male 5,058 (52.2)  

Female 4,636 (47.8)  

Parental Income   

[< 50K] 2,737 (28.2)  

[>=50K & <100K] 2,790 (28.8)  

[>= 100K] 4,167 (43.0)  

GAF   

Pop1(%)  17 (0.3) 

Pop2(%)  11 (0.2) 

Pop3(%) 

Pop4(%) 

 4 (0.2) 

68 (0.4) 

 

GAF: Genetic Ancestry Factors; Pop1: African Ancestry; Pop2: Native American; Ancestry 

Pop3: East Asian Ancestry; Pop4: European Ancestry. Summarize genetic variation consistent 

with the four ancestral components, representing the degree of genetic similarity between 

individuals and the four continental populations. Sum of the proportion of GAF across four 

continental groups is one. 
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Percentage of 

significant in 

LRT 

Distribution of variance explained* 

Q1 Median Q3 Max 

task fMRI 25.2% 0% 0.1% 0.2% 3.3% 

rsMRI 59.3% 0.1% 0.1% 0.2% 3.0% 

RSI 69.1% 1.7% 2.7% 3.6% 6.3% 

DTI 80.9% 1.7% 2.7% 3.7% 6.3% 

sMRI 87.8% 1.7% 2.5% 4.4% 13.2% 

  

 

Table 2. Pseudo-R2 of Likelihood Ratio Test to investigate mixed model fit improvement with 

GAFs in the model, among the significant ROIs.  

*Based on Nagelkerke's pseudo-R2 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.06.503037doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.06.503037
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

 

Percentage of 

significant 

before control 

GAFs 

Percentage of 

significant 

after control 

GAFs 

Coefficient change of parental income 

Q1 Median Q3 

task fMRI 32.6% 25.8% 9.9% 18.8% 30.4% 

rsMRI 42.7% 15.4% 24.1% 38.0% 50.8% 

RSI 52.8% 29.7% 18.4% 33.6% 50.3% 

DTI 60.1% 31.0% 26.5% 41.3% 53.6% 

sMRI 71.3% 48.3% 40.8% 51.9% 58.6% 

 

Table 3. Parental income regression coefficients percentage change from the regression model 

change due to GAFs, among the significant ROIs. GAF: Genetic Ancestry Factors.  
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Significant rate 

of mediation 

Distribution of proportion of mediated 

Q1 Median Q3 

task fMRI 27.1% 4.5% 13.2% 35.1% 

rsMRI 27.7% 8.7% 21.8% 36.0% 

RSI 34.4% 9.1% 24.8% 42.5% 

DTI 35.0% 9.7% 21.7% 37.2% 

sMRI 50.8% 13.7% 23.3% 28.7% 

 

Table 4. Description of proportion of mediated in association between neuroimaging and GAFs 

through parental income for each ROIs, among the significant ROIs. 
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Figure 1a 

 

Figure 1b 

 

Figure 1c 
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Figure 2 
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Figure 3 

 

*GAF: Genetic Ancestry Factors; Pop1: African Ancestry; Pop2: Native American; Ancestry 

Pop3: East Asian Ancestry; Pop4: European Ancestry. 
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