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Abstract—Many traditional methods for analyzing gene-gene
relationships focus on positive and negative correlations, both
of which are a kind of ‘symmetric’ relationship. Biclustering is
one such technique that typically searches for subsets of genes
exhibiting correlated expression among a subset of samples.
However, genes can also exhibit ‘asymmetric’ relationships, such
as ‘if-then’ relationships used in boolean circuits. In this paper
we develop a very general method that can be used to detect bi-
clusters within gene-expression data that involve subsets of genes
which are enriched for these ‘boolean-asymmetric’ relationships
(BARs). These BAR-biclusters can correspond to heterogeneity
that is driven by asymmetric gene-gene interactions, e.g., reflect-
ing regulatory effects of one gene on another, rather than more
standard symmetric interactions. Unlike typical approaches that
search for BARs across the entire population, BAR-biclusters can
detect asymmetric interactions that only occur among a subset of
samples. We apply our method to a single-cell RNA-sequencing
data-set, demonstrating that the statistically-significant BAR-
biclusters indeed contain additional information not present
within the more traditional ‘boolean-symmetric’-biclusters. For
example, the BAR-biclusters involve different subsets of cells, and
highlight different gene-pathways within the data-set. Moreover,
by combining the boolean-asymmetric- and boolean-symmetric-
signals, one can build linear classifiers which outperform those
built using only traditional boolean-symmetric signals.

Index Terms—Boolean asymmetric relationship, Biclustering
algorithm, Single-cell RNA-sequencing data-set, Gene set enrich-
ment analysis

I. INTRODUCTION

IT is widely recognized that relationships between genes
play an important role in biological research [1]. Gener-

ally speaking, most common methods for finding/identifying
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genetic relationships focus on positive and negative correla-
tions, which we’ll refer to below as symmetric relationships
[2]–[4]. In this paper, however, we’ll focus on asymmetric
relationships, which are a different kind of genetic relation-
ship introduced and studied in [5]–[9]. Our main goal is to
introduce a version of ‘biclustering’ – a form of heterogeneity
analysis typically defined in terms of symmetric relationships
– to also include these asymmetric relationships. Since there
is growing evidence that a significant fraction of biologically-
relevant gene-gene interactions are indeed asymmetric [6], our
ultimate goal is to provide a simple preprocessing strategy that
can be used to extend current biclustering tools to capture these
asymmetric interactions.

We begin by reviewing some of the properties of asymmetric
relationships, focusing specifically on ‘boolean-asymmetric-
relationships’ (BARs) and briefly summarizing some recent
research highlighting the importance of these asymmetric-
relationships in genetic data. We then describe the notion of
a ‘bicluster’ as it applies to BARs: in this context a bicluster
might comprise a subsets of samples which exhibit certain
asymmetric-relationships across a subset of genes; relation-
ships that are not shared by the rest of the samples or genes
within the data. As a first step towards finding these ‘BAR-
biclusters’, a very simple strategy for reorganizing data is
introduced so that BARs within the original data-set are repre-
sented as boolean-symmetric-relationships (i.e., BSRs) within
the transformed data-set. This data-reorganization then allows
standard strategies for analyzing symmetric-relationships to
be used as tools for analyzing asymmetric relationships. In
particular, standard strategies for finding traditional BSR-
biclusters can be used on a transformed data-set to find
BAR-biclusters. We illustrate this technique using a single-
cell RNA-sequencing data-set, demonstrating that the BAR-
biclusters are not only strongly statistically-significant in their
own right, but contain information that is distinct from the
more traditional BSR-biclusters. Given these results, we expect
that BAR-biclustering can be a useful complement to BSR-
biclustering, allowing for a new kind of heterogeneity analysis.

A. Reviewing Boolean Asymmetric Relationships (BARs)

Traditional analytical tools typically look for relationships
between genes and/or samples which involve positive- or
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negative-correlations. These relationships have the property
that if gene X is positively correlated with gene Y , then
the reverse is also true (i.e., Y is correlated with X). For
this reason these correlations are sometimes referred to as
‘symmetric’ relationships. A more general kind of interaction
can involve ‘asymmetric’ relationships; knowledge of gene
X may strongly inform the value of Y , without the reverse
holding true. Interest in asymmetric-relationships has grown in
recent years, and several informative asymmetric-relationships
have been discovered in a variety of cellular- and genetic-
data-sets, e.g., in the context of cancer data-sets [7], [8],
[12], [13], [23], [38]–[40], hypoxia-related genes [34], and
cell proliferation [9]. For instance, a boolean analysis in [9]
identified more than two dozen new genes involved in cell
cycle processes, with their effects subsequently validated using
a recent RNA-sequencing data-set. As one example, the gene
CCNB1, which encodes cyclin B1, is ‘gated’ by the gene
CASC5, a cell-cycle gene, meaning that the expression level
of CCNB1 can only be high if CASC5 is expressed at a high
level.

For the purpose of illustration, we’ll use the terminology
from [5]. Consider two random variables X and Y , each with
M observations xm ∈ R and ym ∈ R, respectively. Each
one of the observed points (xm, ym) ∈ R2 lies in one of the
four quadrants of the plane. A typical ‘symmetric’ relationship
between X and Y is defined as either an abundance of
observed points in the first and third quadrants (i.e., positive
correlation) or as an abundance of points in the second
and fourth quadrants (i.e., negative correlation). Thus, if we
denote the joint probability density of X and Y as ρ(x, y),
a symmetric relationship involves an elevation of ρ(x, y) in
opposite quadrants. By contrast, an ‘asymmetric’ relationship
refers to any nonuniformity in ρ(x, y) which is not inversion-
symmetric, e.g., if ρ(x, y) is elevated in only one of the four
quadrants.

While there are many different kinds of asymmetric relation-
ships, only certain asymmetric relationships can persist after
centering the data (i.e., centralizing the marginal distributions
for both X and Y with respect to the means). Assuming the
data is centered, an asymmetric relationship must involve an
elevation of ρ(x, y) in three quadrants (i.e., ρ(x, y) can have
only exactly one relatively vacant quadrant). An illustration of
this kind of asymmetric relationship is shown in figure 1.

In this paper we focus on a particular kind of asymmetric re-
lationship: a ‘boolean-asymmetric-relationship’ (BAR), which
has proven to be of interest for genetic analysis [5], [6]. In
this kind of relationship we assume that the random variables
X and Y are categorical variables that can each take on up
to two values. This can happen when X and Y are naturally
binary, or with continuous variables that have been binarized
based on a given threshold [5]. As an example, consider X
to be an indicator of a person’s sex and Y to be an indicator
of balding. The joint distribution ρ(x, y) is almost limited to
three quadrants, as ym is rarely positive if xm is female.

Since each BAR involves underexpression in a single quad-
rant, there are four different kinds of BARs:

Fig. 1. Symmetric and asymmetric relationships. (A) a positive correlation
(blue) and a negative correlation (red) as symmetric relationships. (B) the kind
of asymmetric relationships we are focusing on, with few points in the first
quadrant. (C) and (D) asymmetric relationships under the standard coordinate
axes (black dotted lines). However, they are no longer asymmetric if the points
are centered with respect to the marginal means (red dotted lines).

• Y =⇒ X: This direction-specific interaction
implies that X is necessary for Y . Put another way,
Y cannot be high unless X is high (i.e., the 2nd

quadrant is relatively empty).
• X =⇒ Y : This is the converse of the previous

interaction (i.e., the 4th quadrant is relatively empty).
• X ‘or’ Y : This two-way interaction implies that

either X or Y is on (i.e, the 3rd quadrant is relatively
empty).

• X ‘nand’ Y : This two-way interaction implies that
either X or Y is off (i.e, the 1st quadrant is relatively
empty).

Note that the ‘Y =⇒ X’ and ‘X =⇒ Y ’ relationships
will reverse their directions if the x and y labels are inter-
changed; these two relationships are ‘directed’ in the sense
that the ordering of x and y matters. Meanwhile, the ‘or’ and
‘nand’ relationships do not change if the x and y labels are
interchanged; these two relationships are ‘undirected’.

B. Prior work demonstrating the importance of BARs

Boolean-asymmetric-relationships (BARs, described above)
are relevant in many biological contexts, and have been found
present in many different gene-expression data-sets [5]–[9],
[12], [13], [23], [34]–[40]. As alluded to above, the gene-
gene BARs each suggest an associated genetic interaction;
one gene can be necessary for the other, or the two genes
can be linked in an ‘or’ or ‘nand’ pair. In this fashion,
BARs that are associated with, e.g. a disease-condition, can
be interpreted as playing a role in a larger gene-interaction-
network, in which the individual BARs suggest potential
causal interactions between genes that are responsible for the
disease.

These benefits suggest that BARs might serve as an im-
portant supplement to more traditional correlation-based anal-
yses (i.e., involving BSRs) when analyzing genetic data.
Indeed, recent research corroborates this perspective. Several
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statistically-significant BARs have been observed relating cer-
tain genes to the developmental stages of tumors sampled in
colon, bladder and prostate cancers [38]–[40]. Along similar
lines, significant BARs have been found associated with cell-
differentiation, cellular-development and tissue-function [9],
[34]–[37]. More recent work has shown that, while many
BARs differentiate between different cell-types in the micro-
biome, there are also many BARs that are strongly conserved
across microorganisms, potentially highlighting ‘universal’
gene-functions important for survival [6].

The results above motivate our interest in finding BARs and
our study of the Alzheimer’s hiPSC-derived organoids from
[25].

C. Prior computational strategies for identifying BARs

Due to the importance and ubiquity of BARs, many different
methods have been developed to identify and characterize
BARs within genetic data. To list a few of them, the StepMiner
algorithm [10] is combined with a sparsity test to efficiently
find statistically-significant BARs, while its generalized ver-
sion [11] finds generalized BARs corresponding to three-way-
interactions between genes. The StepMiner algorithm is also
used as a component in the BECC algorithm [36] which forms
scores indicative of boolean-equivalence between gene probe-
sets. Other work includes the MiDReG method [35] which
uses significant BARs to identify developmentally regulated
genes. Related work includes [16] which investigates the
choice of binarization threshold for defining BARs, and [13]
which investigates the conditional probability of overexpres-
sion (i.e., asymmetric-relationships) between pairs of genes.

The abundance of asymmetric-relationships found in genetic
data-sets has motivated a variety of strategies for constructing
‘Boolean-networks’ – connected graphs with nodes corre-
sponding to genes and edges corresponding to interactions
between genes (e.g., BARs). Earlier work by [32] provides
a flexible method for constructing ‘probabilistic’ Boolean-
networks which can (in principle) involve multiple boolean
functions when predicting any particular gene’s expression.
Almost concurrently, work by [33] focuses on finding families
of Boolean-networks consistent with a given data-set. More
recent work by [31] draws parallels between Boolean-networks
and Markov chains, while [15] investigates the dynamic
aspects of Boolean-networks which incorporate time-delays.
Boolean-networks have been analyzed in the context of lung-
cancer risk [12] and yeast cell-cycle data [14].

D. Our Motivation and Contribution

As far as we are aware, most methods for identifying
BARs focus on detecting statistically-significant relationships
between small groups of genes, with the majority focusing
on pairs of genes at a time. These methods typically estimate
the strength of any particular gene-gene BAR by considering
all the samples available, highlighting the pairwise gene-gene-
BARs with the strongest evidence (e.g., the highest likelihood
calculated across the samples). Our main goal in this paper is
to introduce a different paradigm for delineating BARs – that
of a ‘BAR-bicluster’ – which allows for BARs that extend

across larger subsets of genes, but which can be limited in
scope to only a subset of the samples.

To describe this notion in more detail, we first introduce
some notation, with terminology taken from single-cell RNA-
sequencing (scRNA-seq). Consider a data-set D including
M samples (e.g., cells isolated in a scRNA-seq experiment),
each observed across N variables (e.g., unique-molecular-
identifiers, which we’ll refer to as ‘genes’). The value of the
nth-gene observed within the mth-cell is stored at the array
location Dmn.

As mentioned above, many of the existing analytical meth-
ods for detecting BSRs and/or BARs in genetic data emphasize
relationships between gene-pairs that are statistically signif-
icant when considered across the entire sample-population.
That is to say, they focus on identifying which of the N(N−1)

2
individual gene-pairs are significant when considered across all
M of the cells. These all-cell gene-gene relationships are cer-
tainly important, but are not the only important relationships
that exist. Other important relationships include ‘clusters’ and
‘biclusters’.

A gene-cluster is a subset of genes among which each pair
of genes may only be weakly linked but jointly exhibit a
collective signal (across all the cell-samples) that is strongly
significant. There are many different kinds of BSR-clustering
algorithms [41], [42], and some of the methods referenced
above can be used to identify clusters of genes that share the
same kinds of BARs [36].

On the other hand, a bicluster is defined as a subset of
genes which only exhibits a collective signal across a subset of
cells. Importantly, the relationships that exist within a bicluster
(i.e., between the genes and/or between cells) typically do
not exist within the rest of the data-array. Thus, a bicluster
is a submatrix (defined in terms of a row- and column-subset)
of the data-array D which exhibits a strongly statistically-
significant structure which is typically only weakly significant
(or even insignificant) when measured across the entire data-
array.

Biclusters can highlight the drivers of heterogeneity within
a data-set, which can be useful for developing new kinds of
classifications, such as defining new cell-subtypes [21], [22],
[24]. There is an abundance of literature discussing the kinds
of biclusters which manifest in gene-expression data-sets, as
well as various strategies for finding them [17], [43], [44].
In the discussion below we’ll use both terms ‘cluster’ and
‘bicluster’ to refer to biclusters.

Generally speaking, detecting all the statistically-significant
biclusters is very difficult, mainly because the number of
possible biclusters is exponential in the number of cells and
genes (i.e., there are 2M+N different biclusters one could
consider). Nevertheless, there are several biclustering methods
which perform well in certain regimes [18]–[24]. Typically,
these methods are built using strategies which either implicitly
or explicitly search for BSRs between genes. Thus, the com-
monly available packages for biclustering gene expression data
are designed to identify biclusters which exhibit an abundance
of BSRs (i.e., ‘BSR-biclusters’). See [19] for the Louvain
Clustering algorithm, [20] for the UMAP method and see
[21]–[24] for other methods which perform BSR-biclustering.
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In the remainder of this paper we introduce a simple strategy
for finding biclusters which exhibit an abundance of BARs
(i.e., ‘BAR-biclusters’). These BAR-biclusters can reveal het-
erogeneity which is distinct from that associated with BSR-
biclusters. It is important to note that BAR-biclusters include
both BARs and standard BSRs, which can be differentiated
with a post-processing step presented in III-G. However, it
is worth clarifying that in most practical scenarios, BARs
and BSRs cannot be completely disentangled. A collection of
genes that are enriched for BARs will often contain a subset
of genes within it that are boolean-equivalent, thus expressing
BSRs. Our strategy for finding BAR-biclusters boils down to
a simple preprocessing step, where the original data is split
to form a slightly larger dataset, which then can be passed to
any state-of-the-art biclustering algorithm that looks for BSR-
biclusters. In other words, our contribution in this paper is
not an entirely distinct methodology but rather a general
strategy that turns any BSR-bicluster finder into a BAR-
bicluster finder.

As a proof of principle, we illustrate our strategy using the
BSR-biclustering algorithm published in [18]. We combine
this BSR-biclustering algorithm – called ‘loop-counting’ in
[18] – with our preprocessing step, referring to this com-
position as the ‘loop-counting-asymmetric’ (LCA) algorithm.
We then use this LCA algorithm to find BAR-biclusters
within an organoid dataset [25]. Using our new method, we
demonstrate that BAR-biclusters contain information which
can complement traditional BSR-biclustering.

E. The Organoid Dataset

As mentioned above, we will apply our LCA algorithm to
an scRNA-seq data-set studied in [25]. This data-set involves
multiple cells sampled from organoids grown from patient-
derived human induced pluripotent stem cells (hiPSCs). These
organoids were designed to study Alzheimer’s disease, and
were prepared with three different isogenic types (for de-
tails see [25], [53], [54]). The first is the baseline wild-
type (WT), the second involves a mutation in the amyloid-
precursor-protein (APP), and the third a mutation in presenilin-
1 (PS1); both mutations are strongly associated with inherited
alzheimer’s disease. The organoids were allowed to develop
(under conditions described in [25]) and were sampled at three
different stages in development: 6-weeks, 3-months and 6-
months. The cells sampled from the organoids were analyzed
using scRNA-seq, and classified into cell-types by a supervised
classifier trained on previous annotations (see [26]–[28]). Our
analysis below will search for BAR-biclusters within the cell-
types, identifying subsets of cells which exhibit a statistically-
significant abundance of BARs as well as BSRs across subsets
of genes. As we’ll show below, these BAR-biclusters contain
information which is distinct from the typical BSR-biclusters
found within the same data-set. As we’ll discuss later on, we
believe this extra information can be useful for basic tasks such
as classification and identification, as well as for understanding
the underlying genetic drivers for the heterogeneity within the
samples.

II. MATERIALS AND METHODS

A. Column Splitting Technique

The main computational technique we will use in this paper
is ‘column-splitting’ (described below), which can transform
any BAR-biclustering problem into a BSR-biclustering prob-
lem.

Consider the data-array D ∈ RM×N mentioned above. Let’s
assume, in keeping with [5], that some thresholds have already
been chosen to convert each entry of D from gene-expression
values into categorical labels. Thus, each entry Dmn is either
”low” (under-expressing), ”high” (over-expressing) or ”inter-
mediate” (not significantly expressing, typically neglected). To
describe our column-splitting technique, we’ll use ‘matlab’
notation throughout the paper: referring to the nth-column of
D as D:,n, and the mth-row of D as Dm,:.

Our column splitting technique proceeds as follows: Split
each column of D into two columns to get a new binarized
data-array B ∈ RM×2N . Each column D:,n from D will
correspond to the two columns B:,2n−1 and B:,2n in B. If
Dmn is low, then Bm,2n−1 = 1 and Bm,2n = 0. If Dmn

is high, then Bm,2n−1 = 0 and Bm,2n = 1. If Dmn is
intermediate, then Bm,2n−1 = 0 and Bm,2n = 0. Thus, each
column of D is split into one column indicating its ‘low’ state
and one column indicating its ‘high’ state.

The technique is simple but effective. Similar data-splitting
techniques have been used in other applications [55], but here
we focus on how this column-splitting facilitates the detection
of BARs. To illustrate how column-splitting works in this con-
text, assume that D has only two genes, indexed by columns
n = 1 and n = 2, respectively. Furthermore, let’s assume that
genes 1 and 2 exactly satisfy an ‘nand’-type BAR, implying
that Dm1 and Dm2 each takes on a range of labels, but
cannot both be high simultaneously. Thus, the columns B:,2

and B:,4 (corresponding to the high-states of D:,1 and D:,2,
respectively) must have a zero dot-product, while the other
column-pairs (B:,1, B:,3), (B:,1, B:,4) and (B:,2, B:,3) can all
have nonzero dot-products. Thus, when contrasted against
a scenario where genes 1 and 2 are independent random
variables, the column-pair (B:,2, B:,4) exhibits a lower-than-
expected correlation. Similarly, the column-pairs (B:,1, B:,3),
(B:,1, B:,4) and (B:,2, B:,3) all exhibit a higher-than-expected
correlation. A standard measurement of BSR can be used
to detect these correlations amongst the columns of B, thus
highlighting the BAR between the columns of D.

A similar statement holds more generally. Given any
two distinct columns of D, say D:,n and D:,n′ , the
corresponding columns of B form 4 nontrivial column-pairs:
(B:,2n−1, B:,2n′−1), (B:,2n−1, B:,2n′), (B:,2n, B:,2n′−1)
and (B:,2n, B:,2n′) (Note that (B:,2n−1, B:,2n) and
(B:,2n′−1, B:,2n′) are orthogonal by construction). Each
of the nontrivial column-pairs in B corresponds to a quadrant
regarding the original columns of D. Each BAR corresponds
to underexpression within a single quadrant. Thus, if the
column-pair (D:,n, D:,n′) within D exhibits a BAR, then
three of the the corresponding column-pairs within B will
exhibit an elevated dot-product (i.e., a positively-correlated
BSR) while the remaining quadrant will be underexpressed.
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To sum up, the separation of ”low” and ”high” states turns
the problem of finding BAR-biclusters into a problem of
finding BSR-biclusters in a slightly larger matrix B. In prin-
ciple, the matrix B can be processed by any algorithm which
can detect BSR-biclusters; below we will use the specific
BSR-biclustering algorithm in [18]. We also remark that, by
splitting columns, the BSR-biclusters of B can indicate both
BARs and BSRs within D. For this reason we will perform
BSR-biclustering and BAR-biclustering simultaneously in our
numerical experiments below; by comparing the results we
will be able to isolate BAR-specific signals.

B. Loop Counting Low Rank (LCLR)

As stated above, the column splitting technique is a very
simple strategy for finding BAR-biclusters. This strategy can
make use of any method which finds BSR-biclusters, but for
demonstration we make use of the LCLR method for finding
BSR-biclusters. This method is described in [18], and we
review the important aspects here.

The LCLR method provides an approximate solution to
the problem of finding submatrices with low numerical rank
within a large matrix D ∈ RM×N .

Given any binary matrix B ∈ RM×N as a binarized version
of D, with its entries taking value ±1, the LCLR method
accumulates information about ‘loops’, referring to 2 × 2
submatrices within the binarized-array B. Because each entry
Bmn is binary, there are only 24 = 16 possibilities for
each loop, and the ranks (i.e., dimensions) of each loop can
be efficiently calculated and accumulated to form row- and
column-scores.

The row-score for any row m is the number of rank-1
loops containing that row minus the number of rank-2 loops
containing that row. This particular definition of the row-score
is why LCLR is called a ‘loop-counting’ algorithm. The rank
of any loop is determined by the product of its entries.

For example, given a single loop of a binary matrix:

L =

[
lmn lmn′

lm′n lm′n′

]
(1)

The product lmnlmn′ lm′nlm′n′ is +1 if and only if the loop
is of rank-1, and the product is −1 otherwise. Each loop of
rank-1 contributes +1 to the score of the i-th row, while each
loop of rank-2 contributes −1, consistent with the definition
above for the score of a row.

By simple linear algebra, the score of the mth row can be
written as:∑

m′,n,n′

lmnlmn′ lm′nlm′n′ =
(
BBTBBT

)
mm

. (2)

Similarly, the score of the nth column can be written as:(
BTBBTB

)
nn

. (3)

The LCLR algorithm proceeds iteratively: calculating the
row- and column-scores, eliminating rows and columns with
low scores, and then recalculating the scores and eliminating

more rows and columns until all rows and columns are elimi-
nated. Those rows and columns which are retained the longest
are highly likely to be part of a low-rank bicluster within the
original data-set, provided that a bicluster of sufficient signal-
strength exists (see Appendix A for more details, and [18] for
statistical bounds relating the signal strength to the probability
of detection).

C. Loop Counting Asymmetric (LCA)

As mentioned above, we can combine the column-splitting
technique above with any BSR-biclustering algorithm in order
to search for BAR-biclusters. Here we combine the column-
splitting technique with the LCLR algorithm to form what we
call the LCA (i.e., Loop Counting Asymmetric) algorithm.
We choose the LCLR algorithm for two reasons. Firstly, it
has detection-thresholds which are similar to (or better than)
many other commonly used biclustering methods, such as
Louvain Clustering and UMAP [19], [20] (see Appendix A).
Secondly, the LCLR-method naturally provides p-values for
each bicluster as a measure of statistical significance (see [18]
and [29]).

In contrast to the original LCLR algorithm, where the
individual matrix-entries of B are drawn from {−1,+1}, in
the LCA algorithm the entries of B are drawn from {0,+1}.
Thus, for each loop of B, the score is still organized as the
product of all four entries within, but with a different meaning:
each nontrivial loop of B corresponds to a particular quadrant
associated with two distinct columns of D. Consequently, each
loop of B contributes to the score of three of the four different
types of BAR associated with those two columns.

We refer to an individual application of the LCLR-method
to the split data as algorithm 1.

Algorithm 1 Loop Counting Asymmetric (LCA) Row- and
Column-Ordering
Input: Data matrix D ∈ RM×N and an ‘elimination fraction’,

which we fix as 5% in step #5 below (see [29]).
1: Assign one of the three labels: ”low”, ”intermediate”,

”high” to each entry of D and split each column of D into
two to get the binarized data matrix B ∈ RM×2N whose
entries take values 0, 1, i.e., for any k ∈ {1, · · · , N},

Bmn =


1, if n = 2k, Dmk is high,
1, if n = 2k − 1, Dmk is low,

0, otherwise.

2: repeat
3: RowScore = diag

(
BBTBBT

)
.

4: ColScore = diag
(
BTBBTB

)
.

5: Sort RowScore and eliminate 5% of the rows with the
lowest scores from B. Do the same with the ColScore,
eliminating 5% of the columns with the lowest scores
from B as well.

6: until B runs out of rows or columns.
Output: A list of integers for each row and column of B

indicating in which iteration it is eliminated from B in
the loop above.
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The complete BAR-biclustering algorithm, based on mul-
tiple applications of algorithm 1, is presented below in al-
gorithm 2. This second algorithm extracts multiple LCA-
biclusters from the data matrix, using the automatic bicluster
selection technique described in III-D.

Algorithm 2 LCA-Biclustering
Input: Data matrix D ∈ RM×N .

1: Normalization for matrix D
2: repeat
3: Run algorithm 1 for matrix D to figure out in which

iteration each row and column of B is eliminated.
4: Use the automatic bicluster selection technique (dis-

cussed in III-D) to pick out an LCA-bicluster of B,
along with its associated p-value.

5: Remove the rows and columns associated with the
LCA-bicluster from D.

6: until no more biclusters are statistically significant.
Output: A collection of LCA-biclusters and associated p-

values.

In our numerical experiments below, we’ll use both the
LCA- and the original LCLR-algorithm. By comparing these
results with one another we’ll be able to determine the degree
to which any particular bicluster is BAR- or BSR-specific.

D. Gene Set Enrichment Analysis (GSEA)

In the numerical experiments, we use both LCA and LCLR
to analyze an snRNA-seq data-set from [25]. As we mentioned
above, these two biclustering methods search for different
kinds of biclusters and reveal different kinds of information
within the data-set. To illustrate this point, we collect the
gene-subsets of the statistically-significant BAR- and BSR-
biclusters that we find, and use gene set enrichment analysis
(GSEA) to highlight the statistically-significant gene-pathways
that are associated with each bicluster. As we’ll show below,
this GSEA returns different subsets of pathways for the differ-
ent biclusters. Importantly, there are many significant pathways
associated with the BAR-biclusters that are not associated with
the corresponding BSR-biclusters, indicating that the former
contains information not found in the latter.

In terms of implementation, we use the GSEA software
from [30]. For each pathway, we compare the enrichment
p-values for (i) the BAR-biclusters (obtained with the LCA-
algorithm) to the enrichment p-values of (ii) the trivial set of
all genes analyzed, and (iii) the BSR-biclusters obtained with
the LCLR-algorithm. We expect to find pathways that have
more significant enrichment p-values for (i) than for (ii) and
(iii).

III. DATA ANALYSIS

To illustrate the kinds of BAR-biclusters one might see in
practice, and to show that these BAR-biclusters are distinct
from the more traditional BSR-biclusters, we apply our LCA-
method to the scRNA-seq dataset described in [25]. This data-
set comprises 8 different kinds of cell-types drawn from multi-
ple organoids; some of these isogenic-variants have mutations

commonly seen in hereditary forms of Alzheimer’s disease.
The cells within each cell-type are further divided into 3 stages
of development, corresponding to the time that the organoid
was allowed to grow before being sequenced.

A. Fix Cell Type

We apply our biclustering algorithms to each set of samples
from each of the cell-types individually. Our goal will be to
find (then compare and contrast) the statistically significant
BAR- and BSR-biclusters within each cell type. While it
is possible for these biclusters to extend across all isogenic
variants and all stages of development, we expect at least
a few of the biclusters to be biased towards cells (of the
fixed type) from a particular isogenic variant or developmental
stage. These isogenic- or stage-specific biclusters can be used
to highlight genes or gene-pathways that drive heterogeneity
within the data-set, and might be linked to Alzheimer-specific
genetic mutations and/or development.

B. Normalize and Binarize

The normalization process mainly consists of truncating the
gene-set, based on which binarization is performed. In this
particular data-set the vast majority of genes are either not ex-
pressed at all, or are rarely expressed across any of the cells in
the sample. To focus on those genes that carry the most signals,
we limit our analysis to the top 300 genes (approximately the
top 1% genes) in terms of overall expression (after eliminating
outlier genes with spurious expression values). This choice is
made only for the clarity of presentation, and our results do
not change qualitatively if we include more genes.

As discussed in [5], the identification of BARs can depend
on the choice of thresholds used to define ‘low’, ‘intermediate’
and ‘high’. While more sophisticated studies of BARs can
attempt to select different thresholds for different genes, for
our proof-of-principle example we use the same thresholding
strategy for all genes. Namely, for each gene, we define the
lowest 15% of expression-values to be ‘low’, and the highest
15% of expression-values to be ‘high’, with the remainder
classified as ‘intermediate’. For normally-distributed data this
simple strategy corresponds to defining a threshold propor-
tional to the standard-deviation of the expression-data, as
suggested in [5]. Moreover, this simple strategy produces a B-
matrix which is appropriately centered for subsequent analysis.
Once again, our approach is quite robust and the results do not
change qualitatively if we choose different thresholds.

C. LCA & LCLR

We apply both LCA and LCLR to each cell-type array.
As described above, the LCA algorithm can reveal biclusters
containing a mixture of both BARs and BSRs (the BARs
and BSRs can be differentiated at a later stage as described
in III-G). By contrast, the LCLR algorithm can only reveal
biclusters with a significant BSR-signal. By comparing the
results of these two algorithms, we can evaluate how strongly
any particular bicluster is driven by BAR- versus BSR-signals.

In figure 2, we show an example of the output obtained
after running the LCA- and LCLR-algorithms on the data
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Fig. 2. Visualization of LCA and LCLR (A) the binary matrix for LCA.
(B) the binary matrix for LCLR. (C) the reordered binary matrix for LCA.
(D) the reordered binary matrix for LCLR. (E) the PC scores with respect
to LCA-biclusters. (F) the PC scores with respect to LCLR-biclusters. (A)
and (B) show the raw matrices, without any particular structures delineated.
(C) and (D) show the reordered matrices, with two biclusters delineated by
hand via red lines. (E) illustrates a scatterplot where each cell is projected
onto the dominant principal-components of the first two BAR-biclusters found
using the LCA algorithm. (F) illustrates a similar scatterplot using the BSR-
biclusters found using the LCLR algorithm. In both (E) and (F) the coloring
of the dots indicates bicluster membership. Note that the subset of cells
delineating the BAR-biclusters is not the same as the subset of cells delineating
the BSR-biclusters.

from the Astroglial cells. For this figure we perform a single
pass for each algorithm, recording the row- and column-scores
in each case. After using the scores to reorganize the rows
and columns in descending order, we clearly see significant
biclusters in the data (see the block-structure in figure 2C and
the low-rank structure in figure 2D, highlighted by the red
lines). These correspond, respectively to two large BAR- and
BSR-biclusters. In this example we identify altogether four
biclusters ‘by hand’, while a more robust and reproducible
bicluster selection technique will be described in later contexts.
We calculate two dominant principal-components (PCs) of the
BAR- and BSR-biclusters, and project each cell’s expression
data onto these two PCs. The resulting scatterplots are shown
in figure 2E and 2F. These scatterplots are colored by bicluster
membership (see legend). Clearly, the subset of cells within the
BAR-bicluster is different from the subset of cells within the
BSR-bicluster, indicating that the BAR-biclustering method
has found a distinct signal within the data.

D. Automatic Bicluster Selection

While the biclusters shown in figure 2 are quite easily
delineated by hand, many of the biclusters observed in a
typical data-set will be less clear. Consequently, we need an
automated method for determining the ‘boundary’ of each
bicluster, i.e., which rows and columns define it.

For this purpose, we measure the mean-squared-correlation
(MSC) at each iteration of the LCA- and LCLR-algorithms
[29].

For any matrix A with size m×n, its MSC is specified as:

MSC(A) =

∑n
i,j=1⟨A:,i, A:,j⟩2

(mn)2
. (4)

where ⟨·, ·⟩ is the standard inner product. Note that the MSC
can be re-expressed as:

MSC(A) =
1

m2n2

∑
i,i′,j,j′

Ai,jAi,j′Ai′,j′Ai′,j . (5)

which is proportional to the sum of the row- or column-scores
calculated by the LCLR method.

For a matrix D with entries in {−1, 0,+1}, the MSC(D) is
a direct measure of the average squared-correlation between
any two rows or columns of D; the MSC will be high if the
matrix D is numerically low-rank. For binary matrices B with
entries in {0, 1}, the MSC(B) will be high if many of the rows
or columns of B ‘overlap’ (i.e., share many nonzero entries).
Because of the way we split the columns of the original data D
to form B, each pair of overlapping columns of B corresponds
to a particular quadrant associated with two genes of D; the
MSC of B will be high if the matrix B is associated with an
abundance of BSRs or BARs.

Here we remark that, because the MSC serves as an indica-
tor of both BSRs and BARs, it is natural to measure MSC(B)
at each iteration of algorithm 1. By comparing this MSC(B)
with a similar measurement performed on the appropriate
subset of the original data-matrix D, we should be able to
detect if the matrix B has an abundance of BARs. We make
this intuition more formal below by first introducing some
notations.

Define D to be the (thresholded) data-matrix. Recall that D
has entries in {−1, 0,+1}, and LCLR-algorithm is applied on
D. Recall that the binary matrix B used in the LCA-algorithm
has entries in {0, 1}, and is obtained by splitting the columns
of D. We denote this relationship via the ‘column-map’ µ:

µ(n) =
⌈n
2

⌉
. (6)

such that any column n of B corresponds to the gene associ-
ated with column µ(n) of D.

When running algorithm 1 on B, we iterate multiple times,
removing rows and columns within each iteration. Let l denote
the iteration-index, and M(l;B) denote the row-subset of B
remaining after iteration l. Similarly, let N (l;B) denote the
column-subset of B remaining after iteration l. Finally, let’s
refer to B(l) as the sub-matrix of B remaining after iteration
l. That is, using ‘matlab-notation’:

B(l) = BM(l;B),N (l;B). (7)

In order to extract the sub-matrix of D that corresponds
to B(l) we will use the same row-subset, as well as the
corresponding genes, this subset of genes in D can be
constructed via the column-map: µ(N (l;B)). Note that this
column-map can (and often does) produce fewer columns than
were originally in N (l;B).

Using the row-subset from M(l;B) and the gene-subset
from µ(N (l;B)), we define:

D(l) = DM(l;B),µ(N (l;B)). (8)
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Fig. 3. Visualization of automatic bicluster selection (A) the MSC behavior
for LCA and LCLR. (B) the MSC ratio behavior and the randomly generated
samples. (C) the Z-scores of the the MSC ratio shown in (B). (D) the automatic
bicluster selection result. As (A) illustrates, for the loop-counting algorithm,
the MSC always increases and ends up at 1. (B), (C) show curves of the
MSC ratio for the given dataset (green) and 100 randomly sampled datasets
(red). (D) shows the selected bicluster as the upper left corner of the two red
straight lines.

which leads to the definition of MSC-ratio as:

MSC-Ratio(l) =
MSC(B(l))

MSC(D(l))
. (9)

In practice, after running algorithm 1, we measure the MSC-
ratio for each iteration l.

We assess this empirical MSC-ratio under the null-
hypothesis that the data-array is unstructured. To draw a
sample from this null-hypothesis, we permute the entries of
the normalized data-matrix and rerun the LCA-algorithm on
the permuted data. This produces one sample trial from the
null-hypothesis, and several such trials are made to estimate
the distribution of the MSC-ratio under the null-hypothesis.
Once sufficiently many trials have been made, we can use
the distribution of MSC-ratios under the null-hypothesis to
determine the (empirical) p-value of the MSC-ratio of the
original data.

Moreover, the permuted trials also allow us to delineate the
boundaries of the bicluster within the original data. To be more
specific, we first calculate Z-scores for the empirical MSC
ratio, with respect to the distribution of MSC ratios drawn
from the null-hypothesis (denoted by MSC Ratio Zscore(l)).
Once we have computed the Z-scores, we define the bicluster
using the iteration lopt which maximizes this Z-score:

lopt := argmax
l

MSC Ratio Zscore(l). (10)

As a result, B(lopt) is the bicluster to select. See figure 3
for an illustration.

E. Pearson Test

After delineating the boundaries of the LCA-bicluster, we
use the information from the isogenic- and stage-labels (which
were not used in the LCA- or LCLR-algorithms) to test
whether the bicluster is enriched for any particular isogenic-
variant or developmental-stage. The null hypothesis is that

Fig. 4. Result of Pearson test (A) the result of Pearson test on isogenic-
labels. (B) the result of Pearson test on stage-labels. The green curve stands
for the χ2 density with degree of freedom 2, while the red star represents
the value of the χ2-statistic computed for the selected LCA-bicluster. In this
case, two tests are both statistically significant at the level α = 0.01.

TABLE I
Part of GSEA results on BAR-biclusters compared to the trivial case

Gene Ontology Gene Pathway BAR-bicluster trivial case

go_bp_iea
Negative Regulation of Transcription DNA Dependent 5.9× 10−5 1.1× 10−2

Generation of Neurons 4.4× 10−4 -

go_cp_iea
Clathrin Sculpted Vesicle 5.7× 10−4 2.7× 10−3

Neuron Part 1.9× 10−5 -

go_mf_iea
Structural Constituent of Cytoskeleton 3.2× 10−5 1.1× 10−4

GTP Dependent Protein Binding 6.1× 10−4 -
For each gene ontology, two pathways are selected to support our conclusions. With the pathway above to be more

significant in BAR-biclusters and the pathway below to be only appearing in BAR-biclusters. The last two columns show
respective p-values of gene pathways.

the isogenic- and stage-labels are uncorrelated with the LCA-
bicluster membership. A Pearson test applied to this hypothesis
provides the following results in figure 4. Note that the Pearson
test is carried out for the first LCA-bicluster selected consisting
of Astroglia cells. The ”APP” isogenic-label and the ”6-
weeks” stage-label are significantly enriched in this LCA-
bicluster.

In the case above, the distributions of isogenic- and stage-
labels within the selected LCA-bicluster are both statistically
different from those within the whole data-set, implying that
the BAR-bicluster illustrated in this example is indeed specific
to certain isogenic-variants and certain developmental-stages.
The specific enrichment of this BAR-bicluster is also different
from the enrichment of the BSR-biclusters found within the
same data-set.

F. GSEA Results
To further investigate the BAR-biclusters found by the LCA-

algorithm, we use GSEA on each of the respective gene-sets.
We use the ‘seek’ software from [30], referencing the gene on-
tologies go_bp_iea, go_cp_iea, and go_mf_iea, which
have each been curated by the seek developers. Our baseline
level of significance is calculated using LCLR or by simply
inputting all relevant genes we analyzed (the trivial case).
We only list pathways that are more significant in the BAR-
biclusters but are less or even not significant in any of the
BSR-biclusters.

It is typical for the LCA-algorithm to identify gene-subsets
that are more strongly enriched than the LCLR-algorithm. One
example, for a specific set of biclusters, is shown in table I
and table II.

G. Construction of Boolean Asymmetric Relationship Network
(BARN)

One of the advantages of BAR-signals and BAR-biclusters
is that the individual BARs are easily interpreted. As men-
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TABLE II
Part of GSEA results on BAR-biclusters compared to BSR-biclusters

Gene Ontology Gene Pathway BAR-bicluster BSR-bicluster

go_bp_iea
Negative Regulation of RNA Metabolic Process 8.3× 10−5 1.6× 10−3

Negative Regulation of Transcription DNA Dependent 5.9× 10−5 -

go_cp_iea
Mitochondrial Envelope 2.6× 10−9 1.8× 10−6

Nuclear Chromosome Telomeric Region 3.5× 10−3 -

go_mf_iea
Macromolecule Transmembrane Transporter Activity 9.3× 10−4 1.1× 10−3

Oxidoreductase Activity 3.6× 10−5 -
For each gene ontology, two pathways are selected to support our conclusions. With the pathway above to be more

significant in BAR-biclusters and the pathway below to be only appearing in BAR-biclusters. The last two columns show
respective p-values of gene pathways.

Fig. 5. Different types of edges in BARN The edge between 2 and 5 is a
positive correlation, while the edge between 1 and 4 is a negative correlation.
Both of them are BSRs, represented by a black edge with the same arrowhead
and arrowtail. The edge between 1 and 2 is an ’nand’ relationship, while the
edge between 3 and 4 is an ”or” relationship, both of which are undirected
BARs. The edge from 2 to 3 represents 2 =⇒ 3, while the edge from 4 to 6
represents 6 =⇒ 4, both of which are directed BARs. BARs are represented
as red edges in the network.

tioned above, there are 2 different kinds of BSRs: namely
positive and negative correlations. There are also four more
kinds of BAR-specific interactions defined in I-A. With these
interpretations in mind, we can represent each of the biclusters
produced by our LCA-analysis as a gene-gene interaction net-
work. Unlike more traditional network representations (which
only illustrate correlations and anti-correlations), our diagrams
also highlight the BARs between the genes involved. A simple
cartoon of a BARN (indicating the symbols used for each
interaction) is shown in figure 5, with subsequent figures 6
and 7 illustrating the BARNs corresponding to two of our
BAR-biclusters.

Note that the LCA-algorithm focuses on biclusters with an
overall abundance of BARs and BSRs; the LCA-algorithm
by itself will not necessarily identify any particular BAR
between any two genes. To determine which particular BARs
are over-represented in any of the statistically-significant BAR-
biclusters, we apply the following procedure.

First, recall that gene n of the original matrix D is split
into columns 2n − 1 and 2n within the binary-matrix B,
corresponding to values of D:,n being negative and positive,
respectively. Given this construction, let’s label the columns
2n− 1 and 2n (within B) as n− and n+, respectively.

Fig. 6. A BARN example The nodes represent genes, with their names
specified. Only the most significant edges are drawn in the network, i.e. those
with total-variation-values in the bottom 5%. The edges represent BARs or
BSRs as defined above. Red edges are BARs while black edges are BSRs. This
BARN is constructed based on the second BAR-bicluster of Glutamatergic
neurons.

Fig. 7. A BARN example with an abundance of BAR The nodes represent
genes, with their names specified. Only the most significant edges are drawn
in the network, i.e. those with total-variation-values in the bottom 5%. The
edges represent BARs or BSRs as defined above. Red edges are BARs while
black edges are BSRs. This BARN is constructed based on the fifth BAR-
bicluster of GABAergic neurons.

Now, given any pair of genes n and n′ within D, there will
be 4 corresponding columns of B, denoted by n−, n+, n′

−
and n′

+. These four columns of B in turn correspond to four
nontrivial column-pairs: {n+, n

′
+}, {n−, n

′
+}, {n−, n

′
−} and

{n+, n
′
−} (note that the other two column-pairs {n−, n+} and

{n′
−, n

′
+} are orthogonal by construction). These nontrivial

column-pairs correspond, respectively, to quadrants 1 through
4 of the two-dimensional plane associated with genes n and
n′.

The inner-product ⟨B:,n+
, B:,n′

+
⟩ measures the (empiri-

cally observed) number of observations of the {n, n′} gene-
pair which fall into quadrant 1. Similarly, the inner-product
⟨B:,n− , B:,n′

+
⟩ measures the number of observations which

fall into quadrant 2, and so forth. Thus, given any gene-pair
{n, n′} and any bicluster, we can use the inner-products of
the appropriately chosen columns of B (within the bicluster)
to determine the empirical joint-distribution ρn,n′(x, y) cor-
responding to the two-dimensional plane associated with that
gene-pair (i.e., across values of x and y ∈ {−,+}).
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If we are to observe a joint-distribution with the shape:

ρBSR+(x, y) =


1/2 if (x, y) = (+,+), i.e., quadrant 1
0 if (x, y) = (−,+), i.e., quadrant 2
1/2 if (x, y) = (−,−), i.e., quadrant 3
0 if (x, y) = (+,−), i.e., quadrant 4

.

(11)
then that joint-distribution would be a perfect BSR, corre-
sponding to ‘positively correlated’ observations within the
bicluster. Similarly, if the joint-distribution were to look like:

ρBSR−(x, y) =


0 if (x, y) = (+,+), i.e., quadrant 1
1/2 if (x, y) = (−,+), i.e., quadrant 2
0 if (x, y) = (−,−), i.e., quadrant 3
1/2 if (x, y) = (+,−), i.e., quadrant 4

.

(12)
then the gene-pair would be perfectly ‘negatively correlated’
within the bicluster.

Continuing in the same vein, we can define the idealized
distribution:

ρBAR1(x, y) =


0 if (x, y) = (+,+), i.e., quadrant 1
1/3 if (x, y) = (−,+), i.e., quadrant 2
1/3 if (x, y) = (−,−), i.e., quadrant 3
1/3 if (x, y) = (+,−), i.e., quadrant 4

.

(13)
as the BAR for which quadrant-1 is vacant (i.e., the ‘nand’
BAR). We can define the idealized joint-distributions ρBAR2
through ρBAR4 for the other quadrants analogously.

To assign a relationship to any particular gene-pair {n, n′},
we measure the empirical joint-distribution ρn,n′ as described
above, and then compare ρn,n′ to each of the six differ-
ent idealized joint-distributions ρBSR+, · · · , ρBAR4. We use
the idealized joint-distribution closest to the empirical joint-
distribution to determine the type of BSR or BAR to assign
to that gene-pair, using the total-variation as a measure of
the difference between distributions. We also record the total-
variation associated with each BSR- or BAR-label; by thresh-
olding these total-variation values we can visualize a pruned
BARN retaining only the most relevant edges.

These BAR-bicluster-informed networks are similar to many
of the boolean-networks described in [15], [31]–[33]. The
main difference is that the BARs and BSRs displayed in
the network are identified through biclustering, rather than
through a direct pairwise analysis of genes across the entire
cell-population. As a consequence, gene-gene relationships
highlighted in the BARN are significant within only a subset
of the cells examined, and are typically not expressed across
the entire cell-population.

We point out that, while it is certainly possible to have a
network comprised only of BSRs (e.g., a collection of genes
that are all driven by a single upstream source), it is typically
not the case that BAR-biclusters are comprised only of BARs.
This is because a large interconnected network of genes with
multiple BARs will typically give rise to emergent correlations
between certain genes in the network. For example, if gene-A
and gene-B are in an ‘or’-type BAR, and gene-B and gene-C
are also in an ‘or’-type BAR, then genes A, B and C could

Fig. 8. BAR as a supplement of BSR in prediction (A) prediction on
whether a cell has the third isogenic-label. (B) prediction on whether a cell
has the third stage-label. After adding BAR information, the AUC is higher.
The performance of the predictions for the other isogenic- and stage-labels
are qualitatively similar.

form a BAR-bicluster. This BAR-bicluster typically includes
the BSR-relationship (a positive correlation) between genes A
and C.

H. A Prediction Use Case

As described above, the BAR- and BSR-biclusters contain
different subsets of cells and highlight different kinds of
relationships. An immediate question is whether or not the ad-
ditional information afforded by the BAR-biclusters is useful.
To illustrate just one potential application of BAR-biclustering,
we demonstrate that the BAR-signals discovered by the LCA-
algorithm can augment the standard LCLR-algorithm and
improve classification. As a first step, we randomly divide
the original data-set into two groups of cells (i.e., by row).
We will use one of these groups as a ‘training’ group for
the LCA- and LCLR-algorithms. After identifying biclusters
within the training group, we use the BSR-signals within these
biclusters to build a BSR-only linear-classifier for the isogenic-
and stage-labels within the training group. We also use the
BSR- and BAR-signals together to build a BAR + BSR linear-
classifier for the training group. To simplify the model, we
only consider a binary classification problem, e.g., fix a stage-
label denoted as ”Stage 1”, any prediction would be ”is Stage
1” or ”is not Stage 1”. Finally, we validate these two linear
classifiers within the second ‘testing’ group.

In terms of details, we build a linear-classifier by first
measuring the dominant principal-component (PC) of each
statistically-significant BAR- and BSR-bicluster within the
training set. Then, each cell is projected onto these PCs to be
assigned a bicluster-specific score. We use logistic-regression
to link these bicluster-specific scores to the ground-truth
isogenic- or stage-labels (within the training data). Finally, we
use the output of this logistic-regression (i.e., the logistic link
function) as a predictor of label within the testing data.

As expected, the linear-classifier we build using information
from both the BAR- and BSR-biclusters outperforms the clas-
sifier built using only the BSR-biclusters. Shown in figure 8
is the ROC-curve associated with each classifier. While this is
only a single example, we see similar results throughout our
analysis. The same general trend holds: BAR-signals provide
extra information which can be used to augment BSR-signals
and build better classifiers. We remark that our strategy is only
one of many, and other methods may be even more effective
at predicting isogenic- or stage-label within this data-set.
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IV. CONCLUSION AND DISCUSSION

We have introduced a very simple but effective strategy for
finding BAR-biclusters. The essence of this strategy involves
splitting each column of the original data-set into two, al-
lowing for individual quadrant information to be accessed
using standard inner product calculations. This simple pre-
processing step can be followed by any biclustering method
that searches for BSRs. Above we demonstrated one simple
BAR-biclustering method: – the LCA-algorithm – built using
the LCLR-algorithm of [18]. While we believe that the LCLR
method is a good choice for biclustering general data-sets,
we remark that an advantage may be gained by choosing a
biclustering method which is appropriate for the domain of
application and the specifics of the data-set at hand.

We use our LCA-algorithm to analyze an scRNA-seq data-
set from [25]. As described above, the LCA-algorithm is
capable of finding multiple isogenic- and stage-specific BAR-
biclusters. Importantly, the cell- and gene-membership of these
BAR-biclusters are quite different from the membership of
the corresponding BSR-biclusters (found using the standard
LCLR-algorithm). The BAR-biclusters can be used to con-
struct BAR-networks, which illustrate new and potentially
useful groups of gene-gene interactions. Furthermore, the
BAR-signals revealed by the LCA-algorithm can be used to
build better linear-classifiers for predicting the isogenic- and
stage-labels; these improved classifiers might be useful for
better categorizing future data-sets.

Finally, we mention that our column-splitting strategy can
be modified to include a variable-specific weight to each
column. For example, after centering the data and splitting
into positive- and negative-parts, one might retain the absolute-
value of each part, rather than encoding the positive- and
negative-parts with the value of 1 [55]. This coding strategy
could allow for larger data-values to play a more dominant
role in the subsequent biclustering step. We leave the analysis
of this method to future work.

A. Back to the Organoid Dataset

Last but not least, we take a final look at the GSEA results
for the BAR- and BSR-biclusters found within the snRNA-seq
dataset of [25]. As commented on previously, most of these
biclusters are enriched for some of the isogenic-variants. We
can label the biclusters enriched for the APP- and PS1-variants
as ‘AD-specific’, and the biclusters enriched for the wild-
type as ‘non-specific’ (or ’WT-specific’). With these labels in
place, we can look for gene-pathways which are more strongly
enriched within the AD-specific BAR-biclusters than the non-
specific biclusters. Some results of this search are shown in
table III, with the remaining results shown in Appendix B.
These results are suggestive, as many of these pathways may
play a role in the differences between AD- and WT-organoids
seen in [25].

For example, the genes and pathways related to ion-
transport and ion-channel binding may be partially responsible
for the differences in conductivity and current-density ob-
served between the isogenic-variants. Similarly, the pathways
related to neuronal cell generation might play a role in the

TABLE III
Difference in significant gene pathways from WT- and AD-biclusters

Cell Type Gene Pathway
GABAergic Neurons Hydrogen Ion Transmembrane Transporter Activity

Astroglia Cells Hydrogen Ion Transmembrane Transporter Activity
Ventral Progenitor Cells Hydrogen Ion Transmembrane Transporter Activity

Radia Glial Cells Ion Channel Binding
Astroglia Cells Neuronal Cell Body

Ventral Progenitor Cells Neuronal Cell Body
Astroglia Cells Generation of Neurons
Astroglia Cells Glutamate Secretion

differences in arborization observed between the AD- and WT-
organoids. As another example, the most significant BARs
(red-arrows) in figure 6 highlight genes such as vimentin and
FABP7; the former encodes for filament proteins responsible
for cytoskeletal structure and function, while the latter is a
fatty-acid binding protein relevant for glial-fiber development
in the brain. Both have been associated with AD in several
previous studies [45]–[52].
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APPENDIX A
MORE DETAILS ON LCLR.

Case studies on the comparison between LCLR, UMAP and
Louvain clustering.

APPENDIX B
A COMPLETE LIST OF THE DIFFERENCE IN SIGNIFICANT

GENE PATHWAYS FROM WT- AND AD-BICLUSTERS.
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