

1 **Kinesin-1, -2 and -3 motors use family-specific mechanochemical strategies to**
2 **effectively compete with dynein during bidirectional transport**

3
4 Allison M. Gicking¹, Tzu-Chen Ma¹, Qingzhou Feng¹, Rui Jiang¹, Somayesadat Badieyan²,
5 Michael A. Cianfrocco², and William O. Hancock¹

6
7 ¹ Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
8 ² Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann
9 Arbor, MI 48103

10
11 **Abstract**
12 Bidirectional cargo transport in neurons requires competing activity of motors from the kinesin-1,
13 -2 and -3 superfamilies against cytoplasmic dynein-1. Previous studies demonstrated that when
14 kinesin-1 attached to dynein-dynactin-BicD2 (DDB) complex, the tethered motors move slowly
15 with a slight plus-end bias, suggesting kinesin-1 overpowers DDB but DDB generates a substantial
16 hindering load. Compared to kinesin-1, motors from the kinesin-2 and -3 families display a higher
17 sensitivity to load in single-molecule assays and are thus predicted to be overpowered by dynein
18 complexes in cargo transport. To test this prediction, we used a DNA scaffold to pair DDB with
19 members of the kinesin-1, -2 and -3 families to recreate bidirectional transport in vitro, and tracked
20 the motor pairs using two-channel TIRF microscopy. Unexpectedly, we find that when both
21 kinesin and dynein are engaged and stepping on the microtubule, kinesin-1, -2, and -3 motors are
22 able to effectively withstand hindering loads generated by DDB. Stochastic stepping simulations
23 reveal that kinesin-2 and -3 motors compensate for their faster detachment rates under load with
24 faster reattachment kinetics. The similar performance between the three kinesin transport families
25 highlights how motor kinetics play critical roles in balancing forces between kinesin and dynein,
26 and emphasizes the importance of motor regulation by cargo adaptors, regulatory proteins, and the
27 microtubule track for tuning the speed and directionality of cargo transport in cells.

28
29 **Introduction**
30 Neurons are elongated, highly polarized cells that require robust, long distance, bidirectional cargo
31 transport to function (Hirokawa & Takemura, 2005). Better understanding of the molecular

32 mechanisms underlying bidirectional cargo transport is needed, as disrupted transport in neurons
33 is linked to neurodegenerative diseases including Alzheimer's, hereditary spastic paraplegia, and
34 amyotrophic lateral sclerosis (ALS) (Bilsland et al., 2010; Chevalier-Larsen & Holzbaur, 2006;
35 De Vos et al., 2008; Gabrych et al., 2019; Millecamps & Julien, 2013; Stokin & Goldstein, 2006;
36 Ström et al., 2008). Intracellular cargo is carried by the cytoskeletal motors kinesin and dynein,
37 which move in opposite directions, toward the plus-end and minus-end of microtubules,
38 respectively (Vale, 2003). Interestingly, it has been shown that kinesin and dynein are
39 simultaneously present on axonal vesicles (Encalada et al., 2011; Hendricks et al., 2010; Maday et
40 al., 2012; Sims & Xie, 2009; Soppina et al., 2009), suggesting that successful bidirectional
41 transport depends on coordination between, and strict regulation of, these antagonistic motors.

42

43 The predominant model for bidirectional transport is the “tug-of-war” model, which posits that if
44 both kinesin and dynein are present, they will pull against each other, and the strongest motor will
45 determine the cargo directionality (Gross, 2004). Notable experimental support is the elongation
46 of endosomes immediately preceding a directional switch in *Dictyostelium* cells (Soppina et al.,
47 2009). However, results from a body of experimental and computational studies suggest that the
48 tug-of-war model is not sufficient to account for the range of bidirectional transport activities in
49 cells. Multiple studies have observed a “paradox of codependence” (Hancock, 2014), wherein
50 inhibiting plus-end-directed motors abolishes minus-end-directed movement instead of enhancing
51 it, and vice versa (Gross et al., 2002; Kunwar et al., 2011; Martin et al., 1999). This complexity
52 suggests mechanisms beyond pure mechanical tug-of-war, such as a requirement of both motors
53 for full activation, cargo binding and regulation.

54

55 Cellular studies of bidirectional transport have provided important information about the specific
56 isotypes and numbers of motors present on cargo during transport (Cason et al., 2021; Hendricks
57 et al., 2010; Shubeita et al., 2008), as well as characterizing cargo dynamics (Barkus et al., 2008;
58 Kamal et al., 2000; Levi et al., 2006; Maday et al., 2012; Rosa-Ferreira & Munro, 2011; Tanaka
59 et al., 1998), and the codependence of opposite directionality motors (Gross et al., 2002; Kunwar
60 et al., 2011; Martin et al., 1999). However, these studies are limited in their ability to decouple
61 inherent motor properties from external regulation via cargo adaptors, microtubule associated
62 proteins (MAPs), and other factors. *In vitro* optical trap studies have provided precise

63 measurements of the force generation capabilities of single, as well as teams of motors
64 (Andreasson, Shastry, et al., 2015; Budaitis et al., 2021; Gennerich et al., 2007; Guydosh & Block,
65 2006; Hendricks et al., 2012; Rai et al., 2016; Sanghavi et al., 2021). However, in recent work,
66 traditional single-bead optical trap experiments have been shown to impose non-negligible vertical
67 forces on motors that may accelerate their detachment rate under load (Khataee & Howard, 2019;
68 Pyrpassopoulos et al., 2020). One remedy for this problem is the three-bead trap assay, used widely
69 in studies of myosin (Finer et al., 1994), which significantly minimizes vertical forces and provides
70 a more physiologically relevant measurement of motor behavior under load (Howard & Hancock,
71 2020; Pyrpassopoulos et al., 2020). Still, in these three-bead traps, the movement of a gliding
72 microtubule is being measured and direct tracking of the motor is difficult. Therefore, assays that
73 precisely measures motor behavior under physiologically relevant loads and without extra
74 confounding variables, are needed.

75

76 To directly track kinesin and dynein motor pairs *in vitro*, an elegant method was developed that
77 fuses single-stranded DNA to each motor, links them together through complementary DNA base
78 pairing, and tracks the motor pairs by two-color total internal reflection fluorescence (TIRF)
79 microscopy (Belyy et al., 2016). This method has been used extensively to investigate the
80 mechanical competition between kinesin-1 and various activated dynein complexes bound to
81 BicD2 (DDB), BicDR1 (DDR), and Hook3 (DDH) (Belyy et al., 2016; Elshenawy et al., 2019;
82 Feng et al., 2020; Ferro et al., 2020). These studies report that while DDB can substantially slow
83 down the stepping of kinesin-1, kinesin-1 still dominates kinesin-DDB transport. On the other
84 hand, DDR and DDH, which are more likely to contain two dyneins and may more effectively
85 activate dynein (Grotjahn et al., 2018; Urnavicius et al., 2018), pull kinesin-1 toward the minus-
86 end more often than DDB (Elshenawy et al., 2019). In neurons and other cells, dynein complexes
87 also transport cargo against members of the kinesin-2 (Hendricks et al., 2012; Hendricks et al.,
88 2010; Loubéry et al., 2008) and kinesin-3 (Schuster et al., 2011) families. Importantly, kinesin-2
89 and -3 families have motility and force generation properties that are distinct from kinesin-1
90 (Andreasson, Shastry, et al., 2015; Arpag et al., 2019; Budaitis et al., 2021; Chen et al., 2015; Feng
91 et al., 2018; Lessard et al., 2019; Mickolajczyk & Hancock, 2017; Shastry & Hancock, 2010;
92 Zaniewski et al., 2020), which is suggested to play an important role in fast axonal transport.
93 Kinesin-1 can withstand substantial hindering forces for long durations, meaning it is not prone to

94 detaching under load (Blehm et al., 2013; Pyrpassopoulos et al., 2020; Schnitzer et al., 2000;
95 Visscher et al., 1999), but some members of the kinesin-2 and kinesin-3 families have been shown
96 to rapidly detach under load (Andreasson, Shastry, et al., 2015; Arpag et al., 2019; Budaitis et al.,
97 2021). Interestingly, these kinesin-2 and kinesin-3 motors have also been shown to reengage with
98 the microtubule and resume force generation at faster rates than kinesin-1, perhaps compensating
99 for the rapid detachment (Andreasson, Shastry, et al., 2015; Arpag et al., 2019; Budaitis et al.,
100 2021; Feng et al., 2018). Despite these fascinating observations, it remains unclear how the
101 different motile properties of these diverse kinesins affect their coordination with dynein
102 complexes during bidirectional transport.

103

104 A recent computational study that used a stochastic stepping model to simulate bidirectional
105 transport found that the different properties of kinesin-1 and kinesin-2 motors substantially
106 affected the directionality and velocity of cargo transport with DDB (Ohashi et al., 2019). There
107 were three key results from this study: i) the magnitude of the stall force for either the kinesin or
108 DDB motors had a negligible effect on the overall cargo velocity, ii) DDB-kinesin-1 pairs had an
109 average cargo velocity near zero while DDB-kinesin-2 pairs had an average cargo velocity of -300
110 nm/s, and iii) the sensitivity of detachment to load was the strongest determinant of the net cargo
111 velocity. It is notable that despite DDB having a lower stall force parameter than kinesin-2 (4 pN
112 vs 8 pN), DDB-kinesin-2 pairs had primarily DDB-directed cargo motility (average velocity of -
113 300 nm/s) in the simulations. Overall, these results suggest that force-dependent detachment, rather
114 than stall force, is the best metric for predicting bidirectional transport behavior of a particular set
115 of motor pairs or teams, but this hypothesis needs to be experimentally confirmed.

116

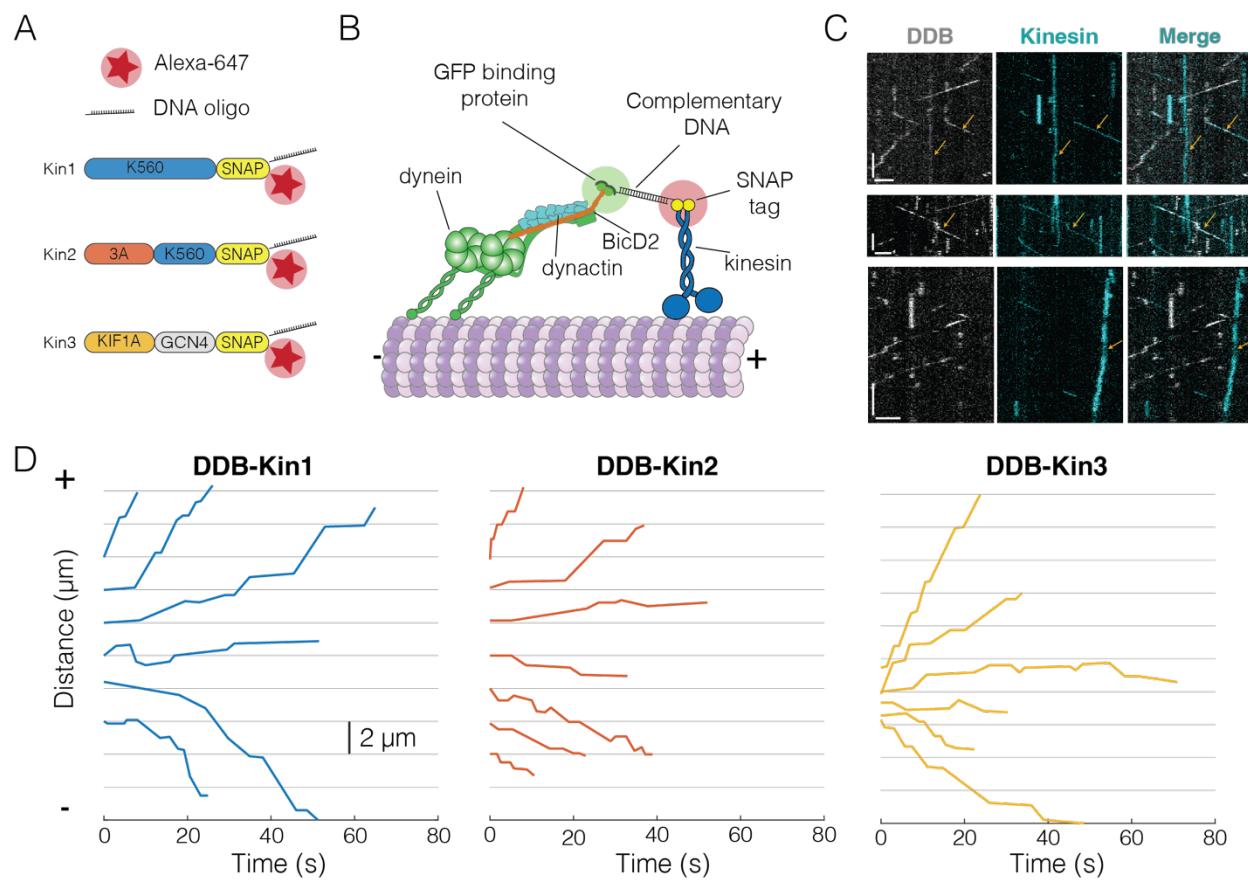
117 In the current study, we reconstituted DDB-kinesin bidirectional transport by linking the motors
118 together with complementary single-stranded DNA, and directly tested how the different motility
119 properties of members of the kinesin-1, kinesin-2 and kinesin-3 families impacted the resulting
120 bidirectional motility of DDB-kinesin complexes. Surprisingly, we found that, when analyzing
121 events where both motors were engaged and moving on the microtubule, Kin2 and Kin3 motors
122 were able to withstand hindering loads from DDB nearly as well as Kin1. A stochastic stepping
123 simulation of the three motor pairs support a mechanism by which the fast reattachment kinetics
124 of Kin2 and Kin3 counteracts their rapid detachment under load and enables robust force

125 generation against DDB motors. These results confirm the idea that load-dependent detachment
126 and reattachment are the key parameters that determine motor performance under load and point
127 to family-specific mechanochemical strategies to achieve successful cargo transport.

128

129 **Results**

130 Reconstituting DDB-kinesin bidirectional transport in vitro


131 To create DDB-kinesin motor pairs, we first expressed and purified constitutively active C-
132 terminal SNAP-tag fusion constructs for well-characterized members of the kinesin-1, -2 and -3
133 families: *D. melanogaster* KHC/Kin1, *M. musculus* KIF3A/Kin2, and *R. norvegicus* KIF1A/Kin3
134 (Fig. 1A). The SNAP tags were substoichiometrically functionalized with a 63 bp DNA
135 oligonucleotide and an Alexa-647 dye to achieve a population of dual-labeled kinesin motors (Fig.
136 1A). The dynein-dynactin-BicD2 (DDB) complex consisted of full-length recombinant dynein
137 expressed in Sf9 cells, purified dynactin from cow brain, and truncated, recombinant BicD2 (25-
138 424) with a C-terminal GFP tag. We determined the concentration of the oligo-labeled kinesin
139 monomers via an SDS-PAGE shift assay (Fig. 1 Supp. 1A, C and E) and then calculated the
140 concentration of labeled dimers using the percent reduction in the unlabeled (unshifted) band
141 intensity of an SDS-PAGE gel after oligo-labeling (Fig. 1 Supp. 1B, D and F). We also confirmed
142 that each labeled motor exhibited velocity and run lengths similar to previously published values
143 for similar constructs (Fig. 1 Supp. 2 and 3) (Feng et al., 2018; Lessard et al., 2019; Mickolajczyk
144 & Hancock, 2017). The functionalized kinesin was linked to the DDB-GFP complex via a GFP
145 nanobody (GBP) (Kubala et al., 2010) functionalized with the complementary 63 bp DNA
146 oligonucleotide (Fig. 1B). Each of the motor pairs were imaged using two-channel TIRF
147 microscopy to simultaneously track both the kinesin and DDB.

148

149 The resulting kymographs included populations of free kinesin motors, free DDB complexes, and
150 colocalized pairs. Microtubule directionality was determined via directionality of the free motors
151 (Fig. 1C). Each set of DDB-Kin traces contained plus-end-directed events with short durations,
152 along with slower events with long durations and net directionality toward either the plus-end or
153 minus-end. Within a single trace, there was considerable velocity heterogeneity, including fast,
154 slow, and paused segments (Fig. 1D, Fig. 1 Supp. 4A-F). Notably, directional switches, defined as
155 sequential segments that move in opposite directions, were rare, occurring with a frequency of

156 0.01/s for all (Fig. 1 Supp. 4G-I). To understand the differences between the dynamics of the DDB-
157 Kin1, DDB-Kin2, and DDB-Kin3 pairs, we next quantified the overall velocity for each trace and
158 examined differences between the trace velocity distributions for the three motor pairs.

159

160

Figure 1: Experimental set-up and visualization of DDB-Kin complexes. (A) Schematic of kinesin constructs containing SNAP tags functionalized with an Alexa-647 dye and a single stranded DNA oligo. (B) DDB and kinesin motors connected via complementary DNA oligos on the GFP binding protein (GBP) and SNAP tag (C) Sample kymograph showing the DDB/GFP channel (gray), the kinesin/Alexa-647 channel (cyan), and the overlay. Scale bars are 2 μ m (horizontal) and 10 s (vertical). Microtubule (not shown) is oriented with plus-end to the right. Colocalized events are indicated by an arrow. (D) Sample x-t plots for DDB-Kin1, DDB-Kin2 and DDB-Kin3 complexes.

161 **Figure 1 Source Data uploaded**

162 **Figure 1 Supplement 1:** Purification gels and shift assays

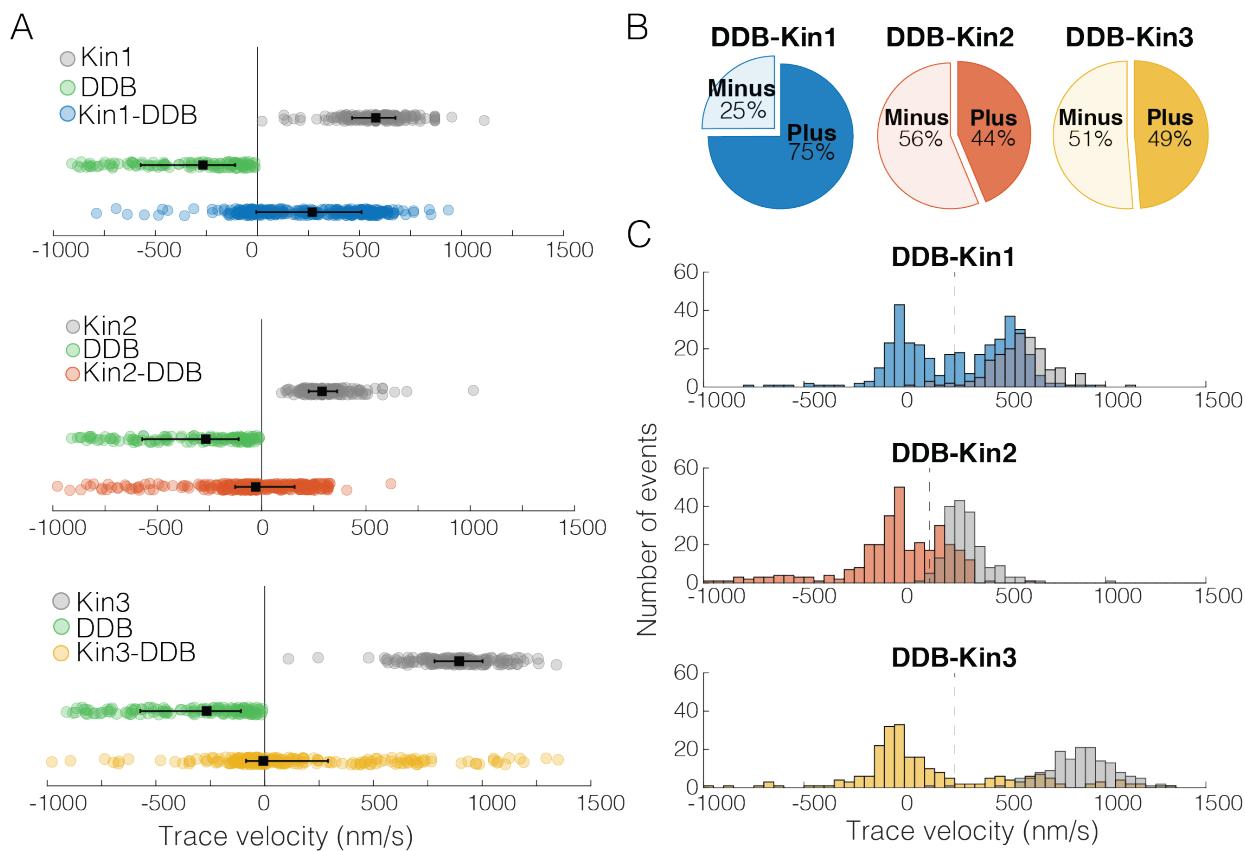
163 **Figure 1 Supplement 2:** Unloaded run length and velocity for Kin1/2/3

164 **Figure 1 Supplement 3:** Unloaded run length and velocity for DDB

165 **Figure 1 Supplement 4:** Sample traces for DDB-kin1/2/3 pairs

166

167


168 DDB-Kin1 pairs move toward plus end faster and more often than DDB-Kin2/3 pairs

177 We first asked how the velocity distributions of the motor pairs compared to velocity distributions
178 of a single kinesin or DDB under zero load. We did this by taking the average velocity of each
179 motor or motor complex over the entire run (trace velocity), where a positive velocity is kinesin
180 dominated motility and a negative velocity is DDB dominated motility. For DDB-Kin1 pairs, the
181 median trace velocity was 290 nm/s compared to 586 nm/s for unloaded kinesin-1; this is a 50%
182 decrease but much faster than has been reported previously (Fig. 2A) (Belyy et al., 2016; Feng et
183 al., 2020). In contrast, the median trace velocities of Kin2 and Kin3 were -28 nm/s and -6.3 nm/s,
184 respectively, which are dramatically slower than the unloaded motor speeds (Fig. 2A). Next, we
185 compared the fraction of complexes that moved with net plus- versus net minus-end directionality.
186 We found that 75% of DDB-kin1 pairs had a net plus-end displacement, whereas only 44% of
187 DDB-Kin2 pairs and 49% of DDB-Kin3 pairs had a net plus-end displacement (Fig. 2B).

188

189 Notably, the DDB-Kin1 and DDB-Kin2 trace velocity distributions had two clear peaks, one
190 centered near zero and a second centered near the unloaded kinesin motor velocities (Fig. 2C). The
191 DDB-Kin3 velocities had a similar peak near zero, but the fast plus-end population was dispersed
192 rather than centered around a clear peak; this may in part be due simply to the larger range of
193 possible speeds for the faster Kin3. Due to the substantial overlap of the fast plus-end peaks with
194 the velocity distributions for isolated unloaded kinesins, we next investigated whether these two
195 modes represent two configurations of the motor pair: the slow mode representing traces where
196 both kinesin and DDB are engaged on the microtubule and the fast mode representing traces where
197 only the kinesin is engaged.

198

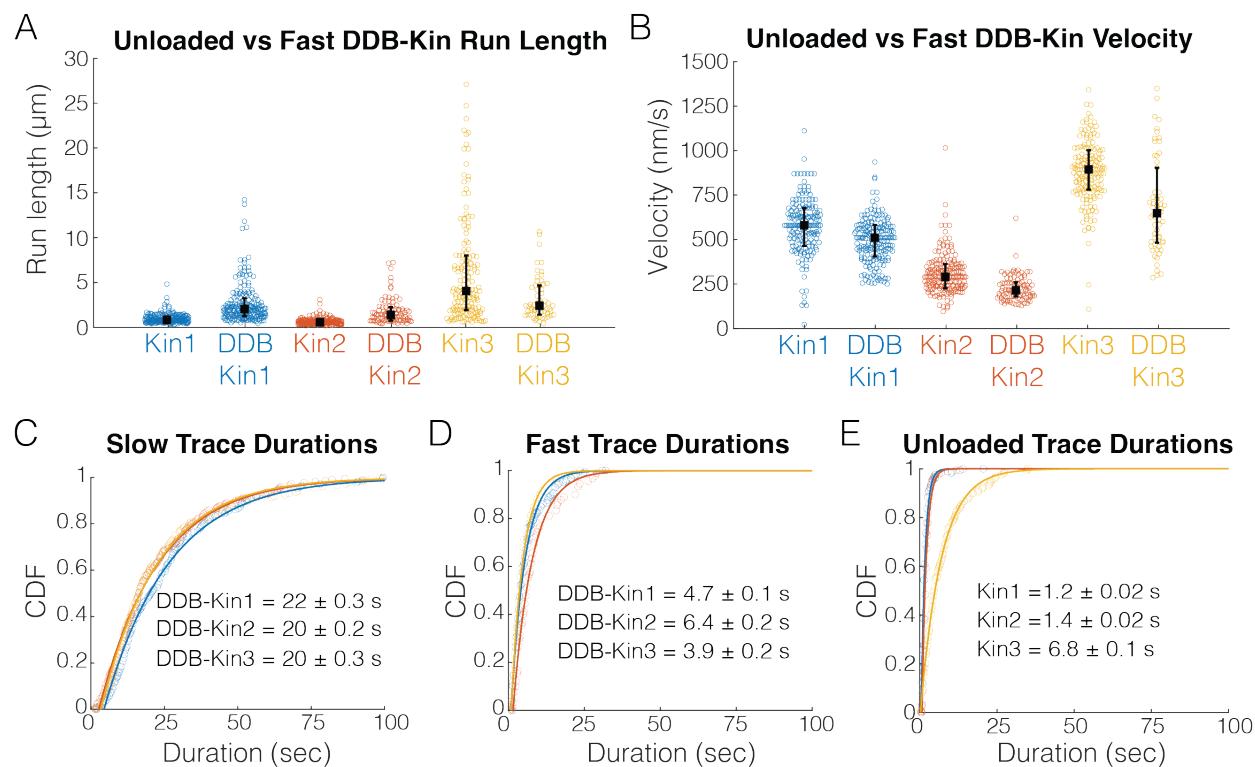
199

200 **Figure 2: DDB-Kin1 pairs move faster, and more frequently, to the plus-end than DDB-**
 201 **Kin2/3 pairs.** (A) Scatter plots showing whole trace velocities of the kinesin alone (gray/top),
 202 DDB alone (green/middle) and the DDB-Kin1/2/3 pair (blue/orange/yellow/bottom). Error bars
 203 represent median values and quartiles. (B) Fraction of motor pairs having net plus-end
 204 displacement (dark blue/orange/yellow) or net minus-end displacement (light blue/orange/yellow)
 205 (C) Histogram of the motor pair velocities. Unloaded kinesin velocity distributions are shown in
 206 gray (2nd histogram on the right). Dashed line indicates fast-slow trace velocity threshold.

207 **Figure 2 Source Data uploaded**

208

209 Two populations represent only kinesin engaged or both kinesin and DDB engaged on the
 210 microtubule


211 To separate out the fast plus-end population for our analysis, we defined a trace velocity threshold
 212 of 250 nm/s for the DDB-Kin1/3 pairs and 125 nm/s for the DDB-Kin2 pairs. We picked these
 213 values based on the clear separation of peaks in the trace velocity histograms, and because > 95%
 214 of the unloaded velocity data lie above this threshold (Fig. 2C). The fraction of the plus-end events
 215 above these velocity thresholds was 52% for DDB-Kin1, 29% for DDB-Kin2, and 25% for DDB-
 216 Kin3, suggesting that Kin1 is more likely to pull DDB off the microtubule and move at an unloaded

217 speed than Kin2 or Kin3. However, it is unclear if DDB is fully detached, or remains tethered to
218 the microtubule in a diffusive or weakly-bound state.

219
220 To determine whether DDB is detached or in a weakly-bound state, we next compared the motility
221 of the fast motor pairs (pairs with trace velocities above the thresholds) with the motility of
222 unloaded kinesin in single-molecule assays. Comparing run lengths, we found that for Kin1 and
223 Kin2, the presence of DDB caused an ~180% enhancement of the run length (Fig. 3A). In contrast,
224 for Kin3 there was a 47% reduction in the run length in the presence of DDB (Fig. 3A); however,
225 this can be explained by selection bias of long microtubules in the control data, whereas, to
226 maximize the number of events captured in the first few minutes of imaging, DDB-Kin3 events
227 were collected from microtubules of varying lengths. Motor velocities were also affected:
228 coupling with DDB caused a 14% reduction for Kin1 and a ~25% reduction for both Kin2 and
229 Kin3 (Fig. 3B). The fact that the velocities were still relatively fast, but DDB had differential
230 impacts on the different kinesin families, is consistent with DDB being in a diffusive or weakly-
231 bound state that both tethers the kinesin to the microtubule to enhance the run length and creates a
232 frictional drag that has a greater effect on Kin2 and Kin3 motors.

233
234 To better understand the differences between the slow and fast DDB-Kin populations, we next
235 compared the trace durations. The mean durations of the slow traces were 22.2 ± 0.3 sec for DDB-
236 Kin1, 20.3 ± 0.2 sec for DDB-Kin2, and 19.5 ± 0.3 sec DDB-Kin3 (mean \pm 95% CI of bootstrap
237 distributions of a single exponential fit; Fig. 3C). These durations are substantially longer than
238 either the durations of the fast DDB-kin populations (Fig. 3D) or the durations of the unloaded
239 motors (Fig. 3E), further supporting the idea that the fast population of DDB-Kin traces represent
240 only the kinesin walking on the microtubule with the DDB being in a diffusive or other weakly-
241 bound state. It follows that the slow velocity, long duration population of DDB-Kin traces
242 represent cases where both motors are engaged in a strongly bound state. Therefore, to explore
243 more deeply how kinesin and dynein connected to a shared cargo compete during bidirectional
244 transport, we focused on the motility of these slow DDB-Kin pairs.

245

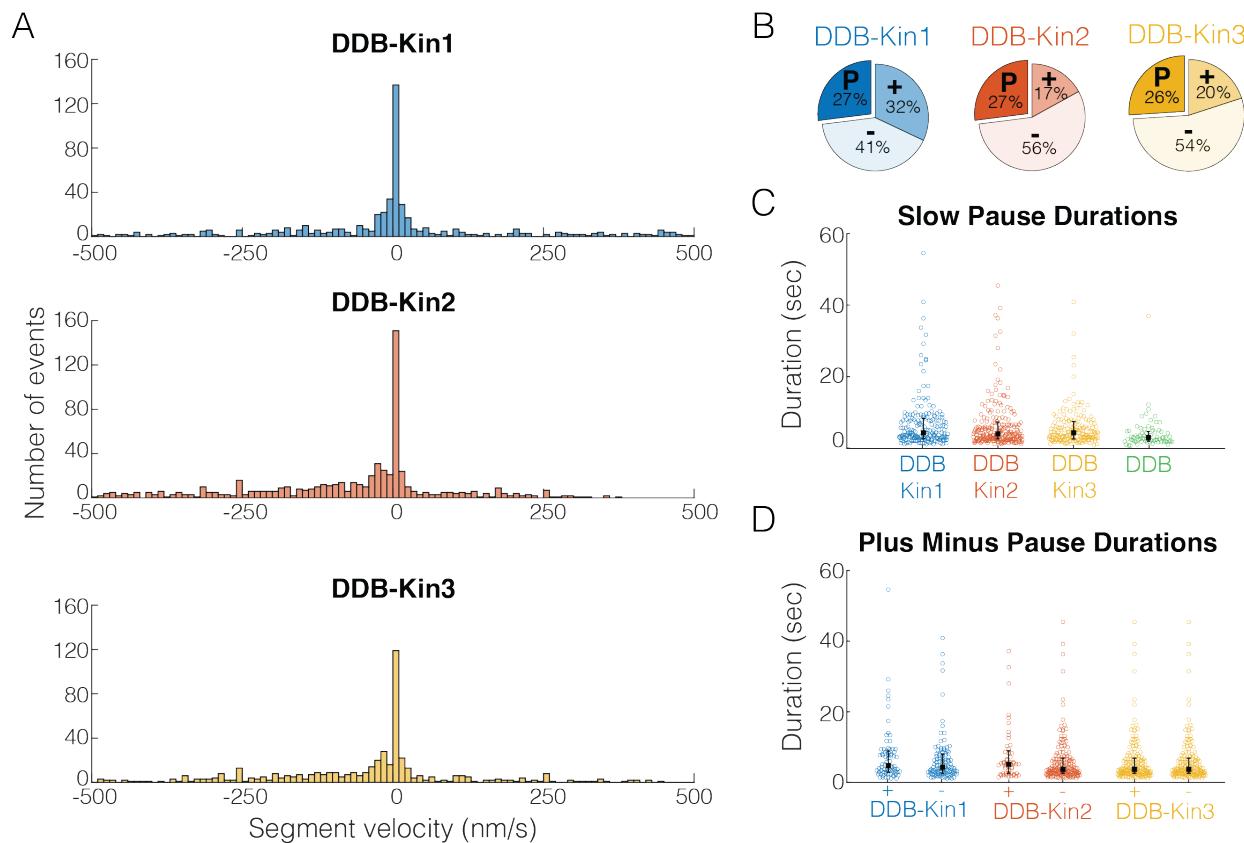
246

247 **Figure 3: Fast, plus-end events represent a diffusive or weakly-bound DDB. (A)** Run length
 248 distributions of the fast traces and unloaded kinesin. Error bars represent median values and
 249 quartiles. **(B)** Velocity distributions of the fast DDB-Kin traces and unloaded kinesin. Error bars
 250 represent median values and quartiles. **(C)** Durations of the slow traces (traces < velocity
 251 threshold). Data were fit to a single exponential and values are mean duration \pm 95% CI of
 252 bootstrap distributions. **(D)** Durations of the fast traces (traces > velocity threshold). Data were fit
 253 to a single exponential and values are mean duration \pm 95% CI of bootstrap distributions **(E)**
 254 Durations of the unloaded kinesin traces. Data were fit to a single exponential and values are mean
 255 duration \pm 95% CI of bootstrap distributions

256 **Figure 3 Source Data uploaded**

257

258 Pauses observed in motor pairs are due to DDB switching into a “stuck” state


259 To understand the behavior of the complex when both motors are engaged, we first segmented
 260 each trace into segments of constant velocity and plotted the resulting segment velocity
 261 distributions (Fig. 4A). Interestingly, there were no clear peaks corresponding to the unloaded
 262 DDB or kinesin velocities (Fig. 4 Supp. 1), suggesting the fraction of time where one motor is
 263 detached, or not providing a hindering load, is minimal. However, for all three kinesins, the
 264 segment velocity distributions had a clear peak at zero velocity, suggesting that one, or both, of
 265 the motors spend a significant fraction of time in a static paused state. If these paused states are
 266 caused by periods where the kinesin and DDB are pulling with equal force, we would expect the

267 time spent in these paused states to vary between the three kinesin families due to their different
268 propensities to backstep or detach from the microtubule under load (Andreasson, Shastry, et al.,
269 2015; Budaitis et al., 2021; Feng et al., 2018; Ohashi et al., 2019).

270
271 To test whether the fraction of time spent in a paused state was different between the pairs, we
272 quantified the fraction of time that each motor pair spent in each motility state – moving toward
273 the plus end, moving toward the minus end, and paused. A paused segment was defined as any
274 segment that moved less than one pixel (73 nm) in either direction, and plus- and minus-end
275 moving segments involved displacements of more than one pixel. We found that, although the
276 fraction of time spent moving toward the plus-end or minus-end varied across the motor pairs,
277 each motor pair spent a similar 26-27% of the time in a paused state (Fig. 4B). Thus, the fraction
278 of time spent paused is independent of the kinesin type involved and is likely an inherent property
279 of DDB. To confirm the pauses are inherent to the DDB motility, we measured the fraction of time
280 that isolated DDB spends in a paused state and found that it was 24% – almost identical to the
281 motor pairs (Fig. 4 Supp. 2). And in further support of this idea, a previous high-resolution tracking
282 study that rigorously characterized DDB state switching reported that unloaded DDB spends 31%
283 of its time on a microtubule in a “stuck” state (Feng et al., 2020).

284
285 To further test whether pulling forces by linked kinesin motors affect the DDB paused state, we
286 next asked whether the duration of the DDB pauses were altered when paired with a kinesin. First,
287 we compared the pause durations of the motor pairs with the pause durations of unloaded DDB
288 and found that compared to the unloaded DDB pause segment durations of 2.8 ± 0.08 sec (mean
289 duration \pm 95% CI of bootstrap distributions), the paused segment durations for the motor pairs
290 were 5.1 ± 0.06 sec for DDB-Kin1, 4.5 ± 0.06 sec for DDB-Kin2 and 4.3 ± 0.05 sec for DDB-
291 Kin3 (Fig. 4C). The longer durations indicate that the linked kinesin does not pull DDB out of a
292 paused state, and the ~30-45% enhancement in pause duration suggests that pulling forces from
293 linked kinesins may actually stabilize the DDB paused state somewhat. Further support for kinesin
294 forces elongating the DDB pause state was the finding that pauses that interrupted plus-end events
295 were up to 22% longer than pauses that interrupted minus-end-directed events (Fig. 4D). Based
296 on this slight enhancement in the pause durations between DDB alone and the DDB-Kin pairs, and

297 between plus-end and minus-end-directed events, we conclude the pauses are due to a stabilized
298 version of the DDB “stuck” state rather than a brief stalemate in the tug-of-war.
299

300
301 **Figure 4: Pauses are due to a DDB “stuck” state** (A) Distributions of segment velocities for the
302 slow traces. <10% of the data is excluded to zoom in on the peak at zero (B) Fraction of segments
303 that are paused (defined as moving < 1 pixel/73 nm), minus-end-directed and plus-end-directed
304 for the slow population (< velocity threshold defined in Fig. 2C). (C) Distributions of pause
305 durations for DDB-Kin1/2/3 pairs compared with unloaded DDB. Error bars represent median
306 values and quartiles. (D) Comparison of pause durations for the minus-end and plus-end-directed
307 events for each motor pair. Error bars represent median values and quartiles.

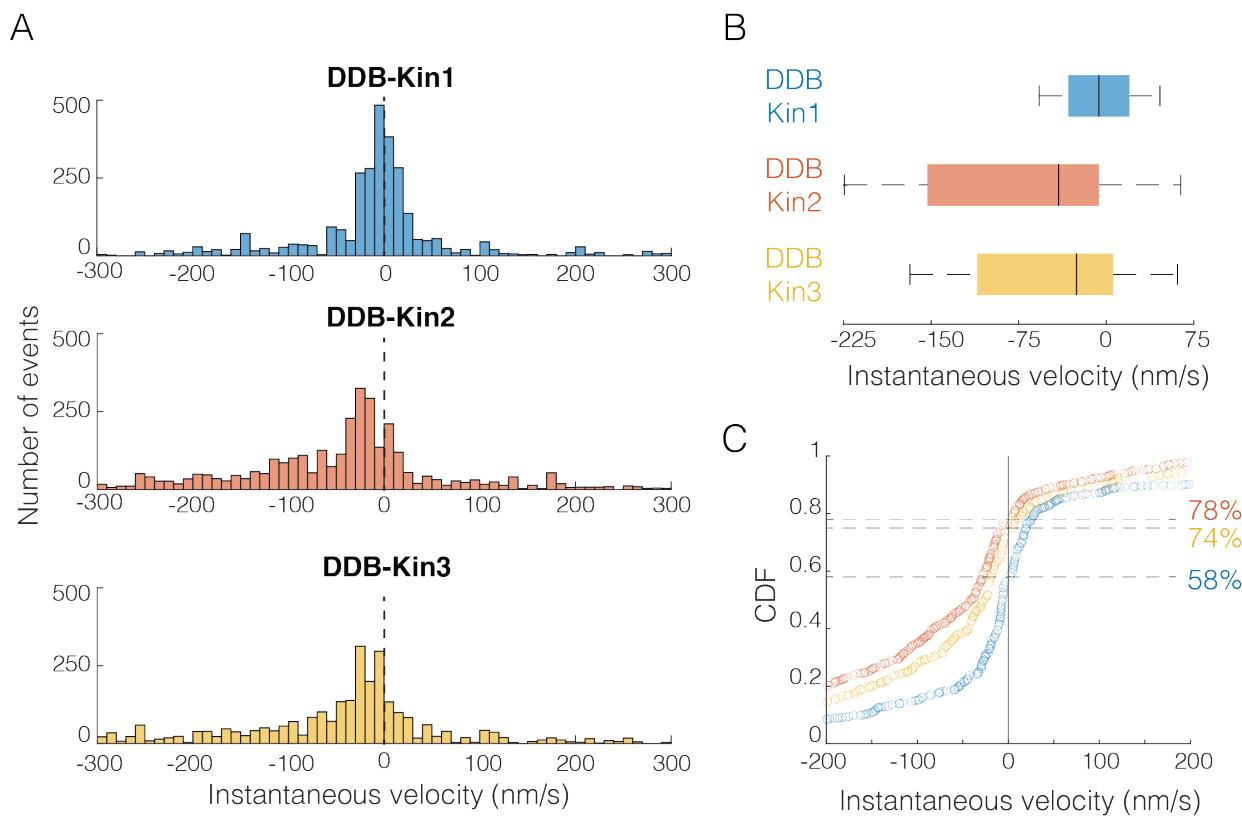
308 **Figure 4 Source Data uploaded**

309 **Figure 4 Supplement 1:** Slow segment velocity distributions

310 **Figure 4 Supplement 2:** Sample traces for DDB alone

311

312 [Kin1, Kin2, and Kin3 can all effectively withstand DDB hindering loads](#)


313 Since pause durations suggest that the pauses are due to DDB switching into an inactive static state
314 rather than a property of the mechanical tug-of-war, we decided to focus only on the slow, non-
315 paused segments where both motors are necessarily engaged and stepping along the microtubule.
316 To do this, we separated out the paused segments, and broke the remaining velocity segments into

317 1-second intervals. The distributions of these 1-second instantaneous velocity intervals were
318 plotted for the DDB-Kin1, DDB-Kin2 and DDB-Kin3 pairs (Fig. 5) to determine if there were any
319 significant differences between the median speed, spread of the distributions, or the fraction of
320 time that complexes move toward the plus-end.

321

322 From this instantaneous velocity analysis, Kin1, Kin2, and Kin3 motors are all able to withstand
323 hindering loads generated by DDB, but some subtle differences emerge that suggest different
324 underlying mechanisms. First, the peak instantaneous velocity was centered around zero for DDB-
325 Kin1, whereas it was shifted toward the minus-end direction for DDB-Kin2 and DDB-Kin3 (Fig.
326 5A). Second, the median speed of DDB-Kin1 was -6 nm/s, which is slower than DDB-Kin2 at -41
327 nm/s and DDB-Kin3 at -26 nm/s (Fig. 5B). Third, the DDB-Kin1 velocity distribution was more
328 confined around zero with the 25% and 75% quartiles spanning 52 nm/s, compared to 159 nm/s
329 and 117 nm/s for DDB-Kin2 and DDB-Kin3, respectively (Fig. 5B). Lastly, the fraction of time
330 spent moving toward the plus-end was ~20% higher for the DDB-Kin1 pairs (Fig. 5C). Together,
331 these data suggest that while all three kinesin motors effectively compete with DDB in tug-of-war,
332 kinesin-1 has a slight advantage. Based on this result, we next wanted to understand how the
333 mechanochemical differences between the three kinesin families lead to their surprisingly similar
334 performances against DDB during bidirectional cargo transport. To do this, we performed
335 stochastic simulations of motor stepping in DDB-Kin pairs.

336

337
338

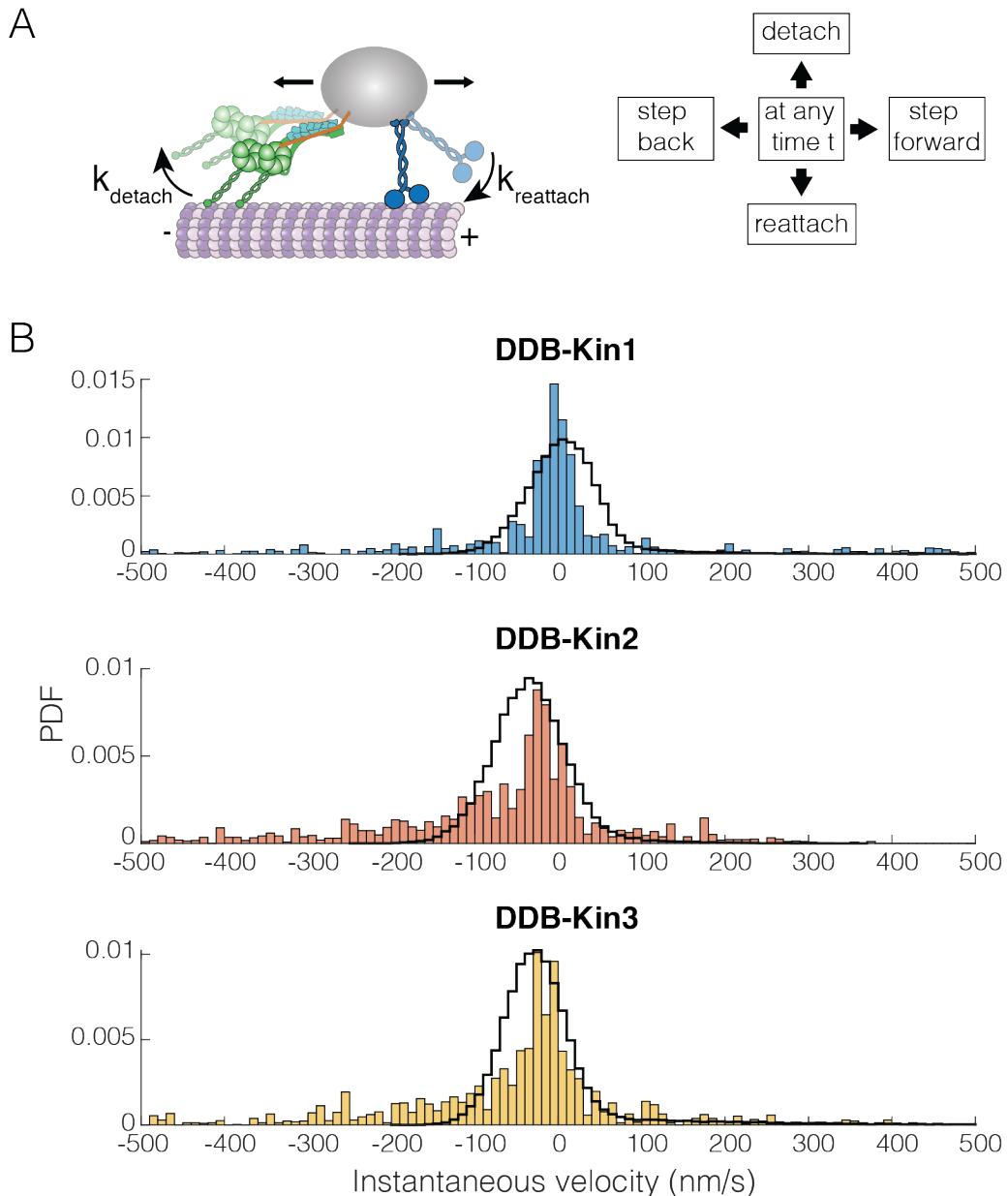
339 **Figure 5: DDB-Kin1/2/3 all compete effectively against DDB.** (A) Distribution of instantaneous
340 velocities calculated over 1-sec time windows for the moving segments (excluding pauses).
341 Dashed line represents $v = 0$ nm/s. <13% of data are not shown to zoom in on the peak near zero.
342 (B) Box plot distributions of the instantaneous velocity distributions shown in (A). Vertical bars
343 represent median values (-6 nm/s, -41 nm/s, and -26 nm/s), solid boxes represent quartiles, and
344 error bars denote limit of outliers. (C) Cumulative distributions of instantaneous velocities,
345 showing the fraction of time spent moving toward the minus-end (<0 nm/s; denoted by dashed
346 lines) versus the plus-end (>0 nm/s). DDB-Kin1 (blue/bottom), DDB-Kin2 (orange/top) and DDB-
347 Kin3 (yellow/middle).

348 **Figure 5 Source Data uploaded**

349

350 Simulations show fast detachment under load can be rescued with fast reattachment

351 To better understand how the family-specific kinesin motor properties determine the tug-of-war
352 outcomes, we simulated the DDB-kinesin motor pairs using a previously developed stochastic
353 stepping model of bidirectional transport (Ohashi et al., 2019). The model incorporates
354 experimentally determined parameters for kinesin and DDB into a mathematical model that
355 dictates whether each motor will step forward, step backward, detach, or reattach from the
356 microtubule at a given time point (Fig. 6A; see methods) (Ohashi et al., 2019). The kinesin stepping
357 rates and unloaded detachment rates, k_{detach}^0 , were taken from the single-molecule data in Fig. 3


358 and Fig. 2 Supp. 1 (summarized in Table 1). The load-dependent motor detachment rate was
359 defined as $k_{\text{detach}}(F) = k_{\text{detach}}^0 e^{\frac{F}{F_{\text{detach}}}}$, where the force parameter, F_{detach} , was taken from published
360 optical tweezer experiments (see Methods) (Andreasson, Milic, et al., 2015; Andreasson, Shastry,
361 et al., 2015; Elshenawy et al., 2019). A number of studies have found that kinesin-3 detaches
362 readily under load (Arpag et al., 2019; Arpağ et al., 2014; Budaitis et al., 2021), and the load-
363 dependent detachment rate for kinesin-3 was taken from a recent study using a three-bead optical
364 trapping assay that minimizes the influence of vertical forces on detachment (Pyrpassopoulos et
365 al., 2022). That same study found that kinesin-3 and, to a lesser extent, kinesin-1 frequently
366 disengage under load, slip backward, and then rapidly reengage with the microtubule. This rapid
367 reengagement behavior has also been observed in other recent studies (Sudhakar et al., 2021;
368 Toleikis et al., 2020). Based on this work, we used reattachment rates of 100/s and 990/s for
369 kinesin-1 and kinesin-3, respectively. Additionally, based on stopped-flow studies that found the
370 microtubule on-rate constant for kinesin-2 is intermediate between that of kinesin-1 and -3 (Feng
371 et al., 2018; Zaniewski et al., 2020), we used a reattachment rate of 300/s for kinesin-2. These fast
372 rates are further supported by the lack of evidence of long periods of kinesin detachment in any
373 previous studies that tracked DDB-Kin pairs (Belyy et al., 2016; Elshenawy et al., 2019; Feng et
374 al., 2020).

375
376 We used the model to simulate bidirectional transport for the three motor pairs and analyzed the
377 resulting trajectories using a 1-second window to calculate instantaneous velocities. Following
378 these initial simulations, we made small adjustments to the parameters to optimize the fits; see
379 Table 1 for final model parameters. Importantly, we found that the model was able to closely
380 match the experimental instantaneous velocity distributions for each case (Fig. 6B and Fig. 6 Supp.
381 1A). For DDB-Kin1, the peak simulation velocity of 5 nm/s closely matched the experimental
382 peak of -2 nm/s (Fig. 6B). For DDB-Kin2 and DDB-Kin3, the velocity peaks were shifted towards
383 the minus-end compared to DDB-Kin1 and the simulations recapitulated this shift but overshot by
384 ~15-20 nm/s toward the minus-end. One aspect of the experimental data that wasn't captured by
385 the models was the minus-end tails in the velocity distributions. These tails are likely due to
386 instances of unloaded DDB movement where the kinesin is detached and is slow to rebind because
387 of an unfavorable conformation or geometry, a feature not incorporated into the model.

388

389 To examine the role played by motor reattachment kinetics, we repeated the simulations using a
390 reattachment rate of 5 s^{-1} for all three kinesins. This value was initially determined in a study that
391 measured motor-driven deformations of giant unilamellar vesicles (Leduc et al., 2004), it was in a
392 number of modeling studies (Muller et al., 2008), and it was experimentally confirmed in a study
393 that used DNA to connect two kinesins (Feng et al., 2018). When this 5 s^{-1} value was used for the
394 reattachment rate, the simulated velocities had broad distributions centered around -50, -150, and
395 -250 nm/s for DDB-Kin1, 2 and 3, respectively, strongly conflicting with the experimental data
396 (Fig. 6 Supp. 1B). Overall, the data support the conclusion that Kin2 and Kin3 have higher
397 sensitivity to load than Kin1, as seen in the detachment force parameter and in the larger minus-
398 end shift for Kin2 and Kin3 when the slower reattachment rate is used in simulations, but this
399 propensity to detach under load is compensated by fast rebinding to the microtubule. By balancing
400 these attachment and detachment kinetics, all three motors can effectively compete with activated
401 dynein motors during bidirectional transport.

402

403

404 **Figure 6: DDB-Kinesin stepping simulations can recapitulate experimental velocities.** (A)
 405 Schematic of the stochastic stepping model used in simulations. (B) Instantaneous velocity
 406 distributions of the experimental (blue, orange, and yellow bars) and the simulated traces (black
 407 lines) for the DDB-Kin1, DDB-Kin2 and DDB-Kin3 pairs. Window size is one second.

408 **Figure 6 Source Data uploaded**

409 **Figure 6 Supplement 1:** Simulation results for slower reattachment rates

410

411

	Kinesin-1	Kinesin-2	Kinesin-3	DDB
V_0 (nm/s)	586	307	910	360

$k_{\text{forward}} (\text{s}^{-1})$	76	41	117	60
$k_{\text{detach}}^0 (\text{s}^{-1})$	0.96	0.76	0.16	0.1
$F_s (\text{pN})$	6	6	6	3.6
$F_{\text{detach}} (\text{pN})$	6.8	3	1.3	∞ (Ideal bond)
$k_{\text{reattach}} (\text{s}^{-1})$	100	300	990	5
$k_{\text{backstep}} (\text{s}^{-1})$	3	3	3	5
$\kappa_{\text{motor}} (\text{pN/nm})$	0.2	0.2	0.2	0.2

412 **Table 1: Model parameters.**

413

414 **Discussion**

415 Precise determination of motor behavior under physiologically relevant loads, particularly in the
416 context of bidirectional transport of antagonistic motor pairs, is crucial to understanding how
417 bidirectional transport is regulated in cells (Cason & Holzbaur, 2022; Hancock, 2014). In neurons,
418 members of the kinesin-1, -2 and -3 families are present on cargo alongside dynein (Hendricks et
419 al., 2012; Hendricks et al., 2010; Loubéry et al., 2008; Schuster et al., 2011), but it is unknown
420 why different kinesin motor types are needed and how their differing mechanochemical properties
421 affect their function. Here, we have demonstrated experimentally that Kin1 is only slightly more
422 resistant to detaching under load than Kin2 or Kin3, and all three kinesin motor types generate
423 sufficient force to effectively compete against a dynein-dynactin-BicD2 (DDB) complex. This is
424 seen clearly in Fig. 5 where, although the DDB-Kin2 and DDB-Kin3 peaks are wider and shifted
425 to the left from DDB-Kin1, suggesting more frequent detachment of these kinesin, the median
426 speeds are still close to zero. This result is surprising, as previous computational modeling work
427 found that the strongest determinant of directionality in DDB-kinesin bidirectional transport is the
428 sensitivity of motor detachment to load (Ohashi et al., 2019), and published studies have
429 established that, whereas kinesin-1 is able to maintain stepping against hindering loads, kinesin-2
430 and kinesin-3 motors detach more readily under load (Andreasson, Shastry, et al., 2015; Arpag et
431 al., 2019; Arpağ et al., 2014; Budaitis et al., 2021; Pyrpassopoulos et al., 2022). Thus, it was
432 expected that kinesin-1 would best compete with DDB, and kinesin-3 would compete the least
433 effectively with DDB.

434

435 To understand the unexpected experimental results, we used a stochastic stepping model to
436 simulate the DDB-Kin bidirectional transport. We were able to reproduce the experimental
437 velocity distributions best by implementing fast motor rebinding rates in our stochastic model.
438 Previous work from our lab connected two kinesins using a similar DNA linkage approach to the
439 present work and arrived at a motor reattachment rate of 5 s^{-1} (Feng et al., 2018), a value used
440 widely in published modeling studies (e.g. (Muller et al., 2008)). However, as part of that work,
441 we also made a first principles calculation of the predicted kinesin reattachment rate,
442 $k_{\text{reattach}} = k_{\text{on}}^{\text{Mt}} \times [\text{tubulin}]$. The bimolecular on-rate for microtubule binding in solution, $k_{\text{on}}^{\text{Mt}}$, was
443 measured by stopped-flow to be $1.1\text{ }\mu\text{M}^{-1}\text{ s}^{-1}$ and the effective $[\text{tubulin}]$ was calculated to be $125\text{ }\mu\text{M}$ (Feng et al., 2018). Thus, the fast kinesin reattachment rates of $100\text{-}1000/\text{s}$ used in the
444 simulations are supported by first principles calculations. The precise values we used in the
445 modeling came from a recent three-bead optical tweezer study that measured the rate that kinesin-
446 1 and kinesin-3 motors reengaged and resumed a force ramp following termination by a rapid
447 backward displacement (Pyrpassopoulos et al., 2022). The large discrepancy between these
448 measured rates of 5 s^{-1} and $\sim 100\text{ s}^{-1}$ could be due to the presence of assisting (Kin-Kin) vs.
449 hindering (DDB-Kin) load, where hindering load may be more likely to optimize fast reattachment
450 due to being pulled back along the microtubule. Importantly, fast reattachment as a strategy to
451 compensate for fast detachment under load explains how seemingly “force-sensitive” kinesin
452 family members can be robust transport motors.
453

454
455 In pairing different types of kinesin motors with DDB, we also gained important insights into the
456 behavior of activated dynein under load. Previous optical tweezer studies have characterized DDB
457 force generation and its stepping behavior under load (Belyy et al., 2016; Elshenawy et al., 2019),
458 and unloaded single molecule assays quantified the switching between processive, diffusive and
459 static states in unloaded single molecule assays (Feng et al., 2020). However, it remained unclear
460 how the switching dynamics would change under load, or how state switching might affect the
461 overall motility when DDB was paired with an antagonistic motor. When full traces were analyzed
462 (Fig 2), there was a sub-population of complexes that moved at the kinesin speeds for each motor
463 pair, which we conclude are most likely due to diffusive or weakly-bound DDB complexes. When
464 we performed a segmental analysis, which focuses on pairs with two active and engaged motors
465 (Fig. 4), we found that DDB state switching kinetics did not change dramatically under load – the

466 DDB-Kin complexes spent ~30% of the time in a static state and the rest of the time in a processive
467 state, similar to DDB alone. The similar duration of the pauses between all three motor pairs
468 suggested that these pauses were due to entirely to DDB switching into a static state, and that this
469 must be a strongly bound state that kinesin cannot pull it out of. Interestingly, the slightly longer
470 duration of these pauses in the DDB-Kin complex suggests that the hindering load provided by the
471 kinesin may actually stabilize this paused state, increasing its duration. Overall, these behaviors
472 suggest that some of the complicated vesicle motility observed *in vivo* (Hendricks et al., 2010; Rai
473 et al., 2016) could be due to activated dynein switching between states rather than to a tug-of-war
474 between the kinesin and dynein.

475

476 Mechanical tug-of-war, where the direction and speed of bidirectional cargo transport is
477 determined by the stronger team of kinesin or dynein motors (Gross, 2004), has been the
478 predominant model for nearly two decades (Hancock, 2014). However, consistent with the present
479 work, recent studies that paired a kinesin with an activated dynein through complementary DNA
480 have observed primarily slow and smooth motility, with no obvious periods of motors moving at
481 unloaded speeds and either zero or very few instances of directional switching (Belyy et al., 2016;
482 Elshenawy et al., 2019; Feng et al., 2020). These results are contradictory to what is predicted by
483 the tug-of-war model (Muller et al., 2008). Interestingly, similar studies of kinesin-dynein
484 bidirectional transport that link the motor pairs with the cargo adaptors TRAK2 and Hook3, rather
485 than DNA, observe primarily fast and unidirectional motility with either zero or very few instances
486 of directional switching (Canty et al., 2021; Fenton et al., 2021; Kendrick et al., 2019). The lack
487 of frequent directional switching in either context suggests that a tug-of-war is not the primary
488 mechanism for determining directionality. Instead, the contrast between the motility of pairs of
489 constitutively active motors linked via DNA versus full-length motors attached to cargo adaptors
490 suggests that cargo adaptors may regulate transport direction by alternately inhibiting kinesin or
491 dynein from engaging with the microtubule, a mechanism termed ‘selective activation’ (Cason &
492 Holzbaur, 2022). Besides providing a more localized site for regulation, direct attachment of
493 antagonistic motor pairs to a common cargo adapter also provides a natural mechanism to ensure
494 that the numbers of plus-end and minus-end motors attached to a cargo are balanced.

495

496 An alternative mechanism by which cargo adapters can regulate cargo directionality is by
497 preventing simultaneous binding of kinesin and dynein in the first place. It has been shown that
498 the phosphorylation state (in the case of JIP1; (Fu & Holzbaur, 2013)) or the presence of binding
499 partners (in the case of HAP1; (Twelvetrees et al., 2019; Twelvetrees et al., 2010; Wong &
500 Holzbaur, 2014)) can cause differential binding of kinesin or dynein to a cargo, a mechanism
501 termed ‘selective recruitment’ (Cason & Holzbaur, 2022). Beyond cargo adaptors, the microtubule
502 track itself can also regulate motor binding via recruitment of MAPs that differentially inhibit and
503 recruit motors across the kinesin superfamily, as well as, dynein (Ferro et al., 2022; Monroy et al.,
504 2020). The surprising result that kinesin-1, -2 and -3 can effectively pull an activated DDB during
505 bidirectional transport, despite their drastically different motility characteristics under load,
506 provides strong evidence that motors are not simply regulating themselves via mechanical
507 competition, and underscores the importance of deciphering the combinatorial
508 MAP/adaptor/motor code that regulates transport in cells.

509

510 **Acknowledgments**

511 The authors would like to thank Anthony V. Ludlam from the Cianfrocco lab for purifying the
512 dynactin. This work was supported by NIH grants R01GM076476 and R35GM139568 to W.O.H,
513 R21AI152869 to M.A.C., and F32GM137487 to A.M.G.

514

515 **Competing Interests**

516 The authors declare that no competing interests exist.

517

518 **Data Availability**

519 Numerical data used to generate figures have been included as source data.

520

521 **Code Availability**

522 MATLAB code for the simulations has been uploaded as a source code file for Fig. 6.

523

524 **Methods**

525 Plasmid design

526 The Kin1 construct consists of *D. melanogaster* KHC residues 1-559 (adapted from Addgene
527 #129761), the Kin2 construct consists of the *M. musculus* KIF3A residues 1-342, followed by the
528 *D. melanogaster* KHC neck coil (345-557) for dimerization (adapted from Addgene #129769),
529 and the Kin3 construct consists of the *R. norvegicus* KIF1A residues 1-393, followed by a GCN4
530 leucine zipper for dimerization (adapted from Addgene #61665; (Norris et al., 2014)). All of the
531 kinesin constructs have a C-terminal SNAP tag followed by a 6x His tag for purification. The GFP
532 binding protein nanobody, GBP, contains an N-terminal SNAP tag and a C-terminal 6x His tag for
533 purification (Feng et al., 2020; Feng et al., 2018; Kubala et al., 2010). The BicD2 consists of an
534 N-terminal 6x His tag, *M. musculus* BicD2 residues 25-424 (McKenney et al., 2014), followed by
535 GFP, a SNAP tag, and a Strep Tag II.

536

537 The dynein plasmid was prepared as described before (Schlager et al., 2014). In summary, the
538 pACEBac1 expression vector containing the dynein heavy chain (DYN1H1) fused to His-ZZ-
539 TEV-SNAPf tag (pDyn1) and a plasmid containing DYN1I2, DYN1LI2, DYNLT1, DYNLL1,
540 and DYNLRB1 (pDyn2) were recombined with Cre recombinase to generate final donor plasmid.
541 pDyn1 and pDyn2 were generous gifts from Andrew Carter, and all genes were codon-optimized
542 for expression in insect cells.

543

544 Protein expression and purification

545 The kinesin, GBP and BicD2 constructs were bacterially expressed and grown in 800 mL of
546 Terrific Broth (Sigma Aldrich, St. Louis, MO) at 37 °C until the OD = 1-2. Induction was initiated
547 by adding 0.3 mM IPTG and the cultures were left to shake at 21 °C overnight. The cells were
548 harvested and spun at 123,000 x g to collect the supernatant, which was then purified by nickel
549 gravity column chromatography, as described previously (Gicking et al., 2019; Zaniewski et al.,
550 2020). Elution buffer contained 20 mM phosphate buffer, 500 mM sodium chloride, 500 mM
551 imidazole, 10 µM ATP and 5 mM DTT. For the BicD2, the final elution peaks were combined,
552 supplemented with 10% glycerol and flash frozen before storage at -80 °C. The concentration was
553 determined using absorbance at 488 nm. The kinesin and GBP constructs were exchanged into 1x
554 PBS with 1 mM DTT and labeled with DNA and SNAP-Surface Alexa Fluor 647 (NEB, Ipswich,
555 MA) dye directly after elution, as described below. Their concentrations were determined using
556 absorbance at 280 nm.

557

558 The dynein baculovirus was prepared from pACEBac1 final donor vector using standard methods.
559 High Five™ Cells (BTI-TN-5B1-4) insect cells at 2×10^6 /ml density were infected with passage
560 2 of virus at 1:100 ratio and harvested 72 h later. For 10 ml culture, 1 ml of lysis buffer (50 mM
561 HEPES pH 7.4, 100 mM NaCl, 10% glycerol 10%, 0.5 mM EGTA, 1mM DTT and 0.1 mM ATP,
562 1 unit Benzonase + SIGMAFAST™ Protease Inhibitor Tablets + 0.5 mM Pefabloc SC) was used.
563 The cell pellet was lysed using a dounce homogenizer at 25 strikes with a tight plunger. Lysate
564 became clear by centrifugation for 88 min at 50K rpm 4°C. Clear lysate was incubated with 0.5 ml
565 packed beads IgG Sepharose 6 Fast-Flow (GE Healthcare, Chicago, IL) for 2-3 hours at 4°C on a
566 tube roller. After incubation, the beads were collected in a disposable column and washed by 150
567 ml lysis buffer (50 ml +protease inhibitors and 100 ml without protease inhibitors), followed by a
568 wash with 300 ml DynBac TEV buffer (50 mM Tris-HCl pH 8, 2mM Mg-Acetate, 1mM EGTA,
569 250mM K-Acetate, 10% glycerol, 1mM DTT, 0.1 mM ATP-Mg). The beads were transferred to a
570 2 ml tube, and 1.5 ml DynBac TEV buffer + TEV protease at final 100 μ g/ml was added to the
571 beads. After overnight incubation at 4°C on tube roller, the supernatant was cleared from the beads
572 using low-binding Durapore (0.22 μ m). Eluent was subjected to size-exclusion chromatography
573 with Superose 6 300/10 equilibrated with GF150 buffer (25 mM HEPES pH 7.4, 150 mM KCl,
574 0.5 mM EGTA, 1 mM DTT). The fractions containing dynein were collected and concentrated
575 with 100 KDa MWCO Amicon filter. Glycerol, at final 10%, was added to concentrated dynein
576 before flash-freezing

577

578 Dynactin was purified natively from bovine brain following the described procedures (Urnavicius
579 et al., 2015). Fresh cow brains were purchased from the local source and washed immediately with
580 ice-cold PBS at least 3x. With the help of a razor, any significant portions of white matter, blood
581 vessels, membrane, brainstem, and corpus callosum were trimmed away. The collected tissue was
582 washed with PBS 3x again before lysing. 200 ml ice-cold lysis buffer (35 mM PIPES pH 7.2, 1
583 mM MgSO₄, 0.1 mM EDTA, 0.2 mM EGTA, 0.2 mM ATP-Mg, 1 mM DTT, Protease inhibitors
584 (cOmplete tablets, or homebrew cocktail + 1 mM PMSF)), 200 μ l antifoam, and clean brain tissues
585 were added to a cold metal blender. Tissues were lysed using the “pulse” blender function - 15
586 seconds on, 15 seconds rest, repeat 4x at 4°C. Lysate was transferred to Oakridge tubes and
587 centrifuged for 1 hr at 15000 g, 4°C. Supernatants from the last step were transferred to Ti45

588 centrifuge tubes and spun at 40k rpm for 45 min, 4°C. Final clear lysate was loaded into SP-
589 sepharose, 300 ml bed volume, equilibrated with Buffer A (35 mM PIPES pH 7.2, 1 mM MgSO₄,
590 0.1 mM EDTA, 0.2 mM EGTA, 0.1 mM ATP-Mg, 1 mM DTT). Bound proteins were fractionated
591 using a two-phase salt gradient: 0% to 25% buffer B (35 mM PIPES pH 7.2, 1 mM MgSO₄, 0.1
592 mM EDTA, 0.2 mM EGTA, 0.1 mM ATP-Mg, 1 mM DTT and 1 M KCl) for 900 ml, and then
593 25% to 100% buffer B for 300 ml. A western blot for p150^{Glued} was used to determine the fractions
594 with dynactin. Fractions with dynactin were collected, diluted twice into HB buffer (35 mM
595 PIPES-KOH pH 7.2, 1 mM MgSO₄, 0.2 mM EGTA, 0.1 mM EDTA, 1 mM DTT), and loaded into
596 an HB-buffer equilibrated MonoQ 16/10 column. Unbound proteins were washed out with 10 CV
597 of HB buffer, and dynactin was fractionated using three linear gradients: 5% to 15% buffer C (HB
598 buffer + 1M KCl) in 1 CV, 15% to 35% buffer C in 10 CV and 35% to 100% buffer C in 1 CV.
599 Fractions with dynactin were collected and concentrated to 200 µl using 100KDa MWCO Amicon
600 concentrators. Lastly, size-exclusion chromatography of concentrated dynactin (with Suprose6
601 300/10 column in non-reducing GF150) resulted in a peak of dynactin just after the void volume.
602 At this point the dynactin subunits were distinguishable on 12% SDS-PAGE. Dynactin fractions
603 were concentrated with 100KDa MWCO Amicon concentrators and glycerol was added to the
604 final 10%.

605

606 Functionalizing DNA oligos

607 Complementary amine-modified 63 bp DNA oligos (IDT) were used. The sequences were
608 /5AmMC12/GT CAA TAA TAC GAT AGA GAT GGC AGA AGG GAG AGG AGT AGT GGA
609 GGT AGA GTC AGG GCG AGA T (kinesin oligo) and /5AmMC12/AT CTC GCC CTG ACT
610 CTA CCT CCA CTA CTC CTC TCC CTT CTG CCA TCT CTA TCG TAT TAT TGA C (GBP
611 oligo). These oligo designs were adapted from previous work (Belyy et al., 2016) and confirmed
612 to have a low probability of forming secondary structures. To functionalize the oligos with BG for
613 SNAP tag binding, 250 µM of each oligo was incubated with 13.28 mM of BG-GLA-NHS (NEB)
614 in 100 mM sodium borate and 50% v/v DMSO. The reaction was then desalting into 1x PBS
615 supplemented with 1 mM DTT using a PD MiniTrap column (Cytiva, Marlborough, MA). The
616 BG-labeling was confirmed using a 10% TBE-Urea electrophoresis gel, and the BG-oligo
617 concentration was determined via absorbance at 260 nm.

618

619 Labeling kinesin and GBP with oligos

620 BG-oligos were incubated with the SNAP-fusion kinesin and GBP constructs at a 1.5:1 ratio for 1
621 hr on ice. For the kinesin constructs, 50 μ M of SNAP-Surface Alexa Fluor 647 (NEB) was added
622 and incubated for another 30 min on ice to saturate the remaining SNAP-tag binding sites. A
623 second nickel gravity column chromatography purification was performed to separate the labeled
624 protein from the excess BG-oligos and dye. The elution buffer contained 20 mM phosphate buffer,
625 500 mM sodium chloride, 500 mM imidazole, 10 μ M ATP and 3-5 mM DTT. The fraction of oligo-
626 labeled monomers was determined by the percent reduction in the unlabeled (unshifted) band
627 intensity on an SDS-PAGE gel, and the concentration of oligo-labeled monomers was determined
628 via an SDS-PAGE shift assay using a gradient of complementary oligo concentrations. The
629 concentration of oligo-labeled dimers was then calculated from the fraction and concentration of
630 oligo-labeled monomers. For the kinesin constructs, the fraction of oligo-labeled monomer was
631 ~50%, which minimizes the fraction of dimers with two oligos on the SNAP tag to < 25%.

632

633 For the Kin3 construct, the final oligo-labeled dimer concentration was estimated to be between
634 1.2 μ M – 1.7 μ M assuming 20% - 80% oligo-labeling of the monomer. We used the average of
635 1.4 μ M.

636

637 MT Pelleting Assay

638 To prepare the motors for imaging, a microtubule pelleting assay was performed to remove
639 inactive motors and remove free GBP after incubation with the oligo-labeled kinesin motors.
640 Unlabeled microtubules were polymerized for 30 min at 37 °C in BRB80 supplemented with 1
641 mM GTP, 1 mM MgCl₂ and 10% v/v DMSO. The polymerized microtubules were then diluted in
642 Pelleting Buffer (BRB80 with 100 μ M AMPPNP, 10 μ M Taxol, 0.3 mg/ml BSA and 0.8 mg/ml
643 casein) to a final concentration of 1.5 μ M. The oligo-labeled kinesin were incubated with oligo-
644 labeled GBP on ice for ~10 min and then added to the diluted microtubules at a concentration of
645 150-300 nM. The microtubule-motor mixture was incubated at room temp (21 °C) for 10 min and
646 airfuged at 25 psi for 10 min to pellet the microtubules. The pellet was resuspended in
647 Resuspension Buffer (30 mM Hepes, 50 mM potassium acetate, 2 mM magnesium acetate, 1 mM
648 EGTA and 10% glycerol, supplemented with 10 μ M Taxol, 50 μ M ATP, 0.3 mg/ml BSA, 1 mg/ml
649 casein, 0.2 mM glucose, and 0.2 mM β ME), incubated at room temp for another 10 min and

650 airfuged at 25 psi for 10 min. The supernatant with the active Kinesin-GBP motors was collected
651 and used for the TIRF experiments. The final concentration of active motors was determined by
652 measuring the 647 fluorescence of the pelletting supe (Unbound Motor), resuspension supe (Active
653 Motor) and the resuspension pellet (Rigor Motor) and using the following formula:

654

$$655 C_f = (C_i) * \frac{\text{Active Motor}}{\text{Active Motor} + \text{Unbound Motor} + \text{Rigor Motor}}$$

656

657 TIRF assays and analysis

658 Single-molecule tracking was performed on a custom built micromirror TIRF microscope with a
659 dual-view for two-channel imaging (Nong et al., 2021). All experiments were performed at 21 °C.
660 Unlabeled microtubules were polymerized using the same process described above. Flow cells
661 were prepared by first flowing in 2 mg/ml casein, followed by full-length rigor kinesin
662 (Mickolajczyk et al., 2015). Next, Taxol-stabilized, unlabeled microtubules were flowed in and
663 incubated for 30 sec, unbound microtubule were washed out, and the process was repeated 2x.
664 DDB complexes were formed by combining dynein, dynactin, and BicD2 at a 1:1.5:1 ratio
665 (dynein:dynactin:BicD2), and incubating on ice for 10 min. Kin-DDB pairs linked by
666 complementary oligonucleotides were formed by diluting Kinesin-GBP and DDB complexes to 1-
667 2 nM and incubating them together at an equimolar ratio on ice. Kin-DDB complexes were then
668 introduced into the flow cell in the presence of ~5 μM ATP, allowed to incubate for 2 min, and
669 this process was repeated 1-2x. This low ATP approach maximizes the number of Kin-DDB bound
670 to the microtubules, while retaining activity of the motors. To initiate motility, imaging solution
671 was introduced, consisting of 30 mM Hepes, 50 mM potassium acetate, 2 mM magnesium acetate,
672 1 mM EGTA and 10% glycerol, supplemented with 2 mg/ml casein, 20 mM glucose, 37 mM βME,
673 glucose oxidase, catalase, 10 μM Taxol, and 2 mM ATP.

674

675 Images were taken at 3.5 fps for 100 seconds using a Teledyne Photometrics (Tucson, AZ) Prime
676 95B sCMOS camera. The two channels from the Dual View split screen were aligned using
677 TetraSpeck microspheres (Invitrogen, Waltham, MA). The composite kymographs were then
678 analyzed manually using Fiji (Schindelin et al., 2012). Consistent directionality of at least three
679 free kinesin and/or DDB motors were required to determine the microtubule polarity. A trace was

680 determined to be a motor pair event if it could be clearly detected in both channels or if it was a
681 single color moving in the wrong direction (e.g. Alexa647/kinesin moving toward the minus end).
682 Whole trace velocities and run lengths were determined by measuring the distance and time over
683 which the moving complex could be observed. All three motor pairs were prepared and imaged on
684 the same day to control for DDB activity, experiments were repeated on three different days to
685 confirm the trend and then the kymographs were pooled together for further analysis. Velocity
686 segmentation of full traces was done manually, where each segment had to be at least 3 frames
687 (858 ms) to be counted, and the minimum detectable velocity change between segments was ± 10
688 nm/s. Pauses were defined as any segments that moved less than one pixel (73 nm). Directional
689 switches were defined to be sequential segments that moved at least one pixel in opposite
690 directions. Instantaneous velocity distributions were obtained by weighting each velocity or pause
691 segment by its duration (rounded to the nearest second) and plotting the resulting 1-sec segments
692 as a histogram. All of the analysis and plotting was done in MATLAB.

693

694 Simulations

695 The simulation was a Gillespie stochastic stepping model using an algorithm that followed a
696 previously published model (Ohashi et al., 2019). The reactions of each motor in the simulation
697 were forward stepping, backward stepping, detaching from the microtubule and reattaching after
698 detachment. The opposite directional motors were connected to each other with a no-mass, no-
699 volume cargo in the middle. The load, F , applied on each motor was calculated based on extension
700 (Δl) and stiffness (k_{stiff}) of motor as follows,

701
$$F = k_{stiff} * \Delta l$$

702 The sign of load applied on each motor is defined by direction of motor stepping. For kinesin, a
703 plus-end-directional transporter, the assisting loads were positive, and the hindering loads were
704 negative. For DDB, a minus-end-directional motor, the assisting loads were negative, and the
705 hindering loads were positive. The model of kinesin's load-dependent forward stepping rate,
706 $k_{forward}$ was calculated by experimental unloaded velocity (V^0), stall force (F_{stall}), and given
707 constant backward stepping rate (k_{back}) with following equation,

708
$$k_{forward}^0 = \frac{V^0}{L_{step}} + k_{back}$$

709

710
$$k_{\text{forward}}(F) = (k_{\text{back}} - k_{\text{forward}}^0) * \frac{F}{F_{\text{stall}}} + k_{\text{forward}}^0, F \leq 0$$

711

712
$$k_{\text{forward}}(F) = k_{\text{forward}}^0, F > 0$$

713 Here, k_{forward}^0 is unloaded forward stepping rate, L_{step} is step size (8 nm), and F is the load applied
714 on motor. With experimental unloaded velocity (V^0) and run length (RL^0), the kinesin's
715 detachment rate, k_{detach} , under load was determined by Bell's model,

716
$$k_{\text{detach}}^0 = \frac{V^0}{RL^0}$$

717

718
$$k_{\text{detach}}(F) = k_{\text{detach}}^0 * e^{\frac{F}{F_{\text{detach}}}}$$

719 Here, k_{detach}^0 is unloaded detachment rate and F_{detach} is detaching force. For the DDB stepping
720 rate, the basic model followed the force-velocity relationship in Elshenawy et al. (Elshenawy et
721 al., 2019), but the stepping rate under hindering load was modified by a linear function to fit both
722 stall force and unloaded velocity in present experiments.

723
$$k_{\text{forward}}(F) = \frac{V(F)}{L_{\text{step}}} + k_{\text{back}}, F < 0$$

724

725
$$k_{\text{forward}}(F) = (k_{\text{back}} - k_{\text{forward}}^0) * \frac{F}{F_{\text{stall}}} + k_{\text{forward}}^0, F \geq 0$$

726 Here, $V(F)$ is the load-dependent velocity in Elshenawy et al. (Elshenawy et al., 2019). The
727 detachment rate of DDB was a given load-independent constant based on previous published
728 simulations.

729
$$k_{\text{detach}}(F) = k_{\text{detach}}^0$$

730 When only one of the motors detached, the position of cargo shifts to where the other motor is
731 bound, and the detached motor can only reattach to the same position with a constant rate. All
732 simulations were run 1000 times and each run was recorded for 50 seconds or until both motors
733 detached from microtubule. All the given parameters are listed in Table 1 in the main text.

734 For comparing with experimental data, we did data processing on simulation results based on the
735 temporal resolution of tracking experiments. The cargo position was averaged every 285.7 ms and
736 then the instantaneous velocity was calculated for a one second window.

737 **References**

738 Andreasson, J. O., Milic, B., Chen, G. Y., Guydosh, N. R., Hancock, W. O., & Block, S. M.
739 (2015). Examining kinesin processivity within a general gating framework. *Elife*, 4.
740 <https://doi.org/10.7554/eLife.07403>

741 Andreasson, J. O., Shastry, S., Hancock, W. O., & Block, S. M. (2015). The Mechanochemical
742 Cycle of Mammalian Kinesin-2 KIF3A/B under Load. *Curr Biol*, 25(9), 1166-1175.
743 <https://doi.org/10.1016/j.cub.2015.03.013>

744 Arpag, G., Norris, S. R., Mousavi, S. I., Soppina, V., Verhey, K. J., Hancock, W. O., & Tuzel, E.
745 (2019). Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-
746 3 Motors. *Biophys J*, 116(6), 1115-1126. <https://doi.org/10.1016/j.bpj.2019.01.036>

747 Arpağ, G., Shastry, S., Hancock, William O., & Tüzel, E. (2014). Transport by Populations of
748 Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics
749 Important for In Vivo Function. *Biophysical Journal*, 107(8), 1896-1904.
750 <https://doi.org/https://doi.org/10.1016/j.bpj.2014.09.009>

751 Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J., & Saxton, W. M. (2008).
752 Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that
753 facilitates retrograde transport of neuropeptides. *Mol Biol Cell*, 19(1), 274-283.
754 <https://doi.org/10.1091/mbc.e07-03-0261>

755 Belyy, V., Schlager, M. A., Foster, H., Reimer, A. E., Carter, A. P., & Yildiz, A. (2016). The
756 mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war
757 competition. *Nat Cell Biol*, 18(9), 1018-1024. <https://doi.org/10.1038/ncb3393>

758 Bilsland, L. G., Sahai, E., Kelly, G., Golding, M., Greensmith, L., & Schiavo, G. (2010). Deficits
759 in axonal transport precede ALS symptoms in vivo. *Proc Natl Acad Sci U S A*, 107(47),
760 20523-20528. <https://doi.org/10.1073/pnas.1006869107>

761 Blehm, B. H., Schroer, T. A., Trybus, K. M., Chemla, Y. R., & Selvin, P. R. (2013). In vivo
762 optical trapping indicates kinesin's stall force is reduced by dynein during intracellular
763 transport. *Proc Natl Acad Sci U S A*, 110(9), 3381-3386.
764 <https://doi.org/10.1073/pnas.1219961110>

765 Budaitis, B. G., Jariwala, S., Rao, L., Yue, Y., Sept, D., Verhey, K. J., & Gennerich, A. (2021).
766 Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and

767 movement through allosteric mechanisms. *Journal of Cell Biology*, 220(4).
768 <https://doi.org/10.1083/jcb.202004227>

769 Canty, J. T., Hensley, A., & Yildiz, A. (2021). TRAK adaptors coordinate the recruitment and
770 activation of dynein and kinesin to control mitochondrial transport.
771 <https://doi.org/10.1101/2021.07.30.454553>

772 Cason, S. E., Carman, P. J., Van Duyne, C., Goldsmith, J., Dominguez, R., & Holzbaur, E. L. F.
773 (2021). Sequential dynein effectors regulate axonal autophagosome motility in a
774 maturation-dependent pathway. *J Cell Biol*, 220(7).
775 <https://doi.org/10.1083/jcb.202010179>

776 Cason, S. E., & Holzbaur, E. L. F. (2022). Selective motor activation in organelle transport along
777 axons. *Nature Reviews Molecular Cell Biology*. <https://doi.org/10.1038/s41580-022-00491-w>

779 Chen, G. Y., Arginteanu, D. F., & Hancock, W. O. (2015). Processivity of the kinesin-2 KIF3A
780 results from rear head gating and not front head gating. *J Biol Chem*, 290(16), 10274-
781 10294. <https://doi.org/10.1074/jbc.M114.628032>

782 Chevalier-Larsen, E., & Holzbaur, E. L. (2006). Axonal transport and neurodegenerative disease.
783 *Biochim Biophys Acta*, 1762(11-12), 1094-1108.
784 <https://doi.org/10.1016/j.bbadi.2006.04.002>

785 De Vos, K. J., Grierson, A. J., Ackerley, S., & Miller, C. C. (2008). Role of axonal transport in
786 neurodegenerative diseases. *Annu Rev Neurosci*, 31, 151-173.
787 <https://doi.org/10.1146/annurev.neuro.31.061307.090711>

788 Elshenawy, M. M., Canty, J. T., Oster, L., Ferro, L. S., Zhou, Z., Blanchard, S. C., & Yildiz, A.
789 (2019). Cargo adaptors regulate stepping and force generation of mammalian dynein-
790 dynactin. *Nat Chem Biol*, 15(11), 1093-1101. <https://doi.org/10.1038/s41589-019-0352-0>

791 Encalada, S. E., Szpankowski, L., Xia, C. H., & Goldstein, L. S. (2011). Stable kinesin and
792 dynein assemblies drive the axonal transport of mammalian prion protein vesicles. *Cell*,
793 144(4), 551-565. <https://doi.org/10.1016/j.cell.2011.01.021>

794 Feng, Q., Gicking, A. M., & Hancock, W. O. (2020). Dynactin p150 promotes processive
795 motility of DDB complexes by minimizing diffusional behavior of dynein. *Mol Biol Cell*,
796 31(8), 782-792. <https://doi.org/10.1091/mbc.E19-09-0495>

797 Feng, Q., Mickolajczyk, K. J., Chen, G. Y., & Hancock, W. O. (2018). Motor Reattachment
798 Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. *Biophys J*,
799 114(2), 400-409. <https://doi.org/10.1016/j.bpj.2017.11.016>

800 Fenton, A. R., Jongens, T. A., & Holzbaur, E. L. F. (2021). Mitochondrial adaptor TRAK2
801 activates and functionally links opposing kinesin and dynein motors. *Nat Commun*, 12(1),
802 4578. <https://doi.org/10.1038/s41467-021-24862-7>

803 Ferro, L. S., Eshun-Wilson, L., Gölcük, M., Fernandes, J., Huijben, T., Gerber, E., Jack, A.,
804 Costa, K., Gür, M., Fang, Q., Nogales, E., & Yildiz, A. (2020).
805 <https://doi.org/10.1101/2020.10.22.351346>

806 Ferro, L. S., Fang, Q., Eshun-Wilson, L., Fernandes, J., Jack, A., Farrell, D. P., Golcuk, M.,
807 Huijben, T., Costa, K., Gur, M., DiMaio, F., Nogales, E., & Yildiz, A. (2022). Structural
808 and functional insight into regulation of kinesin-1 by microtubule-associated protein
809 MAP7. *Science*, 375(6578), 326-331. <https://doi.org/doi:10.1126/science.abf6154>

810 Finer, J. T., Simmons, R. M., & Spudich, J. A. (1994). Single myosin molecule mechanics:
811 piconewton forces and nanometre steps. *Nature*, 368(6467), 113-119.
812 <https://doi.org/10.1038/368113a0>

813 Fu, M. M., & Holzbaur, E. L. (2013). JIP1 regulates the directionality of APP axonal transport
814 by coordinating kinesin and dynein motors. *J Cell Biol*, 202(3), 495-508.
815 <https://doi.org/10.1083/jcb.201302078>

816 Gabrych, D. R., Lau, V. Z., Niwa, S., & Silverman, M. A. (2019). Going Too Far Is the Same as
817 Falling Short(dagger): Kinesin-3 Family Members in Hereditary Spastic Paraplegia.
818 *Front Cell Neurosci*, 13, 419. <https://doi.org/10.3389/fncel.2019.00419>

819 Gennerich, A., Carter, A. P., Reck-Peterson, S. L., & Vale, R. D. (2007). Force-induced
820 bidirectional stepping of cytoplasmic dynein. *Cell*, 131(5), 952-965.
821 <https://doi.org/10.1016/j.cell.2007.10.016>

822 Gicking, A. M., Wang, P., Liu, C., Mickolajczyk, K. J., Guo, L., Hancock, W. O., & Qiu, W.
823 (2019). The Orphan Kinesin PAKRP2 Achieves Processive Motility via a Noncanonical
824 Stepping Mechanism. *Biophys J*, 116(7), 1270-1281.
825 <https://doi.org/10.1016/j.bpj.2019.02.019>

826 Gross, S. P. (2004). Hither and yon: a review of bi-directional microtubule-based transport. *Phys
827 Biol*, 1(1-2), R1-11. <https://doi.org/10.1088/1478-3967/1/2/r01>

828 Gross, S. P., Welte, M. A., Block, S. M., & Wieschaus, E. F. (2002). Coordination of opposite-
829 polarity microtubule motors. *J Cell Biol*, 156(4), 715-724.
830 <https://doi.org/10.1083/jcb.200109047>

831 Grotjahn, D. A., Chowdhury, S., Xu, Y., McKenney, R. J., Schroer, T. A., & Lander, G. C.
832 (2018). Cryo-electron tomography reveals that dynactin recruits a team of dyneins for

833 processive motility. *Nat Struct Mol Biol*, 25(3), 203-207. <https://doi.org/10.1038/s41594-018-0027-7>

835 Guydosh, N. R., & Block, S. M. (2006). Backsteps induced by nucleotide analogs suggest the
836 front head of kinesin is gated by strain. *Proc Natl Acad Sci U S A*, 103(21), 8054-8059.
837 <https://doi.org/10.1073/pnas.0600931103>

838 Hancock, W. O. (2014). Bidirectional cargo transport: moving beyond tug of war. *Nat Rev Mol
839 Cell Biol*, 15(9), 615-628. <https://doi.org/10.1038/nrm3853>

840 Hendricks, A. G., Holzbaur, E. L., & Goldman, Y. E. (2012). Force measurements on cargoes in
841 living cells reveal collective dynamics of microtubule motors. *Proc Natl Acad Sci U S A*,
842 109(45), 18447-18452. <https://doi.org/10.1073/pnas.1215462109>

843 Hendricks, A. G., Perlson, E., Ross, J. L., Schroeder, H. W., 3rd, Tokito, M., & Holzbaur, E. L.
844 (2010). Motor coordination via a tug-of-war mechanism drives bidirectional vesicle
845 transport. *Curr Biol*, 20(8), 697-702. <https://doi.org/10.1016/j.cub.2010.02.058>

846 Hirokawa, N., & Takemura, R. (2005). Molecular motors and mechanisms of directional
847 transport in neurons. *Nat Rev Neurosci*, 6(3), 201-214. <https://doi.org/10.1038/nrn1624>

848 Howard, J., & Hancock, W. O. (2020). Three Beads Are Better Than One. *Biophys J*, 118(1), 1-
849 3. <https://doi.org/10.1016/j.bpj.2019.12.001>

850 Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., & Goldstein, L. S. (2000). Axonal transport of
851 amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit
852 of kinesin-I. *Neuron*, 28(2), 449-459. [https://doi.org/10.1016/s0896-6273\(00\)00124-0](https://doi.org/10.1016/s0896-6273(00)00124-0)

853 Kendrick, A. A., Dickey, A. M., Redwine, W. B., Tran, P. T., Vaites, L. P., Dzieciatkowska, M.,
854 Harper, J. W., & Reck-Peterson, S. L. (2019). Hook3 is a scaffold for the opposite-
855 polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C. *J Cell Biol*, 218(9),
856 2982-3001. <https://doi.org/10.1083/jcb.201812170>

857 Khataee, H., & Howard, J. (2019). Force Generated by Two Kinesin Motors Depends on the
858 Load Direction and Intermolecular Coupling. *Phys Rev Lett*, 122(18), 188101.
859 <https://doi.org/10.1103/PhysRevLett.122.188101>

860 Kubala, M. H., Kovtun, O., Alexandrov, K., & Collins, B. M. (2010). Structural and
861 thermodynamic analysis of the GFP:GFP-nanobody complex. *Protein Sci*, 19(12), 2389-
862 2401. <https://doi.org/10.1002/pro.519>

863 Kunwar, A., Tripathy, S. K., Xu, J., Mattson, M. K., Anand, P., Sigua, R., Vershinin, M.,
864 McKenney, R. J., Yu, C. C., Mogilner, A., & Gross, S. P. (2011). Mechanical stochastic

865 tug-of-war models cannot explain bidirectional lipid-droplet transport. *Proc Natl Acad
866 Sci U S A*, 108(47), 18960-18965. <https://doi.org/10.1073/pnas.1107841108>

867 Leduc, C., Campàs, O., Zeldovich, K. B., Roux, A., Jolimaitre, P., Bourel-Bonnet, L., Goud, B.,
868 Joanny, J.-F., Bassereau, P., & Prost, J. (2004). Cooperative extraction of membrane
869 nanotubes by molecular motors. *Proceedings of the National Academy of Sciences*,
870 101(49), 17096-17101. <https://doi.org/doi:10.1073/pnas.0406598101>

871 Lessard, D. V., Zinder, O. J., Hotta, T., Verhey, K. J., Ohi, R., & Berger, C. L. (2019).
872 Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3
873 family member KIF1A. *J Biol Chem*, 294(16), 6353-6363.
874 <https://doi.org/10.1074/jbc.RA118.005765>

875 Levi, V., Serpinskaya, A. S., Gratton, E., & Gelfand, V. (2006). Organelle transport along
876 microtubules in Xenopus melanophores: evidence for cooperation between multiple
877 motors. *Biophys J*, 90(1), 318-327. <https://doi.org/10.1529/biophysj.105.067843>

878 Loubéry, S., Wilhelm, C., Hurbain, I., Neveu, S., Louvard, D., & Coudrier, E. (2008). Different
879 microtubule motors move early and late endocytic compartments. *Traffic*, 9(4), 492-509.
880 <https://doi.org/10.1111/j.1600-0854.2008.00704.x>

881 Maday, S., Wallace, K. E., & Holzbaur, E. L. (2012). Autophagosomes initiate distally and
882 mature during transport toward the cell soma in primary neurons. *J Cell Biol*, 196(4),
883 407-417. <https://doi.org/10.1083/jcb.201106120>

884 Martin, M., Iyadurai, S. J., Gassman, A., Joseph G. Gindhart, J., Hays, T. S., & Saxton, W. M.
885 (1999). Cytoplasmic Dynein, the Dynactin Complex, and Kinesin Are Interdependent and
886 Essential for Fast Axonal Transport. *Molecular Biology of the Cell*, 10(11), 3717-3728.
887 <https://doi.org/10.1091/mbc.10.11.3717>

888 McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G., & Vale, R. D. (2014). Activation
889 of cytoplasmic dynein motility by dynactin-cargo adapter complexes. *Science*, 345(6194),
890 337-341. <https://doi.org/10.1126/science.1254198>

891 Mickolajczyk, K. J., Deffenbaugh, N. C., Arroyo, J. O., Andrecka, J., Kukura, P., & Hancock,
892 W. O. (2015). Kinetics of nucleotide-dependent structural transitions in the kinesin-1
893 hydrolysis cycle. *Proc Natl Acad Sci U S A*, 112(52), E7186-7193.
894 <https://doi.org/10.1073/pnas.1517638112>

895 Mickolajczyk, K. J., & Hancock, W. O. (2017). Kinesin Processivity Is Determined by a Kinetic
896 Race from a Vulnerable One-Head-Bound State. *Biophys J*, 112(12), 2615-2623.
897 <https://doi.org/10.1016/j.bpj.2017.05.007>

898 Millecamps, S., & Julien, J.-P. (2013). Axonal transport deficits and neurodegenerative diseases.
899 *Nature Reviews Neuroscience*, 14(3), 161-176. <https://doi.org/10.1038/nrn3380>

900 Monroy, B. Y., Tan, T. C., Oclaman, J. M., Han, J. S., Simo, S., Niwa, S., Nowakowski, D. W.,
901 McKenney, R. J., & Ori-Mckenney, K. M. (2020). A Combinatorial MAP Code Dictates
902 Polarized Microtubule Transport. *Dev Cell*, 53(1), 60-72 e64.
903 <https://doi.org/10.1016/j.devcel.2020.01.029>

904 Muller, M. J., Klumpp, S., & Lipowsky, R. (2008). Tug-of-war as a cooperative mechanism for
905 bidirectional cargo transport by molecular motors. *Proc Natl Acad Sci U S A*, 105(12),
906 4609-4614. <https://doi.org/10.1073/pnas.0706825105>

907 Nong, D., Haviland, Z. K., Kuntz, K. V., Tien, M., Anderson, C. T., & Hancock, W. O. (2021).
908 Integrated multi-wavelength microscope combining TIRFM and IRM modalities for
909 imaging cellulases and other processive enzymes. *Biomedical Optics Express*, 12(6),
910 3253-3264. <https://doi.org/10.1364/BOE.423798>

911 Norris, S. R., Soppina, V., Dizaji, A. S., Schimert, K. I., Sept, D., Cai, D., Sivaramakrishnan, S.,
912 & Verhey, K. J. (2014). A method for multiprotein assembly in cells reveals independent
913 action of kinesins in complex. *Journal of Cell Biology*, 207(3), 393-406.
914 <https://doi.org/10.1083/jcb.201407086>

915 Ohashi, K. G., Han, L., Mentley, B., Wang, J., Fricks, J., & Hancock, W. O. (2019). Load-
916 dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin
917 and dynein. *Traffic*, 20(4), 284-294. <https://doi.org/10.1111/tra.12639>

918 Pyrpassopoulos, S., Gicking, A. M., Zaniewski, T. M., Hancock, W. O., & Ostap, E. M. (2022).
919 KIF1A is kinetically tuned to be a super-engaging motor under hindering loads. *bioRxiv*,
920 2022.2005.2016.492183. <https://doi.org/10.1101/2022.05.16.492183>

921 Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2020). Modulation of Kinesin's Load-Bearing
922 Capacity by Force Geometry and the Microtubule Track. *Biophys J*, 118(1), 243-253.
923 <https://doi.org/10.1016/j.bpj.2019.10.045>

924 Rai, A., Pathak, D., Thakur, S., Singh, S., Dubey, A. K., & Mallik, R. (2016). Dynein Clusters
925 into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.
926 *Cell*, 164(4), 722-734. <https://doi.org/10.1016/j.cell.2015.12.054>

927 Rosa-Ferreira, C., & Munro, S. (2011). Arl8 and SKIP act together to link lysosomes to kinesin-
928 1. *Dev Cell*, 21(6), 1171-1178. <https://doi.org/10.1016/j.devcel.2011.10.007>

929 Sanghavi, P., Kumar, P., Roy, A., Madhusudhan, M. S., & Mallik, R. (2021). On and off controls
930 within dynein-dynactin on native cargoes. *Proc Natl Acad Sci U S A*, 118(23).
931 <https://doi.org/10.1073/pnas.2103383118>

932 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
933 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V.,
934 Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for
935 biological-image analysis. *Nature Methods*, 9(7), 676-682.
936 <https://doi.org/10.1038/nmeth.2019>

937 Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L., & Carter, A. P. (2014). In vitro
938 reconstitution of a highly processive recombinant human dynein complex. *EMBO J*,
939 33(17), 1855-1868. <https://doi.org/10.15252/embj.201488792>

940 Schnitzer, M. J., Visscher, K., & Block, S. M. (2000). Force production by single kinesin motors.
941 *Nat Cell Biol*, 2(10), 718-723. <https://doi.org/10.1038/35036345>

942 Schuster, M., Lipowsky, R., Assmann, M. A., Lenz, P., & Steinberg, G. (2011). Transient
943 binding of dynein controls bidirectional long-range motility of early endosomes. *Proc
944 Natl Acad Sci U S A*, 108(9), 3618-3623. <https://doi.org/10.1073/pnas.1015839108>

945 Shastry, S., & Hancock, W. O. (2010). Neck linker length determines the degree of processivity
946 in kinesin-1 and kinesin-2 motors. *Curr Biol*, 20(10), 939-943.
947 <https://doi.org/10.1016/j.cub.2010.03.065>

948 Shubeita, G. T., Tran, S. L., Xu, J., Vershinin, M., Cermelli, S., Cotton, S. L., Welte, M. A., &
949 Gross, S. P. (2008). Consequences of motor copy number on the intracellular transport of
950 kinesin-1-driven lipid droplets. *Cell*, 135(6), 1098-1107.
951 <https://doi.org/10.1016/j.cell.2008.10.021>

952 Sims, P. A., & Xie, X. S. (2009). Probing dynein and kinesin stepping with mechanical
953 manipulation in a living cell. *Chemphyschem*, 10(9-10), 1511-1516.
954 <https://doi.org/10.1002/cphc.200900113>

955 Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P., & Mallik, R. (2009). Tug-of-war between
956 dissimilar teams of microtubule motors regulates transport and fission of endosomes.
957 *Proc Natl Acad Sci U S A*, 106(46), 19381-19386.
958 <https://doi.org/10.1073/pnas.0906524106>

959 Stokin, G. B., & Goldstein, L. S. (2006). Axonal transport and Alzheimer's disease. *Annu Rev
960 Biochem*, 75, 607-627. <https://doi.org/10.1146/annurev.biochem.75.103004.142637>

961 Ström, A. L., Gal, J., Shi, P., Kasarskis, E. J., Hayward, L. J., & Zhu, H. (2008). Retrograde
962 axonal transport and motor neuron disease. *J Neurochem*, 106(2), 495-505.
963 <https://doi.org/10.1111/j.1471-4159.2008.05393.x>

964 Sudhakar, S., Abdosamadi, M. K., Jachowski, T. J., Bugiel, M., Jannasch, A., & Schäffer, E.
965 (2021). Germanium nanospheres for ultraresolution picotensiometry of kinesin motors.
966 *Science*, 371(6530), eabd9944. <https://doi.org/doi:10.1126/science.abd9944>

967 Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., & Hirokawa, N. (1998).
968 Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in
969 abnormal perinuclear clustering of mitochondria. *Cell*, 93(7), 1147-1158.
970 [https://doi.org/10.1016/s0092-8674\(00\)81459-2](https://doi.org/10.1016/s0092-8674(00)81459-2)

971 Toleikis, A., Carter, N. J., & Cross, R. A. (2020). Backstepping Mechanism of Kinesin-1.
972 *Biophysical Journal*, 119(10), 1984-1994.
973 <https://doi.org/https://doi.org/10.1016/j.bpj.2020.09.034>

974 Twelvetrees, A. E., Lesept, F., Holzbaur, E. L. F., & Kittler, J. T. (2019). The adaptor proteins
975 HAP1a and GRIP1 collaborate to activate the kinesin-1 isoform KIF5C. *J Cell Sci*,
976 132(24). <https://doi.org/10.1242/jcs.215822>

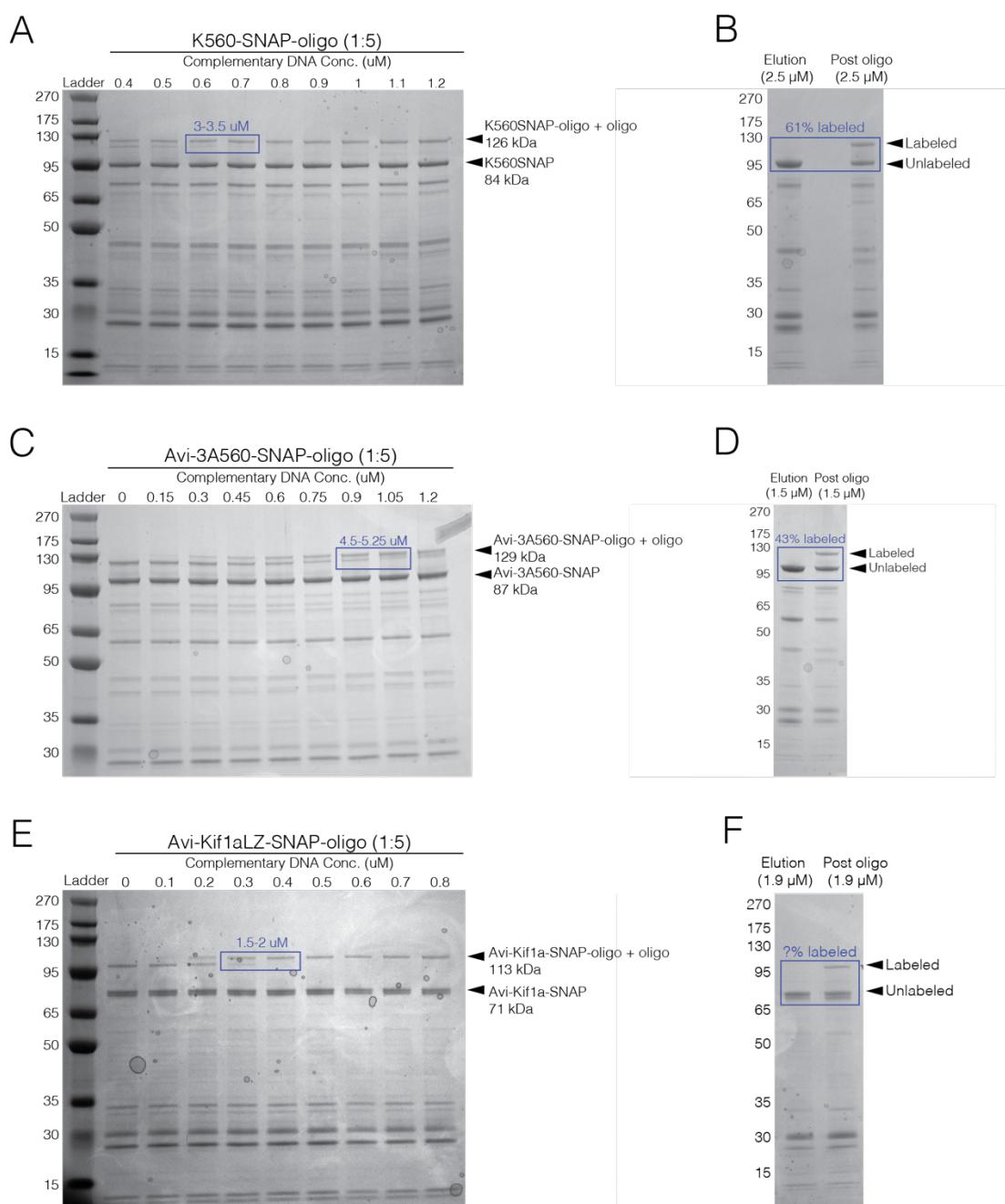
977 Twelvetrees, A. E., Yuen, E. Y., Arancibia-Carcamo, I. L., MacAskill, A. F., Rostaing, P.,
978 Lumb, M. J., Humbert, S., Triller, A., Saudou, F., Yan, Z., & Kittler, J. T. (2010).
979 Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant
980 huntingtin. *Neuron*, 65(1), 53-65. <https://doi.org/10.1016/j.neuron.2009.12.007>

981 Urnavicius, L., Lau, C. K., Elshenawy, M. M., Morales-Rios, E., Motz, C., Yildiz, A., & Carter,
982 A. P. (2018). Cryo-EM shows how dyactin recruits two dyneins for faster movement.
983 *Nature*, 554(7691), 202-206. <https://doi.org/10.1038/nature25462>

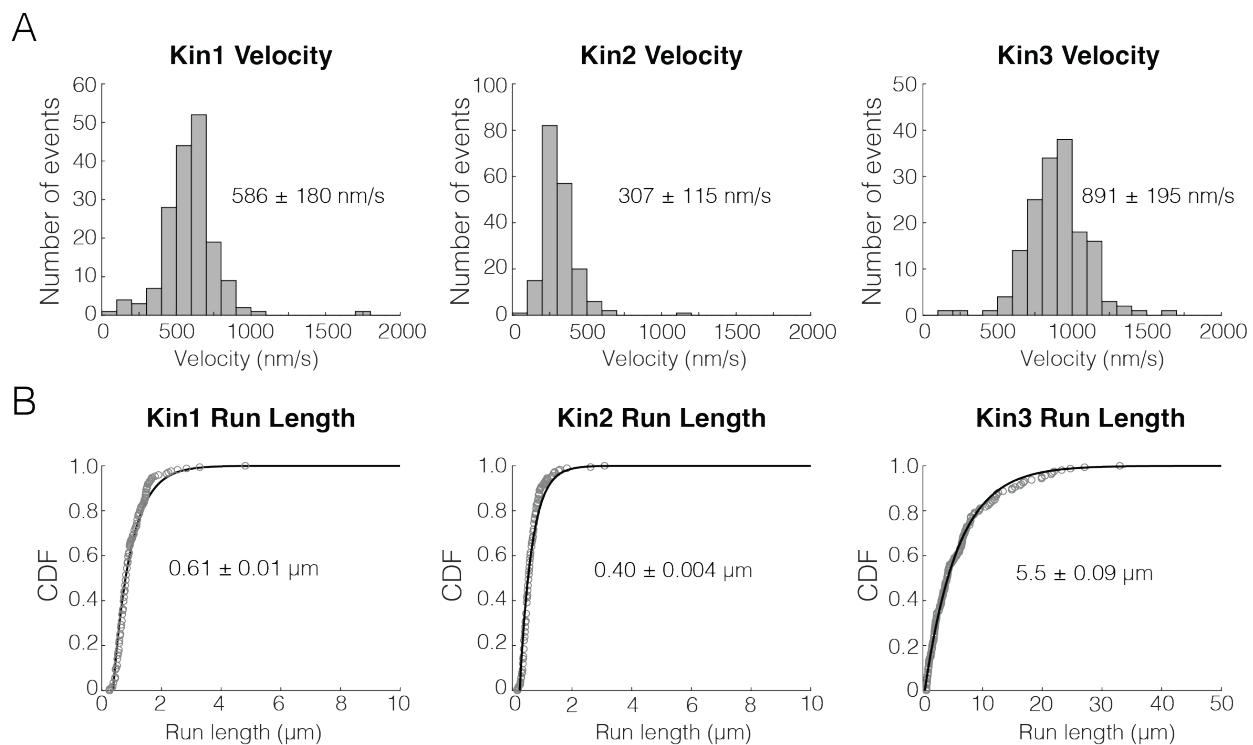
984 Urnavicius, L., Zhang, K., Diamant, A. G., Motz, C., Schlager, M. A., Yu, M., Patel, N. A.,
985 Robinson, C. V., & Carter, A. P. (2015). The structure of the dyactin complex and its
986 interaction with dynein. *Science*, 347(6229), 1441-1446.
987 <https://doi.org/10.1126/science.aaa4080>

988 Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. *Cell*, 112(4), 467-
989 480. [https://doi.org/10.1016/s0092-8674\(03\)00111-9](https://doi.org/10.1016/s0092-8674(03)00111-9)

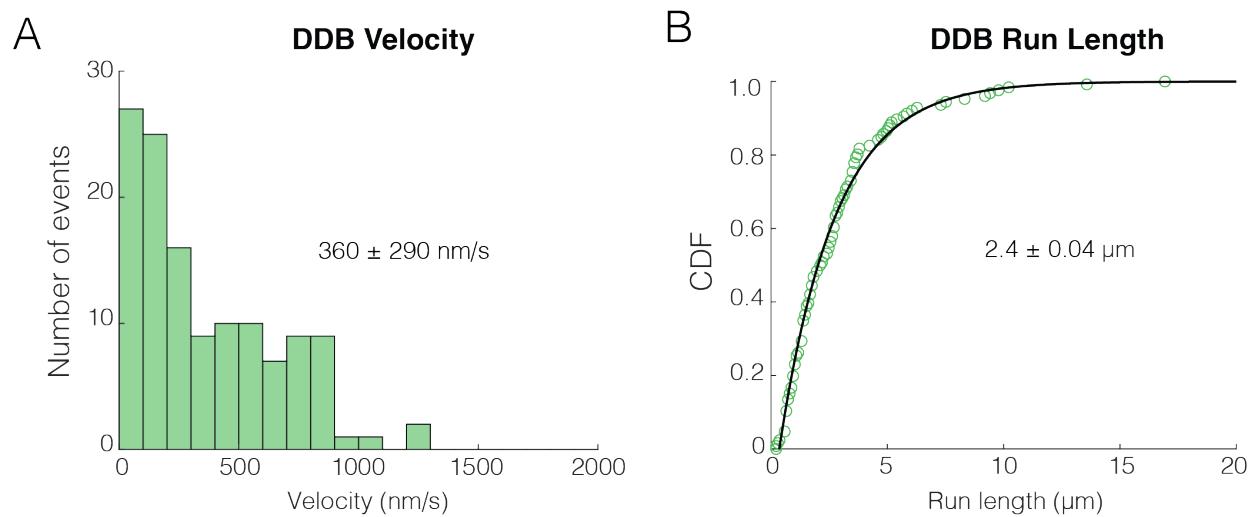
990 Visscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a
991 molecular force clamp. *Nature*, 400(6740), 184-189. <https://doi.org/10.1038/22146>

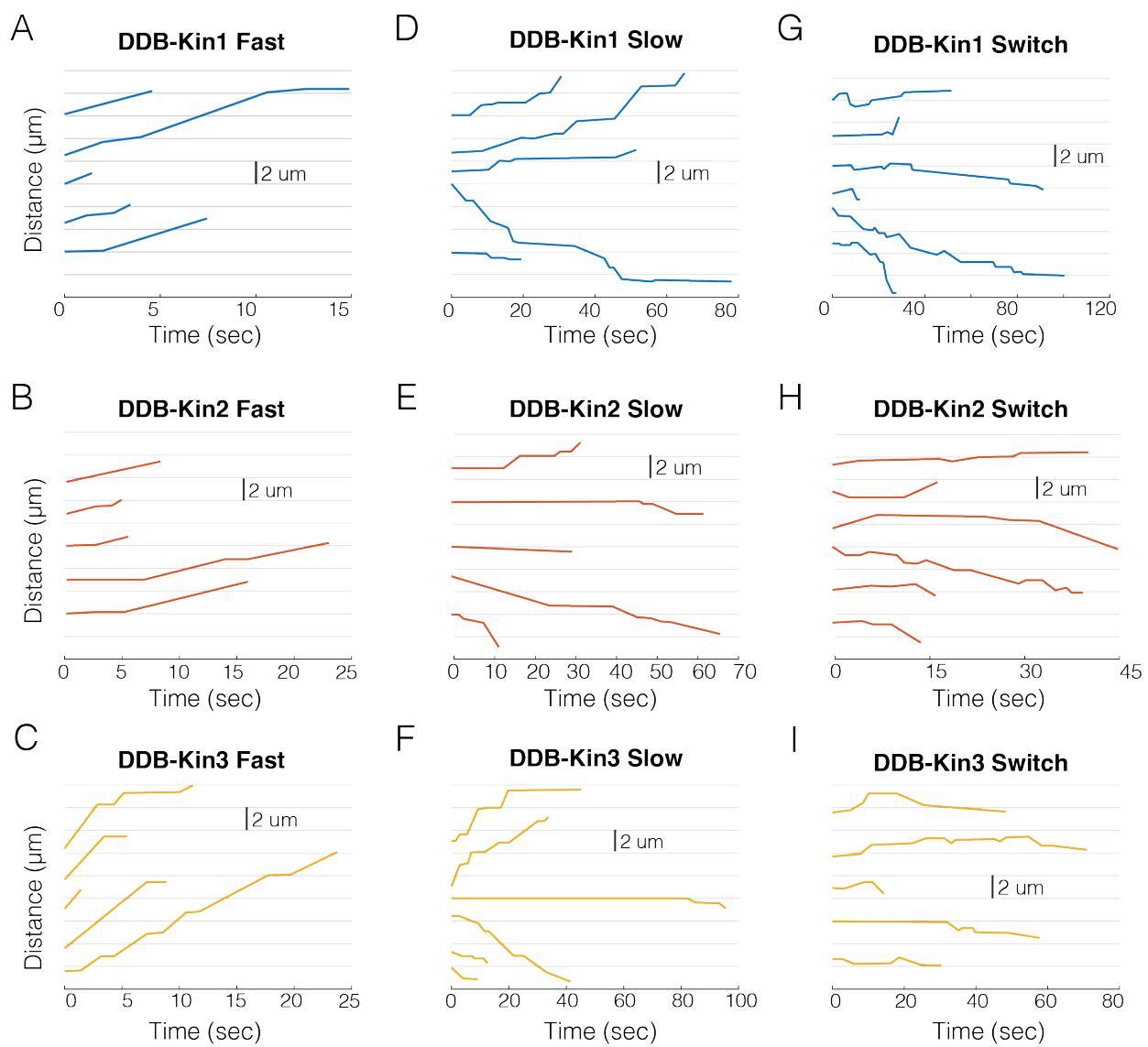

992 Wong, Y. C., & Holzbaur, E. L. (2014). The regulation of autophagosome dynamics by
993 huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to

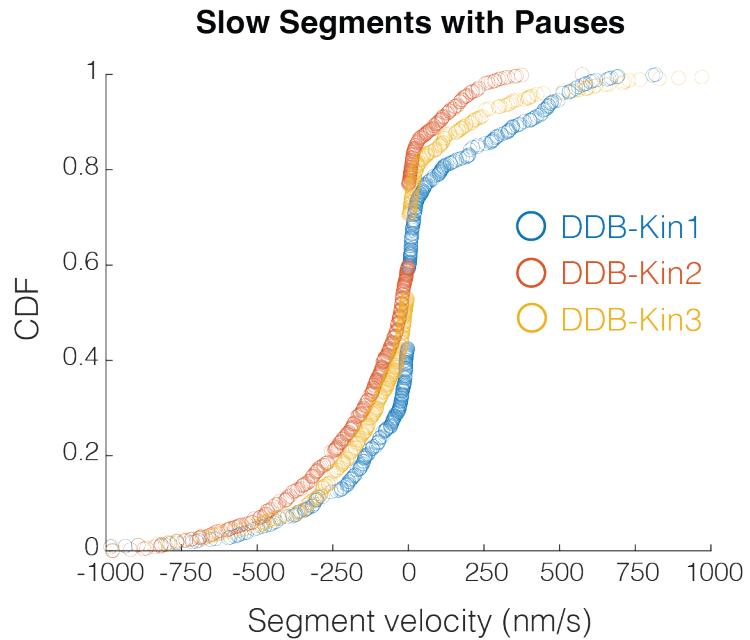
994 defective cargo degradation. *J Neurosci*, 34(4), 1293-1305.
995 <https://doi.org/10.1523/jneurosci.1870-13.2014>

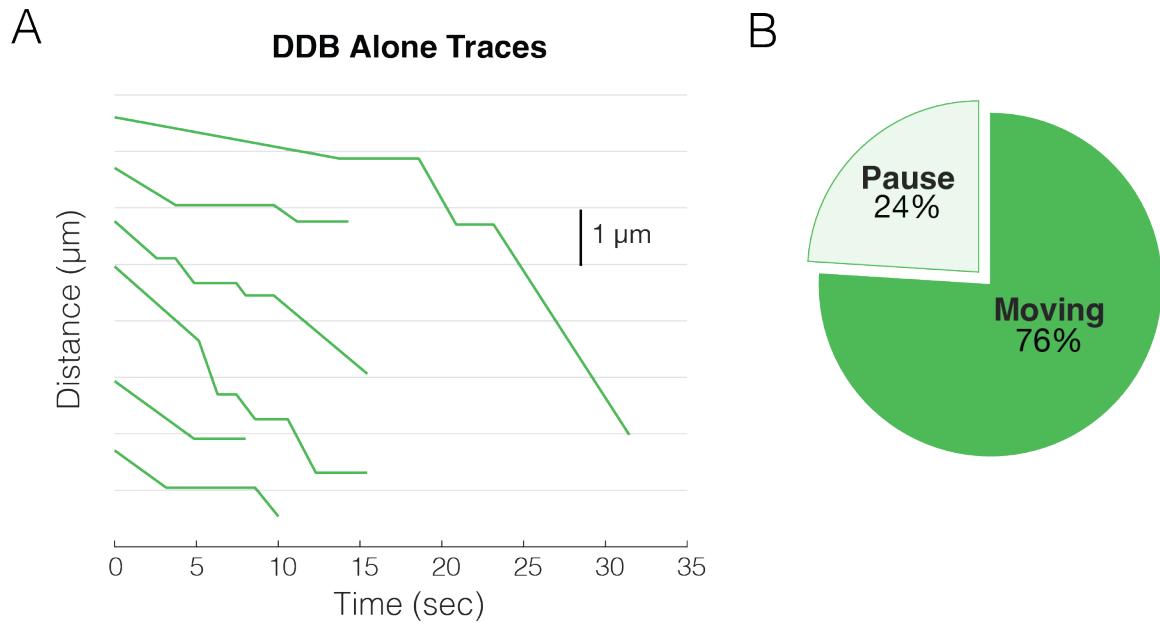

996 Zaniewski, T. M., Gicking, A. M., Fricks, J., & Hancock, W. O. (2020). A kinetic dissection of
997 the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound
998 state during its chemomechanical cycle. *J Biol Chem*, 295(52), 17889-17903.
999 <https://doi.org/10.1074/jbc.RA120.014961>

1000


Supplementary Materials for Gicking et al (2022).


Figure 1 Supplement 1: Purification gels and shift assays. (A) Shift assay for K560SNAP, showing the oligo-labeled monomer concentration is 3.25 μ M. (B) SDS-PAGE for the purification of K560SNAP showing 63% oligo-labeled monomer. (C) Shift assay for 3A560SNAP, showing oligo-labeled monomer concentration is 4.88 μ M. (D) SDS-PAGE for the purification of 3A560SNAP showing 43% oligo-labeled monomer (E) Shift assay for Kif1aLZSNAP, showing effective labeled concentration is 1.75 μ M. (F) SDS-PAGE for the purification of Kif1aLZSNAP. The oligo-labeled monomer concentration could not be clearly determined (see methods).


Figure 1 Supplement 2: Unloaded run length and velocity for Kin1/2/3. (A) Velocity distributions for kin1, kin2 and kin3. Values represent mean and standard deviation. (B) Cumulative distributions of the run length for Kin1, Kin2 and Kin3. Values represent mean of a single exponential fit and the 95% confidence interval of the bootstrap distribution.


Figure 1 Supplement 3: Unloaded run length and velocity for DDB. (A) Velocity distributions for DDB alone. Values represent mean and standard deviation. (B) Cumulative distributions of the run length for DDB alone. Values represent mean of a single exponential fit and the 95% confidence interval of the bootstrap distribution.

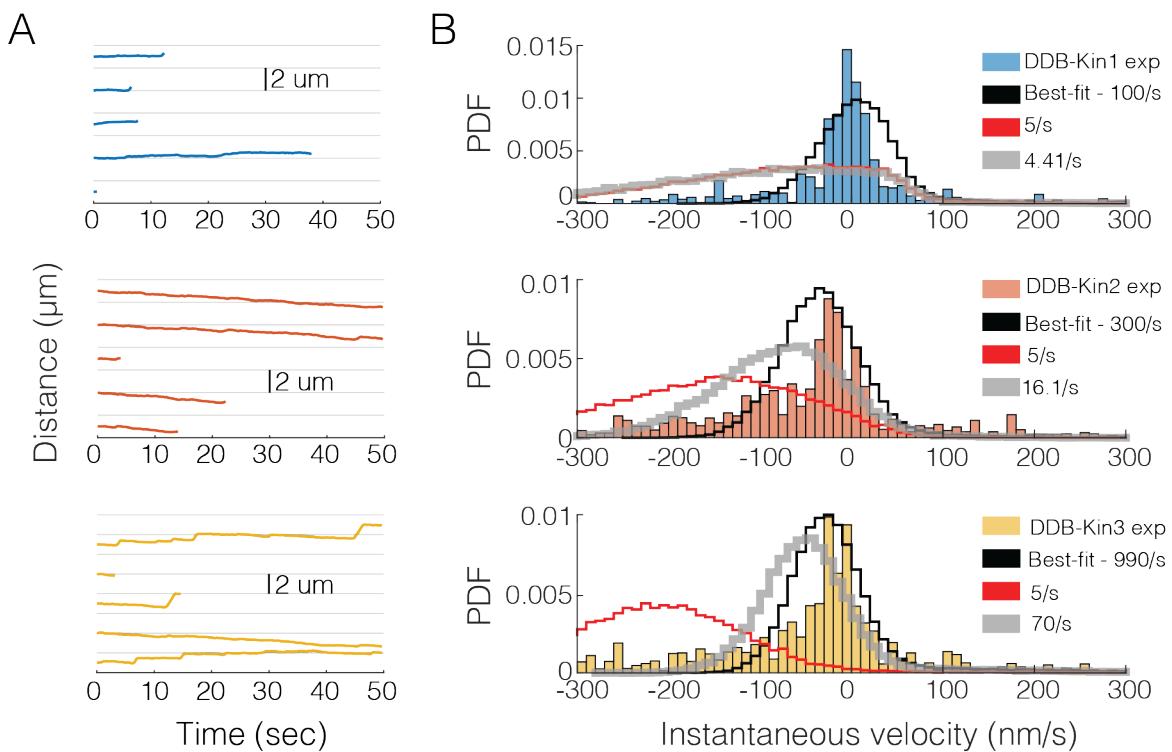

Figure 1 Supplement 4: Sample traces for DDB-kin1/2/3 pairs. (A) Sample fast ($v > vel$ threshold) traces for DDB-Kin1 pairs. (B) Sample fast ($v > vel$ threshold) traces for DDB-Kin2 pairs. (C) Sample fast ($v > vel$ threshold) traces for DDB-Kin3 pairs. (D) Sample slow ($v < vel$ threshold) traces for DDB-Kin1 pairs. (E) Sample slow ($v < vel$ threshold) traces for DDB-Kin2 pairs. (F) Sample slow ($v < vel$ threshold) traces for DDB-Kin3 pairs. (G) Examples of traces with directional switching for DDB-Kin1. (H) Examples of traces with directional switching for DDB-Kin2. (I) Examples of traces with directional switching for DDB-Kin3. Note: time scales are not the same for all plots.

Figure 4 Supplement 1: Slow segment velocity distributions. Cumulative distributions of the slow segment ($v <$ threshold) velocities for all three motor pairs.

Figure 4 Supplement 2: Sample traces for DDB alone. (A) Sample x-t plots for DDB alone. (B) Fraction of paused and moving segments for DDB alone.

Figure 6 Supplement 1: Simulation results for slower reattachment rates. (A) Raw simulation traces using the best-fit model for DDB-Kin1 (top/blue), DDB-Kin2 (middle/orange) and DDB-Kin3 (bottom/yellow). (B) Simulation velocity distributions for DDB-Kin1 (top), DDB-Kin2 (middle), and DDB-Kin3 (bottom) for slower reattachment rates compared with the experimental data (blue/orange/yellow). Best fit model (black) uses parameters listed in Table 1. 5 s^{-1} model (red) uses identical reattachment rate of 5 s^{-1} for each motor. Variable attachment rate model (gray) uses kinesin reattachment rates that are scaled by their bimolecular on-rates for microtubule binding determined by stopped flow (Feng et al., 2018; Zaniewski et al., 2020).

References

Feng, Q., Mickolajczyk, K. J., Chen, G. Y., & Hancock, W. O. (2018). Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. *Biophys J*, 114(2), 400-409. <https://doi.org/10.1016/j.bpj.2017.11.016>

Zaniewski, T. M., Gicking, A. M., Fricks, J., & Hancock, W. O. (2020). A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle. *J Biol Chem*, 295(52), 17889-17903. <https://doi.org/10.1074/jbc.RA120.014961>