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Summary

Variability of gene expression due to stochasticity of transcription or variation of extrinsic
signals, termed biological noise, is a potential driving force of cellular differentiation. While
unicellular organisms exploit noise as a bet-hedging strategy, its role during multilineage
differentiation of stem cells is underexplored. Utilizing single-cell RNA-sequencing to
reconstruct cell state manifolds, we developed VarlD2, a method for the quantification of
biological noise at single-cell resolution. VarID2 reveals enhanced nuclear versus cytoplasmic
noise across cell types of the peripheral blood, and distinct regulatory modes stratified by
correlation between noise, expression, and chromatin accessibility. Noise levels are minimal
in murine hematopoietic stem cells and increase during both differentiation and ageing.
Differential noise identified myeloid-biased DIlk1+ long-term-HSCs in aged mice with
enhanced quiescence and self-renewal capacity. VarlD2 reveals fundamental properties of
noise across cellular compartments, during stem cell differentiation and ageing, and uncovers

distinct cellular sub-states invisible to conventional gene expression analysis.
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Introduction

Single-cell genomics has become a powerful method of choice for the identification of cell
types and for the inference of tissue composition at single-cell resolution (Griin and
van Oudenaarden, 2015; Kharchenko, 2021; Stegle et al., 2015). The reconstruction of cell
state manifolds paired with pseudotime analysis facilitates the derivation of ancestral
relations between cell states and enables the prediction of cellular differentiation trajectories
(Sagar and Griin, 2020). However, such inference methods heavily rely on transcriptome
similarity, and are therefore limited in their ability to capture control mechanisms of cell fate
choice driven by lowly expressed genes. For example, single-cell lineage tracing by random
cellular barcoding revealed early lineage priming of hematopoietic stem cells (HSCs) (Weinreb
et al., 2020), which remained undetected when relying on single-cell RNA-seq (scRNA-seq)
data alone. A known problem for the quantification of subtle expression changes, in particular
for lowly expressed genes, is the substantial level of technical variability masking genuine
biological variability, or noise (Brennecke et al., 2013; Griin et al., 2014).

Gene expression noise is prevalent in unicellular organisms (Elowitz et al., 2002; Ozbudak et
al., 2002) and can underlie bi-stable systems such as the E. coli lac operon (Ozbudak et al.,
2004). Increased variability of gene expression has been observed during in vitro
differentiation of embryonic stem cells (Stumpf et al., 2017) or upon reprogramming of
induced pluripotent stem cells (Buganim et al., 2012), yet its role during cell fate decision
within multilineage systems in vivo is underexplored (Eling et al., 2019; Raj and van
Oudenaarden, 2008).

Although scRNA-seq allows noise quantification within homogenous cell populations (Griin et
al., 2014; Kar et al., 2017; Kim et al., 2015; Kolodziejczyk et al., 2015; Vallejos et al., 2015),
available methods cannot capture biological noise dynamics at high resolution across complex
cell state manifolds.

We recently proposed VarID as a method for quantifying local gene expression variability in
cell state space, which eliminates the mean dependence of gene expression variability but
does not explicitly distinguish technical and biological sources of noise (Griin, 2020). We here
introduce VarlD2 to overcome this major limitation by modeling defined sources of technical
noise in local cell state neighborhoods, facilitating the inference of actual biological variability.

We demonstrate that VarlD2 predicts biological noise levels consistent with state-of-the-art
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Bayesian noise models (Eling et al., 2018; Vallejos et al., 2015), which are only applicable to
pairwise comparisons of large homogenous cell populations profiled by scRNA-seq, and,
hence, do not permit the investigation of noise dynamics during cellular differentiation.
VarlD2 analysis of human peripheral blood mononuclear cells (PBMCs) indicates a general
increase of transcriptome variability in the nucleus compared to the cytoplasm, and the
relation between chromatin accessibility, gene expression, and noise uncovers distinct modes
of gene regulation.

Noise quantification within the murine hematopoietic system reveals minimal noise in HSCs
which increases upon differentiation. The hematopoietic system is known to be affected by
ageing, with a gradual functional decline of HSCs and an emerging myeloid bias in the bone
marrow (De Haan and Lazare, 2018). It is still unclear to what extent the age-dependent
decline of the hematopoietic system can be attributed to an emerging HSC heterogeneity,
resulting from age-related changes of cell-intrinsic properties, or from a changing bone
marrow microenvironment. By applying VarID2 we observed increased transcriptome
variability in HSCs of aged mice. The top noisy gene in aged HSCs, DIk1, facilitates the
discrimination of two sub-populations of HSCs which are almost indistinguishable on the
global transcriptome level, yet exhibit clear differences in terms of quiescence, self-renewal
capacity, and myeloid bias. We argue that age-related emergence of DIk1+ HSCs with cell-
intrinsic myeloid bias could contribute to the age-dependent change of bone marrow
composition. Hence, we demonstrate that single-cell resolution analysis of gene expression
noise can yield fundamentally new biological insights. VarlD2 was integrated into our RacelD

toolkit for single-cell analysis publicly available on CRAN.

Results

Modeling local gene expression variability in cell state space
To model local gene expression variability in cell state space, we are building upon our
previous VarlD method (Griin, 2020). VarID constructs a pruned k-nearest neighbor (knn)

III

graph in cell state space and tests transcript count differences between the “central” cell and
each of its neighbors against a background model. In VarlD2, this background model is defined
as a negative binomial with a local mean of raw unique molecular identifier (UMI) counts and
a corresponding standard deviation obtained from a local fit of the mean-variance

dependence across all genes (Methods). To overcome the lack of VarlID in resolving technical
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and biological noise components and to estimate genuine biological variability, we reasoned
that two sources of noise dominate the observed UMI count variance measured for each gene
in such local neighborhoods. At low expression, sampling noise, i.e., binomial variance
captures the average trend (Figure 1A): in this regime, the dependence of the coefficient of
variation (CV) on the mean follows a line of slope -1/2 in logarithmic space. At high expression,
the CV-mean dependence saturates and approaches a baseline variance level. As described
previously (Griin et al., 2014), this baseline is determined by the shared variability affecting
all genes equally, which we refer to as total UMI count variability. Major sources of this noise
component are cell-to-cell differences in sequencing efficiency and cell volume. We inferred
this noise component by fitting a Gamma distribution to the total UMI count distribution
across cells in each local neighborhood. The resulting Poisson-Gamma mixture corresponds
to a negative binomial distribution, describing the UMI counts X; ; for each gene i across a
neighborhood with central cell j. The parameters of this distribution are the local mean y; ;
of the raw UMI counts, and dispersion parameter rtj given by the rate parameter of the
Gamma distribution (Methods).

The remaining residual variability in excess of these two major sources can be summarized
into an additional dispersion parameter ¢; ; (Figure 1B). We refer to this residual variability as
biological noise since it captures gene-specific deviations from the global trend determined
by sampling variability and total UMI count variance.

By applying VarlD2 to scRNA-seq data of mouse Kit+ hematopoietic progenitors (Tusi et al.,
2018) comprising major branches of erythrocyte and neutrophil progenitors, we observed
that rtj indeed varies substantially between distant neighborhoods in cell state space. Thus,
a local noise model is required to quantify this noise component for heterogeneous cell
populations (Figure 1C and 1D). Since a maximum-likelihood (ML) fit of the biological noise
g; j led to inflated estimates for lowly expressed genes, we incorporated a weakly informative

Cauchy prior and performed maximum a posterior (MAP) estimation of ¢; ;, which eliminated

g
the inflation (Methods and Figure 1E and S1A). To test our noise model quantitatively, we
simulated cell neighborhoods with defined technical and biological noise levels based on gene
expression parameters from (Tusi et al., 2018) (Methods and Figure S1B). We optimized the
scale parameter y of the Cauchy prior by jointly matching the median and minimizing the

standard deviation of the estimates compared to the simulated ground truth (Figure S1C).
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This analysis demonstrates the accuracy of our noise estimates across three different noise

levels, as well as the absence of a systematic mean-variance dependence (Figure 1F).
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Figure 1. Local decomposition of gene expression noise in cell state space

(A) Coefficient of variation as a function of the mean expression on logarithmic scale. The explained
variability and its components, Poissonian noise and total UMI count variability, are highlighted. Plots
correspond to two individual neighborhoods of 101 cells each from a Kit+ hematopoietic progenitor

dataset (Tusi et al., 2018).
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(B) Negative Binomial model for the UMI counts X; ;. The variance is split into three components:
Poissonian noise, total UMI count variability, and residual biological noise.

(C) Estimation of the dispersion parameter r]-t for two individual neighborhoods shown in (A). Mean-
normalized total UMI counts ﬁ’j are fitted by a gamma distribution, with shape parameter a]’? equal
to the dispersion parameter rjt in (B).

(D) UMAP plot highlighting rjt estimates across the hematopoietic progenitor dataset. MPP,
multipotent progenitors; Ly, lymphocytic; Mo, monocytic; GN, granulocytic neutrophil; Ba, basophylic;
Mk, megakaryocytic; Ery, erythroid.

(E) Comparison of € estimates obtained by Maximum Likelihood (ML) estimation (black) and Maximum
a posteriori (MAP) estimation (red). A simulated dataset with three levels of gene expression noise
was used (see Methods and Figure S1B). Here, only & estimates corresponding to the highest noise
level are shown.

(F) € estimates for a simulated dataset with three different biological noise levels (Methods). Colours
highlight group of genes with different simulated biological noise levels (low, medium, or high).
Simulated ground truths of noise values (dashed lines), and median values of the & estimates (solid

lines) are indicated for each group. Hyperparametery = 1.

In order to make VarlID2 scalable we restricted the model to MAP estimation of the residual
noise parameter. BASIiCS has been introduced as a full Bayesian noise model with multiple
parameters (Eling et al., 2018; Vallejos et al., 2015), yet this model is computationally
expensive and application to a larger number of local neighborhoods is infeasible. Moreover,
the biological noise parameter of BASICS (Eling et al., 2018) is defined as the residual over-
dispersion from the average mean-variance dependence. In contrast, VarID2 assigns a clear

interpretation to ¢;; as a residual after deconvoluting defined noise components.

J
Reassuringly, ¢;; is highly correlated with BASICS’ over-dispersion parameter (Pearson’s
correlation coefficient 0.85) with diminished correlation of the ML estimate (Pearson’s
correlation coefficient 0.79), supporting our choice of the prior (Figure S1D and S1E).
However, although BASICS correctly discriminates different noise levels, the estimates

deviate from the simulated parameters (Figure S1F). Hence, VarlD2 overcomes limitations of

available methods for the noise quantification across large numbers of local neighborhoods,
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enabling the analysis of noise differences between multiple populations and along

differentiation trajectories.

Nuclear versus cellular transcripts exhibit elevated noise levels in peripheral blood
mononuclear cells

We first applied VarlID2 to test the hypothesis that nuclear export of mRNAs serves as a buffer
to reduce transcriptional noise, as described for a limited set of genes measured by single-
molecule fluorescent in situ hybridization (smFISH) in Hela cells and primary Keratinocytes
(Battich et al., 2015). To compare transcriptional noise of nuclear and cytoplasmic transcripts
on a genome-wide scale across a number of different cell types, we ran VarlD2 on scRNA-seq
and single-nucleus RNA-seq (snRNA-seq) data of human peripheral blood mononuclear cells
(PBMCs, datasets generated by 10x Genomics, see Table S1). For both datasets VarlD2
identified monocytes, NK cells, T cells, and B cells, which could be further sub-classified into
different sub-types consistently observed in both datasets (Figure 2A, 2B and S2A-C). Across
all cell populations, naive T cells were found to exhibit minimal noise levels suggesting that
transcriptional variability is reduced in less differentiated cell states (Figure 2C and 2D). To
enable the comparison of cell populations between the two datasets, we annotated
corresponding cell types based on data integration with Harmony and the Seurat pipeline
(Methods and Figure S2D). Substantial noise reduction in cellular versus nuclear transcripts
was consistently observed across all cell types and for the majority of all genes (Figure 2E and
S2E) independently of the expression level (Figure 2F and S2F), indicating that nuclear export
could indeed facilitate noise reduction on a genome-wide level across cell types.

To validate the observation of increased noise of nuclear versus cellular transcripts, we
guantified mRNA abundance by smFISH on CD8 naive T cells isolated from human peripheral
blood. We selected candidate genes with equal expression in the nuclear and the cellular
compartment (Figure S2F). The translational inhibitor programmed cell death-4 (PDCD4),
involved in cell apoptosis and also in the control of CD8 T cell activation (Hilliard et al., 2006)
exhibits increased noise in the nucleus according to our prediction (Figure S2G). Moreover,
PDCD4 undergoes alternative splicing and one of its isoforms is regulated by nuclear retention
(Park and Jeong, 2016). This suggests that post-transcriptional regulatory mechanisms may

mediate elevated nuclear noise. In contrast, the gene encoding phosphatase inhibitor 2
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(PPP1R2) was predicted to exhibit similar nuclear and cellular noise levels (Figure S2G). For
these genes, we quantified nuclear and cytoplasmic mRNA counts by smFISH (Figure 2G and
S2H), and computed the ratio of residual biological noise between nucleus and whole cells,

which was in excellent agreement with the noise ratios predicted by VarID2 (Methods and

Figure 2H).
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Figure 2. Elevated noise levels of nuclear versus whole-cell transcriptomes in human PBMCs
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(A) Clustering and UMAP representation of single-nuclei RNA-seq data, consisting of human peripheral
blood mononuclear cells (PBMC) profiled with the Single Cell Multiome kit from 10x Genomics (See
Table S1).

(B) Clustering and UMAP representation of single-cell RNA-seq data, comprising human PBMCs (10x
Genomics).

(C) Quantification of cellular noise (average € across all genes per cell) across clusters shown in (A).
The horizontal line corresponds to the median of CD4 naive T cell estimates (cluster 3), exhibiting
reduced noise levels. Boxes indicate inter-quartile range (IQR), and whiskers correspond to +1.5*IQR
of the box limits. Outliers beyond the whisker limits are depicted. Vertical axis limits are manually
adjusted for better visualization.

(D) Same as (C), but for cellular noise estimates for the single-cell dataset (see (B)). The horizontal line
corresponds to the median of CD4 naive T cell estimates (cluster 3).

(E) Comparison of cellular noise levels between both datasets. The dot plot shows the average cellular
noise per cluster and their corresponding standard deviation (error bars). Horizontal axis corresponds
to the estimates of the nucleus data and the vertical axis to the cell data estimates. Selection of similar
cell populations between both datasets was performed by dataset integration using Harmony
(Korsunsky et al., 2019). See Figure S3D.

(F) Comparison of € estimates per gene across CD8 naive T cells between nucleus and cell datasets.
Genes that do not change expression across compartments were selected and grouped into ten
equally populated bins, based on their mean expression. See also Figure S3F. Boxes indicate inter-
quartile range (IQR), and whiskers correspond to £1.5*IQR of the box limits. Outliers beyond the
whisker limits are depicted.

(G) Expression of PDCD4 (elevated nuclear noise) and PPP1R2 (similar noise levels in nucleus and
whole cell) was quantified by smFISH in human CD8 naive T cells (see also Figure S2H). Representative
images of maximum intensity projections are shown. DAPI in blue, scale bar is 5 um.

(H) Comparison of VarlD2 noise estimates to smFISH-derived values. The noise ratio between nuclear
and cellular compartments is shown. Error bars correspond to standard error (Methods).

DC, dendritic cells; NK, natural killer cells; TEM, effector memory T cells; Mono, monocytes.

Co-analysis of chromatin accessibility and gene expression noise reveals distinct modes
of gene regulation

In order to gain insights into the influence of chromatin accessibility on gene expression noise,
we analyzed a multiomics PBMC dataset (see Table S1), which combines snRNA-seq and

single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) from the
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same cell, by using the Signac package (Stuart et al., 2021). We focused our analysis on the
chromatin accessibility across individual genes at two levels, gene activity and individual peak
signal.

Gene activity was defined as the sum of detected fragments across all peaks located in the
gene body and 2kb upstream of the transcriptional start site (TSS). We computed Pearson
correlations for paired comparisons of expression (Ex), noise (N), and gene activity (GA)
(Figure S3A). In agreement with the general notion that open chromatin promotes gene
expression, we observed a substantial number of genes with a positive correlation between
expression and gene activity (1,623). However, the majority of the genes did not exhibit a
clear association, potentially due to the sparsity of at least one of the modalities.

Similarly, a substantial number of genes showed a positive correlation between gene activity
and noise (933, Figure S3A), and the majority of those also displayed a positive correlation of
expression and gene activity (857) (termed class A genes, Figure 3A). On the other hand, most
genes with a negative correlation between noise and gene activity (95) exhibited a positive
expression — gene activity correlation (84) (termed class B genes, Figure 3A).

Class A genes tend to be expressed exclusively in either T cells, B cells, or monocytes, with
high accessibility and noise signal in these cell types (Figure 3B and S3B), while class B genes
exhibit a mixture of expression patterns. While most of these genes are dominantly expressed
in a specific cell population, they are still expressed at lower levels in other cell types (Figure
3C). Other genes of class B are more ubiquitously expressed across the entire dataset. As
expected, noise of class B genes is generally anti-correlated with expression. For the
remaining genes (class C genes), noise and gene activity did not correlate (Figure S3C).
Hence, expression level and noise increase with chromatin accessibility for class A genes,
suggesting that these genes exhibit an on-off pattern without precise control of the
transcriptional level (Figure 3D). In contrast, genes in class B show reduced variability when
chromatin becomes more accessible and expression increases, and may thus require more
precise regulation of their transcriptional output (Figure 3D).

Pathway enrichment analysis for these sets of genes allows to assess whether they are
involved in particular cellular functions. For each main cell population (T cells, B cells and
monocytes), we performed enrichment analysis over a complete list of marker genes
obtained by differential gene expression analysis (Methods), selecting subsets of marker

genes found in class A, or those that do not belong to class A (Figure S3D). For the three cell

10
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types, marker genes belonging to class A are significantly more enriched in cell type-specific
immune signaling functions compared to the full list of marker genes. Among these enriched
pathways we found, e.g., co-stimulation by the CD28 family for T cells, signaling by the B cell
receptor for B cells, and interleukin 10 signaling for monocytes. In contrast, marker genes that
do not belong to class A, yielded more general categories in case of T cells and monocytes,
and no enrichment for B cells (Figure S3D). On the other hand, enrichment analysis for marker
genes within class B did not return any pathway, suggesting that only particular genes within
broader functional categories require precise control of transcriptional activity.
Furthermore, we investigated associations reflected by correlations between expression or
noise, respectively, and fragments at the level of individual peaks by following a recently
proposed strategy (Ma et al., 2020) implemented in Signac (Stuart et al., 2021). This method
addresses confounding factors such as GC content and sequence length by comparing the
peak-gene correlation against a background signal and testing the significance of the
correlation. We adapted the input in order to obtain both, expression — peak signal (Ex - Pk)
and noise — peak signal (N - Pk) correlations. For simplicity, we focused our analysis on peaks
falling around the TSS and gene body, setting aside potential regulatory regions in cis.
Focusing on class A and B genes, we observed consistent patterns at the level of specific peaks
as compared with gene activity signal. Genes of class A show an enrichment in both positive
expression — peak and noise — peak correlations with substantial overlap of these peaks.

For instance, the T cell co-receptor CD28 (belonging to class A) exhibits common links of
positive expression — peak and noise — peak correlation (Figure 3E). A complementary
behavior was observed for the class B gene AKAP13 which shows peaks with positive
expression — peak but negative noise — peak correlation, and vice versa (Figure 3F).
Moreover, peaks within the CD28 locus exhibiting positive expression — peak and noise — peak
correlations are differentially accessible in T cells versus other cells (Figure 3E). Likewise,
peaks associated with increased expression and low noise across the AKAP13 sequence
exhibit increased accessibility in monocytes, while peaks associated with decreased
expression and high noise are less accessible (Figure 3F). Therefore, correlations at the higher
level of gene activities largely reflect the dynamics at individual peaks, supporting the

distinction between class A and class B genes.

11
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Taken together, gene expression noise can discern different modes of gene regulation
corresponding to noisy on/off switches (class A) versus tight regulation of expression levels

(class B).
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Figure 3. Joint analysis of chromatin accessibility and gene expression noise reveals gene modules
with distinct noise regulation

(A) Two sets of genes were analyzed based on the correlations in Figure S3A. Class A genes (left side)
have positive expression — gene activity and noise — gene activity correlations. Class B genes have
positive expression — gene activity correlation but negative noise — gene activity correlation.

(B) Patterns of expression (top), gene activity (middle) and noise (down) of genes belonging to class
A. For convenience only ~300 genes are shown. See also Figure S3B for heatmaps with the whole set
of these genes.

(C) Similar as (B), but showing genes of class B. All genes in this category were included.

(D) Diagram summarizing the observed patterns in chromatin accessibility, expression and noise for
the set of genes in class A and class B. See main text for further details.

(E) Genomic region of CD28 (class A gene). Upper panel: normalized accessibility signal, aggregated
across cells from selected clusters. Violin plots (top right) show expression and noise levels across each
cluster. Differential accessibility test of T cells against the remaining dataset was performed. Peaks
(middle panel) were annotated based on increased accessibility (“Open”), no change (“NA”) or
decreased accessibility (“Closed”). Threshold values: logFC > 1.25, padj < 0.001. Gene linkages (Ma et
al., 2020; Stuart et al., 2021) between expression and accessibility within individual peaks (links Ex-Pk)
or noise and peak accessibility (links N-Pk) are shown in the lower panel, with scores corresponding
to Pearson correlation coefficients. These links bind the TSS of the corresponding gene and peaks
where a significant correlation was detected, and they do not represent spatial chromatin
organization.

(F) Similar as (E), but showing data of AKAP13 (class B gene). Differential accessibility test was

performed by comparing monocytes cells against the remaining dataset.

Gene expression noise increases during hematopoietic differentiation

To interrogate dynamics of gene expression noise during multilineage stem cell
differentiation, we focused on the hematopoietic system and analyzed a dataset of ~44,000
mouse Kit+ hematopoietic progenitors, covering LT-HSCs, multipotent progenitors (MPPs),
and fate-committed progenitors of all major blood lineages (Dahlin et al., 2018). Cluster-to-
cluster transition probabilities (Griin, 2020) predicted by VarlD2 recapitulate the architecture
of the hematopoietic tree (Figure 4A and S4A). LT-HSCs identified as the Slamf1+ Ly6a+ Kit+
Cd34'°% Cd48"°" cluster 10 exhibit the lowest averaged noise level (mean noise of all genes in

a local neighbourhood) among all clusters (Figure 4B and S4B). Hence, transcriptional noise is
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suppressed in LT-HSCs, indicating a stable, transcriptionally homogenous stem cell state. For
all lineages, we observed an increase of transcriptional noise with differentiation progress
(Figure 4B and S4B). We further analyzed cell-to-cell transcriptome correlation within local
neighborhoods (Figure S4B), and found that LT-HSCs are among the clusters with the highest
Spearman correlation of single-cell transcriptomes. Hence, transcriptional variability in LT-
HSCs is correlated across genes, suggesting fluctuations of entire gene modules.

Impaired Kit signaling affects long term repopulation capacity of HSCs (Sharma et al., 2007),
and in vitro culture of W*/W4! mutant mice with impaired Kit kinase activity demonstrated
reduced proliferation within the HSC compartment (Dahlin et al., 2018). To test whether
stochastic activation of cell cycle genes could underlie the perturbed exit from quiescence,
we performed VarlD2 analysis of scRNA-seq data generated from W4*Y/W4' mutant
hematopoietic progenitors (Dahlin et al., 2018) (Figure 4C). We were able to identify all major
hematopoietic lineages with perturbed relative abundances as reported in the original study.
By matching cluster centers between wildtype and mutant datasets (Methods), we identified
mutant cluster 17 as the unique match to the wildtype LT-HSC cluster 10 (Figure S4D), which
was also supported by LT-HSC marker expression (Figure S4E). Similar to wildtype cells,
mutant cells exhibit minimal noise levels in LT-HSCs and an increase upon differentiation
(Figure 4D). We next interrogated noise differences between wildtype and mutant LT-HSCs
based on differentially noisy genes (Figure 4E), and detected a strong enrichment of cell cycle
genes (Figure 4F). In particular, several members of the pre-replication complex (Mcm2,
Mcm3, Mcm5, Mcm7, Orc6) where among the top differentially noisy genes (Figure 4G)
despite only small differences in expression levels (Figure S4F). These genes are required for
the initiation of replication and showed elevated noise levels in LT-HSCs versus MPPs. Taken
together, these observations suggest that cell cycle activation in W*/W* mutant LT-HSCs
becomes more stochastic. This is consistent with the observation of Dahlin et al., that the
number of colonies obtained from in vitro culture is overall comparable between wildtype
and W* /W4 mutants, yet the frequency of very small colonies was significantly increased,
indicating the presence of LT-HSCs that fail to become fully proliferative. Hence, the noise
analysis can generate hypotheses consistent with the observed perturbed proliferation

phenotype in Kit mutant mice.
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Figure 4. Gene expression noise increases during hematopoietic differentiation
(A) UMAP representation of hematopoietic stem and progenitor cells from the bone marrow of wild-
type (WT) mice (Dahlin et al., 2018). Major cell populations and VarID2 transition probabilities

(Methods) between clusters are highlighted.
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(B) Quantification of cellular noise (average & across all genes per cell) across clusters from the WT
dataset in (A). Horizontal line corresponds to the median noise level of the LT-HSC population. Boxes
indicate inter-quartile range (IQR), and whiskers correspond to £1.5*IQR of the box limits. Outliers
beyond the whisker limits are depicted. Vertical axis limits are manually adjusted for better
visualization.

(C) UMAP representation of a hematopoietic stem and progenitor cells from Kit W*'/W*! mutant mice
(Dahlin et al., 2018).

(D) Same as (B), but showing cellular noise estimates of the W*'/W?*! dataset in (C).

(E) Differentially noisy genes identified between the LT-HCS populations of W*/W*! versus WT mice.
MA plot shows log2FC of noise on the y axis, and average expression on the x axis. Threshold values:
log2FC > 1, padj < 0.001.

(F) Pathway enrichment analysis of the genes with increased noise in W*'/W*! mice from (E).

(G) Noise & estimates of genes involved in DNA replication. Quantities from each dataset were
separated into LT-HSCs and the remaining cells, denoted as MPP.

LT-HSC, long-term hematopoietic stem cells; MPP, multipotent progenitors; Ly, lymphocytic; My,
myelocytic; Mo, monocytic; GN, granulocytic neutrophil; Ba, basophylic; MC, mast cells; Mk,

megakaryocytic; Ery, erythroid; Div; dividing cells.

Gene expression noise increases in LT-HSCs upon ageing

Ageing increases cell-to-cell variability of CD4+ T cells upon immune stimulation (Martinez-
Jimenez etal., 2017). To test whether an increase of gene expression noise also occurs in HSCs
upon ageing, and to investigate if this could explain observed phenotypic changes such as
myeloid lineage bias (Geiger et al., 2013), we applied VarID2 to scRNA-seq data of HSCs
isolated from young (2-3 months old) and aged (17-18 months old) mice (Hérault et al., 2021).
In this study, sequencing was performed in two batches (denominated as A and B) of young
and aged mice, which were separated by VarID2 clusters (Figure 5A and S5A). To avoid
confounding of noise quantification by batch integration, we separately analyzed clusters
corresponding to the two batches. We focused our analyses on the clusters maximizing
expression of LT-HSC markers (Hlf, Hoxa9, Mecom) within each age group and batch (Figure
S5B): cluster 7, 15, 1, and 6 for young A, young B, aged A, and aged B, respectively. Compared
to multipotent progenitors (MPPs), these clusters show decreased noise (Figure 5B and S5C),

consistent with the analysis of data from Dahlin et al.. For both batches, we observed elevated
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noise levels in aged versus young LT-HSCs (Figure 5C), indicating that the transcriptome of LT-
HSCs becomes more variable with age.

Analysis of differentially noisy genes (Methods, Figure 5D) confirmed a larger number of
genes with elevated noise in aged LT-HSCs. Among these genes we detected the inhibitor of
Telomerase Terf, cell cycle suppressers such as cyklin-dependent kinase inhibitor Cdkn2c, and
Gfilb, an essential regulator of erythro-megakaryopoiesis (van der Meer et al., 2010) (Figure
5E). Furthermore, the retinoic acid degrading enzyme Cyb26b1, which is required for the
maintenance of dormant HSCs (Schdnberger et al., 2022), displays elevated noise in aged LT-
HSCs. Given the reduced proliferative capacity and the myeloid lineage bias of aged LT-HSCs,
variability of these classes of genes could indicate the presence of differentially quiescent and

lineage-biased sub-states, whereas young LT-HSCs persist in a more homogenous state.
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Figure 5. Gene expression noise increases in LT-HSCs upon ageing
(A) t-SNE representation of young and aged hematopoietic stem cells (Hérault et al., 2021), sequenced
in two batches A and B (see also Figure S5A). LT-HSC populations identified based on marker gene
expression for each condition and batch identity are highlighted (see also Figure S5B).

(B) t-SNE plot highlighting cellular noise estimates across cells in the the Hérault et al. dataset.

17


https://doi.org/10.1101/2022.08.04.502776
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502776; this version posted August 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(C) Comparison of cellular noise across the four LT-HSC populations identified in (A). Boxes indicate
inter-quartile range (IQR), and whiskers correspond to +1.5*IQR of the box limits. Outliers beyond the
whisker limits are depicted. Vertical axis limits are manually adjusted for better visualization.

(D) Differentially noisy genes identified across LT-HCS populations, comparing aged versus young
samples. MA plot shows log2FC of noise on the y axis, and average expression on the x axis. Threshold
values: logFC > 1.25, padj < 0.001.

(E) Noise ¢ estimates of some example genes detected as highly noisy in aged versus young LT-HSCs

in (D).

DIk1 is a marker of quiescence and enhanced self-renewal of aged HSCs

To further investigate this hypothesis, we focused on DI/k1, the gene with the strongest noise
increase in aged versus young LT-HSCs (Figure 5D). DIk1 encodes a non-canonical Notch ligand
which has been reported to be overexpressed in human hematopoietic CD34+ stem and
progenitors from myelodysplastic syndrome patients (Sakajiri et al., 2005). In the ageing HSC
dataset (Hérault et al., 2021), D/Ik1+ and DIk1- cells intermingled in the UMAP and did not give
rise to separate clusters (Figure 6A). Differential gene expression analysis between DIk1+ and
DIk1- LT-HSCs (Methods, Figure 6B) revealed only few differentially expressed genes such as
the LT-HSC marker Meg3 (Sommerkamp et al., 2019). To characterize functional differences
of DIk1+ and DIk1- LT-HSCs in more detail, we FACS-purified Dlk1+ and DIlk1- Lineage
Kit*Scal*CD150*CD48 CD34 HSCs from the bone marrow of aged (18 months old) mice and
performed scRNA-seq by mCEL-Seq2 (Herman et al., 2018). Gene expression analysis
confirmed up-regulation of DIk1 mRNA in sorted DIk1+ LT-HSCs (Figure 6C-D and S6A-B).
Although clustering failed to resolve DIk1+ and DIk1- LT-HSCs, differential gene expression
analysis between sorted Dlk1+ and Dlk1- LT-HSCs further confirmed up-regulation of Meg3
and revealed significantly increased expression of the cell cycle inhibitor Cdknla and the
Sulfotransferase 1A1 (Sultlal) in DIk1+ LT-HSCs (Figure 6E). Sultlal was described as a
marker of the previously identified molecular overlapping (MolO) population enriched in
functional HSCs obtained by four different isolation methods (Wilson et al., 2015). These
observations corroborate our sorting strategy for the two sub-populations. By FACS analysis
of bone marrow cells isolated from mouse groups at different ages, we discovered that the

fraction of DIk1+ cells within the LT-HSCs compartment continuously increased with age
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(Figure 6F and S6C-D) and positively correlated with myeloid bias (Spearman’s p=0.80) in the

bone marrow of ageing mice (Figure 6G and S6E).
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Figure 6. DIk1 is a marker of quiescence and enhanced self-renewal in aged HSCs
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(A) Expression of DIk1 in the dataset from Hérault et al., 2021 (see Figure 5).

(B) Differentially expressed genes between Dlk1+ and DIk1- cells across aged LT-HSCs, (batch A, cluster
1in Figure 5A). Threshold values: logFC > 1.25, padj < 0.05

(C) UMAP representation of mCEL-Seq2 data of DIk1+ and DIk1- LT-HSC populations purified by flow
cytometry.

(D) Similar than (C), but highlighting DIk1+ and DIk1- LT-HSC sorted cells.

(E) Differential expression analysis of the DIk1+ versus Dlk1- sorted cells. Threshold values: logFC >
1.25, padj < 0.05.

(F) Quantification of DIk1+ and Dlk1- frequency among LT-HSC by flow cytometry from groups of mice
with different ages (see experimental set up in Figure S6C). Error bars indicate standard deviation.
(G) Comparison between the percentage of DIk1+ cells in LT-HSCs and the percentage of myeloid cells
in bone marrow, corresponding to the experiment in Figure S6C (see also Figure S6E). Spearman’s
p=0.80.

(H) Single cell proliferation assay showing the number of cell divisions in LT-HSCs from young (left, 3
months old) and aged (right, 17-18 months old) mice (n=3). Error bars indicate standard deviation.

() Serial colony-forming unit assays (CFUs) with cells isolated from aged mice (17-18 months old, n=2).
Error bars indicate standard deviation.

(J) Percentage of CD45.2 chimerism in bone marrow 16 weeks post transplantation, showing primary
(left) and secondary (right) transplantations (see experimental set up in Figure S6F). Error bars indicate
standard deviation. pval: ns>0.05, *<0.05 (one sided t-test).

(K) CD42.5 lineage contribution in the bone marrow 16 weeks post transplantation, showing primary
(left) and secondary (right) transplantations. Error bars indicate standard deviation. ND: non-
differentiated.

Statistical testin (F), (H), (1) and (K): two-way ANOVA test; pval: ns>0.05, * <0.05, ** <0.01, *** <0.001,
**%* <0.0001.

To better understand the specific phenotype of DIk1+ LT-HSCs, we performed a 48h in vitro
single-cell proliferation assay and observed delayed cell cycle entry compared to DIk1- LT-
HSCs (Figure 6H). To test in vitro self-renewal of the two sub-populations, we performed a
serial colony-forming unit (CFU) assay. DIkl+ LT-HSCs exhibited significantly higher CFU
capacity than Dlk1- LT-HSCs after the third re-plating (Figure 6l), suggesting enhanced self-
renewal. To assess self-renewal capacity and lineage output in vivo, we performed serial
transplantations of DIk1+, DIk1-, or total LT-HSCs into irradiated young recipients (Figure S6F-

G, Methods). After 16 weeks of secondary transplantations DIk1+ LT-HSC recipients exhibited
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significantly elevated chimerism in the bone marrow compared to DIk1- LT-HSC recipients
(Figure 6J). While we also observed elevated chimerism in the peripheral blood (Figure S6H)
and an increased HSC frequency among donor-derived cells (Figure S6l) upon secondary
transplantations, the difference to DIk1- LT-HSCs recipients did not reach significance due to
the large variability across individual animals. Moreover, a significantly increased myeloid
lineage output was observed in the bone marrow of DIk1+ versus Dlk1- LT-HSC recipients
(Figure 6K).

Together, the in vitro and in vivo analyses indicate a more quiescent state and increased self-
renewal capacity of DIk1+ LT-HSCs, although large variability across animals makes it difficult
to quantify this effect in vivo. The significantly increased myeloid output in the bone marrow
of DIk1+ LT-HSC recipients is consistent with an intrinsic myeloid bias of these cells. Together
with the observed correlation of DIkl+ LT-HSC frequency and age-dependent myeloid bias
(Figure 6G), we conclude that expansion of DIk1+ LT-HSCs in the bone marrow of ageing mice
contributes to the known age-related myeloid bias.

Hence, differential gene expression noise has enabled the identification of a sub-type of
ageing LT-HSCs with distinct functional properties, which cannot be resolved by conventional

differential gene expression analysis or clustering methods.

Discussion

VarID2 establishes a method for the quantification of local gene expression noise in cell state
space. We acknowledge that the residual variability € may not be entirely free of marginal
gene-specific technical noise components. However, changes in residual variability across the
cell state manifold should be unaffected by such technical components, as long as noise is
independent of the mean expression. In practice, the parameter y driving the strength of the
Cauchy prior should be adjusted such that a dependence of the average residual noise € on
the total UMI count per cell is eliminated.

The ability of VarlD2 to quantify biological noise across neighborhoods of tens to hundreds of
thousands of cells yields unprecedented insights into the dynamics of gene expression noise
along differentiation trajectories of complex multilineage systems such as bone marrow
hematopoiesis. This constitutes an important angle that cannot be addressed with currently

available computational methods.
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Consistent with a previous study measuring increased noise levels of nuclear versus
cytoplasmic mRNA for ~900 genes in Hela cells and freshly isolated primary keratinocytes
(Battich et al., 2015), our study confirms a general, genome-wide increase of biological noise
in the nucleus versus the cytoplasm across multiple cell types found in human peripheral
blood. Therefore, as suggested previously on a limited scale (Battich et al., 2015) nuclear
exportis indeed likely to confer a noise buffering function on a genome-wide level with similar
effect size across diverse cell types.

Making use of scRNA-seq and scATAC-seq measurements from the same cell, we identified
two classes of genes with fundamentally different noise dynamics. We hypothesize that class
A genes are regulated by an on/off switch lacking precise control of expression levels,
whereas transcriptional levels of class B genes need to be tightly controlled. Alternatively, a
correlated increase of noise and expression of class A genes could be explained by variability
of extrinsic signals, e.g., related to immune cell activation, which would be consistent with
the observed enrichment of immune signaling pathways among class A genes.

It requires further investigation to explain how these differential noise characteristics are
regulated on the molecular level. We provide a starting point by demonstrating that different
peaks within a given gene locus of class B genes are correlated with expression and noise,
respectively. However, we were unable to identify global regulators of this behavior by motif
analysis (data not shown).

By enabling analysis of noise dynamics during differentiation, VarlD2 provides deeper insights
into general properties of single-cell transcriptomes, and expands the scope of earlier work
describing dynamics of transcriptome entropy during differentiation (Griin et al., 2016; Guo
etal., 2016; Teschendorff and Enver, 2017). These studies consistently showed that stem cells
maximize transcriptome, signaling, or pathway entropy compared to more differentiated
states.

For the hematopoietic system, one of the best studied model systems for multilineage
differentiation of stem cells, we reveal minimal noise levels in LT-HSCs, indicating that the
guiescent state is transcriptionally homogenous.

However, we demonstrate that transcriptional noise in LT-HSCs increases with age whereby
it always remains lower than in more differentiated progenitors, arguing for lower
transcriptional fidelity and/or the emergence of transcriptionally similar sub-states of LT-HSCs

with age, which cannot be resolved by conventional clustering approaches. Our discovery of
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DIk1+ LT-HSCs, which exhibit higher self-renewal potential and myeloid bias than their DIk1-
counterpart, and which occur at increased frequency with age, provides evidence for the
latter hypothesis. The correlation of DIk1+ LT-HSC frequency with myeloid lineage frequency
in the bone marrow upon ageing, in conjunction with the cell-intrinsic myeloid bias of
transplanted DIk1+ LT-HSCs, suggests this population as a determinant of age-related myeloid
bias.

Due to limited transcriptional differences between DIlk1+ and DIk1- LT-HSCs, it is impossible
to distinguish these populations directly by clustering and differential gene expression
analysis, highlighting that gene expression noise analysis can uncover functionally distinct

sub-types in seemingly homogenous cell popualtions.

Limitations and future directions

In order to facilitate noise inference for tens to hundreds of thousands of cell neighborhoods,
VarID2 relies on maximum a posterior inference, i.e., on the inference of the most likely noise
value of the posterior distribution. Hence, to account for statistical variation of this
parameter, VarlD2 has to rely on the distribution of MAP estimates across similar
neighborhoods. We approach this here by performing a non-parametric Wilcoxon test to
compare cell states, e.g., different clusters on a differentiation trajectory. Although
computationally expensive, future developments could attempt full Bayesian inference of
posterior parameter distributions for each neighborhood permitting to assess the uncertainty
of local estimates. Another limitation is a missing link of our € estimates to parameters of a
mechanistic model of transcription such as the random telegraph model of transcriptional
bursting (Friedman et al., 2006). Determining transcriptional parameters such as burst size
and frequency relies on the validity of the underlying assumptions of the model, which could
be different from gene to gene. Moreover, in the current setting we did not consider allele-
specific quantification, which would require crossing of different genotypes and sufficient
read coverage (Larsson et al., 2019). Nonetheless, the derivation of kinetic parameters of

transcription represents an interesting future extension of VarID2.
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Conclusion

We here introduced VarlD2, a novel method for the quantification of gene expression noise
dynamics in cell state space, and demonstrate that noise dynamics are informative on
fundamental properties and design principles of the transcriptome space. We showed that
noise signals in stem cells can reveal the existence of functionally distinct sub-states, opening
new avenues for investigating how functionally distinct cell states are molecularly encoded
beyond differential gene expression, and for the elucidation of the role of transcriptional

noise during cell fate decision in multilineage systems.
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Methods

VarlD2 pipeline

The original VarID method (Griin, 2020) was improved and extended to accommodate
additional functionalities. In VarlD2, homogeneous cellular neighborhoods were defined
similarly as in VarID. In brief, a k-nearest neighbor (knn) network of cells is inferred from
Pearson residuals obtained after gene-specific normalization to eliminate the dependence on
total UMI counts. VarlD normalization consists of a negative binomial regression of total UMI
counts akin to (Hafemeister and Satija, 2019) followed by averaging regression coefficients
across genes of similar expression using LOESS. In VarID2, the initial fit is performed as Poisson
regression followed by a maximum likelihood inference of the dispersion parameter. As a
computationally inexpensive alternative, a recently proposed analytical normalization
method (Lause et al., 2021) was implemented, yielding qualitatively similar results to the full
negative binomial regression. Briefly, in this normalization scheme, the regression slope
coefficient equals 1 and the offset corresponds to the natural logarithm the total UMI count,
if the dependent variable is the natural logarithm of a gene’s UMI count. The dispersion
parameter can either be set to a fixed value, or, alternatively, inferred by maximum likelihood.
After normalization, nearest neighbors are obtained by a k-d tree search based on Euclidean
distance of Pearson residuals in a PCA reduced space. The number of PCs to include is inferred
from an elbow criterion, requiring that the difference in explained variability upon increasing
the number of PCs by one is within one standard deviation across all changes upon further
increasing the number of PCs (up to a maximum of 100).

The links between a central cell and each of its k nearest neighbors are then tested against a
negative binomial background model of UMI counts, and links to inferred outlier cells are
pruned in order to obtain homogenous local cell state neighborhoods. In contrast to VariD,
where the background distribution was inferred from a global mean-variance dependence of
UMI counts across all genes, VarlD2 constructs these background models locally, to better
account for local variations in technical noise. Furthermore, to safeguard against false positive
outliers due to sampling dropouts, a pseudocount of one was added to all UMI counts. The

link probability is calculated as the geometric mean of the Bonferroni-corrected link
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probabilities of the top three genes after ranking genes by link probability in increasing order
and adding a pseudocount of 107,

VarlD2 also offers the possibility to estimate the o parameter, i.e., the weight of the central
cell when averaging across a neighborhood for constructing the background model. The
o parameter can be estimated in a self-consistent local way, requiring that the local average
does not deviate more than one standard deviation from the actual expression in the central
cell.

Clustering on the pruned knn network is performed by community detection. VarID2 offers
to perform Leiden clustering (Traag et al., 2019) clustering with adjustable resolution
parameter in addition to Louvain clustering.

In VarID2 transition probabilities between two clusters are calculated as the geometric mean
of the individual link probabilities connecting the two clusters (calculated as in VarID).
Finally, apart from batch correction within the negative binomial regression framework, we
integrated Harmony batch correction (Korsunsky et al., 2019). Furthermore, VarlD2 facilitates
pseudotime analysis along inferred lineages by integrating slingshot (Street et al., 2018).

The central noise model has been revised as outlined in the next paragraph in order to

facilitate the quantification of residual biological noise.

VarlD2 noise model

In order to quantify the actual biological variability across homogenous cellular

neighborhoods, we propose a statistical model that deconvolutes defined components of

variability.

The UMI count X;; detected in gene i and a central cell j within a given homogeneous

neighborhood follows a negative binomial distribution, with parameters mean y;; and

dispersion parameter 7; ;:
Xij ~NB(u ;1) (1)

The variance of this distribution is given by

0%y = Wij+ — U (2)
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We used the definition of a Negative Binomial distribution as a Gamma-Poisson mixture. This

way, the transcript counts X; ; follow a Poisson distribution with rate parameter }; ;, which in

turn follows a Gamma ( /7) distribution. In our model, the rate parameter 1, ; is given by

Aij = Bty (3)

where y; ; is the mean of the transcript counts for gene i across a homogenous cellular
neighborhood with a central cell j. A homogenous cellular neighborhood L consist on the
central cell j and its k nearest neighbors that remain after pruning: L = {j, j1, j2, -, jx }-

ﬁ’j is a cell specific normalization term involving the local variation in total transcript counts.

Variability in total UMI counts across nearest neighbor cells are caused by technical cell-to-
cell variability in sequencing efficiency and by variations in cell size or RNA content. We
encompass all these sources of variability in a global term since we are interested in
guantifying residual gene-specific variability.

Therefore, ,B’j corresponds to

B = (4)

==

With N; representing a vector of total transcripts per cell within a neighborhood L with central

cell j, and IVJ is the average of these quantities.

]VJ = 7141 z N, (5)
le{jj1,Ji}

Similarly, as in (Griin et al., 2014) we propose ,8’]. to follow a Gamma distribution with shape

parameter af and rate parameter ﬁf. By definition it follows that

,3’]': 1 (6)

and, hence,

Bi = o (7)

27


https://doi.org/10.1101/2022.08.04.502776
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502776; this version posted August 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The parameter ajt is first determined by a maximum likelihood fit of a Gamma distribution to

the normalized total transcript counts, which are only marginally affected by Poissonian

sampling noise due to the high magnitude of these values:

ﬁ’j"'F(ajt'ajt) (8)

To fit a Poisson-Gamma model capturing the technical noise components defined above, and
the residual biological variability, we include an inflation term &’; ; that accounts for the
biological variability of gene i in the neighbourhood of cell j.

Consequently, the rate parameter A; follows a Gamma distribution

ot at
Ai ~F< ,] ,—, J ) (9)
i € N

The negative binomial distribution for transcript counts X;; is thus determined as the

corresponding Poisson-Gamma mixture

at
X ~NBluw :.7.= —2 (10)
L] ﬂl,]'rl,]

with y; ; indicating the mean transcript counts per gene i across local neighbourhoods with

central cell j.

The variance is given by

0% = Mijt —¢ U5 (11)

The second term in Equation 11 can be split into the total UMI count variability contribution

1/ af and the residual variability defined as ¢;; = (¢';; — 1)/ ajt , Which scales from 0 to

J

oo, For convenience, we use rt

i instead of ajt, to denote the technical dispersion parameter

and rewrite the variance:

0%y = Myt MRty (12)

This expression encompasses the two sources of technical variability described in (Griin et al.,

2014). The mean p;; quantifies the Poissonian noise, in which the variance scales
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proportionally as a function of the mean. The second technical source of variability depends
on differences in sequencing efficiency or cell size and RNA content, which is captured by rjt.

Therefore, we assume that the residual variability, denoted by ¢; ;, corresponds to the

J7

biological noise.

Implementation

Since inference of the full posterior distribution by rejection sampling across all individual
neighborhoods would be computationally intense, we applied Maximum a posteriori (MAP)
estimation for inferring the biological variability parameter ¢; ; that maximizes the posterior

distribution:

g,j = argmax, [216{1'.1'1,---Jk} log NB(XL-,I| ui,j,rjt,e) + log P(¢)] (13)

The mean expression y; ; is calculated as the arithmetic mean of UMI counts per gene i across
all cells [ within local neighborhoods L. Alternatively, we inferred both ¢; ; and y; ; by MAP
estimation, resulting in y; ; posterior estimates highly correlated to the arithmetic mean.
Therefore, we omit y; ; from the optimization in order to reduce run time.

rt

7 is equivalent to the shape parameter af when fitting ,B’j (defined in Equation 4) by a I

distribution.

We propose a Cauchy distribution as a weakly informative prior distribution P(¢) in order to
regularize ¢; ; posterior estimates for genes with low expression levels (Figure S1A). This prior
will favour low-noise estimates in case of weak statistical support of the data, i.e., low relative
likelihood.

We selected parameters of the Cauchy distribution by testing our method with a simulated
dataset. In general, the location parameter x; is set to zero and for the scale parameter we

choose y = 0.50r 1.

Determination of differentially noisy genes
To determine differentially noisy genes between two clusters, VarlD2 applies a similar
strategy as used in VarID. Briefly, a Wilcoxon rank-sum test of the noise levels in two clusters

is performed. To mitigate the impact of the presence of only a small number of cells with non-
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zero noise estimates, a pseudocount sampled from a uniform distribution on [0:1] is added
to each cell beforehand. Moreover, to account for reusing information across connected cells,
the p-value is conservatively scaled up by the number of nearest neighbours after Bonferroni-

correction across all genes and the final value is capped by 1.

Data simulation

We generated a simulated data set with 34,390 genes and 100 cells, corresponding to a
homogenous neighbourhood. Random transcript counts were sampled from a negative
binomial distribution with mean p; and dispersion parameter r; based on a reference dataset
(Tusi et al., 2018). The mean u; was defined as the average of transcript counts per gene
across the reference dataset and multiplied by the parameter a;, a cell-specific term
accounting for the discrepancies in sequencing efficiency across individual cells. a; was
generated by sampling random values from a [/ distribution with both shape and rate
parameters equal to 2.

We estimated the dispersion parameter per gene from the reference dataset as: 1; =
yzi / (02; — ;). Using this set of r; values, we took the 0.2, 0.4 and 0.8 quantiles to define
three levels of noise: high, medium and low, respectively. This way, we generated a simulated
dataset whose genes have three levels of variability and their expression cover a broad range

(See Figure S1A).

Gene expression variability estimation with BASICS
We applied BASICS (Eling et al., 2018; Vallejos et al., 2015) to the simulated dataset by using
the implementation with regression model and without spike-in, and choosing default

parameters.

Analysis of publicly available datasets
For analysis of public datasets, feature per barcode matrices with raw counts were retrieved

from NCBI Gene Expression Omnibus (GEO; https://www.nchi.nlm.nih.gov/geo/) or from the

10x Genomics website (https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets). See details in Supplementary Table S1. We ran the VarID2 pipeline

implemented in the RacelD3 package (v0.2.5) for the analysis of single-cell transcriptome
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data. Unless otherwise indicated, we processed the data as follows: cells with less than 1000
UMI counts were filtered out. Genes that do not have at least 5 UMI counts in at least 5 cells
were discarded. Mitochondrial genes, ribosomal genes, predicted genes with Gm-identifier
and genes correlated to these classes were removed (CGenes argument in filterdata
function). The pruned k-nearest neighbor (knn) network of cells was computed with the
pruneKnn function, with number of neighbors set to 25. Clustering was performed with the
Leiden algorithm for community detection (Traag et al., 2019) implemented in the
graphCluster function. t-SNE or UMAP dimensional reduction representations were
computed with comptsne and compumap functions with default parameters.

For local noise quantification, we adjusted the value of the prior parameter y based on several
criteria: closeness to the simulated ground truth and reduced standard deviation of the noise
estimates (See Figure S1C). We selected low values of ¥ (around 0.5 and 1) in order to avoid
inflation of noise estimates for lowly expressed genes. We also assessed the absence of
correlation between total UMI count and noise estimates (See Figure S4C). Cellular noise was

defined as the mean noise estimates per cell, averaging across all genes.

Human PBMCs, Multiome Assay and scRNA-seq Assay

Transcriptomics data

snRNA-seq and scRNA-seq datasets were individually analyzed with the VarlD2 pipeline. To
be consistent with Seurat pipelines, cells with less than 1000 or more than 25,000 UMI counts
were discarded. Only mitochondrial genes, ribosomal genes and predicted genes with Gm-
identifier were filtered (FGenes argument in filterdata function). To keep a comparable
number of clusters between both datasets, the Leiden resolution was adjusted to 2 (nuclei

data) and 1.5 (cell data). For noise estimation, we set the prior parametery = 1.

Batch correction with Harmony and comparison of gene expression noise between datasets

Matrices with raw UMI counts of snRNA-seq and scRNA-seq datasets were pooled together.
Only the cells passing quality filters after VarlD2 analysis were used. Batch correction with
Harmony (Korsunsky et al., 2019) was performed with the implemented function in the Seurat
package (Hao et al., 2021; Stuart et al., 2019), by using default parameters and following the

vignette: https://portals.broadinstitute.org/harmony/SeuratV3.html. The resulting cluster

labels were used to compare cell populations, according to the following annotation: 0: CD4
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memory T cells; 1, 3, 11: CD14 monocytes; 2: CD4 naive T cells; 4: CD8 naive T cells; 5, 7: B
cells; 6: CD8 effector memory T cells 1 (TEM1); 8: natural killer cells (NK); 9: CD8 effector
memory T cells 2 (TEM2); 10: CD16 monocytes.

Noise quantification for smFISH data and comparison with sn- and scRNA-seq data
In order to quantify noise from smFISH data, we assumed that the counts follow a negative

binomial distribution with variance
o = w+ & - P (14)

where €/ is the reciprocal of the dispersion parameter and analogous to the noise parameter
g; j obtained from our VarlD2 method. Unlike scRNA-seq, smFISH is only marginally affected
by technical variability of signal detection across cells. Furthermore, since we applied smFISH
to CD8 T cells, we do not expect substantial variation in cell size and RNA content. Therefore,
we omitted the dispersion parameter associated with total UMI count variability, which
cannot be inferred based on the quantification of individual genes.

We computed the ratio of noise estimates between nuclear and cellular compartments and

estimated the error based on the standard error of the mean.

Analysis of scATAC-seq data

SscATAC-seq data was analyzed with Signac package (v1.2.1) and Seurat (v4.0.3) (Hao et al.,
2021; Stuart et al., 2019). We followed the WNN vignette of 10x Multiome, RNA + ATAC to
facilitate the joint analysis of both modalities. Gene activities, defined as the sum of detected
fragments across all peaks located in the gene body and 2 kb upstream of the transcriptional
start site, were computed with default parameters with GeneActivity function. Peak to gene
links (Ma et al., 2020) were computed with LinkPeaks function with default parameters. For
expression — peak links, the Assay with expression data was used. For noise — peak links an
additional Assay denoted “Noise” was created within the Seurat object.

Differential accessibility tests were performed with FindMarkers function with the logistic
regression method (Ntranos et al., 2019). In brief, this method establishes a logistic model
based on fragment abundance of a given feature and performs a likelihood ratio test by

comparing this to a null model.
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Murine hematopoietic progenitor cells (Dahlin et al.,2018)
WT and Kit mutant W*/W* samples were analyzed individually. Low quality cells with less
than 2000 UMI counts were removed. We used 50 nearest-neighbors for inference of the

pruned knn network. Leiden resolution: 1.5. Prior parametery = 0.5.

Hematopoietic progenitors from young and aged mice (Hérault et al., 2021)

Louvain clustering was performed. t-SNE perplexity = 200, Prior parameter y = 0.5.

Transition probabilities

Transition probabilities were estimated by VarID2 (Griin, 2020). Based on the connections in
the pruned knn, probabilities of individual links connecting cells from two different clusters
are estimated. Transition probabilities between two clusters correspond to the geometric

mean of the individual link probabilities connecting the two clusters.

Quadratic programming to identify similarities between two datasets

We employed quadratic programming for mapping corresponding cell populations between
WT and W*/W* samples of the HSC data (Dahlin et al., 2018). We represented the cluster
medoids of one dataset as a linear combination of the medoids from the other dataset.
Subsequently, we optimized the weights for all cluster medoids under the constraints that
they are greater or equal than zero and that they sum up to one. We solve this optimization

problem with the QP function of the quadprog R package.

Differential Expression Analysis

Differential expression analysis was computed with the diffexpnb function of the RacelD3
(v0.2.5) algorithm. Detection of differentially expressed genes between specific groups of
cells was performed with a similar method as previously reported (Anders and Huber, 2010).
In brief, a negative binomial distribution which captures the gene expression variability for
each group of cells if inferred based on a background model of the expected transcript count
variability estimated by RacelD3 (Herman et al., 2018). Based on the inferred distributions, a
P value for the significance of the transcript counts between the two groups of cells is

estimated and multiple testing corrected by Benjamini-Hochberg method.
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Pathway Enrichment Analysis

Pathway enrichment analysis was performed with the enrichPathway function from the
ReactomePA R package (Yu and He, 2016) or compareCluster from clusterProfiler R package
(Yu et al., 2012), with p-value cut off = 0.05 and multiple testing corrected by the Benjamini-
Hochberg method. Input were ENTREZ gene IDs of genes selected by differential expression

analysis or detection of differentially noisy genes.

Data availability
mCELseq2 data were deposited on the Gene Expression Omnibus database, with accession

number GSE185637.

Code Avalability
VarID2 is part of the RacelD R package (v0.2.5), available on github
https://github.com/dgrun/RacelD3 StemID2 package and on CRAN.

Experimental Section

Experimental models and subject details

Mouse

Experiments were performed with wild-type C57BL/6J male mice, obtained from in-house
breedings or ordered from JAX. Mice were maintained under specific-pathogen-free
conditions within the animal facility of the Max Planck Institute of Immunobiology and
Epigenetics. Protocols for animal experiments were approved by the review committee of the
Max Planck Institute of Immunobiology and Epigenetics and the Regierungsprasidium

Freiburg, Germany.
Human blood samples

Blood samples were obtained from healthy donors recruited at the Department of Medicine

Il of the University Hospital Freiburg, Germany.
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Written informed consent was given by all donors prior to blood donation. Peripheral blood
mononuclear cells (PBMCs) from EDTA-anticoagulated participant blood were isolated by

density gradient centrifugation using Pancoll (Pan-Biotech).

Cell suspensions and flow cytometry

Murine bone marrow (BM) cells were isolated from pooled femura, tibiae, hips, ilia, and
vertebrae by gentle crushing in PBS using a mortar and pistil. Erythrocyte lysis was performed
using ACK Lysing Buffer. To enrich for lineage negative (Lin") cells Dynabeads Untouched
Mouse CD4 Cells kit (Invitrogen) were used according to the manufacturer’s instructions.
Briefly, the erylsed BM was stained for 40 min with the provided Lineage Cocktail. Labelled
cells were incubated for 15 min with polyclonal sheep anti-rat IgG coated Dynabeads
(provided in the kit). Subsequently, labelled Lin+ cells were magnetically depleted. To achieve
further purification, HSCs were FACS sorted. Therefore, the depleted cell fraction was stained
for 30 min to 1 h using the following monoclonal antibodies: anti-lineage [anti-CD4 (clone
GK1.5), anti-CD8a (53-6.7), anti-CD11b (M1/70), anti-B220 (RA3-6B2), anti-GR1 (RB6-8C5) and
anti-TER119 (Ter-119)] all PE-Cy7; anti-CD117/c-Kit (2B8) in BV711; anti-Ly6a/Sca-1 (D7)-
APCCy7; anti-CD34 (RAM34) in AF700; anti-CD150 (TC15-12F12.2) in PE/Dazzle; anti-CD48
(HM48-1) in BV421. Monoclonal antibodies were purchased from eBioscience, BioLegend or
MBL. Either DLK1+ or DLK1- HSCs were sorted. Cells were sorted into Stem Pro®-34 SFM (Life

Technologies) for further experiments.

Single cell (SiC) division assay

Single DLK1+ or DLK1- HSCs (LineageKit*Scal*CD150*CD48CD34°) were FACS sorted into 72-
well Terasaki plates and cultured in StemPro-34 SFM containing 50 ng/ml SCF, 25 ng/ml TPO,
30 ng/ml Flt3-Ligand, 100 ml/ml Penicillin/Streptomycin, 2 mM L-Glutamine. After 48h each
well was checked manually for the number of cell divisions under the microscope: 1 cell = no

division, 2 cells = 1 division, >2 cells= >1 division.

Serial Colony-Forming-Unit assays (CFU)s
200-400 DLK1+ and DLK1- HSCs (LineageKit*Scal*CD150*CD48 CD34) were FACS sorted into

MethoCult M3434, plated and cultured. Approximately 7 days after the first plating, number

35


https://doi.org/10.1101/2022.08.04.502776
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502776; this version posted August 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

of colonies were counted and 10,000 cells were re-plated. 2nd and 3rd platings were
performed 3 and 5 days, respectively, after the first re-plating. Colonies were also quantified

at these time points.

HSC transplantation assay

600 DIk1+, DIk1-, or total HSCs (LineageKit*Scal*CD150*CD48CD34) isolated from 13-15
month old CD45.2 C57BL/6 mice were transplanted into lethally irradiated (4.5 Gray + 5 Gray)
CD45.1 (Ly5.1) mice together with 5x10° supportive spleen cells from 8-12 week old CD45.1/2
mice within 24h after irradiation by intravenous tail vein injection. Contribution of donor cells
(CD45.2) was monitored in peripheral blood at 4, 8, 12 and 16 weeks post-transplantation.
For endpoint analysis, bone marrow was analyzed at 16 weeks post transplantation to
quantifiy CD45.2 chimerism and lineage contribution. For secondary transplantations, 3 x 10°
cells of whole bone marrow was isolated and retransplanted 16 weeks post-transplantation.
CD45.2 chimerism and lineage contribution in bone marrow and peripheral blood were
quantified by flow cytometry using the following antibodies: anti-CD45.1 (A20)-FITC, anti-
CD45.2 (104)-PB, anti-CD11b (M1/70)-APCCy7, anti-GR1 (RB6.8C5)-APC, anti-CD8a (53.6.7)-
PECy5, anti-CD4 (GK1.5)-PECyS5, anti-B220 (RA3.6B2)-AF700.

Amplified RNA preparation from single cells using mCEL-Seq2

The CEL-Seq2 protocol with reduced volumes was used as previously described (Herman et
al., 2018) and modified using the following reagents.

Instead of 1.2 pl Vapour-Lock as hydrophobic encapsulation barrier mineral oil
(Sigma, M8410-100ML) was used. For cDNA first-strand synthesis, Protoscript Il and
Protoscript Il Reaction Buffer (NEB, M0368L) as well as murine RNase-Inhibitor (NEB, M0314S)
was used instead of SuperScript Il reverse transcriptase, first-strand synthesis buffer and
RnaseOUT. Escherichia coli DNA polymerase |, E. coliDNA ligase, RNase H (Invitrogen;
18021071) and 5 x second-strand buffer were replaced with E. coli DNA polymerase (NEB,
MO0209L), E. coli DNA ligase (NEB, M0205L), RNaseH (NEB, M0297S) and 10x Second Strand
Buffer (NEB, B6117S) respectively.

The water volume was adjusted to adequately dilute the 10x second strand buffer. After

second strand synthesis 96 wells were pooled, which results in 96 single cells per library.
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The library preparation was performed as previously described (Herman et al., 2018), but by
using Protoscript I, Protoscript Il Reaction Buffer and murine RNase-Inhibitor as mentioned
above instead of SuperScript Il reverse transcriptase, first-strand synthesis buffer and

RnaseOUT.

Quantification of transcript abundance

Paired-end reads were aligned to the transcriptome using BWA (version 0.6.2-r126) with
default parameters (Li and Durbin, 2010). The transcriptome contained all gene models based
on the mouse ENCODE VM9 release downloaded from the UCSC genome browser comprising
57,207 isoforms with 57,114 isoforms mapping to fully annotated chromosomes (1-19, X, Y,
M). All isoforms of the same gene were merged to a single gene locus, and gene loci were
merged to larger gene groups, if loci overlapped by >75%. This procedure resulted in 34,111
gene groups. The right mate of each read pair was mapped to the ensemble of all gene groups
in the sense direction. Reads mapping to multiple loci were discarded. The left mate
contained the barcode information: the first six bases corresponding to the cell-specific
barcode, followed by six bases representing the UMI. The remainder of the left read
contained a poly(T) stretch and adjacent gene sequence. The left read was not used for
guantification. For each cell barcode and gene locus, the number of UMIs was aggregated

and, on the basis of binomial statistics, converted into transcript counts (Grin et al., 2014).

SmRNA FISH

Singly labelled oligonucleotides (Quasar 570 or Quasar 670) targeting PPP1R2 and PDCD4
MRNAs were designed with the Stellaris RNA FISH probe designer (LGC Biosearch
Technologies, version 4.2) and produced by LGC Biosearch Technologies.

Naive CD8+ T cells were isolated from the peripheral blood of two healthy donors using the
Naive CD8+ T Cell Isolation kit (Miltenyi Biotec, 130-093-244) according to the manufacturer’s
instructions. SMRNA FISH procedure was performed in suspension, with brief centrifugations
between steps (5 min at 400 x g) to remove the supernatant. Briefly, naive CD8+ T cells were
washed once with PBS, fixed in 3.7% formaldehyde in PBS for 10 min at room temperature,
and washed again twice with PBS. Cell pellet was resuspended in 200 ul of 70% ethanol,
incubated at 4°C for 1 h and then washed with 200 pl of wash buffer A (LGC Biosearch
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Technologies, SMF-WA1-60) supplemented with 10% deionized formamide (Thermo Fisher
Scientific, 4440753) at room temperature for 5 min. Cells were hybridized with 80 pl of
hybridization buffer (LGC Biosearch Technologies, SMF-HB1-10) supplemented with 10%
deionized formamide containing the FISH probes at a 1:100 dilution at 37°C overnight. The
next day, cells were washed with 200 ul of wash buffer A supplemented with 10% deionized
formamide at 37°C for 30 min and stained with wash buffer A supplemented with 10%
deionized formamide and 10 pg/ml Hoechst 33342 (Thermo Fisher Scientific, H3570) at 37°C
for 30 min. Cells were rinsed once with 200 ul of 2x SSC, equilibrated 5 min in base glucose
buffer (2X SSC, 0.4% glucose solution, 20 mM Tris pH 8.0 in RNase-free H,0), and then
incubated 5 min in base glucose buffer supplemented with a 1:100 dilution of glucose oxidase
(stock 3.7 mg/ml) and catalase (stock 4 mg/ml). Cell pellet was resuspended in 10 pl of
ProLong Glass Antifade Mountant (Thermo Fisher Scientific, P36984) and mounted on a glass

slide with a glass coverslip.

Microscopy and image analysis

Z-stacks with 250-350 nm z-steps were acquired with the Cell Observer spinning disk confocal
microscope from Zeiss with a 100x/1.40-numerical aperture oil objective lens and the
PrimeBSI camera from Photometrics. Cells were segmented using Imaris image analysis

software (Bitplane) and FISH spots within nucleus and cytoplasm were quantified.
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Figure S1. Local decomposition of gene expression noise in cell state space, Related to
Figure 1

(A) Probability density function of the Cauchy distribution with different values of the scale
parameter y. Only positive values are considered for the Cauchy distribution. Location
parameter was set to zero.

(B) Variance as a function of the mean on a logarithmic scale for a simulated dataset with
genes grouped into three levels of biological noise (Methods).

(C) Tests for hyperparameter y selection, based on the ratio: median (¢*)/eqr (GT: Ground
Truth); the standard deviation s. d. (¢*); and number of outliers, given by € > g1 + s.d. (£%).
€* estimates correspond to genes whose mean expression meets the condition: log, (u;) >
1.

(D) Comparison of gy 4p estimates, with €g45;cs, the dispersion parameter € computed by
BASICS (Eling et al., 2018).

(E) Similar to (D), but comparison of maximum likelihood estimates ey r and &€gasics
estimates.

(F) Scatterplot of €545;cs €stimates as a function of the mean of the simulated dataset.
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Figure S2. Elevated noise levels of nuclear versus whole-cell transcriptomes in human
PBMCs, Related to Figure 2

(A) Number of UMI counts (top) and number of detected genes per barcode (bottom) for
snRNA-seq (Nucleus) and scRNA-seq (Cell) data of human PBMCs. Boxes indicate inter-
quartile range (IQR), and whiskers correspond to £1.5*IQR of the box limits. Outliers beyond
the whisker limits are depicted.

(B) Expression of relevant marker genes across clusters in the snRNA-seq dataset. Dot size
indicates the fraction of cells with positive expression and dot color highlights logarithmic
expression (log2) calculated across clusters.

(C) Same as (B), but expression detected in the scRNA-seq dataset.

(D) Batch effect correction with Harmony. UMAP representations showing the distribution of
barcodes per sample (left), cell type annotations (middles), as well as the number of barcodes
per dataset assigned to each cluster (right).

(E) Comparison of cellular noise across the main cell populations detected in (D). See also
Figure 2E. For better visualization, outliers >0.4 are not included.

(F) Differential expression analysis of CD8 naive T cells (cluster 4 in (D)), comparing scRNA-seq
versus scRNA-seq samples. Genes were split into ten equally populated bins, based on their
mean expression (vertical lines) and genes with no differential expression (red dots) were
selected to compare noise levels per gene (see Figure 2F). Threshold values: FC > 1.25, padj <
0.001.

(G) Test of differential noisy genes in CD8 naive T cells, comparing nuclei versus cell samples.
Threshold values: fold-change (FC) > 2, adjusted P (padj) < 0.001.

(H) Quantification of RNA spots for each cellular compartment from smFISH experiments. See
also Figure 2G — H. Horizontal lines indicate the mean.

DC, dendritic cells; NK, natural killer cells, TEM, effector memory T cells; Mono, monocytes.
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Figure S3. Joint analysis of chromatin accessibility and gene expression noise reveals gene
modules with distinct noise regulation, Related to Figure 3

(A) Pearson correlations between gene activity and gene expression, and between gene
activity and noise were computed. The contingency table shows the number of genes
identified with a positive (> 0.05), negative (< -0.05) or undefined (> -0.05 & < 0.05)
correlation.

(B) Heatmaps showing patterns of expression, gene activity and noise of all genes belonging
to class A. See also Figure 3B.

(C) Similar to (B), but patterns of expression, gene activity and noise for class C genes.

(D) Pathway enrichment analysis performed for marker genes of T cells, monocytes and B
cells. Maker genes were defined as cell type-enriched genes by performing pairwise
differential expression analyses. For each major cell population, marker genes were analyzed
in three groups: all genes, marker genes belonging to Class A (“Overlap”), and marker genes
not belonging to Class A (“No overlap”). For B cell marker genes, the non-overlapping group

was not significantly enriched in any pathway.
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Figure S4. Gene expression noise increases during hematopoietic differentiation, Related to
Figure 4

(A) Expression of relevant marker genes across cell clusters in the WT dataset of
hematopoietic progenitors. Dot size indicates the fraction of cells with positive expression
and dot color highlights expression z-score calculated across clusters. Values higher than 0.75
and lower than -0.75 are replaced by 0.75 and -0.75, respectively.

See clustering in Figure 4A.

(B) UMAPs highlighting cellular noise (left), local cell-cell correlations (center) and UMI counts
per cells (right) across the WT dataset.

(C) Scatterplots of the quantities displayed in (B). Colors correspond to the clusters in Figure
4A. Data points of the LT-HSCs (cluster 10) are highlighted with a black outline.

(D) Heatmap depicting similarity weights of clusters in the W4/W#*! dataset to WT cluster
inferred by quadratic programming (Methods).

(E) Similar as (A), but for the W*1/W*! dataset.

(F) Violin plot showing normalized expression of genes involved in DNA replication, similar to
the genes shown in Figure 4G. Samples are separated into LT-HSC and the remaining cells,

denoted MPP. For better visualization, outliers >-2.95 are not included.
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Figure S5. Gene expression noise increases in LT-HSCs upon ageing, Related to Figure 5

(A) t-SNE map highlighting the four samples and processed in to batches from the Hérault et
al. (2021) dataset.

(B) Expression of relevant marker genes across cell clusters in the dataset. See clustering in
Figure 5A. Dot size indicates the fraction of cells with positive expression and dot color
highlights expression z-score calculated across clusters. Values higher than 0.5 and lower than
-0.5 are replaced by 0.5 and -0.5, respectively.

(C) Quantification of cellular noise across all clusters in the dataset. Horizontal line
corresponds to the median noise level of the LT-HSC young A population (cluster 7). Boxes
indicate inter-quartile range, and whiskers correspond to £1.5*IQR of the box limits . Outliers

beyond the whisker limits are depicted.
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Figure S6. DIk1 is a marker of quiescence and enhanced self-renewal of aged HSCs, Related
to Figure 6

(A) UMAP representation highlighting expression of DIk1 in the mCEL-Seq2 dataset shown in
Figure 6C-D.

(B) Expression of relevant marker genes across cell clusters in the mCEL-Seq2 dataset. Dot
size indicates the fraction of cells with positive expression and dot color highlights expression
z-score calculated across clusters. Values higher than 1 are replaced by 1.

(C) Experimental design for quantification of DIk1+/- LT-HSC frequency upon aging.

(D) Representative gating scheme for sorting DIk1+/- LT-HSCs, corresponding to the

experiment described in (C), see also Methods.

(E) Hematopoietic lineage analysis of bone marrow for the age groups described in (C). ND:
non-differentiated. Error bars indicate standard deviation.
(F) Experimental design of serial HSC transplantation assay, see also Methods.

(G) Representative gating scheme for monitoring the CD45.2 chimerism, corresponding to the
experiment described in (F), see also Methods.

(H) Percentage of CD45.2 chimerism in peripheral blood across the indicated time points for

primary (left) and secondary (right) transplantations, corresponding to the experiment
described in (F), see also Methods.

(I) Quantification of LT-HSCs in bone marrow 16 weeks post transplantation, showing primary
(left) and secondary (right) transplantations. Error bars indicate standard deviation.
Barplots and scatterplots: pval: ns>0.05, * <0.05, ** <0.01, *** <0.001, **** <0.0001 (two-

way ANOVA test).
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Supplementary Table S1. List of public datasets analyzed.

Dataset Reference Repository / Accession number

Murine Kit+ | Tusietal., 2018 | GEO: GSE89754
hematopoietic
progenitor cells from

bone marrow

Human PBMC Single | - 10x Genomics;
Cell Gene Expression https://support.10xgenomics.com/single-cell-
Assay (v3 chemistry) gene-

expression/datasets/3.0.0/pbmc_10k_v3

Human PBMC, Single | - 10x Genomics, https:
Cell Multiome ATAC + //support.10xgenomics.com/single-cell-
Gene Exp. Assay multiome-atac-gex/

datasets/1.0.0/pbmc_granulocyte_sorted 10k

Murine hematopoietic | Dahlin et al., | GEO: GSE107727
progenitor cells from | 2018

bone marrow

Aged and young | Hérault et al.,, | GEO: GSE147729
hematopoietic stem | 2021
cells from murine bone

marrow
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