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Abstract 27 

The reproductive success of generalist flowering plants is influenced by a complex 28 

ecological network that includes interactions with a diverse pollinator community and abiotic 29 

factors. However, knowledge about of the adaptative potential of plants to complex ecological 30 

networks and the underlying genetic mechanisms is still limited. Based on a pool-sequencing 31 

approach of 21 natural populations of Brassica incana in Southern Italy, we combined a genome-32 

environmental association analysis with a genome scan for signature of selection to discover 33 

genetic variants associated with ecological variation. We demonstrated that B. incana is locally 34 

adapted both to the identity of functional categories and overall pollinator interactions. 35 

Interestingly, we observed only few shared candidate genes associated with long-tongue bees, 36 

soil texture, and temperature variation. Our results highlight the genomic architecture of 37 

generalist flowering plant adaptation to complex biotic interactions, and the importance of 38 

considering multiple environmental factors to describe the adaptive landscape of plant 39 

populations. 40 

 41 

Introduction  42 

In natural populations, most of the flowering plant species interact simultaneously with 43 

different functional groups of pollinators (called generalist species) ensuring their reproductive 44 

success (Albrecht et al. 2012). By interacting with an assemblage of generalist and specialist 45 

pollinators, widely distributed generalist plant species (Waser et al. 1996, Johnson and Steiner 46 

2000) appear robust to pollinator changes within mutualistic networks (Bascompte and Jordano 47 

2007, Thébault and Fontaine 2010, Burkle et al. 2013, Zografou et al 2021). Although generalist 48 

plant species are keystones in mutualist interaction networks, we know little about the adaptive 49 

potential of these plants to pollinator communities. Only a handful of studies have demonstrated 50 

the role of pollinator assemblages on floral evolution in generalist plant species (Gomez et al. 51 

2009, Sahli and Conner 2011, Gomez et al. 2015, Sobral et al. 2015, Schiestl et al. 2018, de 52 

Manincor et al. 2021). For instance, it has been recently showed that pollinator communities can 53 

drive flower shape evolution in generalist species Erysimum (Gomez et al. 2015), or geographic 54 

variation in flower scent (de Manincor et al. 2021). However, floral evolution in generalist plant 55 

species appears to be complex (Gomez et al. 2015), probably involving independent and 56 

genetically linked phenotypic traits associated with pollinator preferences (Frachon et al. 2021, 57 

Ohashi et al 2021). To understand if and how generalist plant species locally adapt to their 58 
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pollinator communities, we need to investigate the underlying genomics. This will help us 59 

understand the coevolution of generalist plant-pollinator networks.   60 

Plant-pollinator interactions are influenced by abiotic factors (Tylianakis et al. 2008, 61 

Chamberlain et al 2014, Antiqueira et al. 2020). For instance, climate change can induce 62 

mismatches between plant and pollinators due to non-synchronized phenology shifts (Hegland et 63 

al. 2009, Petanidou et al. 2014), or changes in plant attractiveness to pollinators (Petanidou and 64 

Smets 1996, Hoover et al. 2012, Herrera and Medrano 2017, Descamps et al. 2021). Moreover, 65 

soil heterogeneity can strongly affect plant attractiveness to pollinators through changes in nectar 66 

secretion, production of pollen or essential oils, and floral scent (Burkle and Irwin 2009, Majetic 67 

et al. 2017, David et al. 2019, Carvalheiro et al. 2021). Understanding how both pollinator 68 

communities and abiotic factors simultaneously drive the evolution of combined phenotypic 69 

traits and their associated genomic regions is a current challenge requiring a holistic approach 70 

from ecology to genomics (Clare et al. 2013, Lopez-Goldar and Agrawal 2021).  71 

Genome-environment association (GEA) analysis is a powerful approach to identify 72 

genomic regions involved in the adaptive response of organisms to complex ecological networks 73 

without phenotypic characterization (de Mita et al. 2013). This approach takes advantage of the 74 

genetic fingerprint left by selective pressures due to environmental variation among natural 75 

populations. Although commonly used to understand the genetic architecture of plants involved 76 

in responses to climate change (Hancock et al. 2011, Lasky et al. 2015, Pluess et al. 2016, Cortés 77 

and Blair 2018, Frachon et al. 2018), the GEA approach has recently shown its effectiveness in 78 

unravelling the genetic variants of A. thaliana underlying adaptative response to complex biotic 79 

interactions such as leaf microbiome (Horton et al. 2014) and plant communities (Frachon et al. 80 

2019).  81 

In our study, we adopted a GEA approach to understand the adaptative potential of the 82 

generalist plant Brassica incana to its pollinator community (visitation by pollinator functional 83 

categories, and plant-pollinator interactions indices) as well as to potential interacting effects 84 

with climatic and edaphic (soil composition and texture) variables. By characterizing 61 ecological 85 

factors, de novo assembly of the B. incana reference genome, and pool-sequencing of 21 natural 86 

populations of B. incana in Southern Italy for 5’530’708 Single Nucleotide Polymorphisms (SNPs), 87 

we finely mapped QTLs associated with variation in pollinator communities, climate, and soil. This 88 

approach was combined with a genome scan for signatures of selection and enrichment in SNPs 89 

with high genetic differentiation to detect signatures of selection. Altogether, we found local 90 
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adaptation of generalist plant species to a complex ecological network underlying variable genetic 91 

architecture. 92 

 93 

Results 94 

Variation in ecological variables among 21 natural populations of Brassica incana 95 

Pollinator communities were characterized during the spring seasons of 2018 and 2019 96 

by observing pollinator visitation to plants of 21 natural populations of B. incana (Fig. 1, Table 97 

S1). Flower visitors were grouped into 12 functional categories ie bumblebees, long-tongue bees, 98 

other large bees (called large bees), small bees, honeybees, large wasps, small flies, large flies, 99 

hoverflies, small beetles, large beetles, butterflies (Fig. 2). To characterize differences in pollinator 100 

communities among populations, we performed a B. incana – pollinators’ interaction analysis 101 

based on the total number of pollinator visits by functional categories. Pollinator communities 102 

were mainly dominated by long-tongue bees, small bees, honeybees, large bees, hoverflies, and 103 

bumblebees in decreasing order (Fig. 2). Moreover, the visits of functional categories of 104 

pollinators varied among 21 populations (Fig. 2), leading to variation in α-diversity, estimated by 105 

Shannon index, ranking from 0.63 to 1.80 (average = 1.28) (Table S2). The calculated indexes from 106 

the interaction analysis (Table S2) showed that B. incana plants in natural populations relied on a 107 

large number of functional categories of pollinators as suggested by the low value of species 108 

strength (minimum = 0.03, maximum = 1.71, average = 0.57, Table S2). Moreover, other indices 109 

confirmed that B. incana was a generalist plant species such as a high normalised degree index 110 

showing a high number of realized B. incana — pollinators links among populations (minimum = 111 

0.17, maximum = 0.83, average = 0.56, Table S2) and low d-index values (minimum = 0.04, 112 

maximum = 0.53, average = 0.17, Table S2). 113 

Among the 21 natural populations, 28 of 61 characterized ecological variables were highly 114 

correlated (Spearman rho > 0.8) and were all discarded from the genomic analyses (Fig. S1). These 115 

highly correlated variables concerned mainly B. incana – pollinator interaction (four out of eight 116 

variables) and climate variables (17 variables out of 20). While we had a clear differentiation of 117 

tuff vs limestone soils following the Northwest – Southeast axis among the 21 populations (due 118 

to the geography of Southern Italy), the different characteristics of these soils were not correlated 119 

among each other’s (Fig. S1). The principal component analysis showed that the six populations 120 

in tuff soil (AMEN, CAMA, CORO, CUMA, PROC, EPOM) were ecologically similar and 121 

differentiated from other populations by the visits of hoverflies, the visits of large beetles, the 122 
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mean annual precipitation, and the species strength (an index for plant-pollinator interactions, 123 

Fig. S2). The visits of bumblebees, large bees, and d index an index of plant-pollinator interactions) 124 

were correlated to the fine sand, coarse silt, Fe and summer precipitation in the ecological space 125 

created by the two first axis of the PCA (Fig. S2).   126 

Annotated reference genome of Brassica incana 127 

The final assembled sequences of the Brassica incana reference genome were organised 128 

into 1’339 contigs, which were scaffolded into 139 super-scaffolds using Bionano optical map 129 

(Table S5). The 139 super-scaffolds were used in our study, including a total sequence length of 130 

617Mbp, scaffold N50 of 12 Mbp and a longest sequence at 32 Mbp, with a BUSCO completeness 131 

score of 97.7% (Table S5). Sequencing data from Pacbio and Illumina used for this study are 132 

available at the European Nucleotide Archive ENA database (accession number PRJEB54646). The 133 

bionano raw data and assembled optical maps are available at National Library for Biotechnology 134 

Information (NCBI) database (sample name PRJNA859008). 135 

In total 51'001 genes were predicted, including 50’895 proteins (from the iprscan) divided 136 

into 1’112 different categories of GO terms. As comparison, the reference genome of Brassica 137 

oleracea (genome size = 488.6 Mb) was composed of 53’125 genes, and Arabidopsis thaliana 138 

38’311 genes (genome size = 119.1 Mb) in the NCBI database.  139 

Genomic architecture of B. incana response to ecological variations 140 

After mapping the 21 pool-sequences from 21 natural populations to the B. incana 141 

reference genome we generated, we estimated the allele-frequencies across the 139 super-142 

scaffolds for a final number of 5’530’708 SNPs. Using singular value decomposition (SVD) of the 143 

population variance-covariance matrix Ω, we estimated a strong degree of subdivision (i.e. 144 

“structuration” of populations without genetically similar populations) among our populations 145 

represented by the first PCgenomic explaining 94.3% of genomic variance (Fig. S3). This finding was 146 

supported by a weak geographic pattern along the Northeast – Southwest axis (linear model for 147 

PC1genomic; latitude: t value = 3.24, P = 0.005, longitude: t value = 3.31, P = 0.004, 148 

latitude*longitude: t value = -3.33, P = 0.004, adjusted R2 = 47.1%). Thus, the regional geographic 149 

scale applied in our study prevents the confounding effect of population structure on the 150 

genome-environmental analysis (Frachon et al. 2018, Frachon et al. 2019). The variation of most 151 

ecological factors was weakly (non-significant) correlated with the genomic variation (Table S6) 152 

suggesting true positives in the genome-environmental analysis (Frachon et al. 2018, Frachon et 153 

al. 2019). However, as expected with the Northeast-Southwest axis of soil, we observed 154 
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significant correlation between PC1genomic and six environmental factors including type of soil (long 155 

tongue bees, species strength, ratio C/N, Fine Silt, and Zn, Table S6). The genome-environmental 156 

association analysis performed in our study, could underestimate genomic regions involved in 157 

these six environmental variables due to confounding effects between population structure and 158 

variation of these variables, leading to potential false negatives. 159 

To identify the adaptive genetic loci associated with functional categories of pollinators, 160 

B. incana — pollinator interaction indices, climate and soil composition and texture variation, we 161 

performed a genome-wide scan for associations between standardized allele frequency variation 162 

along the 139 super-scaffolds of B. incana genome and 33 less correlated ecological variables 163 

using a Bayesian hierarchical model. The association scores (Bayes factors, BFdB) between the 164 

variation of genomic region and ecological variables were estimated, and a local score method 165 

was applied correcting for linkage disequilibrium. Using this method, we observed neat and 166 

narrow peaks of association across the 139 super-scaffolds for the considered ecological variables 167 

(Fig. 3, Fig. S4). Most of the genomic regions involved in response of B. incana to the variation of 168 

functional categories of pollinators were unique, except for the visits of bumblebees, hoverflies, 169 

and long-tongue bees (Fig. S5, Fig. S6). For instance, 56% of SNPS with the 0.05% of highest 170 

association score were uniquely associated with long-tongue bees (1’435/2’541 SNPs), 95% were 171 

uniquely associated with large bees (2’414/2’541 SNPs), and 97% were uniquely associated with 172 

honeybees (2’471/2’541 SNPs, Fig. S5). However, only 15% of SNPs with the highest association 173 

score were uniquely associated with bumblebee or hoverfly visits (Fig. S5). The latter share 22% 174 

of their SNPs with highest association score between them, and an important part of SNPs with 175 

the texture of the soil (fine silt and coarse sand, Fig. S5). Overall, 88% of 0.05% of SNPs with the 176 

highest association score were uniquely associated with pollinator functional categories indicated 177 

an important part of SNPs involved in B. incana adaptation to functional categories of pollinators 178 

(Fig. S6).  179 

Interestingly, the genomic architecture associated with B. incana — pollinator interaction 180 

indices was slightly more complex, with the detection of multiple narrow peaks per variable (Fig. 181 

3, Fig. S4). As expected from their ecological correlations, some indices describing B. incana - 182 

pollinator interactions shared genomic regions among them (Fig. 4 and Fig. S5). Considering all 183 

the indices related to B. incana – pollinator interactions, 73% of SNPs were associated with the 184 

response of B. incana to the variation of these indices (Fig. S6). The remaining SNPs were shared 185 

among these indices and the variables involved in adaptive response to mean annual 186 

temperature, texture of the soil (fine silt and coarse sand) and some functional categories of 187 

pollinators (Fig. S5). Finally, 92% and 85% of SNPs with highest association scores were uniquely 188 
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associated with the adaptation of B. incana to soil and climate respectively (Fig. S6). Overall, our 189 

results highlighted a flexible genetic architecture involving mainly unique genomic regions in the 190 

adaptive response to ecological variables, as well as few shared genomic regions among them.  191 

Local adaptation of Brassica incana to ecological network 192 

To address the signal of natural selection on loci identified by GEA, we performed a 193 

genome-wide scan for genetic differentiation index (XtX) among the 21 natural populations of B. 194 

incana based on standardized allelic frequencies (i.e. allele frequencies corrected for population 195 

structure). After correcting the signal with local score method, we detected four genomic regions 196 

under strong selection on super-scaffolds 1 (including five candidate genes), 10 (including three 197 

candidate genes), 37 (including nine candidate genes) and 74 (including 32 candidate genes, Fig. 198 

S7, Table S8).  199 

To support local adaptation of plants to different ecological variables, we performed an 200 

enrichment for signature of selection by testing the over-representation of top SNPs (i.e. 0.05% 201 

upper tail of BFdB distribution of SNPs associated with the 33 ecological variables) in the tail of 202 

the XtX distribution (i.e. 0.05% of SNPs strongly under selection). The enrichment in signature of 203 

selection allowed to distinguish the ecological variables associated with genomic variations due 204 

to selective processes from those that were associated due to random effects. We found that 17 205 

out of 33 ecological variables displayed a significant enrichment (Table 1, Table S7). For instance, 206 

we found a strong enrichment in signature of selection for five functional categories of pollinators 207 

including bumblebees (23-fold), hoverflies (25-fold), and long-tongue bees (21-fold, Table 1). The 208 

four variables involved in B. incana — pollinator interactions showed significant enrichment 209 

ranging from 6-fold for species strength to 31 for the d index (Table 1). Finally, abiotic factors 210 

showed significant fold-enrichment for 7 out of 15 edaphic variables (ranging from 12 for CaCO3 211 

to 62 for coarse sand), and a strong significant enrichment for mean annual temperature (109-212 

fold, Table 1, Table S7).  213 

Candidate genes involved in plant response to pollinators 214 

The candidate genes involved in local adaptation of B. incana to the ecological network 215 

were identified by retrieving genes within significant zones identified by the GEA analyses, as well 216 

as down- and upstream genes as in Libourel et al. (2021). From the GEA results showing significant 217 

enrichment in XtX index, we identified 48 candidate genes involved in plant responses to 218 

functional categories of pollinators, and 26 candidate genes involved in adaptive responses to B. 219 

incana — pollinator interactions (list of all candidate genes in Table S8). For candidate genes 220 
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involved in adaptation to different pollinator functional categories, we found some genes 221 

involved in plant signals and rewards such as (1) UV-B-induced protein inducing changes in the 222 

accumulation of phenolic compounds, carotenoids and glucosinolates (Schreiner et al. 2012), (2) 223 

Sinapine esterase, an important enzyme in floral pigmentation (Nguyen et al. 2021), (3) 2-C-224 

methyl-D-erythritol 2,4-cyclodiphosphate synthase (ISPF) involved in methylerythritol phosphate 225 

pathway (MEP) in biosynthesis of terpenoids (Tarkowska- and Strnad 2018), an important volatile 226 

class involved in plant attractiveness (Abas et 2017, Bouwmeester et al 2019), (4) 227 

Dihydropyrimidine dehydrogenase (NADP(+)) (PYD1) involved in β-alanine biosynthesis (Wang et 228 

al 2021) a component present in nectar-feeding bumblebees (Rossi et al. 2014), (5) Trehalose-229 

phosphate phosphatase B (TPPB) important in carbon flux maintain associated with sucrose 230 

supply (Nunes et al. 2013), a main component of nectar, and (6) transcription factor MYB73 231 

involved in anthocyanin biosynthetic pathway (Gomez et al 2020). We found several candidate 232 

genes involved in plant architecture and growth such as (1) protein CUP-SHAPED COTYLEDON 3 233 

(NAC031) (Gao et al. 2021), and (2) nuclear pore complex protein (NUP98A) (Parry 2014), (3) 234 

Pectinesterase inhibitor 10 (PMEI10) (Wormit et al 2018). Some candidate genes were involved 235 

in reproduction processes such as (1) Expansin-B5 in growth pollen tube (EXPB5, da Costa et al 236 

2012), and (2) type I inositol polyphosphate 5-phosphatase 12 (IP5P12) involved in pollen 237 

dormancy and early germination (Wang et al 2012). We identified candidate genes involved in 238 

immunity and plant defence such as Serine/threonine-protein kinase BSK7 interacting with 239 

pattern-triggered immunity (Majhi et al 2021), and LRR receptor-like serine/threonine-protein 240 

kinase (Afzal et al 2008). It is noteworthy that 38% of the identified candidate genes involved in 241 

plant response to pollinators were associated with proteins with unknown function. Interesting, 242 

few candidate genes mentioned above were involved in both the response of B. incana to 243 

bumblebees and hoverflies such as UV-B induced protein, or the PYD1 (Fig. 4, Table S8).  244 

 For candidate genes involved in adaptation to plant-pollinator interactions, we found 245 

some genes involved in plant architecture and growth such as transcription factor BEE2 (BEE2) 246 

(Friedrichsen et al 2002), protein TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2)(Fan et al. 2015), and 247 

ethylene-responsive transcription factor (ERF024, Lata et al 2014). Some of these candidate genes 248 

were involved in controlling pollen tube such as LLG3 GPI-anchored protein LLG2 (Ge et al. 2019), 249 

or in flowering time such as polyadenylation and cleavage factor homolog 4 (PCFS4) (Xing et al 250 

2008). However, 48% of the identified candidate genes involved in B. incana response to plant-251 

pollinator interactions are associated with proteins with unknown functions.  252 

Finally, we observed multiple shared candidate genes in the response of B. incana to 253 

pollinators and climatic factors: between mean annual temperature and hoverfly and bumblebee 254 
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visitation, pollinator diversity, and combined pollinator diversity and realized number of 255 

pollinator links, as well as shared candidate genes in the response of B. incana to pollinators and 256 

edaphic factors, e.g. between long-tongue bees and coarse sand, and coarse sand and fine silt 257 

(Fig. 4, Table S8). 258 

 259 

Discussion  260 

While pollinators provide essential ecosystem services (Klein et al. 2007, Potts et al. 261 

2010), whether and how plants with generalized pollination adapt to geographic variation in 262 

pollinator communities and the underlying genetic basis is still poorly documented. Using an 263 

ecological genomics approach, our study unravelled the genomic bases of plant adaptation to 264 

pollinator communities and potential interacting abiotic factors. 265 

Local adaptation to functional categories of pollinators 266 

The observed mosaic of pollinators among our 21 natural populations led to local 267 

adaptation of the generalist plant species B. incana to pollinators. These results are in line with 268 

few studies in evolutionary ecology emphasizing the importance of pollinators in driving the floral 269 

evolution of generalist plant species (Gomez et al. 2009, Bodbyl Roels and Kelly 2011, Sahli and 270 

Conner 2011, Gomez et al. 2015, Sobral et al. 2015, Gervasi and Schiestl 2017, Schiestl et al. 2018, 271 

de Manincor et al. 2021). We uncovered here the underlying genomic mechanisms of these 272 

adaptive processes: a flexible genomic architecture involving genomic regions that were strongly 273 

associated with functional categories of pollinators. In particular, we have identified pollinator 274 

category-specific candidate genes including some that were potentially involved in biosynthetic 275 

pathways of plant signals and rewards to attract pollinators. For instance, we identified two 276 

interesting genes involved in B. incana adaptive response to long-tongue bees; a candidate gene 277 

encoding for the enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ISPF) involved 278 

in the ethylerythritol phosphate (MEP) pathway, responsible for terpenoids biosynthesis (mono- 279 

and diterpenoids biosynthesis; Abbas et al. 2017, Tarkowská and Strnad 2018, Bouwmeester et 280 

al. 2019), an important class of volatiles in plant-pollinator interactions (Baldwin et al. 2006, Abas 281 

et al. 2017, Bouwmeester et al. 2019). In addition, we found a candidate gene encoding for the 282 

trehalose-phosphate phosphatase B (TPPB) enzyme involved in carbon flux maintaining, 283 

correlated with sucrose supply (Nunes et al. 2013), an essential component of nectar. 284 

Interestingly, we found adaptive responses of B. incana both to efficient pollinators in pollen 285 

transfer (long-tongue bees, bumblebees, and other large bees), as well as to supposedly less 286 

efficient pollinators (hoverflies, small flies). Local adaptation to supposedly “inefficient” 287 
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pollinators may be surprising since they contribute less to plant reproductive success. However, 288 

the observed adaptation to such less-efficient pollinators can be explained by spatial and 289 

temporal variation in selective regimes influenced by the local interactions (Gomez et al. 2009b) 290 

such as increased importance of hoverflies to pollination when bees are scarce or absent (Jauker 291 

and Wolters 2008, Ohashi et al. 2021). Local adaptation to less-efficient pollinators could also be 292 

related to reproductive assurance in hoverfly-dominated populations, with potential limited 293 

pollen transfer leading to reduced floral size and decrease of volatile emission as observed in 294 

Gervasi and Schiestl (2017) or related to indirect effects of hoverflies on bees’ visitations. 295 

Surprisingly, in our study, it appears that the adaptive response to bumblebees and hoverflies 296 

involved similar genomic regions. For instance, we identified a candidate gene encoding for a 297 

dihydropyrimidine dehydrogenase (PYD1) enzyme involved in the biosynthesis of β-alanine 298 

(Wang et al 2021), a component recently found associated with nectar-feeding bumblebees in 299 

Gentiana lutea (Rossi et al. 2014). It would be interesting to compare the rate of β-alanine 300 

production among our populations according to the ratio of bumblebees and hoverflies visitations 301 

to better understand this adaptive response. Finally, among the identified candidate genes 302 

involved in response to different functional categories of pollinators, we also identified genes 303 

involved in protein chaperon, plant growth, plant immunity, and a non negligeable part of protein 304 

with unknown function (~33% of candidate genes). Thus, plant species with generalized 305 

pollinations system are locally adapted to their “specific” generalist pollinator community 306 

including identifiable genomic regions associated with candidate genes that are involved in plant 307 

interactions with specific pollinator functional categories.  308 

Local adaptation to ecological networks  309 

We demonstrated that B. incana is able to adapt simultaneously to different stimuli 310 

driving local adaptation to complex ecological networks. First, by interacting with a broad and 311 

diverse community of pollinators, the adaptative responses of generalist species have long been 312 

considered unlikely due to simultaneous conflicting and highly variable selective pressures 313 

imposed on flowers. However, we demonstrated genome-wide signatures of adaptation for 314 

multispecies assemblage of pollinators. This agrees with previous studies in evolutionary ecology 315 

showing the adaptive response of generalist species to pollinator communities (Gomez et al 316 

2009a, Gomez et al 2009b, Sahli and Conner 2011, Lomascola et al. 2019). Our results also 317 

highlighted a lack of knowledge on molecular mechanisms involved in this adaptive process 318 

because 48% of the identified candidate genes were associated with proteins of unknown 319 

function. Interestingly, the genomic architecture underlying the response of B. incana to the 320 

assemblage of pollinators was not the sum of genetic variants specific to functional categories of 321 
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pollinators indicating nonadditive selection acting on B. incana as previously observed in plant-322 

plant interactions (Baron et al. 2015, Libourel et al. 2021). This assumption agrees with a previous 323 

evolutionary study in B. rapa observing nonadditive selection for floral traits where phenotypic 324 

evolution mediated by the combination of two pollinator species was different from that 325 

mediated by either pollinator in isolation (Schiestl et al. 2018). A phenotypic characterisation of 326 

our populations is still needed to better understand this evolutionary process. Nonadditive 327 

selection seems to be a common process in natural populations caused by indirect ecological 328 

effects. Such effects remain unpredictable by pairwise selection, and difficult to study due to 329 

infinite number of ecological factors to be considered (Sahli and Conner 2011, Terhorst et al. 330 

2015). To estimate potential indirect effects from abiotic factors on plant-pollinator interactions, 331 

we compared shared genetic variants among adaptive responses to abiotic and biotic factors. We 332 

observed only few shared candidate genes involved in the local adaptation of B. incana to long-333 

tongue bees, structure of the soil and temperature. Long-tongued bees, including the genus 334 

Anthophora in our study, are ground-nesting bees, hence variation in soil texture could have a 335 

significant impact on their occurrence in populations (Antoine and Forrest 2021). However, 336 

further ecological characterisation is needed to control indirect effects such as local climate, 337 

composition of lower soil layers, microbiome, herbivores, or surrounding flowering plants for 338 

instance. In addition, due to the geology of Southern Italy, we had a strong confounding effect 339 

between population structure (controlled by Bayesian model) and the type of soil (following a 340 

Northwest – Southeast axis) likely leading to an underestimation of adaptive potential to soil with 341 

the presence of false negatives in our GEA analysis and underestimating the role of soil in plant-342 

pollinator interactions. By illustrating the effect of complex ecological network on generalist 343 

plants through a flexible genomic architecture, our results highlighted the importance of 344 

considering ecological variables in the adaptative landscape of generalist species and abiotic 345 

factors to better understand their impact on plant evolution (Carvalheiro et al 2021). With the 346 

current declines in insect diversity and its potential impact on flowering plant reproductive 347 

success, we stress the need to expand our knowledge of the adaptive potential of plants to 348 

pollinator communities using a multi-disciplinary approach from ecology to molecular biology to 349 

genomics.  350 

 351 

 352 

 353 

 354 
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Methods 355 

Natural populations of Brassica incana 356 

We used the non-model plant species Brassica incana (Fig. 1), an allogamous and self-357 

incompatible perennial species growing on cliffs, and mainly distributed in Southern Italy 358 

(Landucci et al. 2014, Ciancaleoni et al. 2018). This wild species is a close relative species of 359 

Brassica oleracea crop species (Landucci et al. 2014, El-Esawi 2017). From the data available in 360 

the literature and our own observations, we found 40 populations in Southern Italy. We used 21 361 

natural populations (fig. 1, table S1) for which at least 20 individuals were present in spring 2018 362 

with safe access. Our populations grew on two distinct types of soil: six populations on tuff soil 363 

and 15 populations on limestone soil (fig. 1, table S1). The populations were located from 2m to 364 

767m elevation (average = 278m, Table S1), with an average distance of 61.78 km (median = 41.9 365 

km, minimum = 1.25 km, maximum = 168.6 km). 366 

Ecological characterization  367 

We characterized the soil of the 21 natural populations of B. incana during spring 2018 368 

by collecting two samples per population on the ground surface (maximum depth ~10cm). The 369 

samples were sent to the Soil Analysis Laboratory of Arras (INRA, France, 370 

https://www6.hautsdefrance.inrae.fr/las). Twenty-one soil compounds were measured 371 

(Dataset1): aluminium (Al), carbon (C), ration carbon/nitrogen (ratio C/N), calcium (Ca), total 372 

calcium carbonate (CaCO3), clay (< 0 µm), total copper (Cu), iron (Fe), fine sand (0.05mm to 373 

0.2mm), coarse sand (0.2mm to 2mm), fine silt (2µm to 20 µm), coarse silt (20µm to 50 µm), 374 

potassium (K), magnesium (Mg), manganese (Mn), total nitrogen (N), sodium (Na), organic matter 375 

(om), phosphorus (P2O5), silicon (Si) and zinc (Zn). We followed the same method as described in 376 

Brachi et al. 2013, and all protocols are available at 377 

https://www6.hautsdefrance.inrae.fr/las/Methodes-d-analyse/Sols.  378 

We retrieved 20 biologically meaningful climatic variables (Dataset1) for the 21 379 

populations from ClimateEU database (v4.63 software, described in Hamman et al. 2013). Like 380 

Frachon et al. (2018), the average data across 2003-2013 were used for these 21 climatic data 381 

related to temperature and precipitation.  382 

We characterized pollinator communities in spring 2018 (for 17 out of 21 populations) 383 

and spring 2019 (for 19 out 21 populations) for a total of 19 biotic variables (Dataset1). To fully 384 

characterize the pollinator communities, one to four sessions (in average three sessions) of 385 

observations were conducted in spring 2018 and 2019 (one session in 2018, and three in 2019). 386 
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We recorded pollinators’ visits for one hour starting at 11.30 am in each population, with 387 

approximately observations of 10 minutes per plant within the population. In average, five plants 388 

were observed per session (median = 5 plants, maximum = 11 plants, minimum = 1 plant). We 389 

assigned visitors into 13 functional categories: bumblebees, long-tongue bees (genus 390 

Anthophora), other large bees (called large bees), small bees, honeybees, large wasps, small flies, 391 

large flies, hoverflies, small beetles, large beetles, butterflies, and wasps. Due to the scares 392 

number of wasp visits (only one visit in CHIU population), it was discarded from the dataset, 393 

except for the plant-flower visitor network. 394 

Because our study was population-centred, we estimated Best Linear Unbiased 395 

Predictions (BLUP) i.e. the average pollinator visits per population using a mixed model in the R 396 

Studio environment (package lme4, Bates et al. 2015).  397 

Yi = µtrait + population + εi 398 

where Yi is BLUP for visits by functional categories of pollinators, µtrait the overall average of the 399 

trait (observed number of visits of functional categories of pollinators), population is considered 400 

as random effect, and εi is the residual variance. 401 

The plant-flower visitor network was constructed using the bipartite package (Dormann 402 

et al., 2008) based on the total number of visits within the populations from the 12 distinct 403 

functional categories of pollinators among the 21 natural populations of B. incana. Similarly to 404 

the species-species interaction networks, category-level indices  for each population were 405 

calculated using bipartite (Dormann, 2011). We calculated eight following indices as described in 406 

Dormann et al. 2011 and called latter B. incana — pollinator interaction metrics: (1) normalised 407 

degree representing the number of partner species in relation to the potential number of partner 408 

species, (2) species strength representing the sum of dependencies of each species, aiming at 409 

quantifying a species’ relevance across all its partners, (3) species specificity index representing 410 

the coefficient of variation of interactions, normalised to values between 0 (low variability 411 

suggesting low specificity) and 1 (high variability suggesting high specificity), (4) partner diversity 412 

representing the Shannon diversity index of the interactions of each species, (5) effective partners 413 

representing the logbase to the power of “partner diversity” interpreting as the effective number 414 

of partners, if each partner was equally common, (6) proportional similarity representing the 415 

specialization measured as dissimilarity between resource use and availability, (7) proportional 416 

generality representing the effective partners' divided by effective number of resources; this is 417 

the quantitative version of proportional resource use or normalised degree (i.e., the number of 418 

partner species in relation to the potential number of partner species), and (8) d index 419 
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representing the specialisation of each species based on its discrimination from random selection 420 

of partners.  421 

The matrix of spearman correlation for the 61 ecological variables (11 functional 422 

categories of pollinators, eight B. incana interaction indices, 20 climatic variables, and 22 edaphic 423 

variables) using the R package Hmisc (Harrell et al. 2021). We pruned the set of variables using 424 

the pairwise Spearman correlations among variables, and only variables with spearman’s rho < 425 

0.8 were retained for the genomic analysis. In total, we kept 33 ecological variables: 11 functional 426 

categories of pollinators, four B. incana — pollinator interaction indices, three climatic variables, 427 

and 15 edaphic variables. We performed a principal component analysis representing the 428 

distribution of 33 ecological variables among the 21 populations using ade4 package in R (Dray 429 

and Dufour 2007). 430 

De novo reference genome 431 

DNA extraction. We chose one individual from the island of Capri population as reference 432 

genome (CAPR in fig. 1), a stable population between 1984 and 2012 with low gene flow with 433 

cultivated plants (Ciancaleoni et al. 2018). Seeds from Capri population were collected in 2017, 434 

sown in a phytotron in the summer of 2018 (24 hours light, 21°C, 60% humidity, watered twice a 435 

day), and grown in air-conditioned greenhouse at the University of Zürich in standard condition 436 

(22.5°C, 50-60% of humidity, additional light). Prior to DNA extraction, plants were kept in the 437 

dark for two days, which reduced the amount of polysaccharides that interfere with the DNA 438 

extraction yield. We modified the high-molecular weight genomic DNA extraction protocol from 439 

Mayjonade et al. (2016) as described in Russo et al. (2022). Briefly, this extraction was performed 440 

in 23 parallel tubes to increase the quantity of final DNA. The 23 DNA extracts were pooled 441 

together, and purifying using carboxylated magnetic beads as explained in Mayjonade et al. 442 

(2016) protocol. We measured 146ng/µL of total DNA concentration using a nanodrop (ratio A-443 

260/A-280 = 1.85, ratio A-260/A-230 = 2.19) and 152ng/ µL with Qubit. The purified sample was 444 

sent to the Functional Genomic Center of Zürich (FGCZ) for library preparation and three different 445 

next generation sequencing were performed to obtain a de novo reference genome of Brassica 446 

incana. 447 

PacBio library preparation and sequencing. The continuous long read (CLR) SMRT bell library was 448 

produced using the SMRTbell Express Template Prep Kit 1.0. (Pacific Biosciences) at the functional 449 

genomic center Zürich (FGCZ). The input genomic DNA concentration was measured using a Qubit 450 

Fluorometer dsDNA Broad Range assay (Thermo). The high molecular weight (HMW) genomic 451 

DNA (gDNA) sample (6 μg) was mechanically sheared to an average size distribution of 30 kbp, 452 
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using a g-TUBE (Covaris) on a minispin plus centrifuge (Eppendorf). A Femto Pulse gDNA analysis 453 

assay (Agilent) was used to assess the fragment size distribution. Sheared gDNA was DNA damage 454 

repaired and end-repaired using polishing enzymes. PacBio sequencing adapters were ligated to 455 

the DNA template, according to the manufacturer’s instructions. A Blue Pippin device (Sage 456 

Science) was used to size select the SMRT bell library and enrich for fragments > 25 kbp. The size 457 

selected library was quality inspected and quantified using a Femto Pulse gDNA analysis assay 458 

(Agilent) and on a Qubit Fluorimeter (Thermo) respectively. A ready to sequence SMRT bell-459 

Polymerase Complex was created using the Sequel binding kit 3.0 (Pacific Biosciences P/N 101‐460 

500‐400) according to the manufacturer instructions. The Pacific Biosciences Sequel instrument 461 

was programmed to sequence the library on five Sequel™ SMRT® Cells 1M v3 (Pacific Biosciences), 462 

taking one movie of 10 hours per cell, using the Sequel Sequencing Kit 3.0 (Pacific Biosciences). 463 

After the run, the sequencing data quality was checked, via the PacBio SMRT Link software (v 464 

6.0.0.47841), using the “run QC module” (Table S2). 465 

Illumina library preparation and sequencing. The TruSeq DNA Nano Sample Prep Kit v2 (Illumina, 466 

Inc, California, USA) was used in the succeeding steps. DNA samples (100 ng) were sonicated with 467 

the Covaris using settings specific to the fragment size of 350 bp. The fragmented DNA samples 468 

were size- selected using AMpure beads, end-repaired and adenylated. TruSeq adapters 469 

containing Unique Dual Indices (UDI) for multiplexing were ligated to the size-selected DNA 470 

samples. Fragments containing TruSeq adapters on both ends were selectively enriched by 471 

Polymerase chain reaction (PCR). The quality and quantity of the enriched libraries were validated 472 

using Tapestation (Agilent, Waldbronn, Germany). The product was a smear with an average 473 

fragment size of approximately 500 bp. The libraries were normalized to 10nM in Tris-Cl 10 mM, 474 

pH8.5 with 0.1% Tween 20. The Novaseq 6000 (Illumina, Inc, California, USA) was used for cluster 475 

generation and sequencing according to standard protocol.  Sequencing was paired end (PE) at 2 476 

X150 bp. This described protocol was used for both de novo sequencing of the reference 477 

individual, as well as the Pool-sequencing of the 21 natural populations.  478 

Pre-processing and Mapping of Illumina Reads. Quality control and Bowtie2 alignment of the 479 

Illumina PE reads were performed using data analysis workflows in the R-meta package ezRun 480 

(https://github.com/uzh/ezRun), managed by  the data analysis framework SUSHI (Hatakeyama 481 

et al., 2016), which was developed and maintained by FGCZ. Technical quality was evaluated using 482 

FastQC (v0.11.7). We screened for possible contaminations using FastqScreen (v0.11.1) against a 483 

customized database in ezRun, which consists of SILVA rRNA sequences (https://www.arb-484 

silva.de/), UniVec (https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) sequences, refseq 485 
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mRNA sequences and selected refseq genome sequences (human, mouse, Arabidopsis, bacteria, 486 

virus, phix, lambda, and mycoplasma) (https://www.ncbi.nlm.nih.gov/refseq/). Illumina PE reads 487 

were pre-processed using fastp (v0.20.0), with which sequencing adapters and low-quality ends 488 

(4 bp sliding windows from both ends, average quality < Q20) were trimmed. Trimmed reads 489 

passing the filtering criteria (average quality >= Q20, minimum length >=18 bp) were aligned using 490 

Bowtie2 (v2.4.1) with the “--very-sensitive” option. Trimmed reads from the reference individual 491 

were aligned to the PacBio HG4P4 assembled contigs for genome polishing. Afterwards trimmed 492 

reads from the 21 natural populations were aligned to the polished and scaffolded genome 493 

assembly for variant analysis. PCR-duplicates were marked using Picard (v2.18.0). Read 494 

alignments were comprehensively evaluated using the mapping QC app in ezRun in terms of 495 

different aspects of DNA-seq experiments, such as sequence and mapping quality, sequencing 496 

depth, coverage uniformity and read distribution over the genome (Table S2).  497 

De novo Genome Assembly. PacBio subreads from all five SMRT cells were merged and 498 

assembled using HGAP4 (Hierarchical Genome Assembly Process v4) in the PacBio SMRT Link 499 

software (v 6.0.0.47841). Before being assembled, subreads were filtered with read quality of 500 

70%. The estimated genome size was set at 650 Mbp. Illumina PE reads from the same sample 501 

were pre-processed and mapped to the assembled primary contigs as described above. 502 

Assembled primary contig sequences were then further polished with mapped Illumina PE reads 503 

using pilon (v1.23). Only reads with mapping quality above Q20 and bases with phred scores 504 

above Q20 were used for the polishing.  505 

In silico genome digestion and Bionano Optical Mapping. The polished genome assembly was 506 

first in silico digested using Bionano Access software (v1.2.1) to evaluate whether the nicking 507 

enzyme (Nb.BspQI), with recognition sequence GCTCTTC, and the non-nicking enzyme DLE-1, with 508 

recognition sequence CTTAAG, were suitable for optical mapping in the genome. An average of 509 

13.6 nicks/100 kbp with a nick-to-nick distance N50 of 13,734 bp was expected for Nb.BspQI, 510 

while DLE-1 was found to induce 22.2 nicks/100 kbp with a nick-to-nick distance N50 of 8,054 bp. 511 

The values were in line with manufacturer's requirements. 512 

For the Direct Label and Stain (DLS) protocol, the DNA sample was labelled using the 513 

Bionano Prep DNA Labeling Kit-DLS (cat. no. 80005) according to manufacturer's instructions. In 514 

details, 750 ng of purified gDNA was labelled with DLE-1 labelling mix and subsequently incubated 515 

with Proteinase K (Qiagen, cat. no. 158920) followed by drop dialysis. After the clean-up step, the 516 

DNA was pre-stained, homogenized, and quantified using on a Qubit Fluorometer to establish the 517 

appropriate amount of backbone stain. The reaction was incubated at room temperature for at 518 
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least 2 hours. For the Nick Label Repair and Stain (NLRS) protocol, the DNA sample was labelled 519 

using the Bionano Prep DNA Labelling Kit-NLRS according to manufacturer's instructions (Bionano 520 

Genomics, cat. no. 80001). In details, 300 ng of purified gDNA was nicked with Nb.BspQI (New 521 

England BioLabs, cat. no. R0644S) in NEB Buffer 3. The nicked DNA was labelled with a fluorescent-522 

dUTP nucleotide analogue using Taq DNA polymerase (New England BioLabs, cat. no. M0267S). 523 

After labelling, nicks were ligated with Taq DNA ligase (New England BioLabs, cat. no. M0208S) in 524 

the presence of dNTPs. The backbone of fluorescently labelled DNA was counterstained overnight 525 

with YOYO-1 (Bionano Genomics, cat. no. 80001). DLS and NLRS labelled DNA samples were 526 

loaded into a nanochannel array of a Saphyr Chip (Bionano Genomics, cat. no. FC-030-01) and run 527 

by electrophoresis each into a compartment. Linearized DNA molecules were imaged using the 528 

Saphyr system and associated software (Bionano Genomics, cat. no. 90001 and CR-002-01). 529 

BioNano row molecule data are available on Table S3. 530 

Assembly of Optical Maps and Hybrid Scaffolding. The de novo assembly of the optical maps was 531 

performed using the Bionano Access (v1.2.1) and Bionano Solve (v3.2.1) software. The assembly 532 

type performed was the “Saphyr data”, “non-human”, "non-haplotype" with "extend and split" 533 

and "cut segdups". Default parameters were adjusted to accommodate the genomic properties 534 

of the Brassica incana genome. Specifically, the "Initial P value" cut-off threshold was adjusted to 535 

1 × 10−10 and the P value cut-off threshold for extension and refinement was set to 1 × 10−11 536 

according to manufacturer's guidelines (default values are 1 × 10−11 and 1 × 10−12, respectively). 537 

Dual-enzyme hybrid scaffolding was then performed using the same software suits with default 538 

parameters. This dual-enzyme hybrid scaffolding used the Bionano optical maps to scaffold 539 

polished (PacBio and Illumina) contigs. 540 

Genome Annotation. Repeat sequences in the de novo assembled genome were predicted using 541 

RepeatScount (v1.0.6). Predicted repeat sequences and known transposable elements (TEs) in 542 

Brassica oleracea were masked using RepeatMasker (v4.1). Gene model prediction was 543 

performed using maker (v3.01.03). In details, ab initio gene prediction was performed using 544 

AUGUSTUS with the pre-trained parameter set for Arabidopsis. Protein and cDNA sequences of 545 

B. oleracea (Ensemble release 42) were aligned to the assembled genome and used as supporting 546 

evidence for gene prediction. For functional annotation, prediction protein sequences were 547 

compared to the SwissProt database (release 2019_03) using blastp (v2.6.0), and the InterPro 548 

database using interproscan (v5.32-71.0).  549 

 550 

 551 
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Genomic characterization of 21 populations using a pool-sequencing approach 552 

In spring 2018, we collected leave tissue from, in average, 28 individuals per population 553 

(median = 30 plants, max = 30 plants, min = 15 plants, i.e. a total of 590 samples) in 1.5mL 554 

Eppendorf tubes. The samples were stored during the field day in dry ice and moved into -80°C 555 

freezer at the end of field day. The DNA extraction was performed in fall 2018 by grinding samples 556 

using two beads, cooling down in liquid nitrogen, and crushed them with 30 vibrations/second 557 

three times 30 seconds. We extracted DNA using the sbeadex® maxi plant kit from LGC Genomics 558 

in KingfisherTM Flex Purification Systems (Thermo ScientificTM), a magnetic-particle robot at the 559 

Genetic Diversity Centre (GDC) Zürich platform. We added 250µL of lysis buffer in all homogenised 560 

samples. After homogenization (2-3 seconds on vortex, and 20 reversing tubes), we incubated 561 

our samples 20 minutes at 65°C. We added 1.12µL of RNAse (940U/mL) and reversing tubes 10 562 

times. We incubated the samples 10 more minutes at 65°C. After centrifuging at 2.5x1000 rcf for 563 

10 minutes at 20°C, we transferred 200µL of the lysate in deep 96-well plates with 520µL of 564 

binding buffer and 60µL of sbeadex particles suspension. The samples were incorporated into the 565 

KingfisherTM robot for the DNA purification. After bringing magnets into contact with the tubes 566 

for 1 minutes, the supernatant was removed and discarded. 400µL of wash buffer PN1 was added 567 

in each sample and mixed by pipetting to re-suspend the pellet. After 10 minutes of incubation 568 

and agitation at room temperature, the magnets were brought into contact with the tubes for 1 569 

minute. The supernatant was removed and discarded, and a second round of washing was 570 

performed adding 400µL of wash buffer PN2 in each sample, incubating 10 minutes at room 571 

temperature and bringing the magnets into contact with tubes. The supernatant was removed 572 

and discarded. 100µL of elution buffer PN was added to the pellet and mixed by pipetting. The 573 

solution incubated at 55°C for 10 minutes, and finally the magnets were brought into contact with 574 

tubes for 3 minutes until the sbeadex formed a pellet and stayed on the magnets. The eluate of 575 

the samples was transfer to a new 96-well plates and stored in the fridge. 576 

The DNA concentration of all samples were measured using ddDNA Qubit assay 577 

measurement on plate reader Spark M10 (excitation wavelength = 485nm, emission wavelength 578 

= 535nm). Eight samples with too low DNA concentration were discarded. In total 582 samples 579 

were used for the pool sequencing with a DNA concentration superior to 1.5 ng/µL (average = 580 

12.68 ng/µL, median = 10.18 ng/µL, max = 61.09 ng/µL). For each of the 21 populations, the 581 

individuals were pooled together equimolarly, with an average of 27.7 individual per pool (median 582 

= 29 individuals, minimum = 15 individuals, maximum = 30 individuals). 583 
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We proceeded for the pool-sequencing as previously described in the methods for the de 584 

novo reference genome sequencing using Illumina sequencing.  585 

Freebayes variant calling. Multi-samples frequency-based (-F 0.05) variant calls (--use-best-n-586 

alleles 4 --pooled-continuous) were generated using the freebayes-parallel script in freebayes 587 

(v1.2.0-4-gd15209e, Garrison and Marth 2012), with 16 threads of freebayes running in parallel 588 

across regions of 100kb in the de novo polished genome assembly (PacBio, Illumina and Bionano). 589 

Single nucleotide polymorphisms (SNPs) with variant quality above Q20 were retained using 590 

bcftool (v1.9) for downstream analysis and were annotated with de novo predicted gene models 591 

using SnpEff (v4.2). The final dataset was composed of 6’899’774 SNPs across the 21 natural 592 

populations of B. incana. 593 

Data filtering 594 

The matrix of population allele frequencies was trimmed using VCFtools (Danecek et al. 595 

2011) and following Frachon et al. (2018). We kept only biallelic loci (391’671 SNPs discarded) and 596 

removed the indels (7’960 SNPs discarded). We discarded SNPs with a minimum mean read depth 597 

lower than 6, and higher than 100 (143’710 SNPs discarded). We removed all SNPs with missing 598 

value in more than two populations (613’387 SNPs discarded). We finally kept only 139 super-599 

scaffolds (203’955 SNPs discarded). The final allele read count matrix included 5’530’708 SNPs for 600 

21 populations.  601 

Genome Environment Association (GEA) analysis on 33 ecological variables 602 

We performed a GEA analysis using a pool-sequencing approach between the 5’530’708 603 

SNPs and 15 variables describing pollinator communities (11 functional categories of pollinators, 604 

and 4 B. incana – pollinators’ interactions), 3 climatic variables and 15 edaphic variables. Genome 605 

scans were based on Bayesian hierarchical model implemented in Baypass software (Gautier 606 

2015). Considering the covariance matrix of allele frequencies among population, this model 607 

allowed to correct potential effect of demographic histories (Gautier 2015). As described in 608 

Frachon et al. (2019), we used the core model to estimate the Bayesian Factor (BFis in dB) between 609 

the allelic frequencies along the genome, and different descriptors of pollinator communities as 610 

well as abiotic variables. The core model was repeated three times due to Importance Sampling 611 

algorithm, and the final Bayesian Factor was estimated by averaging them. Considering the large 612 

amount of SNPs used, we sub-sampled the procedure to estimate the matrix of population allele 613 

frequencies (Ω) as in Frachon et al. (2018), by dividing the full data set into 19 sub-data sets of ~ 614 

254’785 SNPs each. The GEA for each trait and each sub-data set were performed in parallel and 615 
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merged again after analyses. Finally, we corrected the Bayes factor (BFis in dB called later BFdB) 616 

obtained by using a local score approach to consider the linkage disequilibrium (Bonhomme et al. 617 

2019) allowing to detect the accumulation of similar p-value in the same region increasing the 618 

power of genomic analyses. To do, we artificially created p-values by ranking the BFdB value from 619 

the highest to the smallest ones and divided the rank by the total number of SNPs. The parameter 620 

ξ was fixed at three for the local score method (Bonhomme et al. 2019, Libourel et al. 2021). We 621 

used upset plots to detect shared SNPs and candidate genes among the 33 ecological variables 622 

considering 0.05% SNPs with highest association score after local score method (R package 623 

UpSetR, Gehlenborg et al. 2019). Due to the geology of Southern Italy, we observed a Northwest-624 

Southeast axis of variation of type of soil (tuff versus limestone), potentially matching the 625 

demographic history. Because GEA analyses are based on corrected allele frequency by 626 

population structure, we may observe false negative. We estimated the genomic variation among 627 

the population using a singular value decomposition (SVD) of the matrix of raw allele frequency 628 

(without population structure correction). A significant correlation between the genomic 629 

variation from SVD and environmental variable would indicate the presence of potential false 630 

negative.  631 

Signature of selection 632 

We performed a genome-wide selection scan among the 21 populations based on the XtX 633 

spatial genetic differentiation (Günther and Coop 2013, Gautier 2015). This index considered the 634 

standardized allele frequencies of a given SNP, a measure of the variance of allele frequencies 635 

across 21 natural populations. This method has been demonstrated to be successful for natural 636 

populations (Frachon et al. 2018, Frachon et al. 2019). As described above, we also implemented 637 

the local score approach to correct the XtX fixing parameter ξ at three. Finally, we estimated the 638 

enrichment in signature of selection by testing whether the SNPs with the highest association 639 

scores with environmental variables (0.05% upper tail of the local score) were significantly 640 

enriched in the 0.05% upper tail of XtX distribution (Brachi et al. 2015, Frachon et al. 2018, 641 

Frachon et al. 2019). The significance of the enrichment was testing using the method described 642 

in Hancock et al. (2011) by running 10’000 null circular permutations of the 0.05% SNPs with 643 

highest association score with 33 environmental variables.  644 

Identification of candidate genes 645 

To identity candidate genes involved in local adaptation of B. incana to pollinator communities 646 

and abiotic variables, we retrieved genes within the significant zone identified by the GEA 647 
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analyses and corrected by the local score approach, and down and upstream genes of these zones 648 

as in Libourel et al. (2021). Only zones containing more than 3 SNPs were kept.  649 

 650 

Acknowledgement  651 

We are grateful to David Preiswerk, Cesario Capasso and Samson Accoca-Pidolle for assisting us 652 

with the field experiment. We thank Cyril Libourel for discussion regarding genome annotation 653 

and improvement of gene identification. We thank Anne Roulin for her comments on a previous 654 

version of the draft. DNA extraction and pooling samples in this paper were performed in 655 

collaboration with the Genetic Diversity Centre (GDC), ETH Zurich. We thank the Functional 656 

Genomic Centre of Zürich (FGCZ) for their support in library preparation and sequencing. This 657 

research was funded by the Swiss National Science Funds (SNF grant no. 31003A_172988 to 658 

F.P.S.). In addition, University of Naples (UniNA) in the framework of Program STAR-GENPOLL, 659 

and the University of Zürich provided funding.  660 

Data availability 661 

All data will be available after acceptance of the manuscript as described hereafter. Sequencing 662 

data from Pacbio and Illumina used for this study will be available at the European Nucleotide 663 

Archive ENA database (accession number PRJEB54646). The bionano raw data and assembled 664 

optical maps will be available at National Library for Biotechnology Information NCBI database 665 

(sample name PRJNA859008). All scripts and datasets will be available at Dryad database 666 

(doi:10.5061/dryad.pnvx0k6r0).  667 

Author contributions  668 

L.F., L.A., G.S. & F.P.S. planned and designed the research. L.F. & L.A. conducted the fieldwork. 669 

L.F. coordinated the different collaborators involved in the project. L.F. improved the high-670 

molecular weight genomic DNA extraction protocol for de novo sequencing and performed DNA 671 

extraction for pool-sequencing. L.P. preformed the Bionano optical mapping and scaffolding. 672 

W.Q. performed the bioinformatic analysis (assembly and annotation of the reference genome, 673 

Illumina read mapping and variant analysis), and wrote the methods related to sequencing and 674 

bioinformatics. L.F. performed the statistical analysis, the genome environmental association 675 

analysis, and the enrichment analysis. Q.R. performed Brassica incana - pollinator interaction 676 

analysis and wrote the related method part. L.F. wrote the manuscript, and all authors reviewed 677 

and edited the manuscript. 678 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


References  679 

Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. 2017. Volatile terpenoids: multiple 680 

functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 681 

246:803-816. 682 

Afzal AJ, Wood AJ, Lightfoot DA. 2008. Plant receptor-like serine threonine kinases: roles in 683 

signaling and plant defense. MPMI. 21:507-517.  684 

Albrecht M, Schmid B, Hautier Y, Muüller CB. 2012. Diverse pollinator communities enhance plant 685 

reproductive success. Proc. Royal Soc. B. 279:4845–4852. 686 

Antiqueira PAP, de Omena PM, Goncalves‑Souza T, Vieira C, Migliorini GH, Kersch‑Becker MF, 687 

Bernabé TN, Recalde FC, Benavides‑Gordillo S, Romero GQ. 2020. Precipitation and 688 

predation risk alter the diversity and behavior of pollinators and reduce plant fitness. 689 

Oecologica. 192:745-753. 690 

Antoine CM, Forrest JRK. 2021. Nesting habitat of ground-nesting bees: a review. Ecol. Entomol. 691 

46:143-159. 692 

Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. 2006. Volatile signaling in plant-693 

plant interactions: ‘‘talking trees’’ in the Genomics Era. Science. 311:812- 815. 694 

Baron E, Richirt J, Villoutreix R, Amsellem L, Roux F. 2015. The genetics of intra- and interspecific 695 

competitive response and effect in a local population of an annual plant species. Funct. 696 

Ecol. 29:1361–1370. 697 

Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. 698 

Annu. Rev. Ecol. Evol. Syst. 38:567–593. 699 

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. 700 

J. Stat. Softw. 67:1-48. 701 

Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P. 702 

2017. Predicting responses to contemporary environmental change using evolutionary 703 

response architectures. Am. Nat. 189:463-473. 704 

Bodbyl Roels AA, Kelly JK. 2011. Rapid evolution caused by pollinator loss in mimulus guttatus. 705 

Evolution. 65:2541-2552. 706 

Bonhomme M, Fariello MI, Navier H, Hajri A, Badis Y, Miteul H, Samac DA, Dumas B, Baranger A, 707 

Jacquet C, et al. 2019. A local score approach improves GWAS resolution and detects minor 708 

QTL: application to Medicago truncatula quantitative disease resistance to multiple 709 

Aphanomyces euteiches isolates. Heredity. 123:517–531. 710 

Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl FP. 2019. The role of volatiles in plant 711 

communication. Plant J. 100:892-907. 712 

Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson 713 

J, Roux F. 2013. Investigation of the geographical scale of adaptive phenological variation 714 

and its underlying genetics in Arabidopsis thaliana. Mol. Ecol. 22:4222-4240. 715 

Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J. 2015. Coselected genes 716 

determine adaptive variation in herbivore resistance throughout the native range of 717 

Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 112:4032–4037. 718 

Burkle LA, Irwin RE. 2009. The effects of nutrient addition on floral characters and pollination in 719 

two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203:83–98. 720 

Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of species, 721 

co-occurrence, and function. Science. 339:1611-1615. 722 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Carvalheiro LG, Bartomeus I, Rollin O, Timóteo S, Tinoco CF. 2021. The role of soils on pollination 723 

and seed dispersal. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 376:20200171. 724 

Chamberlain SA, Bronstein JL, Rudgers JA. 2014. How context dependent are species interactions? 725 

Ecol. Lett. 17:881-890. 726 

Ciancaleoni S, Raggi L, Negri V. 2018. Assessment of spatial–temporal variation in natural 727 

populations of Brassica incana in south Italy: implications for conservation. Plant Syst. Evol. 728 

304:731–745. 729 

Clare EL, Schiestl FP, Leitch AR, Chittka L. 2013. The promise of genomics in the study of plant-730 

pollinator interactions. Genome Biol. 14:207. 731 

Cortés AJ, Blair MW. 2018. Genotyping by sequencing and genome–environment associations in 732 

wild common bean predict widespread divergent adaptation to drought. Front. Plant Sci. 733 

9:128. 734 

da Costa ML, Pereira LG, Coimbra S. 2013.  Growth media induces variation in cell wall associated 735 

gene expression in Arabidopsis thaliana pollen tube. Plants. 2:429-440. 736 

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, De Pristo MA, Handsaker RE, Lunter G, Marth 737 

GT, Sherry ST et al. 2011. 1000 Genomes Project Analysis Group. The variant call format 738 

and VCFtools. Bioinformatics. 27:2156–2158. 739 

David TI, Storkey J, Stevens CJ. 2019. Understanding how changing soil nitrogen affects plant–740 

pollinator interactions. Arthropod Plant Interact. 13:671–684. 741 

de Manincor N, Andreu B, Buatois B, Chao HL, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt 742 

E, Dufay M. 2021. Geographical variation of floral scents in generalist entomophilous 743 

species with variable pollinator communities. Funct. Ecol. 00:1– 16. 744 

De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Z. 2013. Detecting selection 745 

along environmental gradients: analysis of eight methods and their effectiveness for 746 

outbreeding and selfing populations. Mol. Ecol. 22:1383–1399. 747 

Descamps C, Jambrek A, Quinet M, Jacquemart AL. 2021. Warm temperatures reduce flower 748 

attractiveness and bumblebee foraging. Insects. 12:493.  749 

Dormann CF. 2011. How to be a specialist? Quantifying specialisation in pollination networks. 750 

Netw. Biol. 1:1-20. 751 

Dormann CF, Gruber B, Fruend J. 2008. Introducing the bipartite Package: Analysing Ecological 752 

Networks. R News. 8:8-11. 753 

Dray S, Dufour A. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. 754 

Stat. Softw. 4:1-20. 755 

El-Esawi MA. 2017. Genetic diversity and evolution of Brassica genetic resources: from 756 

morphology to novel genomic technologies – a review. Plant Genet. Resour. 15:388–399. 757 

Fan J, Zhai Z, Yan C, Xu C. 2015. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with 758 

TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to 759 

plastids. Plant Cell. 27:2941–2955.   760 

Ferrão L, Johnson TS, Benevenuto J, Edger PP, Colquhoun TA, Munoz PR. 2020. Genome-wide 761 

association of volatiles reveals candidate loci for blueberry flavor. New Phytol. 226:1725–762 

1737. 763 

Ferrero-Serrano A, Assmann SM. 2019. Phenotypic and genome-wide association with the local 764 

environment of Arabidopsis. Nat. Ecol. Evol. 3:274–285. 765 

Frachon L, Bartoli C, Carrère S, Bouchez O, Chaubet A, Gautier M, Roby D, Roux F. 2018. A genomic 766 

map of adaptation to local climate in Arabidopsis thaliana. Front. Plant Sci. 9:967. 767 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Frachon L, Mayjonade B, Bartoli C, Hautekèete NC, Roux F. 2019. Adaptation to plant communities 768 

across the genome of Arabidopsis thaliana. Mol. Biol. Evol. 36:1442–1456. 769 

Frachon L, Stirling SA, Schiestl FP, Dudareva N. 2021. Combining biotechnology and evolution for 770 

understanding the mechanisms of pollinator attraction. Curr. Opin. Biotechnol. 70:213-219. 771 

Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J. 772 

2022. Three redundant brassinosteroid early response genes encode putative bHLH 773 

transcription factors required for normal growth. Genetics. 162:1445–1456. 774 

Gao X, Wang L, Zhang H, Zhu B, Lv GM Xiao J. 2021. Transcriptome analysis and identification of 775 
genes associated with floral transition and fruit development in rabbiteye blueberry 776 
(Vaccinium ashei). PLoS ONE. 16, e0259119.  777 

Garrison E, Marth G. 2021. Haplotype-based variant detection from short-read sequencing. arXiv 778 
preprint arXiv:1207.3907 [q-bio.GN]. 779 

Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-780 
specific covariates. Genetics. 201:1555–1579. 781 

Ge X, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, et al. 2019.. LLG2/3 782 

are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube Integrity. 783 

Curr. Biol. 29:3256–3265. 784 

Gehlenborg N. 2019. UpSetR: A more scalable alternative to venn and euler diagrams for 785 

visualizing intersecting sets. R package version 1.4.0.  786 

Gervasi DDL, Schiestl FP. 2017. Real-time divergent evolution in plants driven by pollinators. Nat. 787 

comm. 8:14691. 788 

Gòmez JM, Abdelaziz M, Camacho JPM, Muñoz-Pajares AJ, Perfectti F. 2009a. Local adaptation 789 

and maladaptation to pollinators in a generalist geographic mosaic. Ecol. Lett. 12:672–682. 790 

Gòmez JM, Perfectti F, Bosch J, Camacho JPM. 2009b. A geographic selection mosaic in a 791 

generalized plant–pollinator–herbivore system. Ecol. Monogr. 79:245–263. 792 

Gòmez JM, Bosch J, Perfectti F, Fernández J, Abdelaziz M. 2007. Pollinator diversity affects plant 793 

reproduction and recruitment: the tradeoffs of generalization. Oecologia. 153:597–605. 794 

Gòmez JM, Perfectti F, Lorite J. 2015. The role of pollinators in floral diversification in a clade of 795 

generalist flowers. Evolution. 69:863–878. 796 

Günther T, Coop G. 2013. Robust identification of local adaptation from allele frequencies. 797 

Genetics. 195:205–220. 798 

Hamann A, Wang T, Spittlehouse DL, Murdock TQ. 2013. A Comprehensive, high-resolution 799 

database of historical and projected climate surfaces for Western North America. Bull. Am. 800 

Meteorol. Soc. 94:1307-1309. 801 

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, 802 

Bergelson J. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science. 803 

334:83-86. 804 

Harrell FE. 2021. Hmisc: Harrell Miscellaneous. R Package. 805 

Hatakeyama M, Opitz L, Russo G, Qi W, Schlapbach R, Rehrauer H. 2016. SUSHI: an exquisite 806 

recipe for fully documented, reproducible and reusable NGS data analysis. BMC Bioinform. 807 

17:228. 808 

Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø. 2009. How does climate warming affect 809 

plant-pollinator interactions? Ecol. Lett. 12:184–195. 810 

Herrera C, Medrano M. 2017. Pollination consequences of simulated intrafloral microbial 811 

warming in an early-blooming herb. Flora. 232:142-149. 812 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM. 2012. Warming, CO2, 813 

and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 814 

15:227-234. 815 

Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, 816 

Vilhjalmsson BJ, Nordborg M, Gordon JI, et al. 2014. Genome-wide association study of 817 

Arabidopsis thaliana leaf microbial community. Nat. comm. 5:5320. 818 

Jauker F, Wolters V. 2008. Hoverflies are efficient pollinators of oilseed rape. Oecologia. 156:819–819 

823. 820 

Johnson SD, Steiner KE. 2000. Generalization versus specialization in plant pollination systems. 821 

Trends Evol. Ecol. 15:140-143. 822 

Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 823 

2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 824 

274:303-313. 825 

Landucci F, Panella L, Lucarini D, Gigante D, Donnini D, Kell S, Maxted N, Venanzoni R, Negri V. 826 

2014. A prioritized inventory of crop wild relatives and wild harvested plants of Italy. Crop 827 

Sci. 54:1628-1644. 828 

Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH. 2012. Characterizing genomic 829 

variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21:5512–830 

5529. 831 

Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH, Juenger TE. 832 

2014. Natural variation in abiotic stress responsive gene expression and local adaptation to 833 

climate in Arabidopsis thaliana. Mol. Biol. Evol. 31:2283–2296. 834 

Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya 835 

C, Mitchell SE, et al. 2015. Genome-environment associations in sorghum landraces predict 836 

adaptive traits. Sci. Adv. 1 :e1400218. 837 

Libourel C, Baron E, Lenglet J, Amsellem L, Roby D, Roux F. 2021. The genomic architecture of 838 

competitive response of Arabidopsis thaliana is highly flexible among plurispecific 839 

neighborhoods. Front. Plant Sci. 12:741122. 840 

Lomáscolo SB, Giannini N, Chacoff NP, Castro-Urgal R, Vázquez DP. 2019. Inferring coevolution in 841 

a plant–pollinator network. Oikos. 128:775–789. 842 

López-Goldar X, Agrawal AA. 2021. Ecological interactions, environmental gradients, and gene 843 

flow in local adaptation. Trends Plant Sci. 26:796-809. 844 

Majetica CJ, Fettersa AM, Becka OM, Stachnika EF, Beam KM. 2017. Petunia floral trait plasticity 845 

in response to soil nitrogen content and subsequent impacts on insect visitation. Flora. 846 

232:183-193. 847 

Majhi BB, Sobol G, Gachie S, Sreeramulu S, Sessa G. 2021. BRASSINOSTEROID-SIGNALLING 848 

KINASES 7 and 8 associate with the FLS2 immune receptor and are required for flg22-849 

induced PTI responses. Mol. Plant Pathol. 22:786-799.   850 

Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, Callot C, Langlade N, Muños S. 2016. 851 

Extraction of high-molecular-weight genomic DNA for long-read sequencing of single 852 

molecules. BioTechniques. 61:203-205. 853 

Nguyen VPT, Stewart JD, Ioannou I, Allais F. 2021. Sinapic acid and sinapate esters in Brassica: 854 

innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from 855 

biomass, and biological activities. Front. Chem. 9:664602.  856 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Nunes C, Schluepmann H, Delatte TL, Wingler A, Silva AB, Feveiro PS, Jansen M, Fiorani F, Wiese-857 

Klinkenberg A, Paul MJ. 2013. Regulation of growth by the trehalose pathway Relationship 858 

to temperature and sucrose. Plant Signal. Behav. 8:e22626. 859 

Ohashi K, Jürgens A, Thomson JD. 2021. Trade-off mitigation: a conceptual framework for 860 

understanding floral adaptation in multispecies interactions. Biol. Rev. 96:2258-2280. 861 

Parry G. 2014. Components of the Arabidopsis nuclear pore complex play multiple diverse roles 862 

in control of plant growth. J. Exp. Bot. 65:6057–6067.  863 

Petanidou T, Smets E. 1996. Does temperature stress induce nectar secretion in Mediterranean 864 

plants? New Phytol. 133:513-518. 865 

Petanidou T, Kallimanis AS, Sgardelis SP, Mazaris AD, Pantis JD, Waser NM. 2014. Variable 866 

flowering phenology and pollinator use in a community suggest future phenological 867 

mismatch. Acta Oecol. 59:104-111. 868 

Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S. 2016. Genome–869 

environment association study suggests local adaptation to climate at the regional scale in 870 

Fagus sylvatica. New Phytol. 210:589–601. 871 

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator 872 

declines: trends, impacts and drivers. Trends Evol. Ecol. 25:345-353. 873 

Rossi M, Fisogni A, Nepi M, Quarantac M, Galloni M. 2014. Bouncy versus idles: On the different 874 

role of pollinators in the generalist Gentiana lutea L. Flora. 209:164-171.  875 

Russo A, Mayjonade B, Frei D, Potente G, Kellenberger RT, Frachon L, Copetti D, Studer B, Frey JE, 876 

Grossniklaus U, et al. 2022. Low-input high-molecular-weight DNA extraction for long-read 877 

sequencing from plants of diverse families. Front. Plant Sci. 13:883897. 878 

Sahli HF, Conner JK. 2011. Testing for conflicting and nonadditive selection: floral adaptation to 879 

multiple pollinators through male and female fitness. Evolution. 65:1457–1473. 880 

Schiestl FP, Balmer A, Gervasi DD. 2018. Real-time evolution supports a unique trajectory for 881 

generalized pollination. Evolution. 72:2653–2668. 882 

Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O’Brien N, Krumbein 883 

A. 2012. UV-B-induced secondary plant metabolites - potential benefits for plant and 884 

human health. Crit. Rev. Plant Sci. 31:229–240. 885 

Sobral M, Veiga T, Domínguez P, Guitián JA, Guitián P, Guitián J. 2015. M. Selective pressures 886 

explain differences in flower color among Gentiana lutea populations. PLoS ONE. 10, 887 

e0132522. 888 

Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological 889 

importance. Planta. 247:1051–1066. 890 

Terhorst CP, Lau JA, Cooper IA, Keller KR, La Rosa RJ, Royer AM, Schultheis EH, Suwa T, Conner JK. 891 

2015. Quantifying nonadditive selection caused by indirect ecological effects. Ecology. 892 

96:2360–2369. 893 

Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of 894 

mutualistic and trophic networks. Science. 329:853-856. 895 

Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions 896 

in terrestrial ecosystems. Ecol. Lett. 11:1351-1363.  897 

Wang Y, Chu YJ, Xue HW. 2012. Inositol polyphosphate 5-phosphatase-controlled 898 

Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early 899 

germination of pollen. Development. 139:2221-2233. 900 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Wang L, Mao Y, Wang Z, Ma H, Chen T. 2021. Advances in biotechnological production 901 

of β-alanine. World J. Microbiol. Biotechnol. 37-79. 902 

Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 1996. Generalization in pollination 903 

systems, and why it matters. Ecology. 77:1043-1060. 904 

Wormit A, Usadel B. 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. 905 

J. Mol. Sci. 19:2878.   906 

Xing D, Zhao H, Xu R, Li QQ. 2008. Arabidopsis PCFS4, a homologue of yeast polyadenylation factor 907 

Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J. 54:899–908 

910. 909 

Zografou K, Swartz MT, Tilden VP, Mckinney EN, Eckenrode JA, Sewall BJ. 2021. Stable generalist 910 

species anchor a dynamic pollination network. Ecosphere. 11:e03225. 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/


Figures  946 

 947 

 Figure 1. Distribution of Brassica incana natural populations. On the left, a photograph of a 948 

flowering B. incana in the PALI population. On the right, the Campania region is represented in 949 

dark grey on the Italy map. The 21 natural populations of B. incana are indicated with coloured 950 

dots on the map. The orange dots indicate six populations on tuff soil, and the blue dots 15 951 

populations on limestone soil. 952 
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Figure 2. Brassica incana – functional categories of pollinators interaction analysis in 21 natural 972 

populations in springs 2018 and 2019. The upper part of the figure represents the 12 functional 973 

categories of pollinators. The size of boxes represents the total number of visits per functional 974 

category of pollinators observed in all 21 populations combined. The lower part the figure 975 

represents the 21 natural populations of B. incana coloured according to their soil type (tuff soil 976 

in orange, limestone soil in blue). The size of the boxes represents the total number of visits, all 977 

categories of pollinators combined, per population. The width of the lines connecting functional 978 

categories of pollinators to populations indicates the proportion of visits observed per pollinator 979 

category within each population. 980 
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Figure 3: Manhattan plot of genome-environmental association analysis for four ecological 994 

variables; (A) visit of bumblebees, (B) partner diversity, (C) fine silt, and (D) mean annual 995 

temperature. The x-axis indicates the physical position of the 5’530’708 SNPs along the 139 super-996 

scaffolds illustrated by different colours. The y-axis indicates the Bayes Factor corrected by local 997 

score method (Lindley score). 998 
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Figure 4. Illustration of the relationship among candidate genes associated with local 1020 

adaptation to ecological network. Only variables for which a significant enrichment of the 1021 

selection signature was detected are considered. The left shows the number of candidate genes 1022 

(set size) identified in local adaptation to the specific variable in GEA analysis. On top, the number 1023 

of candidate genes associated with a specific variable (single black dot) or shared among variables 1024 

(multiple black dots linked). The candidate genes are those from the significant zones identified 1025 

by correcting with local score method the GEA, and the down and upstream genes. 1026 
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Table 1. Significant enrichment in signature of selection for pollinator categories, plant-1047 
pollinators interaction indices, climatic and edaphic variables testing the over-representation of 1048 
the 0.05% upper tail of the Lindley score distribution in the 0.05% upper tail of the genome-wide 1049 
spatial differentiation (XtX) distribution. See Table S7 for the enrichment’s results of the 33 1050 
ecological variables. 1051 
 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

Traits ntops Enrichment pvalue

Long-tongue bees 21 16.53 **

Bumblebees 23 18.11 ***

Large bees 15 11.81 **

Hoverflies 25 19.68 ***

Small flies 6 4.72 *

Normalised degree 19 14.96 **

Species strength 6 4.72 *

Partner diversity 20 15.74 ***

d index 31 24.40 ***

Mean annual temperature 109 85.81 ***

Ratio C/N 13 10.23 **

CaCO3 12 9.45 **

Fe 39 30.70 ***

Fine silt 59 46.45 ***

Coarse sand 62 48.81 **

Coarse silt 31 24.40 **

P2O5 15 11.81 **
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Supplementary information 1074 

Title: Genomic local adaptation of a generalist plant species to pollinator communities and soil 1075 

Authors: Frachon L., Arrigo L., Rusman Q., Poveda L., Qi W., Scopece G., Schiestl P.F.  1076 

 1077 

Figure S1. Matrix of spearman correlation on 61 ecological variables considered. Significant 1078 

correlations are indicated by coloured dots. Not dots mean no significant correlations. The 1079 

strength of the correlation is indicated by the size of the dots, and the direction by the blue and 1080 

red gradient (gradient scale at the lower part of the figure). The traits indicated in grey were 1081 

discarded from the genomic analysis due to high correlations with other traits (spearman rho > 1082 

0.8).    1083 

 1084 

 1085 

 1086 
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Figure S2. Ecological variation among 21 natural populations of B. incana. (A) Correlation plot 1087 

from a principal component analysis preformed on 33 environmental variables with pairwise rho 1088 

spearman < 0.8. Principal component PC1 and PC2 explained 21.62% and 17.13% respectively. (B) 1089 

Position of the 21 natural populations of B. incana in ecological space. The populations in tuff soil 1090 

are coloured in orange, and in limestone soil in blue.   1091 
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Figure S3. Position of 21 natural populations of B. incana in genomic space. Genomic variation 1107 

was estimated using a singular value decomposition (SVD) of omega matrix using Baypass 1108 

software from one sub-sample. The first PCgenomic explaining 94.3% of the genomic variance is 1109 

represented on the x-axis, and the second PCgenomic on the y-axis explaining 3% of the genomic 1110 

variance. The tuff and limestone soil of 21 populations are indicated in orange and in blue, 1111 

respectively.  1112 
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Figure S4. Manhattan plots of Genome-Environmental Association performed on 33 ecological 1126 

variables. The x-axis represents the physical position of SNPs along the 139 super-scaffolds 1127 

illustrated in colour. The y-axis is the Lindley score. The name of the ecological variable is 1128 

indicated on the upper part of the Manhattan plot.  1129 
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Figure S4. To be continued 1139 
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Figure S4. To be continued 1150 
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Figure S5. Illustration of the variability of SNPs involved in plant adaptation to a complex 1161 

ecological network. The upset plot illustrates the specific SNPs to 33 ecological variables (only 1162 

dots), and the shared SNPs among these ecological variables (dots linked with bar). The blue bars 1163 

represent SNPs shared among B. incana responses to plant-pollinators interaction indices and 1164 

categories of pollinators. The yellow bars represent the SNPs shared among the climate variables 1165 

and pollinator community descriptors (categories and interactions). The red bars represent the 1166 

SNPs shared among edaphic variables and the pollinator community descriptors. The top 0.05% 1167 

SNPs of the highest association score were considered for 33 ecological variables listed in the left 1168 

(i.e. set size = 2541 SNPs per ecological variable). Only the 156 first intercepts are shown (i.e. more 1169 

than 1% of the set size). For instance, 1435 SNPs are unique to long-tongue bees, and 149 SNPs 1170 

are shared between long-tongue bees and mean annual temperature. The ecological variables 1171 

with non-significant enrichment in signature of selection have been shaded.  1172 
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Figure S6: Illustration of the flexibility of genetic architecture in response to complex a 1179 

ecological network. Venn diagram illustrating the shared top SNPs (0.05% of the highest local 1180 

score) for the 33 ecological variables. The variables are grouped by main categories (pollinator 1181 

categories in green, plant-pollinators interaction indices in blue, edaphic variables in red, and 1182 

climatic variables in yellow). The number of variables and the total number of SNPs considered 1183 

are indicated between parenthesis bellow each category of variables. The Venn diagram was draw 1184 

using jvenn.toulouse.inra.fr website.  1185 
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Figure S7. Manhattan plot of the index of genetic differentiation genetic (XtX). The upper panel 1195 

illustrated the results obtained by Baybass analysis, and the lower panel those obtained by 1196 

correcting with the local score method (y-axis is the Lindley score). The x-axis represents the 1197 

physical regions of the SNPs along the 139 super-scaffolds. 1198 

 1199 

 1200 

Table S1. Description of 21 natural populations of B. incana. 1201 

 1202 

 1203 

Pop. Name Localities latitude longitude Elevation Substrate Pop. Size 2018

PROC Monte di Procida 40.809370 14.044790 16 Tuff 20

AMEN Ischia, Lacco Ameno 40.751632 13.896623 6 Tuff 30

EPOM Ischia, Vetta Epomeo 40.730072 13.895328 767 Tuff 20

CUMA Mainland di Cuma 40.850475 14.049944 41 Tuff 20

CORO Napoli, Coroglio-Nisida 40.798367 14.175846 19 Tuff 40

CAPR Capri, Scala Fenicia 40.556357 14.228237 180 limestone 100

ANAC Anacapri, Monte Solaro 40.545771 14.223282 562 limestone 1000

CHIU Valico di Chiunzi 40.719061 14.619117 648 limestone 15-30

COLL Colli-Positano 40.619627 14.447449 253 limestone 15-30

FURO Furore 40.614468 14.548246 91 limestone 15-2

CAMA Napoli, Camaldoli 40,855181 14.207769 159 Tuff 20-30

MAGL Magliano Vetere 40.342298 15.242826 622 limestone 15-20

PALI Palinuro, Arco naturale 40.030830 15.308058 2 limestone 30-50

ATRA Atrani 40.636737 14.610037 52 limestone 15

SERI Serino 40.8204531 14.919611 708 limestone 10-15

SACC Sacco, Salerne 40.386551 15.366420 505 limestone 50-100

CAST Castellammare di Stabia 40.682200 14.439804 20 limestone 50

DEI Sentiero degli Dei 40.625781 14.536430 649 limestone 15

CETA Cetara 40.645236 14.699832 52 limestone 30

POTE Vietri di potenza 40.570945 15.520259 359 limestone 30

MARA Maratea 40.0421848 15.6525735 135 limestone 100
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Table S2. Indices from the Brassica incana -- pollinator interaction analysis. The description of 1204 
the indices is available in the methods and in Dormann 2011. In grey, the metrics discarded for the 1205 
genomic analysis due to high correlation with other ecological factors (See Figure S1). 1206 

 1207 

 1208 

Table S3. Sequence data collected for de novo genome assembly of Brassica incana from 1209 

Pacbio and Illumina 1210 

 PacBio CLR Illumina PE reads 

Number of reads 2,481,304  249,786,052 

Number of bases (bp) 47,372,198,992 74,935,815,600 

Read N50 17 kbp 2X150 bp 

Estimated coverage* 73 X 115 X 

*assumed genome size of 650 Mbp 1211 

Table S4. Bionano row molecule data collected for hybrid scaffolding of Brassica incana 1212 

contigs 1213 

Protocol NLRS DLS 

Enzyme Nb.BspQI DLE-1 

Molecule >= 20 kbp Total length (Mbp) 1,694 2,278 

N50 (Mbp) 0.101 0.123 

Molecule >= 150 kbp Total length (Mbp) 549 972 

N50 (Mbp) 233 0.267 

Label density 5.43/100 kbp 5.03/100 kbp 

Effective coverage   340.88 34.82 

 1214 

 1215 

Populations
Normalised 

degree

Species 

strength

Species 

specificity 

index

Partner 

diversity

Effective 

partners

Proportional 

similarity

Proportional 

generality
d

AMEN 0.42 0.18 0.73 0.85 2.35 0.43 0.38 0.21

ANAC 0.67 0.88 0.44 1.56 4.76 0.38 0.77 0.39

ATRA 0.67 0.44 0.58 1.23 3.41 0.66 0.55 0.13

CAMA 0.50 0.40 0.46 1.47 4.35 0.62 0.70 0.14

CAPR 0.25 0.09 0.79 0.63 1.88 0.44 0.30 0.20

CAST 0.58 0.27 0.53 1.34 3.80 0.76 0.61 0.07

CETA 0.75 0.68 0.66 1.19 3.28 0.51 0.53 0.20

CHIU 0.67 1.55 0.48 1.46 4.29 0.72 0.69 0.10

COLL 0.25 0.03 0.77 0.68 1.98 0.38 0.32 0.17

CORO 0.50 0.58 0.51 1.31 3.70 0.72 0.60 0.10

CUMA 0.58 0.56 0.54 1.32 3.74 0.74 0.60 0.09

DEI 0.17 0.04 0.72 0.64 1.89 0.14 0.31 0.32

EPOM 0.67 1.71 0.37 1.74 5.67 0.26 0.92 0.53

FURO 0.67 0.21 0.44 1.58 4.84 0.80 0.78 0.04

MAGL 0.67 0.67 0.47 1.48 4.41 0.78 0.71 0.06

MARA 0.50 0.42 0.53 1.26 3.52 0.65 0.57 0.12

PALI 0.67 0.67 0.42 1.61 5.02 0.66 0.81 0.14

POTE 0.50 0.10 0.46 1.43 4.19 0.69 0.68 0.09

PROC 0.83 1.49 0.39 1.80 6.06 0.70 0.98 0.09

SACC 0.67 0.48 0.55 1.33 3.77 0.70 0.61 0.11

SERI 0.58 0.58 0.69 1.08 2.95 0.48 0.48 0.23
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Table S5. Final assembly statistics of Brassica incana contigs and scaffolds 1216 

Metrics Contigs Scaffolds Un-anchored contigs  

Number of sequences 1,339 139 824 

Total sequence length (Mbp) 664 617 73 

Sequence N50 (Mbp) 1.53 12 0.16 

Longest sequence (Mbp) 12 32 1 

 1217 

Table S6. Spearman correlation between genomic variance (SVG) and 33 ecological variables 1218 

and PC1 and PC2 from the principal analysis performed on 33 ecological variables.  1219 

 1220 

rho P

long tongue bees -0.44 *

bumblebees 0.18 ns

large bees -0.43 ns

honeybees -0.15 ns

small bees -0.26 ns

hoverflies -0.13 ns

small flies -0.13 ns

large flies -0.22 ns

butterflies -0.08 ns

large beetles 0.09 ns

small beetles 0.25 ns

Normalised degree -0.19 ns

Species strength -0.47 *

Partner diversity -0.37 ns

d 0.29 ns

Mean annual temperature 0.25 ns

Mean annual precipitation -0.12 ns

Summer precipitation -0.11 ns

type -0.54 *

Ratio C/N 0.53 *

CaCO3 0.21 ns

clay 0.28 ns

Cu 0.31 ns

Fe 0.12 ns

Fine sand 0.29 ns

Fine silt 0.48 *

Coarse sand -0.33 ns

Coarse silt -0.08 ns

Mg 0.33 ns

N 0.07 ns

P2O5 0.07 ns

Si -0.23 ns

Zn 0.44 *

Ecological PC1 -0.39 ns

Ecological PC2 0.04 ns

PC1 (94.3%)
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Table S7. Enrichment in signature of selection for 33 ecological variables including pollinator 1221 
categories (11 variables), plant-pollinators interaction indices (4 variables), climatic (3 variables) 1222 
and edaphic variables (15 variables) in the 0.05% upper tail of the Lindley score distribution in the 1223 
0.05% upper tail of the genome-wide spatial differentiation (XtX) distribution.  1224 
 1225 

 1226 

 1227 

 1228 

Table S8. Candidate genes is available in a separated file.  1229 

 1230 

Traits ntops Enrichment pvalue

Long-tongue bees 21 16.53 **

Bumblebees 23 18.11 ***

Large bees 15 11.81 **

Honeybees 1 0.79 ns

Small bees 1 0.79 ns

Hoverflies 25 19.68 ***

Small flies 6 4.72 *

Large flies 0 0.00 ns

Butterflies 2 1.57 ns

Large beetles 0 0.00 ns

Small beetles 0 0.00 ns

Normalised degree 19 14.96 **

Species strength 6 4.72 *

Partner diversity 20 15.74 ***

d index 31 24.40 ***

Mean annual temperature 109 85.81 ***

Mean annual precipitation 4 3.15 ns

Summer precipitation 0 0.00 ns

type 0 0.00 ns

Ratio C/N 13 10.23 **

CaCO3 12 9.45 **

clay 0 0.00 ns

Cu 0 0.00 ns

Fe 39 30.70 ***

Fine sand 3 2.36 ns

Fine silt 59 46.45 ***

Coarse sand 62 48.81 **

Coarse silt 31 24.40 **

Mg 1 0.79 ns

N 3 2.36 ns

P2O5 15 11.81 **

Si 0 0.00 ns

Zn 3 2.36 ns

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502924
http://creativecommons.org/licenses/by-nd/4.0/

