

1

## Article

2   **Title:** Genomic local adaptation of a generalist plant species to pollinator communities and  
3   abiotic factors

4   **Authors:** Frachon L.<sup>1\*</sup>, Arrigo L.<sup>1</sup>, Rusman Q.<sup>1</sup>, Poveda L.<sup>2</sup>, Qi W.<sup>2,3</sup>, Scopece G.<sup>4</sup>, Schiestl F.P.<sup>1</sup>

5   <sup>1</sup> Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008,  
6   Zurich, Switzerland

7   <sup>2</sup> Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland

8   <sup>3</sup> Swiss Institute of Bioinformatics, Switzerland

9   <sup>4</sup> Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy

10   \***Corresponding author:** Léa Frachon

11   Email: [lea.frachon@systbot.uzh.ch](mailto:lea.frachon@systbot.uzh.ch), Phone: +41 44 63 48435

12   **Keywords:** *Brassica incana*, Generalist plant species, local adaptation, natural populations,  
13   plant-pollinator interactions, ecological network, Genome-Environmental Association

14

15

16

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 The reproductive success of generalist flowering plants is influenced by a complex  
29 ecological network that includes interactions with a diverse pollinator community and abiotic  
30 factors. However, knowledge about of the adaptative potential of plants to complex ecological  
31 networks and the underlying genetic mechanisms is still limited. Based on a pool-sequencing  
32 approach of 21 natural populations of *Brassica incana* in Southern Italy, we combined a genome-  
33 environmental association analysis with a genome scan for signature of selection to discover  
34 genetic variants associated with ecological variation. We demonstrated that *B. incana* is locally  
35 adapted both to the identity of functional categories and overall pollinator interactions.  
36 Interestingly, we observed only few shared candidate genes associated with long-tongue bees,  
37 soil texture, and temperature variation. Our results highlight the genomic architecture of  
38 generalist flowering plant adaptation to complex biotic interactions, and the importance of  
39 considering multiple environmental factors to describe the adaptive landscape of plant  
40 populations.

41

42 **Introduction**

43 In natural populations, most of the flowering plant species interact simultaneously with  
44 different functional groups of pollinators (called generalist species) ensuring their reproductive  
45 success (Albrecht et al. 2012). By interacting with an assemblage of generalist and specialist  
46 pollinators, widely distributed generalist plant species (Waser et al. 1996, Johnson and Steiner  
47 2000) appear robust to pollinator changes within mutualistic networks (Bascompte and Jordano  
48 2007, Thébault and Fontaine 2010, Burkle et al. 2013, Zografou et al 2021). Although generalist  
49 plant species are keystones in mutualist interaction networks, we know little about the adaptive  
50 potential of these plants to pollinator communities. Only a handful of studies have demonstrated  
51 the role of pollinator assemblages on floral evolution in generalist plant species (Gomez et al.  
52 2009, Sahli and Conner 2011, Gomez et al. 2015, Sobral et al. 2015, Schiestl et al. 2018, de  
53 Manincor et al. 2021). For instance, it has been recently showed that pollinator communities can  
54 drive flower shape evolution in generalist species *Erysimum* (Gomez et al. 2015), or geographic  
55 variation in flower scent (de Manincor et al. 2021). However, floral evolution in generalist plant  
56 species appears to be complex (Gomez et al. 2015), probably involving independent and  
57 genetically linked phenotypic traits associated with pollinator preferences (Frachon et al. 2021,  
58 Ohashi et al 2021). To understand if and how generalist plant species locally adapt to their

59 pollinator communities, we need to investigate the underlying genomics. This will help us  
60 understand the coevolution of generalist plant-pollinator networks.

61 Plant-pollinator interactions are influenced by abiotic factors (Tylianakis et al. 2008,  
62 Chamberlain et al 2014, Antiqueira et al. 2020). For instance, climate change can induce  
63 mismatches between plant and pollinators due to non-synchronized phenology shifts (Hegland et  
64 al. 2009, Petanidou et al. 2014), or changes in plant attractiveness to pollinators (Petanidou and  
65 Smets 1996, Hoover et al. 2012, Herrera and Medrano 2017, Descamps et al. 2021). Moreover,  
66 soil heterogeneity can strongly affect plant attractiveness to pollinators through changes in nectar  
67 secretion, production of pollen or essential oils, and floral scent (Burkle and Irwin 2009, Majetic  
68 et al. 2017, David et al. 2019, Carvalheiro et al. 2021). Understanding how both pollinator  
69 communities and abiotic factors simultaneously drive the evolution of combined phenotypic  
70 traits and their associated genomic regions is a current challenge requiring a holistic approach  
71 from ecology to genomics (Clare et al. 2013, Lopez-Goldar and Agrawal 2021).

72 Genome-environment association (GEA) analysis is a powerful approach to identify  
73 genomic regions involved in the adaptive response of organisms to complex ecological networks  
74 without phenotypic characterization (de Mita et al. 2013). This approach takes advantage of the  
75 genetic fingerprint left by selective pressures due to environmental variation among natural  
76 populations. Although commonly used to understand the genetic architecture of plants involved  
77 in responses to climate change (Hancock et al. 2011, Lasky et al. 2015, Pluess et al. 2016, Cortés  
78 and Blair 2018, Frachon et al. 2018), the GEA approach has recently shown its effectiveness in  
79 unravelling the genetic variants of *A. thaliana* underlying adaptative response to complex biotic  
80 interactions such as leaf microbiome (Horton et al. 2014) and plant communities (Frachon et al.  
81 2019).

82 In our study, we adopted a GEA approach to understand the adaptative potential of the  
83 generalist plant *Brassica incana* to its pollinator community (visitation by pollinator functional  
84 categories, and plant-pollinator interactions indices) as well as to potential interacting effects  
85 with climatic and edaphic (soil composition and texture) variables. By characterizing 61 ecological  
86 factors, *de novo* assembly of the *B. incana* reference genome, and pool-sequencing of 21 natural  
87 populations of *B. incana* in Southern Italy for 5'530'708 Single Nucleotide Polymorphisms (SNPs),  
88 we finely mapped QTLs associated with variation in pollinator communities, climate, and soil. This  
89 approach was combined with a genome scan for signatures of selection and enrichment in SNPs  
90 with high genetic differentiation to detect signatures of selection. Altogether, we found local

91 adaptation of generalist plant species to a complex ecological network underlying variable genetic  
92 architecture.

93

94 **Results**

95 **Variation in ecological variables among 21 natural populations of *Brassica incana***

96 Pollinator communities were characterized during the spring seasons of 2018 and 2019  
97 by observing pollinator visitation to plants of 21 natural populations of *B. incana* (**Fig. 1, Table**  
98 **S1**). Flower visitors were grouped into 12 functional categories *ie* bumblebees, long-tongue bees,  
99 other large bees (called large bees), small bees, honeybees, large wasps, small flies, large flies,  
100 hoverflies, small beetles, large beetles, butterflies (**Fig. 2**). To characterize differences in pollinator  
101 communities among populations, we performed a *B. incana* – pollinators' interaction analysis  
102 based on the total number of pollinator visits by functional categories. Pollinator communities  
103 were mainly dominated by long-tongue bees, small bees, honeybees, large bees, hoverflies, and  
104 bumblebees in decreasing order (**Fig. 2**). Moreover, the visits of functional categories of  
105 pollinators varied among 21 populations (**Fig. 2**), leading to variation in  $\alpha$ -diversity, estimated by  
106 Shannon index, ranking from 0.63 to 1.80 (average = 1.28) (**Table S2**). The calculated indexes from  
107 the interaction analysis (**Table S2**) showed that *B. incana* plants in natural populations relied on a  
108 large number of functional categories of pollinators as suggested by the low value of species  
109 strength (minimum = 0.03, maximum = 1.71, average = 0.57, **Table S2**). Moreover, other indices  
110 confirmed that *B. incana* was a generalist plant species such as a high normalised degree index  
111 showing a high number of realized *B. incana* – pollinators links among populations (minimum =  
112 0.17, maximum = 0.83, average = 0.56, **Table S2**) and low d-index values (minimum = 0.04,  
113 maximum = 0.53, average = 0.17, **Table S2**).

114 Among the 21 natural populations, 28 of 61 characterized ecological variables were highly  
115 correlated (Spearman rho > 0.8) and were all discarded from the genomic analyses (**Fig. S1**). These  
116 highly correlated variables concerned mainly *B. incana* – pollinator interaction (four out of eight  
117 variables) and climate variables (17 variables out of 20). While we had a clear differentiation of  
118 tuff vs limestone soils following the Northwest – Southeast axis among the 21 populations (due  
119 to the geography of Southern Italy), the different characteristics of these soils were not correlated  
120 among each other's (**Fig. S1**). The principal component analysis showed that the six populations  
121 in tuff soil (AMEN, CAMA, CORO, CUMA, PROC, EPOM) were ecologically similar and  
122 differentiated from other populations by the visits of hoverflies, the visits of large beetles, the

123 mean annual precipitation, and the species strength (an index for plant-pollinator interactions,  
124 **Fig. S2**). The visits of bumblebees, large bees, and d index an index of plant-pollinator interactions)  
125 were correlated to the fine sand, coarse silt, Fe and summer precipitation in the ecological space  
126 created by the two first axis of the PCA (**Fig. S2**).

127 **Annotated reference genome of *Brassica incana***

128 The final assembled sequences of the *Brassica incana* reference genome were organised  
129 into 1'339 contigs, which were scaffolded into 139 super-scaffolds using Bionano optical map  
130 (**Table S5**). The 139 super-scaffolds were used in our study, including a total sequence length of  
131 617Mbp, scaffold N50 of 12 Mbp and a longest sequence at 32 Mbp, with a BUSCO completeness  
132 score of 97.7% (**Table S5**). Sequencing data from Pacbio and Illumina used for this study are  
133 available at the European Nucleotide Archive ENA database (accession number PRJEB54646). The  
134 bionano raw data and assembled optical maps are available at National Library for Biotechnology  
135 Information (NCBI) database (sample name PRJNA859008).

136 In total 51'001 genes were predicted, including 50'895 proteins (from the iprscan) divided  
137 into 1'112 different categories of GO terms. As comparison, the reference genome of *Brassica*  
138 *oleracea* (genome size = 488.6 Mb) was composed of 53'125 genes, and *Arabidopsis thaliana*  
139 38'311 genes (genome size = 119.1 Mb) in the NCBI database.

140 **Genomic architecture of *B. incana* response to ecological variations**

141 After mapping the 21 pool-sequences from 21 natural populations to the *B. incana*  
142 reference genome we generated, we estimated the allele-frequencies across the 139 super-  
143 scaffolds for a final number of 5'530'708 SNPs. Using singular value decomposition (SVD) of the  
144 population variance-covariance matrix  $\Omega$ , we estimated a strong degree of subdivision (*i.e.*  
145 “structuration” of populations without genetically similar populations) among our populations  
146 represented by the first PC<sub>genomic</sub> explaining 94.3% of genomic variance (**Fig. S3**). This finding was  
147 supported by a weak geographic pattern along the Northeast – Southwest axis (linear model for  
148 PC1<sub>genomic</sub>; latitude:  $t$  value = 3.24,  $P$  = 0.005, longitude:  $t$  value = 3.31,  $P$  = 0.004,  
149 latitude\*longitude:  $t$  value = -3.33,  $P$  = 0.004, adjusted  $R^2$  = 47.1%). Thus, the regional geographic  
150 scale applied in our study prevents the confounding effect of population structure on the  
151 genome-environmental analysis (Frachon et al. 2018, Frachon et al. 2019). The variation of most  
152 ecological factors was weakly (non-significant) correlated with the genomic variation (**Table S6**)  
153 suggesting true positives in the genome-environmental analysis (Frachon et al. 2018, Frachon et  
154 al. 2019). However, as expected with the Northeast-Southwest axis of soil, we observed

155 significant correlation between PC1<sub>genomic</sub> and six environmental factors including type of soil (long  
156 tongue bees, species strength, ratio C/N, Fine Silt, and Zn, **Table S6**). The genome-environmental  
157 association analysis performed in our study, could underestimate genomic regions involved in  
158 these six environmental variables due to confounding effects between population structure and  
159 variation of these variables, leading to potential false negatives.

160 To identify the adaptive genetic loci associated with functional categories of pollinators,  
161 *B. incana* — pollinator interaction indices, climate and soil composition and texture variation, we  
162 performed a genome-wide scan for associations between standardized allele frequency variation  
163 along the 139 super-scaffolds of *B. incana* genome and 33 less correlated ecological variables  
164 using a Bayesian hierarchical model. The association scores (Bayes factors, BFdB) between the  
165 variation of genomic region and ecological variables were estimated, and a local score method  
166 was applied correcting for linkage disequilibrium. Using this method, we observed neat and  
167 narrow peaks of association across the 139 super-scaffolds for the considered ecological variables  
168 (**Fig. 3**, **Fig. S4**). Most of the genomic regions involved in response of *B. incana* to the variation of  
169 functional categories of pollinators were unique, except for the visits of bumblebees, hoverflies,  
170 and long-tongue bees (**Fig. S5**, **Fig. S6**). For instance, 56% of SNPs with the 0.05% of highest  
171 association score were uniquely associated with long-tongue bees (1'435/2'541 SNPs), 95% were  
172 uniquely associated with large bees (2'414/2'541 SNPs), and 97% were uniquely associated with  
173 honeybees (2'471/2'541 SNPs, **Fig. S5**). However, only 15% of SNPs with the highest association  
174 score were uniquely associated with bumblebee or hoverfly visits (**Fig. S5**). The latter share 22%  
175 of their SNPs with highest association score between them, and an important part of SNPs with  
176 the texture of the soil (fine silt and coarse sand, **Fig. S5**). Overall, 88% of 0.05% of SNPs with the  
177 highest association score were uniquely associated with pollinator functional categories indicated  
178 an important part of SNPs involved in *B. incana* adaptation to functional categories of pollinators  
179 (**Fig. S6**).

180 Interestingly, the genomic architecture associated with *B. incana* — pollinator interaction  
181 indices was slightly more complex, with the detection of multiple narrow peaks per variable (**Fig.**  
182 **3**, **Fig. S4**). As expected from their ecological correlations, some indices describing *B. incana* -  
183 pollinator interactions shared genomic regions among them (**Fig. 4** and **Fig. S5**). Considering all  
184 the indices related to *B. incana* — pollinator interactions, 73% of SNPs were associated with the  
185 response of *B. incana* to the variation of these indices (**Fig. S6**). The remaining SNPs were shared  
186 among these indices and the variables involved in adaptive response to mean annual  
187 temperature, texture of the soil (fine silt and coarse sand) and some functional categories of  
188 pollinators (**Fig. S5**). Finally, 92% and 85% of SNPs with highest association scores were uniquely

189 associated with the adaptation of *B. incana* to soil and climate respectively (**Fig. S6**). Overall, our  
190 results highlighted a flexible genetic architecture involving mainly unique genomic regions in the  
191 adaptive response to ecological variables, as well as few shared genomic regions among them.

192 **Local adaptation of *Brassica incana* to ecological network**

193 To address the signal of natural selection on loci identified by GEA, we performed a  
194 genome-wide scan for genetic differentiation index (XtX) among the 21 natural populations of *B.*  
195 *incana* based on standardized allelic frequencies (i.e. allele frequencies corrected for population  
196 structure). After correcting the signal with local score method, we detected four genomic regions  
197 under strong selection on super-scaffolds 1 (including five candidate genes), 10 (including three  
198 candidate genes), 37 (including nine candidate genes) and 74 (including 32 candidate genes, **Fig.**  
199 **S7, Table S8**).

200 To support local adaptation of plants to different ecological variables, we performed an  
201 enrichment for signature of selection by testing the over-representation of top SNPs (i.e. 0.05%  
202 upper tail of BFdB distribution of SNPs associated with the 33 ecological variables) in the tail of  
203 the XtX distribution (i.e. 0.05% of SNPs strongly under selection). The enrichment in signature of  
204 selection allowed to distinguish the ecological variables associated with genomic variations due  
205 to selective processes from those that were associated due to random effects. We found that 17  
206 out of 33 ecological variables displayed a significant enrichment (**Table 1, Table S7**). For instance,  
207 we found a strong enrichment in signature of selection for five functional categories of pollinators  
208 including bumblebees (23-fold), hoverflies (25-fold), and long-tongue bees (21-fold, **Table 1**). The  
209 four variables involved in *B. incana* — pollinator interactions showed significant enrichment  
210 ranging from 6-fold for species strength to 31 for the d index (**Table 1**). Finally, abiotic factors  
211 showed significant fold-enrichment for 7 out of 15 edaphic variables (ranging from 12 for CaCO3  
212 to 62 for coarse sand), and a strong significant enrichment for mean annual temperature (109-  
213 fold, **Table 1, Table S7**).

214 **Candidate genes involved in plant response to pollinators**

215 The candidate genes involved in local adaptation of *B. incana* to the ecological network  
216 were identified by retrieving genes within significant zones identified by the GEA analyses, as well  
217 as down- and upstream genes as in Libourel et al. (2021). From the GEA results showing significant  
218 enrichment in XtX index, we identified 48 candidate genes involved in plant responses to  
219 functional categories of pollinators, and 26 candidate genes involved in adaptive responses to *B.*  
220 *incana* — pollinator interactions (list of all candidate genes in **Table S8**). For candidate genes

221 involved in adaptation to different pollinator functional categories, we found some genes  
222 involved in plant signals and rewards such as (1) UV-B-induced protein inducing changes in the  
223 accumulation of phenolic compounds, carotenoids and glucosinolates (Schreiner et al. 2012), (2)  
224 Sinapine esterase, an important enzyme in floral pigmentation (Nguyen et al. 2021), (3) 2-C-  
225 methyl-D-erythritol 2,4-cyclodiphosphate synthase (*ISPF*) involved in methylerythritol phosphate  
226 pathway (MEP) in biosynthesis of terpenoids (Tarkowska- and Strnad 2018), an important volatile  
227 class involved in plant attractiveness (Abas et 2017, Bouwmeester et al 2019), (4)  
228 Dihydropyrimidine dehydrogenase (NADP(+)) (*PYD1*) involved in  $\beta$ -alanine biosynthesis (Wang et  
229 al 2021) a component present in nectar-feeding bumblebees (Rossi et al. 2014), (5) Trehalose-  
230 phosphate phosphatase B (*TPPB*) important in carbon flux maintain associated with sucrose  
231 supply (Nunes et al. 2013), a main component of nectar, and (6) transcription factor MYB73  
232 involved in anthocyanin biosynthetic pathway (Gomez et al 2020). We found several candidate  
233 genes involved in plant architecture and growth such as (1) protein CUP-SHAPED COTYLEDON 3  
234 (*NAC031*) (Gao et al. 2021), and (2) nuclear pore complex protein (*NUP98A*) (Parry 2014), (3)  
235 Pectinesterase inhibitor 10 (*PME10*) (Wormit et al 2018). Some candidate genes were involved  
236 in reproduction processes such as (1) Expansin-B5 in growth pollen tube (*EXPB5*, da Costa et al  
237 2012), and (2) type I inositol polyphosphate 5-phosphatase 12 (*IP5P12*) involved in pollen  
238 dormancy and early germination (Wang et al 2012). We identified candidate genes involved in  
239 immunity and plant defence such as Serine/threonine-protein kinase *BSK7* interacting with  
240 pattern-triggered immunity (Majhi et al 2021), and LRR receptor-like serine/threonine-protein  
241 kinase (Afzal et al 2008). It is noteworthy that 38% of the identified candidate genes involved in  
242 plant response to pollinators were associated with proteins with unknown function. Interesting,  
243 few candidate genes mentioned above were involved in both the response of *B. incana* to  
244 bumblebees and hoverflies such as UV-B induced protein, or the *PYD1* (Fig. 4, Table S8).

245 For candidate genes involved in adaptation to plant-pollinator interactions, we found  
246 some genes involved in plant architecture and growth such as transcription factor *BEE2* (*BEE2*)  
247 (Friedrichsen et al 2002), protein TRIGALACTOSYLDIACYLGLYCEROL 2 (*TGD2*)(Fan et al. 2015), and  
248 ethylene-responsive transcription factor (*ERF024*, Lata et al 2014). Some of these candidate genes  
249 were involved in controlling pollen tube such as *LLG3* GPI-anchored protein *LLG2* (Ge et al. 2019),  
250 or in flowering time such as polyadenylation and cleavage factor homolog 4 (*PCFS4*) (Xing et al  
251 2008). However, 48% of the identified candidate genes involved in *B. incana* response to plant-  
252 pollinator interactions are associated with proteins with unknown functions.

253 Finally, we observed multiple shared candidate genes in the response of *B. incana* to  
254 pollinators and climatic factors: between mean annual temperature and hoverfly and bumblebee

255 visitation, pollinator diversity, and combined pollinator diversity and realized number of  
256 pollinator links, as well as shared candidate genes in the response of *B. incana* to pollinators and  
257 edaphic factors, *e.g.* between long-tongue bees and coarse sand, and coarse sand and fine silt  
258 (**Fig. 4, Table S8**).  
259

260 **Discussion**

261 While pollinators provide essential ecosystem services (Klein et al. 2007, Potts et al.  
262 2010), whether and how plants with generalized pollination adapt to geographic variation in  
263 pollinator communities and the underlying genetic basis is still poorly documented. Using an  
264 ecological genomics approach, our study unravelled the genomic bases of plant adaptation to  
265 pollinator communities and potential interacting abiotic factors.

266 **Local adaptation to functional categories of pollinators**

267 The observed mosaic of pollinators among our 21 natural populations led to local  
268 adaptation of the generalist plant species *B. incana* to pollinators. These results are in line with  
269 few studies in evolutionary ecology emphasizing the importance of pollinators in driving the floral  
270 evolution of generalist plant species (Gomez et al. 2009, Bodbyl Roels and Kelly 2011, Sahli and  
271 Conner 2011, Gomez et al. 2015, Sobral et al. 2015, Gervasi and Schiestl 2017, Schiestl et al. 2018,  
272 de Manincor et al. 2021). We uncovered here the underlying genomic mechanisms of these  
273 adaptive processes: a flexible genomic architecture involving genomic regions that were strongly  
274 associated with functional categories of pollinators. In particular, we have identified pollinator  
275 category-specific candidate genes including some that were potentially involved in biosynthetic  
276 pathways of plant signals and rewards to attract pollinators. For instance, we identified two  
277 interesting genes involved in *B. incana* adaptive response to long-tongue bees; a candidate gene  
278 encoding for the enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (*ISPF*) involved  
279 in the ethylerythritol phosphate (*MEP*) pathway, responsible for terpenoids biosynthesis (mono-  
280 and diterpenoids biosynthesis; Abbas et al. 2017, Tarkowská and Strnad 2018, Bouwmeester et  
281 al. 2019), an important class of volatiles in plant-pollinator interactions (Baldwin et al. 2006, Abas  
282 et al. 2017, Bouwmeester et al. 2019). In addition, we found a candidate gene encoding for the  
283 trehalose-phosphate phosphatase B (*TPPB*) enzyme involved in carbon flux maintaining,  
284 correlated with sucrose supply (Nunes et al. 2013), an essential component of nectar.  
285 Interestingly, we found adaptive responses of *B. incana* both to efficient pollinators in pollen  
286 transfer (long-tongue bees, bumblebees, and other large bees), as well as to supposedly less  
287 efficient pollinators (hoverflies, small flies). Local adaptation to supposedly “inefficient”

288 pollinators may be surprising since they contribute less to plant reproductive success. However,  
289 the observed adaptation to such less-efficient pollinators can be explained by spatial and  
290 temporal variation in selective regimes influenced by the local interactions (Gomez et al. 2009b)  
291 such as increased importance of hoverflies to pollination when bees are scarce or absent (Jauker  
292 and Wolters 2008, Ohashi et al. 2021). Local adaptation to less-efficient pollinators could also be  
293 related to reproductive assurance in hoverfly-dominated populations, with potential limited  
294 pollen transfer leading to reduced floral size and decrease of volatile emission as observed in  
295 Gervasi and Schiestl (2017) or related to indirect effects of hoverflies on bees' visitations.  
296 Surprisingly, in our study, it appears that the adaptive response to bumblebees and hoverflies  
297 involved similar genomic regions. For instance, we identified a candidate gene encoding for a  
298 dihydropyrimidine dehydrogenase (*PYD1*) enzyme involved in the biosynthesis of  $\beta$ -alanine  
299 (Wang et al 2021), a component recently found associated with nectar-feeding bumblebees in  
300 *Gentiana lutea* (Rossi et al. 2014). It would be interesting to compare the rate of  $\beta$ -alanine  
301 production among our populations according to the ratio of bumblebees and hoverflies visitations  
302 to better understand this adaptive response. Finally, among the identified candidate genes  
303 involved in response to different functional categories of pollinators, we also identified genes  
304 involved in protein chaperon, plant growth, plant immunity, and a non negligible part of protein  
305 with unknown function (~33% of candidate genes). Thus, plant species with generalized  
306 pollinations system are locally adapted to their "specific" generalist pollinator community  
307 including identifiable genomic regions associated with candidate genes that are involved in plant  
308 interactions with specific pollinator functional categories.

309 **Local adaptation to ecological networks**

310 We demonstrated that *B. incana* is able to adapt simultaneously to different stimuli  
311 driving local adaptation to complex ecological networks. First, by interacting with a broad and  
312 diverse community of pollinators, the adaptative responses of generalist species have long been  
313 considered unlikely due to simultaneous conflicting and highly variable selective pressures  
314 imposed on flowers. However, we demonstrated genome-wide signatures of adaptation for  
315 multispecies assemblage of pollinators. This agrees with previous studies in evolutionary ecology  
316 showing the adaptive response of generalist species to pollinator communities (Gomez et al  
317 2009a, Gomez et al 2009b, Sahli and Conner 2011, Lomascola et al. 2019). Our results also  
318 highlighted a lack of knowledge on molecular mechanisms involved in this adaptive process  
319 because 48% of the identified candidate genes were associated with proteins of unknown  
320 function. Interestingly, the genomic architecture underlying the response of *B. incana* to the  
321 assemblage of pollinators was not the sum of genetic variants specific to functional categories of

322 pollinators indicating nonadditive selection acting on *B. incana* as previously observed in plant-  
323 plant interactions (Baron et al. 2015, Libourel et al. 2021). This assumption agrees with a previous  
324 evolutionary study in *B. rapa* observing nonadditive selection for floral traits where phenotypic  
325 evolution mediated by the combination of two pollinator species was different from that  
326 mediated by either pollinator in isolation (Schiestl et al. 2018). A phenotypic characterisation of  
327 our populations is still needed to better understand this evolutionary process. Nonadditive  
328 selection seems to be a common process in natural populations caused by indirect ecological  
329 effects. Such effects remain unpredictable by pairwise selection, and difficult to study due to  
330 infinite number of ecological factors to be considered (Sahli and Conner 2011, Terhorst et al.  
331 2015). To estimate potential indirect effects from abiotic factors on plant-pollinator interactions,  
332 we compared shared genetic variants among adaptive responses to abiotic and biotic factors. We  
333 observed only few shared candidate genes involved in the local adaptation of *B. incana* to long-  
334 tongue bees, structure of the soil and temperature. Long-tongued bees, including the genus  
335 *Anthophora* in our study, are ground-nesting bees, hence variation in soil texture could have a  
336 significant impact on their occurrence in populations (Antoine and Forrest 2021). However,  
337 further ecological characterisation is needed to control indirect effects such as local climate,  
338 composition of lower soil layers, microbiome, herbivores, or surrounding flowering plants for  
339 instance. In addition, due to the geology of Southern Italy, we had a strong confounding effect  
340 between population structure (controlled by Bayesian model) and the type of soil (following a  
341 Northwest – Southeast axis) likely leading to an underestimation of adaptive potential to soil with  
342 the presence of false negatives in our GEA analysis and underestimating the role of soil in plant-  
343 pollinator interactions. By illustrating the effect of complex ecological network on generalist  
344 plants through a flexible genomic architecture, our results highlighted the importance of  
345 considering ecological variables in the adaptative landscape of generalist species and abiotic  
346 factors to better understand their impact on plant evolution (Carvalheiro et al 2021). With the  
347 current declines in insect diversity and its potential impact on flowering plant reproductive  
348 success, we stress the need to expand our knowledge of the adaptive potential of plants to  
349 pollinator communities using a multi-disciplinary approach from ecology to molecular biology to  
350 genomics.

351

352

353

354

355 **Methods**

356 Natural populations of *Brassica incana*

357 We used the non-model plant species *Brassica incana* (**Fig. 1**), an allogamous and self-  
358 incompatible perennial species growing on cliffs, and mainly distributed in Southern Italy  
359 (Landucci et al. 2014, Ciancaleoni *et al.* 2018). This wild species is a close relative species of  
360 *Brassica oleracea* crop species (Landucci et al. 2014, El-Esawi 2017). From the data available in  
361 the literature and our own observations, we found 40 populations in Southern Italy. We used 21  
362 natural populations (**fig. 1, table S1**) for which at least 20 individuals were present in spring 2018  
363 with safe access. Our populations grew on two distinct types of soil: six populations on tuff soil  
364 and 15 populations on limestone soil (**fig. 1, table S1**). The populations were located from 2m to  
365 767m elevation (average = 278m, **Table S1**), with an average distance of 61.78 km (median = 41.9  
366 km, minimum = 1.25 km, maximum = 168.6 km).

367 Ecological characterization

368 We characterized the soil of the 21 natural populations of *B. incana* during spring 2018  
369 by collecting two samples per population on the ground surface (maximum depth ~10cm). The  
370 samples were sent to the Soil Analysis Laboratory of Arras (INRA, France,  
371 <https://www6.hautsdefrance.inrae.fr/las>). Twenty-one soil compounds were measured  
372 (**Dataset1**): aluminium (Al), carbon (C), ration carbon/nitrogen (ratio C/N), calcium (Ca), total  
373 calcium carbonate (CaCO<sub>3</sub>), clay (< 0 µm), total copper (Cu), iron (Fe), fine sand (0.05mm to  
374 0.2mm), coarse sand (0.2mm to 2mm), fine silt (2µm to 20 µm), coarse silt (20µm to 50 µm),  
375 potassium (K), magnesium (Mg), manganese (Mn), total nitrogen (N), sodium (Na), organic matter  
376 (om), phosphorus (P<sub>2</sub>O<sub>5</sub>), silicon (Si) and zinc (Zn). We followed the same method as described in  
377 Brachi *et al.* 2013, and all protocols are available at  
378 <https://www6.hautsdefrance.inrae.fr/las/Methodes-d-analyse/Sols>.

379 We retrieved 20 biologically meaningful climatic variables (**Dataset1**) for the 21  
380 populations from ClimateEU database (v4.63 software, described in Hamman *et al.* 2013). Like  
381 Frachon *et al.* (2018), the average data across 2003-2013 were used for these 21 climatic data  
382 related to temperature and precipitation.

383 We characterized pollinator communities in spring 2018 (for 17 out of 21 populations)  
384 and spring 2019 (for 19 out 21 populations) for a total of 19 biotic variables (**Dataset1**). To fully  
385 characterize the pollinator communities, one to four sessions (in average three sessions) of  
386 observations were conducted in spring 2018 and 2019 (one session in 2018, and three in 2019).

387 We recorded pollinators' visits for one hour starting at 11.30 am in each population, with  
388 approximately observations of 10 minutes per plant within the population. In average, five plants  
389 were observed per session (median = 5 plants, maximum = 11 plants, minimum = 1 plant). We  
390 assigned visitors into 13 functional categories: bumblebees, long-tongue bees (genus  
391 *Anthophora*), other large bees (called large bees), small bees, honeybees, large wasps, small flies,  
392 large flies, hoverflies, small beetles, large beetles, butterflies, and wasps. Due to the scarce  
393 number of wasp visits (only one visit in CHIU population), it was discarded from the dataset,  
394 except for the plant-flower visitor network.

395 Because our study was population-centred, we estimated Best Linear Unbiased  
396 Predictions (BLUP) *i.e.* the average pollinator visits per population using a mixed model in the R  
397 Studio environment (package *lme4*, Bates et al. 2015).

398 
$$Y_i = \mu_{\text{trait}} + \text{population} + \varepsilon_i$$

399 where  $Y_i$  is BLUP for visits by functional categories of pollinators,  $\mu_{\text{trait}}$  the overall average of the  
400 trait (observed number of visits of functional categories of pollinators), population is considered  
401 as random effect, and  $\varepsilon_i$  is the residual variance.

402 The plant-flower visitor network was constructed using the *bipartite* package (Dormann  
403 *et al.*, 2008) based on the total number of visits within the populations from the 12 distinct  
404 functional categories of pollinators among the 21 natural populations of *B. incana*. Similarly to  
405 the species-species interaction networks, category-level indices for each population were  
406 calculated using *bipartite* (Dormann, 2011). We calculated eight following indices as described in  
407 Dormann *et al.* 2011 and called latter *B. incana* — pollinator interaction metrics: (1) normalised  
408 degree representing the number of partner species in relation to the potential number of partner  
409 species, (2) species strength representing the sum of dependencies of each species, aiming at  
410 quantifying a species' relevance across all its partners, (3) species specificity index representing  
411 the coefficient of variation of interactions, normalised to values between 0 (low variability  
412 suggesting low specificity) and 1 (high variability suggesting high specificity), (4) partner diversity  
413 representing the Shannon diversity index of the interactions of each species, (5) effective partners  
414 representing the logbase to the power of "partner diversity" interpreting as the effective number  
415 of partners, if each partner was equally common, (6) proportional similarity representing the  
416 specialization measured as dissimilarity between resource use and availability, (7) proportional  
417 generality representing the effective partners' divided by effective number of resources; this is  
418 the quantitative version of proportional resource use or normalised degree (*i.e.*, the number of  
419 partner species in relation to the potential number of partner species), and (8) d index

420 representing the specialisation of each species based on its discrimination from random selection  
421 of partners.

422 The matrix of spearman correlation for the 61 ecological variables (11 functional  
423 categories of pollinators, eight *B. incana* interaction indices, 20 climatic variables, and 22 edaphic  
424 variables) using the R package Hmisc (Harrell et al. 2021). We pruned the set of variables using  
425 the pairwise Spearman correlations among variables, and only variables with spearman's rho <  
426 0.8 were retained for the genomic analysis. In total, we kept 33 ecological variables: 11 functional  
427 categories of pollinators, four *B. incana* — pollinator interaction indices, three climatic variables,  
428 and 15 edaphic variables. We performed a principal component analysis representing the  
429 distribution of 33 ecological variables among the 21 populations using ade4 package in R (Dray  
430 and Dufour 2007).

431 De novo reference genome

432 **DNA extraction.** We chose one individual from the island of Capri population as reference  
433 genome (CAPR in **fig. 1**), a stable population between 1984 and 2012 with low gene flow with  
434 cultivated plants (Ciancaleoni et al. 2018). Seeds from Capri population were collected in 2017,  
435 sown in a phytotron in the summer of 2018 (24 hours light, 21°C, 60% humidity, watered twice a  
436 day), and grown in air-conditioned greenhouse at the University of Zürich in standard condition  
437 (22.5°C, 50-60% of humidity, additional light). Prior to DNA extraction, plants were kept in the  
438 dark for two days, which reduced the amount of polysaccharides that interfere with the DNA  
439 extraction yield. We modified the high-molecular weight genomic DNA extraction protocol from  
440 Mayjonade et al. (2016) as described in Russo et al. (2022). Briefly, this extraction was performed  
441 in 23 parallel tubes to increase the quantity of final DNA. The 23 DNA extracts were pooled  
442 together, and purifying using carboxylated magnetic beads as explained in Mayjonade et al.  
443 (2016) protocol. We measured 146ng/µL of total DNA concentration using a nanodrop (ratio A-  
444 260/A-280 = 1.85, ratio A-260/A-230 = 2.19) and 152ng/ µL with Qubit. The purified sample was  
445 sent to the Functional Genomic Center of Zürich (FGCZ) for library preparation and three different  
446 next generation sequencing were performed to obtain a *de novo* reference genome of *Brassica*  
447 *incana*.

448 **PacBio library preparation and sequencing.** The continuous long read (CLR) SMRT bell library was  
449 produced using the SMRTbell Express Template Prep Kit 1.0. (Pacific Biosciences) at the functional  
450 genomic center Zürich (FGCZ). The input genomic DNA concentration was measured using a Qubit  
451 Fluorometer dsDNA Broad Range assay (Thermo). The high molecular weight (HMW) genomic  
452 DNA (gDNA) sample (6 µg) was mechanically sheared to an average size distribution of 30 kbp,

453 using a g-TUBE (Covaris) on a minispin plus centrifuge (Eppendorf). A Femto Pulse gDNA analysis  
454 assay (Agilent) was used to assess the fragment size distribution. Sheared gDNA was DNA damage  
455 repaired and end-repaired using polishing enzymes. PacBio sequencing adapters were ligated to  
456 the DNA template, according to the manufacturer's instructions. A Blue Pippin device (Sage  
457 Science) was used to size select the SMRT bell library and enrich for fragments > 25 kbp. The size  
458 selected library was quality inspected and quantified using a Femto Pulse gDNA analysis assay  
459 (Agilent) and on a Qubit Fluorimeter (Thermo) respectively. A ready to sequence SMRT bell-  
460 Polymerase Complex was created using the Sequel binding kit 3.0 (Pacific Biosciences P/N 101-  
461 500-400) according to the manufacturer instructions. The Pacific Biosciences Sequel instrument  
462 was programmed to sequence the library on five Sequel™ SMRT® Cells 1M v3 (Pacific Biosciences),  
463 taking one movie of 10 hours per cell, using the Sequel Sequencing Kit 3.0 (Pacific Biosciences).  
464 After the run, the sequencing data quality was checked, via the PacBio SMRT Link software (v  
465 6.0.0.47841), using the “run QC module” (**Table S2**).

466 ***Illumina library preparation and sequencing.*** The TruSeq DNA Nano Sample Prep Kit v2 (Illumina,  
467 Inc, California, USA) was used in the succeeding steps. DNA samples (100 ng) were sonicated with  
468 the Covaris using settings specific to the fragment size of 350 bp. The fragmented DNA samples  
469 were size- selected using AMPure beads, end-repaired and adenylated. TruSeq adapters  
470 containing Unique Dual Indices (UDI) for multiplexing were ligated to the size-selected DNA  
471 samples. Fragments containing TruSeq adapters on both ends were selectively enriched by  
472 Polymerase chain reaction (PCR). The quality and quantity of the enriched libraries were validated  
473 using Tapestation (Agilent, Waldbronn, Germany). The product was a smear with an average  
474 fragment size of approximately 500 bp. The libraries were normalized to 10nM in Tris-Cl 10 mM,  
475 pH8.5 with 0.1% Tween 20. The Novaseq 6000 (Illumina, Inc, California, USA) was used for cluster  
476 generation and sequencing according to standard protocol. Sequencing was paired end (PE) at 2  
477 X150 bp. This described protocol was used for both *de novo* sequencing of the reference  
478 individual, as well as the Pool-sequencing of the 21 natural populations.

479 ***Pre-processing and Mapping of Illumina Reads.*** Quality control and Bowtie2 alignment of the  
480 Illumina PE reads were performed using data analysis workflows in the R-meta package ezRun  
481 (<https://github.com/uzh/ezRun>), managed by the data analysis framework SUSHI (Hatakeyama  
482 *et al.*, 2016), which was developed and maintained by FGCZ. Technical quality was evaluated using  
483 FastQC (v0.11.7). We screened for possible contaminations using FastqScreen (v0.11.1) against a  
484 customized database in ezRun, which consists of SILVA rRNA sequences (<https://www.arb->  
485 [silva.de/](https://silva.de/)), UniVec (<https://www.ncbi.nlm.nih.gov/tools/vecscren/univec/>) sequences, refseq

486 mRNA sequences and selected refseq genome sequences (human, mouse, *Arabidopsis*, bacteria,  
487 virus, phix, lambda, and mycoplasma) (<https://www.ncbi.nlm.nih.gov/refseq/>). Illumina PE reads  
488 were pre-processed using fastp (v0.20.0), with which sequencing adapters and low-quality ends  
489 (4 bp sliding windows from both ends, average quality < Q20) were trimmed. Trimmed reads  
490 passing the filtering criteria (average quality >= Q20, minimum length >=18 bp) were aligned using  
491 Bowtie2 (v2.4.1) with the “--very-sensitive” option. Trimmed reads from the reference individual  
492 were aligned to the PacBio HG4P4 assembled contigs for genome polishing. Afterwards trimmed  
493 reads from the 21 natural populations were aligned to the polished and scaffolded genome  
494 assembly for variant analysis. PCR-duplicates were marked using Picard (v2.18.0). Read  
495 alignments were comprehensively evaluated using the mapping QC app in ezRun in terms of  
496 different aspects of DNA-seq experiments, such as sequence and mapping quality, sequencing  
497 depth, coverage uniformity and read distribution over the genome (**Table S2**).

498 ***De novo Genome Assembly.*** PacBio subreads from all five SMRT cells were merged and  
499 assembled using HGAP4 (Hierarchical Genome Assembly Process v4) in the PacBio SMRT Link  
500 software (v 6.0.0.47841). Before being assembled, subreads were filtered with read quality of  
501 70%. The estimated genome size was set at 650 Mbp. Illumina PE reads from the same sample  
502 were pre-processed and mapped to the assembled primary contigs as described above.  
503 Assembled primary contig sequences were then further polished with mapped Illumina PE reads  
504 using pilon (v1.23). Only reads with mapping quality above Q20 and bases with phred scores  
505 above Q20 were used for the polishing.

506 ***In silico genome digestion and Bionano Optical Mapping.*** The polished genome assembly was  
507 first *in silico* digested using Bionano Access software (v1.2.1) to evaluate whether the nicking  
508 enzyme (Nb.BspQI), with recognition sequence GCTCTTC, and the non-nicking enzyme DLE-1, with  
509 recognition sequence CTTAAG, were suitable for optical mapping in the genome. An average of  
510 13.6 nicks/100 kbp with a nick-to-nick distance N50 of 13,734 bp was expected for Nb.BspQI,  
511 while DLE-1 was found to induce 22.2 nicks/100 kbp with a nick-to-nick distance N50 of 8,054 bp.  
512 The values were in line with manufacturer's requirements.

513 For the Direct Label and Stain (DLS) protocol, the DNA sample was labelled using the  
514 Bionano Prep DNA Labeling Kit-DLS (cat. no. 80005) according to manufacturer's instructions. In  
515 details, 750 ng of purified gDNA was labelled with DLE-1 labelling mix and subsequently incubated  
516 with Proteinase K (Qiagen, cat. no. 158920) followed by drop dialysis. After the clean-up step, the  
517 DNA was pre-stained, homogenized, and quantified using on a Qubit Fluorometer to establish the  
518 appropriate amount of backbone stain. The reaction was incubated at room temperature for at

519 least 2 hours. For the Nick Label Repair and Stain (NLRS) protocol, the DNA sample was labelled  
520 using the Bionano Prep DNA Labelling Kit-NLRS according to manufacturer's instructions (Bionano  
521 Genomics, cat. no. 80001). In details, 300 ng of purified gDNA was nicked with Nb.BspQI (New  
522 England BioLabs, cat. no. R0644S) in NEB Buffer 3. The nicked DNA was labelled with a fluorescent-  
523 dUTP nucleotide analogue using Taq DNA polymerase (New England BioLabs, cat. no. M0267S).  
524 After labelling, nicks were ligated with Taq DNA ligase (New England BioLabs, cat. no. M0208S) in  
525 the presence of dNTPs. The backbone of fluorescently labelled DNA was counterstained overnight  
526 with YOYO-1 (Bionano Genomics, cat. no. 80001). DLS and NLRS labelled DNA samples were  
527 loaded into a nanochannel array of a Saphyr Chip (Bionano Genomics, cat. no. FC-030-01) and run  
528 by electrophoresis each into a compartment. Linearized DNA molecules were imaged using the  
529 Saphyr system and associated software (Bionano Genomics, cat. no. 90001 and CR-002-01).  
530 BioNano row molecule data are available on **Table S3**.

531 **Assembly of Optical Maps and Hybrid Scaffolding.** The *de novo* assembly of the optical maps was  
532 performed using the Bionano Access (v1.2.1) and Bionano Solve (v3.2.1) software. The assembly  
533 type performed was the "Saphyr data", "non-human", "non-haplotype" with "extend and split"  
534 and "cut segdups". Default parameters were adjusted to accommodate the genomic properties  
535 of the *Brassica incana* genome. Specifically, the "Initial P value" cut-off threshold was adjusted to  
536  $1 \times 10^{-10}$  and the P value cut-off threshold for extension and refinement was set to  $1 \times 10^{-11}$   
537 according to manufacturer's guidelines (default values are  $1 \times 10^{-11}$  and  $1 \times 10^{-12}$ , respectively).  
538 Dual-enzyme hybrid scaffolding was then performed using the same software suits with default  
539 parameters. This dual-enzyme hybrid scaffolding used the Bionano optical maps to scaffold  
540 polished (PacBio and Illumina) contigs.

541 **Genome Annotation.** Repeat sequences in the *de novo* assembled genome were predicted using  
542 RepeatScout (v1.0.6). Predicted repeat sequences and known transposable elements (TEs) in  
543 *Brassica oleracea* were masked using RepeatMasker (v4.1). Gene model prediction was  
544 performed using maker (v3.01.03). In details, *ab initio* gene prediction was performed using  
545 AUGUSTUS with the pre-trained parameter set for *Arabidopsis*. Protein and cDNA sequences of  
546 *B. oleracea* (Ensemble release 42) were aligned to the assembled genome and used as supporting  
547 evidence for gene prediction. For functional annotation, prediction protein sequences were  
548 compared to the SwissProt database (release 2019\_03) using blastp (v2.6.0), and the InterPro  
549 database using interproscan (v5.32-71.0).

550

551

552 Genomic characterization of 21 populations using a pool-sequencing approach

553 In spring 2018, we collected leave tissue from, in average, 28 individuals per population  
554 (median = 30 plants, max = 30 plants, min = 15 plants, *i.e.* a total of 590 samples) in 1.5mL  
555 Eppendorf tubes. The samples were stored during the field day in dry ice and moved into -80°C  
556 freezer at the end of field day. The DNA extraction was performed in fall 2018 by grinding samples  
557 using two beads, cooling down in liquid nitrogen, and crushed them with 30 vibrations/second  
558 three times 30 seconds. We extracted DNA using the sbeadex® maxi plant kit from LGC Genomics  
559 in Kingfisher™ Flex Purification Systems (Thermo Scientific™), a magnetic-particle robot at the  
560 Genetic Diversity Centre (GDC) Zürich platform. We added 250µL of lysis buffer in all homogenised  
561 samples. After homogenization (2-3 seconds on vortex, and 20 reversing tubes), we incubated  
562 our samples 20 minutes at 65°C. We added 1.12µL of RNase (940U/mL) and reversing tubes 10  
563 times. We incubated the samples 10 more minutes at 65°C. After centrifuging at 2.5x1000 rcf for  
564 10 minutes at 20°C, we transferred 200µL of the lysate in deep 96-well plates with 520µL of  
565 binding buffer and 60µL of sbeadex particles suspension. The samples were incorporated into the  
566 Kingfisher™ robot for the DNA purification. After bringing magnets into contact with the tubes  
567 for 1 minutes, the supernatant was removed and discarded. 400µL of wash buffer PN1 was added  
568 in each sample and mixed by pipetting to re-suspend the pellet. After 10 minutes of incubation  
569 and agitation at room temperature, the magnets were brought into contact with the tubes for 1  
570 minute. The supernatant was removed and discarded, and a second round of washing was  
571 performed adding 400µL of wash buffer PN2 in each sample, incubating 10 minutes at room  
572 temperature and bringing the magnets into contact with tubes. The supernatant was removed  
573 and discarded. 100µL of elution buffer PN was added to the pellet and mixed by pipetting. The  
574 solution incubated at 55°C for 10 minutes, and finally the magnets were brought into contact with  
575 tubes for 3 minutes until the sbeadex formed a pellet and stayed on the magnets. The eluate of  
576 the samples was transfer to a new 96-well plates and stored in the fridge.

577 The DNA concentration of all samples were measured using ddDNA Qubit assay  
578 measurement on plate reader Spark M10 (excitation wavelength = 485nm, emission wavelength  
579 = 535nm). Eight samples with too low DNA concentration were discarded. In total 582 samples  
580 were used for the pool sequencing with a DNA concentration superior to 1.5 ng/µL (average =  
581 12.68 ng/µL, median = 10.18 ng/µL, max = 61.09 ng/µL). For each of the 21 populations, the  
582 individuals were pooled together equimolarly, with an average of 27.7 individual per pool (median  
583 = 29 individuals, minimum = 15 individuals, maximum = 30 individuals).

584 We proceeded for the pool-sequencing as previously described in the methods for the *de*  
585 *novo* reference genome sequencing using Illumina sequencing.

586 **Freebayes variant calling.** Multi-samples frequency-based (-F 0.05) variant calls (--use-best-n-  
587 alleles 4 --pooled-continuous) were generated using the freebayes-parallel script in freebayes  
588 (v1.2.0-4-gd15209e, Garrison and Marth 2012), with 16 threads of freebayes running in parallel  
589 across regions of 100kb in the *de novo* polished genome assembly (PacBio, Illumina and Bionano).  
590 Single nucleotide polymorphisms (SNPs) with variant quality above Q20 were retained using  
591 bcftool (v1.9) for downstream analysis and were annotated with *de novo* predicted gene models  
592 using SnpEff (v4.2). The final dataset was composed of 6'899'774 SNPs across the 21 natural  
593 populations of *B. incana*.

594 Data filtering

595 The matrix of population allele frequencies was trimmed using VCFtools (Danecek et al.  
596 2011) and following Frachon et al. (2018). We kept only biallelic loci (391'671 SNPs discarded) and  
597 removed the indels (7'960 SNPs discarded). We discarded SNPs with a minimum mean read depth  
598 lower than 6, and higher than 100 (143'710 SNPs discarded). We removed all SNPs with missing  
599 value in more than two populations (613'387 SNPs discarded). We finally kept only 139 super-  
600 scaffolds (203'955 SNPs discarded). The final allele read count matrix included 5'530'708 SNPs for  
601 21 populations.

602 Genome Environment Association (GEA) analysis on 33 ecological variables

603 We performed a GEA analysis using a pool-sequencing approach between the 5'530'708  
604 SNPs and 15 variables describing pollinator communities (11 functional categories of pollinators,  
605 and 4 *B. incana* – pollinators' interactions), 3 climatic variables and 15 edaphic variables. Genome  
606 scans were based on Bayesian hierarchical model implemented in Baypass software (Gautier  
607 2015). Considering the covariance matrix of allele frequencies among population, this model  
608 allowed to correct potential effect of demographic histories (Gautier 2015). As described in  
609 Frachon et al. (2019), we used the core model to estimate the Bayesian Factor ( $BF_{is}$  in dB) between  
610 the allelic frequencies along the genome, and different descriptors of pollinator communities as  
611 well as abiotic variables. The core model was repeated three times due to Importance Sampling  
612 algorithm, and the final Bayesian Factor was estimated by averaging them. Considering the large  
613 amount of SNPs used, we sub-sampled the procedure to estimate the matrix of population allele  
614 frequencies ( $\Omega$ ) as in Frachon et al. (2018), by dividing the full data set into 19 sub-data sets of ~  
615 254'785 SNPs each. The GEA for each trait and each sub-data set were performed in parallel and

616 merged again after analyses. Finally, we corrected the Bayes factor ( $BF_{is}$  in dB called later BFdB)  
617 obtained by using a local score approach to consider the linkage disequilibrium (Bonhomme et al.  
618 2019) allowing to detect the accumulation of similar *p-value* in the same region increasing the  
619 power of genomic analyses. To do, we artificially created *p-values* by ranking the BFdB value from  
620 the highest to the smallest ones and divided the rank by the total number of SNPs. The parameter  
621  $\xi$  was fixed at three for the local score method (Bonhomme et al. 2019, Libourel et al. 2021). We  
622 used upset plots to detect shared SNPs and candidate genes among the 33 ecological variables  
623 considering 0.05% SNPs with highest association score after local score method (R package  
624 UpSetR, Gehlenborg et al. 2019). Due to the geology of Southern Italy, we observed a Northwest-  
625 Southeast axis of variation of type of soil (tuff *versus* limestone), potentially matching the  
626 demographic history. Because GEA analyses are based on corrected allele frequency by  
627 population structure, we may observe false negative. We estimated the genomic variation among  
628 the population using a singular value decomposition (SVD) of the matrix of raw allele frequency  
629 (without population structure correction). A significant correlation between the genomic  
630 variation from SVD and environmental variable would indicate the presence of potential false  
631 negative.

632 Signature of selection

633 We performed a genome-wide selection scan among the 21 populations based on the XtX  
634 spatial genetic differentiation (Günther and Coop 2013, Gautier 2015). This index considered the  
635 standardized allele frequencies of a given SNP, a measure of the variance of allele frequencies  
636 across 21 natural populations. This method has been demonstrated to be successful for natural  
637 populations (Frachon et al. 2018, Frachon et al. 2019). As described above, we also implemented  
638 the local score approach to correct the XtX fixing parameter  $\xi$  at three. Finally, we estimated the  
639 enrichment in signature of selection by testing whether the SNPs with the highest association  
640 scores with environmental variables (0.05% upper tail of the local score) were significantly  
641 enriched in the 0.05% upper tail of XtX distribution (Brachi et al. 2015, Frachon et al. 2018,  
642 Frachon et al. 2019). The significance of the enrichment was testing using the method described  
643 in Hancock et al. (2011) by running 10'000 null circular permutations of the 0.05% SNPs with  
644 highest association score with 33 environmental variables.

645 Identification of candidate genes

646 To identity candidate genes involved in local adaptation of *B. incana* to pollinator communities  
647 and abiotic variables, we retrieved genes within the significant zone identified by the GEA

648 analyses and corrected by the local score approach, and down and upstream genes of these zones  
649 as in Libourel et al. (2021). Only zones containing more than 3 SNPs were kept.

650

#### 651 **Acknowledgement**

652 We are grateful to David Preiswerk, Cesario Capasso and Samson Accoca-Pidolle for assisting us  
653 with the field experiment. We thank Cyril Libourel for discussion regarding genome annotation  
654 and improvement of gene identification. We thank Anne Roulin for her comments on a previous  
655 version of the draft. DNA extraction and pooling samples in this paper were performed in  
656 collaboration with the Genetic Diversity Centre (GDC), ETH Zurich. We thank the Functional  
657 Genomic Centre of Zürich (FGCZ) for their support in library preparation and sequencing. This  
658 research was funded by the Swiss National Science Funds (SNF grant no. 31003A\_172988 to  
659 F.P.S.). In addition, University of Naples (UniNA) in the framework of Program STAR-GENPOLL,  
660 and the University of Zürich provided funding.

#### 661 **Data availability**

662 All data will be available after acceptance of the manuscript as described hereafter. Sequencing  
663 data from Pacbio and Illumina used for this study will be available at the European Nucleotide  
664 Archive ENA database (accession number PRJEB54646). The bionano raw data and assembled  
665 optical maps will be available at National Library for Biotechnology Information NCBI database  
666 (sample name PRJNA859008). All scripts and datasets will be available at Dryad database  
667 (doi:10.5061/dryad.pnvx0k6r0).

#### 668 **Author contributions**

669 L.F., L.A., G.S. & F.P.S. planned and designed the research. L.F. & L.A. conducted the fieldwork.  
670 L.F. coordinated the different collaborators involved in the project. L.F. improved the high-  
671 molecular weight genomic DNA extraction protocol for *de novo* sequencing and performed DNA  
672 extraction for pool-sequencing. L.P. preformed the Bionano optical mapping and scaffolding.  
673 W.Q. performed the bioinformatic analysis (assembly and annotation of the reference genome,  
674 Illumina read mapping and variant analysis), and wrote the methods related to sequencing and  
675 bioinformatics. L.F. performed the statistical analysis, the genome environmental association  
676 analysis, and the enrichment analysis. Q.R. performed *Brassica incana* - pollinator interaction  
677 analysis and wrote the related method part. L.F. wrote the manuscript, and all authors reviewed  
678 and edited the manuscript.

679 **References**

680 Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. 2017. Volatile terpenoids: multiple  
681 functions, biosynthesis, modulation and manipulation by genetic engineering. *Planta*.  
682 246:803-816.

683 Afzal AJ, Wood AJ, Lightfoot DA. 2008. Plant receptor-like serine threonine kinases: roles in  
684 signaling and plant defense. *MPMI*. 21:507-517.

685 Albrecht M, Schmid B, Hautier Y, Müller CB. 2012. Diverse pollinator communities enhance plant  
686 reproductive success. *Proc. Royal Soc. B*. 279:4845–4852.

687 Antúnez PAP, de Omena PM, Gonçalves-Souza T, Vieira C, Migliorini GH, Kersch-Becker MF,  
688 Bernabé TN, Recalde FC, Benavides-Gordillo S, Romero GQ. 2020. Precipitation and  
689 predation risk alter the diversity and behavior of pollinators and reduce plant fitness.  
690 *Oecologia*. 192:745-753.

691 Antoine CM, Forrest JRK. 2021. Nesting habitat of ground-nesting bees: a review. *Ecol. Entomol.*  
692 46:143-159.

693 Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. 2006. Volatile signaling in plant-  
694 plant interactions: “talking trees” in the Genomics Era. *Science*. 311:812- 815.

695 Baron E, Richert J, Villoutreix R, Amsellem L, Roux F. 2015. The genetics of intra- and interspecific  
696 competitive response and effect in a local population of an annual plant species. *Funct.*  
697 *Ecol.* 29:1361–1370.

698 Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity.  
699 *Annu. Rev. Ecol. Evol. Syst.* 38:567–593.

700 Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4.  
701 *J. Stat. Softw.* 67:1-48.

702 Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P.  
703 2017. Predicting responses to contemporary environmental change using evolutionary  
704 response architectures. *Am. Nat.* 189:463-473.

705 Bodbyl Roels AA, Kelly JK. 2011. Rapid evolution caused by pollinator loss in *mimulus guttatus*.  
706 *Evolution*. 65:2541-2552.

707 Bonhomme M, Fariello MI, Navier H, Hajri A, Badis Y, Miteul H, Samac DA, Dumas B, Baranger A,  
708 Jacquet C, et al. 2019. A local score approach improves GWAS resolution and detects minor  
709 QTL: application to *Medicago truncatula* quantitative disease resistance to multiple  
710 *Aphanomyces euteiches* isolates. *Heredity*. 123:517–531.

711 Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl FP. 2019. The role of volatiles in plant  
712 communication. *Plant J.* 100:892-907.

713 Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson  
714 J, Roux F. 2013. Investigation of the geographical scale of adaptive phenological variation  
715 and its underlying genetics in *Arabidopsis thaliana*. *Mol. Ecol.* 22:4222-4240.

716 Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J. 2015. Coselected genes  
717 determine adaptive variation in herbivore resistance throughout the native range of  
718 *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U.S.A.* 112:4032–4037.

719 Burkle LA, Irwin RE. 2009. The effects of nutrient addition on floral characters and pollination in  
720 two subalpine plants, *Ipomopsis aggregata* and *Linum lewisii*. *Plant Ecol.* 203:83–98.

721 Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of species,  
722 co-occurrence, and function. *Science*. 339:1611-1615.

723 Carvalheiro LG, Bartomeus I, Rollin O, Timóteo S, Tinoco CF. 2021. The role of soils on pollination  
724 and seed dispersal. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 376:20200171.

725 Chamberlain SA, Bronstein JL, Rudgers JA. 2014. How context dependent are species interactions?  
726 *Ecol. Lett.* 17:881–890.

727 Ciancaleoni S, Raggi L, Negri V. 2018. Assessment of spatial–temporal variation in natural  
728 populations of *Brassica incana* in south Italy: implications for conservation. *Plant Syst. Evol.*  
729 304:731–745.

730 Clare EL, Schiestl FP, Leitch AR, Chittka L. 2013. The promise of genomics in the study of plant–  
731 pollinator interactions. *Genome Biol.* 14:207.

732 Cortés AJ, Blair MW. 2018. Genotyping by sequencing and genome–environment associations in  
733 wild common bean predict widespread divergent adaptation to drought. *Front. Plant Sci.*  
734 9:128.

735 da Costa ML, Pereira LG, Coimbra S. 2013. Growth media induces variation in cell wall associated  
736 gene expression in *Arabidopsis thaliana* pollen tube. *Plants.* 2:429–440.

737 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, De Pristo MA, Handsaker RE, Lunter G, Marth  
738 GT, Sherry ST et al. 2011. 1000 Genomes Project Analysis Group. The variant call format  
739 and VCFtools. *Bioinformatics.* 27:2156–2158.

740 David TI, Storkey J, Stevens CJ. 2019. Understanding how changing soil nitrogen affects plant–  
741 pollinator interactions. *Arthropod Plant Interact.* 13:671–684.

742 de Manincor N, Andreu B, Buatois B, Chao HL, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt  
743 E, Dufay M. 2021. Geographical variation of floral scents in generalist entomophilous  
744 species with variable pollinator communities. *Funct. Ecol.* 00:1–16.

745 De Mita S, ThUILLET AC, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Z. 2013. Detecting selection  
746 along environmental gradients: analysis of eight methods and their effectiveness for  
747 outbreeding and selfing populations. *Mol. Ecol.* 22:1383–1399.

748 Descamps C, Jambrek A, Quinet M, Jacquemart AL. 2021. Warm temperatures reduce flower  
749 attractiveness and bumblebee foraging. *Insects.* 12:493.

750 Dormann CF. 2011. How to be a specialist? Quantifying specialisation in pollination networks.  
751 *Netw. Biol.* 1:1–20.

752 Dormann CF, Gruber B, Fruend J. 2008. Introducing the bipartite Package: Analysing Ecological  
753 Networks. *R News.* 8:8–11.

754 Dray S, Dufour A. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. *J.  
755 Stat. Softw.* 4:1–20.

756 El-Esawi MA. 2017. Genetic diversity and evolution of *Brassica* genetic resources: from  
757 morphology to novel genomic technologies – a review. *Plant Genet. Resour.* 15:388–399.

758 Fan J, Zhai Z, Yan C, Xu C. 2015. *Arabidopsis* TRIGALACTOSYLDIACYLGLYCEROL5 interacts with  
759 TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to  
760 plastids. *Plant Cell.* 27:2941–2955.

761 Ferrão L, Johnson TS, Benevenuto J, Edger PP, Colquhoun TA, Munoz PR. 2020. Genome-wide  
762 association of volatiles reveals candidate loci for blueberry flavor. *New Phytol.* 226:1725–  
763 1737.

764 Ferrero-Serrano A, Assmann SM. 2019. Phenotypic and genome-wide association with the local  
765 environment of *Arabidopsis*. *Nat. Ecol. Evol.* 3:274–285.

766 Frachon L, Bartoli C, Carrère S, Bouchez O, Chaubet A, Gautier M, Roby D, Roux F. 2018. A genomic  
767 map of adaptation to local climate in *Arabidopsis thaliana*. *Front. Plant Sci.* 9:967.

768 Frachon L, Mayjonade B, Bartoli C, Hautekèete NC, Roux F. 2019. Adaptation to plant communities  
769 across the genome of *Arabidopsis thaliana*. *Mol. Biol. Evol.* 36:1442–1456.

770 Frachon L, Stirling SA, Schiestl FP, Dudareva N. 2021. Combining biotechnology and evolution for  
771 understanding the mechanisms of pollinator attraction. *Curr. Opin. Biotechnol.* 70:213–219.

772 Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J.  
773 2022. Three redundant brassinosteroid early response genes encode putative bHLH  
774 transcription factors required for normal growth. *Genetics*. 162:1445–1456.

775 Gao X, Wang L, Zhang H, Zhu B, Lv GM, Xiao J. 2021. Transcriptome analysis and identification of  
776 genes associated with floral transition and fruit development in rabbiteye blueberry  
777 (*Vaccinium ashei*). *PLoS ONE*. 16, e0259119.

778 Garrison E, Marth G. 2021. Haplotype-based variant detection from short-read sequencing. arXiv  
779 preprint arXiv:1207.3907 [q-bio.GN].

780 Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-  
781 specific covariates. *Genetics*. 201:1555–1579.

782 Ge X, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, et al. 2019.. LLG2/3  
783 are co-receptors in BUPS/ANX-RALF signaling to regulate *Arabidopsis* pollen tube Integrity.  
784 *Curr. Biol.* 29:3256–3265.

785 Gehlenborg N. 2019. UpSetR: A more scalable alternative to venn and euler diagrams for  
786 visualizing intersecting sets. *R package* version 1.4.0.

787 Gervasi DDL, Schiestl FP. 2017. Real-time divergent evolution in plants driven by pollinators. *Nat. comm.* 8:14691.

788 Gómez JM, Abdelaziz M, Camacho JPM, Muñoz-Pajares AJ, Perfectti F. 2009a. Local adaptation  
789 and maladaptation to pollinators in a generalist geographic mosaic. *Ecol. Lett.* 12:672–682.

790 Gómez JM, Perfectti F, Bosch J, Camacho JPM. 2009b. A geographic selection mosaic in a  
791 generalized plant–pollinator–herbivore system. *Ecol. Monogr.* 79:245–263.

792 Gómez JM, Bosch J, Perfectti F, Fernández J, Abdelaziz M. 2007. Pollinator diversity affects plant  
793 reproduction and recruitment: the tradeoffs of generalization. *Oecologia*. 153:597–605.

794 Gómez JM, Perfectti F, Lorite J. 2015. The role of pollinators in floral diversification in a clade of  
795 generalist flowers. *Evolution*. 69:863–878.

796 Günther T, Coop G. 2013. Robust identification of local adaptation from allele frequencies.  
797 *Genetics*. 195:205–220.

798 Hamann A, Wang T, Spittlehouse DL, Murdock TQ. 2013. A Comprehensive, high-resolution  
799 database of historical and projected climate surfaces for Western North America. *Bull. Am.*  
800 *Meteorol. Soc.* 94:1307–1309.

801 Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F,  
802 Bergelson J. 2011. Adaptation to climate across the *Arabidopsis thaliana* genome. *Science*.  
803 334:83–86.

804 Harrell FE. 2021. Hmisc: Harrell Miscellaneous. *R Package*.

805 Hatakeyama M, Opitz L, Russo G, Qi W, Schlapbach R, Rehrauer H. 2016. SUSHI: an exquisite  
806 recipe for fully documented, reproducible and reusable NGS data analysis. *BMC Bioinform.*  
807 17:228.

808 Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø. 2009. How does climate warming affect  
809 plant-pollinator interactions? *Ecol. Lett.* 12:184–195.

810 Herrera C, Medrano M. 2017. Pollination consequences of simulated intrafloral microbial  
811 warming in an early-blooming herb. *Flora*. 232:142–149.

812

813 Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM. 2012. Warming, CO<sub>2</sub>,  
814 and nitrogen deposition interactively affect a plant-pollinator mutualism. *Ecol. Lett.* 15:227-234.

815

816 Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM,  
817 Vilhjalmsson BJ, Nordborg M, Gordon JL, et al. 2014. Genome-wide association study of  
818 *Arabidopsis thaliana* leaf microbial community. *Nat. comm.* 5:5320.

819 Jauker F, Wolters V. 2008. Hoverflies are efficient pollinators of oilseed rape. *Oecologia*. 156:819–  
820 823.

821 Johnson SD, Steiner KE. 2000. Generalization versus specialization in plant pollination systems.  
822 *Trends Evol. Ecol.* 15:140-143.

823 Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T.  
824 2007. Importance of pollinators in changing landscapes for world crops. *Proc. R. Soc. B.*  
825 274:303-313.

826 Landucci F, Panella L, Lucarini D, Gigante D, Donnini D, Kell S, Maxted N, Venanzoni R, Negri V.  
827 2014. A prioritized inventory of crop wild relatives and wild harvested plants of Italy. *Crop  
828 Sci.* 54:1628-1644.

829 Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH. 2012. Characterizing genomic  
830 variation of *Arabidopsis thaliana*: the roles of geography and climate. *Mol. Ecol.* 21:5512–  
831 5529.

832 Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH, Juenger TE.  
833 2014. Natural variation in abiotic stress responsive gene expression and local adaptation to  
834 climate in *Arabidopsis thaliana*. *Mol. Biol. Evol.* 31:2283–2296.

835 Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya  
836 C, Mitchell SE, et al. 2015. Genome-environment associations in sorghum landraces predict  
837 adaptive traits. *Sci. Adv.* 1 :e1400218.

838 Libourel C, Baron E, Lenglet J, Amsellem L, Roby D, Roux F. 2021. The genomic architecture of  
839 competitive response of *Arabidopsis thaliana* is highly flexible among plurispecific  
840 neighborhoods. *Front. Plant Sci.* 12:741122.

841 Lomáscolo SB, Giannini N, Chacoff NP, Castro-Urgal R, Vázquez DP. 2019. Inferring coevolution in  
842 a plant–pollinator network. *Oikos*. 128:775–789.

843 López-Goldar X, Agrawal AA. 2021. Ecological interactions, environmental gradients, and gene  
844 flow in local adaptation. *Trends Plant Sci.* 26:796-809.

845 Majetica CJ, Fetteresa AM, Becka OM, Stachnika EF, Beam KM. 2017. Petunia floral trait plasticity  
846 in response to soil nitrogen content and subsequent impacts on insect visitation. *Flora*.  
847 232:183-193.

848 Majhi BB, Sobol G, Gachie S, Sreeramulu S, Sessa G. 2021. BRASSINOSTEROID-SIGNALLING  
849 KINASES 7 and 8 associate with the FLS2 immune receptor and are required for flg22-  
850 induced PTI responses. *Mol. Plant Pathol.* 22:786-799.

851 Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, Callot C, Langlade N, Muños S. 2016.  
852 Extraction of high-molecular-weight genomic DNA for long-read sequencing of single  
853 molecules. *BioTechniques*. 61:203-205.

854 Nguyen VPT, Stewart JD, Ioannou I, Allais F. 2021. Sinapic acid and sinapate esters in Brassica:  
855 innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from  
856 biomass, and biological activities. *Front. Chem.* 9:664602.

857 Nunes C, Schluemann H, Delatte TL, Wingler A, Silva AB, Feveiro PS, Jansen M, Fiorani F, Wiese-  
858 Klinkenberg A, Paul MJ. 2013. Regulation of growth by the trehalose pathway Relationship  
859 to temperature and sucrose. *Plant Signal. Behav.* 8:e22626.

860 Ohashi K, Jürgens A, Thomson JD. 2021. Trade-off mitigation: a conceptual framework for  
861 understanding floral adaptation in multispecies interactions. *Biol. Rev.* 96:2258-2280.

862 Parry G. 2014. Components of the *Arabidopsis* nuclear pore complex play multiple diverse roles  
863 in control of plant growth. *J. Exp. Bot.* 65:6057–6067.

864 Petanidou T, Smets E. 1996. Does temperature stress induce nectar secretion in Mediterranean  
865 plants? *New Phytol.* 133:513-518.

866 Petanidou T, Kallimanis AS, Sgardelis SP, Mazaris AD, Pantis JD, Waser NM. 2014. Variable  
867 flowering phenology and pollinator use in a community suggest future phenological  
868 mismatch. *Acta Oecol.* 59:104-111.

869 Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S. 2016. Genome–  
870 environment association study suggests local adaptation to climate at the regional scale in  
871 *Fagus sylvatica*. *New Phytol.* 210:589–601.

872 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator  
873 declines: trends, impacts and drivers. *Trends Evol. Ecol.* 25:345-353.

874 Rossi M, Fisogni A, Nepi M, Quarantac M, Galloni M. 2014. Bouncy versus idles: On the different  
875 role of pollinators in the generalist *Gentiana lutea* L. *Flora.* 209:164-171.

876 Russo A, Mayjonade B, Frei D, Potente G, Kellenberger RT, Frachon L, Copetti D, Studer B, Frey JE,  
877 Grossniklaus U, et al. 2022. Low-input high-molecular-weight DNA extraction for long-read  
878 sequencing from plants of diverse families. *Front. Plant Sci.* 13:883897.

879 Sahli HF, Conner JK. 2011. Testing for conflicting and nonadditive selection: floral adaptation to  
880 multiple pollinators through male and female fitness. *Evolution.* 65:1457–1473.

881 Schiestl FP, Balmer A, Gervasi DD. 2018. Real-time evolution supports a unique trajectory for  
882 generalized pollination. *Evolution.* 72:2653–2668.

883 Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O'Brien N, Krumbain  
884 A. 2012. UV-B-induced secondary plant metabolites - potential benefits for plant and  
885 human health. *Crit. Rev. Plant Sci.* 31:229–240.

886 Sobral M, Veiga T, Domínguez P, Gutián JA, Gutián P, Gutián J. 2015. M. Selective pressures  
887 explain differences in flower color among *Gentiana lutea* populations. *PLoS ONE.* 10,  
888 e0132522.

889 Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological  
890 importance. *Planta.* 247:1051–1066.

891 Terhorst CP, Lau JA, Cooper IA, Keller KR, La Rosa RJ, Royer AM, Schultheis EH, Suwa T, Conner JK.  
892 2015. Quantifying nonadditive selection caused by indirect ecological effects. *Ecology.*  
893 96:2360–2369.

894 Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of  
895 mutualistic and trophic networks. *Science.* 329:853-856.

896 Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions  
897 in terrestrial ecosystems. *Ecol. Lett.* 11:1351-1363.

898 Wang Y, Chu YJ, Xue HW. 2012. Inositol polyphosphate 5-phosphatase-controlled  
899  $\text{Ins}(1,4,5)\text{P}_3/\text{Ca}^{2+}$  is crucial for maintaining pollen dormancy and regulating early  
900 germination of pollen. *Development.* 139:2221-2233.

901 Wang L, Mao Y, Wang Z, Ma H, Chen T. 2021. Advances in biotechnological production  
902 of  $\beta$ -alanine. *World J. Microbiol. Biotechnol.* 37:79.

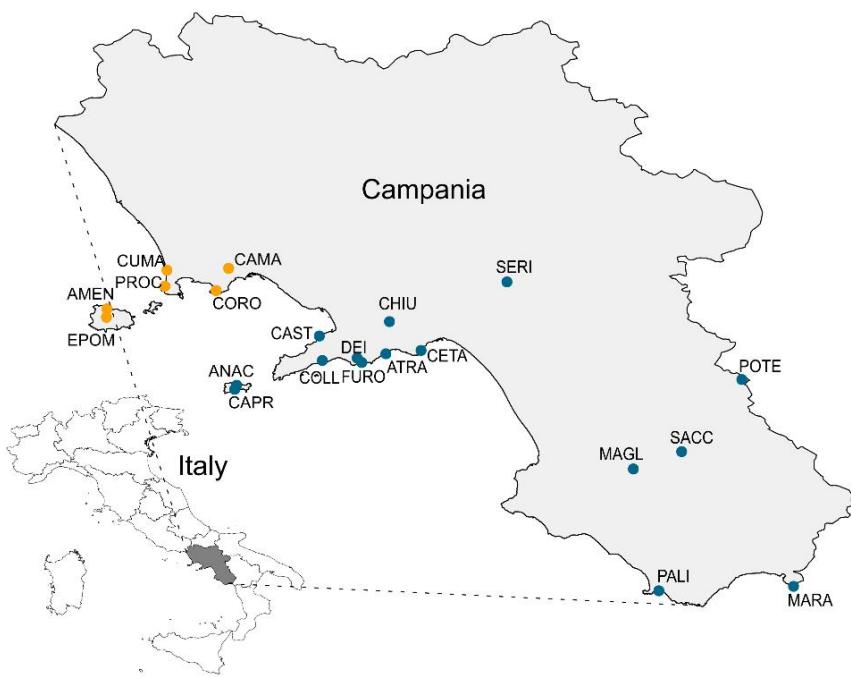
903 Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 1996. Generalization in pollination  
904 systems, and why it matters. *Ecology*. 77:1043-1060.

905 Wormit A, Usadel B. 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). *Int.*  
906 *J. Mol. Sci.* 19:2878.

907 Xing D, Zhao H, Xu R, Li QQ. 2008. Arabidopsis PCFS4, a homologue of yeast polyadenylation factor  
908 Pcf11p, regulates FCA alternative processing and promotes flowering time. *Plant J.* 54:899–  
909 910.

910 Zografou K, Swartz MT, Tilden VP, Mckinney EN, Eckenrode JA, Sewall BJ. 2021. Stable generalist  
911 species anchor a dynamic pollination network. *Ecosphere*. 11:e03225.

912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945


946 **Figures**

947

948 **Figure 1. Distribution of *Brassica incana* natural populations.** On the left, a photograph of a  
949 flowering *B. incana* in the PALI population. On the right, the Campania region is represented in  
950 dark grey on the Italy map. The 21 natural populations of *B. incana* are indicated with coloured  
951 dots on the map. The orange dots indicate six populations on tuff soil, and the blue dots 15  
952 populations on limestone soil.

953

954



955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

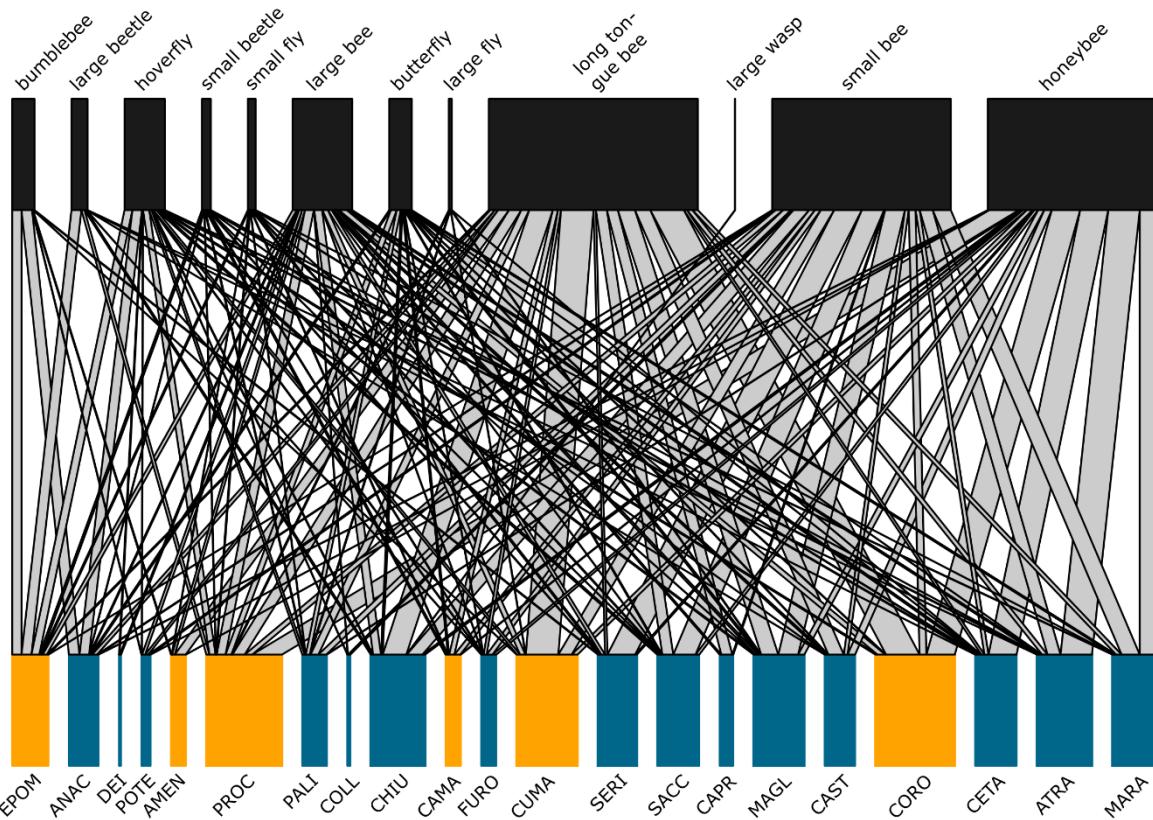
972 **Figure 2. *Brassica incana* – functional categories of pollinators interaction analysis in 21 natural**  
973 **populations in springs 2018 and 2019.** The upper part of the figure represents the 12 functional

974 categories of pollinators. The size of boxes represents the total number of visits per functional

975 category of pollinators observed in all 21 populations combined. The lower part the figure

976 represents the 21 natural populations of *B. incana* coloured according to their soil type (tuff soil

977 in orange, limestone soil in blue). The size of the boxes represents the total number of visits, all

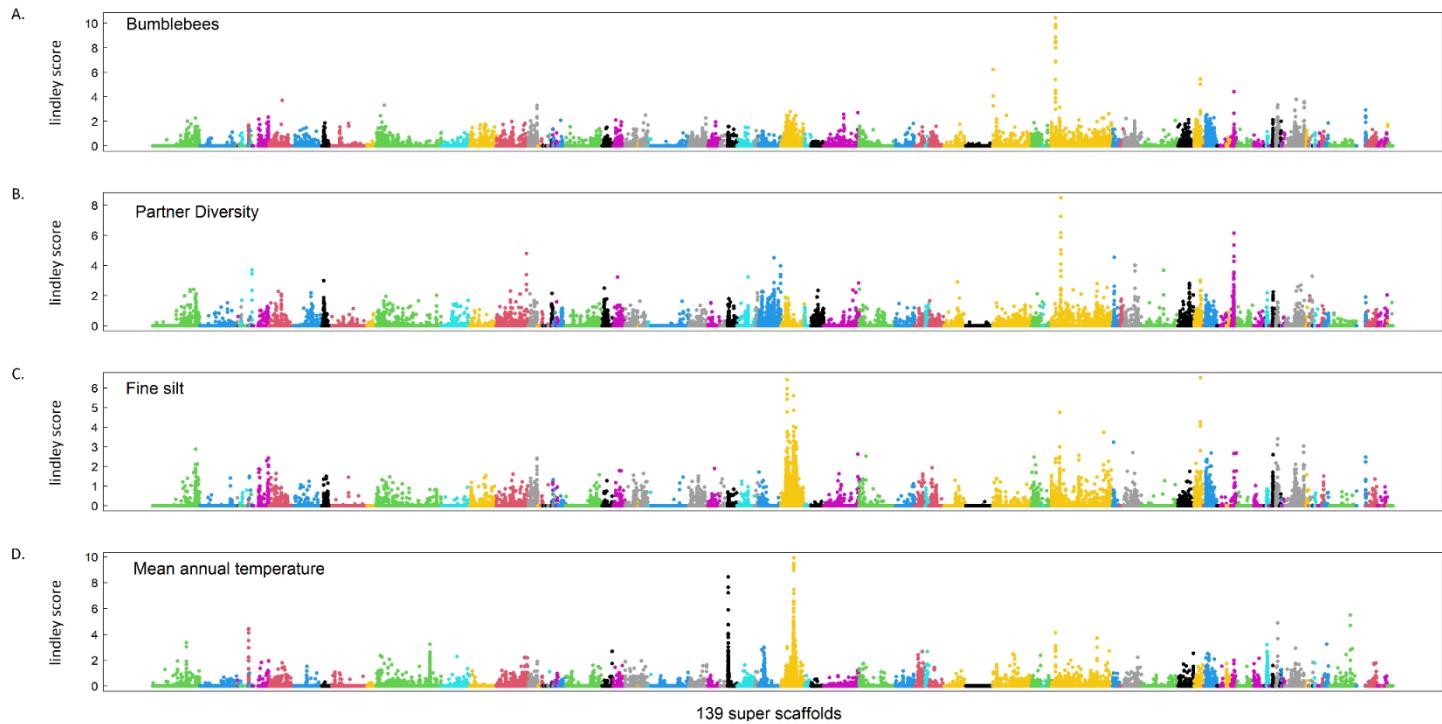

978 categories of pollinators combined, per population. The width of the lines connecting functional

979 categories of pollinators to populations indicates the proportion of visits observed per pollinator

980 category within each population.

981

982




983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993

994 **Figure 3: Manhattan plot of genome-environmental association analysis for four ecological**  
995 **variables; (A) visit of bumblebees, (B) partner diversity, (C) fine silt, and (D) mean annual**  
996 **temperature. The x-axis indicates the physical position of the 5'530'708 SNPs along the 139 super-**  
997 **scaffolds illustrated by different colours. The y-axis indicates the Bayes Factor corrected by local**  
998 **score method (Lindley score).**

999

1000



1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

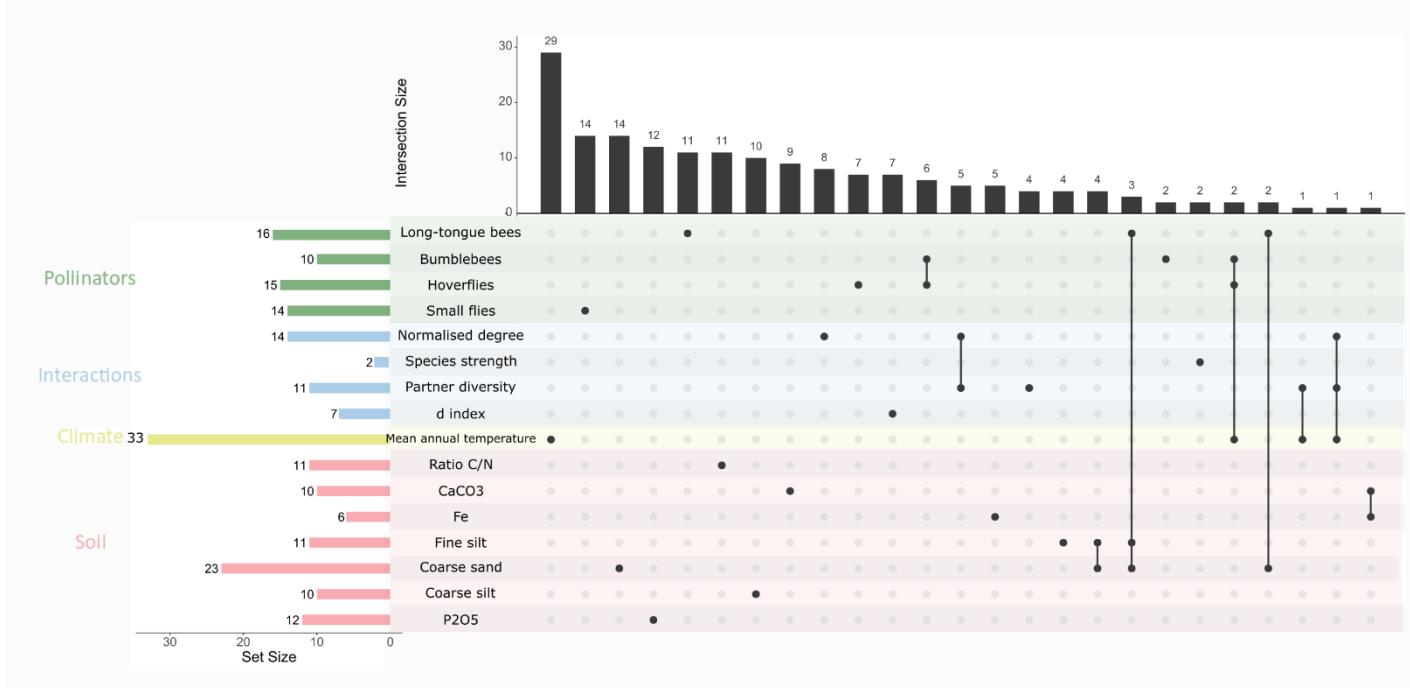
1018

1019

1020 **Figure 4. Illustration of the relationship among candidate genes associated with local**  
1021 **adaptation to ecological network.** Only variables for which a significant enrichment of the

1022 selection signature was detected are considered. The left shows the number of candidate genes

1023 (set size) identified in local adaptation to the specific variable in GEA analysis. On top, the number


1024 of candidate genes associated with a specific variable (single black dot) or shared among variables

1025 (multiple black dots linked). The candidate genes are those from the significant zones identified

1026 by correcting with local score method the GEA, and the down and upstream genes.

1027

1028



1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046

1047 **Table 1.** Significant enrichment in signature of selection for pollinator categories, plant-  
1048 pollinators interaction indices, climatic and edaphic variables testing the over-representation of  
1049 the 0.05% upper tail of the Lindley score distribution in the 0.05% upper tail of the genome-wide  
1050 spatial differentiation ( $XtX$ ) distribution. See Table S7 for the enrichment's results of the 33  
1051 ecological variables.  
1052

| Traits                  | ntops | Enrichment | pvalue |
|-------------------------|-------|------------|--------|
| Long-tongue bees        | 21    | 16.53      | **     |
| Bumblebees              | 23    | 18.11      | ***    |
| Large bees              | 15    | 11.81      | **     |
| Hoverflies              | 25    | 19.68      | ***    |
| Small flies             | 6     | 4.72       | *      |
| Normalised degree       | 19    | 14.96      | **     |
| Species strength        | 6     | 4.72       | *      |
| Partner diversity       | 20    | 15.74      | ***    |
| d index                 | 31    | 24.40      | ***    |
| Mean annual temperature | 109   | 85.81      | ***    |
| Ratio C/N               | 13    | 10.23      | **     |
| CaCO <sub>3</sub>       | 12    | 9.45       | **     |
| Fe                      | 39    | 30.70      | ***    |
| Fine silt               | 59    | 46.45      | ***    |
| Coarse sand             | 62    | 48.81      | **     |
| Coarse silt             | 31    | 24.40      | **     |
| P2O <sub>5</sub>        | 15    | 11.81      | **     |

1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073

1074

## Supplementary information

1075 **Title:** Genomic local adaptation of a generalist plant species to pollinator communities and soil

1076 **Authors:** Frachon L., Arrigo L., Rusman Q., Poveda L., Qi W., Scopece G., Schiestl P.F.

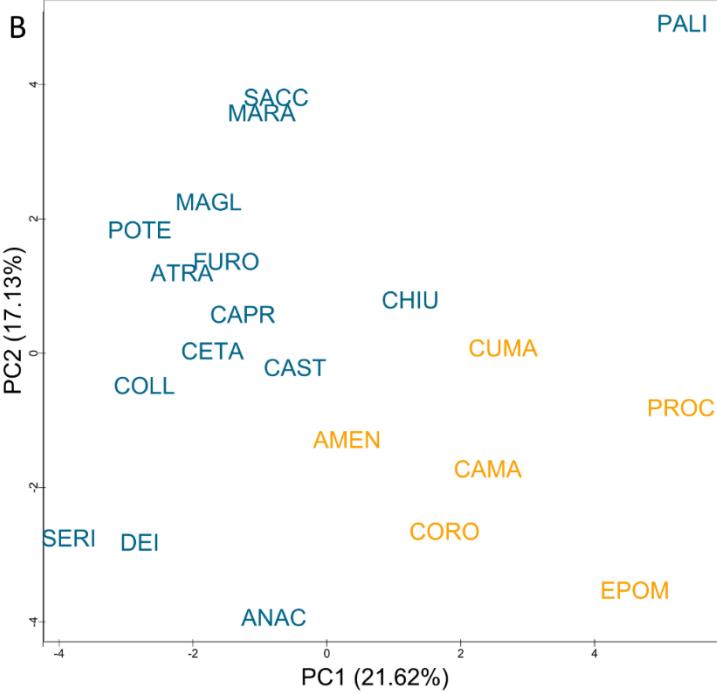
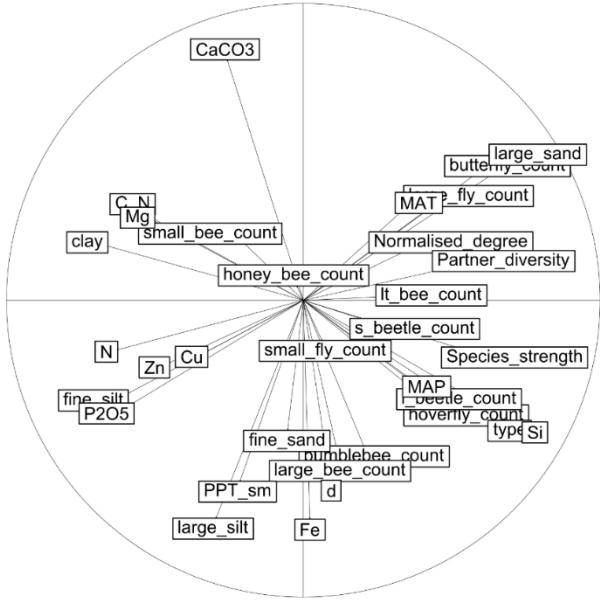
1077

1078 **Figure S1. Matrix of spearman correlation on 61 ecological variables considered.** Significant  
1079 correlations are indicated by coloured dots. Not dots mean no significant correlations. The  
1080 strength of the correlation is indicated by the size of the dots, and the direction by the blue and  
1081 red gradient (gradient scale at the lower part of the figure). The traits indicated in grey were  
1082 discarded from the genomic analysis due to high correlations with other traits (spearman  $\rho >$   
1083 0.8).

1084



1085



1086

1087 **Figure S2. Ecological variation among 21 natural populations of *B. incana*. (A)** Correlation plot  
1088 from a principal component analysis preformed on 33 environmental variables with pairwise rho  
1089 spearman < 0.8. Principal component PC1 and PC2 explained 21.62% and 17.13% respectively. **(B)**  
1090 Position of the 21 natural populations of *B. incana* in ecological space. The populations in tuff soil  
1091 are coloured in orange, and in limestone soil in blue.

1092

1093

A



1094

1095

1096

1097

1098

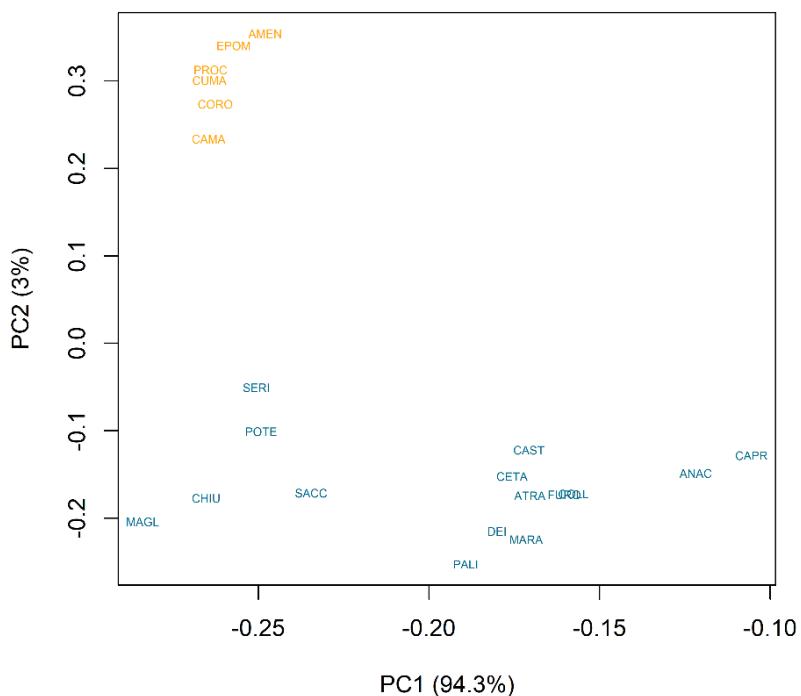
1099

1100

1101

1102

1103


1104

1105

1106

1107 **Figure S3. Position of 21 natural populations of *B. incana* in genomic space.** Genomic variation  
1108 was estimated using a singular value decomposition (SVD) of omega matrix using Baypass  
1109 software from one sub-sample. The first PC<sub>genomic</sub> explaining 94.3% of the genomic variance is  
1110 represented on the x-axis, and the second PC<sub>genomic</sub> on the y-axis explaining 3% of the genomic  
1111 variance. The tuff and limestone soil of 21 populations are indicated in orange and in blue,  
1112 respectively.

1113



1114

1115

1116

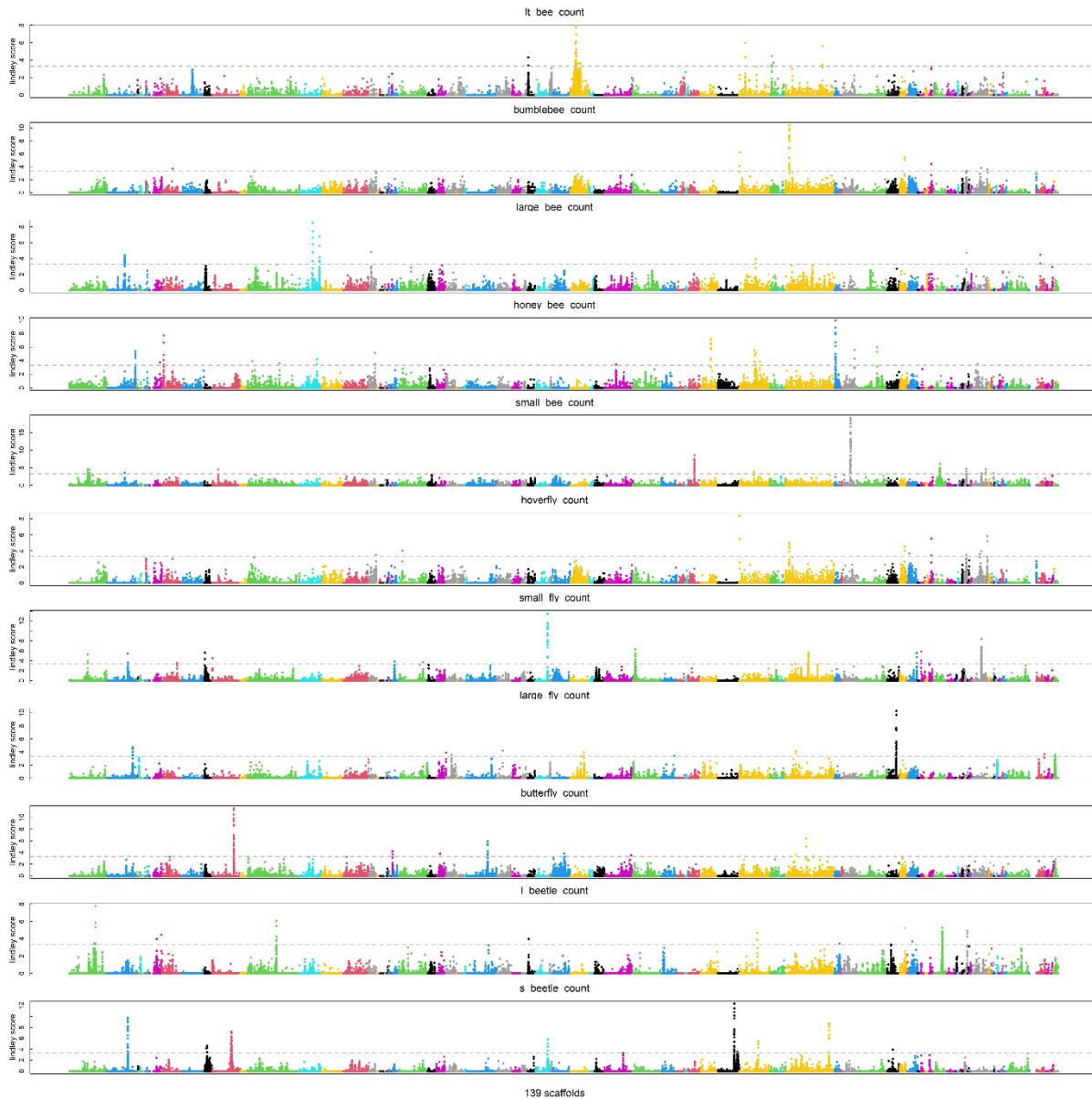
1117

1118

1119

1120

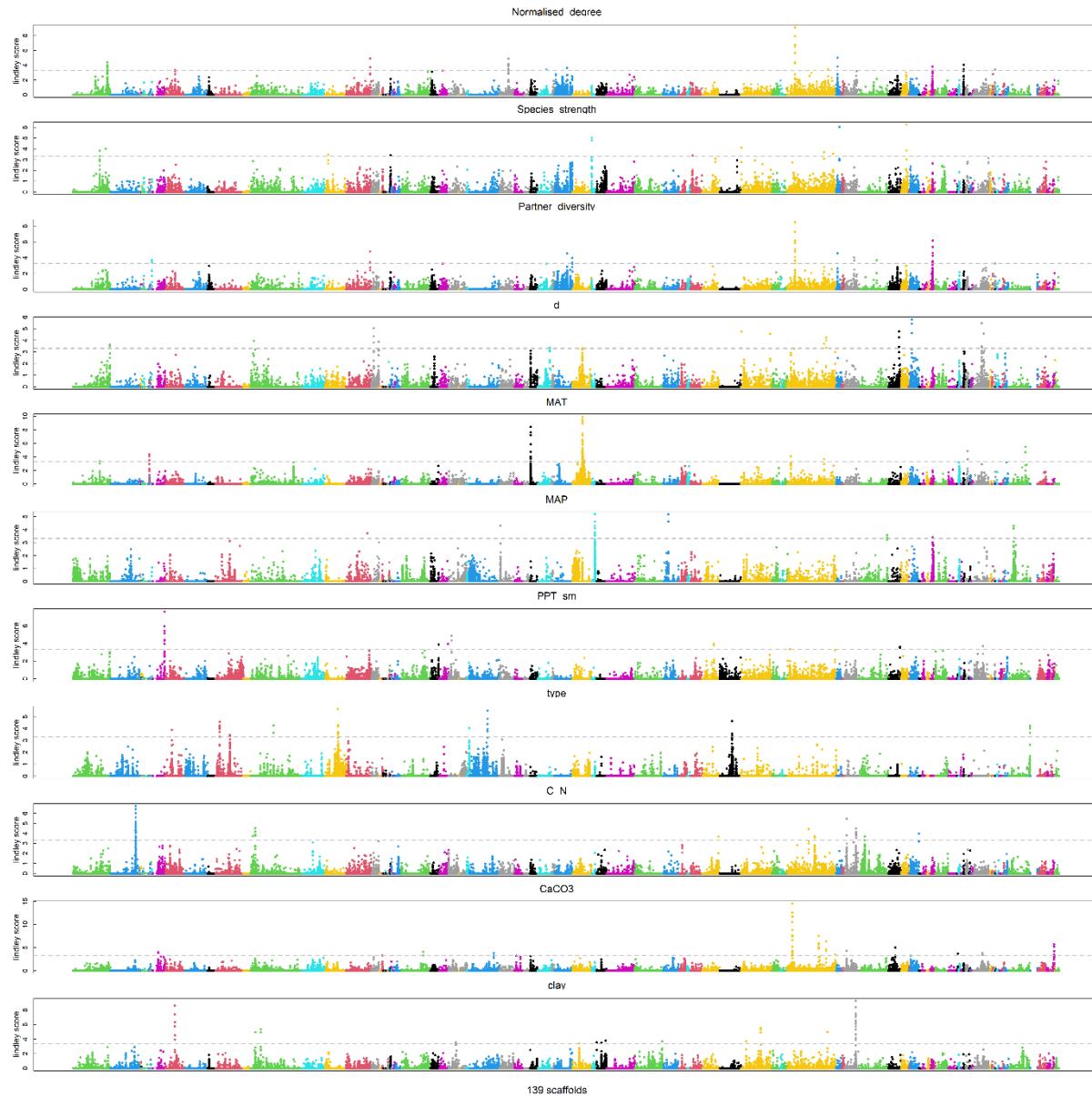
1121


1122

1123

1124

1125


1126 **Figure S4. Manhattan plots of Genome-Environmental Association performed on 33 ecological**  
1127 **variables.** The x-axis represents the physical position of SNPs along the 139 super-scaffolds  
1128 **illustrated in colour. The y-axis is the Lindley score. The name of the ecological variable is**  
1129 **indicated on the upper part of the Manhattan plot.**



1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138

1139 **Figure S4. To be continued**

1140



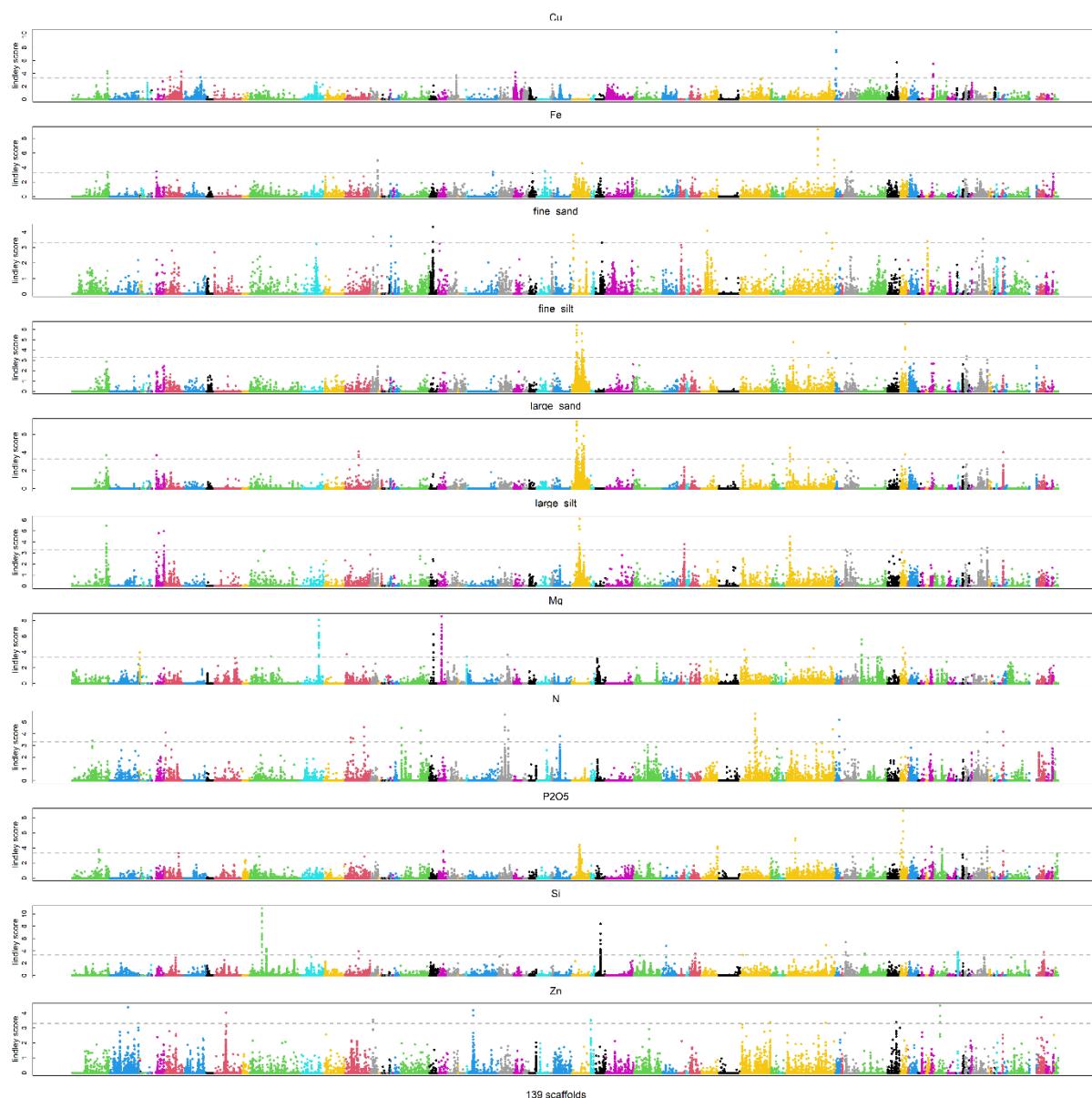
1141

1142

1143

1144

1145


1146

1147

1148

1149

1150 **Figure S4. To be continued**



1151

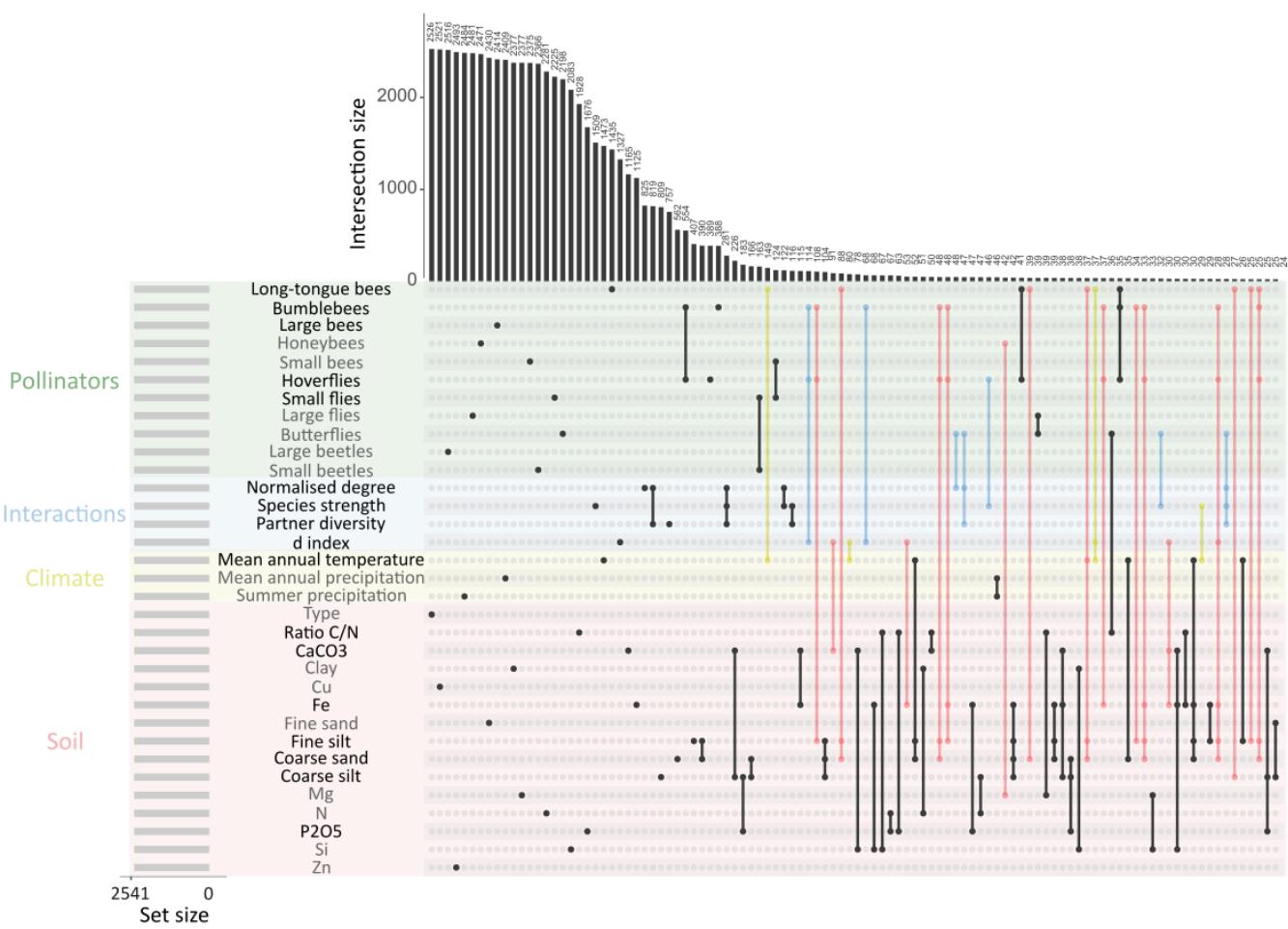
1152

1153

1154

1155

1156


1157

1158

1159

1160

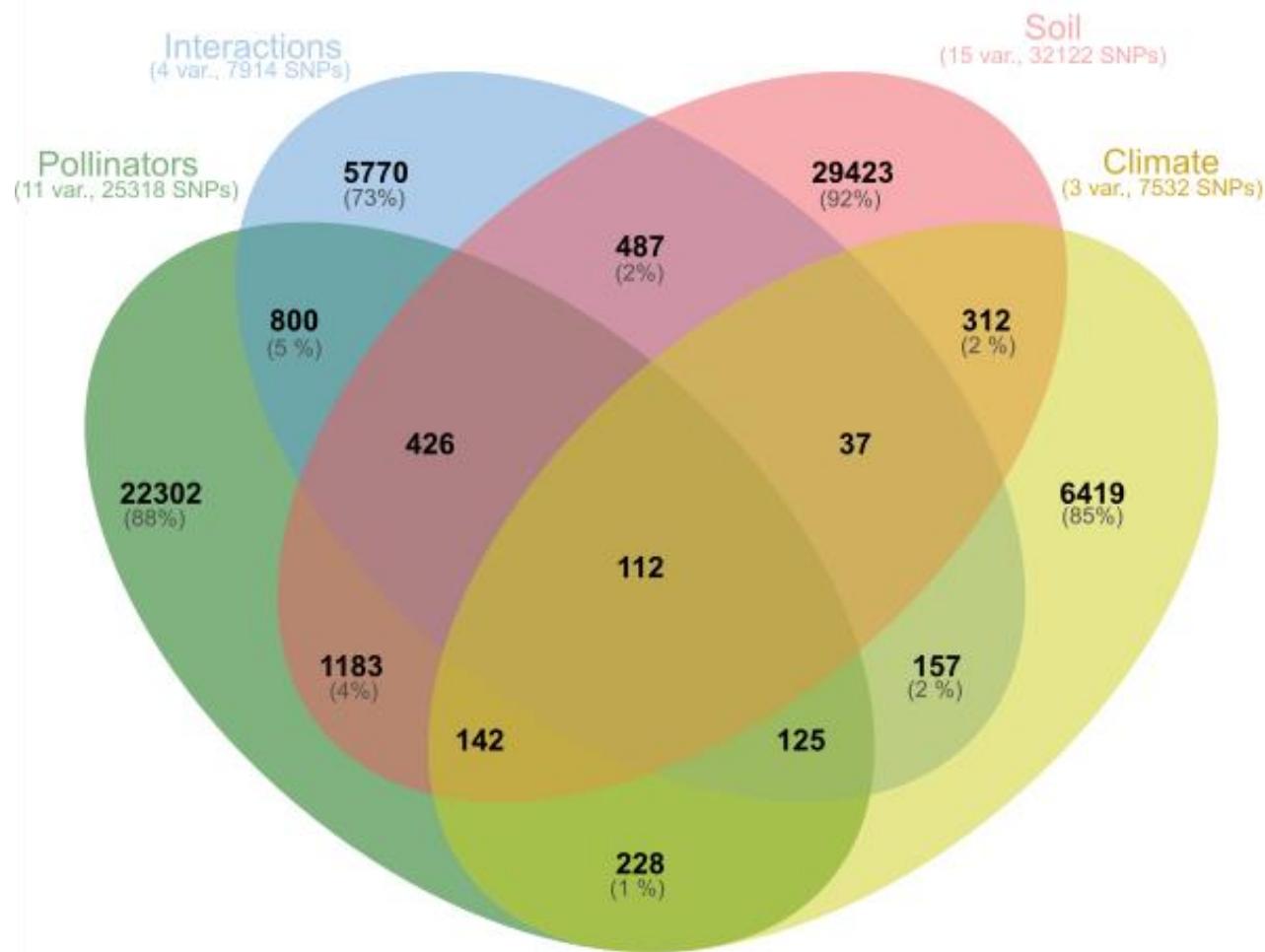
1161 **Figure S5. Illustration of the variability of SNPs involved in plant adaptation to a complex**  
1162 **ecological network.** The upset plot illustrates the specific SNPs to 33 ecological variables (only  
1163 dots), and the shared SNPs among these ecological variables (dots linked with bar). The blue bars  
1164 represent SNPs shared among *B. incana* responses to plant-pollinators interaction indices and  
1165 categories of pollinators. The yellow bars represent the SNPs shared among the climate variables  
1166 and pollinator community descriptors (categories and interactions). The red bars represent the  
1167 SNPs shared among edaphic variables and the pollinator community descriptors. The top 0.05%  
1168 SNPs of the highest association score were considered for 33 ecological variables listed in the left  
1169 (i.e. set size = 2541 SNPs per ecological variable). Only the 156 first intercepts are shown (i.e. more  
1170 than 1% of the set size). For instance, 1435 SNPs are unique to long-tongue bees, and 149 SNPs  
1171 are shared between long-tongue bees and mean annual temperature. The ecological variables  
1172 with non-significant enrichment in signature of selection have been shaded.



1173

1174

1175


1176

1177

1178

1179 **Figure S6: Illustration of the flexibility of genetic architecture in response to complex a**  
1180 **ecological network.** Venn diagram illustrating the shared top SNPs (0.05% of the highest local  
1181 score) for the 33 ecological variables. The variables are grouped by main categories (pollinator  
1182 categories in green, plant-pollinators interaction indices in blue, edaphic variables in red, and  
1183 climatic variables in yellow). The number of variables and the total number of SNPs considered  
1184 are indicated between parenthesis bellow each category of variables. The Venn diagram was draw  
1185 using jvenn.toulouse.inra.fr website.

1186



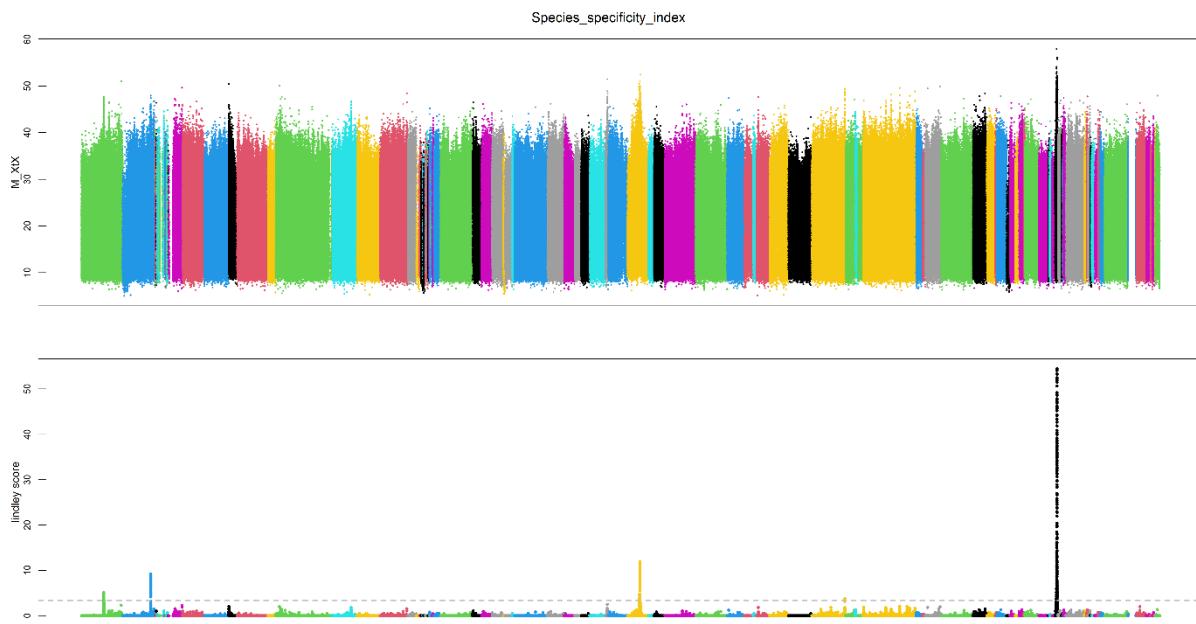
1187

1188

1189

1190

1191


1192

1193

1194

1195 **Figure S7. Manhattan plot of the index of genetic differentiation genetic (XtX).** The upper panel  
1196 illustrated the results obtained by Baybass analysis, and the lower panel those obtained by  
1197 correcting with the local score method (*y-axis* is the Lindley score). The *x-axis* represents the  
1198 physical regions of the SNPs along the 139 super-scaffolds.

1199



1200

1201 **Table S1. Description of 21 natural populations of *B. incana*.**

1202

| Pop. Name | Localities              | latitude   | longitude  | Elevation | Substrate | Pop. Size 2018 |
|-----------|-------------------------|------------|------------|-----------|-----------|----------------|
| PROC      | Monte di Procida        | 40.809370  | 14.044790  | 16        | Tuff      | 20             |
| AMEN      | Ischia, Lacco Ameno     | 40.751632  | 13.896623  | 6         | Tuff      | 30             |
| EPOM      | Ischia, Vetta Epomeo    | 40.730072  | 13.895328  | 767       | Tuff      | 20             |
| CUMA      | Mainland di Cuma        | 40.850475  | 14.049944  | 41        | Tuff      | 20             |
| CORO      | Napoli, Coroglio-Nisida | 40.798367  | 14.175846  | 19        | Tuff      | 40             |
| CAPR      | Capri, Scala Fenicia    | 40.556357  | 14.228237  | 180       | limestone | 100            |
| ANAC      | Anacapri, Monte Solaro  | 40.545771  | 14.223282  | 562       | limestone | 1000           |
| CHIU      | Valico di Chiunzi       | 40.719061  | 14.619117  | 648       | limestone | 15-30          |
| COLL      | Colli-Positano          | 40.619627  | 14.447449  | 253       | limestone | 15-30          |
| FURO      | Furore                  | 40.614468  | 14.548246  | 91        | limestone | 15-2           |
| CAMA      | Napoli, Camaldoli       | 40.855181  | 14.207769  | 159       | Tuff      | 20-30          |
| MAGL      | Magliano Vetere         | 40.342298  | 15.242826  | 622       | limestone | 15-20          |
| PALI      | Palinuro, Arco naturale | 40.030830  | 15.308058  | 2         | limestone | 30-50          |
| ATRA      | Atrani                  | 40.636737  | 14.610037  | 52        | limestone | 15             |
| SERI      | Serino                  | 40.8204531 | 14.919611  | 708       | limestone | 10-15          |
| SACC      | Sacco, Salerne          | 40.386551  | 15.366420  | 505       | limestone | 50-100         |
| CAST      | Castellammare di Stabia | 40.682200  | 14.439804  | 20        | limestone | 50             |
| DEI       | Sentiero degli Dei      | 40.625781  | 14.536430  | 649       | limestone | 15             |
| CETA      | Cetara                  | 40.645236  | 14.699832  | 52        | limestone | 30             |
| POTE      | Vietri di potenza       | 40.570945  | 15.520259  | 359       | limestone | 30             |
| MARA      | Maratea                 | 40.0421848 | 15.6525735 | 135       | limestone | 100            |

1203

1204 **Table S2. Indices from the *Brassica incana* -- pollinator interaction analysis.** The description of  
 1205 the indices is available in the methods and in Dormann 2011. In grey, the metrics discarded for the  
 1206 genomic analysis due to high correlation with other ecological factors (See Figure S1).

| Populations | Normalised degree | Species strength | Species specificity index | Partner diversity | Effective partners | Proportional similarity | Proportional generality | d    |
|-------------|-------------------|------------------|---------------------------|-------------------|--------------------|-------------------------|-------------------------|------|
| AMEN        | 0.42              | 0.18             | 0.73                      | 0.85              | 2.35               | 0.43                    | 0.38                    | 0.21 |
| ANAC        | 0.67              | 0.88             | 0.44                      | 1.56              | 4.76               | 0.38                    | 0.77                    | 0.39 |
| ATRA        | 0.67              | 0.44             | 0.58                      | 1.23              | 3.41               | 0.66                    | 0.55                    | 0.13 |
| CAMA        | 0.50              | 0.40             | 0.46                      | 1.47              | 4.35               | 0.62                    | 0.70                    | 0.14 |
| CAPR        | 0.25              | 0.09             | 0.79                      | 0.63              | 1.88               | 0.44                    | 0.30                    | 0.20 |
| CAST        | 0.58              | 0.27             | 0.53                      | 1.34              | 3.80               | 0.76                    | 0.61                    | 0.07 |
| CETA        | 0.75              | 0.68             | 0.66                      | 1.19              | 3.28               | 0.51                    | 0.53                    | 0.20 |
| CHIU        | 0.67              | 1.55             | 0.48                      | 1.46              | 4.29               | 0.72                    | 0.69                    | 0.10 |
| COLL        | 0.25              | 0.03             | 0.77                      | 0.68              | 1.98               | 0.38                    | 0.32                    | 0.17 |
| CORO        | 0.50              | 0.58             | 0.51                      | 1.31              | 3.70               | 0.72                    | 0.60                    | 0.10 |
| CUMA        | 0.58              | 0.56             | 0.54                      | 1.32              | 3.74               | 0.74                    | 0.60                    | 0.09 |
| DEI         | 0.17              | 0.04             | 0.72                      | 0.64              | 1.89               | 0.14                    | 0.31                    | 0.32 |
| EPOM        | 0.67              | 1.71             | 0.37                      | 1.74              | 5.67               | 0.26                    | 0.92                    | 0.53 |
| FURO        | 0.67              | 0.21             | 0.44                      | 1.58              | 4.84               | 0.80                    | 0.78                    | 0.04 |
| MAGL        | 0.67              | 0.67             | 0.47                      | 1.48              | 4.41               | 0.78                    | 0.71                    | 0.06 |
| MARA        | 0.50              | 0.42             | 0.53                      | 1.26              | 3.52               | 0.65                    | 0.57                    | 0.12 |
| PALI        | 0.67              | 0.67             | 0.42                      | 1.61              | 5.02               | 0.66                    | 0.81                    | 0.14 |
| POTE        | 0.50              | 0.10             | 0.46                      | 1.43              | 4.19               | 0.69                    | 0.68                    | 0.09 |
| PROC        | 0.83              | 1.49             | 0.39                      | 1.80              | 6.06               | 0.70                    | 0.98                    | 0.09 |
| SACC        | 0.67              | 0.48             | 0.55                      | 1.33              | 3.77               | 0.70                    | 0.61                    | 0.11 |
| SERI        | 0.58              | 0.58             | 0.69                      | 1.08              | 2.95               | 0.48                    | 0.48                    | 0.23 |

1207

1208

1209 **Table S3. Sequence data collected for *de novo* genome assembly of *Brassica incana* from**

1210 Pacbio and Illumina

|                      | PacBio CLR     | Illumina PE reads |
|----------------------|----------------|-------------------|
| Number of reads      | 2,481,304      | 249,786,052       |
| Number of bases (bp) | 47,372,198,992 | 74,935,815,600    |
| Read N50             | 17 kbp         | 2X150 bp          |
| Estimated coverage*  | 73 X           | 115 X             |

1211 \*assumed genome size of 650 Mbp

1212 **Table S4. Bionano row molecule data collected for hybrid scaffolding of *Brassica incana***

1213 contigs

| Protocol            | NLRS               |              | DLS          |
|---------------------|--------------------|--------------|--------------|
| Enzyme              | Nb.BspQI           |              | DLE-1        |
| Molecule >= 20 kbp  | Total length (Mbp) | 1,694        | 2,278        |
|                     | N50 (Mbp)          | 0.101        | 0.123        |
| Molecule >= 150 kbp | Total length (Mbp) | 549          | 972          |
|                     | N50 (Mbp)          | 233          | 0.267        |
|                     | Label density      | 5.43/100 kbp | 5.03/100 kbp |
| Effective coverage  |                    | 340.88       | 34.82        |

1214

1215

1216 **Table S5. Final assembly statistics of *Brassica incana* contigs and scaffolds**

| Metrics                     | Contigs | Scaffolds | Un-anchored contigs |
|-----------------------------|---------|-----------|---------------------|
| Number of sequences         | 1,339   | 139       | 824                 |
| Total sequence length (Mbp) | 664     | 617       | 73                  |
| Sequence N50 (Mbp)          | 1.53    | 12        | 0.16                |
| Longest sequence (Mbp)      | 12      | 32        | 1                   |

1217

1218 **Table S6. Spearman correlation between genomic variance (SVG) and 33 ecological variables**  
1219 **and PC1 and PC2 from the principal analysis performed on 33 ecological variables.**

|                               | PC1 (94.3%) |    |
|-------------------------------|-------------|----|
|                               | rho         | P  |
| long tongue bees              | -0.44       | *  |
| bumblebees                    | 0.18        | ns |
| large bees                    | -0.43       | ns |
| honeybees                     | -0.15       | ns |
| small bees                    | -0.26       | ns |
| hoverflies                    | -0.13       | ns |
| small flies                   | -0.13       | ns |
| large flies                   | -0.22       | ns |
| butterflies                   | -0.08       | ns |
| large beetles                 | 0.09        | ns |
| small beetles                 | 0.25        | ns |
| Normalised degree             | -0.19       | ns |
| Species strength              | -0.47       | *  |
| Partner diversity             | -0.37       | ns |
| d                             | 0.29        | ns |
| Mean annual temperature       | 0.25        | ns |
| Mean annual precipitation     | -0.12       | ns |
| Summer precipitation          | -0.11       | ns |
| type                          | -0.54       | *  |
| Ratio C/N                     | 0.53        | *  |
| CaCO <sub>3</sub>             | 0.21        | ns |
| clay                          | 0.28        | ns |
| Cu                            | 0.31        | ns |
| Fe                            | 0.12        | ns |
| Fine sand                     | 0.29        | ns |
| Fine silt                     | 0.48        | *  |
| Coarse sand                   | -0.33       | ns |
| Coarse silt                   | -0.08       | ns |
| Mg                            | 0.33        | ns |
| N                             | 0.07        | ns |
| P <sub>2</sub> O <sub>5</sub> | 0.07        | ns |
| Si                            | -0.23       | ns |
| Zn                            | 0.44        | *  |
| Ecological PC1                | -0.39       | ns |
| Ecological PC2                | 0.04        | ns |

1220

1221 **Table S7.** Enrichment in signature of selection for 33 ecological variables including pollinator  
1222 categories (11 variables), plant-pollinators interaction indices (4 variables), climatic (3 variables)  
1223 and edaphic variables (15 variables) in the 0.05% upper tail of the Lindley score distribution in the  
1224 0.05% upper tail of the genome-wide spatial differentiation (XtX) distribution.  
1225

| Traits                        | ntops | Enrichment | pvalue |
|-------------------------------|-------|------------|--------|
| Long-tongue bees              | 21    | 16.53      | **     |
| Bumblebees                    | 23    | 18.11      | ***    |
| Large bees                    | 15    | 11.81      | **     |
| Honeybees                     | 1     | 0.79       | ns     |
| Small bees                    | 1     | 0.79       | ns     |
| Hoverflies                    | 25    | 19.68      | ***    |
| Small flies                   | 6     | 4.72       | *      |
| Large flies                   | 0     | 0.00       | ns     |
| Butterflies                   | 2     | 1.57       | ns     |
| Large beetles                 | 0     | 0.00       | ns     |
| Small beetles                 | 0     | 0.00       | ns     |
| Normalised degree             | 19    | 14.96      | **     |
| Species strength              | 6     | 4.72       | *      |
| Partner diversity             | 20    | 15.74      | ***    |
| d index                       | 31    | 24.40      | ***    |
| Mean annual temperature       | 109   | 85.81      | ***    |
| Mean annual precipitation     | 4     | 3.15       | ns     |
| Summer precipitation          | 0     | 0.00       | ns     |
| type                          | 0     | 0.00       | ns     |
| Ratio C/N                     | 13    | 10.23      | **     |
| CaCO <sub>3</sub>             | 12    | 9.45       | **     |
| clay                          | 0     | 0.00       | ns     |
| Cu                            | 0     | 0.00       | ns     |
| Fe                            | 39    | 30.70      | ***    |
| Fine sand                     | 3     | 2.36       | ns     |
| Fine silt                     | 59    | 46.45      | ***    |
| Coarse sand                   | 62    | 48.81      | **     |
| Coarse silt                   | 31    | 24.40      | **     |
| Mg                            | 1     | 0.79       | ns     |
| N                             | 3     | 2.36       | ns     |
| P <sub>2</sub> O <sub>5</sub> | 15    | 11.81      | **     |
| Si                            | 0     | 0.00       | ns     |
| Zn                            | 3     | 2.36       | ns     |

1226

1227

1228

1229 **Table S8.** Candidate genes is available in a separated file.

1230