

1 TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc
2 genomic binding

3

4 Tian-Yeh Lim¹, Blake R. Wilde^{1,2}, Mallory L. Thomas¹, Kristin E. Murphy^{1,3}, Jeffery M.
5 Vahrenkamp¹, Megan E. Conway¹, Katherine E. Varley¹, Jason Gertz¹ and Donald E.
6 Ayer^{1,4}

7

8 ¹Department of Oncological Sciences
9 Huntsman Cancer Institute
10 University of Utah
11 2000 Circle of Hope
12 Salt Lake City, UT 84112
13

14 Current Addresses

15 ² Department of Biological Chemistry, David Geffen School of Medicine, University of
16 California, Los Angeles, Los Angeles, CA 90095, USA

17 ³ Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester
18 Medical Center, Rochester, NY, USA.

19 ⁴ Correspondence: don.ayer@hci.utah.edu

20

21 Abstract

22 c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent
23 biosynthetic pathways. To achieve this demand, c-Myc protein (Myc henceforth) drives
24 the expression of glucose transporters and represses the expression of Thioredoxin
25 Interacting Protein (TXNIP), which is a potent negative regulator of glucose uptake. A
26 Myc_{high}/TXNIP_{low} gene signature is clinically significant as it correlates with poor clinical
27 prognosis in Triple-Negative Breast Cancer (TNBC) but not in other subtypes of breast
28 cancer. To better understand how TXNIP function contributes to the aggressive behavior
29 of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We
30 show here that TXNIP loss drives a transcriptional program that resembles those driven
31 by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade
32 the promoters and enhancers of target genes that are potentially relevant to cell
33 transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc
34 genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands
35 the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This
36 expansion of Myc-dependent transcription following TXNIP loss occurs without an

37 apparent increase in Myc's intrinsic capacity to activate transcription and without
38 increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc
39 overexpression, connecting Myc genomic binding and transcriptional programs to the
40 metabolic signals that control TXNIP expression.

41

42 Introduction

43 TXNIP is an α -arrestin protein with several anti-proliferative functions,
44 predominant among these is an activity as a negative regulator of glucose uptake and as
45 a suppressor of multiple pro-growth signaling pathways (1-5). Consistent with a role in
46 restricting cell growth, TXNIP expression is suppressed by multiple cancer-associated
47 pro-growth signaling pathways (6-9) and its expression is typically low in tumors
48 compared to adjacent normal tissue. Further, TXNIP expression decreases with
49 increasing tumor grade and low TXNIP expression is correlated with poor clinical
50 outcomes in several cancers (10-15). Whether low TXNIP expression supports cell
51 growth by increasing glucose utilization, activating pro-growth pathways or whether other
52 mechanisms also contribute is currently unknown.

53 Our previous work demonstrated that low TXNIP expression correlates with poor
54 clinical outcomes in TNBC, but not in other breast cancer subtypes (12). Further, this
55 correlation is more pronounced in patients with elevated expression of the c-Myc
56 transcription factor (Myc henceforth), suggesting functional interaction(s) between
57 TXNIP and Myc. Their crosstalk likely occurs at least at two levels. First, Myc drives
58 expression of many glucose-dependent biosynthetic pathways (16-22), suggesting that
59 low TXNIP expression (high glucose uptake) in combination with high Myc expression
60 (high glucose use) helps cells match glucose availability and utilization. Second, Myc
61 represses TXNIP expression by displacing the MondoA transcriptional activator from a
62 shared E-box element located just upstream of the TXNIP transcriptional start site (12).
63 Together, these findings suggest a feed-forward mechanism where Myc's repression of
64 TXNIP increases glucose uptake to support Myc-driven and glucose-fueled biosynthetic
65 pathways.

66 Myc is implicated in more than 50% of human malignancy with elevated levels of
67 transcriptionally active Myc being critical for its oncogenic function. Elevated Myc levels
68 arise from many mechanisms including, but not limited to, transcriptional and
69 translational mechanisms and protein stability (23, 24). Myc drives transcription as a
70 heterodimer with Max, with Myc levels being limiting for the formation of Myc:Max

71 complexes (25). The model that has emerged over the last several years is that at
72 physiological levels Myc:Max complexes bind to high affinity E-box sequences in the
73 promoters and enhancers of genes involved in housekeeping pathways that support cell
74 growth, such as ribosomal biogenesis (26). At oncogenic levels, Myc:Max complexes
75 invade lower affinity sites in the promoters and enhancers of genes that are associated
76 with processes critical to cellular transformation, such as signaling pathways. Thus,
77 increasing Myc levels expands the Myc-dependent transcriptome rather than simply
78 increasing the expression of Myc-dependent transcripts (27-30).

79 In this report, we provide evidence that TXNIP loss drives a global increase in
80 Myc genomic binding and drives gene expression programs enriched for known Myc
81 targets. Surprisingly, this expansion of the Myc-transcriptome was not accompanied by
82 an increase in Myc protein expression, suggesting that TXNIP loss leads to an increase
83 in Myc's specific activity as a transcription factor.

84

85 **Results**

86 ***TXNIP Loss is transcriptionally similar to Myc Overexpression***

87 To better understand how TXNIP contributes to the aggressive behavior of TNBC, we
88 performed RNA-sequencing on RNA isolated from two separate clones of TXNIP null
89 MDA-MB-231 cells (231:TKO) and MDA-MB-231 cells (parental 231) (Fig 1A, S1A Fig).
90 Using cutoffs of reads >5 counts, and an adjusted p-value (pAdj) ≤ 0.05 , we identified
91 1050 and 742 genes whose expression was up- and down-regulated, respectively in
92 response to TXNIP deletion. INHBB, KISS1, FOXA2, and ZNF704, were among the
93 most highly downregulated genes, whereas AKR1C3, MT-ATP8, and G0S2 were the
94 most highly upregulated genes (S1B Fig).

95 To identify TXNIP-dependent pathways, we compared our 231: TKO dataset with
96 annotated gene sets using pre-ranked Gene Set Enrichment Analysis (GSEA) (31, 32).
97 The TXNIP-null dataset was positively enriched for known Myc targets and genes in
98 pathways involved transforming growth factor beta (TGF- β) signaling, oxidative
99 phosphorylation, the citric acid cycle, metabolism of RNA, translation, cell cycle, the
100 G2M checkpoint and fatty acid metabolism (Fig 1B-C, S1C Fig). The identification of Myc
101 targets and pathways known to be regulated by Myc in the 231:TKO cells raises the
102 possibility that TXNIP loss resembles Myc overexpression. Importantly, the proliferation
103 rate of 231:TKO cells is slightly slower than parental cells, suggesting that the in Myc

104 transcriptional activity is not an epiphenomenon downstream of increased proliferation
105 (S1D Fig).

106 Extending the correlation beyond breast cancer cell lines, we found that
107 differentially regulated transcripts in 231:TKO cells were enriched for Myc-responsive
108 transcripts in U2OS osteosarcoma cells (33) (Fig 1D). To experimentally validate our
109 findings, we knocked TXNIP out in immortalized human myoblast MB135 cells
110 (MB135:TKO) (34) (S1E Fig). We differentiated the parental MB135 and MB135:TKO
111 cells into myotubes for 5 days and used RNA-seq to determine their transcriptional
112 profiles. We found that differentiated MB135 cells were also enriched for known Myc
113 targets (S1F Fig). Together these data suggest that TXNIP may be a general repressor
114 of Myc transcriptional activity, capable of functioning in both cancer and immortalized
115 cell lines from different lineages.

116 To determine whether the inverse relationship between TXNIP and Myc is
117 restricted to cell lines, we generated a pre-ranked dataset by correlating *TXNIP* mRNA
118 levels with the expression levels of all other transcripts expressed in the 1904 breast
119 tumors annotated in the Molecular Taxonomy of Breast Cancer International Consortium
120 (METABRIC) dataset (35, 36). This pre-ranked dataset was negatively enriched with a
121 dataset containing known Myc targets (Fig 1E). This finding suggests that TXNIP-
122 associated gene expression programs are negatively correlated with Myc-dependent
123 transcriptional programs across human breast cancers. TXNIP-correlated gene
124 expression programs were also negatively enriched with several other pro-growth
125 datasets, including mTOR signaling, E2F targets, and additional Myc targets (S2A Fig),
126 and positively enriched in several datasets including inflammatory responses, apoptosis,
127 and adipogenesis (S2B Fig). Together, these data suggest that TXNIP may be a broad
128 repressor of Myc transcriptional activity and function as a general negative regulator of
129 cell growth.

130

131 **Fig 1. TXNIP loss is transcriptionally similar to Myc overexpression.**

132 (A) Western blotting was used to determine the levels of the indicated proteins in MDA-
133 MB-231 (parental 231) and 231:TXNIP-knockout (TKO) cells. (B) RNA sequencing was
134 performed on 2 biological replicates of each parental 231 and 231:TKO cells to identify
135 TXNIP-regulated genes. Pre-ranked Gene Set Enrichment Analysis (GSEA) analysis
136 was performed by comparing up- and down-regulated genes in 231:TKO cells with the
137 Hallmark and Reactome datasets in the Molecular Signatures Database (MSigDB). The

138 enriched GSEA pathways of TXNIP-regulated genes were plotted using ggplot2 package
139 from R studio. k/K value is a ratio of number of genes in our data set (k) overlap with the
140 number of genes in the indicated dataset (K). (C) The pre-ranked GSEA plot of
141 enrichment of the regulated genes in 231:TKO cells with the
142 HALLMARK_MYC_TARGETS_V1 dataset. (D) The pre-ranked GSEA analysis of our
143 231: TKO dataset with Myc-regulated genes (1.4-fold upregulated and downregulated
144 genes) generated following inducible Myc expression in U2OS cells (GSE44672). (E) A
145 rank ordered gene list was developed by correlating TXNIP expression with the
146 expression levels of all transcripts expressed in the 1904 breast cancer tumors available
147 in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
148 dataset. This pre-ranked gene list was used in a GSEA analysis of the Hallmark datasets
149 from the MSigDB. An enrichment plot for HALLMARK_MYC_TARGETS_V1 is shown.
150

151 **S1 Fig. TXNIP loss is transcriptionally similar to Myc overexpression.**

152 **Related to Fig 1.** (A) The relative *TXNIP* mRNA levels (normalized to that of β -actin) in
153 parental 231 and 231:TKO cells were determined by RT-qPCR. (B) A volcano plot of the
154 fold changes and adjusted p-values of regulated transcripts in 231:TKO cells. Gene
155 expression changes in 231:TKO cells were determined using DESeq2. (C) A pre-ranked
156 GSEA enrichment plots of the regulated transcripts in 231:TKO cells with the indicated
157 Hallmark datasets. (D) Cell proliferation for parental 231 and 231:TKO cells in regular
158 medium over a 94-hour time course was measured based on the percentage of
159 confluence using real-time videography. (E) Western blotting was used to determine the
160 levels of TXNIP protein and tubulin in parental MB135 and MB135:TKO cells. (F) A pre-
161 ranked GSEA enrichment plot of regulated transcripts in differentiated myoblast
162 MB135:TKO cells with the Hallmark_Myc_Targets_V1 dataset.

163

164 **S2 Fig. TXNIP-correlated gene expression programs are negatively correlated with**
165 **pro-growth pathways.**

166 **Related to Fig 1.** (A) Transcripts positively correlated TXNIP expression across almost
167 2000 breast tumors are negatively correlated with genes in the 4 shown Hallmark
168 datasets or (B) positively correlated with genes in the 4 shown Hallmark datasets.

169

170 *Gene expression changes in 231:TKO cells are Myc dependent*

171 To determine whether the changes in gene expression identified in 231:TKO cells were
172 Myc-dependent, we reduced Myc levels using a short interfering RNA approach (Fig 2A,
173 S3A Fig). RNA-seq analysis revealed 5669 transcripts that were up- and down-regulated
174 in 231:TKO+siMyc cells compared to 231+siNon-Targeting (siNT) cells using a
175 $p\text{Adj}<0.05$. As expected, Myc was among the most down-regulated transcripts (S3B Fig)
176 and the down-regulated genes in 231:TKO+siMyc cells were negatively enriched in
177 known Myc targets (Fig 2B). The 231:TKO+siMyc dataset was also negatively enriched
178 for known E2F targets and pathways involved in metabolism of RNA, protein translation,
179 and cell cycle (Fig 2B, S3C Fig). Of the 1792 transcripts that were regulated in the
180 231:TKO cells, about 43% were (786 genes) were dependent on Myc (Fig 2C). Of these
181 786 genes, 548 transcripts (69.7%) were reciprocally regulated in 231:TKO and
182 231:TKO+siMyc cells, suggesting that TXNIP and Myc have primarily opposing functions
183 in regulating gene expression (Fig 2D). Pathway analysis suggests that this group of
184 reciprocally regulated genes largely account for the Myc-signatures identified in the
185 231:TKO+siMyc cells (Fig 2E). Ribosomal protein genes are well-established Myc
186 targets (37), and they exemplify the reciprocal relationship between TXNIP and Myc. For
187 example, TXNIP loss results in up-regulation of 24 ribosomal protein genes from both
188 the large and small ribosomal subunit (30.4% of the 79 ribosomal protein genes) and all
189 24 of these genes were downregulated following Myc depletion (Fig 2F, S3D Fig).
190 Collectively, these data show that TXNIP loss generates gene expression programs that
191 not only resemble Myc overexpression, but that are also highly Myc-dependent.
192

193 **Fig 2. Gene expression changes in TKO are Myc dependent.**

194 (A) Western blotting was used to determine c-Myc protein and tubulin levels in 231:TKO
195 cells following siRNA-mediated c-MYC knockdown. siRNA non-targeting control: siNT or
196 siRNA targeting Myc: siMyc. (B) RNA sequencing was performed on 3 biological
197 replicates 231:TKO with siNT or 231:TKO cells with siMyc to identify Myc-dependent
198 genes in 231:TKO cells. Pre-ranked GSEA analysis was performed to identify pathways
199 for Myc-dependent genes by comparing a ranked list of up- and down-regulated genes
200 in 231:TKO+siMyc cells with the Hallmark and Reactome datasets in the MSigDB. The
201 enriched GSEA pathways of c-Myc-dependent genes in 231:TKO cells were plotted
202 using ggplot2 package from R studio. k/K value is a ratio of number of genes in our data
203 set (k) overlap with the number of genes in the indicated datasets (K). (C) All regulated
204 genes with adjusted p -value < 0.05 in 231:TKO were compared with all regulated genes

205 with adjusted p-value <0.05 in 231:TKO+siMyc dataset to identify genes regulated in
206 both datasets. The venn diagram was drawn using a VennDiagram package in R studio.
207 (D) The 786 Myc-dependent transcripts genes were subdivided into 4 categories based
208 the direction of their regulation in the 231:TKO and 231:TKO+siMyc datasets. (E) A
209 ranked list of the 548 reciprocally regulated genes in (D) were used in a GSEA analysis
210 using the MSigDB and the Hallmark and Reactome datasets. (F) Expression changes of
211 24 ribosomal protein transcripts regulated 231:TKO and 231:TKO+siMyc datasets.
212

213 **S3 Fig. Gene expression changes in 231:TKO cells are Myc dependent.**

214 **Related to Fig 2.** (A) RT-qPCR was used to determine relative Myc mRNA levels
215 (normalized to those of β -actin) in 231:TKO cells with siRNA non-targeting (siNT) or
216 siRNA Myc-targeting (siMyc) treatment for 48 hours. (B) A volcano plot showing fold
217 changes and adjusted p-values of transcripts differentially expressed in 231:TKO+siMyc
218 cells. Differentially expressed genes were determined using DESeq2. (C) A pre-ranked
219 GSEA was preformed using a ranked list of the differentially expressed genes in
220 231:TKO+siMyc cells and the Hallmark and Reactome datasets. (D) The \log_2 fold
221 change in expression of six ribosomal protein genes in 231:TKO compared to their
222 expression in parental 231 cells and in 231:TKO+siMyc cells compared to their
223 expression 231:TKO+siNT cells. The gene expression changes all had an adjusted p-
224 value (pAdj) of <0.05.

225

226 *TXNIP Regulates Global Myc Genomic Binding*

227 Because TXNIP increased the expression of Myc transcriptional targets, we performed
228 Myc ChIP-seq on parental 231 and 231:TKO cells to determine whether TXNIP
229 regulates global Myc binding. We identified about 5600 Myc-occupied binding sites in
230 parental 231 cells and roughly 28000 sites in 231:TKO cells (q-value cutoff =0.01) (Fig
231 3A), indicating that TXNIP is a broad repressor of Myc genomic binding. After filtering
232 out counts with a percentage difference greater than 60%, we used the kmeans function
233 in deepTools to identify 3 clusters of Myc genomic binding sites. In parental cells, Myc
234 genomic binding was highest at sites in cluster 1 (669 sites), intermediate at sites in
235 cluster 2 (3333 sites), and lowest at sites in cluster 3 (5063 sites). Myc binding in each
236 cluster increased dramatically in 231:TKO cells. Genome browser views of sites in each
237 cluster, RPL10A (cluster1), SLC18B1 (cluster 2), and NUP43 (cluster 3) showed a clear
238 increase in Myc binding in 231:TKO cells as expected (Fig 3B). We also determined the

239 fold increase or decrease in Myc binding (Myc signal ratio) in the 231:TKO cells for sites
240 in each of the three clusters (Fig 3C). This analysis revealed that: 1) ~96% of Myc
241 binding sites showed elevated Myc occupancy in 231:TKO cells, 2) that the majority of
242 Myc binding sites showed a slightly more than a 2-fold increase in Myc occupancy in the
243 231:TKO cells, and 3) that the increase in Myc signal ratio was similar for the binding
244 sites in each cluster. Together, these data demonstrate that TXNIP loss leads to a global
245 increase in Myc binding and support the hypothesis that TXNIP is a repressor of Myc
246 genomic binding.

247 We used ChIPseeker (38) to associate Myc genomic binding events with specific
248 genes and identified 644, 2680, and 3974 genes in cluster 1, 2, and 3, respectively. In
249 cluster 1, 71.0% of the Myc binding sites were located within +/- 1 kilobase (kb) of the
250 transcriptional start site (TSS) of the associated genes. By contrast, the percentage of
251 genes with TSS-proximal Myc binding sites progressively decreased in clusters 2 and 3,
252 with a concomitant increase in Myc binding events at sites located between 10 and 100
253 kb from the from the TSS (Fig 3D).

254 We used Hypergeometric Optimization of Motif EnRichment (HOMER) (39)
255 analysis to identify sequence elements enriched close to the Myc binding site in each of
256 the three clusters. This analysis revealed that canonical CACGTG Myc-binding motifs
257 were associated with roughly 50% of the Myc binding events in cluster 1, with the
258 percentage of the canonical sites decreasing in clusters 2 and 3. We also discovered
259 Elk1/ETS, and AP-1 motifs enriched close to the Myc-binding peak in all three clusters,
260 with Elk1/Ets motifs decreasing from cluster 1 to 3 and AP1 motifs increasing (Fig 3E).
261 Together these data suggest that cluster 1 contains the highest affinity canonical Myc
262 binding sites that are located primarily in the promoters of the associated genes. Further,
263 the data suggest that Clusters 2 and 3 contain lower affinity Myc binding sites that
264 diverge from the canonical Myc binding element and are located more distal to the TSS,
265 likely in regulatory enhancers.

266 Because, previous publications indicate that Myc can regulate different
267 subgroups of targets based on the affinity of the Myc binding (27, 28), we used the
268 MSigDB (31, 32) to identify the pathways enriched for Myc-binding sites in each cluster.
269 This analysis revealed established Myc targets in each cluster with the highest percent
270 enrichment in the Myc_Targets_V1 geneset in cluster1 and 2 with the k/K value of 0.21.
271 The enrichment of this dataset decreased in cluster 3 with k/K value of 0.11. The
272 Myc_Targets_V2 geneset was only enriched in cluster 1 with a k/K value of 0.34.

273 Genesets associated with translation and the metabolism of RNA, including genes
274 encoding several ribosomal proteins, were enriched in clusters 1 and 2. mTORC1 and
275 Hypoxia-associated genesets were strongly enriched in cluster 2, whereas
276 TNFA_signaling via NFKB, mitotic_spindle and Rho_GTPase_cycle genesets were
277 highly enriched in cluster 3 (Fig 3F). Together these data demonstrate different sets of
278 target genes are enriched in each cluster and, consistent with previous reports (27, 28),
279 suggest that Myc occupancy of different sets of target genes appears to be dictated by
280 Myc's differential binding to sites in the regulatory elements of these targets.

281

282 **Fig 3. TXNIP regulates global Myc genomic binding.**

283 (A) A heatmap of Myc ChIP-sequencing data of 2 biological replicates of each parental
284 231 and 231:TKO cells was divided into 3 clusters using deepTools with the clustering
285 argument of kmeans. (B) Myc binding, as visualized using IGV_2.5.2, on selected genes
286 from each cluster in parental 231 and 231:TKO cells. (C) Histogram showing the Myc
287 occupancy signal ratio of Myc binding sites in each cluster. Myc binding ratio was
288 calculated by divided the counts in 231:TKO with the counts in parental 231 cells. (D)
289 The distance of Myc binding sites from TSS in each cluster was annotated using the
290 ChIPseeker program. (E) Enriched sequence motifs in the proximity of Myc-occupied
291 sites in the 3 clusters were determined using Hypergeometric Optimization of Motif
292 EnRichment (HOMER). (F) Myc-binding events were associated with potentially
293 regulated genes using ChIPseeker. This set of Myc-associated genes were then
294 evaluated for their enrichment in the Hallmark or Reactome datasets in MSigDB using
295 GSEA. k/K value is a ratio of number of genes in our data set (k) overlap with the
296 number of genes in the indicated dataset (K).

297

298 *G0S2 is reciprocally regulated by TXNIP and Myc*

299 We next examined the Myc and TXNIP-dependent regulation of G0S2 as a
300 representative of their reciprocal function in gene regulation. We chose to examine
301 G0S2 for three reasons: 1) it was among the most highly upregulated genes in the
302 231:TKO cells (S1B and S4A Fig), 2) a previous publication showed that G0S2 was
303 upregulated in the livers of TXNIP knockout mice (40) and 3) G0S2 is an inhibitor of
304 triglyceride breakdown, which may contribute to the high levels of triglycerides observed
305 in TXNIP knockout mice (41, 42) We first confirmed that G0S2 RNA and protein were
306 upregulated in 231:TKO cells (Fig 4A and 4B). Our Myc ChIP-seq experiment revealed

307 that Myc binding increased in the G0S2 promoter just upstream of the G0S2
308 transcriptional start site. This region encompassed a AGCGTGctcagCGCGTG sequence,
309 which had been previously implicated in the glucose-dependent induction of G0S2
310 expression (43) (S4B Fig). The Myc binding site in the G0S2 promoter was in Cluster 2,
311 suggesting that it is a medium affinity binding site. We confirmed that Myc binding
312 increased at the G0S2 promoter following TXNIP loss using a ChIP-PCR approach (Fig
313 4C). As a negative control, Myc binding did not increase at genomic region on
314 chromosome 10 that lacks a Myc binding site (Fig 4D). These data suggest that the
315 increase in Myc binding observed at the G0S2 promoter, and presumably other
316 promoters, reflects a bona fide increase in Myc binding rather than a general opening of
317 chromatin in the 231:TKO cells that might support broad Myc binding.

318 The increase in Myc binding to the G0S2 promoter following TXNIP loss
319 suggested that the elevated G0S2 expression in 231:TKO cells might be Myc-dependent.
320 Consistent with this hypothesis, Myc knockdown in 231:TKO cells reduced the levels of
321 G0S2 mRNA and protein (Fig 4E and 4F). To study the interplay between Myc and
322 TXNIP in controlling G0S2 expression in more detail, we generated a luciferase reporter
323 that contains 1493 base pairs of the human G0S2 promoter upstream of its translational
324 start site. This fragment of the G0S2 promoter contains the Myc-occupied region
325 identified in our ChIP-seq experiment. Consistent with TXNIP repressing G0S2
326 expression, the activity of the reporter was higher in 231:TKO cells than in 231 parental
327 cells and overexpression of TXNIP suppressed reporter activity (Fig 4G). Further, Myc
328 overexpression increased G0S2 reporter activity, suggesting that Myc is sufficient to
329 activate G0S2 expression (Fig 4H).

330 Expression of rat G0S2 is glucose-dependent with glucose-responsiveness
331 mapping to a Carbohydrate Response Element (ChoRE) just upstream of the TSS (43).
332 Because ChoREs comprise two E-Box elements separated by 5 base pairs and the
333 analogous region in the G0S2 promoter showed increased Myc occupancy in 231:TKO
334 cells (S4B Fig), we tested whether TXNIP regulates G0S2 expression through the
335 ChoRE. Like the human G0S2 promoter, the activity of the rat G0S2 promoter was
336 elevated in 231:TKO cells and activity was blunted by overexpression of human TXNIP
337 (S4C Fig). Deletion of the ChoRE in the rat G0S2 reporter reduced luciferase activities in
338 the 231 parental and 231:TKO cells (Fig 4I and 4J), indicating that TXNIP regulated
339 G0S2 expression through the ChoRE. Together these data validate the model that

340 TXNIP loss leads to increased Myc binding and Myc-dependent activation of G0S2 gene
341 expression.

342

343 **Fig 4. G0S2 is reciprocally regulated by TXNIP and Myc.**

344 (A) Human G0S2 (G0S2) mRNA levels in parental 231 and 231:TKO cells were
345 measured using RT-qPCR. (B) Protein levels in parental 231 and 231:TKO cells were
346 compared using Western blotting. (C and D) Three biological replicates of parental 231
347 and 231:TKO cells were used to perform Myc ChIP-qPCR to measure Myc occupancy
348 upstream of the G0S2 transcriptional start site (C) and a region on chromosome 10 that
349 lacks demonstrable Myc binding (D). Statistical significance was determined using a t-
350 test. *p<0.05. (E and F) G0S2 mRNA (E) and protein (F) levels in 231:TKO cells were
351 measured following siRNA-mediated c-MYC knockdown for 48 hours using RT-qPCR
352 and Western blotting. (G) Luciferase activities of G0S2 luciferase reporter in lysates from
353 parental 231 and 231:TKO cells with ectopic human TXNIP overexpression from
354 pcDNA3 vector or pcDNA3 empty vector (EV) were measured. Luciferase activity was
355 normalized to the beta-galactosidase (β -gal) activity. (H) Luciferase activities of G0S2
356 luciferase reporter in lysates from parental 231 and 231TKO cells with ectopic human
357 Myc overexpression from pBabePuro vector or pBabePuro empty vector (EV) were
358 measured. (I and J) The luciferase activities of wild-type (WT) rat G0S2-luciferase
359 construct and mutated (mut) rat G0S2-luciferase construct in lysates from parental 231 (I)
360 and 231:TKO (J) were measured. Carbohydrate response elements (ChoRE) of G0S2
361 promoter in the mutant rat G0S2-luciferase construct were deleted using site-directed
362 mutagenesis (43). At least two biological replicates were carried out for all luciferase
363 experiments. Representative figures were shown. Values are reported as mean and
364 standard deviation. **p<0.01; ***p<0.001; ****p<0.0001.

365

366 **S4 Fig. G0S2 is reciprocally regulated by TXNIP and Myc.**

367 **Related to Fig 4.** (A) Genome browser view from RNA sequencing of human G0S2
368 (G0S2) mRNA in parental 231 and 231:TKO cells. (B) Myc binding, as visualized using
369 IGV_2.5.2, on G0S2 in parental 231 and 231:TKO cells. Putative carbohydrate response
370 elements (ChoRE) in the G0S2 (43) was bound by Myc. (C) Luciferase activities of rat
371 G0S2 reporter in parental and 231:TKO cells with ectopic human TXNIP overexpression
372 in from pcDNA3 vector or pcDNA3 empty vector (EV) were measured. Luciferase activity
373 was normalized to the beta-galactosidase (β -gal) activity. At least two biological

374 replicates were carried out for all luciferase experiments. Representative figures were
375 shown. Values are reported as mean and standard deviation. **p<0.01; ***p<0.001.

376

377 *TXNIP Controls Myc Transcriptional Programs by increasing Myc Binding*

378 To examine the relationship between the Myc-dependent gene expression programs and
379 increased Myc binding in 231:TKO cells, we compared the Myc-dependent transcripts
380 identified in 231:TKO+siMyc cells with genes that showed increased Myc occupancy in
381 231:TKO cells. We found that 2903 (51.2%) Myc-dependent genes identified in
382 231:TKO+siMyc cells showed increased Myc binding in the 231:TKO cells (Fig 5A).
383 These 2903 genes were enriched in similar pathways as those enriched in
384 231:TKO+siMyc cells (S5A Fig). By contrast, we identified 4996 Myc binding sites that
385 were not associated with changes in Myc-dependent gene expression in 231:TKO cells,
386 suggesting that many Myc-binding events did not lead to measurable changes in gene
387 expression. We examined two pathways of Myc-regulated genes in more detail. We
388 found that 72.4% (21/29) and 87.5% (21/24) of the Myc-dependent transcripts enriched
389 in the Myc_Targets_v1 gene set and genes encoding ribosomal proteins, respectively,
390 showed elevated Myc binding close to the TSS (Fig 5C and 5D). Interestingly, most of
391 the Myc_Targets_v1 had binding sites within 1kb of the TSS, whereas the proximity of
392 the Myc binding site to the TSS of the ribosomal protein genes was more mixed with
393 some genes having Myc binding sites within 1kb of the TSS, with others having sites
394 more distant. In contrast to these genesets, transcripts in the oxidative phosphorylation
395 pathway that were regulated by TXNIP loss, showed less Myc-dependence and fewer
396 Myc-binding events (S5F Fig). These results suggest that TXNIP loss increases Myc-
397 dependent gene expression by increasing Myc genome occupancy.

398 To better understand what constitutes a functional Myc binding event, we
399 evaluated additional parameters. We found no correlation between the number of Myc
400 sites and the magnitude of Myc-transcriptional regulation in either down- and up-
401 regulated genes in 231:TKO+siMyc cells (S5B and S5C Fig). Further, the distance of the
402 Myc-binding site relative to the TSS of a regulated gene did not correlate with the
403 magnitude of Myc regulation. 60% of Myc-activated (i.e., downregulated in
404 231:TKO+siMyc) genes had a Myc binding site within 1kb of the TSS. By contrast, only
405 30% of the Myc-repressed genes (i.e., upregulated in 231:TKO+siMyc) had a Myc
406 binding site within 1 kb of the TSS (S5D and S5E Fig). Although more Myc-activated
407 genes had Myc binding sites closer to the TSS than Myc-repressed genes, there was no

408 correlation between the degree of Myc regulation and the distance to the Myc binding
409 sites for either Myc-activated or Myc-repressed genes loci. Finally, there was no
410 relationship between the magnitude of Myc-dependence and whether the Myc binding
411 site(s) associated with the regulated gene were present in cluster 1, 2, or 3 (Fig 3A and
412 5B). Thus, we observed that about 50% of the Myc-regulated genes had an associated
413 Myc-binding event; however, there was no apparent relationship between the number of
414 Myc binding sites, the affinity of those sites or the distance of the Myc binding site from
415 the TSS and the magnitude of Myc-dependence.

416

417 **Fig 5. TXNIP controls Myc transcriptional program by increasing Myc binding.**

418 (A) Myc-dependent genes in 231:TKO cells were compared with genes that had
419 increased Myc occupancy in 231:TKO cells. (B) The \log_2 fold change (\log_2 FC) of down-
420 regulated and up-regulated genes in 231:TKO+siMyc cells compared to 231:TKO+siNT
421 cells were plotted versus their Myc binding in the 3 Myc-binding clusters. (C and D)
422 Heatmaps of regulated genes in 231:TKO cells and in 231:TKO+siMyc cells that are
423 enriched in Myc_Targets_v1 (C) and in ribosomal protein genes (D) were plotted.
424 Negative values of \log_{10} fold change indicate downregulation and positive values of
425 \log_{10} fold change indicate upregulation. The distances of Myc binding sites from
426 transcriptional start site (TSS) are determined using Genomic Regions Enrichment of
427 Annotations Tool (GREAT) (44). Myc binding sites less than 1kb or more than 1kb from
428 TSS are indicated by brown boxes. Open boxes indicate no Myc binding.

429 **S5 Fig. TXNIP controls Myc transcriptional program by increasing Myc binding.**

430 **Related to Fig 5.** (A) A list of 2903 genes that showed increased Myc binding in
431 231:TKO cells compared to parental 231 cells were ranked according to their differential
432 expression in 231:TKO+siMyc cells. This list was analyzed using pre-ranked GSEA to
433 identify enriched pathways in the MSigDB. (B and C) Differentially down-regulated (B) or
434 up-regulated genes (C) in 231:TKO+siMyc cells were divided into groups based on the
435 number Myc sites associated with each gene. (D and E) The distribution of Myc binding
436 loci relative to the TSS for down-regulated (Myc-activated targets) (D) and up-regulated
437 (Myc-repressed targets) (E) genes in 231:TKO+siMyc cells were annotated using
438 ChIPseeker. The distance to the TSS was then compared change in gene expression
439 following Myc knockdown. (F) Heatmap of genes regulated in 231:TKO cells that are
440 enriched in the Reactome oxidative phosphorylation dataset. Differential regulation in
441 231:TKO+siMyc cells are indicated by yellow (upregulation) or green (downregulation)

442 boxes. The distances of Myc binding sites from transcriptional start site (TSS) are
443 determined using Genomic Regions Enrichment of Annotations Tool (GREAT) (44). The
444 genes that have a Myc binding event within 1kb or more than 1kb from TSS are
445 indicated in brown. Open boxes indicate no Myc binding.

446

447 ***TXNIP Loss Expands the Myc Transcriptome***

448 We next investigated whether TXNIP loss simply increased Myc-dependent
449 transcriptional activity or whether its loss fundamentally altered the Myc-dependent
450 transcriptome. We used an siRNA approach to knock Myc down in parental 231 cells
451 and determined differentially expressed transcripts using RNA sequencing (S6A and
452 S6B Fig). We identified 1196 genes that were Myc-dependent ($p\text{Adj} < 0.05$) in parental
453 231 and as expected, these genes were negatively enriched in Myc targets, E2F targets,
454 and pathways involved in RNA metabolism, translation, and the cell cycle (Figure 6A).
455 The enrichment of these GSEA pathways was similar to that observed in 231:TKO+siyc
456 cells, suggesting that, in general, Myc regulates similar gene expression programs in
457 parental 231 and 231:TKO cells.

458 We next compared the Myc-dependent transcripts in parental 231 and 231:TKO
459 cells. We first discovered that there were about 5 times as many Myc-dependent
460 transcripts in 231:TKO cells (5669 transcripts) compared to the parental 231 cells (1196
461 transcripts) (Fig 6B), suggesting that TXNIP loss fundamentally alters the Myc-
462 dependent transcriptome, rather than simply increasing Myc transcriptional activity. We
463 next found that most Myc-dependent transcripts identified in the parental 231 cells (1045
464 transcripts/~87%), also showed Myc-dependence in the 231:TKO cells. Interestingly, the
465 magnitude of Myc dependence of these 1045 genes in the two cell populations was not
466 significantly different (Fig 6C). There were 4624 Myc-dependent transcripts that were
467 unique to the 231:TKO cells. We validated the expression of three transcripts, TOMM5,
468 SLC20A1, and RPS21, that were part of this group. The levels of each transcript
469 increased in 231:TKO cells and their expression was Myc dependent. By contrast,
470 reducing Myc levels in parental 231 cells did not affect expression of any of these
471 transcripts (Fig 6D). Together these findings suggest that TXNIP loss does not increase
472 Myc transcriptional activity per se, rather TXNIP loss increases the number of Myc-
473 dependent transcripts resulting in an expansion of the Myc-dependent transcriptome.

474 We conducted two additional analyses to validate the hypothesis that TXNIP loss
475 expands the Myc-dependent transcriptome. First, we performed a pre-ranked GSEA

476 analysis using the differentially expressed transcripts in the Myc-depleted parental 231
477 and 231:TKO cells. We found that each ranked transcript list was negatively enriched for
478 known Myc targets, E2F targets and pathways involved in translation and the cell cycle.
479 However, the Myc-regulated genes in 231:TKO cells showed lower normalized
480 enrichment scores and increased overlap ratio (k/K) compared to parental 231 cells (Fig
481 6E), indicating that there were more Myc-regulated genes in these pathways in the
482 231:TKO cells. Finally, we used the Molecular Signature Database (MSigDB) (31, 32) to
483 identify Myc-dependent transcripts associated with ribosomal function and the cell cycle
484 and examined their Myc-dependence in parental 231 and 231:TKO cells. We also
485 selected a group of transcripts encoding solute carrier proteins for evaluation. Even
486 though there were many more Myc-dependent transcripts in each group in the 231:TKO
487 cells, the degree of Myc-dependence is not significantly different between the two cell
488 populations (Fig 6F). These results are consistent with the model that TXNIP loss
489 broadens the Myc-dependent transcriptome to include additional transcripts associated
490 with pathways that are well-documented to be Myc-regulated.

491

492 **Fig 6. TXNIP loss expands the Myc transcriptome.**

493 (A) To identify Myc-dependent genes in MDA-MB-231 cells, RNA sequencing was
494 performed on 3 biological replicates of each parental 231 with siRNA non-targeting
495 control:siNT or with siRNA targeting Myc:siMyc . Pre-ranked GSEA analysis using a
496 ranked list of Myc-dependent targets 231 parental cells and the Hallmark and Reactome
497 datasets in the MSigDB. (B) Myc-regulated genes in parental 231 and in 231:TKO cells
498 were compared. (C) The magnitude of the Myc-dependence of the 1045 transcripts that
499 are Myc-dependent in both parental and 231:TKO cells was compared. (D) The Myc-
500 dependence of 3 gene transcripts that were selected from the 4624 genes in Figure 6B
501 were validated by reverse transcription-quantitative PCR (RT-qPCR). (E) Pre-ranked
502 GSEA analysis was performed using ranked genes lists from Myc-dependent targets in
503 parental 231 and 231:TKO cells and the Hallmark and Reactome data sets from the
504 MSigBD. (F) The differential expression of genes in three different functional groups in
505 231 parental+siMyc and 231:TKO+siMyc datasets were compared.

506

507 **S6 Fig. TXNIP loss expands the Myc transcriptome.**

508 **Related to Fig 6.** (A and B) RT-qPCR (A) and Western blotting (B) were used to
509 determine Myc mRNA levels (normalized to that of β -actin) and levels of Myc protein in

510 parental 231 with siRNA non-targeting (siNT) or siRNA Myc-targeting (siMyc) treatment
511 for 48 hours.

512

513 Discussion

514 We provide evidence that TXNIP is a broad and potent repressor of Myc genomic
515 binding and transcriptional activity. TXNIP loss in an unrelated immortalized cell line also
516 drove the gene expression programs containing known Myc targets and there is a strong
517 negative enrichment for transcripts correlated with TXNIP expression across breast
518 cancers and Myc-dependent gene signatures. These findings suggest that TXNIP's
519 ability to suppress Myc's transcription function is not restricted to MDA-MB-231 cells,
520 rather we speculate that TXNIP may be a general repressor of Myc-dependent
521 transcription. Compared to the parental 231 cells, the Myc-dependent transcriptome is
522 expanded in the 231:TKO cells (Fig 7A). This finding suggests that TXNIP loss does not
523 simply increase the expression of the Myc-dependent transcripts present in the parental
524 231 cells but fundamentally alters Myc-driven transcriptional programs. Our ChIP-seq
525 analysis suggests that the expanded Myc transcriptome in 231:TKO cells results from an
526 increase in global Myc binding (Fig 7B). We show that the increase in Myc binding on
527 G0S2 in 231:TKO cells results in upregulation of G0S2 expression. G0S2 is one
528 example of target genes where TXNIP loss increases Myc-binding and transcriptional
529 activity, but our analysis suggests that effect of TXNIP loss on Myc activity is global in
530 nature and not restricted to G0S2. Our previous work showed that Myc can repress
531 TXNIP expression by competing with its obligate transcriptional activator MondoA for a
532 double E-box site in its promoter (12). Collectively, our findings here suggest that Myc-
533 driven repression of TXNIP drives a feedforward regulatory circuit that reinforces Myc
534 transcriptional programs.

535 **Fig 7. TXNIP is a repressor of Myc genomic binding and transcriptional activity.**

536 (A) Following TXNIP loss the Myc-dependent transcriptome is expanded relative to that
537 present in the parental MDA-MB-231 cells. Expansion in the 231:TKO cells does not
538 dramatically alter the pathways regulated in the parental cells, rather there are more
539 genes from a particular pathway regulated following loss of TXNIP. (B) We assigned
540 Myc binding to three clusters based on whether they showed strong (cluster 1), medium
541 (cluster 2) or weak (cluster 3) Myc binding in the parental 231 cells. The majority of sites
542 in clusters 1 and 2 are located within 1kb of the transcriptional start site, whereas the

543 majority of the sites in cluster 3 are more distal from the TSS and likely represent distal
544 enhancers.

545 Control of TXNIP transcription, translation and stability is tightly coupled to
546 progrowth signals. For example, mTOR blocks MondoA transcriptional activity, activated
547 Ras blocks translation of TXNIP mRNA and AKT can phosphorylate TXNIP to trigger its
548 degradation (7, 9, 45). One implication of these findings is that progrowth pathways via
549 their suppression of TXNIP expression result in an indirect upregulation of Myc
550 transcriptional activity. Another consequence of reducing TXNIP expression is an
551 increase in glucose uptake, which we speculate provides carbon backbones for Myc-
552 driven synthesis of macromolecules. This coordination of nutrient availability, i.e., low
553 TXNIP levels and high glucose uptake, with nutrient use, i.e., Myc-driven synthesis of
554 glucose-derived macromolecules, is likely important for supporting growth and
555 proliferation of some cancer types. Supporting this hypothesis, a Myc_{high}/TXNIP_{low} gene
556 signature correlates with poor clinical outcomes in TNBCs, but not in other breast cancer
557 subtypes (12).

558 Recent studies demonstrate that progressively increasing Myc levels drives Myc
559 to low affinity non-canonical binding sites (27-30) and qualitative changes in Myc-
560 dependent gene expression. The emerging model suggests that at low levels, Myc binds
561 predominately to high affinity sites and regulates expression of genes that carry out
562 essential housekeeping functions. As Myc levels increase, it invades lower affinity sites
563 in promoter and enhancer regulatory regions. From these lower affinity sites, Myc is
564 proposed to drive the expression of genes associated with its function as a transforming
565 oncogene. The expanded Myc-dependent transcriptome in the 231:TKO cells mirrors
566 these findings (Fig 7A-B). We divided Myc binding events in 231:TKO cells into high
567 (cluster 1), medium (cluster 2), and low (cluster 3) affinity groups. The highest proportion
568 of high affinity canonical CACGTG Myc binding sites were found in cluster 1, with the
569 proportion decreasing in cluster 3 (Fig 3F). Myc binding events in cluster 3 were farther
570 from the transcriptional start site, suggesting that TXNIP loss allows Myc to invade distal
571 enhancer elements. Further, GSEA analysis revealed that high affinity Myc binding
572 events in cluster 1 were associated gene sets enriched for housekeeping functions such
573 as metabolism of RNA. By contrast, the sites in low affinity cluster 3 show enrichment for
574 gene expression programs that may correspond to Myc's function as a transforming
575 oncogene, e.g., Rho signaling. The sites in medium affinity cluster 2 are enriched in
576 gene sets associated with both Myc's housekeeping and transformation-relevant

577 transcriptional targets, suggesting an intermediate phenotype. With the increased level
578 of Myc transcriptional activity in 231:TKO cells, particularly at potentially transformation-
579 relevant targets, one might expect that they would display a higher level of cell growth-
580 associated phenotypes. This does not to be the case at least in normal culture medium
581 replete with glucose and serum-supplied growth factors (S1D Fig).

582 In general terms, Myc's function in transcription and transformation is tightly
583 linked to its absolute expression level (24). TXNIP loss expands Myc genomic binding
584 and drives Myc-dependent gene expression programs, yet Myc protein levels do not
585 increase following TXNIP loss (Fig 1A). Myc knockdown experiments showed that its
586 intrinsic activity as a transcriptional activator is similar at Myc-dependent targets
587 expressed in both parental 231 and 231:TKO cells (Fig 6C). In addition, the activity of
588 multiple Myc-dependent luciferase reporters was similar in both cell types (unpublished
589 data). By contrast, Myc genomic binding is dramatically increased in 231:TKO cells
590 compared to parental cells with the increase in Myc binding similar in 231:TKO cells for
591 for all three clusters. Together, these data suggest that TXNIP loss increases Myc's
592 intrinsic ability to bind genomic sites, rather than increasing its transcriptional activity per
593 se. Although, we cannot formally rule out a direct role for TXNIP in regulating Myc
594 genomic binding, we favor a model where TXNIP effects Myc genomic by an indirect
595 mechanism. Our preliminary experiments provisionally rule out a role for TXNIP in
596 regulating global chromatin accessibility, the amount of Myc in the nucleus, the formation
597 of Myc:Max heterodimers, or Myc's association with cofactors required for genome
598 binding such as WDR5 (46); unpublished data). It is possible that TXNIP loss effects
599 Myc genomic binding by altering its post-translational modification state or association
600 with ancillary factors that stabilize its association with chromatin.

601 TXNIP deletion in parental 231 cells changes the expression of 1792 transcripts,
602 yet the expression of only 786 transcripts is dependent upon Myc (Fig 2C). This
603 suggests that in addition to regulating Myc genomic binding, TXNIP may regulate gene
604 expression by additional mechanisms. TXNIP loss increases PI3K signaling, mTORC1
605 activity and alters cell metabolism (47-49), so there are several potential routes by which
606 TXNIP loss may regulate gene expression independent of its effect on Myc activity
607 characterized here. Alternatively, a recent report demonstrated that TXNIP loss can lead
608 to a global up regulation in H3K27 acetylation (50), so an epigenetic mechanism is also
609 possible.

610 This study and others demonstrate and establish that TXNIP is a repressor of at
611 least two common features of the transformed state: Myc transcriptional activity and
612 glucose uptake (1, 5, 51, 52) TXNIP expression is exquisitely dependent on the
613 transcription factor MondoA (12, 53). Further, MondoA transcriptional activity seems to
614 be primarily if not solely dedicated to regulating TXNIP (54). Together, these findings
615 suggest that approaches to ectopically activate MondoA transcriptional activity might be
616 useful cancer therapeutics in that they represent a way to block Myc transcriptional
617 activity. For example, translation initiation inhibitors increase TXNIP expression in a
618 MondoA-dependent manner (55). TXNIP induction is apparently independent of
619 oncogenic burden, suggesting the potential utility of this approach.

620

621 Acknowledgements

622 We thank members of the Ayer, Gertz and Varley labs for their thoughtful comments
623 throughout this project and Elizabeth Leibold for comments on the manuscript. This work
624 was funded by NIH grants, R01CA222650 (DEA) and R01 HG008974 (JG), and by
625 132596-RSG-18-197-01-DMC from the American Cancer Society (KEV). Funds from
626 Huntsman Cancer Institute's Cancer Center Support Grant (P30CA042014) and the
627 Huntsman Cancer Foundation also provided support.

628

629 Author Contributions

630 DEA, T-YL, JG, BRW and KEV designed the studies. T-YL, BRW, MLT, and KEM
631 performed the experiments. DEA, T-YL, BRW, MEC and JMV performed data analysis.
632 DEA and T-YL wrote the manuscript.

633

634 Conflict of Interest

635 The authors declare no conflicts of interest

636

637 Data availability

638 Raw and processed RNA-seq and ChIP-seq data has been deposited in the Gene
639 Expression Omnibus under accession numbers GSE208412 and GSE208415

640

641 Materials and Methods

642

643 Cell Culture Conditions

644 Parental MDA-MB-231, and 231:TKO cells were cultured in Dulbecco's Modified Eagle
645 Medium (DMEM) (Gibco; 1195073) with 10% Fetal Bovine Serum (FBS) (Gibco;
646 A3160506), 1X MEM Non-Essential Amino Acids Solution (Gibco; 11140076) and 1X
647 Penicillin-streptomycin (Gibco; 15140148). MB135 (34) and MB135:TKO cells were
648 cultured in Ham's F10 with L-glutamine (ThermoFisher; 11550043) with 20% FBS (Gibco;
649 A3160506), 1X Penicillin-streptomycin (Gibco; 15140148), 10ng/ml recombinant human
650 Fibroblast Growth Factor (Promega; G5071) and 1 μ M dexamethasone (Sigma-Aldrich;
651 D4902). For differentiation, MB135 and MB135:TKO cells were cultured in Ham's F10
652 with L-glutamine (ThermoFisher; 11550043), 1X heat-inactivated horse serum (Sigma-
653 Aldrich; H1270), 1X Penicillin-streptomycin (Gibco; 15140148), 10 μ g/ml insulin from
654 bovine pancreas (Sigma-Aldrich; I-1882) and 10 μ g/ml transferrin (Sigma-Aldrich; T-
655 0665). All cells were maintained at 37 °C and 5% CO₂.

656 231:TKO cells were generated using human TXNIP CRISPR/Cas9 KO plasmid
657 with TXNIP-specific guide RNA sequences from GeCKO (v2) library (Santa Cruz; sc-
658 400664). TXNIP knockout clones were isolated from single cells and TXNIP knockout
659 was validated using polymerase chain reaction (PCR) and western blotting using TXNIP
660 (Abcam) antibodies. MB135:TKO cells were generated using human TXNIP
661 CRISPR/Cas9 KO plasmid, three TXNIP-specific guide RNA sequences from GeCKO
662 (v2) library (Santa Cruz; sc-400664) and a homology-directed repair (HDR) construct
663 containing a puromycin-resistance cassette (Santa Cruz; sc-400664-HDR). TKO cells
664 were isolated following selection of cells in 2.5 μ g/mL puromycin. Loss of TXNIP was
665 verified by immunoblotting.

666
667 Western Blotting
668 8X10⁶ cells were washed with 1X cold PBS once and scrapped with cell scrapper into
669 ice-cold lysis buffer (400 mM NaCl, 20 mM HEPES [pH7.6], 1 mM EDTA, 1 mM EGTA,
670 25% glycerol and 0.1% NP-40) with protease inhibitors (1 mM PMSF, 2.5 μ g/ml aprotinin,
671 1 μ g/ml leupeptin and 1 μ g/ml pepstatin), phosphatase inhibitor cocktail 1 (Sigma; P2850)
672 and phosphatase inhibitor cocktail 2 (Sigma; P5726). Cells were disrupted using
673 bioruptor (Diagenode; UCD-200) with a setting of 15 min, 30 seconds on, 30 seconds off.
674 After sonication, disrupted cells were centrifuged at 14,000 rpm for 10 minutes.
675 Supernatants were collected for further analysis. Protein concentrations were
676 determined with a Bio-Rad protein assay (Bio-Rad; 5000006). Equivalent amounts of

677 protein (40 – 80 µg) for different samples were resolved on SDS-PAGE, following
678 transfer to PVDF membrane (Amersham; 10600023) with a setting of 150 V, 400 mA,
679 and 1.5 hours at 4°C. After transfer, the PVDF membrane was blocked with 5% non-fat
680 milk in 1X TBST (1X Tris-buffered saline, pH 7.4 with 0.1% Tween-20) for 1 hour.
681 Membranes were probed with primary antibodies using dilution between 1:500 and
682 1:2000 (TXNIP, Abcam, ab188865, 1:2000; c-MYC, Abcam, ab32072, 1:2000; G0S2,
683 US Biological, 127066, 1:500 and alpha-tubulin, Molecular Probes, 236-10501, 1:20000)
684 for overnight at 4°C. Protein signals were detected using HRP-conjugated mouse IgG
685 (GE Healthcare, NA931, 1:5000), HRP-conjugated rabbit IgG (GE Healthcare, NA934,
686 1:15000) and ProSignal Pico ECL (Genesee Scientific, 20-300B).

687 Reverse Transcriptase Quantitative PCR (RT-qPCR)

688 RNA was extracted from cells using Zymo Research Quick RNA Miniprep Kit (Genesee
689 Scientific, 11-328). 200 ng RNA was used to generate cDNA using GOscript Reverse
690 transcriptase (Promega, A5001). qPCR was performed using CFX Connect Real-Time
691 System and CFX Manager 3.1 program (Bio-Rad). Relative mRNA expression levels
692 were determined from a standard curve generated for each RT primer set. Relative
693 mRNA expression levels for different conditions/ samples were normalized to β-actin
694 expression. Three biological replicates of experiments were performed. The values were
695 reported as mean ± standard deviation of 3 technical replicates. Statistical significance
696 was calculated using *t* test. Sequences of the primers used for RT-qPCR are listed in
697 Table 1.

698

699 Chromatin Immunoprecipitation-Sequencing (ChIP-seq)

700 20X10⁶ MDA-MB-231 or 231:TKO cells were cultured in DMEM (Gibco; 1195073) with
701 10% FBS (Gibco; A3160506) , 1X MEM Non-Essential Amino Acids Solution (Gibco;
702 11140076) and 1X penicillin/streptomycin (Gibco; 15140148). Cells were crosslinked
703 with 1% formaldehyde for 10 min at room temperature and then were treated with
704 0.125M glycine for 5 min to quench cross-linking reaction. Crosslinked cells were
705 washed with 1X cold PBS and then were lysed in Farnham lysis buffer (5 mM PIPES pH
706 8.0, 85 mM KCl, 0.5% NP-40). Fixed chromatin was then harvested in Farnham lysis
707 buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40) supplemented in protease and
708 phosphatase inhibitors (ThermoFisher Scientific; A32959) by scraping off the plates with
709 cells scrapers and transferred into 15 mL canonical tubes. Fixed chromatin was
710 centrifuged at 2000 rpm for 5 min at 4°C and pellets were resuspended in RIPA buffer

711 (1X PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) for sonication. Sonication
712 was performed on an Active Motif EpiShear Probe Sonicator for 5 min cycles of 30 sec
713 on and 30 sec off with a 40% amplitude. Sonicated samples were centrifuged at 14000
714 rpm for 15 minutes at 4°C and supernatants were collected. Sonicated DNA, which had
715 200 to 500 base pair fragments was used for immunoprecipitation. For
716 immunoprecipitation, 5 µg Myc (Cell Signaling; D3N8F) antibody was used. Anti-Myc
717 was bound to Dynabeads M-280 sheep anti-rabbit (Invitrogen; 11204D) for at least 2
718 hours at 4°C. Bead-antibody complexes were incubated with fragmented chromatin
719 overnight at 4°C with rocking. After overnight incubation, Dynabeads containing
720 antibody-bound chromatin were captured with a magnetic rack. Dynabeads were
721 washed with LiCl wash buffer (100 mM Tris [pH7.5], 500 mM LiCl, 1% NP-40 and 1%
722 sodium deoxycholate) for 5 times at 4°C. Each wash was 3 minutes with rocking. After
723 washing, the Dynabeads were washed once with 1 ml TE buffer (10 mM Tris-HCl [pH7.5]
724 and 0.1 mM Na₂EDTA). Beads were resuspended in 200 ml IP elution buffer (1% SDS
725 and 0.1M NaHCO₃) with vortexing. Beads were incubated in a 65°C bead bath for 1 hour
726 with vortexing the tubes every 15 minutes to elute the antibody-bound chromatin from
727 the beads. Beads were centrifuged at 14000 rpm for 3 minutes at room temperature.
728 Supernatants (immune-bound chromatin) were collected and transferred to new
729 microcentrifuge tubes. Input samples for each condition served as controls. Immuno-
730 bound chromatin and inputs were de-crosslinked in a 65°C bead bath for overnight.

731 Reverse cross-linked DNA was cleaned up with ChIP DNA Clean & Concentrator
732 Kit (Zymo Research; 11379C) according to the manufacturer's protocol. Eluted DNA in
733 EB buffer was used to construct ChIP library. Preparation of immunoprecipitated DNA
734 for sequencing was performed as previously described (56). Briefly, blunted DNA
735 fragments were ligated with sequencing adapters. The ligated DNA fragments were
736 amplified with library PCR primers that contain barcodes (NEBNext ChIP-Seq Library
737 Prep Reagent for Illumina) for 15 cycles. Amplified DNA libraries from the anti-Myc ChIP
738 were sequenced using Illumina HiSeq Sequencing with 50 cycles of single read. The
739 resulting Fastq files were aligned to the human genome (hg19) using NovoAlign. Peaks
740 were called using Model-Based Analysis of ChIP-seq-2 (MACS2) (57) using a p-value
741 cut-off of 0.01 and the mfold parameter between 5 and 50. The Heatmap was generated
742 using deepTools 2.0 (58). MYC-bound genes were annotated using the R package
743 ChIPseeker (38). Myc binding motifs were determined using Hypergeometric
744 Optimization of Motif EnRichment (HOMER) (39). GSEA and pre-ranked GSEA analyses

745 (31, 32) were used to determine the pathway enrichment of Myc-bound genes. ggplot2
746 (59) was used to draw dot plots for pathway enrichment.

747

748 Chromatin Immunoprecipitation Quantitative PCR (ChIP-qPCR)
749 Anti-Myc immunoprecipitations were performed from chromatin isolated from 20X10⁶
750 MDA-MB-231 or 231:TKO cells as described above. Myc binding levels on genes were
751 assessed with qPCR. qPCR was performed as described above. ChIP-qPCR primers
752 that were used for experiments: human G0S2, forward:5'-
753 TTTCGCGTGCACACTGGCCTTCCC-3', reverse: 5'-
754 GAGGAGGGAAAAGGAGGGGGTGGAAC-3'; human chromosome 10, forward:5'-
755 GTCGGGAGCTTCCTATTCCCTG-3', reverse: 5'-AGAAGCCCACCCATCCCTAT-3'.

756

757 RNA Sequencing Library Construction and Analysis

758 Total RNA was extracted from 3X10⁶ cells using the Zymo Research Quick RNA
759 miniprep kit (Zymo Research; R1055). 500 ng of total RNA was used to capture mRNA
760 and construct library using KAPA Stranded mRNA-Seq Kit (KAPA Biosystems; KK8420)
761 according to the manufacturer's protocol. Briefly, after mRNA capturing and
762 fragmentation, cDNA was synthesized. Sequencing adaptors were ligated to the cDNA
763 fragments. The adaptor-ligated cDNA fragments were amplified with library PCR primers
764 that contain barcodes for about 10 cycles. Libraries were sequenced using either
765 Illumina HiSeq 50 cycles Single-Read Sequencing or Novaseq Paired-Read Sequencing.
766 The resulting Fastq files were aligned to the human genome (hg38) using STAR (60).
767 Counts were generated using FeatureCounts version 1.63 (61) with the arguments "-T
768 24 -p -s 2 -largestOverlap" and using the Ensemble Transcriptome build 102 for
769 GRCh38. DESeq2 (62) was used to determine the differential gene expression in
770 different samples or treatments. Raw counts, rlog values, and normalized counts for
771 each sample or treatment were generated with the DESeq2 program. Counts ≤ 5 were
772 filtered and an adjusted p-value less than or equal to 0.05 was used in the DESeq2
773 program for determining differential gene expression. GSEA and pre-ranked GSEA
774 analyses (31, 32) were used to determine the pathway enrichment of Myc-bound genes.
775 ggplot2 (59) was used to draw dot plots for pathway enrichment.

776

777 Proliferation assay

778 Parental 231 and 231:TKO cells were plated in Dulbecco's Modified Eagle Medium
779 (DMEM) (Gibco; 1195073) with 10% Fetal Bovine Serum (FBS) (Gibco; A3160506), 1X
780 MEM Non-Essential Amino Acids Solution (Gibco; 11140076) and 1X Penicillin-
781 streptomycin (Gibco; 15140148) in 6-well plates with 6000 cells per well for each
782 parental and 231:TKO cells. Proliferation was monitored for 7 days on the Incucyte
783 Zoom Live Cell Imaging Platform (Sartorius) with 10X magnification and images were
784 captured at 2-hour intervals. Confluence for parental 231 and 231:TKO cells was
785 measured.

786

787 **Table 1 List of qRT-qPCR primers**

788

Designation	Sequence (5'-3')	Source of reference
c-Myc_forward (human)	TCAAGAGGTGCCACGTCTCC	Shen L et al 2015
c-Myc_reverse (human)	TCTTGGCAGCAGGATAGTCCTT	Shen L et al 201
TXNIP_forward (human)	TGACTTTGGCCTACAGTGGG	Peterson CW et al 2010
TXNIP_reverse (human)	TTGCGCTTCTCCAGATACTGC	Peterson CW et al 2010
Actin_forward	TCCATCATGAAGTGTGACGT	Peterson CW et al 2010
Actin_reverse	TACTCCTGCTTGCTGATCCAC	Peterson CW et al 2010
TOMM5_forward (human)	CTCCTGCGAGTCACTCCATT	This paper
TOMM5_reverse (human)	CTCCTGCGAGTCACTCCATT	This paper
SLC20A1_forward (human)	GCAACTCGTGGCTTCGTTTT	This paper
SLC20A1_reverse (human)	ACTGGATCTGCCTTATGGAGG	This paper
RPS21_forward (human)	TCCGCTAGCAATCGCATCAT	This paper
RPS21_reverse (human)	TCATCTGACTCACCCATCCTAC	This paper
G0S2_forward (human)	CGAGAGCCCAGAGCCGAGATG	This paper
G0S2_reverse (human)	AGCACCAACGCCGAAGAG	This paper

789

790

791

792

793

References

794

795 1. Hui TY, Sheth SS, Diffley JM, Potter DW, Lusis AJ, Attie AD, et al. Mice lacking
796 thioredoxin-interacting protein provide evidence linking cellular redox state to appropriate
797 response to nutritional signals. *The Journal of biological chemistry*. 2004;279(23):24387-
798 93.

799 2. Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by
800 glucose through a carbohydrate response element and induces beta-cell apoptosis.
801 *Endocrinology*. 2005;146(5):2397-405.

802 3. O'Shea JM, Ayer DE. Coordination of nutrient availability and utilization by MAX-
803 and MLX-centered transcription networks. *Cold Spring Harbor perspectives in medicine*.
804 2013;3(9):a014258.

805 4. Peterson CW, Ayer DE. An extended Myc network contributes to glucose
806 homeostasis in cancer and diabetes. *FBL*. 2011;16(6):2206-23.

807 5. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. Glucose
808 sensing by MondoA:MLX complexes: a role for hexokinases and direct regulation of
809 thioredoxin-interacting protein expression. *Proceedings of the National Academy of
810 Sciences of the United States of America*. 2008;105(19):6912-7.

811 6. Elgort MG, O'Shea JM, Jiang Y, Ayer DE. Transcriptional and Translational
812 Downregulation of Thioredoxin Interacting Protein Is Required for Metabolic
813 Reprogramming during G(1). *Genes Cancer*. 2010;1(9):893-907.

814 7. Kaadige MR, Yang J, Wilde BR, Ayer DE. MondoA-MLX transcriptional activity is
815 limited by mTOR-MondoA interaction. *Molecular and cellular biology*. 2015;35(1):101-10.

816 8. Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-
817 dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake
818 via GLUT1. *Molecular cell*. 2013;49(6):1167-75.

819 9. Ye Z, Ayer DE. Ras Suppresses TXNIP Expression by Restricting Ribosome
820 Translocation. *Mol Cell Biol*. 2018;38(20).

821 10. Cadenas C, Franckenstein D, Schmidt M, Gehrman M, Hermes M, Geppert B,
822 et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of
823 breast cancer. *Breast cancer research : BCR*. 2010;12(3):R44.

824 11. Park JW, Lee SH, Woo GH, Kwon HJ, Kim DY. Downregulation of TXNIP leads
825 to high proliferative activity and estrogen-dependent cell growth in breast cancer.
826 *Biochem Biophys Res Commun*. 2018;498(3):566-72.

827 12. Shen L, O'Shea JM, Kaadige MR, Cunha S, Wilde BR, Cohen AL, et al.
828 Metabolic reprogramming in triple-negative breast cancer through Myc suppression of
829 TXNIP. *Proceedings of the National Academy of Sciences of the United States of
830 America*. 2015;112(17):5425-30.

831 13. Tome ME, Johnson DB, Rimsza LM, Roberts RA, Grogan TM, Miller TP, et al. A
832 redox signature score identifies diffuse large B-cell lymphoma patients with a poor
833 prognosis. *Blood*. 2005;106(10):3594-601.

834 14. Zhou J, Chng WJ. Roles of thioredoxin binding protein (TXNIP) in oxidative
835 stress, apoptosis and cancer. *Mitochondrion*. 2013;13(3):163-9.

836 15. Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator
837 commonly suppressed in cancer by epigenetic mechanisms. *Int J Biochem Cell Biol*.
838 2011;43(12):1668-73.

839 16. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer
840 metabolism. *Clin Cancer Res*. 2012;18(20):5546-53.

841 17. Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O'Donnell KA, et al.
842 Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin
843 immunoprecipitation assays. *Molecular and cellular biology*. 2004;24(13):5923-36.

844 18. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc
845 transactivation of LDH-A: implications for tumor metabolism and growth. *Proc Natl Acad
846 Sci U S A*. 1997;94(13):6658-63.

847 19. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc
848 suppression of miR-23a/b enhances mitochondrial glutaminase expression and
849 glutamine metabolism. *Nature*. 2009;458(7239):762-5.

850 20. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al.
851 Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and
852 leads to glutamine addiction. *Proceedings of the National Academy of Sciences of the
853 United States of America*. 2008;105(48):18782-7.

854 21. Osthuis RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al. Deregulation of
855 glucose transporter 1 and glycolytic gene expression by c-Myc. *J Biol Chem*.
856 2000;275(29):21797-800.

857 22. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. *Cold Spring Harb
858 Perspect Med*. 2013;3(8).

859 23. Meyer N, Penn LZ. Reflecting on 25 years with MYC. *Nat Rev Cancer*.
860 2008;8(12):976-90.

861 24. Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its
862 interactome. *Cold Spring Harb Perspect Med*. 2014;4(1):a014357.

863 25. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a
864 sequence-specific DNA-binding complex with Myc. *Science*. 1991;251(4998):1211-7.

865 26. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and
866 cancer. *Cancer discovery*. 2015;5(10):1024-39.

867 27. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B, et al. Different
868 promoter affinities account for specificity in MYC-dependent gene regulation. *Elife*.
869 2016;5.

870 28. Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, et al.
871 MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. *Cell metabolism*.
872 2015;22(6):1009-19.

873 29. Elkon R, Loayza-Puch F, Korkmaz G, Lopes R, van Breugel PC, Bleijerveld OB,
874 et al. Myc coordinates transcription and translation to enhance transformation and
875 suppress invasiveness. *EMBO Rep*. 2015;16(12):1723-36.

876 30. Sabò A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective
877 transcriptional regulation by Myc in cellular growth control and lymphomagenesis. *Nature*.
878 2014;511(7510):488-92.

879 31. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.
880 PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
881 downregulated in human diabetes. *Nat Genet*. 2003;34(3):267-73.

882 32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et
883 al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-
884 wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-50.

885 33. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation
886 and repression by oncogenic MYC shape tumour-specific gene expression profiles.
887 *Nature*. 2014;511(7510):483-7.

888 34. Stadler G, Chen JCJ, Wagner K, Robin JD, Shay JW, Emerson Jr CP, et al.
889 Establishment of clonal myogenic cell lines from severely affected dystrophic muscles -
890 CDK4 maintains the myogenic population. *Skeletal Muscle*. 2011;1(1):12.

891 35. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The
892 genomic and transcriptomic architecture of 2,000 breast tumours reveals novel
893 subgroups. *Nature*. 2012;486(7403):346-52.

894 36. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al.
895 The somatic mutation profiles of 2,433 breast cancers refine their genomic and
896 transcriptomic landscapes. *Nature Communications*. 2016;7(1):11479.

897 37. Schlosser I, Holzel M, Murnseer M, Burtscher H, Weidle UH, Eick D. A role for c-
898 Myc in the regulation of ribosomal RNA processing. *Nucleic Acids Res*.
899 2003;31(21):6148-56.

900 38. Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak
901 annotation, comparison and visualization. *Bioinformatics*. 2015;31(14):2382-3.

902 39. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple
903 combinations of lineage-determining transcription factors prime cis-regulatory elements
904 required for macrophage and B cell identities. *Mol Cell*. 2010;38(4):576-89.

905 40. Oka S, Yoshihara E, Bizen-Abe A, Liu W, Watanabe M, Yodoi J, et al.
906 Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of
907 insulin secretion and peroxisome proliferator-activated receptor function. *Endocrinology*.
908 2009;150(3):1225-34.

909 41. Yang X, Lu X, Lombès M, Rha GB, Chi YI, Guerin TM, et al. The G(0)/G(1)
910 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride
911 lipase. *Cell Metab*. 2010;11(3):194-205.

912 42. Bodnar JS, Chatterjee A, Castellani LW, Ross DA, Ohmen J, Cavalcoli J, et al.
913 Positional cloning of the combined hyperlipidemia gene *Hyplip1*. *Nat Genet*.
914 2002;30(1):110-6.

915 43. Ma L, Robinson LN, Towle HC. ChREBP*MIx is the principal mediator of
916 glucose-induced gene expression in the liver. *The Journal of biological chemistry*.
917 2006;281(39):28721-30.

918 44. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
919 improves functional interpretation of cis-regulatory regions. *Nat Biotechnol*.
920 2010;28(5):495-501.

921 45. Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, et al.
922 Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to
923 Insulin. *Cell Rep*. 2017;19(10):2005-13.

924 46. Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, et al. Interaction
925 with WDR5 promotes target gene recognition and tumorigenesis by MYC. *Molecular cell*.
926 2015;58(3):440-52.

927 47. Hui ST, Andres AM, Miller AK, Spann NJ, Potter DW, Post NM, et al. Txnip
928 balances metabolic and growth signaling via PTEN disulfide reduction. *Proceedings of
929 the National Academy of Sciences of the United States of America*. 2008;105(10):3921-6.

930 48. Spaeth-Cook D, Burch M, Belton R, Demoret B, Grossenbacher N, David J, et al.
931 Loss of TXNIP enhances peritoneal metastasis and can be abrogated by dual TORC1/2
932 inhibition. *Oncotarget*. 2018;9(86):35676-86.

933 49. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G. Thioredoxin-1 binds
934 to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane
935 binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. *Arch
936 Biochem Biophys*. 2004;429(2):123-33.

937 50. Bechard ME, Smalling R, Hayashi A, Zhong Y, Word AE, Campbell SL, et al.
938 Pancreatic cancers suppress negative feedback of glucose transport to reprogram
939 chromatin for metastasis. *Nat Commun*. 2020;11(1):4055.

940 51. Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, et
941 al. TXNIP regulates peripheral glucose metabolism in humans. *PLoS Med*.
942 2007;4(5):e158.

943 52. Chutkow WA, Patwari P, Yoshioka J, Lee RT. Thioredoxin-interacting protein
944 (Txnip) is a critical regulator of hepatic glucose production. *The Journal of biological*
945 *chemistry*. 2008;283(4):2397-406.

946 53. Peterson CW, Stoltzman CA, Sighinolfi MP, Han K-S, Ayer DE. Glucose controls
947 nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx
948 heterodimer. *Molecular and cellular biology*. 2010;30(12):2887-95.

949 54. Wilde BR, Ye Z, Lim TY, Ayer DE. Cellular acidosis triggers human MondoA
950 transcriptional activity by driving mitochondrial ATP production. *Elife*. 2019;8.

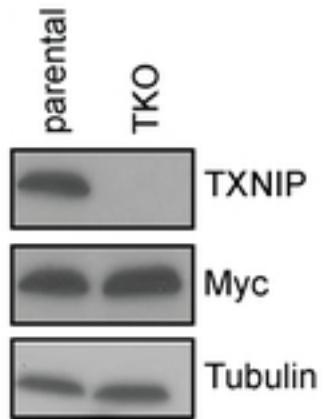
951 55. Wilde BR, Kaadige MR, Guillen KP, Butterfield A, Welm BE, Ayer DE. Protein
952 synthesis inhibitors stimulate MondoA transcriptional activity by driving an accumulation
953 of glucose 6-phosphate. *Cancer & metabolism*. 2020;8(1):1-13.

954 56. Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, et al.
955 Genomic determination of the glucocorticoid response reveals unexpected mechanisms
956 of gene regulation. *Genome Res*. 2009;19(12):2163-71.

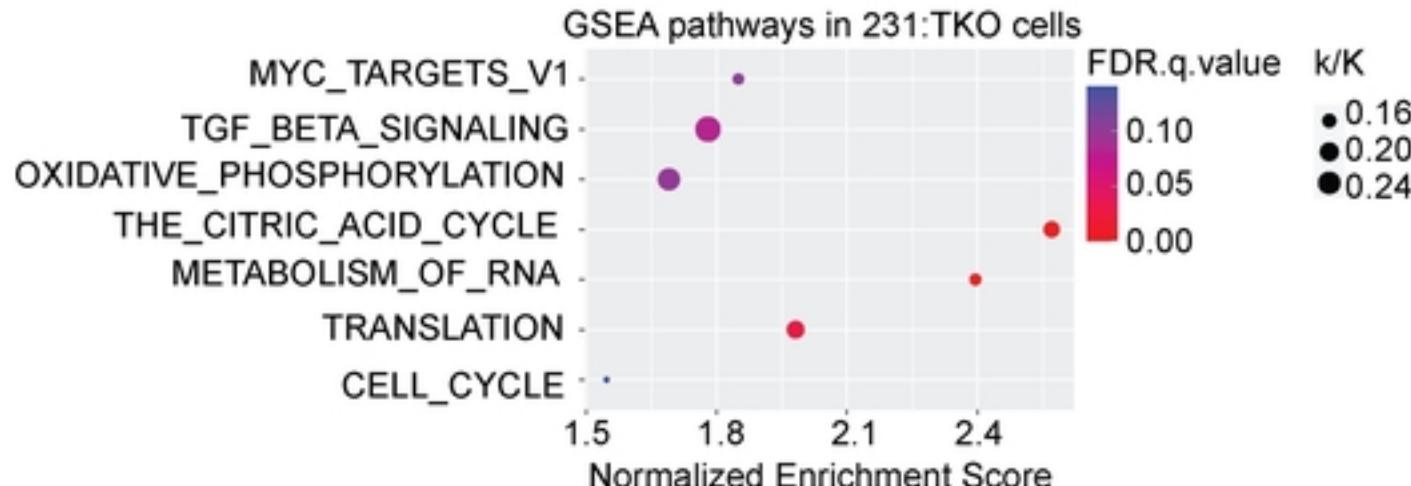
957 57. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
958 Model-based analysis of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):R137.

959 58. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al.
960 deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic*
961 *Acids Research*. 2016;44(W1):W160-W5.

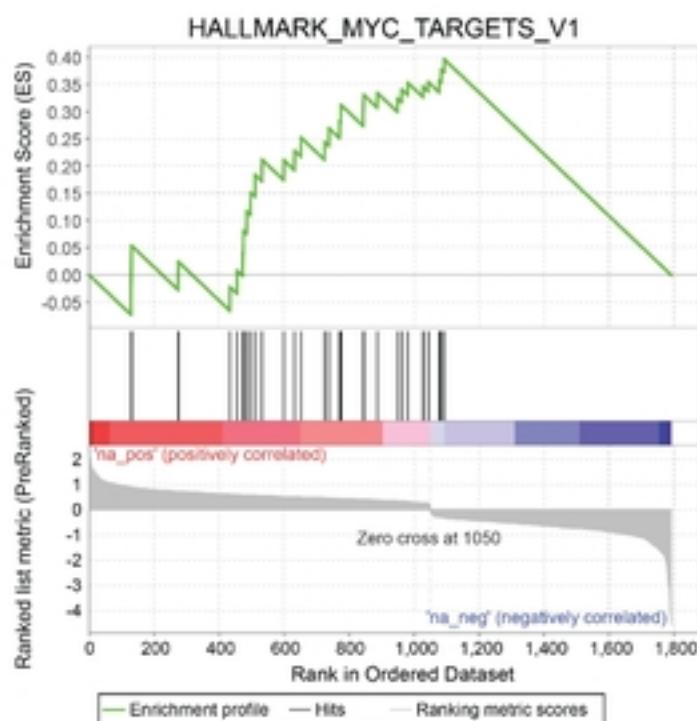
962 59. Wickham H. *ggplot2 : Elegant Graphics for Data Analysis*. Cham: Springer
963 International Publishing : Imprint: Springer,; 2016.


964 60. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
965 ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.

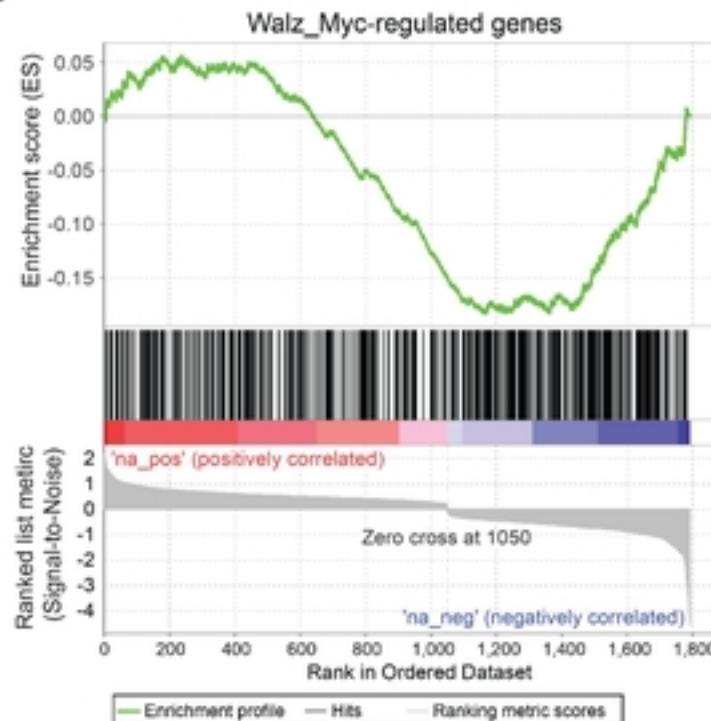
966 61. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program
967 for assigning sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-30.


968 62. Love MI, Huber W, Anders S. Moderated estimation of fold change and
969 dispersion for RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550.

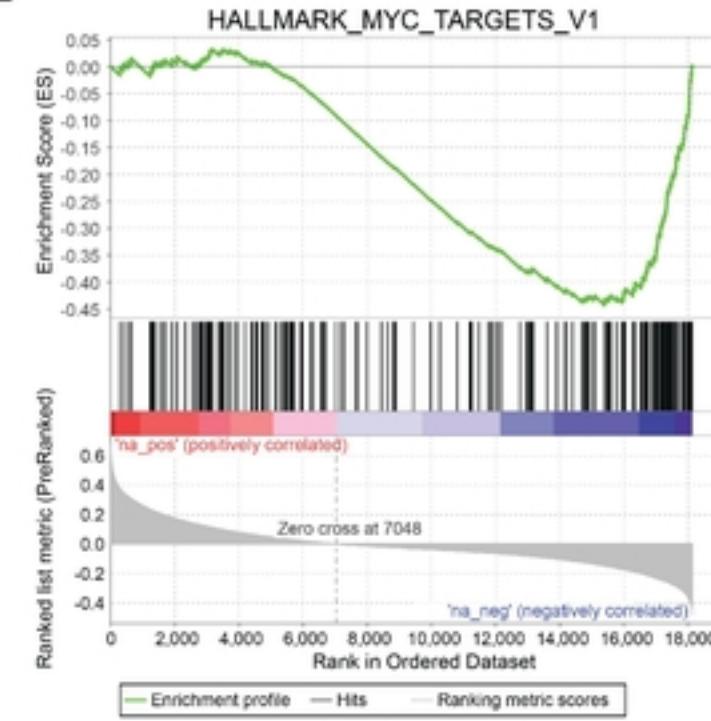
970


A

B

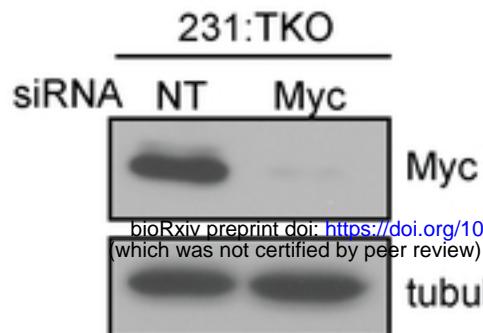


C


231:TKO
NES = 1.898 FDR q-value = 0.0741

D

231:TKO
NES = -1.307 FDR q-value = 0.055


E

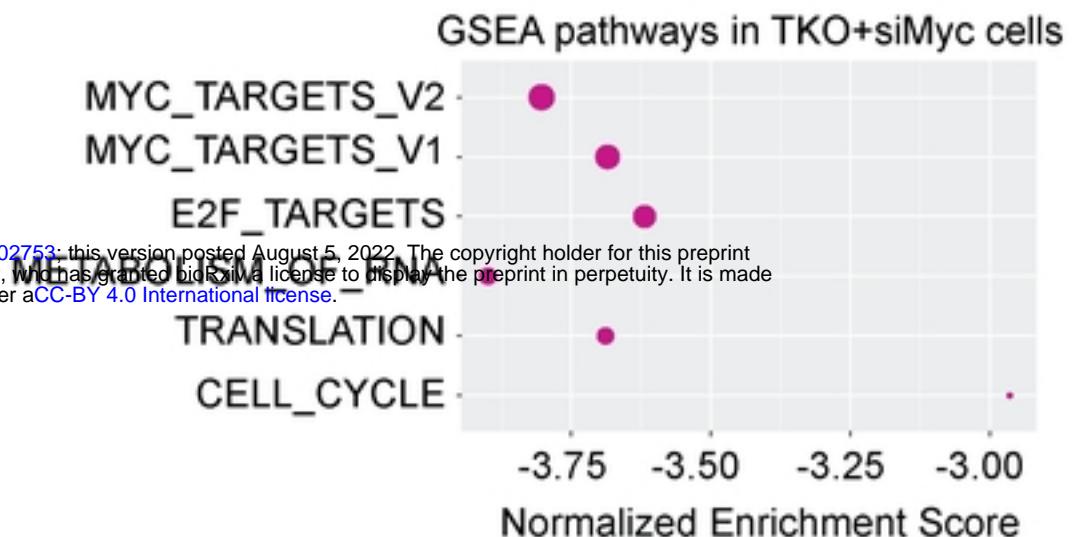
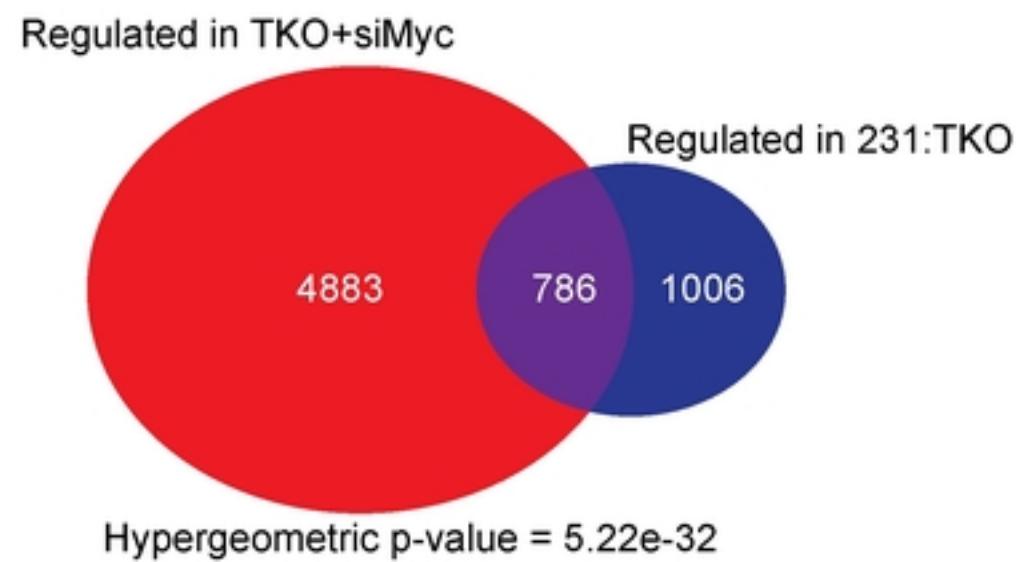
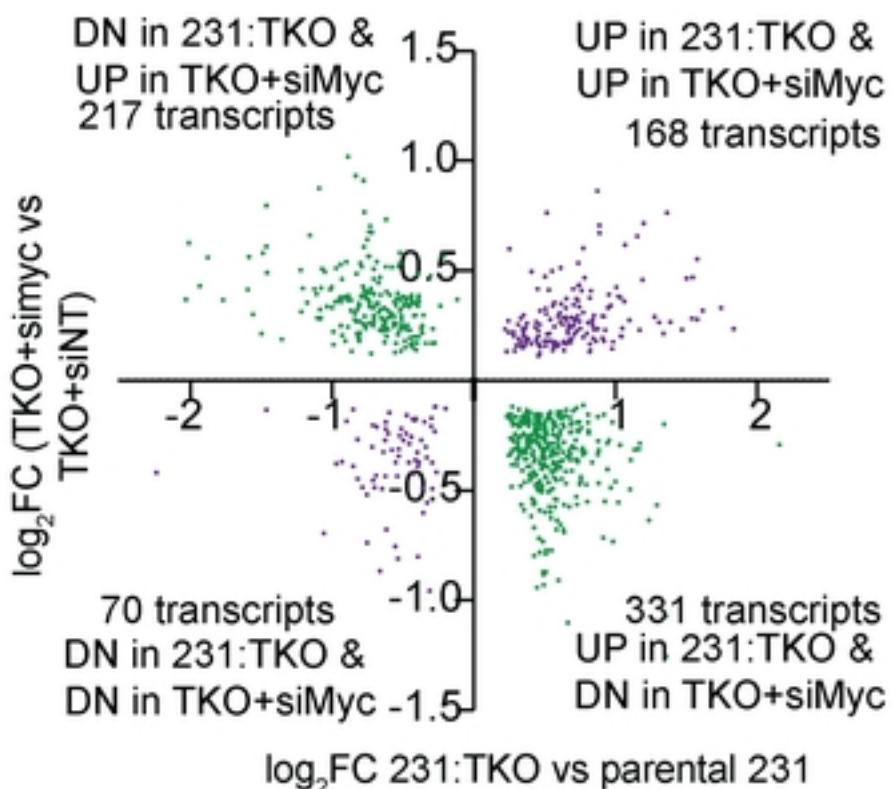
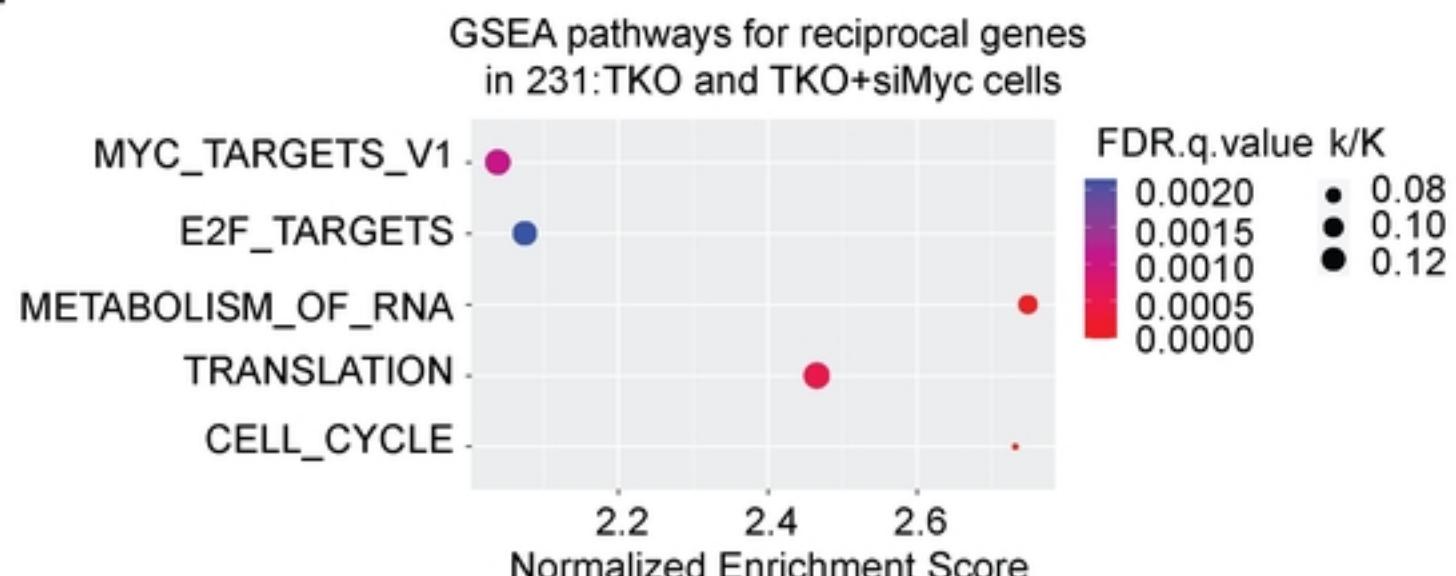

1904 METABRIC
breast cancer tumors
NES = -1.989 FDR q-value < 0

Fig 1


A


B


C

D

E

F

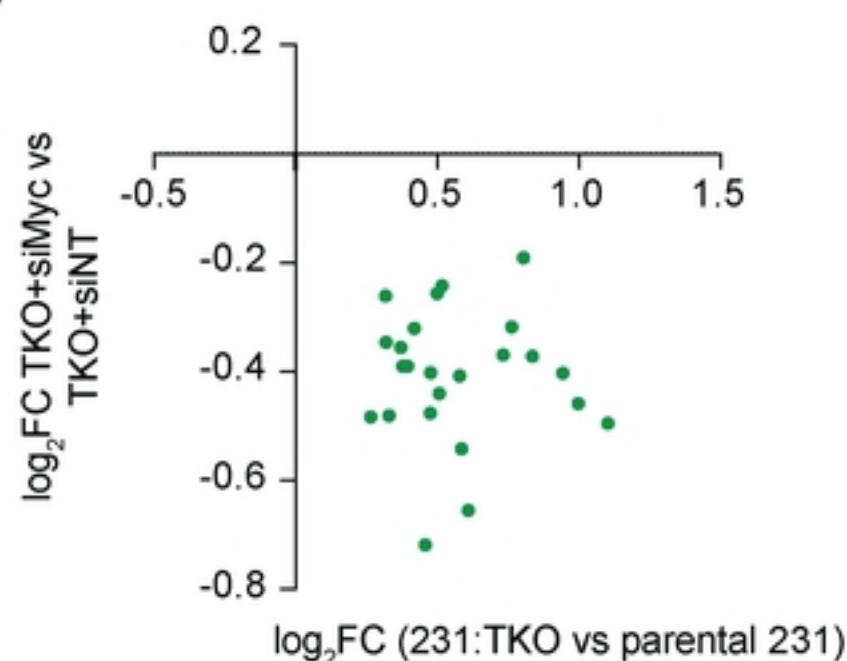


Fig 2

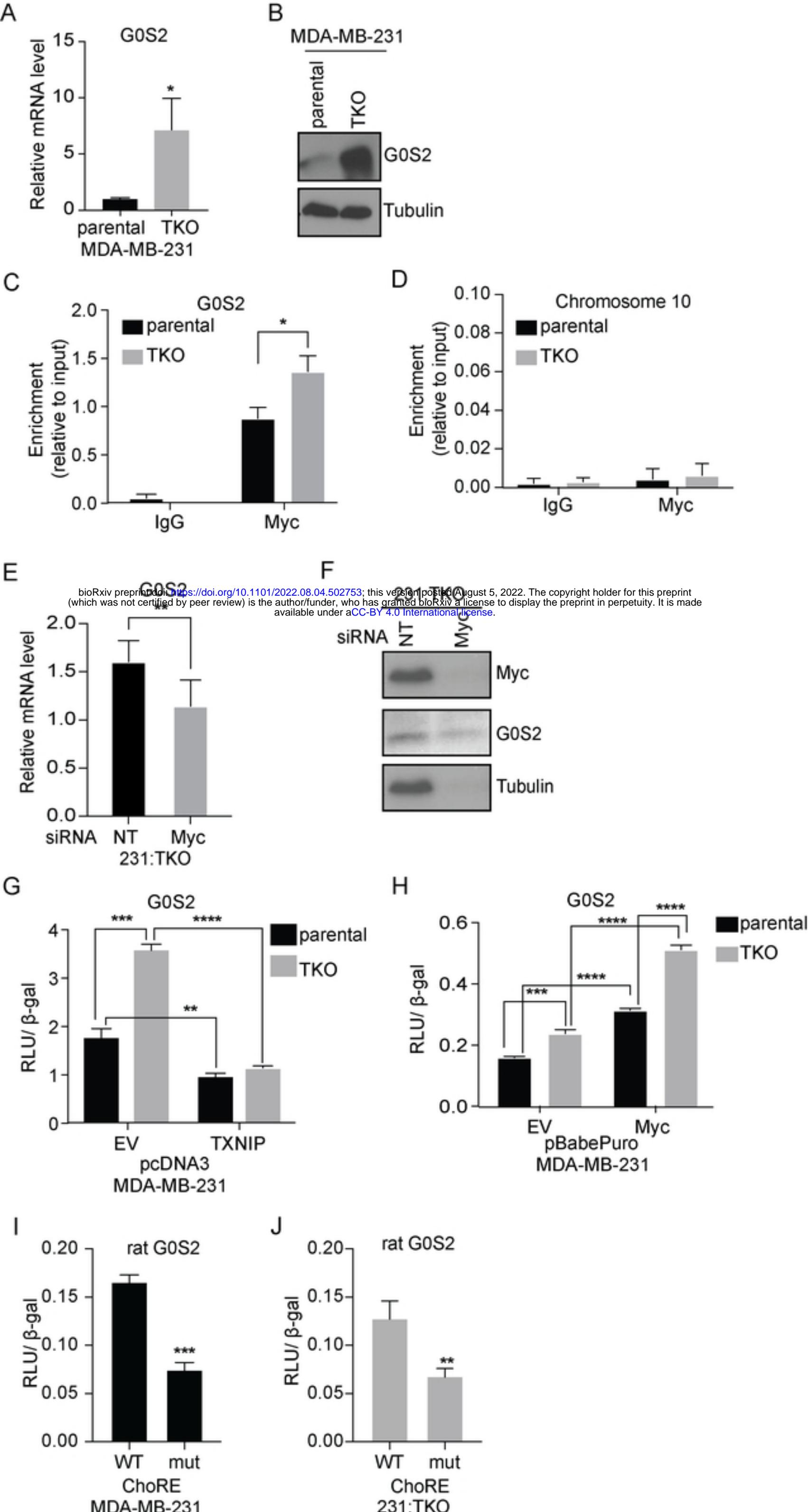


Fig 4

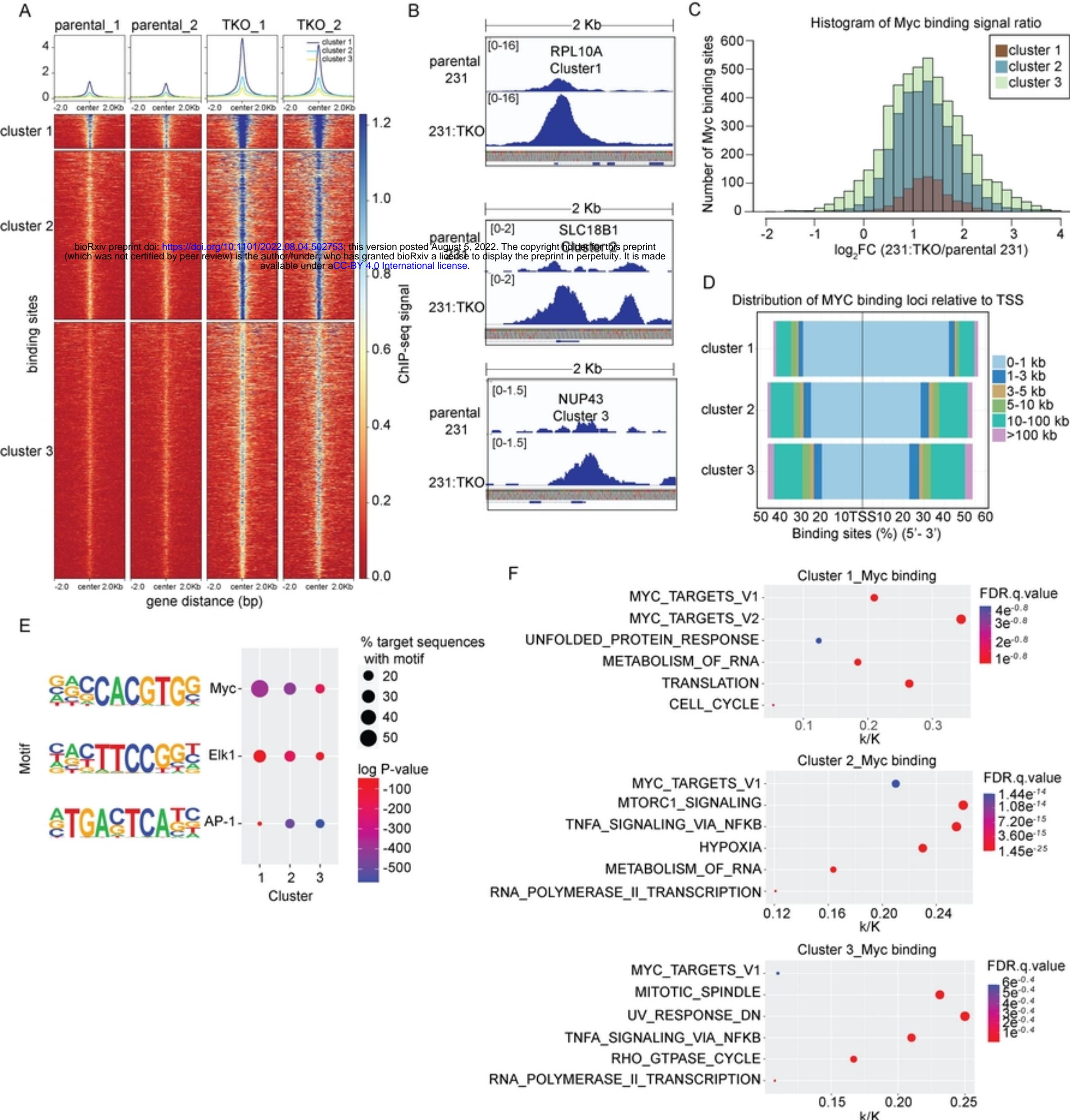
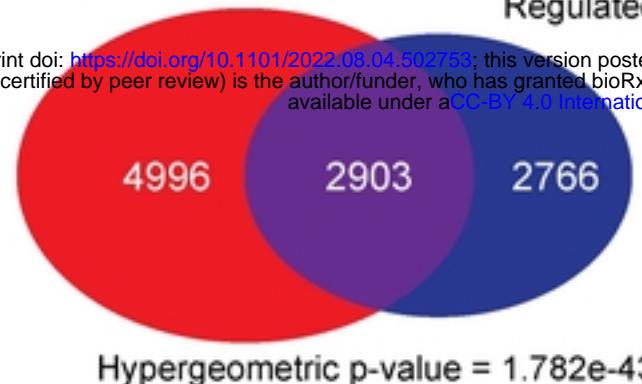
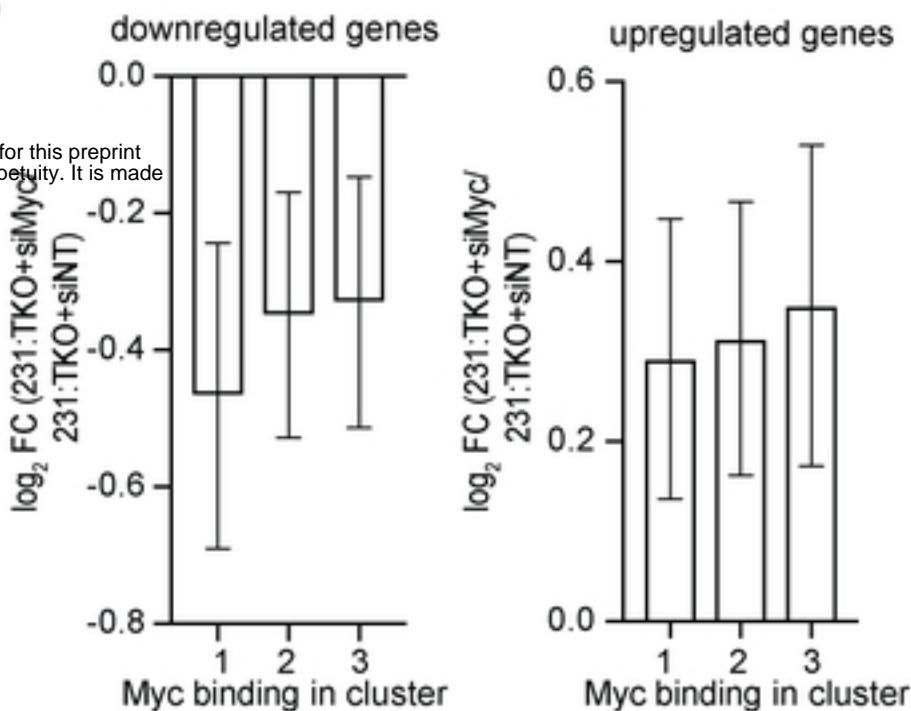
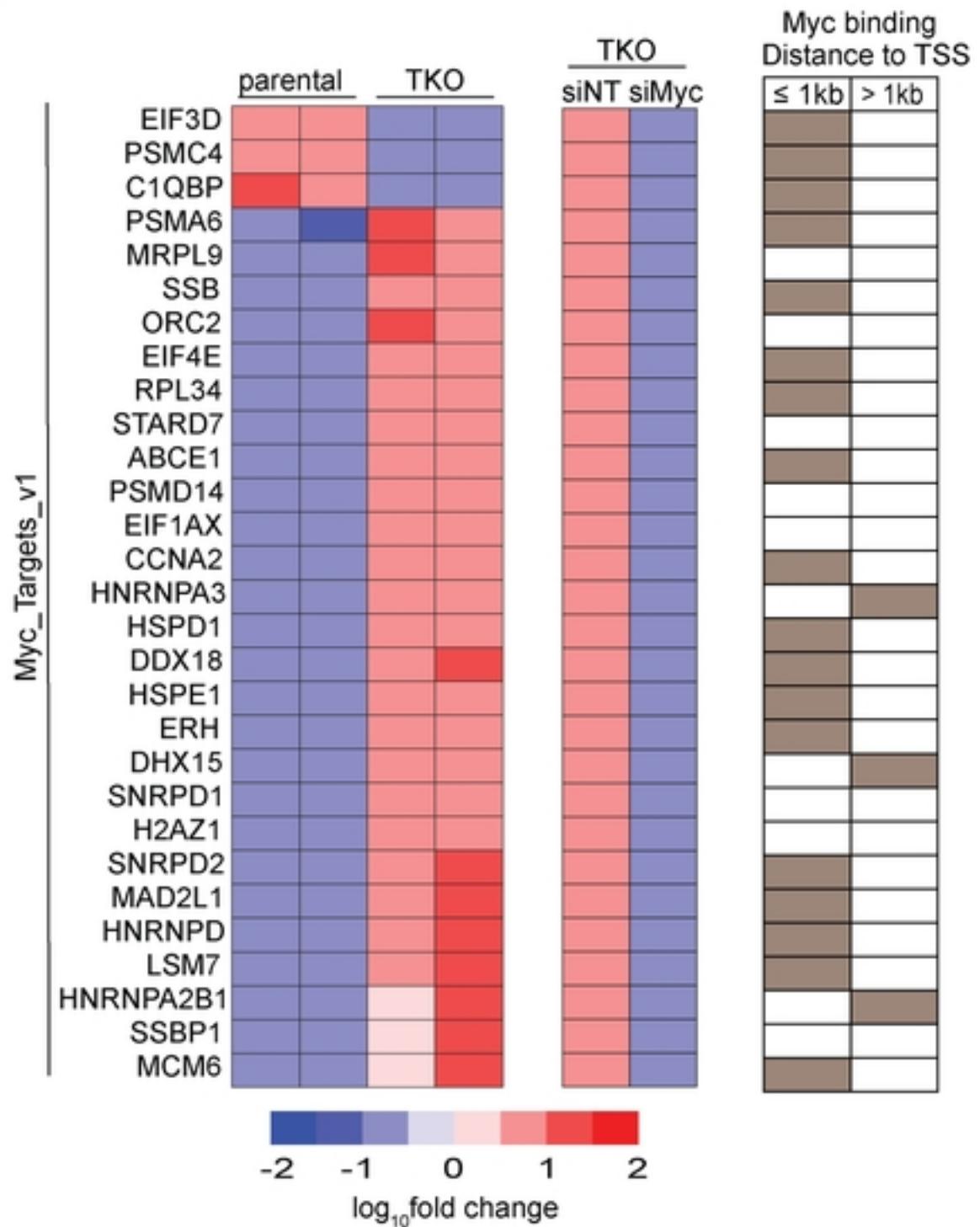



Fig 3


A

Increased Myc binding in 231:TKO


bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.04.502753>; this version posted August 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

C

D

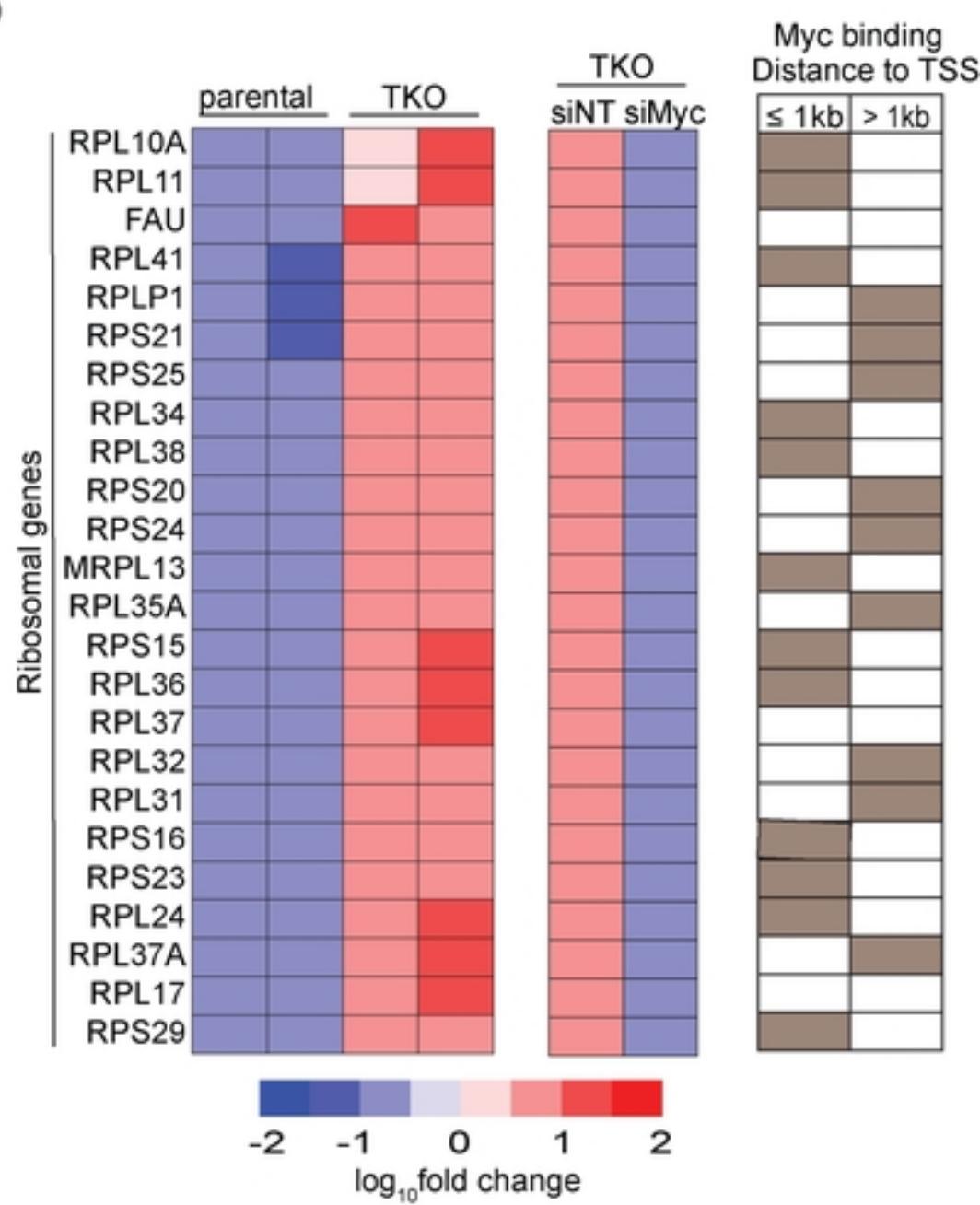


Fig 5

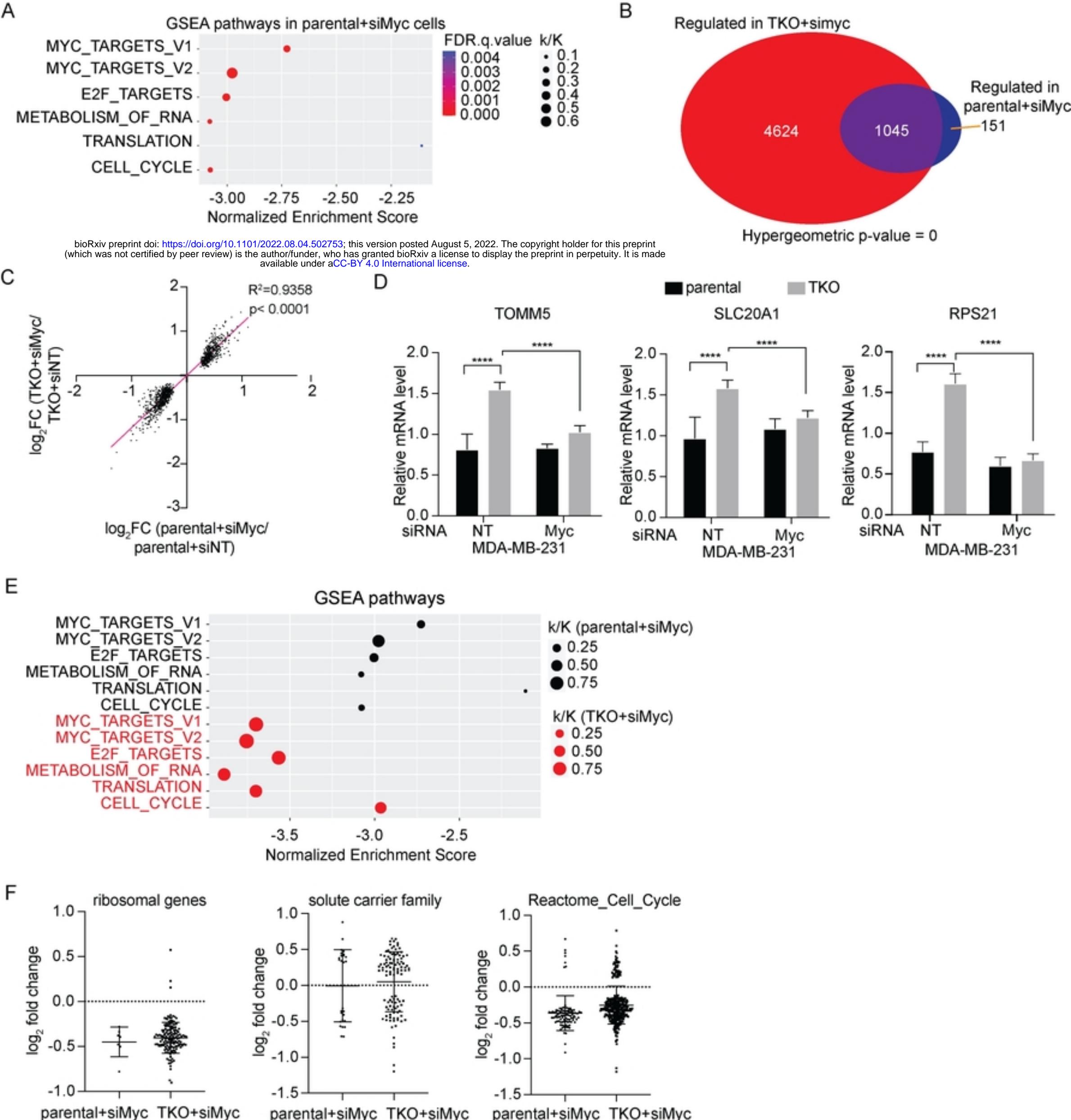
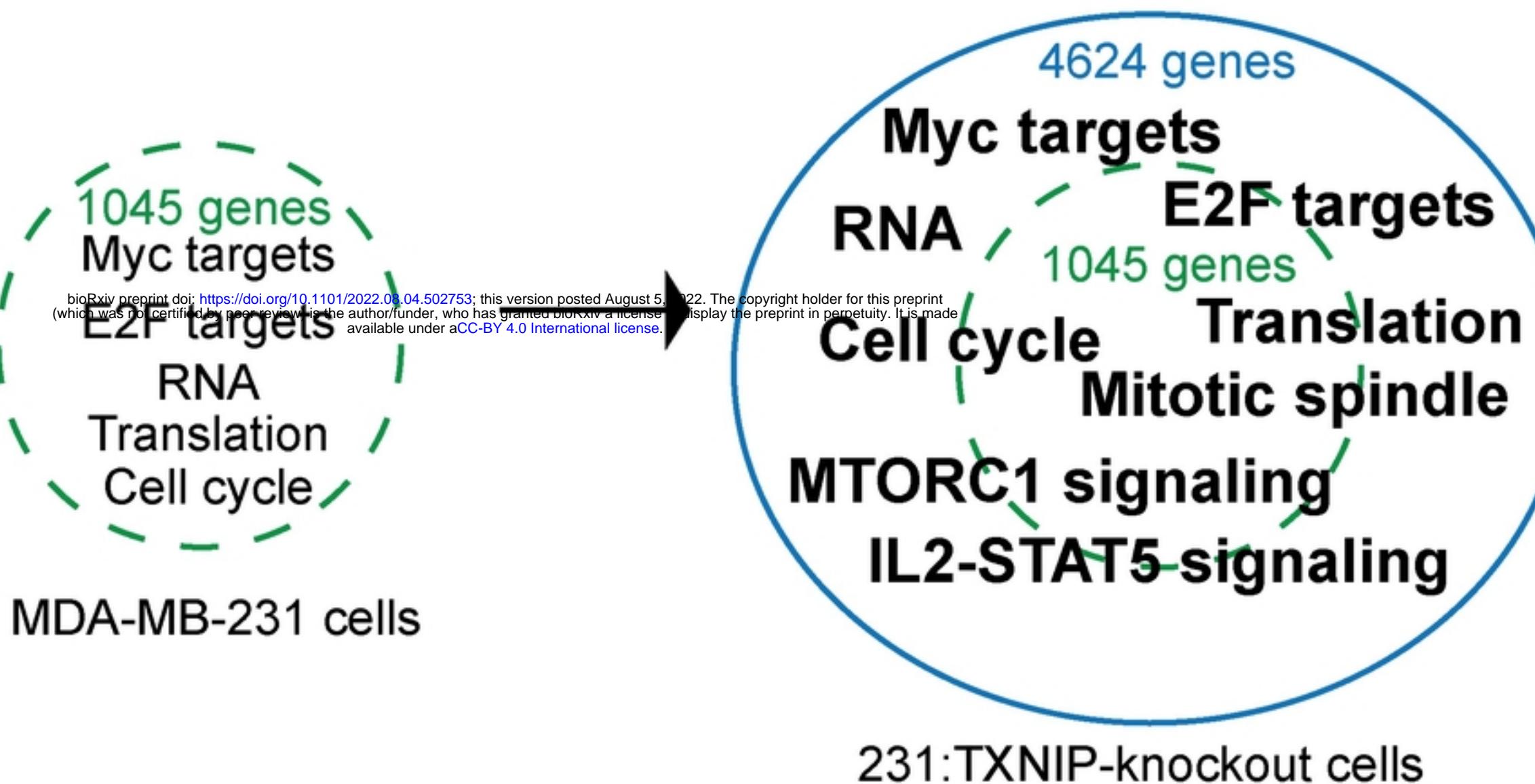



Fig 6

A

B

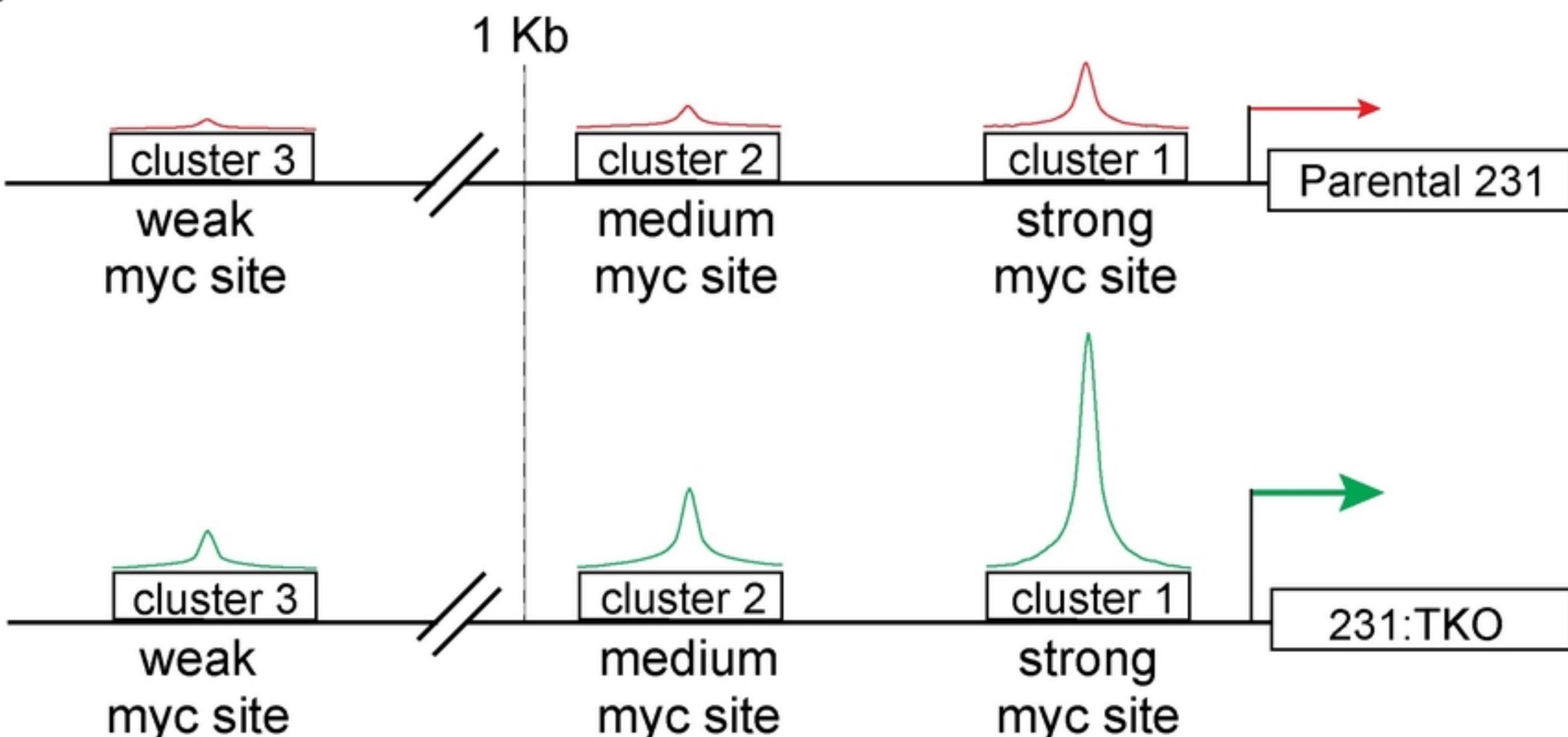


Fig 7