

# Acute IL-6 exposure triggers canonical IL-6R signalling in hiPSC microglia, but not neural progenitor cells.

---

Amalie C. M. Couch<sup>1,2</sup>, Shiden Solomon<sup>1</sup>, Alessia Marrocu<sup>1,3</sup>, Rodrigo Duarte<sup>4,5</sup>, Yiqing Sun<sup>1</sup>, Laura Sichlinger<sup>1,2</sup>, Rugile Matuleviciute<sup>1,2</sup>, Lucia Dutan Polit<sup>1</sup>, Bjørn Hanger<sup>1,2</sup>, Shahram Kordasti<sup>6</sup>, Deepak P. Srivastava<sup>1,2§</sup>, Anthony C. Vernon<sup>1,2§\*</sup>.

1. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
2. MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
3. Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK.
4. Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
5. Department of Medicine, Weill Cornell Medical College, Cornell University, New York, USA.
6. Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

§These authors share senior authorship

**\*Corresponding author:**

Dr. Anthony Vernon  
Department of Basic and Clinical Neuroscience  
Maurice Wohl Clinical Neuroscience Institute  
Institute of Psychiatry, Psychology and Neuroscience  
King's College London  
London SE5 9RT, United Kingdom

Tel: +44 (0) 207 848 5311  
Email: [anthony.vernon@kcl.ac.uk](mailto:anthony.vernon@kcl.ac.uk)

**KEYWORDS**

IL-6; neurodevelopmental disorders, human induced-pluripotent stem cells, microglia, neural progenitor cells

4 **Abstract**

5 **Background:** Exposure to elevated interleukin (IL)-6 levels *in utero* is consistently  
6 associated with increased risk for psychiatric disorders with a putative  
7 neurodevelopmental origin, such as schizophrenia (SZ) and autism spectrum  
8 condition (ASC). Although rodent models provide causal evidence for this  
9 association, we lack a detailed understanding of the cellular and molecular  
10 mechanisms in human model systems. To close this gap, we characterised the  
11 response of hiPSC-derived microglia-like cells (MGL) and neural progenitor cells  
12 (NPCs) to IL-6 in monoculture.

13 **Results:** We observed that human forebrain NPCs did not respond to acute IL-6  
14 exposure in monoculture at both a protein and transcript level due to the absence of  
15 *IL-6Ra* expression and sIL-6Ra secretion. By contrast, acute IL-6 exposure resulted  
16 in STAT3 phosphorylation and increased *IL-6*, *JMJD3* and *IL-10* expression in MGL,  
17 confirming activation of canonical IL-6R signalling. Bulk RNAseq identified 156  
18 upregulated genes (FDR <0.05) in MGL following acute IL-6 exposure, including  
19 *IRF8*, *REL*, *HSPA1A/B* and *OXTR*, which significantly overlapped with an  
20 upregulated gene set from *post-mortem* brain tissue from individuals with  
21 schizophrenia. Acute IL-6 stimulation significantly increased MGL motility suggestive  
22 of a gain of surveillance function, consistent with gene ontology pathways highlighted  
23 from the RNAseq data. Finally, MGLs displayed elevated CCL1, CXCL1, MIP-1A/B,  
24 IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 secretion post 3h and 24h IL-6 exposure.

25 **Conclusion:** Our data provide evidence for cell specific effects of acute IL-6  
26 exposure in a human model system and strongly suggest microglia-NPC co-culture  
27 models are required to study how IL-6 influences human cortical neural progenitor  
28 cell development *in vitro*.

29 **Introduction**

30 Maternal immune activation (MIA) during pregnancy is consistently associated with  
31 an increased risk of neurodevelopmental disorders (NDDs) in the offspring, including  
32 schizophrenia (SZ) and autism spectrum condition (ASC) (Estes and McAllister,  
33 2016). Evidence from both human and rodent studies suggests that the maternal  
34 peripheral cytokine profile mediates, at least in part, this increased risk for NDD-  
35 relevant phenotypes in the offspring (Allswege et al., 2020; Careaga et al., 2017;  
36 Graham et al., 2018; Meyer, 2014; Mueller et al., 2021; Rasmussen et al., 2021,  
37 2019; Rudolph et al., 2018). Of this cytokine milieu, data from human, rodents and *in*  
38 *vitro* models have consistently identified interleukin (IL-) 6 as a sensor, effector, and  
39 transducer of environmental risk factor exposures, including MIA, on the fetal brain  
40 (Graham et al., 2018; Ozaki et al., 2020; Perry et al., 2021; Rasmussen et al., 2021,  
41 2019; Rudolph et al., 2018; Smith et al., 2007). Specifically, in Mendelian  
42 randomization (MR) studies, genetically predicted IL-6 is associated with increased  
43 risk for schizophrenia in univariable MR (Perry et al., 2021). Elevated IL-6  
44 concentrations in maternal serum correlate with modified amygdala and frontolimbic  
45 white matter connectivity in the offspring, which influence both cognitive  
46 development and some externalizing behaviors in the offspring (Graham et al., 2018;  
47 Rasmussen et al., 2021, 2019; Rudolph et al., 2018). In a mouse model of MIA  
48 based on maternal exposure to the viral mimetic Poly I:C, transcripts of *IL-6* are  
49 shown to be consistently elevated in maternal liver, placenta, and fetal primary  
50 microglia (Ozaki et al., 2020). Furthermore, peripheral IL-6 levels remain elevated in  
51 mouse offspring identified as susceptible to MIA, based on behavioral deficits  
52 relevant for SZ and ASC (Mueller et al., 2021). Moreover, acute elevation of IL-6 by  
53 injection into pregnant mice or developing embryos enhances glutamatergic synapse

54 development resulting in overall brain hyperconnectivity and behavioral deficits  
55 relevant for ASC in adult offspring (Mirabella et al., 2021). Finally, blocking IL-6 in the  
56 pregnant rodent dam, irrespective of the immune stimulation paradigm, eliminates  
57 the pathological effects of MIA in the fetal rodent brain and subsequent behavioral  
58 deficits in the adult animal (Smith et al., 2007).

59

60 Human epidemiological or neuroimaging studies cannot however establish the  
61 cellular or molecular basis of IL-6 effects. Whilst animal models address this gap, the  
62 extent to which data from such models may translate to humans remains unclear,  
63 due to the species-specific gene regulation networks that encompass human  
64 neurodevelopment (Yokoyama et al., 2014). This is compounded by heterogeneity  
65 between laboratories in the gestational timing, dose, frequency, and route of  
66 administration of the infectious challenge in rodents (Smolders et al., 2018) and  
67 batch-to-batch heterogeneity of infectious agents (Mueller et al., 2019). As such,  
68 conflicting findings exist in the animal MIA literature regarding cellular mechanisms,  
69 exemplified by studies on the role of microglia (Smolders et al., 2018). Third, only a  
70 tiny fraction of animal studies have investigated cellular or molecular phenotypes  
71 proximal to the MIA event in the developing brain. This is important as knowledge of  
72 the most proximal molecular events to MIA could reveal important therapeutic targets  
73 for prevention of downstream pathology.

74

75 Human induced pluripotent stem cells (hiPSC), which may be differentiated into  
76 multiple different neural and glial lineages, have the potential to address these gaps  
77 in our knowledge. The power of hiPSC as a tool for investigating immune-  
78 associated mechanisms that occur in early brain development linked to NDD is

79 evidenced by existing studies. Specifically, hiPSC directed towards neuronal fates  
80 have been utilized to investigate the pathological impact of Zika virus infection  
81 (Muffat et al., 2018), exposure to TLR3-agonists (Ritchie et al., 2018), and following  
82 direct exposure to cytokines, including interferon-gamma (Warre-Cornish et al.,  
83 2020) and IL-6 (Kathuria et al., 2022a). These studies are however critically lacking  
84 in one key aspect in that they have exclusively focused on neurons or astrocytes, at  
85 the expense of human microglia (Bhat et al., 2022; Park et al., 2020; Russo et al.,  
86 2018; Warre-Cornish et al., 2020). We therefore lack data on the impact of IL-6 on  
87 these critical immune-effector cells in a human-relevant model. Converging lines of  
88 evidence from human genetics, brain *post-mortem* tissue studies, neuroimaging and  
89 peripheral biomarker studies implicate microglia and the innate immune system in  
90 the pathophysiology of NDDs (Coomey et al., 2020; Mondelli et al., 2017). Since  
91 microglia also play critical roles in shaping neurodevelopment and the central  
92 immune response to maintain homeostasis (Hanger et al., 2020; Paolicelli et al.,  
93 2011), incorporating human microglia into hiPSC models to study the effects of  
94 immune activation on development is vital (Gonzalez et al., 2017; Russo et al., 2018).

95

96 To this end, we evaluated whether, and how, hiPSC-derived microglia like cells  
97 (MGLs) and neural progenitor cells (NPCs) respond to acute IL-6 stimulation in  
98 monocultures. We considered the following four questions: (1) do the cells have the  
99 receptor machinery to respond to IL-6 and other cytokines; (2) do these cells  
100 respond to acute IL-6; (3) does acute IL-6 induce a transcriptional profile similar to  
101 that seen in NDDs; and finally, (4) how does acute IL-6 impact the function of human  
102 MGLs?

103

104 **Results**

105

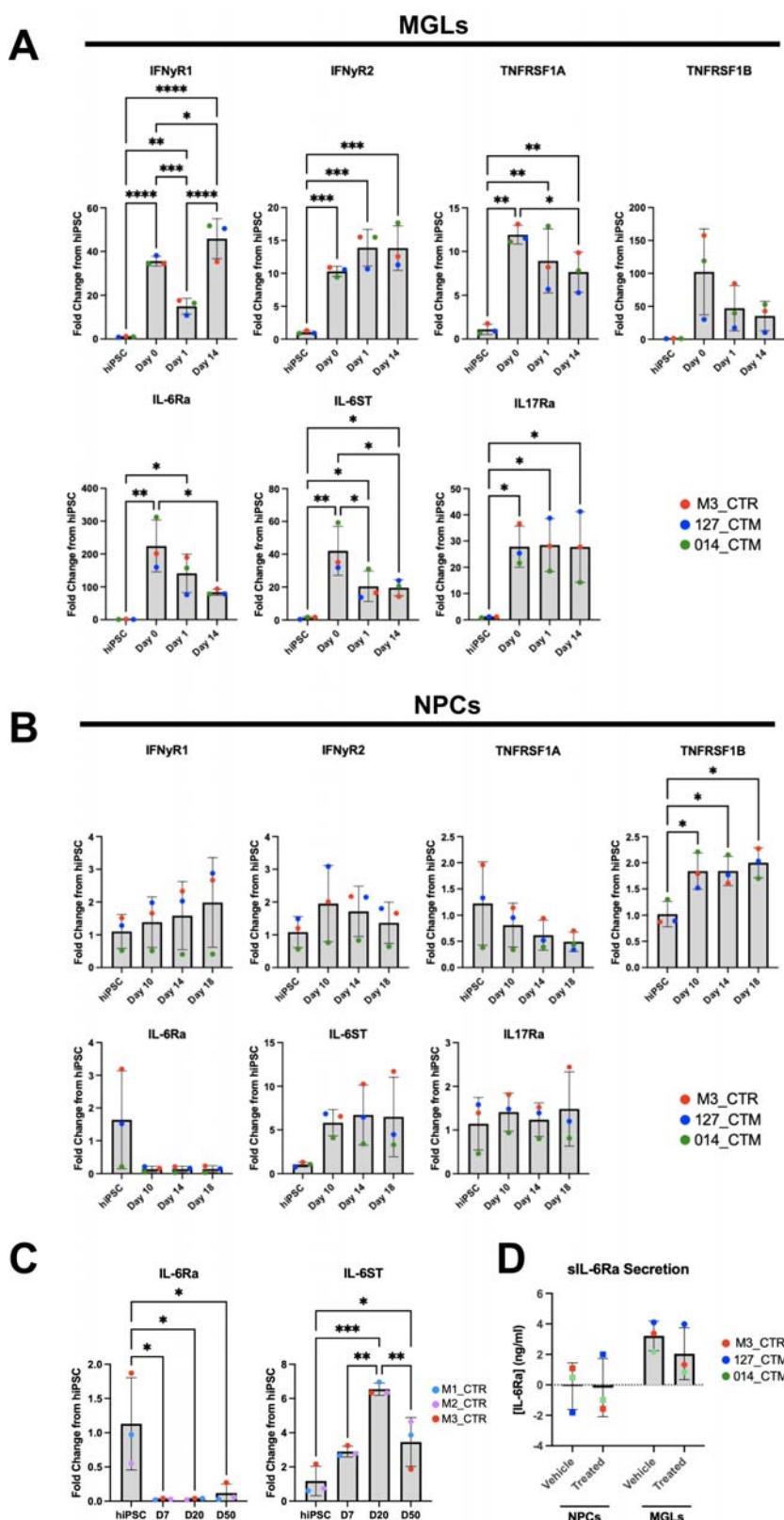
106 *Human iPSC-derived microglial-like cells express IL-6 signaling receptors, but*  
107 *cortical neural progenitor cells do not.*

108

109 Successful differentiation of hiPSC to MGLs and forebrain NPCs was confirmed by  
110 expression of key signature genes and proteins for each cell type (**Supplementary**  
111 **Figure 1**). We then profiled human iPSC derived MGL and NPC monocultures (N=3  
112 neurotypical male donors with N=3 separate clones per donor), for cytokine receptor  
113 expression by qPCR to establish the potential of each cell type to respond to IL-6,  
114 and other cytokines, *in vitro*. Transcript expression of *IFNyR1/2*, *TNFARSF1A*, *IL-*  
115 *17Ra*, and both subunits required for IL-6 signaling, *IL-6Ra* and *IL-6ST*, all  
116 significantly increased with longer differentiation of MGLs *in vitro* relative to the  
117 hiPSC state (**Figure 1A**, statistics in **Supplementary Table 11**). Expression of  
118 *TNFRSF1B* was not significantly different from the hiPSC stage overall but  
119 numerically increased throughout MGL differentiation up to day 14 (**Figure 1A**).  
120 These data indicate that MGLs would be responsive to at least IL-6, IFNy, TNF $\alpha$  and  
121 IL-17.

122

123 In contrast to MGLs, differentiation of hiPSC to forebrain NPCs in monoculture led to  
124 virtually undetectable levels of *IL-6Ra* expression, relative to the hiPSC stage  
125 (**Figure 1B** statistics in **Supplementary Table 12**). This observed loss of *IL-6Ra*  
126 expression upon differentiation is in good agreement with previously reported data  
127 from human *post-mortem* brain tissue (Zhang et al., 2016). Specifically, publicly  
128 available gene expression datasets obtained at fetal and adult stages demonstrate


129 *IL-6Ra* is primarily expressed by microglia and in part by astrocytes in the human  
130 brain, but not in neurons (Miller et al., 2014; Zhang et al., 2016) (**Supplementary**  
131 **Table 13**). Transcripts for *IFNyR1/2*, *TNFRF1A*, *IL-6ST* and *IL-17Ra* were expressed  
132 in forebrain NPCs, with expression levels remaining constant throughout  
133 neuralization, except for *TNFRSF1B*, which increased significantly relative to the  
134 hiPSC state (**Figure 1B**, statistics in **Supplementary Table 12**). These data indicate  
135 forebrain NPCs may be unresponsive to IL-6 when grown in monoculture, via *cis*-  
136 IL6R signaling, but responsive to IFNy as shown previously (Warre-Cornish et al.,  
137 2020).

138

139 A recent study provides data to suggest that transcriptional and morphological  
140 phenotypes may be induced in hiPSC-derived mature cortical pyramidal neurons  
141 following exposure to IL-6 (Kathuria et al., 2022b). We therefore sought to replicate  
142 our finding of low to undetectable *IL-6Ra* expression and extend this analysis to  
143 longer differentiation times using an identical dual SMAD inhibition protocol, with  
144 different hiPSC lines from male, neurotypical donors (N=3). Analysis of RNA  
145 samples by qPCR confirmed the absence of *IL-6Ra* expression in forebrain NPCs  
146 and provides evidence to suggest this continues to be the case in mature neurons, at  
147 least at 50-days of differentiation *in vitro* (1-way ANOVA p=0.0112; **Figure 1C**). By  
148 contrast, *IL-6ST* expression increased throughout all stages of differentiation (1-way  
149 ANOVA p=0.0005; **Figure 1C**). These data suggest the absence of *IL-6Ra*  
150 expression in forebrain NPCs and mature neurons is neither donor line nor time point  
151 specific under the conditions tested.

152

153 Given the apparent loss of expression of *IL-6Ra* in forebrain NPCs at a transcript  
154 level, we next examined the secretion of the soluble IL-6Ra protein in both forebrain  
155 NPCs and MGLs after a 3h exposure to IL-6, indicative of the ability to initiate *trans*-  
156 IL-6 signaling (**Figure 1D**) (Campbell et al., 2014; Michalopoulou et al., 2004; Wolf et  
157 al., 2014). Using a custom-ELISA kit in vehicle-treated cultures, we observed no  
158 secretion of sIL-6Ra protein into the culture supernatant by forebrain NPCs, with  
159 over half of the measurements taken below the detectable range (**Figure 1D**). By  
160 contrast, sIL-6Ra secretion was clearly present in vehicle-treated MGLs in the  
161 culture supernatant (**Figure 1D**). Acute (3 hr) exposure to IL-6 (100 ng/ml) did not  
162 increase the secretion of sIL-6Ra protein however, from either cell type (2-Way  
163 ANOVA: cell type  $F=9.349$ ;  $p=0.0156$ , treatment  $F=0.4969$ ;  $p=0.5009$ , interaction  
164  $F=0.3499$ ;  $p=0.5709$ ). Nonetheless, the fact that MGLs secrete sIL-6Ra provides an  
165 opportunity for other cell types within their vicinity to respond to IL-6 via *trans*-  
166 signaling. By contrast, the lack of sIL-6Ra secretion from NPCs confirms the fact  
167 they do not express the soluble form of the IL-6 receptor and strongly suggests  
168 forebrain NPCs are unlikely to be responsive to IL-6 in *monoculture* under the  
169 conditions tested.



170

171 **Figure 1: Cytokine receptor transcript expression in MGL and NPCs. (A)** MGL differentiation  
172 time-course of cytokine receptors (*IFNyR1*, *IFNyR2*, *TNFRSF1A*, *TNFRSF1B*, *IL-6Ra*, *IL-6ST* and *IL-*

173 *17Ra*) by qPCR RNA samples at hiPSC, myeloid factory (day 0), MGL progenitor (day 1) and MGL  
174 (day 14) of differentiation. M3\_CTR day 14 *IL17Ra* data point averaged from N=2 clones only. **(B)**  
175 NPC differentiation time-course of the same cytokine receptors by qPCR RNA samples at hiPSC and  
176 days 10, 14 and 18 of neuralisation to NPCs. 127\_CTM day 14 *TNFRSF1B* data point was averaged  
177 from N=2 clones only. **(C)** qPCR of IL-6Ra and IL-6ST transcript expression in N=3 different healthy  
178 male lines (M1\_CTR, M2\_CTR and M3\_CTR, one technical repeat each) over a longer timeframe,  
179 from hiPSC to D50 mature neurons. **(D)** Protein concentrations quantified by ELISA of soluble IL-6R  
180 (ng/ml) in NPC and MGL culture media after 3h vehicle or IL-6 100ng/ml exposure. Data shown are  
181 from N=3 male neurotypical hiPSC cell lines, averaged from three technical replicate clones per donor,  
182 unless stated otherwise where lines were outliers were excluded. 5% FDR BH method corrections  
183 after one-way ANOVA formatted as follows: \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001;  
184 not significant not labelled. Bar graphs plotted as mean with standard deviation (SD) error bars, and  
185 points coloured by donor line as shown in key.

186

187 *Microglial-like cells, but not forebrain NPCs activate the canonical STAT3 pathway*  
188 *after IL-6 exposure in monoculture.*

189

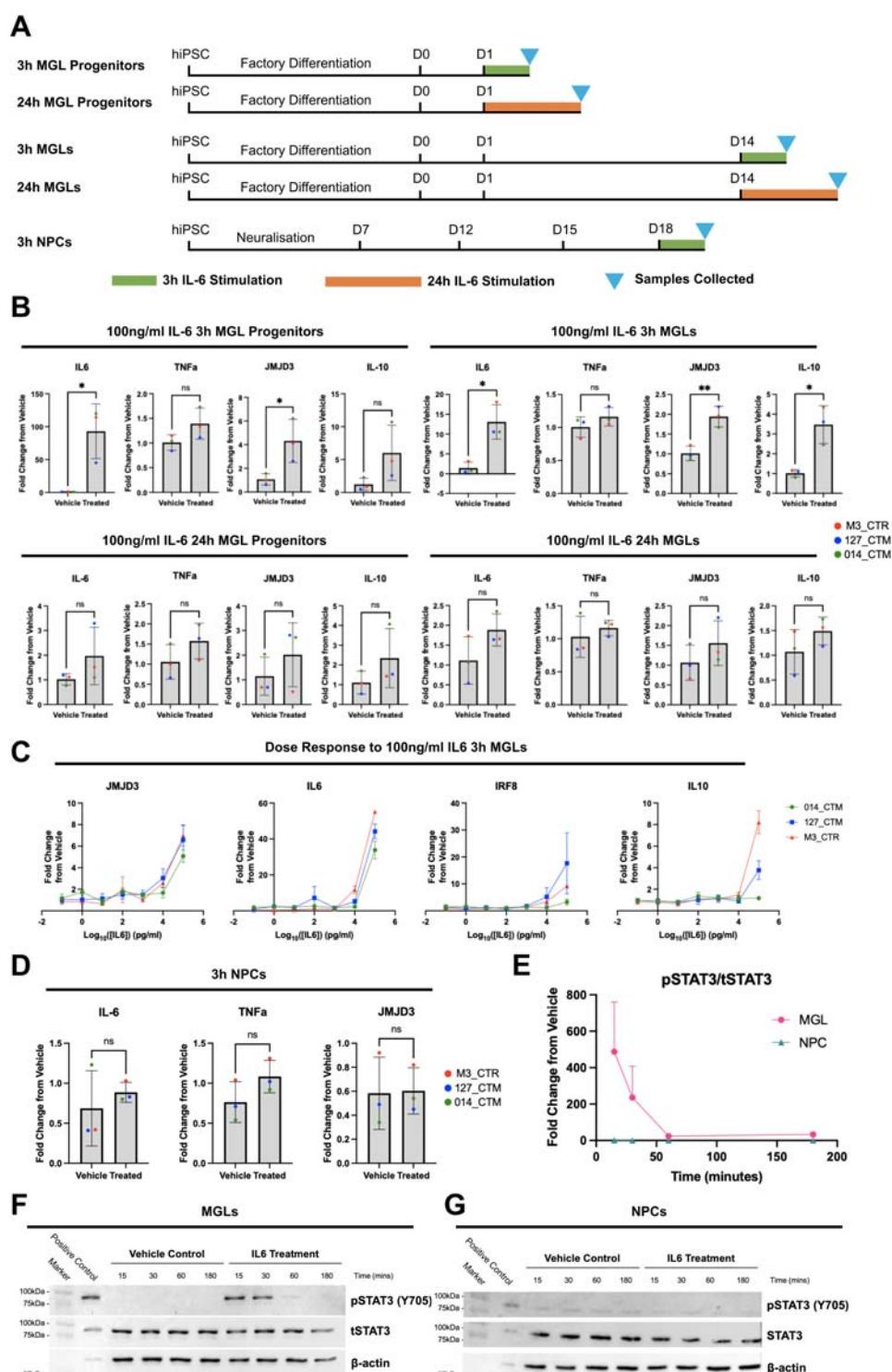
190 We next determined the functionality of the IL-6Ra and IL-6ST receptors in MGL  
191 progenitors, MGLs and NPCs (**Figure 2A**). First, transcripts of relevant STAT3  
192 downstream target genes (*IL-6*, *TNF $\alpha$* , *JMJD3* and *IL-10*) (Przanowski et al., 2014)  
193 were measured by qPCR (**Figure 2B**, statistics in **Supplementary Table 14**). At 3h  
194 after exposure to IL-6 (100 ng/ml), both MGL progenitor and MGL cells responded to  
195 IL-6 by increasing the expression of *IL-6* itself and *JMJD3* transcript expression,  
196 relative to the vehicle control. In addition, IL-6 exposed MGLs, but not MGL  
197 progenitors, increased the expression of *IL-10*, whilst expression of *TNF $\alpha$*  was not  
198 affected in either MGL progenitors or MGLs (**Figure 2B**, statistics in **Supplementary**  
199 **Table 14**). By contrast, at 24h after exposure to IL-6 (100 ng/ml), the expression of

200 all these genes was no longer significantly different relative to the vehicle control in  
201 both MGL progenitors and MGLs (**Figure 2B**). Based on the apparent functional  
202 maturity of MGLs after 14 days of differentiation (Haenseler et al., 2017), and their  
203 response to IL-6 by increasing *IL-10*, only MGLs differentiated for 14 days were used  
204 in all subsequent experiments.

205

206 Having confirmed IL-6 triggers a transcriptional response associated with *cis*-IL6R  
207 signaling in MGLs, we next sought to determine the minimal concentration of IL-6  
208 that would induce this response from day 14 MGLs in monoculture (**Figure 2C**). Of  
209 note, the mean concentration of IL-6 in maternal serum collected from second  
210 trimester mothers in a recent birth cohort study was reported to be  $0.98 \pm 1.06$  pg/ml,  
211 (Graham et al., 2018). At face value, our initial IL-6 concentration of 100 ng/ml IL-6 is  
212 therefore not representative of a physiologically relevant exposure based on the  
213 aforementioned human data (Graham et al., 2018). We exposed MGLs to several IL-  
214 6 concentrations (range: 0.1 pg/ml to 100 ng/ml) and measured the expression of  
215 genes that were up regulated after 3h (*IL-6*, *IL-10* and *JMJD3*) by qPCR in MGLs.  
216 Complementing these data, we also measured expression of interferon regulatory  
217 factor 8 (*IRF8*), a transcription factor known to regulate immune function and myeloid  
218 cell development (d'Errico et al., 2021; Tamura and Ozato, 2002). Expression of *IL-6*,  
219 *JMJD3*, *IL10* and *IRF8* were unaffected relative to vehicle control at all  
220 concentrations of IL-6 tested except 100 ng/ml, which elicited a clear increase in  
221 expression, which varied between donors as may be expected (**Figure 2C**, statistics  
222 in **Supplementary Table 15**). We therefore selected 100 ng/ml IL-6 for further  
223 experiments since this elicited a response in MGLs that can be measured at a single  
224 time-point. As already stated, this concentration is higher than would be observed *in*

225 *vivo*, however it should be noted that in this study we are not developing a model  
226 system of MIA but investigating the response to a specific cytokine (IL-6) that plays a  
227 key role in MIA, as per our previous work on IFNy (Bhat et al., 2022; Warre-Cornish  
228 et al., 2020).


229

230 Since forebrain NPCs, in contrast to MGLs, displayed a very low level of *IL6RA*  
231 expression, we sought to confirm whether forebrain NPCs in monoculture show any  
232 response to 100 ng/ml IL-6. At 3 hr post IL-6 exposure, forebrain NPCs did not  
233 significantly increase the expression of *IL-6*, *JMJD3* and *TNF $\alpha$*  transcripts relative to  
234 vehicle controls (**Figure 2D**, statistics in **Supplementary Table 16**). Furthermore,  
235 the *IL-10* transcript was undetectable in all NPC samples, irrespective of treatment  
236 (*data not shown*). These data suggest that whilst IL-6 triggers *cis*-IL6R signaling in  
237 MGLs, this is not the case for forebrain NPCs at D18 *in vitro*.

238

239 To complement our gene expression analysis, we next assessed the time-scale of  
240 canonical STAT-3 signaling following IL-6 receptor stimulation at the protein level in  
241 both forebrain NPCs and MGLs. Formation of the IL-6/IL-6Ra/IL-6ST complex on the  
242 cell surface membrane results in phosphorylation of STAT3 by the protein kinase  
243 JAK (pSTAT3), which shuttles to the nucleus to enable subsequent transcription of  
244 STAT3 target genes (Wolf et al., 2014). We therefore collected protein samples at  
245 multiple time points following acute IL-6 exposure (100 ng/ml) of either NPCs or  
246 MGLs and performed western blotting for Y705-pSTAT3 and total STAT3 (**Figure**  
247 **2E-G**). Quantification of the Y705-pSTAT3 ratio to total STAT3 (tSTAT3) indicated  
248 that IL-6 triggered a time-dependent increase in pSTAT3 relative to vehicle controls  
249 that peaked after 30mins in MGLs that was absent in D18 forebrain NPCs (**Figure**

250 **2E**, 2-way ANOVA: cell type  $F=8.564$ ;  $p=0.0430$ ,  $F=8.387$ ; time  $p=0.0437$ , interaction  
 251  $F=8.363$ ;  $p=0.0029$ ).



252  
 253 **Figure 2: MGL monocultures respond to IL-6 in a dose and time dependent manner, NPC**  
 254 **monocultures do not respond at all. (A)** Schematic of MGL and NPC cell culture and RNA sample

255 collection. **(B)** Transcripts of downstream IL-6 pathway genes *IL-6*, *TNF $\alpha$* , *JMJD3* and *IL-10* were  
256 measured by qPCR in three male healthy control cell lines treated with 100ng/ml IL-6, averaged over  
257 three technical replicate clone cultures per donor unless stated otherwise, in the following conditions:  
258 MGL progenitors treated for 3h; MGLs treated for 3h; MGL progenitors treated for 24h, 014\_CTM  
259 treated condition averaged from N=2 clones only; MGLs treated for 24h. Unpaired test results  
260 formatted as follows: \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001; not significant (ns). Bar  
261 graphs plotted as mean with standard deviation (SD) error bars, and points coloured by donor line:  
262 red (M3\_CTR), blue (127\_CTM) and green (014\_CTM). **(C)** Dose response of MGLs to 7 doses of a  
263 10-fold serial dilution of IL-6 from 100ng/ml to 0.1pg/ml. Three healthy male donors with n=3 harvest  
264 replicates per donor. *IL-10* 127\_CTM\_01 100pg/ml ( $\text{Log}_{10}(2)$ ) outlier removed and calculated from  
265 N=2 harvests. Fold change from vehicle calculated within line, but vehicle not plotted. **(D)** Transcripts  
266 of downstream IL-6 pathway genes *IL-6*, *TNF $\alpha$*  and *JMJD3* in NPCs treated for 3h, with unpaired t-  
267 test results formatted as before. *IL-10* transcripts were undetectable in NPC samples so data is not  
268 shown. **(E)** Quantification of pSTAT3/tSTAT3 signal in arbitrary (arb.) units from blots **F** and **G**, shown  
269 as a fold change ration from vehicle within cell type. **(F-G)** Immunoblotting for 88kDa pSTAT3/tSTAT3  
270 in both vehicle and 100ng/ml IL-6 stimulated samples collected after 15, 30, 60 and 180mins, in MGL  
271 (**F**) and NPC (**G**) monocultures, with BV2 3h IL-6 100ng/ml treated positive control.  
272

273 *Acute IL-6 exposure elicits a transcriptional response in human microglia-like cells of*  
274 *relevance for schizophrenia*  
275

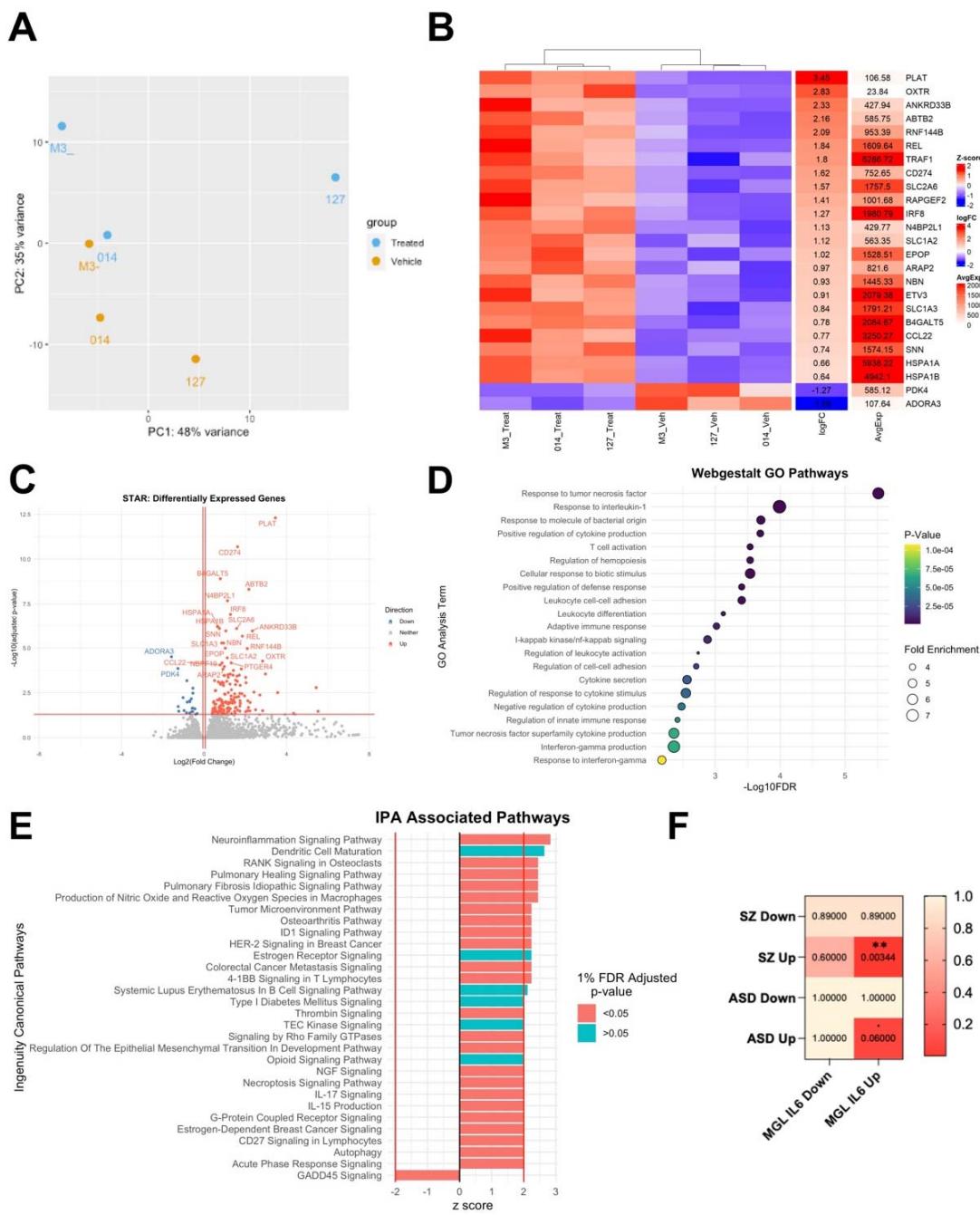
276 Our data thus far provide evidence suggesting that the canonical STAT-3 signaling  
277 pathway is activated in MGLs within 3hr of exposure to IL-6. To better characterize  
278 the transcriptional response of MGLs to this stimulus, we next performed bulk RNA-  
279 sequencing at 3 hr post IL-6 exposure (100 ng/ml) in MGLs generated from N=3  
280 male neurotypical donor hiPSC lines. Principal component analysis (PCA) of the  
281 gene expression data reveals that samples clustered by treatment (**Figure 3A**),  
282 consistent with the heatmap clustering of the top 25 differentially expressed genes

283 (DEGs) (**Figure 3B**). Overall, we found that 156 and 22 genes were up- and  
284 downregulated, respectively, following 3h IL-6 exposure (FDR < 0.05) (**Figure 3B-C**).  
285 Upregulated genes of note included *IRF8*, consistent with our qPCR data (**Figure**  
286 **2C**) the NFkB subunit *REL*, heat shock proteins *HSPA1A/B* and the oxytocin  
287 receptor (*OXTR*), although no effects of IL-6 were observed on key microglia  
288 markers *TMEM119*, *Iba1* and *PU.1* (**Supplementary Figure 2**). The DESeq2  
289 normalized counts for *IL-6Ra*, *IL-6ST* were also unaffected; confirming the  
290 expression of these receptors is independent of 3h IL-6 exposure (**Supplementary**  
291 **Figure 2**).

292

293 Using only the 178 DEGs at 5% FDR, we carried out Webgestalt GO analyses  
294 splitting these into either upregulated (156) or downregulated genes (22). Across  
295 cellular components, biological processes, and molecular functions, 21 GO pathways  
296 were significantly associated with the 156-upregulated genes (1% FDR) (**Figure 3D**).  
297 These included the NFkB pathway (FDR=0.001), leukocyte differentiation  
298 (FDR<0.001) and cell-cell adhesion (FDR=0.002), response to cytokine stimuli such  
299 as IFNy (FDR =0.007), production of IFNy (q=0.004) and TNF superfamily (FDR  
300 =0.004) cytokines (**Figure 4D**). By contrast, no GO pathways were significantly  
301 associated with the 22 downregulated genes. Complementary GO analysis using the  
302 QIAGEN Ingenuity Pathway Analysis (IPA) software (Krämer et al., 2014) identified  
303 30 associated pathways at a z-score threshold of > 2 to identify predicted activation  
304 or inhibition of a pathway, of which 24 passed 1% FDR correction (**Figure 4E**). The  
305 top activated pathways were neuroinflammation signaling (FDR <0.001), nitric oxide  
306 and reactive oxygen species (ROS) in macrophages (FDR <0.001), TNFRSF  
307 signaling in lymphocytes (4-1BB: FDR <0.001, CD27: FDR <0.001), epithelial-

308 mesenchymal transition in development (FDR =0.001), G-protein coupled receptor  
309 signaling (FDR <0.001), IL-17 signaling (FDR =0.034) and a down regulation of  
310 GADD45 signaling (FDR =0.002). Overall, these complementary GO analyses  
311 provide evidence for a prototypical myeloid cell response after 3h of IL-6 stimulation,  
312 with NFkB pathway activation and downstream pathway changes to ROS,  
313 neuroinflammation, cell adhesion, cytokine secretion and TNFRSF signaling.


314

315 We next investigated whether differentially expressed genes in our experimental  
316 conditions were enriched for genes differentially expressed in *post-mortem* brain  
317 samples originating from SZ or ASC cases (Gandal et al., 2018). We observed the  
318 156 genes upregulated by IL-6 significantly overlapped with the genes upregulated in  
319 human *post-mortem* tissue from SZ cases (Gandal et al., 2018)(N genes upregulated  
320 in model = 156, N genes upregulated in cases = 2388, intersection size = 42 genes,  
321 P = 8.6e-04, FDR (corrected for four tests) = 0.00344, odds ratio = 1.8), but not with  
322 the genes downregulated in cases (P > 0.05). We found no overlap between the  
323 genes downregulated in our model with those up- and downregulated in cases (P >  
324 0.05) (**Figure 3F**). We also observed a nominal enrichment between genes  
325 upregulated in the model with those upregulated in ASC cases (Gandal et al., 2018),  
326 but this did not pass multiple testing correction (**Figure 3F**) (N genes upregulated in  
327 model = 156, N genes upregulated in cases = 701, intersection size = 15 genes, P =  
328 0.015, FDR (also corrected for four tests) = 0.06, odds ratio=2.0).

329

330 Finally, we investigated the overlap of up- and down-regulated genesets with  
331 microglia-specific module genesets using the MG Enrichment tool to compare data  
332 from published gene expression data in human microglia (Jao and Ciernia, 2021).

333 When comparing our data to microglia gene sets derived from human tissue only, we  
334 found 31 modules were associated with the upregulated geneset from our cell model,  
335 and 12 with the down regulated geneset after 5% FDR correction. Notable modules  
336 that overlapped with our up and down-regulated genesets separately were the SCZ,  
337 ASD and Bipolar Disorder (BD) module (Up: intersection size = 44 genes, FDR =  
338 7.10e-29, odds ratio = 13.5. Down: intersection size = 8 genes, FDR = 5.69e-06,  
339 odds ratio = 17.9) and the core human microglial signatures module (Up: intersection  
340 size = 26 genes, P = 3.29e-12, odds ratio = 6.3. Down: intersection size = 10 genes,  
341 FDR = 4.47e-08, odds ratio = 24.8). These data further establish the notion that IL-6-  
342 induced transcriptome of hiPSC-derived MGLs phenocopies not only core human  
343 microglia signatures, but is also of relevance for ASC, SCZ and BD disease states.



344

345 **Figure 3: Acute IL-6 exposure elicits a transcriptional response in human microglia-like cells**  
 346 **of relevance for schizophrenia.** MGLs from 3 healthy male donors, pooled from 2 clone cultures  
 347 each, were exposed to IL-6 or vehicle for 3h and collected for RNAseq. (A) PCA analysis of all 6  
 348 samples, coloured by vehicle (orange) or IL-6 treated (blue) condition and labelled by donor line:  
 349 M3\_CTR as M3\_, 014\_CTM as 014 and 127\_CTM as 127. (B) Heatmap of top 25 most differentially  
 350 expressed genes in the IL-6 3h MGL response, ranked by LogFC and clustering by treatment group.

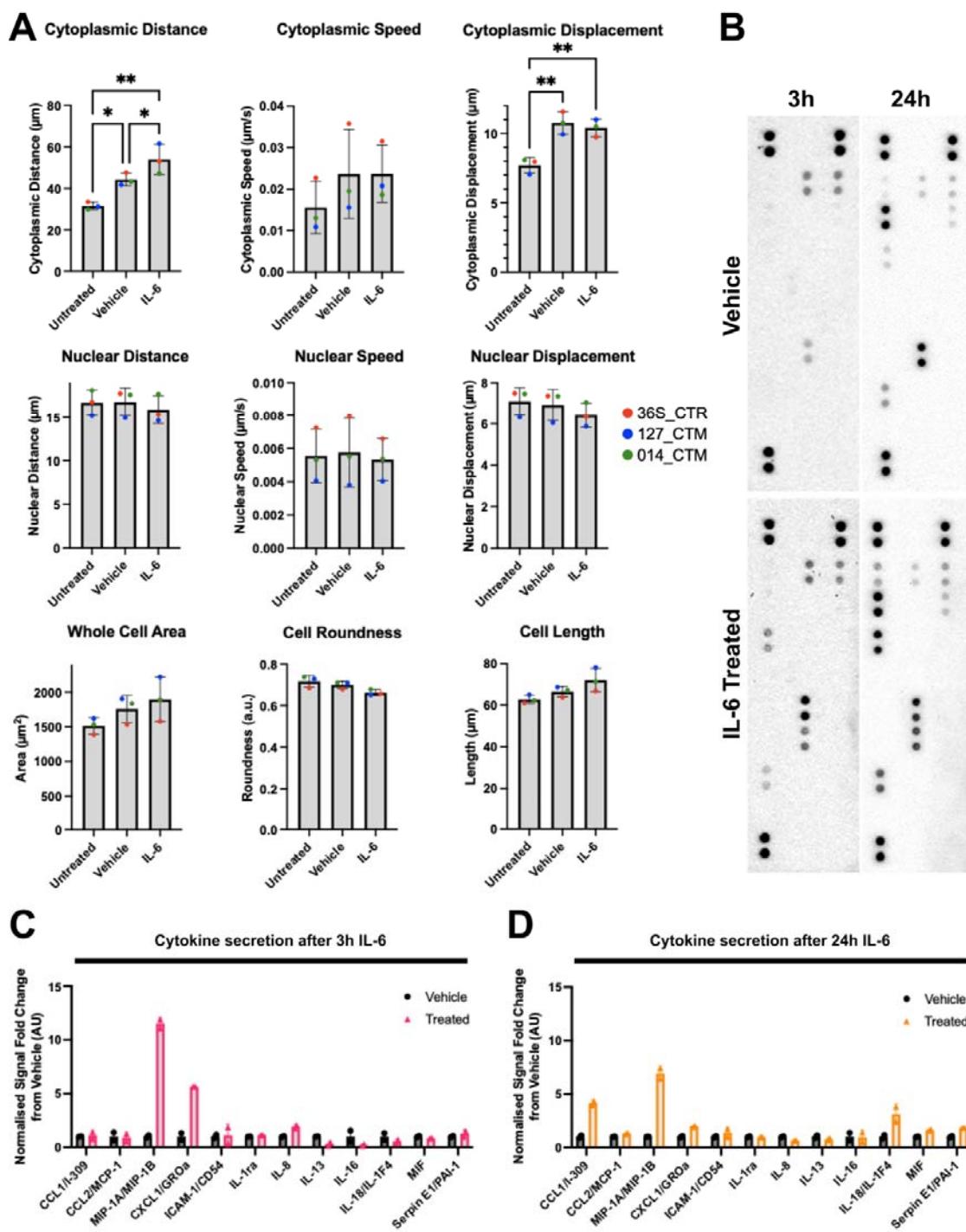
351 (C) Volcano plot of differentially expressed genes. Conditional axis set as follows: log2Foldchange >  
352 0.06 and adjusted p-value < 0.05 coloured red; log2Foldchange < -0.06 and adjusted p-value < 0.05  
353 coloured blue. The top 25 differentially expressed genes are labelled. (D) Webgestalt gene ontology  
354 analysis of upregulated 156 geneset only with an adjusted 1% FDR. GO terms ordered by -log10FDR,  
355 coloured by adjusted p-value and sized by the fold enrichment within each dataset. (E) IPA  
356 associated pathways, ranked by z-score and coloured by 1% FDR adjusted p-value. Only pathways  
357 with z-score > |2| are shown, with z-score > |2| conditional axes labelled in red. (F) Fisher's exact test  
358 comparing genesets from ASC and SCZ post-mortem human patient tissue with up and down  
359 regulated genesets identified by RNAseq in this study (Cell Model). FDR plotted in heatmap with  
360 significant 5% FDR corrections formatted as follows: p < 0.1, \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, and  
361 \*\*\*\*p < 0.0001; not significant, not labelled.

362

363 *Acute IL-6 exposure increases microglia motility and chemokine secretion in vitro*

364

365 Both our RNAseq and qPCR data provide evidence for an increase in *IRF8*  
366 expression after IL-6 exposure in human MGLs. In mice, microglia-specific deletion  
367 of *IRF8* results in cells with fewer, shorter branches and reduced motility, consistent  
368 with the regulatory role of *IRF8* in microglia state (d'Errico et al., 2021). Furthermore,  
369 recent data from a mouse model of MIA provides evidence that IL-6 increases  
370 microglial motility *in vivo* (Ozaki et al., 2020). Based on these data we acquired live  
371 cell imaging data to record the effect of 3h exposure to IL-6 (100 ng/ml) on MGL  
372 whole cell (nuclear) motility, cytoplasmic specific (cytoplasm) motility and  
373 morphology, another known correlate of microglial function (Hanger et al., 2020). We  
374 observed that vehicle treatment was by itself sufficient to influence MGLs motility, as  
375 evidenced by an increase in cytoplasmic distance and displacement in both vehicle-  
376 and IL-6 treated cultures relative to untreated controls (**Figure 4A**, statistics in  
377 **Supplementary Table 17**). Critically however, IL-6 increased mean cytoplasmic


378 distance relative to vehicle-treated controls, suggestive of increased cytoplasmic  
379 ruffling (**Figure 4A**, statistics in **Supplementary Table 17**). Nuclear motility, cell area  
380 and length were unchanged by either vehicle or IL-6 treatment (**Supplementary**  
381 **Figure 3**). We confirmed these effects were not due to differences in cell number or  
382 the movement of cells in or out of the field of view (statistics in **Supplementary**  
383 **Table 17**). Not only are these data consistent with increased *IRF8* expression  
384 (d'Errico et al., 2021) and our GO analysis, they may also suggest acute IL-6  
385 exposure shifts MGLs into a state of enhanced environmental surveillance.

386

387 As several pathways related to cytokine secretion were specified during RNAseq GO  
388 analysis, we next aimed to gain an overview of cytokine secretion from IL-6 exposed  
389 MGLs by using a proteome profiler array, as previously described (Garcia-Reitboeck  
390 et al., 2018). Chemokine and cytokine release is clearly influenced by IL-6  
391 stimulation at either 3 or 24h after exposure to IL-6 (100 ng/ml) (**Figure 4C-D** and  
392 **Supplementary Table 18**). Of the 36 cytokines and chemokines in the assay, 13  
393 were above the limit of detection in culture supernatant. We excluded IL-6 since it  
394 was ectopically spiked into the media when the cells were stimulated with IL-6  
395 (**Figure 4B**). Although semi-quantitative, changes in cytokine and chemokine  
396 secretion may be represented as fold changes from vehicle. MIP1A/B and CXCL1  
397 were increased in supernatants from IL-6 exposed cultures at both time-points  
398 relative to vehicle-controls, although considerably less so after 24h; CCL1/2, Serpin-  
399 E1, MIF and IL-18 were increased only after 24h IL-6 stimulation with little difference  
400 observed at 3h; IL-8 presented higher secretion 3h after IL-6 simulation but not at  
401 24h; the anti-inflammatory cytokines IL-13 and IL-16 were reduced at both time-  
402 points relative to vehicle-controls; and finally, IL-1ra, CCL2 and ICAM remained

403 unchanged after IL-6 exposure at both time points. These alterations to the MGL  
404 secretome provide evidence that IL-6 stimulation of human MGLs leads to dynamic  
405 changes in specific inflammation-regulating chemokines and cytokines, that have  
406 time point specific secretion phases.

407



408 **Figure 4: Acute IL-6 increases time-dependent changes in cytokine and chemokine secretion**  
409 **from human MGLs *in vitro*.** MGL motility and secretome is altered in response to IL-6. (A) Metrics of  
410 MGL motility and morphology over 2h of live imaging, having been exposed to vehicle, IL-6 100ng/ml  
411 or untreated for 180 minutes. 5% FDR Benjamini method corrections formatted as follows: \*p < 0.05,  
412 \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001; not significant not labelled. Bar graphs plotted as mean  
413

414 with standard deviation (SD) error bars, and points coloured by donor line: red (M3\_CTR), blue  
415 (127\_CTM) and green (014\_CTM), all averaged from N=3 harvest replicates. **(B)** Representative  
416 images of dot blot cytokine profiles secreted from vehicle and IL-6 stimulated MGLs analysed using  
417 the human cytokine array. N=3 separate harvest media samples were pooled into one sample per  
418 condition from M3\_CTR\_37S. **(C-D)** Signal quantification of cytokine signals from dot blots presented  
419 in **B**, shortlisted for detectable cytokines and chemokines and split into 3h **(C)** and 24h **(D)** datasets.  
420 IL-6 not shown since it was artificially spiked by treatment. Each point represents a technical replicate  
421 of each signal point in arbitrary units, which were normalised to positive control reference spots and  
422 fold change calculated from averaged vehicle value within each time point.

423

## 424 **Discussion**

425 We characterized the cell-specific responses of MGL and NPC to acute IL-6  
426 exposure using hiPSC lines obtained from male, neurotypical donors. Our data  
427 suggest two key findings; first, that hiPSC-derived MGL and NPC cells show clear  
428 differences in IL-6Ra cis-/trans-signaling capabilities and second, that exposure of  
429 MGLs to IL-6 recapitulates molecular and functional phenotypes of relevance for  
430 schizophrenia, consistent with evidence from genetic (Perry et al., 2021), blood  
431 biomarker (Allswede et al., 2020) and animal models (Smith et al., 2007) that  
432 connect this cytokine with increased risk for schizophrenia.

433

434 We observed that both hiPSC-derived forebrain NPCs and mature neurons express  
435 very low to undetectable levels of *IL-6Ra*, resulting in their inability to respond to IL-6  
436 treatment in monoculture, as evidenced by the absence of STAT-3-phosphorylation  
437 and *IL-6*, *JMJD3* and *TNF $\alpha$*  expression differences post-IL-6 exposure. These data  
438 are seemingly at odds with those from hiPSC-derived mature neurons derived using  
439 a similar differentiation protocol, in which IL-6 exposure resulted in transcriptional  
440 and morphological phenotypes (Kathuria et al., 2022b). One important difference

441 between this work and our own is the age at which these cells were exposed to IL-6:  
442 specifically, D18 NPCs vs. D25-27 neurons (Kathuria et al., 2022b). Although we  
443 confirmed *IL-6Ra* expression is absent in forebrain neurons at D50, it may be  
444 possible that *IL-6Ra* mRNA is expressed transiently between days 25-50, or only  
445 protein levels are present, which is not detectable by RNAseq. Therefore, we cannot  
446 rule out that D25-27 neurons derived by this protocol can prompt an IL-6 response  
447 and that differences in the timing of IL-6 exposure may lead to differential results  
448 (Estes and McAllister, 2016). A second difference is the dose and length at which  
449 these cells were exposed to IL-6: 3h and 24h of 100ng/ml IL-6 herein as compared  
450 to 48h to 1 $\mu$ g/ml IL-6 (Kathuria et al., 2022b). It is important to note here that just as  
451 observed in animal MIA models, differences in the intensity and duration of immune  
452 activation will lead to variations in results. In this context we sought to find the  
453 minimum concentration of IL-6 that our cells would respond to *in vitro*, at least in  
454 monoculture, which is 100 ng/ml. Finally, we did not carry out RNAseq on our IL-6  
455 exposed NPC RNA, so we cannot discount a non-canonical response to IL-6 that is  
456 independent of the IL-6Ra-STAT3 pathway at higher concentrations of IL-6. Overall,  
457 however, we do not see a response to IL-6 by forebrain NPCs under the conditions  
458 tested. Furthermore, our data strongly suggest microglial cells in co-culture with  
459 neural progenitors are necessary to study the influence of IL-6 on NPC-specific  
460 development when using D18 NPCs under the conditions tested in our study. In this  
461 context, we observed secretion of sIL-6Ra protein from MGLs but not NPCs,  
462 suggesting that in a co-culture paradigm, secretion of the sIL-6Ra by MGLs may  
463 enable NPCs to respond to IL-6 via *trans*-signaling *in vitro*. This is relevant since in  
464 the periphery, the cellular response to IL-6 is distinct depending on whether either  
465 *cis*- or *trans*-signaling pathways are activated (Su et al., 2017). In support of this

466 view, data from a transgenic mouse model provide evidence that targeted inhibition  
467 of CNS *trans*-signaling via sIL6R mitigates a number of relevant neuropathological  
468 hallmarks previously associated with NDDs, including impaired neurogenesis, blood  
469 brain barrier leakage, vascular proliferation, astrogliosis and microgliosis (Campbell  
470 et al., 2014). These data support the view that IL6R *trans*-signaling is a relevant  
471 pathogenic mechanism of IL-6 in both glial and non-glial cell types (Campbell et al.,  
472 2014). Further studies are therefore now required to confirm in our system whether  
473 forebrain NPCs can activate trans-IL6 signaling in the presence of sIL6Ra protein.

474

475 Our second main observation is that the MGL response to acute IL-6 exposure *in*  
476 *vitro* phenocopies molecular data collected from cells and brain tissues of individuals  
477 with psychiatric disorders that have a putative neurodevelopmental origin,  
478 particularly schizophrenia (SZ). Specifically, we found the genes up regulated by  
479 hiPSC-derived MGLs after acute exposure to IL-6 significantly overlap with genes  
480 increased in *post-mortem* tissue from ASC, SZ and BD patients (Gandal et al., 2018).  
481 Key upregulated DEGs in this study, such as *HSPA1A/B*, *Rel* and *IRF8* are  
482 responsible for maintenance of microglial homeostasis, core microglial signatures  
483 and stress responses (Galatro et al., 2017; Gosselin et al., 2017; Olah et al., 2020),  
484 consistent with their differential expression after IL-6 stimulation. The observed  
485 overlap with SZ genesets however suggests links between IL-6 exposure, microglial  
486 signature pathways and SZ pathogenesis. For example, the NFkB pathway is known  
487 to be activated in both the periphery (Murphy et al., 2022) and in post-mortem tissue  
488 (Murphy et al., 2020) from SZ cases. Moreover, our observation that acute IL-6  
489 stimulation is associated with up-regulation of the OXT receptor (OXTR) and  
490 associated signaling pathways, overlaps with evidence that polymorphisms in the

491 OXTR gene are linked to the pathogenesis of both SZ (Broniarczyk-Czarniak et al.,  
492 2022; Nakata et al., 2021), but also ASC (de Oliveira Pereira Ribeiro et al., 2018;  
493 Francis et al., 2016). Intriguingly, studies in rodent primary microglia suggest OXT  
494 suppresses inflammatory responses following LPS stimulation *in vitro* (Inoue et al.,  
495 2019). Furthermore, in mice, treatment with an OXTR agonist reduces perinatal brain  
496 damage by specifically acting on microglia (Mairesse et al., 2019). Further studies  
497 are therefore required to investigate the role of OXTR signalling in regulating MGL  
498 responses to IL-6 in our human model system including studies in patient-derived  
499 cell lines.

500

501 Of note however, key microglial genes are also reported to be *down regulated* in  
502 both RNA seq and qPCR studies of human cortical *post-mortem* brain tissue from  
503 individuals with SZ (Gandal et al., 2018; Snijders et al., 2021). Taking an example  
504 directly relevant to our study, *IRF8* expression is reported to be *downregulated* in  
505 *post-mortem* human cortical brain tissue from individuals with SZ (Gandal et al.,  
506 2018; Snijders et al., 2021). In contrast to these data, we observed an increase of  
507 *IRF8* expression 3 hr acute IL-6 exposure, accompanied by increased cytoplasmic  
508 motility and time-dependent increases in chemokines and cytokines, findings  
509 consistent with the documented role of IRF8 in enabling microglia to adopt a  
510 pro-inflammatory gene signature in disease (Ransohoff and Engelhardt, 2012). This  
511 discrepancy could simply reflect differences related to methodology, since our  
512 human MGLs most closely resemble fetal microglia (Haenseler et al. 2017), whilst  
513 the *post-mortem* data are obviously influenced by ageing, duration of illness and  
514 potentially antipsychotic medication exposure, all of which may influence the results.  
515 Alternatively, it may reflect the fact that our MGLs were generated from hiPSC

516 collected healthy donors and not individuals with SZ. Arguing against this however,  
517 Ormel and colleagues using PBMCs transdifferentiated to induced microglia (iM)  
518 identified two clusters of iM cells using mass cytometry, that were enriched only in  
519 donors with a diagnosis of SZ (Ormel et al. 2020). Of these, one cluster was  
520 characterized by elevated protein levels of CD68, Cx3cr1, HLA-DR, P2RY12, TGF-  
521  $\beta$ 1 and importantly, IRF-8 (Ormel et al., 2020). Further studies are therefore required  
522 to characterize how IL-6 impacts on specific microglia states of relevance to SZ via  
523 mass cytometry and/or single-cell sequencing approaches with appropriate  
524 functional assays.

525

526 Limitations of the current study should also be noted. As mentioned above, the  
527 response of each cell type presented here lies within the context of an acute IL-6  
528 treatment in a monoculture, in the absence of a genetic background for  
529 schizophrenia or autism. In this context, birth cohort studies report the association  
530 between average IL-6 exposure across gestation, hence describing the impact of a  
531 cumulative exposure to IL-6 on brain and behaviour phenotypes (Graham et al.,  
532 2018). Furthermore, we have previously reported differential effects of acute IFN-  
533 gamma exposure on gene expression in forebrain NPCs from individuals with or  
534 without a diagnosis of SZ (Bhat et al., 2022). It will therefore be important to  
535 investigate both chronic IL-6 exposure and include patient-derived hiPSC lines in  
536 future studies to address these issues. In addition, our experiments were carried out  
537 using three individual clones per donor, from a total of N=3 donor lines, hence we  
538 cannot discount genotype specific IL-6 responses by the select few donors chosen  
539 here. Our sample size is however consistent with other studies of the impact of IL-6  
540 on neurodevelopment using hiPSC models (Kathuria et al., 2022b). Combined with

541 unique differentiation and/or cytokine exposure protocols reported by different  
542 laboratories, there is substantial risk that the reproducibility and hence, validity of  
543 mechanistic data from hiPSC models will be compromised (McNeill et al., 2020)  
544 Replication of our results by multiple groups using common hiPSC reference lines  
545 (e.g. corrected KOLF92) will therefore be an important advance for this field (Volpato  
546 and Webber, 2020).

547

548 In conclusion, hiPSC-derived MGLs can respond to IL-6 by either *cis*- or *trans*-  
549 signaling in monoculture, while NPCs in monoculture cannot due to the absence of  
550 *IL-6Ra* expression and sIL-6Ra secretion. The response of MGLs to IL-6  
551 phenocopies molecular changes of relevance for SZ, consistent with the  
552 documented associations between IL-6 levels and risk for SZ (Perry et al., 2021).  
553 Our data also replicates key microglia findings from animal models of MIA in relation  
554 to motility and cytokine secretion, in a human model system. Collectively, our data  
555 underline the importance of studying microglial cells to understand the influence of  
556 IL-6 on human neurodevelopment and to elucidate cellular and molecular  
557 mechanisms that link early life immune activation to increased risk for psychiatric  
558 disorders with a putative neurodevelopmental origin.

559

## 560 **Materials and Methods**

### 561 **Cell Culture**

562 Participants were recruited and methods carried out in accordance with the 'Patient  
563 iPSCs for Neurodevelopmental Disorders (PiNDs) study' (REC No 13/LO/1218).  
564 Informed consent was obtained from all subjects for participation in the PiNDs study.  
565 Ethical approval for the PiNDs study was provided by the NHS Research Ethics

566 Committee at the South London and Maudsley (SLaM) NHS R&D Office. HiPSCs  
567 were generated and characterized from a total of nine lines donated by three males  
568 with no history of neurodevelopmental or psychiatric disorders (**Supplementary**  
569 **Table 1**) as previously described (Adhya et al., 2021; Warre-Cornish et al., 2020)  
570 and grown in hypoxic conditions on Geltrex™ (Life Technologies; A1413302) coated  
571 6-well NUNC™ plates in StemFlex medium (Gibco, A3349401) exchanged every 48  
572 hours. For passaging, cells were washed with HBSS (Invitrogen; 14170146) and  
573 then passaged by incubation with Versene (Lonza; BE17-711E), diluted in fresh  
574 StemFlex and plated onto fresh Geltrex-coated 6-well NUNC™ plates. For specifics  
575 on cell culture differentiation, see supplementary. Both cell types were differentiated  
576 from hiPSCs using an embryonic MYB-independent method (Haenseler et al., 2017;  
577 Shi et al., 2012). Day 14 MGL monocultures for dose response experiments were  
578 exposed for 3 h to 100 ng/ml, 10 ng/ml, 1 ng/ml, 100 pg/ml, 10 pg/ml, 1 pg/ml, 0.1  
579 pg/ml or 100 pM acetic acid vehicle and collected immediately for analysis. MGL  
580 progenitor (D1) and MGL (D14) cultures for single, high dose IL-6 stimulation  
581 received 100 ng/ml IL-6 (Gibco; PHC0066) or 100 pM acetic acid vehicle stimulation  
582 for either 3- or 24-hours and immediately collected for analysis. NPC cultures  
583 received 100 pM acetic acid vehicle or 100 ng/ml IL-6 (Gibco; PHC0066) on day 18  
584 for 3h, then collected for analysis. Eighteen days after neural induction reflect early  
585 second trimester neurodevelopment, which corresponds to a known period of  
586 increased risk for offspring NDD in mothers with increased IL-6 serum  
587 concentrations (Estes and McAllister, 2016).

588

589 **RNA extraction, cDNA synthesis and quantitative PCR**

590 Cells cultured for RNA extraction were collected in room temperature TRI Reagent™  
591 Solution (Invitrogen; AM9738) and stored at -80°C. RNA was extracted as directed  
592 per manufacturer's instructions. Precipitation of RNA by 0.3 M Sodium-acetate and  
593 100% ethanol at -80 °C overnight was done to clean samples further, before  
594 resuspension in RNase-free water. Nucleic acid content was measured using  
595 NanoDrop™ One. Reverse transcription of RNA to complementary DNA was carried  
596 out according to manufacturer's instruction (SuperScript™ III Reverse Transcriptase  
597 Invitrogen 18080093 and 40 U RNaseOUT Invitrogen 10777019). qPCR was carried  
598 out using Forget-Me-Not™ EvaGreen® qPCR Master Mix (Biotium; 31041-1) in the  
599 QuantStudio 7 Flex Real-Time PCR System (Fisher), according to cycling  
600 parameters described in **Supplementary Table 6**. Cycle threshold (Ct) data were  
601 normalized to an average of *GADPH* and *RPL13* housekeeper expression Ct values.  
602

### 603 **Western Blot**

604 Cells were scraped on ice and collected in RIPA buffer (**Supplementary Table 7**),  
605 sonicated at 40% for 10 pulses, pelleted for 15 min at 4 °C and proteins collected in  
606 supernatant. Protein concentration was quantified using the Pierce™ BCA protein  
607 assay kit (Thermo-Fisher; 23227). In preparation for SDS-PAGE separation, protein  
608 samples were denatured in Laemmli buffer and boiled at 95°C for 5min. 2 µg of each  
609 protein sample was loaded into self-made 10% gels, alongside 5 µl of the  
610 Dual Color (BioRad #1610374) standards marker. Gels were run at 20mA for  
611 approximately 20 min, then increased to 100V until the samples reached the bottom  
612 of the unit (~90min). Separated samples were transferred to a PVDF membrane and  
613 run overnight at 78mA in 4°C. Blots were blocked in 5% BSA TBS-T for 1 hour at RT  
614 with agitation. Antibodies were diluted in blocking buffer; primary antibody incubation

615 occurred overnight at 4°C with agitation, and secondary antibody incubation at RT  
616 for 1 hour with agitation (**Supplementary Table 4**). Washes between antibody  
617 probes occurred in TBS-T at three 15min intervals. For visualization, ECL Western  
618 Blotting Substrate (GE Healthcare; RPN2106) was incubated on the blot at RT for  
619 5min before image capture by the Bio-Rad Molecular Imager® Gel Doc™ XR System.

620

621 **RNA Library Preparation and NovaSeq Sequencing.**

622 Total RNA extracted from 3h IL-6 treated day 14 MGLs was pooled from two clones  
623 per healthy male donor (n = 3 in total). The samples were submitted for sequencing  
624 at Genewiz Inc (South Plainfield, NJ). Libraries were prepared using a polyA  
625 selection method using the NEBNext Ultra II RNA Library Prep Kit for Illumina  
626 following manufacturer's instructions (NEB, Ipswich, MA, USA) and quantified using  
627 Qubit 4.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). RNA integrity was  
628 checked with RNA Kit on Agilent 5300 Fragment Analyzer (Agilent Technologies,  
629 Palo Alto, CA, USA). The sequencing libraries were multiplexed and loaded on the  
630 flowcell on the Illumina NovaSeq 6000 instrument according to manufacturer's  
631 instructions. The samples were sequenced using a 2x150 Pair-End (PE)  
632 configuration v1.5. Image analysis and base calling were conducted by the NovaSeq  
633 Control Software v1.7 on the NovaSeq instrument. We obtained an average of 23.5  
634 million 289-base pair paired-end reads per sample (**Supplementary Table 8**). All  
635 downstream analyses were carried out in R version 4.0.2 (R Core Team, 2020).  
636 FASTQ files were quality controlled using Fastqc (Wingett and Andrews, 2018) and  
637 subsequently aligned to the human reference genome (GRCh38) with STAR (Dobin  
638 et al., 2013). A count table was prepared and filtered for counts  $\geq 1$  using  
639 featureCounts (Liao et al., 2014) from the Rsubread (Yang Liao et al., 2019)

640 package, version 2.4.3. Differential gene expression analysis was carried out using  
641 DESeq2 (Love et al., 2014) version 1.30.1 and the default Wald test. Subsequently,  
642 using the Benjamini-Hochberg (BH) method, only genes with adjusted  $P < 0.05$  were  
643 considered differentially expressed and submitted for downstream analyses.

644

#### 645 **Gene enrichments**

646 Gene ontology (GO) analysis was carried out using WebGestalt (Yuxing Liao et al.,  
647 2019), where differentially expressed genes were tested for over representation of  
648 non-redundant cellular component, biological process and molecular function GO  
649 terms. This analysis used as a background list all genes considered expressed in our  
650 model, according to DESeq2's internal filtering criteria (i.e., adjusted  $P \neq \text{NA}$ ).  
651 Enrichment P-values were corrected for multiple testing using the BH method, and  
652 only terms with adjusted  $P < 0.05$  were considered significant.

653

654 Outcomes from differential expression analysis were uploaded into the Qiagen  
655 Ingenuity Pathway Analysis (IPA) software (QIAGEN  
656 Inc., <https://digitalinsights.qiagen.com/IPA>) to identify canonical pathways. Analysis-  
657 ready genes were selected by  $p \leq 0.05$  and log-fold changes  $-0.06 \leq \text{or } \geq 0.06$ ,  
658 resulting in 153 up-regulated and 22 down-regulated genes. Core analysis was  
659 filtered by human data and removed any cancer cell lines as reference from the IPA  
660 knowledge base (IPKB). Top 10 enriched canonical pathways were filtered by  $z$ -  
661 score  $\geq |2|$ , an IPA measure of pathway directionality, and ordered by p-value  
662 adjusted by Benjamini-Hochberg corrections.

663

664 To calculate the overlap significance between genes up- or downregulated in our  
665 model with those up- or downregulated in *post-mortem* brain samples from  
666 schizophrenia or ASC cases (Gandal et al., 2018), we performed Fisher's exact tests  
667 using the R package 'GeneOverlap' (Shen, 2021). We considered the number of  
668 genes expressed in our model and in the brain samples as genome size (n = 13,583).  
669 Multiple testing correction was applied using the FDR method, to correct overlap  
670 significance for the four tests performed for each disorder (upregulated in model vs.  
671 upregulated in cases, upregulated in model vs downregulated in cases,  
672 downregulated in model vs upregulated in cases, downregulated in model vs.  
673 downregulated in cases).

674

### 675 **Motility Assay**

676 The motility of MGLs from donors M3\_CTR\_36S, 127\_CTM\_01 and 014\_CTM\_02,  
677 averaged from three harvests was measured by live imaging, with 6 technical repeat  
678 wells per condition. MGL progenitors were seeded onto a glass bottom 96 well plate  
679 (PerkinElmer) precoated with Poly-D-Lysine (Gibco; A3890401) at 22,000 cells/well  
680 and matured in MGL media for 14 days. On the day of imaging cells were exposed to  
681 5 conditions: unstimulated, 100pM acetic acid vehicle for 30min, 100ng/ml IL-6 for  
682 30min, 100pM acetic acid vehicle or 100ng/ml IL-6 for 3h. Prior to imaging, for the 3h  
683 treatment conditions a complete media change was done with microglia media  
684 containing either 100ng/ml IL-6 or 100pM acetic acid vehicle. Thirty min before  
685 imaging, complete media change was done on all remaining wells with microglia  
686 media containing either 100ng/ml IL-6, 100 pM acetic acid vehicle or neither  
687 (unstimulated). Simultaneously all cells were also stained for 30min with HCS  
688 NuclearMask™ Blue Stain (Invitrogen; H10325) and CellMask™ Orange Plasma

689 membrane Stain (Invitrogen; C10045). Immediately before imaging, the media  
690 containing treatment and stain was removed and replaced with FluoroBrite™ DMEM  
691 (Gibco; A1896701) imaging media without phenol. Cells were imaged for 2h on an  
692 Opera Phoenix high throughput imaging system (Perkin Elmer) using a 20x objective  
693 over 5 consistent fields of view per well, and data was analyzed using Harmony  
694 High-Content Image analysis software (PerkinElmer).

695

### 696 **Media Cytokine Array**

697 Day 14 MGL media samples collected after 3 and 24h of IL-6 exposure and pooled  
698 from one donor over 3 harvests were incubated with Proteome Profiler Human  
699 Cytokine antibody array membranes (R&D Systems; ARY005B), as per the  
700 manufacturers instructions. Dot blot signals were quantified using the Protein Array  
701 Analyzer Palette plug-in for ImageJ, and technical dot replicates averaged to one  
702 value. These values were backgrounded and normalized to positive reference  
703 controls on the dot blot.

704

### 705 **sIL-6R ELISA**

706 The IL-6 Receptor (Soluble) Human ELISA Kit (Invitrogen; BMS214) was used as  
707 per the manufactures instructions to quantify soluble IL-6R expression in day 14  
708 MGL and day 18 NPC vehicle/treated cell culture media. Optical density (OD) was  
709 blanked and measured at 450nm.

710

### 711 **Statistical Analysis**

712 To account for variability between cultures, three distinct male donors considered as  
713 biological replicates, averaged from three technical replicate clone cultures per donor

714 unless stated otherwise (**Supplementary Table 1**). The use of multiple clones per  
715 line enhanced reproducibility and ensured validation of results in each donor line. All  
716 statistical analyses were performed in Prism 9 for macOS version 9.3.1 (GraphPad  
717 Software LLC, California, USA), apart from RNAseq analyses which were carried out  
718 using the research computing facility at King's College London, *Rosalind*, and R  
719 version 4.0.2 (R Core Team, 2020). Each specific test carried out is described in  
720 each corresponding figure legend, as well as the number of replicates hiPSC lines  
721 that make up each technical and biological replicates. Statistical summary tables can  
722 be found in the supplementary. When comparing means for more than 2 groups  
723 (**Supplementary Tables 11, 12 and 17**), one-way ANOVA was used. To test  
724 whether transcript expression changed after treating cells with IL-6, we performed  
725 unpaired t-tests (**Supplementary Tables 14 and 16**). When comparing means for  
726 two separate conditions (**Supplementary Tables 9, 10 and 15**), two-way ANOVA  
727 was used. *Post-hoc* testing was carried out using Benjamini method 5% or 1% FDR.  
728 P- and adjusted P-values <0.05 were considered as statistically significant. During  
729 GO analysis, 1% FDR cut off was chosen to concentrate the number of significantly  
730 associated pathways. During MGL quality control (**Supplementary Figure 1**), two-  
731 way ANOVAs comparing each gene expression with donor and time point  
732 demonstrated cell phenotype was not influenced by donor line (**Supplementary**  
733 **Tables 9 and 10**). Therefore, to reduce batch and reprogramming variability,  
734 biological replicates were considered as separate male donors which were averaged  
735 from N=3 technical replicates from either clone cultures of the same donor or  
736 separate MGL harvests, as described in figure legends. Statistics were not applied to  
737 media cytokine array data since the sample power was too low.

738

739 **Acknowledgements**

740 The authors acknowledge use of the research computing facility at King's College  
741 London, *Rosalind* (<https://rosalind.kcl.ac.uk>) and are thankful to George Chenell of  
742 the Wohl Cellular Imaging Centre at King's College London for technical support  
743 during live imaging. ACMC, DPS and ACV acknowledge financial support for this  
744 study from the National Centre for the Replacement, Refinement and Reduction of  
745 Animals in Research (NC/S001506/1). The work (at King's College, London) was  
746 also supported by the Medical Research Council (MRC) Centre grant  
747 (MR/N026063/1). AM, ACV and SK acknowledge support by the Neuro-Immune  
748 Interactions in Health & Disease Wellcome Trust PhD Training Programme  
749 (218452/Z/19/Z) at King's College London.

750

751

752 **References**

753

754 Adhya, D., Swarup, V., Nagy, R., Dutan, L., Shum, C., Valencia-Alarcón, E.P., Jozwik, K.M., Mendez,  
755 M.A., Horder, J., Loth, E., Nowosiad, P., Lee, I., Skuse, D., Flinter, F.A., Murphy, D., McAlonan,  
756 G., Geschwind, D.H., Price, J., Carroll, J., Srivastava, D.P., Baron-Cohen, S., 2021. Atypical  
757 Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. *Biological Psychiatry*  
758 89, 486–496. <https://doi.org/10.1016/j.biopsych.2020.06.014>

759 Allsweide, D.M., Yolken, R.H., Buka, S.L., Cannon, T.D., 2020. Cytokine concentrations throughout  
760 pregnancy and risk for psychosis in adult offspring: a longitudinal case-control study. *The  
761 Lancet Psychiatry* 7, 254–261. [https://doi.org/10.1016/S2215-0366\(20\)30006-7](https://doi.org/10.1016/S2215-0366(20)30006-7)

762 Bhat, A., Irizar, H., Couch, A., Raval, P., Duarte, R.R.R., Dutan Polit, L., Hanger, B., Powell, T., Michael  
763 Deans, P.J., Shum, C., Nagy, R., McAlonan, G., Iyegbe, C.O., Price, J., Bramon, E., Bhattacharyya,  
764 S., Vernon, A.C., Srivastava, D.P., 2022. Attenuated transcriptional response to pro-  
765 inflammatory cytokines in schizophrenia hiPSC-derived neural progenitor cells. *Brain, Behavior,  
766 and Immunity* 105, 82–97. <https://doi.org/10.1016/j.bbi.2022.06.010>

767 Broniarczyk-Czarniak, M., Szemraj, J., Śmigelski, J., Gałecki, P., 2022. The Role of OXT, OXTR, AVP,  
768 and AVPR1a Gene Expression in the Course of Schizophrenia. *Current Issues in Molecular  
769 Biology* 44, 336–349. <https://doi.org/10.3390/cimb44010025>

770 Campbell, I.L., Erta, M., Lim, S.L., Frausto, R., May, U., Rose-John, S., Scheller, J., Hidalgo, J., 2014.  
771 Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the  
772 brain. *Journal of Neuroscience* 34, 2503–2513. <https://doi.org/10.1523/JNEUROSCI.2830-13.2014>

774 Careaga, M., Murai, T., Bauman, M.D., 2017. Maternal Immune Activation and Autism Spectrum  
775 Disorder: From Rodents to Nonhuman and Human Primates. *Biological Psychiatry* 81, 391–401.  
776 <https://doi.org/10.1016/j.biopsych.2016.10.020>

777 Coomey, R., Stowell, R., Majewska, A., Tropea, D., 2020. The Role of Microglia in  
778 Neurodevelopmental Disorders and their Therapeutics. *Current Topics in Medicinal Chemistry*  
779 20, 272–276. <https://doi.org/10.2174/1568026620666200221172619>

780 de Oliveira Pereira Ribeiro, L., Vargas-Pinilla, P., Kappel, D.B., Longo, D., Ranzan, J., Becker, M.M., dos  
781 Santos Riesgo, R., Schuler-Faccini, L., Roman, T., Schuch, J.B., 2018. Evidence for Association  
782 Between OXTR Gene and ASD Clinical Phenotypes. *Journal of Molecular Neuroscience* 65, 213–  
783 221. <https://doi.org/10.1007/s12031-018-1088-0>

784 d'Errico, P., Ziegler-Waldkirch, S., Aires, V., Hoffmann, P., Mező, C., Erny, D., Monasor, L.S.,  
785 Liebscher, S., Ravi, V.M., Joseph, K., Schnell, O., Kierdorf, K., Staszewski, O., Tahirovic, S., Prinz,  
786 M., Meyer-Luehmann, M., 2021. Microglia contribute to the propagation of A $\beta$  into unaffected  
787 brain tissue. *Nat Neurosci* 1–6. <https://doi.org/10.1038/s41593-021-00951-0>

788 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,  
789 Gingeras, T.R., 2013. STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21.  
790 <https://doi.org/10.1093/bioinformatics/bts635>

791 Estes, M.L., McAllister, A.K., 2016. Maternal immune activation: Implications for neuropsychiatric  
792 disorders. *Science (1979)* 353, 772–777. <https://doi.org/10.1126/science.aag3194>

793 Francis, S.M., Kim, S.J., Kistner-Griffin, E., Guter, S., Cook, E.H., Jacob, S., 2016. ASD and genetic  
794 associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR.  
795 *Frontiers in Neuroscience* 10. <https://doi.org/10.3389/fnins.2016.00516>

796 Galatro, T.F., Holtman, I.R., Lerario, A.M., Vainchtein, I.D., Brouwer, N., Sola, P.R., Veras, M.M.,  
797 Pereira, T.F., Leite, R.E.P., Möller, T., Wes, P.D., Sogayar, M.C., Laman, J.D., den Dunnen, W.,  
798 Pasqualucci, C.A., Oba-Shinjo, S.M., Boddeke, E.W.G.M., Marie, S.K.N., Eggen, B.J.L., 2017.  
799 Transcriptomic analysis of purified human cortical microglia reveals age-associated changes.  
800 *Nature Neuroscience* 20, 1162–1171. <https://doi.org/10.1038/nn.4597>

801 Gandal, M.J., Zhang, P., Hadjimichael, E., Walker, R.L., Chen, C., Liu, S., Won, H., van Bakel, H.,  
802 Varghese, M., Wang, Y., Shieh, A.W., Haney, J., Parhami, S., Belmont, J., Kim, M., Losada, P.M.,  
803 Khan, Z., Mleczko, J., Xia, Y., Dai, R., Wang, D., Yang, Y.T., Xu, M., Fish, K., Hof, P.R., Warrell, J.,  
804 Fitzgerald, D., White, K., Jaffe, A.E., Peters, M.A., Gerstein, M., Liu, C., Iakoucheva, L.M., Pinto,  
805 D., Geschwind, D.H., 2018. Transcriptome-wide isoform-level dysregulation in ASD,  
806 schizophrenia, and bipolar disorder. *Science (1979)* 362.  
807 <https://doi.org/10.1126/science.aat8127>

808 Garcia-Reitboeck, P., Phillips, A., Piers, T.M., Villegas-Llerena, C., Butler, M., Mallach, A., Rodrigues,  
809 C., Arber, C.E., Heslegrave, A., Zetterberg, H., Neumann, H., Neame, S., Houlden, H., Hardy, J.,  
810 Pocock, J.M., 2018. Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells  
811 Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. *Cell Reports* 24,  
812 2300–2311. <https://doi.org/10.1016/j.celrep.2018.07.094>

813 Gonzalez, D.M., Gregory, J., Brennand, K.J., 2017. The importance of non-neuronal cell types in  
814 hiPSC-based disease modeling and drug screening. *Frontiers in Cell and Developmental Biology*.  
815 <https://doi.org/10.3389/fcell.2017.00117>

816 Gosselin, D., Skola, D., Coufal, N.G., Holtman, I.R., Schlachetzki, J.C.M., Sajti, E., Jaeger, B.N.,  
817 O'Connor, C., Fitzpatrick, C., Pasillas, M.P., Pena, M., Adair, A., Gonda, D.D., Levy, M.L.,  
818 Ransohoff, R.M., Gage, F.H., Glass, C.K., 2017. An environment-dependent transcriptional  
819 network specifies human microglia identity. *Science (1979)* 356, 1248–1259.  
820 <https://doi.org/10.1126/science.aal3222>

821 Graham, A.M., Rasmussen, J.M., Rudolph, M.D., Heim, C.M., Gilmore, J.H., Styner, M., Potkin, S.G.,  
822 Entringer, S., Wadhwa, P.D., Fair, D.A., Buss, C., 2018. Maternal Systemic Interleukin-6 During  
823 Pregnancy Is Associated With Newborn Amygdala Phenotypes and Subsequent Behavior at 2

824 Years of Age. *Biological Psychiatry* 83, 109–119.  
825 <https://doi.org/10.1016/j.biopsych.2017.05.027>

826 Haenseler, W., Sansom, S.N., Buchrieser, J., Newey, S.E., Moore, C.S., Nicholls, F.J., Chintawar, S.,  
827 Schnell, C., Antel, J.P., Allen, N.D., Cader, M.Z., Wade-Martins, R., James, W.S., Cowley, S.A.,  
828 2017. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-  
829 culture-Specific Expression Profile and Inflammatory Response. *Stem Cell Reports* 8, 1727–  
830 1742. <https://doi.org/10.1016/j.stemcr.2017.05.017>

831 Hanger, B., Couch, A., Rajendran, L., Srivastava, D.P., Vernon, A.C., 2020. Emerging Developments in  
832 Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric  
833 Disorders With a Neurodevelopmental Origin. *Frontiers in Psychiatry* 11, 789.  
834 <https://doi.org/10.3389/fpsyg.2020.00789>

835 Inoue, T., Yamakage, H., Tanaka, M., Kusakabe, T., Shimatsu, A., Satoh-Asahara, N., 2019. Oxytocin  
836 Suppresses Inflammatory Responses Induced by Lipopolysaccharide through Inhibition of the  
837 eIF-2-ATF4 Pathway in Mouse Microglia. *Cells* 8. <https://doi.org/10.3390/CELLS8060527>

838 Jao, J., Ciernia, A.V., 2021. MGEnrichment: A web application for microglia gene list enrichment  
839 analysis. *PLoS Computational Biology* 17, e1009160.  
840 <https://doi.org/10.1371/journal.pcbi.1009160>

841 Kathuria, A., Lopez-Lengowski, K., Roffman, J.L., Karmacharya, R., 2022a. Distinct effects of  
842 interleukin-6 and interferon- $\gamma$  on differentiating human cortical neurons. *Brain, Behavior, and*  
843 *Immunity* 103, 97–108. <https://doi.org/10.1016/j.bbbi.2022.04.007>

844 Kathuria, A., Lopez-Lengowski, K., Roffman, J.L., Karmacharya, R., 2022b. Distinct effects of  
845 interleukin-6 and interferon- $\gamma$  on differentiating human cortical neurons. *Brain, Behavior, and*  
846 *Immunity* 103, 97–108. <https://doi.org/10.1016/j.bbbi.2022.04.007>

847 Krämer, A., Green, J., Pollard, J., Tugendreich, S., 2014. Causal analysis approaches in ingenuity  
848 pathway analysis. *Bioinformatics* 30, 523–530. <https://doi.org/10.1093/bioinformatics/btt703>

849 Liao, Yang, Smyth, G.K., Shi, W., 2019. The R package Rsubread is easier, faster, cheaper and better  
850 for alignment and quantification of RNA sequencing reads. *Nucleic Acids Research* 47, e47.  
851 <https://doi.org/10.1093/nar/gkz114>

852 Liao, Y., Smyth, G.K., Shi, W., 2014. FeatureCounts: An efficient general purpose program for  
853 assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930.  
854 <https://doi.org/10.1093/bioinformatics/btt656>

855 Liao, Yuxing, Wang, J., Jaehnig, E.J., Shi, Z., Zhang, B., 2019. WebGestalt 2019: gene set analysis  
856 toolkit with revamped UIs and APIs. *Nucleic Acids Research* 47, W199–W205.  
857 <https://doi.org/10.1093/nar/gkz401>

858 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for  
859 RNA-seq data with DESeq2. *Genome Biology* 15, 1–21. <https://doi.org/10.1186/s13059-014-0550-8>

860 Mairesse, J., Zinni, M., Pansiot, J., Hassan-Abdi, R., Demene, C., Colella, M., Charriaut-Marlangue, C.,  
861 Rideau Batista Novais, A., Tanter, M., Maccari, S., Gressens, P., Vaiman, D., Soussi-Yanicostas,  
862 N., Baud, O., 2019. Oxytocin receptor agonist reduces perinatal brain damage by targeting  
863 microglia. *Glia* 67, 345–359. <https://doi.org/10.1002/GLIA.23546>

864 McNeill, R. v., Ziegler, G.C., Radtke, F., Niebler, M., Lesch, K.P., Kittel-Schneider, S., 2020. Mental  
865 health dished up—the use of iPSC models in neuropsychiatric research. *Journal of Neural*  
866 *Transmission*. <https://doi.org/10.1007/s00702-020-02197-9>

867 Meyer, U., 2014. Prenatal Poly(I:C) exposure and other developmental immune activation models in  
868 rodent systems. *Biological Psychiatry* 75, 307–315.  
869 <https://doi.org/10.1016/j.biopsych.2013.07.011>

870 Michalopoulou, M., Nikolaou, C., Tavernarakis, A., Alexandri, N.M., Rentzos, M., Chatzipanagiotou,  
871 S., Cambouri, C., Vassilopoulos, D., 2004. Soluble interleukin-6 receptor (sIL-6R) in  
872 cerebrospinal fluid of patients with inflammatory and non inflammatory neurological diseases.  
873 *Immunology Letters* 94, 183–189. <https://doi.org/10.1016/j.imlet.2004.04.018>

875 Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J.,  
876 Aiona, K., Arnold, J.M., Bennet, C., Bertagnolli, D., Brouner, K., Butler, S., Caldejon, S., Carey, A.,  
877 Cuhaciyan, C., Dalley, R.A., Dee, N., Dolbeare, T.A., Facer, B.A.C., Feng, D., Fliss, T.P., Gee, G.,  
878 Goldy, J., Gourley, L., Gregor, B.W., Gu, G., Howard, R.E., Jochim, J.M., Kuan, C.L., Lau, C., Lee,  
879 C.K., Lee, F., Lemon, T.A., Lesnar, P., McMurray, B., Mastan, N., Mosqueda, N., Naluai-Cecchini,  
880 T., Ngo, N.K., Nyhus, J., Oldre, A., Olson, E., Parente, J., Parker, P.D., Parry, S.E., Stevens, A.,  
881 Pletikos, M., Reding, M., Roll, K., Sandman, D., Sarreal, M., Shapouri, S., Shapovalova, N. v.,  
882 Shen, E.H., Sjoquist, N., Slaughterbeck, C.R., Smith, M., Sodt, A.J., Williams, D., Zöllei, L., Fischl,  
883 B., Gerstein, M.B., Geschwind, D.H., Glass, I.A., Hawrylycz, M.J., Hevner, R.F., Huang, H., Jones,  
884 A.R., Knowles, J.A., Levitt, P., Phillips, J.W., Šestan, N., Wohnoutka, P., Dang, C., Bernard, A.,  
885 Hohmann, J.G., Lein, E.S., 2014. Transcriptional landscape of the prenatal human brain. *Nature*  
886 508, 199–206. <https://doi.org/10.1038/nature13185>

887 Mirabella, F., Desiato, G., Mancinelli, S., Fossati, G., Rasile, M., Morini, R., Markicevic, M., Grimm, C.,  
888 Amegandjin, C., Termanini, A., Peano, C., Kunderfranco, P., di Cristo, G., Zerbi, V., Menna, E.,  
889 Lodato, S., Matteoli, M., Pozzi, D., 2021. Prenatal interleukin 6 elevation increases  
890 glutamatergic synapse density and disrupts hippocampal connectivity in offspring. *Immunity*  
891 54, 2611-2631.e8. <https://doi.org/10.1016/j.jimmuni.2021.10.006>

892 Mondelli, V., Vernon, A.C., Turkheimer, F., Dazzan, P., Pariante, C.M., 2017. Brain microglia in  
893 psychiatric disorders. *The Lancet Psychiatry* 4, 563–572. [https://doi.org/10.1016/S2215-0366\(17\)30101-3](https://doi.org/10.1016/S2215-0366(17)30101-3)

894 Mueller, F.S., Richetto, J., Hayes, L.N., Zambon, A., Pollak, D.D., Sawa, A., Meyer, U., Weber-  
895 Stadlbauer, U., 2019. Influence of poly(I:C) variability on thermoregulation, immune responses  
896 and pregnancy outcomes in mouse models of maternal immune activation. *Brain, Behavior,  
897 and Immunity* 80, 406–418. <https://doi.org/10.1016/j.bbi.2019.04.019>

898 Mueller, F.S., Scarborough, J., Schalbetter, S.M., Richetto, J., Kim, E., Couch, A., Yee, Y., Lerch, J.P.,  
899 Vernon, A.C., Weber-Stadlbauer, U., Meyer, U., Richetto, J., Juliet, Kim, E., Couch, A., Yee, Y.,  
900 Lerch, J.P., Anthony, J., Vernon, C., Weber-Stadlbauer, U., Meyer, U., 2021. Behavioral,  
901 neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune  
902 activation. *Molecular Psychiatry* 26, 396–410. <https://doi.org/10.1038/s41380-020-00952-8>

903 Muffat, J., Li, Y., Omer, A., Durbin, A., Bosch, I., Bakiasi, G., Richards, E., Meyer, A., Gehrke, L.,  
904 Jaenisch, R., 2018. Human induced pluripotent stem cell-derived glial cells and neural  
905 progenitors display divergent responses to Zika and dengue infections. *Proc Natl Acad Sci U S A*  
906 115, 7117–7122. <https://doi.org/10.1073/pnas.1719266115>

907 Murphy, C.E., Lawther, A.J., Webster, M.J., Asai, M., Kondo, Y., Matsumoto, M., Walker, A.K.,  
908 Weickert, C.S., 2020. Nuclear factor kappa B activation appears weaker in schizophrenia  
909 patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines.  
910 *J Neuroinflammation* 17. <https://doi.org/10.1186/S12974-020-01890-6>

911 Murphy, C.E., Walker, A.K., O'Donnell, M., Galletly, C., Lloyd, A.R., Liu, D., Weickert, C.S., Weickert,  
912 T.W., 2022. Peripheral NF-κB dysregulation in people with schizophrenia drives inflammation:  
913 putative anti-inflammatory functions of NF-κB kinases. *Translational Psychiatry* 12, 21–21.  
914 <https://doi.org/10.1038/S41398-021-01764-2>

915 Nakata, Y., Kanahara, N., Kimura, A., Niitsu, T., Komatsu, H., Oda, Y., Nakamura, M., Ishikawa, M.,  
916 Hasegawa, T., Kamata, Y., Yamauchi, A., Inazumi, K., Kimura, H., Shiko, Y., Kawasaki, Y., Iyo, M.,  
917 2021. Oxytocin system dysfunction in patients with treatment-resistant schizophrenia:  
918 Alterations of blood oxytocin levels and effect of a genetic variant of OXTR. *Journal of  
919 Psychiatric Research* 138, 219–227. <https://doi.org/10.1016/j.jpsychires.2021.03.053>

920 Olah, M., Menon, V., Habib, N., Taga, M.F., Ma, Y., Yung, C.J., Cimpean, M., Khairallah, A., Coronas-  
921 Samano, G., Sankowski, R., Grün, D., Kroshilina, A.A., Dionne, D., Sarkis, R.A., Cosgrove, G.R.,  
922 Helgager, J., Golden, J.A., Pennell, P.B., Prinz, M., Vonsattel, J.P.G., Teich, A.F., Schneider, J.A.,  
923 Bennett, D.A., Regev, A., Elyaman, W., Bradshaw, E.M., de Jager, P.L., 2020. Single cell RNA  
924

925 sequencing of human microglia uncovers a subset associated with Alzheimer's disease. *Nature*  
926 *Communications* 11, 1–18. <https://doi.org/10.1038/s41467-020-19737-2>

927 Ormel, P.R., Böttcher, C., Gigase, F.A.J., Missall, R.D., van Zuiden, W., Fernández Zapata, M.C., İlhan,  
928 D., de Goeij, M., Udine, E., Sommer, I.E.C., Priller, J., Raj, T., Kahn, R.S., Hol, E.M., de Witte, L.D.,  
929 2020. A characterization of the molecular phenotype and inflammatory response of  
930 schizophrenia patient-derived microglia-like cells. *Brain, Behavior, and Immunity* 90, 196–207.  
931 <https://doi.org/10.1016/j.bbi.2020.08.012>

932 Ozaki, K., Kato, D., Ikegami, A., Hashimoto, A., Sugio, S., Guo, Z., Shibushita, M., Tatematsu, T.,  
933 Haruwaka, K., Moorhouse, A.J., Yamada, H., Wake, H., 2020. Maternal immune activation  
934 induces sustained changes in fetal microglia motility. *Scientific Reports* 10, 1–19.  
935 <https://doi.org/10.1038/s41598-020-78294-2>

936 Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira,  
937 T.A., Guiducci, E., Dumas, L., Ragazzo, D., Gross, C.T., 2011. Synaptic pruning by microglia is  
938 necessary for normal brain development. *Science (1979)* 333, 1456–1458.  
939 <https://doi.org/10.1126/science.1202529>

940 Park, G.H., Noh, H., Shao, Z., Ni, P., Qin, Y., Liu, D., Beaudreault, C.P., Park, J.S., Abani, C.P., Park, J.M.,  
941 Le, D.T., Gonzalez, S.Z., Guan, Y., Cohen, B.M., McPhie, D.L., Coyle, J.T., Lanz, T.A., Xi, H.S., Yin,  
942 C., Huang, W., Kim, H.Y., Chung, S., 2020. Activated microglia cause metabolic disruptions in  
943 developmental cortical interneurons that persist in interneurons from individuals with  
944 schizophrenia. *Nature Neuroscience* 23, 1352–1364. <https://doi.org/10.1038/s41593-020-00724-1>

945 Perry, B.I., Upthegrove, R., Kappelmann, N., Jones, P.B., Burgess, S., Khandaker, G.M., 2021.  
946 Associations of immunological proteins/traits with schizophrenia, major depression and bipolar  
947 disorder: A bi-directional two-sample mendelian randomization study. *Brain, Behavior, and*  
948 *Immunity* 97, 176–185. <https://doi.org/10.1016/j.bbi.2021.07.009>

949 Przanowski, P., Dabrowski, M., Ellert-Miklaszewska, A., Kloss, M., Mieczkowski, J., Kaza, B.,  
950 Ronowicz, A., Hu, F., Piotrowski, A., Kettenmann, H., Komorowski, J., Kaminska, B., 2014. The  
951 signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of  
952 inflammatory genes in microglia. *Journal of Molecular Medicine* 92, 239–254.  
953 <https://doi.org/10.1007/s00109-013-1090-5>

954 R Core Team, 2020. R: A language and environment for statistical.  
955 Ransohoff, R.M., Engelhardt, B., 2012. The anatomical and cellular basis of immune surveillance in  
956 the central nervous system. *Nature Reviews Immunology* 12, 623–635.  
957 <https://doi.org/10.1038/nri3265>

958 Rasmussen, J.M., Graham, A.M., Entringer, S., Gilmore, J.H., Styner, M., Fair, D.A., Wadhwa, P.D.,  
959 Buss, C., 2019. Maternal Interleukin-6 concentration during pregnancy is associated with  
960 variation in frontolimbic white matter and cognitive development in early life. *Neuroimage*  
961 185, 825–835. <https://doi.org/10.1016/j.neuroimage.2018.04.020>

962 Rasmussen, J.M., Graham, A.M., Gyllenhammer, L.E., Entringer, S., Chow, D.S., O'Connor, T.G., Fair,  
963 D.A., Wadhwa, P.D., Buss, C., 2021. Neuroanatomical Correlates Underlying the Association  
964 Between Maternal Interleukin 6 Concentration During Pregnancy and Offspring Fluid Reasoning  
965 Performance in Early Childhood. *Biological Psychiatry: Cognitive Neuroscience and*  
966 *Neuroimaging*. <https://doi.org/10.1016/j.bpsc.2021.03.007>

967 Ritchie, L., Tate, R., Chamberlain, L.H., Robertson, G., Zagnoni, M., Sposito, T., Wray, S., Wright, J.A.,  
968 Bryant, C.E., Gay, N.J., Bushell, T.J., 2018. Toll-like receptor 3 activation impairs excitability and  
969 synaptic activity via TRIF signalling in immature rat and human neurons. *Neuropharmacology*  
970 135, 1–10. <https://doi.org/10.1016/j.neuropharm.2018.02.025>

971 Rudolph, M.D., Graham, A.M., Feczko, E., Miranda-Dominguez, O., Rasmussen, J.M., Nardos, R.,  
972 Entringer, S., Wadhwa, P.D., Buss, C., Fair, D.A., 2018. Maternal IL-6 during pregnancy can be  
973 estimated from newborn brain connectivity and predicts future working memory in offspring.  
974 *Nature Neuroscience* 21, 765–772. <https://doi.org/10.1038/s41593-018-0128-y>

976 Russo, F.B., Freitas, B.C., Pignatari, G.C., Fernandes, I.R., Sebat, J., Muotri, A.R., Beltrão-Braga, P.C.B.,  
977 2018. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human  
978 Induced Pluripotent Stem Cells. *Biological Psychiatry* 83, 569–578.  
979 <https://doi.org/10.1016/j.biopsych.2017.09.021>

980 Shen, L., 2021. GeneOverlap: Test and visualize gene overlaps. R package version 1.30.0.

981 Shi, Y., Kirwan, P., Livesey, F.J., 2012. Directed differentiation of human pluripotent stem cells to  
982 cerebral cortex neurons and neural networks. *Nature Protocols* 7, 1836–1846.  
983 <https://doi.org/10.1038/nprot.2012.116>

984 Smith, S.E.P., Li, J., Garbett, K., Mirmics, K., Patterson, P.H., 2007. Maternal immune activation alters  
985 fetal brain development through interleukin-6. *Journal of Neuroscience* 27, 10695–10702.  
986 <https://doi.org/10.1523/JNEUROSCI.2178-07.2007>

987 Smolders, S., Notter, T., Smolders, S.M.T., Rigo, J.M., Brône, B., 2018. Controversies and prospects  
988 about microglia in maternal immune activation models for neurodevelopmental disorders.  
989 *Brain, Behavior, and Immunity* 73, 51–65. <https://doi.org/10.1016/j.bbi.2018.06.001>

990 Snijders, G.J.L.J., van Zuiden, W., Sneuboer, M.A.M., Berdenis van Berlekom, A., van der Geest, A.T.,  
991 Schnieder, T., MacIntyre, D.J., Hol, E.M., Kahn, R.S., de Witte, L.D., 2021. A loss of mature  
992 microglial markers without immune activation in schizophrenia. *GLIA* 69, 1251–1267.  
993 <https://doi.org/10.1002/glia.23962>

994 Su, H., Lei, C.T., Zhang, C., 2017. Interleukin-6 signaling pathway and its role in kidney disease: An  
995 update. *Frontiers in Immunology*. <https://doi.org/10.3389/fimmu.2017.00405>

996 Tamura, T., Ozato, K., 2002. ICSBP/IRF-8: Its regulatory roles in the development of myeloid cells.  
997 *Journal of Interferon and Cytokine Research* 22, 145–152.  
998 <https://doi.org/10.1089/107999002753452755>

999 Volpato, V., Webber, C., 2020. Addressing variability in iPSC-derived models of human disease:  
1000 Guidelines to promote reproducibility. *DMM Disease Models and Mechanisms*.  
1001 <https://doi.org/10.1242/dmm.042317>

1002 Warre-Cornish, K., Perfect, L., Nagy, R., Duarte, R.R.R., Reid, M.J., Raval, P., Mueller, A., Evans, A.L.,  
1003 Couch, A., Ghevaert, C., McAlonan, G., Loth, E., Murphy, D., Powell, T.R., Vernon, A.C.,  
1004 Srivastava, D.P., Price, J., 2020. Interferon- $\gamma$  signaling in human iPSC-derived neurons  
1005 recapitulates neurodevelopmental disorder phenotypes. *Science Advances* 6.  
1006 <https://doi.org/10.1126/sciadv.aay9506>

1007 Wingett, S.W., Andrews, S., 2018. FastQ Screen: A tool for multi-genome mapping and quality  
1008 control. *F1000Res* 7, 1338. <https://doi.org/10.12688/f1000research.15931.2>

1009 Wolf, J., Rose-John, S., Garbers, C., 2014. Interleukin-6 and its receptors: a highly regulated and  
1010 dynamic system. *Cytokine* 70, 11–20. <https://doi.org/10.1016/j.cyto.2014.05.024>

1011 Yokoyama, K.D., Zhang, Y., Ma, J., 2014. Tracing the Evolution of Lineage-Specific Transcription  
1012 Factor Binding Sites in a Birth-Death Framework. *PLoS Computational Biology* 10.  
1013 <https://doi.org/10.1371/journal.pcbi.1003771>

1014 Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H., Steinberg, G.K.,  
1015 Edwards, M.S.B., Li, G., Duncan, J.A., Cheshier, S.H., Shuer, L.M., Chang, E.F., Grant, G.A.,  
1016 Gephart, M.G.H., Barres, B.A., 2016. Purification and Characterization of Progenitor and  
1017 Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse.  
1018 *Neuron* 89, 37–53. <https://doi.org/10.1016/j.neuron.2015.11.013>

1019