

1 **Modulation of cannabinoid receptor signaling by endocannabinoids**

2

3 Kaavya Krishna Kumar^{1†}, Michael J. Robertson^{1,2†}, Elina Thadhani^{1–4}, Haoqing Wang¹, Carl-
4 Mikael Suomivuori^{1–4}, Alexander S. Powers^{1–5}, Lipin Ji⁶, Spyros P. Nikas⁶, Maria Gerasi⁶,
5 Kiran Vemuri⁶, Ron O. Dror^{1–4}, Asuka Inoue⁷, Alexandros Makriyannis^{6*}, Georgios
6 Skiniotis^{1,2,8*}, Brian Kobilka^{1*}

7

8 ¹Department of Molecular and Cellular Physiology, Stanford University School of Medicine,
9 279 Campus Drive, Stanford, California 94305, USA.

10

11 ²Department of Structural Biology, Stanford University School of Medicine, 279 Campus
12 Drive, Stanford, California 94305, USA.

13

14 ³Department of Computer Science, Stanford University, Stanford, California 94305, USA.

15

16 ⁴Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA
17 94305, USA

18

19 ⁵Department of Chemistry, Stanford University, Stanford, California 94305, USA

20

21 ⁶Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of
22 Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.

23

24 ⁷Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578,
25 Japan.

26

27 ⁸Department of Photon Science, SLAC National Accelerator Laboratory, Stanford University,
28 Menlo Park, California 94025, USA.

29

30 † Equal Contribution

31 *Correspondence: a.makriyannis@northeastern.edu (A.M.), yiorgo@stanford.edu (G.S.)

32 and kobilka@stanford.edu (B.K.K)

33

34 **Abstract**

35 Endocannabinoids (eCBs) are endogenous lipid molecules that activate the cannabinoid
36 receptor 1 (CB1), a G protein coupled receptor (GPCR) that signals primarily through the Gi/o
37 family of G proteins to regulate neurotransmitter release. Consequently, CB1 is an important
38 therapeutic target for several neurological disorders. How eCBs interact with CB1 is not known
39 and the downstream signaling they activate is not well understood. In this study we show that
40 eCBs do not activate Gi1 as much as synthetic cannabinoids. To characterize activation of CB1
41 by eCB, we formed an eCB analogue-bound (AMG315) CB1-Gi signaling complex for
42 structural studies. The structure reveals differences in the orthosteric ligand binding pocket not
43 seen in the previous CB1 structures, providing insights into the structural determinants of
44 ligand efficacy. In combination with signaling and simulation data, this study provides
45 mechanistic insights into CB1 activation by different classes of ligands, and sheds light on the
46 G protein preferences between endogenous and exogenous ligands.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 **Introduction**

69 The cannabinoid receptor type 1 (CB1) is a critical component of the endocannabinoid system
70 and the most abundantly expressed G protein-coupled receptor (GPCR) in the brain¹. As CB1
71 regulates a wide range of neuronal functions, it is an attractive target for treating pain, anxiety,
72 anorexia, and neurodegenerative disorders²⁻⁴. Endogenously, CB1 is activated by two
73 endocannabinoids (eCBs), arachidonoyl ethanolamine (anandamide) and 2-arachidonoyl-*sn*-
74 glycerol (2-AG), that are derivatives of arachidonic acid. CB1 is also activated by many
75 structurally diverse exogenous ligands, most notably, the plant-derived classical cannabinoid
76 (-)- Δ^9 -tetrahydrocannabinol (Δ^9 -THC), the non-classical cannabinoids, exemplified by CP-
77 55,940, and synthetic cannabinoid receptor agonists (SCRAs) that have emerged as illicit,
78 designer drugs of abuse. Apart from orthosteric agonists, allosteric modulators of CB1 have
79 also been developed recently.

80

81 Despite their promising therapeutic potential, exogenous CB1 agonists have a small therapeutic
82 window as they elicit on-target side effects, including catalepsy, hypolocomotion, and memory
83 impairment. Additionally, chronic CB1 activation by orthosteric agonists leads to tolerance
84 and dependence. In addition to these side-effects, SCRA use is associated with more severe
85 side-effects that may even result in death. There is increasing evidence that these severe side-
86 effects caused by SCRAs could be a result of the super-efficacious activation of CB1 signaling
87 that might lead to erratic neurotransmitter modulation and toxicity. On the other hand, positive
88 allosteric modulators (PAMs) of CB1 have shown efficacy in enhancing the antinociceptive
89 effects of endocannabinoids *in vivo* without any cardinal signs of CB1 side-effects or
90 tolerance⁵.

91

92 At the cellular level, CB1 predominantly signals through the adenylate cyclase inhibitory G
93 protein family, G_{i/o}, and also recruits arrestins. Ligands are pleiotropically coupled to multiple
94 signaling pathways and can stabilize conformations that might favor interaction with specific
95 effectors. As with other GPCRs, ligands biasing the receptor towards interactions with specific
96 G_{i/o} subtypes or arrestins may exhibit differential behavioural outcomes, thus increasing the
97 therapeutic window. Therefore, a better understanding of the structural basis of CB1 activation
98 with diverse ligands could offer valuable insight and enhance our ability to design novel drugs
99 with improved pharmacological profiles.

100

101 We have previously determined the structure of CB1 bound to a SCRA, FUB⁶ and others have
102 determined CB1 structures bound to the classical cannabinoid analogues AM841 and
103 AM11542⁷, the non-classical cannabinoid CP-55,940 and the negative allosteric modulator
104 (NAM) Org27569⁸. However, no structure of CB1 bound to an eCB is available. To understand
105 the structural basis of CB1 activation by eCBs, we determined a 3.4 Å cryo-EM structure of an
106 eCB analogue-activated full length CB1 in complex with heterotrimeric G_{i1} protein. We
107 employed a metabolically stable and potent anandamide analogue, AMG315, for structure
108 determination. To gain a better understanding of the downstream pathways activated by the
109 ligands (eCBs, phytocannabinoids and synthetic cannabinoids), we used fluorescence
110 spectroscopy and signaling assays to show that different cannabinoids activate G_{i1} to different
111 extents. Further, with molecular dynamics (MD) simulations, mutagenesis and signaling data
112 we glean insights into the structural determinants of ligand efficacy in CB1.

113

114 **Results and Discussion**

115 **Activation of G_{i1}**

116 CB1 preferentially signals via the G_{i/o} G protein subtype. To investigate how structurally
117 diverse ligands activate G_{i1}, we performed a GTP turnover assay using the non-classical
118 CP55,940 (CP) and the synthetic cannabinoid MDMB-Fubinaca (FUB), the eCB anandamide,
119 as well as AMG315, an eCB analogue that has two carefully chosen chiral centers and exhibits
120 remarkable biological activity and stability⁹ (Fig 1a). The full agonists CP and FUB were
121 equally efficacious towards G_{i1} (Fig 1b). When compared to CP and FUB, AMG315 was
122 slightly less efficacious for G_{i1} (Fig 1b). On the other hand, anandamide acted as a weak partial
123 agonist for G_{i1} (Fig 1b) and was able to induce only 60 % GTP-turnover, compared to CP and
124 FUB in G_{i1}.

125

126 To understand how ligands of different efficacies stabilize TM6, we performed fluorescence
127 spectroscopy with CB1 labeled with the environmental-sensitive fluorophore,
128 monobromobimane (bimane) as a conformational reporter of TM6 activation of CB1. To
129 enable site-specific labelling, a minimal cysteine version of CB1 was generated¹⁰ where all the
130 cysteine residues (except C256 and C264 that form disulfide) were mutated to alanine. A
131 cysteine residue was engineered at residue 241 (L6.33) on TM6, which was labelled with
132 bimane. The bimane spectra of CP- and AMG315-bound CB1 were not significantly different
133 except for a small (1nm) blue-shift in λ_{max} (Fig 1c). Adding Anandamide to CB1, on the other

134 hand, results in a smaller decrease in intensity and a blue-shift in λ_{max} by 4 nm compared to CP
135 (and 3 nm compared to AMG315) (Fig 1c). These differences in the bimane spectra perhaps
136 indicates that anandamide stabilizes a distinct conformation in TM6.

137

138 **Determination of an endocannabinoid-bound CB1-G_i1 complex**

139 To better understand the structural differences in the ligand binding mode of eCBs compared
140 to SCRAs like FUB⁶, and the classical cannabinoid AM841⁷, we determined the structure of
141 an eCB-bound CB1 signaling complex. In order to determine the structure of CB1 bound to a
142 ligand with an eCB-like chemical structure, we tested eCB (both anandamide and 2-AG)
143 analogues for their ability to induce CB1-dependant G_i1 GTP turnover as a measure of complex
144 formation and stability. The anandamide analogue AMG315 and the 2-AG analogue AM8125
145 (Fig. 1a) induced significantly better GTP turnover compared to their parent compounds (Fig.
146 2a). However, as expected, neither (AMG315 and AM8125) were more efficacious than FUB
147 or the THC analogue, CP (Fig. 2a). Size exclusion chromatography (SEC) showed that CB1
148 formed a slightly more stable complex with AMG315 than AM8125 (Fig. S1a). The PAM
149 ZCZ-011 (ZCZ) was able to further improve GTP turnover and further stabilize the complex
150 (Fig. 2b). CB1 bound to AMG315 and ZCZ formed a complex with G_i1 that was stable enough
151 for cryoEM imaging yielding a density map at a global nominal resolution of 3.4 Å (Fig. S1b).
152 In order to test if we could observe better density for a CB1 PAM, we also determined the
153 structure of AMG315-bound CB1-G_i1 complex in the presence of AM11517, that showed
154 better PAM activity (Fig S1c) and yielded a 3.1 Å resolution map (Fig. S1d). We observed
155 slightly different poses for AMG315 in the two maps and as a result some differences in the
156 ligand binding pocket (discussed later). Since, otherwise the maps are very similar, we use only
157 the ZCZ-bound map (as our previous FUB-bound structure was also obtained in the presence
158 of ZCZ) for further discussions. Recently, structures of CB1 bound to ZCZ were determined,
159 showing binding site involving TMs 2, 3 and 4¹¹. In neither of our structures do we see any
160 density in the region described in the previous study¹¹ and hence, we do not model either of
161 the PAMs (ZCZ and AM11517) in our structures. Overall, the mode of G_i engagement with
162 the endo-bound CB1 is very similar to the previously determined structure of FUB-bound CB1
163 complex, except for ~ 4 Å deviation of the α N of G_i between the CB1-G_i complexes (Fig S2a).

164

165

166

167 **Endocannabinoid Interaction**

168 The cryoEM map shows well-defined density that allows unambiguous modelling of AMG315
169 and all the protein components of the CB1-G_i1 complex (Fig. S1b, d, Fig. S2b). AMG315
170 engages the receptor through hydrophobic and polar interactions (Fig. 2c). The acyl chain of
171 AMG315 is buried deep in the binding pocket, while the polar head group is closer to the
172 extracellular pocket, interacting with the ‘lid-like’ N-terminus (Fig. 2c) and pointing into a
173 largely positive cavity formed by the TM1-TM7 interface (Fig. S2c). Previously we observed
174 a phospholipid molecule bound in the TM1-TM7 interface during MD simulations⁶.
175 Phospholipids are the precursors for endocannabinoids and lipid binding observed in the
176 simulations might indicate the ligand entry point for endocannabinoid through the membrane.
177 The ligand access point in the TM1-TM7 interface is positively charged while the rest of the
178 binding pocket is largely uncharged (Fig. S2c). This charge distribution might help align the
179 acyl chain and the hydroxyl of the endocannabinoid head group and guide the ligand correctly
180 into the binding pocket. This mechanism of guided ligand entry has been proposed for other
181 lipid binding GPCRs such as S1P1 and LPA1¹².

182

183 AMG315 overlays well with the previously determined structures of distinct classes of
184 cannabinoids such as FUB⁶ and AM841¹³ (Fig. 2d). In addition to most of the hydrophobic and
185 polar interactions made by FUB and AM841, AMG315, through its carbonyl head group,
186 interacts with N-terminal residue F108^{Nterm} and I267^{ECL2} in ECL2 (Fig. 2c). When comparing
187 CB1 and CB2, the N-terminus and ECL2 are the most diverse regions in terms of length and
188 sequence conservation. The interactions of AMG315 with these regions might explain its
189 unprecedented 20-fold selectivity for CB1 over CB2⁹.

190

191 The residues, F200^{3,36} and W356^{6,48} (known as the “toggle switch”), play an important role in
192 stabilizing the inactive conformation of CB1¹⁴, wherein F200^{3,36} and W356^{6,48} form π - π
193 aromatic stacking interactions (grey, Fig. 3a). Since these two residues are important for CB1
194 signaling activity, we speculated that a ligand’s efficacy correlates with its ability to engage
195 the “toggle switch” to activate CB1. Upon activation, the rotation of TM3 and TM6 disrupts
196 the stacking of F200^{3,36} and W356^{6,48} (Fig. 3a), with the phenyl ring of F200^{3,36} pointing
197 towards the ligand to form hydrophobic interactions. In the FUB-bound structure, F200^{3,36}
198 interacts with the indazole ring (Fig. 3b). In the case of AMG315, the methyl group at C-13
199 (S-stereochemistry) interacts with the “toggle switch” residues (Fig. 3b, black circle).

200 Molecular dynamic (MD) simulations show that anandamide stabilizes W356^{6,48} in the active-
201 like conformation significantly less than do FUB and AMG315 (Fig. 3c), implying that lower
202 efficacy of anandamide might be related to its ability to interact with and activate the “toggle
203 switch” residues. Molecular docking shows that using AMG317 with the R-stereochemistry at
204 C-13 instead of S-stereochemistry as seen in AMG315, makes the methyl substitution point
205 away from the “toggle switch” (Fig. 3d), and consequently no detectable receptor activation is
206 observed for AMG317 (R-stereochemistry, Fig. 3d)⁹. Furthermore, by comparing anandamide
207 with its (S)-C-13 methyl congener (AMG313, Fig. 3d), we observe that this methyl group,
208 imparts a 5-fold increase in potency and an increase in efficacy. However, the (R)-C-13 methyl
209 enantiomer, AM8141 (Fig. 3d), shows no detectable activity at CB1⁹. The other methyl
210 substitution on AMG315 compared to anandamide at C-1' interacts with residues on ECL2
211 (Ile267^{ECL2}) and the extracellular region of TM7 (K376^{7,32}) (Fig. 3e, red circle). The combined
212 interactions of the receptor with AMG315 due to the two chiral methyl groups synergize to
213 result in an increase in potency of over 100-fold compared to anandamide⁹.

214

215 **Role of TM2 in ligand efficacy**

216 Agonist interactions with TM2 appear to play a more important role for CB1 activation. As
217 with previous agonist-bound structures, the AMG315-bound CB1 shows extensive structural
218 rearrangements in the ligand binding pocket compared to the antagonist-bound structure^{6,13,15}.
219 Upon AMG315 binding, the N-terminus of CB1 is displaced from the transmembrane core,
220 followed by the inward displacement of TM1 and TM2 (Fig. 4a). This inward movement of
221 TM2 is accompanied by the repositioning of residues F170^{2,57}, F174^{2,61}, F177^{2,64} and H178^{2,65},
222 that rotate towards and interact with the agonist (Fig. 4b). These structural differences in the
223 ligand binding pocket between binding of agonist and antagonist are not seen in the closely
224 related CB2 receptor (Fig. S3a). Since TM2 rearrangement is stabilized by agonist binding,
225 these differences might be an important determinant of ligand efficacy in CB1. In the
226 previously determined FUB-bound CB1-G_i1 structure, the *tert*-butyl group of FUB interacts
227 with these repositioned residues on TM2 (Fig. 4c). MMB-Fubinaca, which has an isopropyl
228 substitution at this position, has a reduced efficacy (Fig. S3b) and potency¹⁶ compared to the
229 *tert*-butyl substituent of FUB indicating that, in addition to interaction with the “toggle switch”
230 residues, TM2-ligand interactions is an important determinant of ligand efficacy. Though
231 AMG315 overlays well with FUB in the ligand binding pocket and makes similar interactions
232 with the receptor, AMG315 is a less efficacious ligand compared to FUB. This difference in
233 efficacy might be attributed in part to the interactions the ligands make with TM2, wherein

234 FUB has more extensive interactions with TM2 than does AMG315 (residues that are further
235 than 4 Å for the AMG315-bound structure are shown as light blue, Fig. 4c). The residues on
236 TM2 that are within 4 Å of FUB are F170^{2.57}, S173^{2.60}, F174^{2.61}, F177^{2.64} and H178^{2.65} (Fig.
237 4c). However, only residues F170^{2.57}, S173^{2.60} and H178^{2.65} are within 4 Å of AMG315 (Fig.
238 4c). Studies have shown that adding a methyl substitution in anandamide at C-7 (AM11604,
239 Fig. S3c) increases the efficacy (E_{max}) to 100% relative to the full agonist CP55940⁹,
240 presumably due to its enhanced interactions with residues of TM2. Compared to anandamide
241 (E_{max} 61%), AMG315 with a methyl substitution at C-13 has an E_{max} value of 76% probably
242 due to the gained interaction with the “toggle switch” residues (discussed earlier). However,
243 introducing a substitutions at C-7 (known as AM11605, Fig. S3c), which would gain
244 interactions with TM2, increases the E_{max} value to 100%⁹.

245

246 Compared to the FUB-bound structure, in the AMG315-bound CB1, H178^{2.65} has moved away
247 from the ligand by ~ 2.5 Å (Fig. 4c). To investigate if there is a correlation between ligand
248 efficacy and interaction with H178^{2.65}, we performed MD simulations to probe the frequency
249 of interactions between ligands (FUB, AMG315 and anandamide) and H178^{2.65}. The full
250 agonist FUB and the slightly less efficacious AMG315 more often form a polar interaction
251 with H178^{2.65} compared to the partial agonist anandamide (Fig 4d). As described above, the
252 methyl substitution at C-1' in AMG315 interacts with K376^{7.32} and Ile267^{ECL2} (Fig. S2e) which
253 might limit its movement in the ligand binding pocket, increasing interaction frequency with
254 H178^{2.65} (Fig. 4d). The absence of this methyl substitution in anandamide would allow the
255 ligand to move away from TM2 and more often break interaction with H178^{2.65}. Though not
256 statistically significant, the frequency of polar interaction between H178^{2.65} and AMG315 is
257 lower than with FUB (Fig 4d). In our other structure of the CB1-Gi complex (with AM11517
258 as the PAM), AMG315 is bound in a conformation wherein the carbonyl group of AMG315
259 has moved away from the H178^{2.65} such that the His residue is not within hydrogen bonding
260 distance (Fig. S3d, Fig. 4d).

261

262 **Distinct role of TM2 in activation of CB1**

263 Changes in the extracellular end of TM2 upon agonist binding are associated with changes in
264 the intracellular end of TM2, wherein a group of residues undergo rearrangement upon
265 activation. At the intracellular end of TM2, F155^{2.42} undergoes a concerted movement with
266 F237^{4.46} upon activation. In the inactive structure, the aromatic ring of F237^{4.46} is facing inward,
267 towards TM2-3, with F155^{2.42} positioned at the core of the receptor (Fig. 5a). Upon activation,

268 F237^{4.46} and F155^{2.42} rotate outward away from the receptor core (Fig. 5a). Along with the
269 F155^{2.42}, the intracellular side of TM2 rotates with the sidechain of H154^{2.41} moving outward
270 ~ 4Å compared to the inactive CB1 structure (Fig. 5a). In both the active¹⁷ and inactive¹⁸
271 structures of CB2, F72^{2.42} is positioned outward and is not facing the core of the protein. Hence,
272 the intracellular end of TM2 in CB2 does not undergo a similar rotation as in CB1, and there
273 is little difference in the orientation of positions 2.42 or 4.46 between inactive and active states
274 (Fig. 5b). In fact, this structural change at position 2.42 is not seen in any other receptors
275 including β_2 AR, μ OR and M2R (Fig. S4a). This is probably because none of these receptors
276 has a bulky aromatic residue at position 4.46, that would sterically clash with Phe at position
277 2.42 upon activation (Fig. S4a-b), which might make this mechanism of activation unique to
278 CB1. Mutating F237^{4.46} to a Leu (like in CB2) increased basal activity¹⁹. This could be due to
279 the inability of a Leu residue at this position to stabilize an inward rotation of F155^{2.42}. A caveat
280 in interpreting the position of residues F237^{4.46} and F155^{2.42} from the crystal structure of
281 inactive CB1 is that the structure was determined with an inactivating TM3 mutation T210^{3.46}A
282¹⁵ and the conformation of F155^{2.42} (i.e. inward facing) might be influenced by the presence of
283 this mutation (Fig. S4c). Regardless, the inactive structure of CB2 was also determined with
284 this mutation (T^{3.46}A) and the reorientation of F72^{2.42} is not seen in this structure.
285 CB1 negative allosteric modulator (NAM) Org27569 (Org) has been shown to modulate the
286 F155^{2.42}-F237^{4.46} “activation switch” of CB1 to exert its NAM activity. Org decreases GTP
287 turnover in the presence of CP, AMG315 and anandamide (Fig 5c). Org has an unusual
288 pharmacology in that, unlike conventional NAMs, it increases agonist affinity while decreasing
289 G_{i1} turnover. This atypical pharmacology of Org is probably related to the CB1 residues the
290 ligand interacts with. The structure of Org-bound CB1 shows that Org interacts directly with
291 H154^{2.41} in TM2 and stabilizes the inward position of F237^{4.46} (Fig 5d, S5a)⁸. Mutations to
292 F237^{4.46} has been shown to change orthosteric ligand binding. F237^{4.46}L mutation increases
293 orthosteric agonist potency²⁰ and increases receptor internalization¹⁹. Mutation of F237^{4.46} to a
294 smaller amino acid Leu, would not cause a steric clash with F155^{2.42}, allowing F155^{2.42} to
295 remain in the outward “active” conformation, as mentioned previously. In the WT receptor,
296 Org binding drives the conformational change in F237^{4.46}, which somehow causes changes in
297 agonist potency. Change in F237^{4.46} affects the conformation of TM2 and as mentioned
298 previously, the extracellular region of TM2 undergoes a large inward rotation when bound to
299 agonists. Therefore, an explanation for how Org affects agonist potency could be that Org
300 binding increases the propensity of extracellular TM2 to rotate inward, thereby stabilizing an

301 agonist-binding conformation, thus increasing agonist potency, while stabilizing a TM6
302 conformation that is not conducive for G_i binding. For its NAM activity, Org binding stabilizes
303 the inward rotation of F237^{4.46} which probably results in the inward rotation of F155^{2.42} to the
304 receptor core, stabilizing an inactive conformation. In spite of acting as allosteric modulators
305 at CB1, Org shows no activity at the closely related CB2 (Fig S5b)^{5,21,22}. Org interacts with
306 H154^{2.41} and F237^{4.46} of CB1 and in CB2 the positions 2.41 and 4.46 are both Leu residues (Fig
307 S4a). More importantly CB2 does not contain the F155^{2.42}-F237^{4.46} “activation switch” of CB1,
308 and hence, Org is unable to modulate the “activation switch” residues in CB2 to produce their
309 allosteric activity.

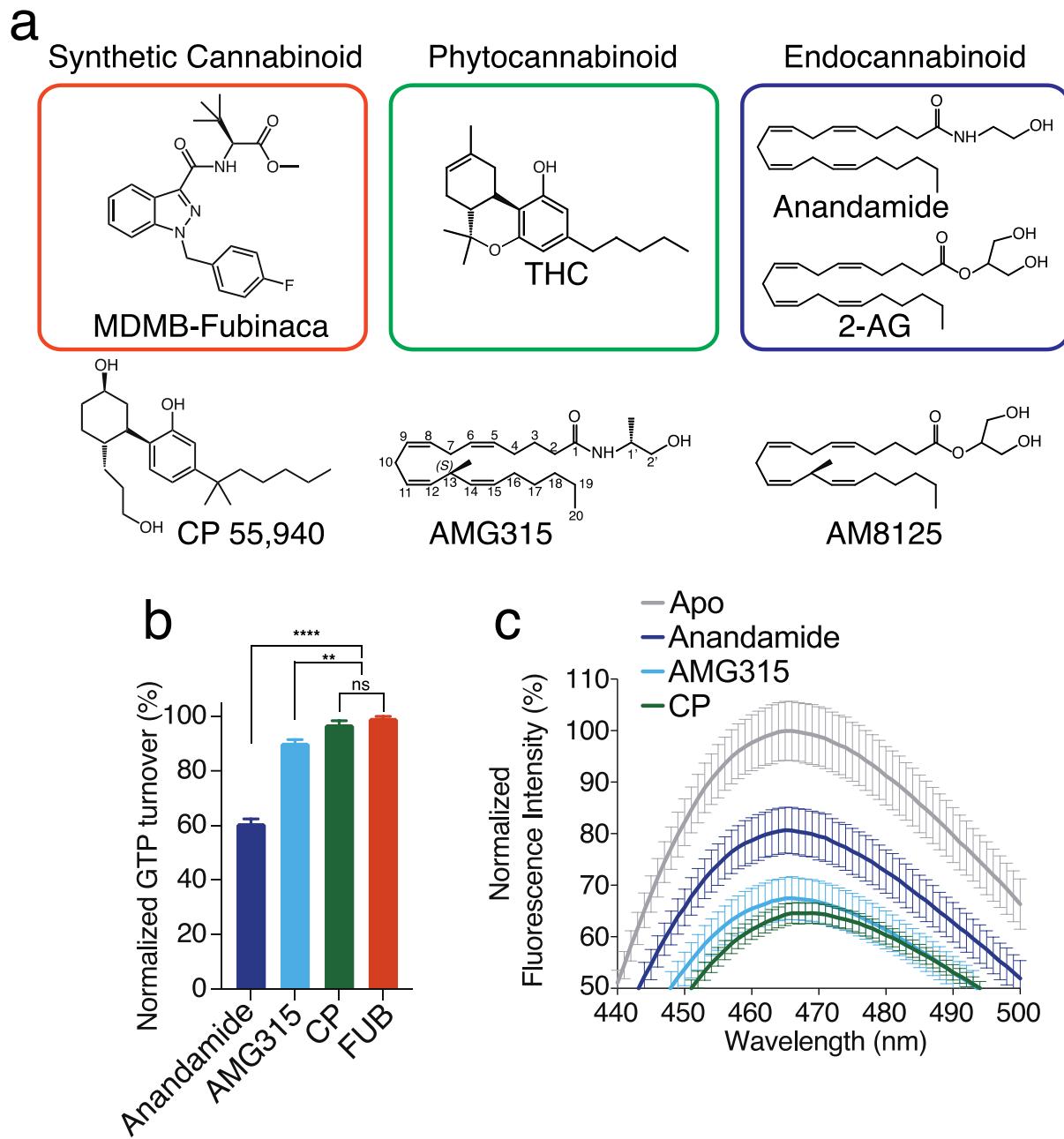
310

311 **Conclusion**

312 eCB signaling plays a critical role in maintaining homeostasis and is involved in the regulation
313 of neurotransmission and synaptic plasticity. Phytocannabinoids and synthetic cannabinoids
314 that emulate eCB signaling through the CB1 receptor produce undesirable side-effects.
315 Structurally and pharmacologically, eCBs are very distinct from phytocannabinoids and
316 synthetic cannabinoids and understanding signaling by eCBs have important implications for
317 designing drugs with desired signaling profiles.

318

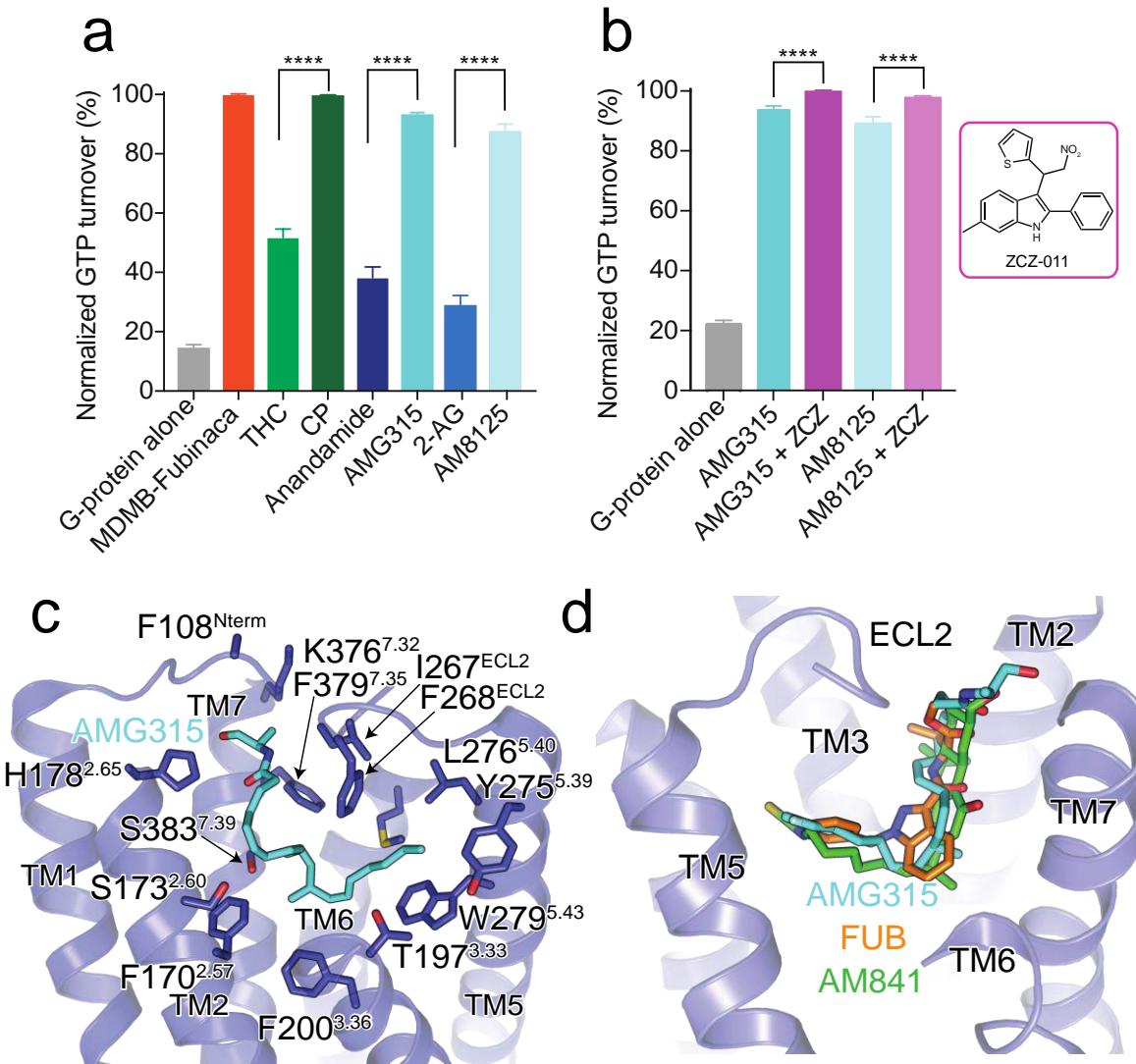
319 Anandamide has a lower efficacy compared to the agonist, CP and we show that anandamide
320 might stabilize a distinct conformation of TM6. To better understand the pharmacology of
321 eCBs, we determined the cryoEM structure of a CB1- G_i signaling complex bound to AMG315,
322 a metabolically stable and highly potent endocannabinoid analogue. This compound interacts
323 with the N-terminal, TM1 and TM7 regions of CB1 which are not explored by other ligands.
324 Using MD simulations and SAR data, we show that the efficacy of CB1 ligands depends on
325 their propensity to interact with the ‘toggle switch’ residues F200^{3.36}/W356^{6.48}. Additionally,
326 ligand efficacy in CB1 appears to be related to its interaction with the extracellular end of TM2.
327 Ligand interactions in the extracellular region is transmitted to TM2 intracellular end where
328 residue F155^{2.42} undergoes concerted movement with F237^{4.46} to contribute to activation of
329 CB1. This activation mechanism appears unique to CB1 (not seen in other GPCRs thus far)
330 due to the distinctively positioned Phe residue at position 4.46, and CB1 allosteric modulators
331 appear to regulate this “activation switch” residues to exert their signaling effects.


332

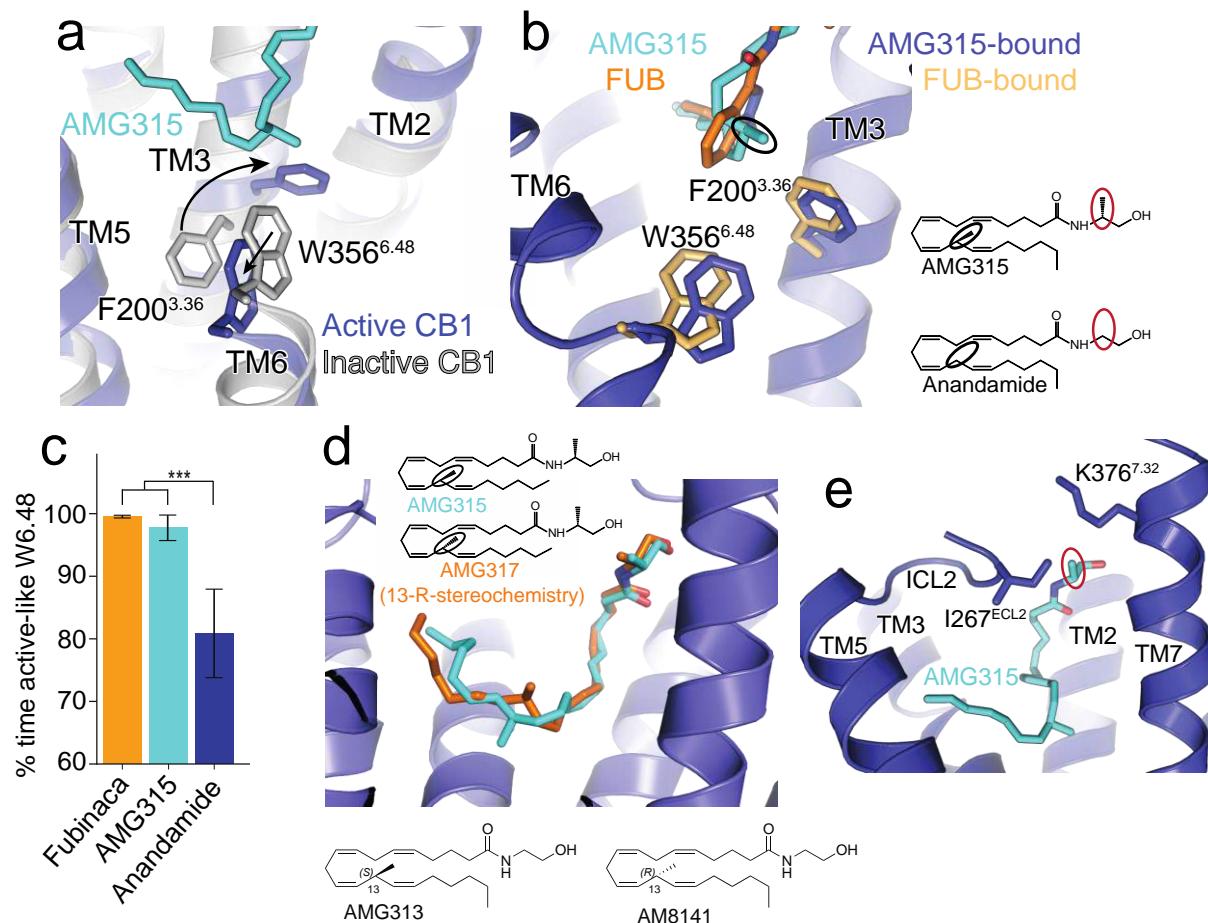
333

334

335 **Main Text Figs**


336

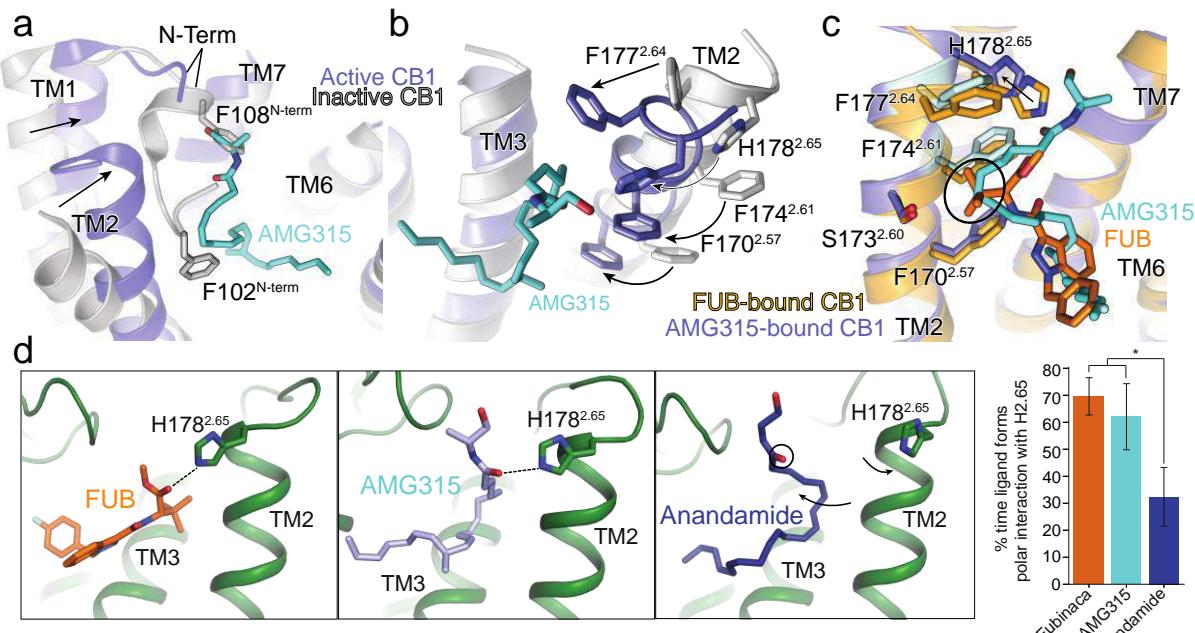
337


338 Fig 1

- 339 a. Chemical Structures of a synthetic cannabinoid (FUB), Phytocannabinoid (THC) and
340 endocannabinoids (Anandamide and 2-AG). Structures of analogues of phytocannabinoid
341 (CP 55, 940) and endocannabinoid (AMG315 and AM8125) used in this study.
- 342 b. GTP turnover assay showing efficient turnover produced by CP, AMG315 and anandamide
343 with G_{i1} (Data normalization done with FUB as 100% and receptor alone as 0%). (Mean \pm
344 SD, $p < 0.0001^{****}$ and $p < 0.01^{**}$, t -test)
- 345 c. Bimane spectra monitoring TM6 showing differences between anandamide-bound CB1
346 compared to with CP and AMG315.
- 347

348
349 Fig 2
350 a. GTP turnover assay with Gi1 showing maximum turnover produced by FUB and CP.
351 Endocannabinoid produce much lower GTP turnover compared to their analogues. (Mean
352 \pm SD)
353 b. Addition of the PAM, ZCZ increases GTP turnover of the endocannabinoid analogues.
354 (Mean \pm SD, $p < 0.0001^{****}$, t -test)
355 c. AMG315 binding pocket showing residues that are within 4 Å from the ligand.
356 d. Overlay of ligands from different chemical classes, synthetic cannabinoid (FUB, orange),
357 classical cannabinoid (AM841, green) and endocannabinoid (AMG315, blue).
358

359

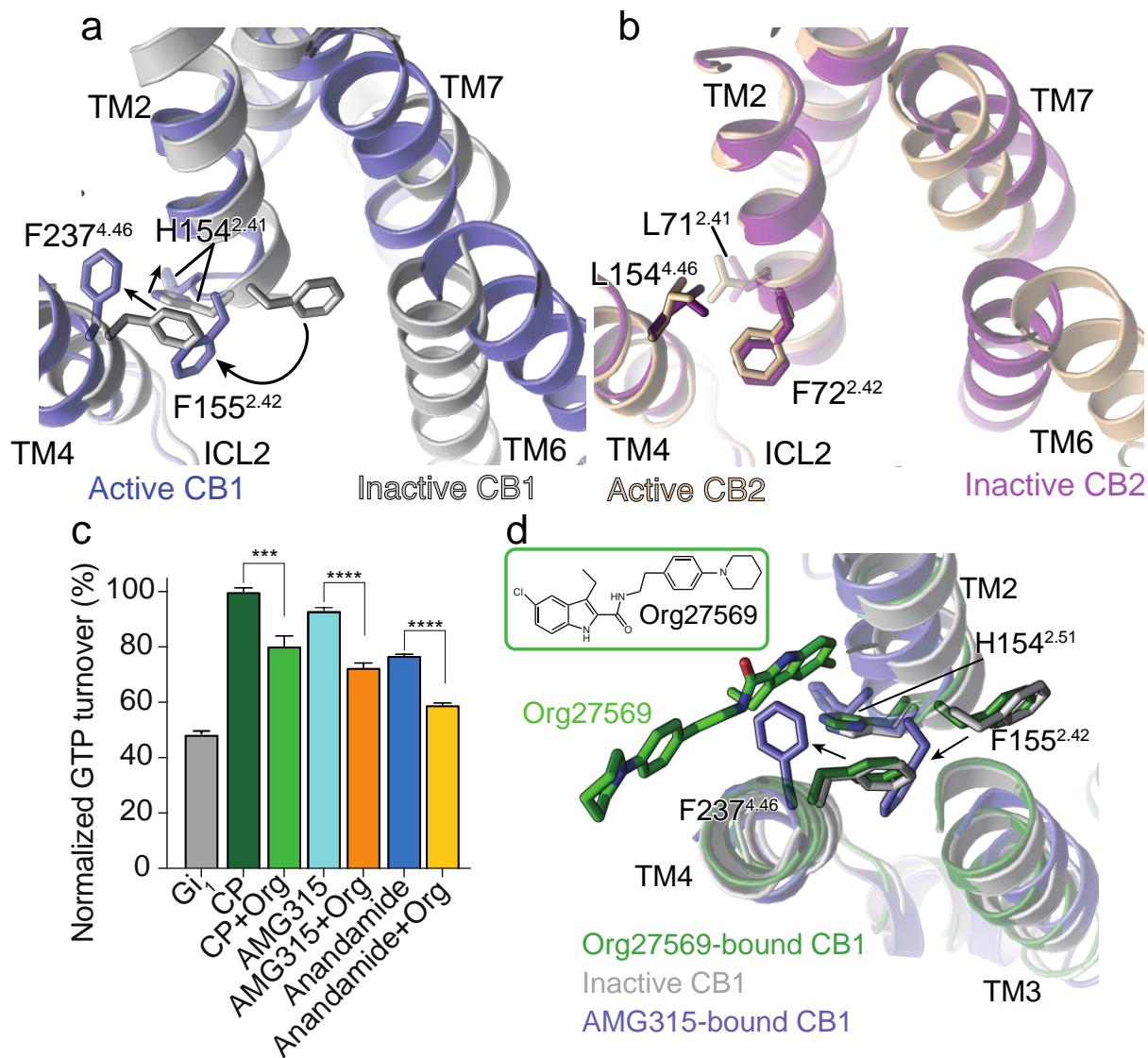


360

361 Fig 3

- 362 a. AMG315 stabilizes the ‘toggle switch’ residues W356^{6.48} and F200^{3.36} in the active state.
363 b. Ligand interaction with residues W356^{6.48} and F200^{3.36}. The methyl group in AMG315
364 (circled black) not present in anandamide makes interaction with the ‘toggle switch’.
365 c. In simulation, Anandamide stabilizes active-like conformations of W356^{6.48} significantly
366 less when compared individually to FUB ($p = 0.02$, two-sided Welch’s t -test) and to
367 AMG315 ($p = 0.04$), as well as when compared to both FUB and AMG315 as a group ($p =$
368 0.003).
369 d. Molecular docking showing an R-enantiomer instead of the S-enantiomer at position 13 in
370 AMG315, repositions the methyl group away from the “toggle switch”. Insert below:
371 chemical structure of position 13 substituents of anandamide, AMG315 (S-enantiomer) and
372 AM8141 (R-enantiomer).
373 e. The methyl group at position 1' (circled red in 3B) on AMG315 interacts with residues on
374 ECL2 (Ile267^{ECL2}) and extracellular region of TM7 (K376^{7.32}). This substitution is not
375 found in anandamide.
376
377

378



379

380 Fig 4

- 381 a. Overlay of inactive structure of CB1 (PDB: 5U09, white) and AMG315-bound structure
382 (blue) showing the inward movement of TM2 upon activation and displacement of the N-
383 terminus.
- 384 b. The inward movement of TM2 from the inactive state (grey) to the active state (blue) results
385 in the translocation of residues F177^{2.64}, H178^{2.65}, F174^{2.61} and F170^{2.57} towards the agonist.
- 386 c. FUB interacts with more TM2 residues (orange) compared to AMG315 (blue). F177^{2.64} and
387 F174^{2.61} interact with FUB but not AMG315, shown in light blue.
- 388 d. In simulation, FUB and AMG315 form polar interactions with H178^{2.65} more often than
389 the less efficacious partial agonist Anandamide ($p = 0.01$, two-sided Welch's t -test).
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402

403

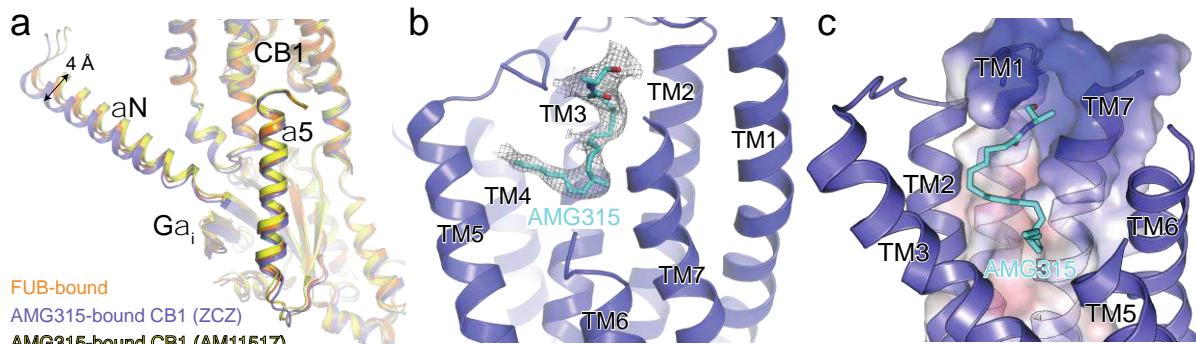

404

405 Fig 5

- 406 a. Concerted movement of F237^{4.46} and F155^{2.42} upon activation of CB1 from inactive (grey)
407 to active (blue) state.
- 408 b. The residue at position 4.46 in CB2 is a Leu and does not undergo movement upon
409 activation.
- 410 c. GTP turnover assay showing reduced turnover in the presence of Org27569 with G_i1.
411 (Mean \pm SD, $p < 0.0001^{****}$ and $p < 0.001^{***}$, *t*-test)
- 412 d. Structural rearrangement in F237^{4.46} and F155^{2.42} in Org27569 (PDB: 6KQI, green) bound
413 structure compared to active AMG315-bound (blue) and inactive (grey) structures.
- 414
- 415
- 416
- 417
- 418

419 **Supplementary Figs**

420



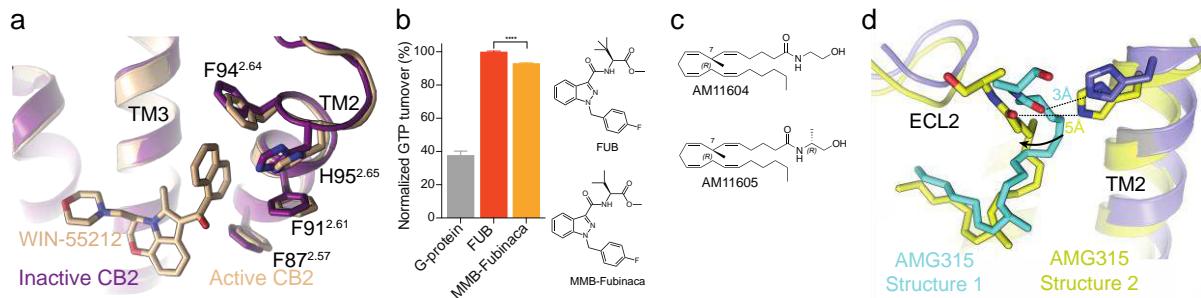
421

422 **Fig S1**

- 423 a. Fluorescence-detection size exclusion chromatography (FSEC) traces showing complex
424 peak and free receptor peak with the different AMG315 (blue) and AM8125 (red).
425 b. Cryo-EM processing and map density of TMs in ZCZ-bound CB1 structure.
426 c. GTP turnover assay showing increased turnover with AM11517 compared to ZCZ.
427 d. Cryo-EM processing and map density of TMs AM11517-bound CB1 structure.
428

429

430


431 Fig S2

- 432 a. Overlay of the Gai subunit from FUB-bound (orange) and the two AMG315-bound (ZCZ,
433 blue and AM11517, yellow), showing a 4 Å difference in αN.
434 b. Cryo-EM map density of the orthosteric ligand, AMG315.
435 c. Surface electrostatics (calculated and analyzed by the APBS Electrostatic PyMol Plugin
436 with negative colored blue and positive colored red) of the ligand binding pocket formed
437 by TM1 and TM7.

438

439

440

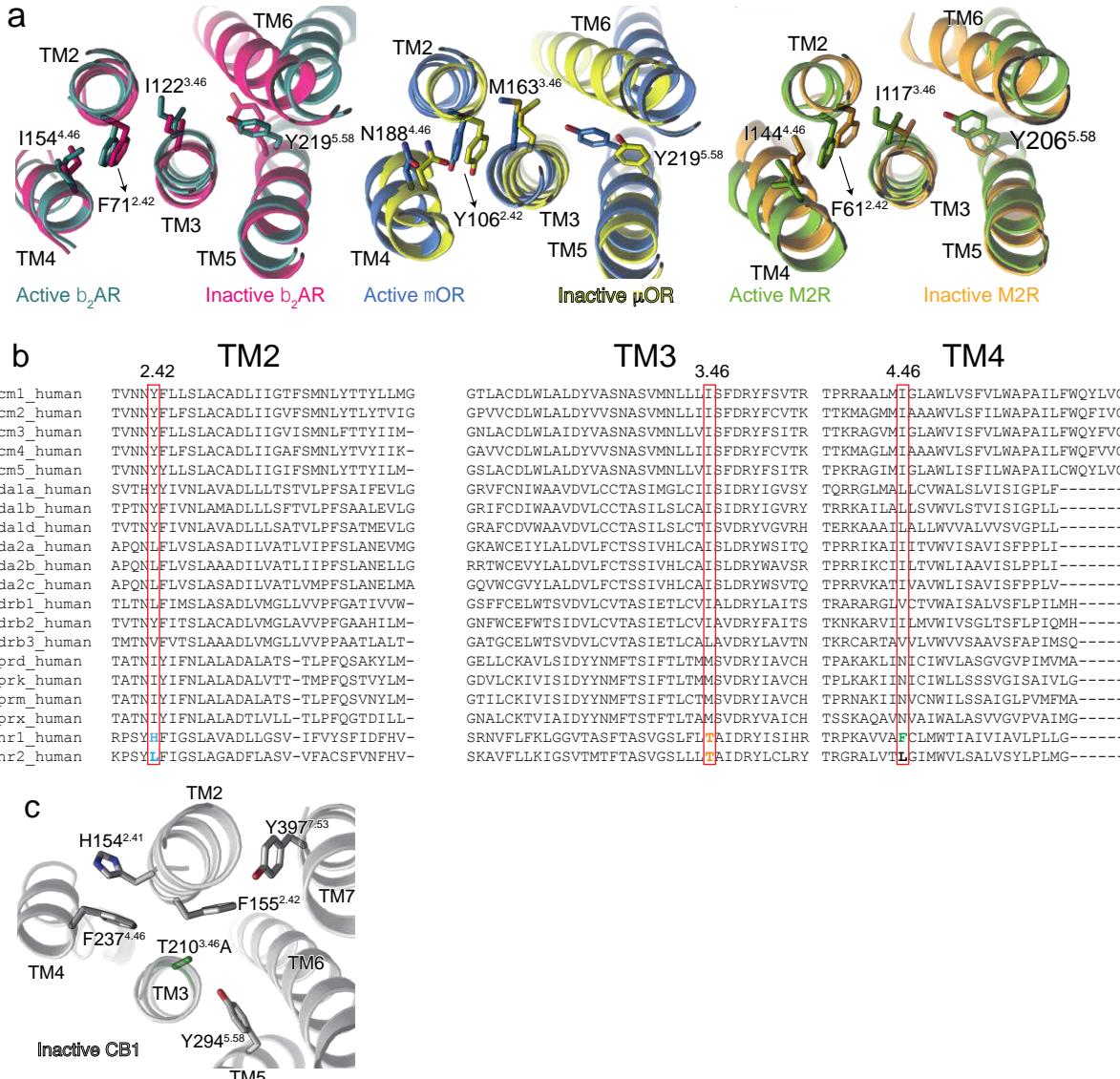
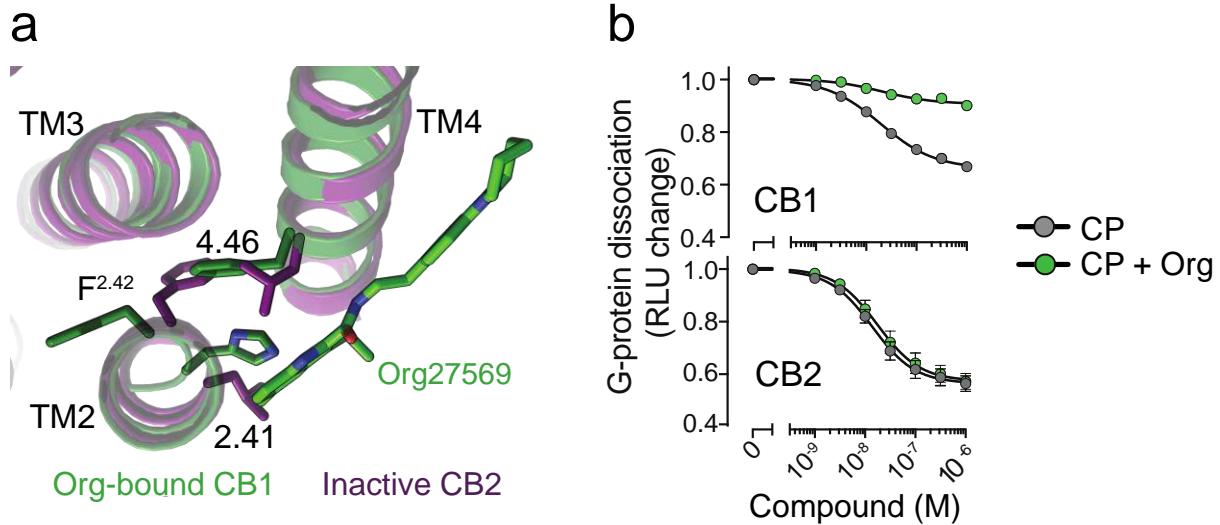

441

Fig S3

- Active (PDB: 6PT0) and inactive (PDB: 6KPC) structures of CB2 showing no change in TM2 position upon activation.
- GTP turnover assay showing more turnover with FUB compared to MMB-Fubinaca. (Mean \pm SD, $p < 0.001^{****}$, *t*-test)
- Chemical structure of AM11604 and AM11605.
- The difference in conformation in AMG315 between the AMG315-bound CB1 structures, wherein contacts the ligand contact H178^{2.65} in one structure and not the other.

450


451

452

453 Fig S4

- 454 a. Structural changes to TM2-3-4 upon activation in β_2 AR (Active, PDB code: 3SN6, teal and
455 Inactive PDB: 2RH1, magenta), μ OR (Active, PDB code: 6DDE, blue and Inactive PDB:
456 4DKL, yellow) and M2R (Active, PDB code: 6OIK, green and Inactive PDB: 3UON,
457 orange).
- 458 b. Alignment of GPCRs showing differences in residues at position 2.42, 3.46 and 4.46.
- 459 c. In the inactive structure (PDB code 5U09, grey), residue 3.46 which is Thr in WT was
460 mutated to Ala (coloured green) to aid in structural determination. This inactivating
461 T210^{3.46}A mutation is close to F155^{2.42} and might influence its conformation.

462

463 Fig S5

- 464 a. Structure of Org-bound CB1 (PDB: 6KQI, green) showing interaction with H154^{2.41}. In
465 CB2 (purple) position 2.41 is a Leu, which might prevent Org binding to CB2.
466 b. NanoBiT-G-protein dissociation assay shows unchanged CP response upon Org treatment
467 in CB2.

468

469 **Table S1: CryoEM data collection, model refinement and validation**

470 CB1-ZCZ structure

471

Data Collection

Voltage (kV)	300
Magnification	x29,000
Total electron dose (e ⁻ /Å ²)	80.09
Defocus range (μm)	-1.0 - -2.0
Calibrated pixel size (Å)	0.8521
Micrographs collected	8,332

Data Processing

Extracted particles	2,965,527
Particles used for final reconstruction	440,932
Final map resolution (Å, 0.143 FSC)	3.4
Map resolution range (Å)	3.2-5.0
Map sharpening B factor (Å ²)	90.4

Model Content

Initial models used (PDB code)	6N4B (CB1/G _i /scFV16)
Total number of atoms	8,674
No. of protein residues	1,117
No. of ligands	2

Model Validation

CC map vs. model (%)	81.6
RMSD	
Bond lengths (Å) / Bond angles (°)	0.015 / 1.221
Ramachandran plot statistics	
Favored (%)	89.52
Allowed (%)	10.48
Outliers (%)	0.0
Rotamer outliers (%)	0
C-beta deviations	0
Clash score	8.76

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489 **Table S1: CryoEM data collection, model refinement and validation**

490 CB1-AM11517 structure

491

Data Collection

Voltage (kV)	300
Magnification	130,000
Total electron dose (e ⁻ /Å ²)	59.5
Defocus range (μm)	-0.7 - -2.5
Calibrated pixel size (Å)	0.8677
Micrographs collected	5042

Data Processing

Extracted particles	1,544,528
Particles used for final reconstruction	402,595
Final map resolution (Å, 0.143 FSC)	3.08
Map resolution range (Å)	3.0-4.5
Map sharpening B factor (Å ²)	-106.023

Model Content

Initial models used (PDB code)	6N4B (CB1/G _i /scFv16)
Total number of atoms	8,674
No. of protein residues	1,124
No. of ligands	1

Model Validation

CC map vs. model (%)	84.86
RMSD	
Bond lengths (Å) / Bond angles (°)	0.009 / 0.886
Ramachandran plot statistics	
Favored (%)	93.37
Allowed (%)	6.63
Outliers (%)	0.0
Rotamer outliers (%)	0.34
C-beta deviations	0
Clash score	9.07

492

493

494

495

496

497

498

499

500

501

502

503

504 **Methods**

505 **Purification of CB1**

506 CB1 was expressed and purified as described previously ⁶. Briefly, human full-length CB1
507 containing a N-terminal FLAG tag and C-terminal histidine tag was expressed in *Spodoptera*
508 *frugiperda Sf9* insect cells with the baculovirus method (Expression Systems). Receptor was
509 extracted using 1% lauryl maltose neopentyl glycol (L-MNG) and purified by nickel-chelating
510 Sepharose chromatography. The eluant from the Ni column was applied to a M1 anti-FLAG
511 immunoaffinity resin. After washing to progressively decreasing concentration of L-MNG, the
512 receptor was eluted in a buffer consisting of 20 mM HEPES pH 7.5, 150 mM NaCl, 0.05% L-
513 MNG, 0.005% cholesterol hemisuccinate (CHS), FLAG peptide and 5 mM EDTA. Finally,
514 CB1 was purified with size exclusion chromatography, on Superdex 200 10/300 gel filtration
515 column (GE) in 20 mM HEPES pH 7.5, 150 mM NaCl, 0.02% L-MNG, 0.002% CHS. Ligand-
516 free CB1 was concentrated to ~500 μM and stored in -80 °C.

517

518 **Expression and purification of G_i heterotrimer**

519 Heterotrimeric G_i was expressed and purified as previously described ²³. Insect cells
520 (*Trichoplusia ni*, *Hi5*) was co-infected with wild-type human G α _i subunit virus and wild-type
521 human $\beta_1\gamma_2$ virus. $\beta_1\gamma_2$ contains an histidine tag inserted at the amino terminus of the β subunit
522 that is used for further purification. After harvesting cells expressing the heterotrimeric G-
523 protein, they were lysed in hypotonic buffer. Heterotrimeric G_i $\beta_1\gamma_2$ was extracted in a buffer
524 containing 1% sodium cholate and 0.05% n-dodecyl- β -D-maltoside (DDM, Anatrace). Ni-
525 NTA chromatography is performed and the detergent was exchanged from cholate/DDM to
526 DDM on column. After elution, the protein was dialyzed overnight dialyzed overnight in 20
527 mM HEPES, pH 7.5, 100 mM sodium chloride, 0.1% DDM, 1 mM magnesium chloride,
528 100uM TCEP and 10 μM GDP together with Human rhinovirus 3C protease (3C protease) to
529 cleave off the amino- terminal 6xHis tag. 3C protease was removed by Ni-chelated sepharose
530 and the heterotrimeric G-protein was further purified with MonoQ 10/100 GL column (GE
531 Healthcare). Protein was bound to the column and washed in buffer A (20 mM HEPES, pH
532 7.5, 50 mM sodium chloride, 1 mM magnesium chloride, 0.05% DDM, 100 μM TCEP, and 10
533 μM GDP). The protein was eluted with a linear gradient of 0–50% buffer B (buffer A with 1
534 M NaCl). The collected G protein was dialyzed into 20 mM HEPES, pH 7.5, 100 mM sodium
535 chloride, 1 mM magnesium chloride, 0.02% DDM, 100 μM TCEP, and 10 μM GDP. Protein
536 was concentrated to 250 μM and flash frozen until further use.

537 **Purification of scFv16**

538 scFv16 was purified with a hexahistidine-tag in the secreted form from *Trichoplusia ni* Hi5
539 insect cells using the baculoviral method. The supernatant from baculoviral infected cells was
540 pH balanced and quenched with chelating agents and loaded onto Ni resin. After washing with
541 20 mM HEPES pH 7.5, 500 mM NaCl, and 20 mM imidazole, protein was eluted with 250
542 mM imidazole. Following dialysis with 3C protease into a buffer consisting of 20mM HEPES
543 pH 7.5 and 100 mM NaCl, scFv16 was further purified by reloading over Ni a column. The
544 collected flow-through was applied onto a Superdex 200 16/60 column and the peak fraction
545 was collected, concentrated and flash frozen.

546

547 **CB1-G_i complex formation and purification**

548 CB1 in L-MNG was incubated with AMG315 and ZCZ (or AM11517) for ~ 1 hour at room
549 temperature. Simultaneously, G_i1 heterotrimer in DDM was incubated with 1% L-MNG at 4
550 °C. The AMG315- and ZCZ (or AM11517)-bound CB1 was incubated with a 1.25 molar excess
551 of detergent exchanged G_i heterotrimer at room temperature for ~ 3 hour. To stabilize a
552 nucleotide-free complex, apyrase was added and incubated for 1.5 hour at 4 °C. The complex
553 was diluted 4-fold with 20 mM HEPES pH 7.5, 100 mM NaCl, 0.8% L-MNG/0.08% CHS,
554 0.27% GDN/0.027% CHS, 1 mM MgCl₂, 10 μM AMG315, 20 μM ZCZ (or AM11517) and 2
555 mM CaCl₂ and purified by M1 anti-FLAG affinity chromatography. After washing to remove
556 excess G protein and reduce detergents, the complex was eluted in 20mM HEPES pH 7.5,
557 100mM NaCl, 0.01% L-MNG/0.001% CHS, 0.0033% GDN/0.00033% CHS, 10 μM
558 AMG315, 10 μM ZCZ (or AM11517), 5 mM EDTA, and FLAG peptide. The complex was
559 supplemented with 100 μM TCEP and incubated with 2 molar excess of scFv16 overnight at 4
560 °C. Size exclusion chromatography (Superdex 200 10/300 Increase) was used to further purify
561 the CB1-G_i-scFv16 complex. The complex in 20mM HEPES pH 7.5, 100mM NaCl, 10 μM
562 AMG315, 10 μM ZCZ (or AM11517), 0.00075% L-MNG/0.000075% CHS and 0.00025%
563 GDN/0.000025% CHS was concentrated to ~15 mg/mL for electron microscopy studies.

564

565 **Cryo-EM data acquisition**

566 **AMG315/ZCZ/CB1/G_i Complex Structure**

567 For grid preparation, 3 μL of purified CB1-G_i complex at 15 mg/ml was applied on glow-
568 discharged holey carbon gold grids (Quantifoil R1.2/1.3, 200 mesh). The grids were blotted
569 using a Vitrobot Mark IV (FEI) with 4 s blotting time and blot force 3 at 100% humidity and

570 plunge-frozen in liquid ethane. A total of 8332 movies were recorded on a Titan Krios electron
571 microscope (Thermo Fisher Scientific- FEI) operating at 300 kV at a calibrated magnification
572 of x29,000 and corresponding to a pixel size of 0.8521 Å. Micrographs were recorded using a
573 K3 Summit direct electron camera (Gatan Inc.) with a dose rate of 1.405 electrons/Å²/s. The
574 total exposure time was 3.895 s with an accumulated dose of ~80.09 electrons per Å² and a
575 total of 57 frames per micrograph. Automatic data acquisition was done using *SerialEM*.

576 **AM11517-bound structure**

577 For grid preparation, 3.5 µL of purified CB1-G_i complex at 12 mg/ml was applied on glow-
578 discharged holey carbon gold grids (Quantifoil R1.2/1.3, 200 mesh) at room temperature (for
579 AM11517). The grids were blotted using a Vitrobot Mark IV (FEI) with 3 s blotting time at
580 100% humidity and plunge-frozen in liquid ethane. A total of 4,837 movies were recorded on
581 a Titan Krios electron microscope (Thermo Fisher Scientific- FEI) operating at 300 kV at a
582 calibrated magnification of x29,000 and corresponding to a magnified pixel size of 0.86 Å.
583 Micrographs were recorded using a K3 Summit direct electron camera (Gatan Inc.) with a dose
584 rate of ~5.0 electrons/Å²/s and defocus values ranging from -0.7 µm to -2.0 µm. The total
585 exposure time was 10.0 s and intermediate frames were recorded in 0.2 s intervals resulting in
586 an accumulated dose of ~51.65 electrons per Å² and a total of 50 frames per micrograph.
587 Automatic data acquisition was done using *SerialEM*.

588

589 **Image processing and 3D reconstructions**

590 **AMG315/ZCZ/CB1/G_i Complex Structure**

591 For the dataset of the AMG315/ZCZ/CB1/G_i complex, micrographs were imported into
592 RELION 3.1 and beam-induced motion correction was performed with *MotionCor2* followed
593 by CTF parameter fitting with *CTFFIND4*. Extracted particles were sorted with iterative
594 rounds of 2D classification followed by iterative rounds of 3D classification to arrive at a final
595 curated stack of 440,932 particles. These particles were then subjected to Bayesian polishing
596 ²⁴ and final reconstruction in RELION 3.1 (**Fig. S1b**).

597

598 **AM11517-bound structure**

599 Micrographs were subjected to beam-induced motion correction using *MotionCor2* ²⁵. CTF
600 parameters for each micrograph were determined by *CTFFIND4* ²⁶. An initial set of 1,544,528
601 particle projections were extracted using semi-automated procedures and subjected to
602 reference-free two-dimensional classification in *RELION 2.1.0* ²⁷. From this step, 562,312
603 particle projections were selected for further processing. The map of CB1 receptor low passed

604 filtered to 60 Å was used as an initial reference model for maximum-likelihood-based three-
605 dimensional classifications. Conformationally homogeneous groups accounting for 177,787
606 particles, forming class averages with well resolved features for all subunits, were subjected to
607 3D masked refinement in *Frealign* (*CisTEM* ²⁸) followed by map sharpening applying
608 temperature-factors of -90 Å² and -60 Å² for the low- and high- resolution ends of the
609 amplitude spectrum, respectively. The final map has an indicated global nominal resolution of
610 3.1 Å (**Fig. S1d**). Reported resolution is based on the gold-standard Fourier shell correlation
611 (FSC) using the 0.143 criterion and is in agreement with both Relion 2.1.0 and *M-triage* as
612 implemented in *Phenix* ²⁹. Local resolution was determined using *B-soft* ³⁰ with half map
613 reconstructions as input maps (**Fig. S1d**).

614

615 **Model building and refinement**

616 The initial template of CB1 was the FUB-bound CB1-Gi structure (PDB 6n4b). Agonist
617 coordinates and geometry restraints were generated using *phenix.elbow*. Models were docked
618 into the EM density map using *UCSF*. *Coot* was used for iterative model building and the final
619 model was subjected to global refinement and minimization in real space using
620 *phenix.real_space_refine* in *Phenix*. Model geometry was evaluated using *Molprobity*. FSC
621 curves were calculated between the resulting model and the half map used for refinement as
622 well as between the resulting model and the other half map for cross-validation (**Fig. S1b, d**).
623 The final refinement parameters are provided in **Table S1**.

624

625 **GTP turnover assay**

626 Analysis of GTP turnover was performed by using a modified protocol of the GTPase-GloTM
627 assay (Promega) described previously ³¹. Unliganded or liganded-CB1 (1 uM) and Gi (1 uM)
628 was mixed together in 20 mM HEPES, pH 7.5, 50 mM NaCl, 0.01% L-MNG, 100 μM TCEP,
629 10 μM GDP and 5 μM GTP. GTPase-Glo-reagent was added to the sample after incubation for
630 60 minutes (agonist assays) or 30 minutes (for PAM assays). Luminescence was measured
631 after the addition of detection reagent and incubation for 10 min at room temperature using a
632 *SpectraMax Paradigm* plate reader.

633

634 **MD simulations**

635 **System Setup for MD Simulation**

636 We performed simulations of CB1R bound to the endocannabinoid Anandamide, to the
637 synthetic cannabinoid FUB, and to AMG315, an analogue of Anandamide. We initiated the

638 simulations from the AMG315-bound structure that was solved in the presence of ZCZ
639 presented in this paper. For all simulations, we removed the single chain variable fragment
640 (scFv) and the G protein from the structure. For the FUB-bound and Anandamide-bound
641 simulations, we replaced the AMG315 molecule with FUB or Anandamide in silico in Maestro
642 (Schrödinger). For each of these three simulation conditions, we performed six independent
643 simulations in which initial atom velocities were assigned randomly and independently.

644

645 Neutral acetyl and methylamide groups were added to cap the N- and C-termini, respectively,
646 of protein chains. Extracellular loop 2 (ECL2) loop of the receptor was modeled using the
647 Maestro (Schrödinger) “crosslinking” tool with a fragment from the previously published
648 structure of CB1 bound to agonist AM11542 (PDB ID: 5XRA)¹⁵. Titratable residues were kept
649 in their dominant protonation states at pH 7, except for D2.50 (D163) and D3.49 (D213), which
650 were protonated (neutral) in all simulations, as studies indicate that these conserved residues
651 are protonated in active-state GPCRs^{32,33}. Histidine residues were modeled as neutral, with a
652 hydrogen bound to either the delta or epsilon nitrogen depending on which tautomeric state
653 optimized the local hydrogen-bonding network. Dowser was used to add water molecules to
654 protein cavities, and the protein structures were aligned on transmembrane (TM) helices of the
655 FUB-bound active CB1 crystal structure (PDB ID: 6N4B)⁶ in the Orientation of Proteins in
656 Membranes (OPM) database³⁴. The aligned structures were inserted into a pre-equilibrated
657 palmitoyl-oleoyl-phosphatidylcholine (POPC) membrane bilayer using Dabble³⁵. Sodium and
658 chloride ions were added to neutralize each system at a concentration of 150 mM. Systems
659 comprised 56,000 atoms, including ~140 lipid molecules and ~11,000 water molecules.
660 Approximate system dimensions were 80 Å x 90 Å x 85 Å.

661

662 **Simulation Protocols**

663 Simulations were run using the AMBER18 software³⁶ under periodic boundary conditions
664 with the Compute Unified Device Architecture (CUDA) version of Particle-Mesh Ewald
665 Molecular Dynamics (PMEMD) on graphics processing units (GPUs)³⁷. The systems were
666 first heated over 12.5 ps from 0 K to 100 K in the NVT ensemble using a Langevin thermostat
667 with harmonic restraints of 10.0 kcal·mol⁻¹·Å⁻² on the non-hydrogen atoms of the lipids,
668 protein, and ligand. Initial velocities were sampled from a Boltzmann distribution. The systems
669 were then heated to 310 K over 125 ps in the NPT ensemble. Equilibration was performed at
670 310 K and 1 bar in the NPT ensemble, with harmonic restraints on the protein and ligand non-
671 hydrogen atoms tapered off by 1.0 kcal·mol⁻¹·Å⁻² starting at 5.0 kcal·mol⁻¹·Å⁻² in a stepwise

672 manner every 2 ns for 10 ns, and finally by $0.1 \text{ kcal}\cdot\text{mol}^{-1}\cdot\text{\AA}^{-2}$ every 2 ns for an additional 18
673 ns. All restraints were completely removed during production simulation. Production
674 simulations were performed at 310 K and 1 bar in the NPT ensemble using the Langevin
675 thermostat and Monte Carlo barostat. The simulations were performed using a timestep of 4.0
676 fs while employing hydrogen mass repartitioning. Bond lengths were constrained using
677 SHAKE. Non-bonded interactions were cut off at 9.0 Å, and long-range electrostatic
678 interactions were calculated using the particle-mesh Ewald (PME) method with an Ewald
679 coefficient (β) of approximately 0.31 Å and B-spline interpolation of order 4. The PME grid
680 size was chosen such that the width of a grid cell was approximately 1 Å. We employed the
681 CHARMM36m force field for protein molecules, the CHARMM36 parameter set for lipid
682 molecules and salt ions, and the associated CHARMM TIP3P model for water^{38,39}. Ligand
683 parameters were obtained using the CGenFF webserver^{40,41}.

684

685 For each ligand, we performed 6 independent 2-μs simulations at 310 K. All simulations were
686 performed on the Sherlock computing cluster at Stanford University.

687

688 **Simulation Analysis Protocols**

689 The AmberTools17 CPPTRAJ package was used to reimage trajectories at 1 ns per frame,
690 while Visual Molecular Dynamics (VMD)⁴² was used for visualization and analysis. For all
691 reported analyses, we discarded the first 0.5 μs of each simulation to achieve better
692 equilibration.

693

694 For Figure 3, we determined the fraction of time W6.48 (W356) spent in an active-like
695 conformation by setting a threshold value of 6.7 Å for the distance between the beta carbon of
696 W6.48 and the alpha carbon of C7.42 on TM7. Frames with a distance greater than the
697 threshold were classified as active-like. To determine whether differences between simulations
698 performed with different ligands were statistically significant, we performed two-sided t-tests
699 of unequal variance (Welch's t-test) on the frequency of this distance being above the threshold
700 value, with each simulation as an independent sample.

701

702 For Figure 4, we used GetContacts (<https://getcontacts.github.io/>) to determine frequency of
703 polar interactions between each ligand and H2.65 (H178) in simulation. Specific polar contacts
704 considered were direct hydrogen bonds or hydrogen bonds mediated by one water molecule.
705 To determine whether differences between simulation conditions performed with different

706 ligands were statistically significant, we performed two-sided t-tests of unequal variance
707 (Welch's t-test) on the frequency of polar interactions using each simulation as an independent
708 sample.

709

710 **NanoBiT-G-protein dissociation assay**

711 CB1-induced G-protein dissociation was measured by the NanoBiT-G-protein dissociation
712 assay, in which the interaction between the $G\alpha$ subunit and the $G\gamma$ subunit was monitored by
713 the NanoBiT-based enzyme complementation system (Promega). Specifically, the NanoBiT-
714 $G\alpha 1$ protein consisting of the $G\alpha 1$ subunit fused with a large fragment (LgBiT) at the α -helical
715 domain and the N-terminally small fragment (SmBiT)-fused $G\gamma 2$ subunit was expressed, along
716 with an untagged $G\beta 1$ subunit and a test GPCR construct. CB1 construct with the N-terminal
717 hemagglutinin signal sequence and the FLAG epitope tag with a flexible linker
718 (MKTIIIALSYIFCLVFADYKDDDDKGGGGGGGGSSSSGGG) was inserted into the
719 pCAGGS expression vector. HEK293A cells (Thermo Fisher Scientific) were seeded in a 10-
720 cm culture dish at a concentration of 2×10^5 cells ml^{-1} (10 ml per dish in DMEM (Nissui))
721 supplemented with 10% fetal bovine serum (Gibco), glutamine, penicillin and streptomycin),
722 one day before transfection. The transfection solution was prepared by combining 25 μl (per
723 dish hereafter) of polyethylenimine (PEI) Max solution (1 mg ml^{-1} ; Polysciences), 1 ml of Opti-
724 MEM (Thermo Fisher Scientific) and a plasmid mixture consisting of 1 μg test GPCR
725 construct, 500 ng LgBiT-containing $G\alpha 1$ subunit, 2.5 μg $G\beta 1$ subunit and 2.5 μg SmBiT-
726 fused $G\gamma 2$ subunit with the C68S mutant. After an incubation for one day, the transfected cells
727 were harvested with 0.5 mM EDTA-containing Dulbecco's PBS, centrifuged, and suspended
728 in 9 ml of HBSS containing 0.01% bovine serum albumin (BSA; fatty acid-free grade;
729 SERVA) and 5 mM HEPES (pH 7.4) (assay buffer). The cell suspension was dispensed in a
730 white 96-well plate at a volume of 70 μl per well and loaded with 20 μl of 50 μM coelenterazine
731 (Carbosynth) diluted in the assay buffer. After a 2 h incubation at room temperature, the plate
732 was measured for baseline luminescence (SpectraMax L, Molecular Devices) and a test
733 allosteric ligand (10 μl) was manually added. The plate was immediately read at room
734 temperature for the following 10 min as the kinetics mode, at measurement intervals of 20 sec.
735 Thereafter, a test orthosteric ligand (20 μl) was added and the plate was read for another 10
736 min. The luminescence counts over 3-5 min after ligand addition were averaged and
737 normalized to the initial count. The fold-change values were further normalized to that of
738 vehicle-treated samples, and used to plot the G-protein dissociation response. Using the Prism

739 8 software (GraphPad Prism), the G-protein dissociation signals were fitted to a four-parameter
740 sigmoidal concentration-response curve, from which pEC₅₀ values (negative logarithmic
741 values of EC₅₀ values) and E_{max} values were used to calculate mean and SEM.

742
743

744 **Data availability**

745 The cryo-EM density maps has been deposited in the Electron Microscopy Data Bank (EMDB)
746 under accession code EMD-XXXX and EMD-XXXX. Model coordinates have been deposited
747 in the Protein Data Bank (PDB) under accession number XXXX and XXXX.

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

785 **References**

- 786 1. Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct
787 neuronal subpopulations in the adult mouse forebrain. *Eur. J. Neurosci.* **11**, 4213–4225
788 (1999).
- 789 2. Guindon, J. & Hohmann, A. G. The endocannabinoid system and pain. *CNS Neurol
790 Disord Drug Targets* **8**, 403–421 (2009).
- 791 3. Koethe, D. *et al.* Expression of CB1 cannabinoid receptor in the anterior cingulate
792 cortex in schizophrenia, bipolar disorder, and major depression. *J Neural Transm* **114**,
793 1055–1063 (2007).
- 794 4. Patel, S. & Hillard, C. J. Role of endocannabinoid signaling in anxiety and depression.
795 *Curr Top Behav Neurosci* **1**, 347–371 (2009).
- 796 5. Ignatowska-Jankowska, B. M. *et al.* A Cannabinoid CB1 Receptor-Positive Allosteric
797 Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects.
798 *Neuropsychopharmacology* **40**, 2948–2959 (2015).
- 799 6. Krishna Kumar, K. *et al.* Structure of a Signaling Cannabinoid Receptor 1-G Protein
800 Complex. *Cell* **176**, 448–458.e12 (2019).
- 801 7. Hua, T. *et al.* Crystal structures of agonist-bound human cannabinoid receptor CB1.
802 *Nature* **547**, 468–471 (2017).
- 803 8. Shao, Z. *et al.* Structure of an allosteric modulator bound to the CB1 cannabinoid
804 receptor. *Nat Chem Biol* **15**, 1199–1205 (2019).
- 805 9. Liu, Y. *et al.* (R)-N-(1-Methyl-2-hydroxyethyl)-13-(S)-methyl-arachidonamide
806 (AMG315): A Novel Chiral Potent Endocannabinoid Ligand with Stability to
807 Metabolizing Enzymes. *J Med Chem* **61**, 8639–8657 (2018).
- 808 10. Fay, J. F. & Farrens, D. L. The membrane proximal region of the cannabinoid receptor
809 CB1 N-terminus can allosterically modulate ligand affinity. *Biochemistry* **52**, 8286–
810 8294 (2013).
- 811 11. Yang, X. *et al.* Molecular mechanism of allosteric modulation for the cannabinoid
812 receptor CB1. *Nat Chem Biol* (2022). doi:10.1038/s41589-022-01038-y
- 813 12. Wang, L. *et al.* Structures of the Human PGD2 Receptor CRTH2 Reveal Novel
814 Mechanisms for Ligand Recognition. *Mol Cell* **72**, 48–59.e4 (2018).
- 815 13. Hua, T. *et al.* Crystal Structure of the Human Cannabinoid Receptor CB1. *Cell* **167**,
816 750–762.e14 (2016).
- 817 14. McAllister, S. D. *et al.* Structural mimicry in class A G protein-coupled receptor
818 rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in
819 cannabinoid CB1 receptor activation. *J. Biol. Chem.* **279**, 48024–48037 (2004).
- 820 15. Shao, Z. *et al.* High-resolution crystal structure of the human CB1 cannabinoid
821 receptor. *Nature* **540**, 602–606 (2016).
- 822 16. Gamage, T. F. *et al.* Molecular and Behavioral Pharmacological Characterization of
823 Abused Synthetic Cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI,
824 CUMYL-PICA, and 5-Fluoro-CUMYL-PICA. *J. Pharmacol. Exp. Ther.* **365**, 437–446
825 (2018).
- 826 17. Hua, T. *et al.* Activation and Signaling Mechanism Revealed by Cannabinoid
827 Receptor-Gi Complex Structures. *Cell* **180**, 655–665.e18 (2020).
- 828 18. Li, X. *et al.* Crystal Structure of the Human Cannabinoid Receptor CB2. *Cell* **176**,
829 459–467.e13 (2019).
- 830 19. Wickert, M. *et al.* The F238L Point Mutation in the Cannabinoid Type 1 Receptor
831 Enhances Basal Endocytosis via Lipid Rafts. *Front Mol Neurosci* **11**, 230 (2018).
- 832 20. Stornaiuolo, M. *et al.* Endogenous vs Exogenous Allosteric Modulators in GPCRs: A
833 dispute for shuttling CB1 among different membrane microenvironments. *Sci Rep* **5**,
834 15453–13 (2015).

- 835 21. Nguyen, T. *et al.* Allosteric Modulation: An Alternate Approach Targeting the
836 Cannabinoid CB1 Receptor. *Med Res Rev* **37**, 441–474 (2017).
- 837 22. Horswill, J. G. *et al.* PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1
838 receptors with hypophagic effects in rats. *Br. J. Pharmacol.* **152**, 805–814 (2007).
- 839 23. Dror, R. O. *et al.* SIGNAL TRANSDUCTION. Structural basis for nucleotide
840 exchange in heterotrimeric G proteins. *Science* **348**, 1361–1365 (2015).
- 841 24. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced
842 motion correction in cryo-EM single-particle analysis. *IUCrJ* **6**, 5–17 (2019).
- 843 25. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
844 improved cryo-electron microscopy. *Nature Methods* **2016 14:1** **14**, 331–332 (2017).
- 845 26. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
846 electron micrographs. *J. Struct. Biol.* **192**, 216–221 (2015).
- 847 27. Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle
848 processing in RELION. *Acta Crystallogr D Struct Biol* **73**, 496–502 (2017).
- 849 28. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-
850 particle image processing. *Elife* **7**, e14874 (2018).
- 851 29. Afonine, P. V. *et al.* New tools for the analysis and validation of Cryo-EM maps and
852 atomic models. 1–66 (2018). doi:10.1101/279844
- 853 30. Heymann, J. B. Guidelines for using Bsoft for high resolution reconstruction and
854 validation of biomolecular structures from electron micrographs. *Protein Sci.* **27**, 159–
855 171 (2018).
- 856 31. Gregorio, G. G. *et al.* Single-molecule analysis of ligand efficacy in β2AR-G-protein
857 activation. *Nature* **547**, 68–73 (2017).
- 858 32. Ghanouni, P. *et al.* The effect of pH on beta(2) adrenoceptor function. Evidence for
859 protonation-dependent activation. *J. Biol. Chem.* **275**, 3121–3127 (2000).
- 860 33. Ranganathan, A., Dror, R. O. & Carlsson, J. Insights into the role of Asp79(2.50) in β2
861 adrenergic receptor activation from molecular dynamics simulations. *Biochemistry* **53**,
862 7283–7296 (2014).
- 863 34. Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. OPM: orientations
864 of proteins in membranes database. *Bioinformatics* **22**, 623–625 (2006).
- 865 35. Betz, R. M. *Dabble*. (2017).
- 866 36. Case, D. A. *et al.* AMBER 2018, University of California, San Francisco.
- 867 37. Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine
868 Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit
869 Solvent Particle Mesh Ewald. *J Chem Theory Comput* **9**, 3878–3888 (2013).
- 870 38. Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically
871 disordered proteins. *Nature Methods* **2016 14:1** **14**, 71–73 (2017).
- 872 39. Klauda, J. B. *et al.* Update of the CHARMM all-atom additive force field for lipids:
873 validation on six lipid types. *J Phys Chem B* **114**, 7830–7843 (2010).
- 874 40. Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM General
875 Force Field (CGenFF) I: bond perception and atom typing. *J Chem Inf Model* **52**,
876 3144–3154 (2012).
- 877 41. Vanommeslaeghe, K. *et al.* CHARMM general force field: A force field for drug-like
878 molecules compatible with the CHARMM all-atom additive biological force fields. *J
879 Comput Chem* **31**, 671–690 (2010).
- 880 42. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. *Journal
881 of Molecular Graphics* **14**, 33–38 (1996).
- 882
- 883
- 884

885 **Author Contributions**

886 K.K. prepared the CB1-G_i complex, collected cryo-EM data, processed data and obtained the
887 cryo-EM map (AM11517-bound CB1 complex) with help from H.W. Modelled both the
888 structures. Performed the GTP-turnover assays.

889 M.J.R collected cryo-EM data, processed data and obtained the cryo-EM map for ZCZ-bound
890 CB1 complex under supervision of G.S. Performed docking for the AMG315 enantiomer.

891 E.T., C.-M.S, and A.S.P. performed and analyzed molecular dynamics simulations under
892 supervision of R.O.D.

893 A.S. performed the NanoBiT assay.

894 L.J., S.P.N, M.G. and K.V. designed and synthesized ligands supervised by A.M.

895 K.K. and B.K.K. wrote the manuscript with input from all the authors.

896

897 **Acknowledgements**

898 Kaavya Krishna Kumar was supported by the ADA Fellowship. C.-M.S. is supported by
899 Human Frontier Science Program Long-Term Fellowship LT000916/2018-L. R.O.D
900 acknowledges National Institutes of Health for grant R01GM127359. We would like to thank
901 National Institute of Drug Abuse (NIDA). B.K.K. is a Chan Zuckerberg Biohub investigator.

902

903 **Declaration of Interests**

904 The authors declare no competing interests.

905